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Adaptive Duty Cycling in Sensor Networks With
Energy Harvesting Using Continuous-Time Markov

Chain and Fluid Models
Wai Hong Ronald Chan, Pengfei Zhang, Ido Nevat, Sai Ganesh Nagarajan, Alvin C. Valera,

Hwee-Xian Tan, and Natarajan Gautam

Abstract—The dynamic and unpredictable nature of energy
harvesting sources available for wireless sensor networks, and the
time variation in network statistics like packet transmission rates
and link qualities, necessitate the use of adaptive duty cycling
techniques. Such adaptive control allows sensor nodes to achieve
long-run energy neutrality, where energy supply and demand are
balanced in a dynamic environment such that the nodes function
continuously. In this paper, we develop a new framework enabling
an adaptive duty cycling scheme for sensor networks that takes
into account the node battery level, ambient energy that can be
harvested, and application-level QoS requirements. We model the
system as a Markov decision process (MDP) that modifies its state
transition policy using reinforcement learning. The MDP uses con-
tinuous time Markov chains (CTMCs) to model the network state
of a node to obtain key QoS metrics like latency, loss probabil-
ity, and power consumption, as well as to model the node battery
level taking into account physically feasible rates of change. We
show that with an appropriate choice of the reward function for
the MDP, as well as a suitable learning rate, exploitation probabil-
ity, and discount factor, the need to maintain minimum QoS levels
for optimal network performance can be balanced with the need
to promote the maintenance of a finite battery level to ensure node
operability. Extensive simulation results show the benefit of our
algorithm for different reward functions and parameters.

Index Terms—Wireless sensor networks, adaptive duty cycle,
continuous-time Markov chain, Markov decision process,
reinforcement learning, fluid model.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) can be used in a
large number of applications, such as environmental

and structural health monitoring, weather forecasting [1]–[3],
surveillance, health care, and home automation [4]. A key chal-
lenge that constrains the operation of sensor networks is limited
lifetime arising from the finite energy storage in each node [5].
However, recent advances in energy harvesting technologies
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are enabling the deployment of sensor nodes that are equipped
with a replenishable supply of energy [6]–[10]. These tech-
niques can potentially eliminate the limited lifetime problem
in sensor networks and enable perpetual operation without the
need for battery replacement, which is not only labourious and
expensive, but also infeasible in certain situations.

Despite this, the uninterrupted operation of energy
harvesting-powered wireless sensor networks (EH-WSNs)
remains a major challenge, due to the unpredictable and
dynamic nature of the harvestable energy supply [5], [11]. To
cope with the energy supply dynamics, adaptive duty cycling
techniques [11]–[17] have been proposed. The common
underlying objective of these techniques is to attain an optimal
energy-neutral point at every node, wherein the energy supply
and energy demand are balanced. Also, other works focus on
optimizing energy consumption in EH-WSNs by formulating
the response to a time-varying harvesting profile as a Markov
Decision Process (MDP) or other probability-driven processes
[18], [19]. These energy-oriented techniques tend to focus pri-
marily on obtaining the optimal per-node duty cycle to prolong
network lifetime, while neglecting application-level quality of
service (QoS) requirements [20]–[22]. More recently, adaptive
duty cycling techniques involving MDPs have been proposed
that focus on achieving energy efficient operations while con-
sidering a subset of the QoS requirements (such as throughput
or delay) with full channel state information [23]–[27], but
without considering the long-term energy availability of the
system or tolerating ambiguity in the state information.

In this paper, we develop a novel framework enabling an
adaptive duty cycling scheme that allows network designers
to trade-off between both short-term QoS requirements and
long-term energy availability using an adaptive reinforcement
learning algorithm. In our framework, the QoS metrics of the
system are estimated based on knowledge of the average perfor-
mance of the network, such as the average packet transmission
and probing rates, without necessarily requiring knowledge of
the full channel state information. These quantities can be mon-
itored online or estimated offline with a time delay depending
on the requirements of the system. Fig. 1 illustrates the main
components of such a scheme, which comprises the follow-
ing: (i) energy harvesting controller; (ii) adaptive duty cycle
controller; and (iii) wakeup scheduler.

The energy harvesting controller provides information on
the amount of harvested energy that is currently available,

0733-8716 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Journal on Selected Areas in Communications, 
2015 January, Volume 33, Issue 12, Pages 2687-2700
http://doi.org/10.1109/JSAC.2015.2478717



2688 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 12, DECEMBER 2015

Fig. 1. Main components of proposed adaptive scheme. Quantities that fluctu-
ate due to environmental influences are marked in green.

while predicting the harvested energy available within the next
few hours, depending on the diurnal cycles of the energy
sources. The adaptive duty cycle controller computes the opti-
mal operating duty cycle based on user inputs (in the form of
application QoS requirements) and the available amount of har-
vested energy. The wakeup scheduler will then: (i) manage the
sleep and wake interfaces of each node, based on the recom-
mended operating duty cycle, and (ii) provide feedback to the
adaptive duty cycle controller on the energy consumption of
and remaining energy in the node. This feedback loop allows
the duty cycle controller to adapt its duty cycle, based on
the harvested and remaining energies - in order to meet QoS
requirements - via operating policies such as energy neutrality.

In our previous work [28], we developed a duty cycle con-
troller key to the energy-aware operations of a sensor network.
Using a Continuous Time Markov Chain (CTMC) model, we
derived key QoS metrics including loss probability, latency,
as well as power consumption, as functions of the duty cycle.
(We define these metrics more explicitly in Section III-B.)
We then formulated and solved the optimal operating duty
cycle as a non-linear optimization problem, using latency and
loss probability as the constraints. We validated our CTMC
model through Monte Carlo simulations and demonstrated that
a Markovian duty cycling scheme can outperform periodic duty
cycling schemes. In this paper, we extend the previous work
and enhance the duty cycle controller by considering the bat-
tery level and energy harvesting rate. We then formulate the
adaptive duty cycle problem as a MDP model. The states of
the MDP model correspond to the energy consumption rates at
which the node can operate. The actions refer to the transition
rates between the various duty cycle values that the node can
adopt. The reward function is derived based on the QoS param-
eters derived in the previous paper, as well as on the energy
availability of the battery based on a fluid model [29]–[31] that
indicates the ability of the node to function continuously. While
finding the optimal duty cycle scheme to operate under is a
nonconvex optimization problem which is hard to implement
on-line, we propose a relatively simple on-line approach which
uses reinforcement learning [32], [33] to heuristically update
the reward function to approximate convergence. We also use
extensive simulations to show that the MDP converges to a
desirable result quickly, and to compare our approach with a
random approach to demonstrate the performance of the MDP
scheme.

In this work, we make several key contributions: (i) we
enable a WSN to determine its duty cycle control through

simultaneous consideration of the energy supply dynamics
and application-level QoS requirements; (ii) we establish a
reward framework that allows the network to tune the relative
importance of the energy availability and the QoS require-
ments; (iii) we implement a reinforcement learning algorithm
that converges to a desirable solution quickly and with lower
computational complexity than convergence to a fully optimal
solution; and (iv) we allow the system to adapt to changes in the
environment and/or the network that occur at timescales larger
than the convergence time of the learning curve. In Fig. 2, we
provide an approximate comparison of the timescales involved
in our system.

The rest of the paper is organized as follows. Section II pro-
vides details on the key assumptions used in the system model
for a battery-free framework. In Section III, we derive net-
work performance metrics using a CTMC model. We extend
the system model to incorporate battery levels in Section IV,
and describe the behaviour of the battery with another CTMC
model in Section V. In Section VI, we allow the system to
determine the optimal rates of transition between its constituent
states using a MDP model. Simulation results are presented in
Section VII. Section VIII concludes the paper.

II. SYSTEM MODEL FOR BATTERY-FREE FRAMEWORK

In this Section, we develop a probabilistic model that
describes the features of a single WSN node, i.e. data reception
from other nodes and data transmission towards the gateway
(GW) via another node. Both this node and its recipient node
are duty cycled, and several QoS parameters are investigated
as functions of this duty cycle. Under the framework devel-
oped in this Section, we do not consider the role of energy
harvesting. Thus, we assume the network is powered by mains
electricity, and the effective battery capacity of each node is
unlimited (although we would still try to minimise the energy
consumption of each node). In Section IV, we will generalise
our framework by considering energy harvesting nodes.

We now present all the statistical assumptions of our
framework and provide details of various system components
required, such as the traffic model, channel model and packet
transmission schemes.

1) Node State: Each node v j is in one of the following
states N j ∈ {0, 1} at any point in time, where N j = 0 and
N j = 1 denote that v j is in the asleep and awake states
respectively. The duration t that node v j is in each of the
states N j is a random variable that follows an exponential
distribution:

p (t) =
{

γi · e−γi ·t t ≥ 0

0 t < 0,
(1)

where γi , i ∈ {0, 1} are the rates of the asleep and awake
states. The average long-term fraction of time that the
node is awake is given by q = 1

γ1·T where T = 1
γ0

+ 1
γ1

is the average cycle time.
2) Traffic Model: The number of data packets d0 generated

by each node follows a Poisson distribution with an aver-
age rate of λ0 packets per unit time, i.e., d0 ∼ Pois(λ0).
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Fig. 2. Comparison of timescales involved in our system.

In addition, the node receives dn packets from all of its
neighbours according to a Poisson process dn ∼ Pois(λ).

3) Wireless Channel Model: The time-varying wireless
link quality is modelled by the classical Gilbert-Elliot
Markovian model [34], [35] with two states L ∈ {0, 1},
where L = 0 and L = 1 denote that the channel quality
is bad and good respectively. The duration t that a node
is in each of the channel states is a random variable that
follows an exponential distribution:

p (t) =
{

ci · e−ci ·t t ≥ 0

0 t < 0,
(2)

where ci , i ∈ {0, 1} are the respective rates of the bad and
good states. We let β and α denote the probabilities of
successfully delivered data packets when the channel is
in the bad and good states respectively. Acknowledgment
packets are assumed to always be delivered successfully.

4) Probing Mechanism: The network utilizes probes to
determine if an arbitrary downstream node vk is in an
awake state Nk = 1, prior to the commencement of data
transmission. The probing mechanism is modelled as a
Poisson process, with intensities θg and θb when the chan-
nel quality is good and bad respectively. The reception
of a probe-acknowledgment by the transmitter node v j

indicates that vk is awake; v j will then instantaneously
transmit all its data packets to vk .

5) Transmission Schemes: We consider two transmission
schemes:

a) No Retransmissions: data packets that have not
been successfully delivered to the receiver (due to
poor channel quality) will not be retransmitted. The
corresponding average numbers of packets that suc-
cessfully arrive at a node under good and poor
channel conditions are denoted as λg and λb respec-

tively, where λb = β·λg
α

. We denote this scheme
by Xn .

b) Retransmissions: data packets are retransmitted
until they are successfully delivered to the receiver.
The corresponding average number of packets that
successfully arrive under this scheme is λ, where
λg = λb = λ. The effective packet arrival rate when
the node is in the awake state is λ

q . We denote this
scheme by Xr .

6) Power Consumption Parameters: The power consump-
tions of a node in the asleep and awake states are Pasleep

Fig. 3. CTMC model of a two-node section of a network. The CTMC is guided
by the transition rate matrix Q.

and Pawake respectively. The power consumption of the
probing mechanisms is denoted as Pprobe. The energy
incurred to transmit a single data packet is Et x .

With these definitions, we now present in the next Section a
probabilistic model based on a Continuous Time Markov Chain
(CTMC) model, and derive the QoS parameters of interest.

III. CTMC MODEL FOR NODE PERFORMANCE STATE

(BATTERY-FREE; FIXED DUTY CYCLE)

In this Section, we design a probabilistic model to describe
the performance of a single node in the WSN for a fixed duty
cycle q. To this end, we model the system as a CTMC, as shown
in Fig. 3. In addition, we assume that the system evolves inde-
pendently of the battery level, as we will be using this model to
generate instantaneous QoS metrics for the system, assuming
in addition that the timescale of energy fluctuations exceeds the
timescale of packet traffic equilibration (i.e. the convergence
time of this CTMC).

A. CTMC State Space Model

We consider a 4-tuple CTMC state space as follows:
1) Node buffer: Each node has a FIFO buffer of finite size

B. The number of packets in the finite queue is denoted
by b ∈ {0, 1, . . . , B}.
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2) Node state: As mentioned in Section II, each node v j is in
state N j ∈ {0, 1} at any one time, depending on whether
it is asleep (N j = 0) or awake (N j = 1).

3) Downstream node state: An arbitrary downstream (receiv-
ing) node vk is in state Nk ∈ {0, 1} at any one time,
depending on whether it is asleep (Nk = 0) or awake
(Nk = 1).

4) Link quality: The wireless link quality is in state L ∈
{0, 1} at any one time, depending on whether the chan-
nel is bad (L = 0) or good (L = 1). (We note that it
is straightforward to extend the analysis to multiple link
quality states.)

Given these definitions, the state space S can be written as
the following Cartesian product S = {0, 1, . . . , B} × {0, 1} ×
{0, 1} × {0, 1} ∈ R|b|×|N j |×|Nk |×|L|. The corresponding cardi-
nality of the state space is given by |S| = 8(B + 1).

B. QoS metric definitions

We now present the following key QoS metrics of interest:
• loss probability due to wireless channel transmission

errors and packet drops arising from buffer overflows,
denoted π (q);

• latency incurred by holding packets in the transmission
queue, denoted � (q);

• and average power consumption incurred by a node,
denoted ρ (q).

In the next Lemma we present the derived expressions
for these QoS metrics for the two cases under consideration,
namely the Retransmissions and No Retransmissions schemes.

Lemma 1: B. QoS metrics under Retransmissions scheme

The QoS parameters are given by (3), as shown at the bottom
of the page.

Proof: See [28]. �

π (q) =
1∑

k=0

pB,1,0,k(λ/q + λ0)

λ/q + λ0 + γ0 + γ1 + ck
+

1∑
k=0

pB,1,1,k(λ/q + λ0)

λ/q + λ0 + 2γ1 + θ + ck
+

1∑
k=0

pB,0,0,kλ0

λ0 + 2γ0 + ck
+

1∑
k=0

pB,0,1,kλ0

λ0 + γ0 + γ1 + ck

� (q) = 1

λ + λ0

B∑
b=0

1∑
i=0

1∑
j=0

1∑
k=0

bpb,i, j,k

ρ (q) = Pasleep

B∑
b=0

1∑
j=0

1∑
k=0

pb,0, j,k + Pawake

B∑
b=0

1∑
j=0

1∑
k=0

pb,1, j,k + Pprobe

B∑
b=1

1∑
j=0

1∑
k=0

pb,1, j,k +
(

λ

1 − β/α
+ λ0

)
Et x (3)

π (q) = pB,1,0,0(λb/q + λ0)

λb/q + λ0 + γ0 + γ1 + c0
+ pB,1,1,0(λb/q + λ0)

λb/q + λ0 + 2γ1 + θ + c0
+ pB,0,0,0λ0

λ0 + 2γ0 + c0
+ pB,0,1,0λ0

λ0 + γ0 + γ1 + c0
+

pB,1,0,1(λg/q + λ0)

λg/q + λ0 + γ0 + γ1 + c1
+ pB,1,1,1(λg/q + λ0)

λg/q + λ0 + 2γ0 + γ1 + c1
+ pB,0,0,1λ0

λ0 + 2γ0 + c1
+ pB,0,1,1λ0

λ0 + γ0 + γ1 + c1

� (q) = 1

λb + λ0

B∑
b=0

1∑
i=0

1∑
j=0

bpb,i, j,0 + 1

λg + λ0

B∑
b=0

1∑
i=0

1∑
j=0

bpb,i, j,1

ρ (q) = Pasleep

B∑
b=0

1∑
j=0

1∑
k=0

pb,0, j,k + Pawake

B∑
b=0

1∑
j=0

1∑
k=0

pb,1, j,k + Pprobe

B∑
b=1

1∑
j=0

1∑
k=0

pb,1, j,k + (λ + λ0)Et x (4)

Lemma 2: B. QoS metrics under No Retransmissions
scheme

The QoS parameters are given by (4), as shown at the bottom
of the page.

Proof: See [28]. �
By defining parameters (e.g. packet arrival rates λ0 and λ,

probing intensities θg and θb, and maximum buffer size B) of
the transitive matrix Q according to parameters of the actual
sensor network, we can obtain the optimal duty cycle q in terms
of the asleep and awake rates γ0 and γ1. This is presented next.

C. Optimal Duty Cycle

To find the optimal duty cycle, different criteria can be
considered. Here, we choose to find the duty cycle which min-
imizes the power consumption, while satisfying application-
level QoS constraints. We note that other criteria could be
considered and our framework is general enough to handle them
as well.

For our criterion, the resulting optimisation problem is given
as follows:

q = arg min
q

ρ(q) subject to π(q) ≤ π0, �(q) ≤ �0, q ≥ 0

(5)

where π0 and �0 are pre-defined latency and loss thresholds.
Recall that γ1 and γ0 can be expressed as functions of q and

the average cycle time T as follows:

γ1 = 1

T · q
γ0 = 1

T · (1 − q)
(6)

Thus, we can further simplify the optimisation problem to a sin-
gle parameter optimization problem by defining T and solving
for γ1 and γ0. Hence, even though the optimization problem
in (5) does not have an analytical closed form expression, it is
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easy to find the optimal q (denoted q∗) numerically via simple
evaluation on a finely divided grid.

IV. SYSTEM MODEL FOR FRAMEWORK WITH FINITE

BATTERY LEVEL AND ENERGY HARVESTING

In this Section and the next, we develop a framework that
describes the evolution of the battery level of a single node
with finite battery capacity and the capability to harvest energy
from the environment. Under the constraints of this framework,
we eventually identify a set of variables that can be designed
to control the performance of the network, namely the transi-
tion rates that govern the transition of the battery state between
different rates of energy harvesting and consumption. The con-
sumption rates were previously derived in Section III. Note that
the battery states in this Section and the next are distinct from
the CTMC states of Sections II and III, which describe the
network status and capacity of the node.

Here, we provide details of additional system components
required in this framework, in particular the battery model and
its time evolution.

1) Battery Model: The battery level X (t) of the sensor node
is treated in a continuous fashion, i.e. X (t) ∈ R and
X (t) ∈ [0, C], where C is the capacity of the battery and
t ≥ 0.

2) Rate of Change of Battery Level: In reality, the rate
of change of X (t) can take any value in a continuous,
bounded interval [Ẋmin, Ẋmax] where Ẋmin and Ẋmax are
the minimum and maximum possible rates determined
by the battery chemistry, the maximum harvesting power
available, and the maximum power consumption of the
node.
We model this with a fluid model by sampling mn possi-
ble rates within this interval, and defining the cardinality
of the state space of the battery to be mn. Let Z(t) be
the state of the battery at time t . When Z(t) is in some
state i ∈ T = {1, 2, . . . , mn}, the evolution of the process
satisfies

d X (t)

dt
=

⎧⎪⎨
⎪⎩

max(0, ri ) if X (t) = 0,

ri if 0 < X (t) < C,

min(0, ri ) if X (t) = C,

(7)

where ri is the rate governing the process evolution cor-
responding to state i provided the battery is neither full
nor empty. In this model, if the battery is full, the rate
of change of X (t) with respect to time cannot take pos-
itive values; if the battery is empty, the rate of change
of X (t) with respect to time cannot take negative values.
This allows us to model the continuous nature of the bat-
tery level using a set of discrete states that best describe
the time evolution of the battery level by characterizing
the most common rates of change in the battery level.
Physically, the change in the battery level X (t) is driven
by two processes: the harvesting of energy from the sur-
roundings at rate hk , and the consumption of energy by
the system at rate ul .

a) Discretized Energy Harvesting Rate: In reality,
the energy harvesting rate hk can take any value
between zero and the maximum physically possible
harvesting rate hmax. We model this by sampling m
possible harvesting rates between zero and hmax.

b) Discretized Energy Consumption Rate: In reality,
the energy consumption rate ul can take any value
between zero and the maximum physically possible
consumption rate umax. We model this by sam-
pling n possible consumption rates between zero
and umax. As demonstrated in our previous paper
[28], ul can be modelled as a monotonic function
of the duty cycle q.

c) Discretized Rate of Change of Battery Level: Now,
we set k, l ∈ Z- , k ∈ (0, m] and l ∈ (0, n], and we
define

rn(k−1)+l = hk − ul , (8)

choosing {hk} and {ul} such that the resulting ri are
unique. Note Ẋmin = −umax and Ẋmax = hmax.

V. CTMC MODEL FOR NODE BATTERY STATE

(VARIABLE DUTY CYCLE)

With the model described in the previous Section, we can
now extend our framework so that it also captures the time
evolution of the battery level of a single node in the network.
Based on this extended framework, we can thereby describe
the energy availability of the battery in terms of a probabilis-
tic description of the amount of time the battery level is above
zero, as well as a transition rate matrix that describes the tran-
sition of the system from one set of energy harvesting and
consumption rates to another set. By isolating the transitions
between different harvesting rates from the transitions between
different consumption rates, we then separate the influences of
the environment from a potential set of user inputs for system
optimization.

A. Characteristics of CTMC describing transitions between
battery states

Here, we introduce a CTMC that describes the transitions
between the mn battery states. This allows us to concretely set
up the battery model, as well as to generate the energy avail-
ability required for the reward function of the Markov decision
process (MDP) to be presented in Section VI.

Suppose the CTMC has a generator matrix QM D P
e = [qe,i j ].

Let us define a drift matrix

D =

⎡
⎢⎢⎢⎢⎢⎣

r1

r2 0
. . .

0 rmn

⎤
⎥⎥⎥⎥⎥⎦ . (9)

In addition, let

πi j (t) = Pr (Z(t) = j |Z(0) = i), i, j ∈ T (10)
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and

π j = lim
t→∞ Pr (Z(t) = j |Z(0) = i), i, j ∈ T . (11)

In other words, πi j (t) is the probability that the battery is in
state j at time t given that it was initially in state i , and π j is
the limit of πi j (t) as t goes to infinity, assuming the CTMC
has a stationary distribution. As in the results of Section III, the
steady-state probabilities π j should then satisfy peQ

M D P
e = 0

and
∑

j∈T π j = 1, where pe = [π1 π2 . . . π|T |].

B. Energy availability

The probability that the node battery of the node contains a
non-zero amount of energy is given by the limiting availability,
A.

Lemma 3: The energy availability A is given by

A = 1 − F1(0) − F2(0) − · · · − Fmn(0), (12)

where Fj (x) = lim
t→∞ F(t, x, j; y, i). F(t, x, j; y, i) gives the

cumulative transition probability that the battery level X (t) is
at most x at time t and that the battery is in state j , given that
the battery was originally in state i with battery level y.

Proof: See Appendix A. �
In order to increase A, we have to choose the entries of the

grand transition matrix QM D P
e appropriately such that the sta-

tionary probabilities π j give us the lowest possible values of
Fj (0).

C. Decomposing the CTMC into harvesting and consumption
states

Since the harvesting and consumption processes are phys-
ically distinct, we can decompose our CTMC into two sub-
chains: one involving the transition between different harvest-
ing rates, and one involving the transition between different
consumption rates.

If we assume that the transitions between the harvesting
rates take place randomly and independently of the transitions
between the consumption rates, for example as in direct solar
radiation [36], [37], then we can define a stationary distribution
ph and a transition matrix QM D P

h for the harvesting states, and
a stationary distribution pu and a transition matrix QM D P

u for
the consumption states. We can then implement a Markovian
scheme to transition between the various consumption rates.
Note that phQ

M D P
h = 0,

∑
k∈Z- ,k∈(0,m] ph(k) = 1, puQ

M D P
u =

0 and
∑

l∈Z- ,l∈(0,n] pu(l) = 1. Then, pe is the Kronecker product
of the two component stationary distributions ph ⊗ pu, while
QM D P

e ≡ QM D P
h ⊗ QM D P

u .
Conversely, if we assume that the harvesting rate changes

smoothly and periodically, for example as in diffuse solar radi-
ation [38], then we should instead take QM D P

e ≡ QM D P
u and

assume the harvesting rate is sufficiently stationary that we
ignore the harvesting transitions in the battery model CTMC.
We then measure the harvesting rate hk regularly and imple-
ment the MDP to be discussed in Section VI such that ri is
updated regularly. If the convergence rate of the MDP is faster

than the timescale of the variation of the harvesting rate, then
this method will be able to reasonably adapt to a changing
harvesting rate.

1) Derivation of the harvesting transition matrix (for first
assumption): QM D P

h and ph can be derived from empirical
data. For a solar-harvesting sensor node, one could measure the
time variation of solar energy over a suitably long period of
time, and then fit to the averaged data a CTMC whose statistics
match the empirical distribution of solar energy throughout the
day [36], [37].

2) Definition of the consumption transition matrix (for both
assumptions): QM D P

u and pu are user-defined inputs. In the
MDP formulation to follow, we generate an adaptive transition
matrix QM D P

u based on the optimization of the quality matrix
Qm = [Qm,ls] to be defined in Section VI-A.

VI. MDP MODEL FOR VARIABLE DUTY CYCLE

With the model described in Sections II and III, we can quan-
tify the performance of our system for a known duty cycle q
assuming a sufficiently stationary battery level X such that the
QoS metrics obtained can be approximated as instantaneous.
Using this information, we can now construct a duty cycle
policy that allows our system to respond to environmental vari-
ations, such as the sunlight available to a solar-harvesting node,
while cognizant of the QoS targets that the system is required
to fulfil. The effectiveness of the policy is measured both by the
QoS targets, for which a model was provided in Sections II and
III, and by the battery level, for which a model was provided in
Sections IV and V. In addition, the policy is used to determine
a good set of transition rates between the various consumption
rates described in Section V-C.

A. MDP for Variable Duty Cycle with Reinforcement Learning

In principle, we could try out every single possibility of q
for every possible harvesting rate hk and consumption rate ul

to determine the best q for each rate of change of the battery
level ri . However, this is likely to be costly in terms of both
time and computational resources. By formulating our problem
as a Markov Decision Process (MDP) driven by a reinforce-
ment learning algorithm, we could possibly reduce the number
of computations, perform them online instead of offline, and
make our system adaptive to changing system parameters, such
as the instantaneous packet transmission and probing rates.

A MDP is useful to describe a decision making process that
allows the system to transit between a set of states. MDPs
have been used in various works to control duty cycling and
channel usage in WSNs [39]–[43]. The decision maker has a
set of actions that can be chosen to describe the state tran-
sitions. Each state transition is associated with an immediate
scalar reward, which is given to the decision-maker or learner.
Here, the goal of the reinforcement learning algorithm is to
take actions, transit from one state to another, and maximize
the expected sum of the rewards in the long run. To keep track
of its rewards, the system maintains a quality function for each
state-action pair, which is a cumulative measure of the rewards
obtained so far, and consults this to take an action (with greedy
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probability εt ). Thus, by taking actions, obtaining rewards and
updating the quality matrix based on this reward, the learner
finally converges to a policy which approaches maximum return
of rewards.

1) States: We define the set F of states fl where l ∈ Z- and
l ∈ (0, n] such that each state corresponds to a unique
consumption rate ul .

2) Actions: We define the set G of actions gs such that
each action corresponds to a CTMC transition matrix
QM D P

u,s corresponding to transitions between different dis-
cretized energy consumption rates. The action space can
be designed such that each QM D P

u,s has a different sta-
tionary distribution. Different actions will then signify
different duty cycle probability distributions in the limit
of infinite time. For example, we could design an action
that constrains the duty cycle to frequently take a low
value, and another action that constraints it to frequently
take a high value. The size of the square matrix QM D P

u,s is
n. Here, we sample the entire space of possible QM D P

u to
obtain a representative set of transition matrices that span
the space and are physically convenient to implement.

3) Rewards: Based on the requirements of the user, be it a
need to conserve energy aggressively, to consume energy
aggressively, or to maintain a minimum level of QoS
statistics by achieving a balance between conservation
and consumption, one can define an appropriate reward
function to achieve one’s objective. Here, we define a
reward function that incorporates both QoS statistics and
some measure of the amount of energy available to the
system to balance the QoS requirements and the energy
needs of the system. Since the consumption rate ul is a
function of the duty cycle q, we can use the QoS statistics
derived in Section III to derive a reward for each state in
the MDP.
In this work, we examine two different reward functions.
The first reward function is an n-dimensional reward col-
umn vector with the following constituent entries for the
corresponding states l

W (l) = −wππ(l) − w��(l)/�
∗(l) − wρρ(l) + wA A,

(13)

for some arbitrary weights wπ , w�, wρ and wA ∈ R
+,

and where �∗(l) = B/(λ(ul) + λ0(ul)). This definition of
the reward offers a high reward for a low loss probabil-
ity, low latency, low energy consumption and high energy
availability A. Note that since A is dependent on some
transition matrix that governs the time evolution of the
system, W (l) is not strictly a function of only the system
state l, but is a non-stationary function that varies with
time.
The second reward function is a similar column vector
with constituent entries in (14) involving

W (l) =

⎧⎪⎨
⎪⎩

w+ π(l) < π0, �(l) < �0, ρ(l) < ρ0,

A ∈ A0 = [A0,−, A0,+)

w− otherwise
(14)

Fig. 4. MDP state and action spaces. QM D P
u,s(i j) refers to the (i, j)-th entry of the

transition rate matrix corresponding to the s-th action.

the latency and loss thresholds π0 and �0 defined earlier in
Section III, as well as analogous power consumption and
availability thresholds ρ0 and A0. In this case, the reward
takes one of two discrete values w+ or w− instead of a
continuous spectrum of values in the earlier example.
The continuous function (13) enables users to finetune
the balance between energy availability and QoS require-
ments, while the thresholding function (14) enables users
who are aware of the thresholds that the system is required
to satisfy, such as network engineers, to provide a clear
system input.

4) Quality: Last but not least, we associate each state fl and
action gs with a quality Qm,ls .

In Fig. 4, we use a state machine diagram to illustrate the
state and action spaces of the MDP.

B. Implementing the MDP

We begin our MDP by selecting a suitable initial guess for
the quality matrix Qm = [Qm,ls], some initial state f0, and a
suitable initial CTMC transition matrix QM D P

u,a = QM D P
u,0 . Then,

we evolve our MDP as follows: based on some tuning param-
eter 0 < εt < 1, we select with probability εt the action gs =
g f ∈ G with the highest value in the quality matrix Qm for
the corresponding state f0, or with probability 1 − εt a random
action gs = gr ∈ G. Based on this action, we select the f0-th
row in the transition matrix Qu,gs corresponding to the action
gs , and replace the f0-th row in our actual CTMC transition
matrix QM D P

u,a with this row. Then, we evolve the system based
on QM D P

u,a . When the system evolves to a new state f1 based on
this transition matrix, the reward associated with the new state
W ( f1) is computed using the value of A corresponding to the
current matrix QM D P

u,a . Next, the appropriate entry in the quality
matrix is computed using the Q-learning method [44]

Qm,0s,new = (1 − μ)Qm,0s,old + μ

(
W ( f1)+γ max

gs′
Qm,1s′,old

)
(15)

for some learning rate 0 < μ < 1 and some discount factor γ ∈
[0, 1). The next action is then selected using the entries of the
updated quality matrix, and the entire process is repeated for
the entire time evolution process. The intention is to maximize
the following expectation value over all sample paths

Wr = E

[∫ ∞

0
γ t W ( f (t))dt

]
(16)
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Fig. 5. MDP dynamics. At all times, the system evolves based on knowledge
of the current state f and the system transition matrix Qu,a . A new action is
selected whenever the system undergoes a state transition.

where the state of the process at time t is f (t). An optimal
solution will attain the maximum possible expected discounted
reward Wr . In our adaptive framework, we aim to maximize
Wr for the system under consideration by tuning εt and μ, and
choosing an appropriate set of actions G. Under this framework,
we believe the CTMC transition matrix QM D P

u,a increases its
optimality over time in the long run and is able to respond to
changes in the system parameters.

In Fig. 5, we use a flow diagram to illustrate the reward gener-
ation, quality update and decision-making process in the MDP.
We also summarize the process in Algorithm 1.

Note that under the assumption of Markovian transitions
between harvesting rates, we can choose to either establish a
different state space, action space, quality matrix and instan-
taneous transition matrix for each harvesting rate, or we can
choose to evolve a single MDP and simply let it respond to the
harvesting rate variation with a time-varying reward (in partic-
ular the variation in A). The first option is more rigorous and
is likely to provide better convergence, but the second option
could be more convenient and less intensive to implement.
Under the assumption of a smooth variation of the harvesting
rate, we can evolve the MDP as it is and allow it to respond to
harvesting rate variations with a time-varying reward, provided
the MDP convergence timescale is shorter than the harvesting
rate variation timescale.

VII. SIMULATION RESULTS

In this Section, we present some results obtained using
Monte Carlo simulations of a single node involving the simul-
taneous time evolution of the CTMCs describing the network
and battery states of the node, and of the MDP describing

Algorithm 1. Procedure for solving MDP

Input: Initial guess for Qm , initial state f = f0, initial CTMC
transition matrix QM D P

u,a = QM D P
u,0

Output: Instantaneous (actual) CTMC transition matrix
QM D P

u,a , Instantaneous state f
initialization;
while node is functioning do

–

Select action gs ;
With probability εt , determine if optimal action selection
is triggered;
if optimal action selection triggered then

Select gs with highest corresponding value in Qm for
corresponding state f ;

else

– Select random gs ;
Update QM D P

u,a based on gs ;
Evolve system in time based on QM D P

u,a until state f
changes to fnext;
Compute reward W ( fnext) and update corresponding entry
in Qm ;
Repeat loop

the evolution of the duty cycle of the node. We first describe
the parameters and the MDP formulation used in the simula-
tion. We then discuss the impact of the reinforcement learning
parameters, and evaluate the performance of our algorithm for
both the continuous and discrete reward functions highlighted
in Section VI.

A. Simulation set-up

The network parameters used in our simulations are
described in Table I. For simplicity, we consider the case where
the node in question does not generate its own packets. Also, we
first consider the case where the link quality between the nodes
in the network is always good (so there is no difference between
the Retransmissions and No Retransmissions schemes), and
where the energy harvesting rate adopts a constant value of 0.3
energy units per unit time for the duration of the learning. (We
relax the link quality and constant harvesting rate assumptions
in Sections VII-E and VII-F respectively.) For the chosen set of
network parameters, this bounds the possible battery evolution
rates between about -0.03 and 0.07 energy units per unit time.
Finally, we assign our battery a capacity of 0.05 energy units.

For our MDP, we consider a relatively small state space
with 9 states, involving the regularly-spaced duty cycles
{0.1, 0.2, . . . , 0.9}, as well as a relatively small action space
with 5 actions, to make the conclusions we derive from our
simulations clearer. The infinitesimal generators corresponding
to the five actions are detailed in Appendix B, and have corre-
sponding stationary distributions that are centred around states
1, 3, 5, 7 and 9 respectively. In all trials, we initialize our MDP
with a randomly chosen state, an all-zero quality matrix, and
a state transition matrix where all inter-state transitions have a
rate of 0.1 transitions per unit time, and force the MDP to select
an action immediately.
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TABLE I
NETWORK PARAMETERS

Fig. 6. Stationary distribution based on the transition rate matrix QMDP
u,a for the 9 MDP states averaged over 50 trials each for different values of εt . Here, μ = 0.1

and γ = 0.995. In addition, we use the reward function (13) and set all weights to 1.

B. Reinforcement learning parameters

We highlight the effects of varying the learning rate μ, the
exploitation probability εt , and the discount factor γ . In par-
ticular, we note the trade-off between decreasing the response
time of the system and maintaining the stability of the conver-
gence of the learning curves, and make the observation that
the reinforcement learning algorithm used in our simulations
outperforms a random decision-making scheme.

1) Effects of varying learning rate μ: We observed that a
higher μ increases the learning ability of the system by decreas-
ing the convergence time, but results in higher-frequency and
larger fluctuations in the learned quality values.

2) Effects of varying exploitation probability εt : We
observed that a higher εt decreases the convergence time of the
system at the expense of higher-frequency and larger fluctua-
tions in the learned quality values, the effect of which is seen
in Fig. 6. Here, the distribution deviates more strongly from
a uniform distribution for the odd-numbered states, which is
what we would expect in a system that selects its actions ran-
domly. In addition, as εt increases, the standard deviations of
the probabilities decrease, suggesting convergence towards a
desirable stationary distribution. By choosing a non-zero εt , we
obtain a scheme that outperforms a random decision-making
policy.

3) Effects of varying discount factor γ : Without a suf-
ficiently large γ , the randomness inherent in a MDP, and
especially in the reward function we selected due to the con-
stantly varying nature of A, may impede the learning of the
system. We observed that only with a sufficiently large γ does
effective learning take place in the system.

C. Performance of algorithm: Continuous reward function

The performance of our algorithm depends on our system
objectives, as well as the reward function implemented in our
MDP. An appropriate choice of the reward function can shift the
behaviour of the system. Here, we consider the reward function
(13), and look at the effects of varying the weights.

1) Effects of energy availability on system: We expect that
in a system that places great emphasis on energy availability,
the average duty cycle will be low in order to ensure the bat-
tery does not expend all its energy; conversely, in a system
that places little emphasis on energy availability, the average
duty cycle will then be governed by the QoS metrics, which
are likely to push the duty cycle higher to ensure effective
transmission. This is validated by the results in Fig. 7a.

2) Effects of latency on system: We similarly expect that
when emphasis on latency is high, the average duty cycle
will be high to maintain the QoS standards; conversely, when
emphasis on latency is low, the average duty cycle will then be
lower to conserve energy and meet the power consumption and
energy availability requirements. This intuition is validated by
the results in Fig. 7b.

D. Performance of algorithm: Reward function with threshold-
ing

Figure 8 shows the effect of various QoS thresholds on
the selection of actions, as well as the comparison of the
random and εt -greedy approaches, the latter of which we high-
lighted in our algorithm above. The three cases of thresholds
we consider are: Case I: {ρ0 = 0.3, �0 = 5, π0 = 0.01}; Case
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Fig. 7. Plot of average duty cycle versus (a) wA , holding all other weights constant at 1 and (b) w�, holding all other weights constant at 1, using (13) and
averaging over 50 trials for each wA and w� respectively. Here, εt = 0.5, μ = 0.1 and γ = 0.995.

Fig. 8. Comparison of the εt -greedy approach highlighted in our algorithm above (εt = 0.9, blue) with a random approach (εt = 0, red) using the average
stationary probability of each state over 20 trials for three different cases of thresholds. The more probable states obtained from our algorithm (in blue) agree well
with the optimal duty cycles predicted in Fig. 9.

Fig. 9. Optimal sets of duty cycles for each case without considering the energy
availability A.

II: {ρ0 = 0.32, �0 = 5, π0 = 0.01}; Case III: {ρ0 = 0.33, �0 =
0.91, π0 = 4E-5}. Here, we do not consider the effects of
energy availability by taking A0 = [0, 1). Under these cir-
cumstances, we observe that the RL thresholding algorithm
converges. The scenario when the energy availability is taken
into account is considered in the next subsection.

Figure 9 shows the optimal sets of duty cycles for the
three cases in order to satisfy the QoS thresholds. In Case
I, the corresponding optimal state is 4. In Case II, the cor-
responding optimal states are 5, 6 and 7. In Case III, the
corresponding optimal states are 7, 8 and 9. This agrees with
the results shown in Fig. 8 when εt = 0.9, keeping in mind
that our action space tends to direct the system towards the
odd-numbered states only. When εt = 0, the scheme reduces to
a random approach where the states are chosen randomly and
the stationary probabilities of states 1, 3, 5, 7 and 9 are uniform.

1) Effects of energy availability: As seen in the previous
subsection, the QoS thresholds can help to choose a set of
optimal duty cycles. However, the energy availability depends
on the attainment of equilibrium by the whole system, and
the derivation of the optimal set of duty cycles is not as
straightforward.

a) Simulation settings: In this section, we modify the
learning rate μ to be inversely proportional to the total time
spent in the current state [32] in order to handle the variation in
the energy availability. In addition, we select a subset of the
action space in which the system’s steady state probabilities
are centred around states 3, 5, 7 and 9 to better illustrate the
effects of varying A0. The convergence of the algorithm with
the presence of the energy availability term is not as fast with
the learning rates used in the previous sections. Hence, we use a
learning rate that decreases with total time elapsed in the current
state (including past transitions) to speed up convergence.

b) Analysis of steady state probabilities: Fig. 10a
demonstrates that when energy availability is not considered
and when all the duty cycles satisfy the given QoS thresh-
olds, the steady state probabilities learned are almost uniform
with high standard deviation. This changes in Figs. 10b to 10d,
where we see that a low A0 selects higher duty cycles and a
high A0 selects lower duty cycles on average.

c) Summary: For greater clarity, the results above are
summarised in Fig. 11. These graphs demonstrate that an
increase in A0 decreases the average duty cycle and promotes
the selection of actions favouring states that correspond to lower
duty cycles.
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Fig. 10. Graphs of steady state probabilities averaged over 20 trials, for different ranges of A0. Here, π0 = 0.02, �0 = 9, ρ0 = 0.33, εt = 0.9 and γ = 0.995.

Fig. 11. Graphs of (a) the duty cycle for different ranges of A0 plotted against the median of A0 and (b) the steady state probabilities for different ranges of A0,
both averaged over 20 trials. Here, π0 = 0.02, �0 = 9, ρ0 = 0.33, εt = 0.9 and γ = 0.995.

Fig. 12. Comparison of the εt -greedy approach in our algorithm (εt = 0.9) with a random approach (εt = 0) using the average stationary probability of each state
over 10 trials for two different cases of thresholds. (a) Retransmissions scheme: λg = λb = 0.5. (b) No Retransmissions scheme: λg = 0.5, λb = 0.3.

2) Remarks: As we mentioned earlier, the continuous
reward function (13) enables finetuning of the balance between
energy availability and QoS requirements, while the thresh-
olding reward function (14) enables clear demarcations of the
boundaries of the system, provided the intersection of the
threshold requirements is physically achievable. Our results
demonstrate that the convergence characteristics of both reward
mechanisms are comparable and can simultaneously take
into consideration short-term QoS requirements and long-term
energy availability standards.

E. Varying link quality

We now consider the effects of variable link quality as dis-
cussed in the system model in Section II. Here, we use the
thresholding reward function given by (14).

Figure 12 compares the random and εt -greedy approaches,
for the Retransmissions (Case I) and No Retransmissions (Case
II) schemes. The corresponding optimal state for both Cases is

1, and we demonstrate in Fig. 12 that our algorithm is able to
learn this optimal condition. Also, the RL algorithm converges
for both transmission schemes.

F. Varying harvesting rate

We now consider the effects of variable harvesting rate to
simulate environmental fluctuations. Here, we again use the
thresholding reward function (14) and the same simulation
settings as Section VII-D1a.

1) Simulation setup: In the simulations to be described,
we used 4 different values of the harvesting rate harr =
[0.2, 0.2875, 0.3, 0.4] where the lowest rate corresponds
to zero energy availability (A = 0) and the largest rate
corresponds to maximum energy availability (A = 1). In addi-
tion, we define the harvesting rate to vary in a cyclical manner
such that harr is uniformly distributed over time.

2) Simulation Results: We used a time-varying learning
rate similar to Section VII-D1a to handle the changing envi-
ronment. This ensures that the RL algorithm converges.
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Fig. 13. Steady state probabilities for two different sets of energy availability
thresholds A0 over an average of 5 trials. In Case I (red), A0 = [0.4, 1], and in
Case II (blue), A0 = [0.6, 1].

From Fig. 13, it is evident that when A0 = [0.6, 1], the lower
duty cycle states are preferred, in contrast to the case when
A0 = [0.4, 1], where higher duty cycle states are preferred.
Thus, our algorithm is cognizant of the requirements in our
system even under varying environmental conditions.

VIII. CONCLUSION

In this paper, we develop an adaptive duty cycling scheme in
wireless sensor networks that takes into account both the energy
supply dynamics and application-level QoS requirements at the
same time. Continuous Time Markov Chain (CTMC) models
are used to derive analytical expressions for these QoS metrics
- such as latency, loss probability and average energy con-
sumption - as well as for the energy availability of the system,
which offers a probabilistic measure of the ability of the bat-
tery to maintain a non-zero energy level on average. We then
establish a reward framework that allows the network to tune
the relative importance of the energy availability and the QoS
requirements, and we perform numerical simulations to verify
our model. We implement a reinforcement learning algorithm
that converges to a desirable solution quickly and with lower
computational complexity than a completely optimal algorithm,
and show that our adaptive scheme performs better than a ran-
dom scheme. With the quick convergence of our algorithm,
we enable the possibility of the system adapting to changes in
the energy supply dynamics or the network transmission statis-
tics that take place at timescales larger than the convergence
time of the learning curve. We intend to extend this work by
looking at update rules and threshold functions that enhance
the decision-making ability of the system, and hopefully fur-
ther increase the responsiveness of the system to unexpected
externalities.

APPENDIX A
PROOF OF LEMMA 3

A. Transient behaviour of battery

Let F(t, x, j; y, i) = Pr (X (t) ≤ x, Z(t) = j |X (0) = y,

Z(0) = i). F(t, x, j; y, i) gives the cumulative transition

probability that the battery level X (t) is at most x at time t
and that the battery is in state j , given that the battery was
originally in state i with battery level y. It can be shown
that the cumulative transition probability mn-by-mn matrix
F(t, x; y) = [ fi j ] satisfies the equations

∂ F(t, x; y)

∂t
+ ∂ F(t, x; y)

∂x
D = F(t, x; y)QM D P

e (17)

for each x ∈ [0, C] and y ∈ [0, C], with boundary conditions

F(t, 0, j; y, i) = 0, if r j > 0,

F(t, C, j; y, i) = πi j (t), if r j < 0. (18)

B. Steady-state behaviour of battery

As t goes to infinity, the limits of (17) and (18) become, for
the mn-dimensional row vector F(x) with entries F(x, j),

d F(x)

dx
D = F(x)QM D P

e (19)

for each x ∈ [0, C], with boundary conditions

F(0, j) = 0 if r j > 0,

F(C, j) = π j if r j < 0. (20)

We see that

F ′ = F(QM D P
e D−1), (21)

which leads us to guess the solutions F(x) = eλxφ where λ

is a scalar and φ is an mn-dimensional row vector. It can be
shown that the general solution to (21) is given by F(x) =∑
i∈T

ai eλi xφi , where λi are the generalized eigenvalues and φi

the generalized eigenvectors of the equation

φi (λi D − QM D P
e ) = 0 (22)

or

((QM D P )T
e − λi DT )φT

i = 0. (23)

In other words, λi and φT
i are the eigenvectors of

(D−1)T (QM D P )T
e = ((QM D P )e D−1)T .

The coefficients ai are given by the solutions to

∑
i∈T

aiφi ( j) = 0 if j ∈ T +,

∑
i∈T

aiφi ( j)eλi C = π j if j ∈ T −, (24)

where T + and T − contain the elements of T where the corre-
sponding rate r j is positive and negative respectively. Note that
keeping all else constant, a higher C results in lower ai and thus
a larger A.
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APPENDIX B
ACTION SPACE OF MDP USED FOR SIMULATIONS

The infinitesimal generators corresponding to the five actions
are such that they encourage the system to transition to states 1,
3, 5, 7 and 9 respectively. An action that transitions the system
to some state i has an infinitesimal generator where state i has a
transition rate of 0.1 to all other states, and all other states have
transition rates of 0.9 to state i and 0.1 to all other states. For
example, for action 1, the infinitesimal generator is (25), shown
at the bottom of the page.
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