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Lightweight Fine-Grained Search over
Encrypted Data in Fog Computing
Yinbin Miao, Jianfeng Ma, Ximeng Liu, Jian Weng, Hongwei Li, and Hui Li

Abstract—Fog computing, as an extension of cloud computing, outsources the encrypted sensitive data to multiple fog nodes on the
edge of Internet of Things (IoT) to decrease latency and network congestion. However, the existing ciphertext retrieval schemes rarely
focus on the fog computing environment and most of them still impose high computational and storage overhead on resource-limited
end users. In this paper, we first present a Lightweight Fine-Grained ciphertexts Search (LFGS) system in fog computing by extending
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and Searchable Encryption (SE) technologies, which can achieve fine-grained
access control and keyword search simultaneously. The LFGS can shift partial computational and storage overhead from end users to
chosen fog nodes. Furthermore, the basic LFGS system is improved to support conjunctive keyword search and attribute update to
avoid returning irrelevant search results and illegal accesses. The formal security analysis shows that the LFGS system can resist
Chosen-Keyword Attack (CKA) and Chosen-Plaintext Attack (CPA), and the simulation using a real-world dataset demonstrates that
the LFGS system is efficient and feasible in practice.

Index Terms—Fog computing, attribute-based encryption, searchable encryption, conjunctive keyword search, attribute update.

F

1 INTRODUCTION

THE promising cloud computing [1] paradigm can pro-
vide on-demand services with elastic resources and

enable cloud clients to relieve the high storage and compu-
tation costs [2] locally. However, the prevalence of Internet
of Things (IoT) applications [3] poses a huge challenge to
the centralized cloud computing paradigm which incurs
unbearable transmission latency and degraded services be-
tween user requests and cloud responses. Besides, large
amounts of data generated from the IoT applications are
often stored in the cloud. To decrease latency and network
congestion, a fog computing paradigm [4] which is an
extension of cloud computing services to network edge has
been a relatively recent research topic. In fog computing,
the fog nodes inserted into the middle of cloud and end
users (or IoT devices) can provide various services (i.e., data
computation, data storage, etc.) for resource-limited end
users (i.e., sensor nodes, mobile terminals, etc.), note that
fog nodes are much closer to end users than cloud, which is
shown in Fig. 1. When sensitive data (i.e., text, image, video,
etc.) [5], [6], [7] are outsourced to honest-but-curious fog
nodes which are similar to public cloud platform, the data
security and privacy concerns [8] still impede the adoption
of fog computing as data owners lose the physical control
over their data in fog nodes or cloud.
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Fig. 1. The infrastructure of fog computing.

To mitigate the data privacy leakage risks, data encryp-
tion is an efficient mechanism to protect data confidentiality,
but it makes the information retrieval over encrypted data
extremely difficult. Moreover, the encrypted data should
be amenable to access control. For example, Identity-Based
Encryption (IBE) [9], [10] and Attribute-Based Encryption
(ABE) [11], [12] can protect data security by providing
coarse-grained and fine-grained access control mechanisms,
respectively. In addition to data security concerns, achieving
effective keyword search over encrypted data1 and fine-
grained access control are also the vital features in actual
scenarios. Searchable Encryption (SE) technology [13], [14],
which enables data users to securely search and selectively
retrieve records of interest over encrypted data according to
user-specified keywords, has been extensively explored. To
further furnish fine-grained access control in the preceding
SE solutions, the promising Ciphertext-Policy Attribute-
Based Keyword Search (CP-ABKS) [15], [16] has gained
much attention in both industrial and academic fields. In

1. This paper focuses on textual data.
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CP-ABKS schemes, a certain end user can decrypt cipher-
texts of interest if and only if his attribute set satisfies the
access policy embedded into ciphertexts and his submitted
trapdoor matches the indexes simultaneously.

Although CP-ABKS is a most useful cryptographic tool
to achieve both fine-grained access control and keyword
search functionalities, the computational and storage costs
of existing CP-ABKS schemes are approximately propor-
tional to the complexity of access policy, which greatly
hinder the uses of resource-limited IoT devices. Hence, it
is critical to keep operations on all end users lightweight
in practice. When we take the cloud-fog-user architecture
in fog computing into consideration, each fog node in fog
computing can be treated as a proxy to conduct partial
computation in place of IoT devices, which leaves less
computation for the IoT devices to generate trapdoor and
decrypt relevant ciphertexts.

Based on CP-ABKS scheme, we first devise a basic
Lightweight Fine-Grained Search (LFGS) over encrypted
data system in fog computing in order to achieve keyword
search over encrypted data and fine-grained access control
in multiple end users setting as well as avoid latency and
network congestion in traditional cloud computing paradig-
m. In addition to utilizing CP-ABKS technique, LFGS system
also lightens the computational and storage burden of end
users by cooperating with fog nodes. However, in dynamic
applications, the roles of end users may change. As a result,
the malicious end user can access the unauthorized cipher-
texts by exploiting his outdated secret key. Furthermore, the
single keyword search will return many irrelevant search
results and then incur the waste of computation and band-
width resources. As a further contribution, we extend the
basic LFGS system to support attribute update [17], [18] and
conjunctive keyword search [19], [20]. Thus, the extended
LFGS can not only support the fine-grained keyword search
(including single keyword search and conjunctive keyword
search) and attribute update but also significantly reduce
the end users computational burden with the help of fog
nodes. To prevent the file and trapdoor privacy from being
eavesdropped by some attacks (i.e., replay attack [21] and
man-in-the-middle attack [22], etc.) and show the practical-
ity of LFGS system in actual scenarios, we give the formal
security analysis and comprehensive performance analysis.
Specifically, the main contributions of our paper are shown
as follows:

• Fine-grained keyword search. LFGS system gains
one-to-many rather than one-to-one encryption and
specifies flexible access control over shared data,
which eliminates some inherent drawbacks of exist-
ing public key cryptography schemes. Besides, LFGS
system enables end users to search ciphertexts of
interest according to queried keyword.

• Lightweight computation on end users. With the
help of fog nodes, LFGS system reliefs the large
computational burden from data owners or end user-
s, which means that partial computation including
files encryption, trapdoor generation and ciphertexts
decryption is offloaded to fog nodes without any loss
of data confidentiality.

• Attribute update. The extended LFGS system sup-

ports attribute update and just needs to update the
keys and ciphertexts associated with the updated at-
tributes, which not only avoids illegal accesses using
outdated keys but also imposes less computational
overhead on this system.

• Conjunctive keyword search. The extended LFGS
system allows end users to issue multiple keywords
in a single search query so that it can improve the
user search experience as the conjunctive keyword
search can narrow down the search scope and quick-
ly locate the results of interest.

• Security and practicability. Formal security shows
that LFGS system is selectively secure against
Chosen-Keyword Attack (CKA) and Chosen Plain-
text Attack (CPA). The extensive experiments
demonstrate that LFGS system is efficient and fea-
sible in a broad range of applications.

The remainder of our paper is structured as follows.
Section 2 reviews some previous work associated with LFGS
system. Section 3 gives some preliminaries used as the
basis of LFGS system. In section 4, we first present the
problem formulations including system model, overview
of LFGS system and security model. Then, we demonstrate
the concrete construction of LFGS system in section 5 and
analyze the security and performance in section 6. Finally,
we draw a conclusion remark in section 7.

2 RELATED WORK

In cloud computing environment, SE provides a funda-
mental solution to issue search queries over encrypted da-
ta according to specified keywords. Song et al. [13] gave
the first SE scheme which required litter communication,
but the computational overhead was linear in the size of
search query. To tackle this problem, Boneh et al. [14]
presented a Public key Encryption with Keyword Search
(PEKS) scheme. After that, many SE schemes enriched
with different features had been proposed, such as single
keyword search, multiple keywords search, fuzzy keyword
search, verifiable keyword search, ranked keyword search.
Compared with single keyword search [23], [24], multiple
keyword search [25], [26] can quickly locate the results of
interest and greatly decrease the waste of computation and
bandwidth resources. As there is no tolerance of minor types
and format inconsistencies in exact keyword search queries,
fuzzy keyword search [27] enhances the system usability
by leveraging Wildcard, Locality-Sensitive Hashing (LSH)
or Bloom Filter (BL) techniques. As the cloud is a semi-
trusted third-party which will execute a fraction of search
operations and return a fraction of search results to save
computation resources or hide data corruption accidents,
verifiable keyword search [28] can verify whether the results
are correct or not. To further narrow down the search results,
ranked keyword search [29], [30] can return the results in the
order of relevance scores to keywords.

However, the aforementioned SE schemes cannot enable
data owner to grant fine-grained search capabilities to end
users. To achieve fine-grained access control, two categories
of ABE schemes, namely Key-Policy ABE (KP-ABE) [11]
and Ciphertext-Policy ABE (CP-ABE) [12] were proposed.
Besides, the cloud computing mainly provides resources
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distributed in the core network far from end users, which
will cause high network delay and congestion. Then, fog
computing, which is not a replacement but an extension
of cloud computing for the emergence of IoT applications,
extends the cloud elastic resources to the edge of the net-
work (i.e., portable devices, wireless sensors and other IoT
devices, etc.) with limited storage and processing capacities.
To fill the gap between cloud computing and fog computing,
Zuo et al. [31] proposed a practical CP-ABE scheme with
outsourced decryption in fog computing environment, but
this scheme still suffered from key-delegation abuse issue.
Along this direction, Jiang et al. [32] presented a traceable
CP-ABE scheme which can provide protection against key
exposure. However, the attribute update in existing CP-ABE
schemes is still an important issue when the roles of end
users are changed. To this end, Zhang et al. [18] proposed
an efficient access control CP-ABE scheme with outsourcing
capability and attribute update for fog computing.

Unfortunately, one of the main efficiency defects in
existing CP-ABE schemes is that encryption or decryption
operations involve time-consuming pairing operations and
a number of other operations increasing with the complexity
of access policy. Hence, it is critical to largely eliminate
computational costs for resource-limited end users in fine-
grained keyword search system. For example, Lai et al. [33]
proposed a verifiable decryption scheme which incurs less
computational overhead for end users to recover the trans-
formed ciphertexts; Malluhi et al. [34] showed an improved
CP-ABE scheme with optimized ciphertext size and fast de-
cryption, which can be applied in the context of lightweight
IoT devices. However, all aforementioned CP-ABE schemes
still cannot support keyword search.

Motivated by this issue, Zheng et al. [15] showed t-
wo Attribute-Based Keyword Search (ABKS) schemes (i.e.,
Key-Policy ABKS (KP-ABKS) and Ciphertext-Policy ABKS
(CP-ABKS)) by using KP-ABE and CP-ABE, respectively.
Note that CP-ABKS [35], [17] has been considered as the
practical cryptographic primitive for the provision of fine-
grained access control over ciphertexts. Then, Sun et al. [16]
demonstrated an owner-enforced CP-ABKS scheme in a
challenging multi-contributor scenario by exploiting proxy
re-encryption and lazy encryption techniques. Although
the two CP-ABKS schemes outlined above can check the
correctness of search results, these schemes have high false-
positive rate caused by BL. Then, Fan et al. [36] gave a
verifiable CP-ABKS scheme which accurately verified the
correctness of search results by attaching a signature to
each file, whereas this scheme still cannot be applied in fog
computing environment.

Although the latest CP-ABKS scheme [37] can achieve
the fine-grained search and access authorization in fog
computing, its computational and storage costs increase
linearly with the number of system attributes rather than
the number of required attributes. To achieve practicability
and feasibility in fog computing, we propose a Lightweight
Fine-Grained Search (LFGS) system which supports fine-
grained access control and single keyword search.

3 PRELIMINARIES

Here, we first present some cryptographic backgrounds as
the basis of LFGS system, which includes access structure,
access tree and Decisional Bilinear Diffie-Hellman (DBDH)
assumption. Let G,GT be two multiplicative cyclic groups
of prime order p, g be a generator of group G and e be
the bilinear map G × G → GT with several properties:
(1) Bilinearlity. e(ga, gb) = e(g, g)ab, ∀a, b ∈ Zp; (2) Non-
degeneracy: e(g, g) ̸= 1; (3) Computability. e can be effi-
ciently computed. Given a set X , the symbol x ∈ X is
defined as choosing an element x uniformly at random
from the set X , and [1, y] denotes an integer set {1, 2, ..., y}.
Besides, given a set S, the Lagrange coefficient is defined as
∆i,S(0) =

∏
j∈S,j ̸=i

0−j
i−j .

3.1 Access Structure
Given a set of parties P = {P1, P2, · · · , Pn}, the collection
A ⊆ 2{P1,P2,··· ,Pn} is monotonic if the following condition
holds. Namely, given two arbitrary sets B,C , we can gain
C ∈ A if B ∈ A and B ⊆ C . An monotonic access
structure is a collection A with non-empty subsets of P ,
such as A ⊆ 2{P1,P2,··· ,Pn}\∅. Notice that sets in A are called
authorized entities, but the ones which do not belong to A
are called unauthorized entities. In this paper, A contains all
authorized attribute sets. Unless stated otherwise, the access
structure outlined above represents a monotonic one.

3.2 Access Tree
Assume that T is an access tree used to describe access
policy, and its each non-leaf node w denotes a threshold
gate represented by its children nodes and threshold value.
Assume that the number of children of a certain node
w is numw and its threshold value is kw, then we have
0 < kw ≤ numw. Especially, the threshold gate is “AND”
gate when kw = numw, and it is “OR” gate when kw = 1.
Notice that each leaf node w of T denotes an attribute
and its threshold value is kw = 1. To further facilitate
description, some functions are shown as follows:

• parent(w): The parent of non-root node w in T ;
• att(w): The attribute value associated with the leaf-

node w in T ;
• index(w): The specified order of children of non-leaf

node w in T , which ranges from 1 to numw;
• Tw: The subtree of T rooted at the non-root node w;
• Troot: The access tree rooted at the root node root in

T .

Given an attribute set γ, if it matches the subtree Tw,
then we set Tw(γ) = 1 which can be calculated recursively
with the following steps: (1) if w is a non-leaf node, we can
compute each children w′ of node w, where Tw(γ) = 1 holds
if and only if at least kw children return Tw′(γ) = 1; (2) if
w is leaf node, then we can gain Tw(γ) = 1 if and only if
att(w) ∈ γ.

3.3 Decisional Bilinear Diffie-Hellman Assumption
Given the bilinear map parameters (G,GT , p, e, g) and three
elements (a′, b′, c′) ∈R Z3

p , if there is no PPT (Proba-
bilistic Polynomial Time) algorithm B that can distinguish
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between the tuple (g, ga
′
, gb

′
, gc

′
, e(g, g)a

′b′c′) and the tuple
(g, ga

′
, gb

′
, gc

′
, ϑ), we can say that the PPT algorithm B does

not have an advantage ϵ in solving the DBDH problem when
the following equation holds, where ϑ ∈R GT .∣∣∣∣∣Pr[B(g, ga

′
, gb

′
, gc

′
, e(g, g)a

′b′c′) = 1]

− Pr[B(g, ga
′
, gb

′
, gc

′
, ϑ) = 1]

∣∣∣∣∣ < ϵ. (1)

Definition 1. We say that the DBDH assumption holds in
G if no PPT algorithm has a non-negligible advantage ϵ in
solving the DBDH problem.

4 PROBLEM FORMULATION

In this section, we give the system model, threat model,
algorithms overview of LFGS system and security model,
respectively.

4.1 System Model & Threat Model
In this paper we consider a ciphertexts retrieval scenario in
fog computing, which mainly involves five entities, name-
ly Key Generation Center (KGC), Cloud Service Provider
(CSP), multiple Fog Nodes (FNs), Data Owner (DO) and
End Users (EUs), which are shown in Fig. 2. It is worth
noticing that the communication synchronization between
FNs and CSP can be gained by a fully-trusted third-party
certificate center, and DO (or EUs) and FN are synchronized
via a secure channel [38], such as SSL (Secure Socket Layer)
and TLS (Transport Layer Security). The specific role of each
entity is given as follows:

Indexes

… … 

Key Key

Key
TrapdoorResults

Fog node Fog node Fog node

Data owners Key generation center End users

Cloud service provider

Notes: Each fog node has the same function.

            
Intermediate encryption/decryption Final encryption

File key Ciphertexts File Ciphertexts

             

Fig. 2. The infrastructure of fog computing.

• Key generator center (KGC): KGC is responsible for
generating system parameters and distributing secret
keys to FNs and EUs, respectively. Besides, when
EUs’ attributes have been updated, KGC is able to
update partial secret keys to avoid unauthorized
access controls.

• Data owner (DO): Before outsourcing the final ci-
phertexts2 to CSP, the DO needs to output file key

2. The ciphertexts include file ciphertexts, file key ciphertexts and
index ciphertexts, where file ciphertexts are achieved with symmetric
encryption algorithm(i.e., AES, DES, etc.), both file key and index
ciphertexts are gained with CP-ABE mechanism.

ciphertexts and build encrypted indexes according
to keyword set with cooperating with the chosen FN.
Finally, the DO sends final ciphertexts to CSP via a
certain FN.

• Cloud service provider (CSP): CSP has almost unlim-
ited computation and storage capacities to undertake
file remote storage tasks and conduct ciphertexts
retrieval operations.

• End users (EUs): The resource-limited EUs can issue
search queries according to trapdoor generated with
the help of FNs. Moreover, EUs need to decrypt final
ciphertexts returned by FNs.

• Fog nodes (FNs): FNs can not only generate the
final ciphertexts but also output the final trapdoor
on behalf of DO and EUs, respectively. Furthermore,
FNs can partially decrypt returned ciphertexts to
further cut down EUs’ computational costs.

In this paper, we assume that KGC is a fully trusted
entity, while the CSP and FNs are honest-but-curious third-
parties which honestly execute the pre-defined protocols
but are curious to deduce sensitive information from stored
ciphertexts and trapdoors, which can help them acquire
additional information. Depending on what information the
CSP and FNs know, we adopt the following two threat
models [29]. The malicious EUs may collude with each other
to access unauthorized ciphertexts, whereas EUs cannot
collude with FNs in LFGS system.

• Known ciphertext model. In this model, the CSP and
FNs can obtain the encrypted files, indexes and trap-
doors.

• Known background model. In this stronger model, the
CSP and FNs are supposed to possess more knowl-
edge (i.e., correlation relationship of given trapdoors,
dataset related statistical information, etc.) than that
in the known ciphertext model.

4.2 Overview of LFGS System

LFGS system is a tuple of several algorithms, namely Setup,
KeyGen, Enc, Trap, Search and Dec, which is shown in
Fig. 3.

Besides, we give a general description for the LFGS
system in Fig. 4. In the step 1⃝, the DO first sends the
access policy to the chosen FN, then the FN returns the
encrypted access policy described by a access tree to DO,
finally the DO outputs the final ciphertexts (i.e., file content
ciphertexts, file key ciphertexts and index ciphertexts, etc.)
and returns to CSP via the chosen FN. When the EU wants
to issue the search query, the KGC generates the secret keys
for the EU and his chosen FN according to his attributes
with the step 2⃝. After gaining his secret key, the EU sends
his attributes to the chosen FN, and the FN outputs the
intermediate trapdoor (or search token) on condition that
the EU is a legal entity; then, the EU further generates the
intermediate trapdoor and sends it to the FN; at last, the FN
outputs the final trapdoor and returns it to CSP, which is
demonstrated by the step 3⃝. In the step 4⃝, the CSP issues
the search operation and returns the relevant search results
to the FN. After gaining the search results, the FN first
conducts the majority of operations and then returns the
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LFGS system definition

The overview of LFGS system is presented as follows:

• Setup(1k): Given the security parameters k and attribute set U , KGC outputs the public key PK and master
key MSK.

• KeyGen(PK,MSK,S): Given the attributes S, KGC generates the public/secret pairs (PKFN , SKFN ),
(PKEU , SKEU ) for FNs and EUs, respectively.

• Enc(PK,W,F , T ,Γ): Given the file set F , keyword set W and access policy Γ, a certain DO generates the file
content ciphertexts {cτ}, file key ciphertexts {CT ∗

τ } and encrypted indexes {Iτ} with the help of a chosen FN
and outsourced ciphertexts to CSP via the FN.

• Trap(W ′, S, SKFN , SKEU , PK∗
FN , PK∗

EU ): When a certain EU wants to issue search query according to his
submitted keyword W ′, the EU outputs the final trapdoor TW ′ by outsourcing the partial computation to the
chosen FN and sends TW ′ to CSP via the FN.

• Search({cτ}, {CT ∗
τ }, I, S, TW ′ ,Γ): After gaining attributes S and trapdoor TW ′ , the CSP conducts the search

operation and returns the relevant search results {c′π} on the condition that the EU is a legal entity.
• Dec({c′π}, {CT ′

π}, SKFN , SKEU , PK, T ,Γ): After receiving the search results {c′π}, the chosen FN issues
partial decryption operations before the EU can gain the final plaintext.

Fig. 3. Overview of LFGS system

intermediate results to the EU, finally the EU decrypts the
ciphertexts without high computational and storage burden,
which is shown by the step 5⃝. As for the specific interacting
processes in different algorithms in LFGS system, we will
give a detailed introduction in Section 5.

Access policy

Policy ciphertexts

Final ciphertexts 

Attributes

Intermediate token

Intermediate token

Final token  

Results

Key generator center

Data owner Fog node Cloud server Data user

Key
Key

Fig. 4. Framework of LFGS system.

4.3 Security Model

We now present the chosen plaintext security of LFGS sys-
tem in fog computing environment. Assume that there exists
a Probabilistic Polynomial Time (PPT) adversary A which
can send a challenge access structure Γ∗ to the challenger C
in the following security game.

• Initialization. A chooses a challenging access struc-
ture Γ∗ and then sends Γ∗ to C.

• Setup. C conducts the Setup algorithm and sends the
public parameters PP to A.

• Phase 1. To issue secret key query for an attribute
set S, A can adaptively sends any S to C, but the
restriction is that all submitted attribute sets cannot
satisfy Γ∗. With regard to each attribute set S, C
performs the KeyGen algorithm to output the final
secret key SK and then sends SK to A.

• Challenge. A picks two messages m0,m1 with equal
length before sending them to C, then C selects a
random bit κ ∈ {0, 1} and then calls the Enc algorith-
m to encrypt mκ. Finally, C returns the challenging
ciphertexts C∗ to A.

• Phase 2. A is allowed to issue secret key queries for
other attribute sets, but there still exists a restriction
that none of the aforementioned secret keys can
decrypt the challenging ciphertexts C∗.

• Guess. A returns a guess bit κ∗ ∈ {0, 1}. If κ∗ = κ,
A wins the security game; otherwise, A fails. The
A’s advantage in breaking the above security game
is defined as AdvA(1

k) = |Pr[κ∗ = κ]− 1
2 | < ϵ.

Definition 2. LFGS system can achieve CPA security if there
exist no PPT adversaries which can break the above security
game with a non-negligible advantage ϵ under the DBDH
assumption.

Besides, LFGS system can achieve selectively secure a-
gainst CKA in the following security game between A and
C.

• Initialization. A first selects a challenging access struc-
ture Γ∗ and then sends Γ∗ to C.

• Setup. C first performs the Setup algorithm and then
sends the public parameters PP to A.

• Phase 1. A first selects any attribute set S and key-
word W , then A repeatedly issues the following
three trapdoor generation queries.
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– Trap-I(W,S): A submits the tuple (W,S) to a
certain FN, then the FN returns a intermediate
trapdoor value TW,1.

– Trap-II(W,S): A submits the tuple (W,S) to a
certain EU, then the EU returns a intermediate
trapdoor value TW,2.

– Trap-III(W,S): A asks for the final trapdoor
TW by submitting a tuple (W,S) to the FN
chosen in Trap-I(W,S).

• Challenge. A first submits two challenging keywords
W0,W1 with the same length, then C chooses a
random bit κ ∈ {0, 1} and calls the Enc algorithm
to generate the index IWκ with Γ∗. Finally, C sends
IWκ to A.

• Phase 2. A repeatedly the process in Phase 1, but the
restriction is that the two keywords W0,W1 cannot
be queried in Phase 2.

• Guess. A returns a guess bit κ∗ ∈ {0, 1}. If κ∗ = κ,
A wins the security game; otherwise, A fails. The
A’s advantage in breaking the above security game
is defined as AdvA(1k) = |Pr[κ∗ = κ]− 1

2 | < ϵ.

Definition 3. LFGS system is selectively secure against CKA
if there exist no PPT adversaries which can break the above
security game with a non-negligible advantage ϵ under the
DBDH assumption.

5 CONSTRUCTION OF LFGS SYSTEM

Before presenting the concrete construction of LFGS system
in fog computing environment, we first show some nota-
tions used in our construction in TABLE 1. With low latency
and mobility provided by fog computing, resources-limited
EUs and DO can outsource partial computational burden
to FNs, leaving a fraction of operations to be conducted by
themselves. Besides, LFGS system gains fine-grained owner-
enforced access authorizations over encrypted files. Com-
pared with prior CP-ABKS schemes, LFGS system can not
only achieve fine-grained access control but also alleviate
computational burden on EUs by adding a middle layer
called FN. Before presenting the detailed construction, we
first give some notation definitions used in LFGS system in
TABLE. For simplicity, we assume that there are n attributes
U = {att1, · · · , attn} in LFGS system. In the following, we
show the main algorithms in LFGS system, namely Setup,
KeyGen, Enc, Trap, Search, Dec.

TABLE 1
Notation descriptions in LFGS system

Notations Descriptions
U = {att1, · · · , attn} System attribute set
PKFN , PKEU Public keys of FNs and EUs
S = {att∗j} EU’s attribute set
(K1,K2,K3, r, {Kj,2,Kj,3}) FN’s secret key
(K0, u, {Kj,1}) EU’s secret key
F = {F1, · · · , Fm} File set
W = {W} Keyword set
kτ (τ ∈ [1,m]) Encryption key of Fτ

CTτ = (C1, C2, {Cl}l∈L) Intermediate ciphertext of kτ
CT ∗

τ = (CCτ , C′, C′
1, C

′
2, {Cl}) Final ciphertext of kτ

Iτ = (I0, I1, {Il,1, Il,2}l∈L) Index of Fτ

TW ′ = (T ′
0, T

′
1, T

∗
EU , {T ′

j,1, T
′
j,2}) Trapdoor for keyword W ′

Setup(1k): Given the security parameter k and public bi-
linear parameters PP = (G,GT , e), the algorithm issued
by KGC chooses two generators g0, g1 ∈ G, two elements
x, y ∈R Z2

p and a hash function H1 : {0, 1}∗ →R Z∗
p which

maps any string to a random element in Zp; then, KGC
selects ti ∈R Z∗

p for each attribute atti ∈ U(i ∈ [1, n])

and computes Ai = gti0 , B = gx0 , Y = e(g0, g0)
y ; finally,

KGC returns the public key PK and master key MSK with
Eq. 2.

PK = (PP, g0, g1, B, Y,H1, {Ai});
MSK = (x, y, {ti}).

(2)

KeyGen(PK,MSK,S): When a certain FN joins into LFGS
system, KGC first chooses an element r ∈R Z∗

p and outputs
the FN’s public key PKFN = Y r = e(g0, g0)

yr ; then the
FN is chosen as an intermediate party with a database-
associated public key PK∗

FN = PK−s
FN = e(g0, g0)

−syr

and authorized EU list (UL), where s ∈R Z∗
p can be shared

by each outsourced file in LFGS system. When each EU in
UL joins the LFGS system, the EU submits his certification
associated with attribute set S = {att∗j} to ask for secret
key. Similar to the authorized FN, KGC also selects an
element u ∈R Z∗

p and computes PKEU = Y u = e(g0, g0)
yu

as the EU’s public key, then KGC returns the EU’s public
key PK∗

EU = PK−s
EU = e(g0, g0)

−syu associated with the
dataset specified by the DO.

With regard to secret key generation, the KGC first
chooses aj , bj ∈R Z2

p for each attribute att∗j ∈ S and

v, z ∈R Z∗
p . Then, KGC computes Kj,1 = g

bj/tρ1(j)

0 ,

Kj,2 = g
(aj−bj)/tρ1(j)

0 , Kj,3 = g
xv/tρ1(j)

0 , K0 = gy+xv
0 ,

K1 = gxv0 gz1 , K2 = gz0 , K3 = gy−a
0 , where a =

∑|S|
j=1 aj ,

|S| denotes the number of attributes in S, the function ρ1(·)
maps the subscript of attribute in S to that of attribute
in U , namely att∗j = attρ1(j). Finally, the KGS return-
s the secret keys SKFN = (K1,K2,K3, r, {Kj,2,Kj,3}),
SKEU = (K0, u, {Kj,1}) to FN and EU, respectively.

Enc(PK,W,F , T ,Γ): Given files F = {F1, · · · , Fm} and
associated keyword set W = {W}, DO first encrypts each
file Fτ ∈ F(τ ∈ [1,m]) as cτ with the symmetric key kτ ,
namely cτ = Ekτ (Fτ ).

To encrypt each key kτ , the DO assigns an access policy
Γ described by an access tree T and then sends Γ to a
certain FN to output file symmetric key encryption CTτ by
cooperating with the chosen FN.

• After gaining Γ, the chosen FN first chooses a poly-
nomial qw with degree dw for each node w in access
tree T . Starting from the root node ν, the polynomi-
als are selected in a top-down manner. For each node
w, its threshold value is defined as kw = dw + 1.
The FN picks an element θ ∈R Z∗

p and then sets
qν(0) = θ, then FN can choose other dν points to
define dν completely. For any other non-root node w,
the FN first sets qw(0) = qparent(w)(index(w)) and
then defines qw completely by utilizing other random
qw points. Let L = {l} be the leaf nodes in T , and
each leaf node l is associated with an attribute. Then
the FN computes C1 = gθ0 , C2 = gθ1 , Cl = g

tlql(0)
0 .
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Finally, the FN returns the intermediate ciphertext
CTτ in Eq. 3 to the DO.

CTτ = (C1, C2, {Cl}l∈L). (3)

• After receiving the key ciphertext set {CTτ}, the DO
chooses an element h ∈R Z∗

p , and then computes
CCτ = kτ · e(g0, g0)yh, C ′ = gh0 , C ′

1 = C1g
h
0 ,

C ′
2 = C2g

h
1 . Finally, the DO returns the file cipher-

texts {cτ}, file key ciphertexts {CT ∗
τ } to CSP via the

chosen FN, where CT ∗
τ is defined by Eq. 4.

CT ∗
τ = (CCτ , C

′, C ′
1, C

′
2, {Cl}l∈L). (4)

To generate the index for each file Fτ , the DO first selects
an element dl ∈R Z∗

p for each attribute in Γ, and then it
computes I0 = Y s, I1 = gs0, Il,1 = A

dlH1(W )
l , Il,2 = (s −

dl)H1(W ), where the keyword W is included in Fτ . Finally,
the DO sends the final index set I = {Iτ} as well as the
tuple ({cτ}, {CT ∗

τ }) to CSP via the above FN, where the
symbol Iτ is defined by Eq. 5.

Iτ = (I0, I1, {Il,1, Il,2}l∈L). (5)

File ciphertexts

Access policy File encryption

Key encryption

index encryption

Data owners Fog node Cloud server

Tree encryption

Ciphertexts

Fig. 5. Interacting process in Enc algorithm.

Trap(W ′, S, SKFN , SKEU , PK∗
FN , PK∗

EU ): When an au-
thorized EU with an attribute set S wants to issue a search
query according to the keyword W ′ of interest, he can
generate a search token (or trapdoor) with the help of a
certain FN, note that the chosen FN cannot output the
valid trapdoor by himself. The specific trapdoor generation
process is shown as follows:

• Once gaining the requirement for trapdoor genera-
tion, the chosen FN will execute the following pro-
cess if and only if the EU is in the authorized UL.
The FN first picks an element η ∈R Z∗

p , and then it
computes T1 = Kη

3 and Tj,1 = Kη
j,2 for each attribute

att∗j ∈ S. Finally, the chosen FN returns the symbol
TW ′,1 = (T1, {Tj,1}) to the EU.

• After gaining TW ′,1, the EU first selects λ ∈R Z∗
p

and computes T0 = u + λ, T ′
1 = Tλ

1 , and then it
outputs T ′

j,1 = T
λ/H1(W

′)
j,1 , Tj,2 = K

λ/H1(W
′)

j,1 for
each attribute att∗j ∈ S. Finally, the EU returns the

symbol TW ′,2 = (T0, T
′
1, {T ′

j,1, Tj,2}) to the chosen
FN.

• When receiving TW ′,2, the FN computes T ′
0 = T0η+r

and T ′
j,2 = T η

j,2 for each attribute in S. Then, the FN
computes T ∗

EU = (PK∗
EU )

η . Finally, the FN sends
the final trapdoor TW ′ = (T ′

0, T
′
1, T

∗
EU , {T ′

j,1, T
′
j,2})

and the EU’s attributes S to CSP.

Fog nodeEnd users

Certificate & Attributes

Legal entity

Cloud server

Intermediate trapdoor value

Final trapdoor value

Fig. 6. Interacting process in Trap algorithm.

Search({cτ}, {CT ∗
τ }, I, S, TW ′ ,Γ): After gaining the trap-

door, the CSP first checks whether the EU’s attribute set S
matches the access structure Γ. If it is true, the CSP conducts
the following steps; otherwise, the CSP aborts this process.

• First, the CSP computes I∗l = Il,1 ·A
Il,2
l = A

s/H1(W )
l

and e(I∗l , T
′
j,1), e(I

∗
l , T

′
j,2) for each attribute att∗j ∈ S

with Eq. 6. If the equations tl = tρ1(j), H1(W
′) =

H1(W ) hold, then we can further gain e(I∗l , T
′
j,1) =

e(g0, g0)
sηλ(aj−bj), e(I∗l , T

′
j,2) = e(g0, g0)

bjsηλ

e(I∗l , T
′
j,1) = e(g0, g0)

tlH1(W )sηλ(aj−bj)

H1(W ′)tρ1(j) ;

e(I∗l , T
′
j,2) = e(g0, g0)

bjstlH1(W )ηλ

H1(W ′)tρ1(j) .

(6)

• Then, the CSP checks whether the submitted trap-
door TW ′ satisfies the indexes I with Eq. 7.

e(I1, T
′
1)

∏
j∈[1,|S|]

e(I∗ρ1(j)
, T ′

j,1T
′
j,2) =

I
T ′
0

0 · T ∗
EU · PK∗

FN .

(7)

• Finally, if Eq. 7 holds, it indicates that W ′ = W
and then the CSP returns the corresponding search
results which include file ciphertexts {c′π} and file
key ciphertexts {CT ′

π} to the FN. Besides, we de-
fine an function ρ2(·) which maps the subscript of
ciphertexts c′π (or CT ′

π) to that of cρ2(π) (or CT ∗
ρ2(π)

),
namely c′π = cρ2(π), CT ′

π = CT ∗
ρ2(π)

.

Dec({c′π}, {CT ′
π}, SKFN , SKEU , PK, T ,Γ): To decryp-

t {c′π}, the algorithm needs to gain the file keys {k′π}
embedded in CT ′

π by leveraging the following recursive
algorithm. The specific decryption process involving FN
and EU is shown as follows:

• First, the FN calls the recursive algorithm by taking
the two cases into consideration. (1) If the node w
in T is a leaf node and it satisfies att(w) ∈ S,
then the FN computes φw = e(Katt(w),3, Cw) =



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2823309, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

e(g0, g0)
xvqw(0); (2) If the node w is a non-leaf node,

the FN first computes φw′ for each children w′ of
node w. Let Sw be an arbitrary ϕw-size child node set
{w′}, if there does not exist such set, then φw′ =⊥;
otherwise, the FN computes φw′ with Eq. 8, where
i = index(w′), S′

w = {index(w′) : w′ ∈ Sw}.

φw =
∏

w′∈ϕw

φ
∆i,S′

w
(0)

w′

= (e(g0, g0)
xvqparent(w′)(index(w

′)))∆i,S′
w
(0)

= e(g0, g0)
xvqw(0).

(8)

• Then, the FN obtains φν = e(g0, g0)
xvθ if S matches

the access structure Γ. After that, the FN computes
M with Eq. 9 and M∗ = M/φν = e(g0, g0)

xvh before
returning the tuple ({c′π}, {CC ′

π}, C ′,M∗) to EU.

M =
e(K1, C

′
1)

e(K2, C ′
2)

= e(g0, g0)
xv(θ+h). (9)

• Finally, the EU computes the each file key k′π with
Eq. 10 before decrypting each file ciphertext c′π =
Ek′

π
(F ′

π), where CC ′
π = CCρ2(π).

k′π =
CC ′

π ·M∗

e(K0, C ′)
=

k′π · e(g0, g0)yhe(g0, g0)xvh

e(gy+xv
0 , gh0 )

.

(10)

Remarks. To reduce the computational burden of
resource-constrained cloud clients including DO and EUs,
the lightweight LFGS system shifts the partial computation
of cloud clients to FNs in fog computing environment,
which can be applied in a broad range of applications.
Although the basic LFGS system can provide fine-grained
access control and keyword search simultaneously, it can-
not support attribute update and conjunctive keyword. For
example, if the attributes associated with roles of a certain
EU have been update, the malicious EU can still access the
original ciphertexts by utilizing his early secret key related
to his old role. To prevent this kind of illegal accesses, the
prior schemes need to update all ciphertexts, which bring
high computational and storage burden. Besides, the single
keyword search will return all file ciphertexts containing
the queried keyword, while some of these results may not
be what the EUs need, which greatly wastes the bandwidth
and computation resources. Along these directions, we ex-
tend the basic LFGS system to achieve these goals in the
following subsections.

5.1 Attribute Update in Extended LFGS System

Taking the dynamic scenarios into consideration, a certain
attribute may change and the malicious EUs can access the
unauthorized information with the outdated secret keys.
Aiming to gain this feature, the extended LFGS scheme
needs to support attribute update. For simplicity, we assume
there exists an attribute (atti → attσ/∈[1,n]) needed to be
updated in extended LFGS system. Next, we mainly present
the modified content which are different from those of basic
LFGS system.

• Key update. The KGC first chooses an element tσ ∈R

Z∗
p and then computes ti→σ = ti/tσ used to update

the secret key of updated FN and partial cipher-
texts in CSP. Then, the KGC picks another element
t∗i ∈R Z∗

p for attribute atti and computes ti,1 = ti/t
∗
i ,

ti,2 = t∗i /ti, where ti,1 is used to update the secret
key of non-updated FNs, ti,2 is utilized to update
ciphertexts in CSP. Finally, the KGC updates the
public key of updated attribute as A∗

i = A
ti,2
i = g

t∗i
0 .

Besides, the partial secret key of updated FN is set
as Ki,3 = g

(xv/ti)·ti→σ

0 = g
xv/tσ
0 , and that of non-

updated FN is defined as Ki,3 = g
(xv/ti)·ti,1
0 = g

xv/t∗i
0

• Ciphertexts update. To enable the FNs to execute
partial decryption operation, it is required that the
CSP should update the ciphertext associated with
the updated attribute with two cases: (1) for up-
dated FN, the stored ciphertext Ci is set as Ci =

g
tiqi(0)/ti→σ

0 = g
tσqσ(0)
0 ; for non-updated FN, Ci is

defined as Ci = g
tiqi(0)·ti,2
0 = g

t∗i qi(0)
0

It is worth noticing that the attribute does not exert com-
putational burden on resource-limited EUs. Furthermore,
the FNs and CSP just need to update partial secret keys
or ciphertexts, respectively. Last but not least, the extended
LFGS system also does not need to update indexes and
trapdoors which are not involved with the secret key Kj,3.
Hence, our extended LFGS system is still lightweight.

5.2 Conjunctive Keyword Search in Extended LFGS
System

As the single keyword search in the basic LFGS system
will return many irrelevant search results, which wastes the
bandwidth and computation resources. To further narrow
down the search scope and quickly locate the search result-
s, the extended LFGS system should support conjunctive
keyword search. Next, we also demonstrate the modified
content in the extended LFGS system.

• Index generation. For each file Fτ including multiple
keywords, if Fτ contains the keyword W ∈ W , the
Enc algorithm first computes Il,1,W = A

dlH1(W )
l ,

Il,2,W = (s − dl)H1(W ); otherwise, it sets Il,1,W =
Il,2,W = 1. Then, the Il,1 = {Il,1,W }, Il,2 = {Il,2,W }.

• Trapdoor generation. Given the search query involving
with multiple keywords W ∗ = {W ′

1, · · · ,W ′
~}, the

EU first computes T ∗
j,1 = T

λ/
∑

i∈[1,~] H1(W
′
i )

j,1 , Tj,2 =

K
λ/

∑
i∈[1,~] H1(W

′
i )

j,1 , where H1(W
′
i ) ∈ W ∗ ⊂ W .

Then, the EU returns the tuple {T ∗
j,1, Tj,2} and the

queried keyword location set in W to the chosen FN
to output the final trapdoor.

Although the conjunctive keyword search will increase
the index size, the Enc algorithm is just one-time operation
and the high storage burden is outsourced to CSP, which
does not bring storage burden on DO. Besides, the hash
operation OH1 is much efficient than other operations (i.e.,
pairing operation, exponential operation, etc.). Hence, the
extended LFGS system also incurs less computational bur-
den on EUs.
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6 SECURITY AND PERFORMANCE ANALYSIS

In this section, we first give the formal security analysis of
LFGS system with following theorems, and then demon-
strate its performance in terms of theoretical and practical
costs.

6.1 Security Analysis

In our LFGS system, the file encryption keys and indexes
are encrypted by the fully-trusted DO, and the submitted
trapdoors (or search tokens) are generated by authorized
EUs, note that the malicious EUs cannot collude with the
CSP and FNs. Besides, the collusion attacks between mali-
cious EUs can be avoided by the CP-ABE mechanism used
in our LFGS system. Thus, the file and keyword privacy
can be well protected in the known ciphertext model, but the
access pattern (i.e., the list of returned files, etc.) and search
pattern (i.e., whether the encrypted files are returned by the
same keyword, etc.) privacy cannot be guaranteed in the
known background model as it is extremely expensive since
the algorithm has to “touch” the whole file set. Thus, the
LFGS system does not aim to protect this kind of privacy
for efficiency concerns.

Although the FNs in LFGS system are considered to
honest-but-curious, these entities cannot issue replay attack
as the file encryption key ciphertext (CCτ , C

′, C ′
1, C

′
2), in-

dexes {Il,1, Il,2} (or trapdoor (T0, T
′
1, {T ′

j,1, Tj,2})) are con-
fused by DOs (or EUs) random elements h ∈R Z∗

p , dl ∈R Z∗
p

(or λ ∈R Z∗
p ), respectively. In the Enc algorithm, the chosen

FN is just in charge of encrypting access policy and cannot
generate the final ciphertxts (CT ∗

τ ) without DOs random
elements; the selected FN still cannot output the valid
trapdoor TW ′ without EUs secret keys in Trap algorithm.
Although the honest-but-curious FN can deduce sensitive
information when treated as an intermediate communica-
tion party, it still honestly executes the predefined protocol.
Thus, the LFGS system also can resist the man-in-the-middle
attack.

As for outsourced files, the LFGS system requires that the
malicious attackers cannot adaptively ask for the ciphertexts
of arbitrary plaintext messages. That is to say, the LFGS sys-
tem should achieve the CPA security which can be reduced
to the DBDH assumption with the following theorem.

Theorem 1. Assume that a PPT adversary A can break
the CPA security of LFGS system with a non-negligible
advantage ϵ, then there must exist a PPT simulator B which
can break the DBDH problem with an advantage ϵ/2.

Proof: Given the public bilinear parameters
(G,GT , e, g0), the challenger C chooses several elements
a′, b′, c′ ∈R Z∗

p , Z ∈ GT and a random bit κ ∈ {0, 1}. If
κ∗ = 0, the equation Z = e(g0, g0)

a′b′c′ holds; otherwise, Z
is a random element in group GT . Assume that C gives the
tuple (g0, g

a′

0 , gb
′

0 , g
c′

0 , Z) to B, then B plays the role of C in
the following security game:

• Initialization. A first selects a challenging access struc-
ture Γ∗, then A sends Γ∗ to B.

• Setup. B first picks an element y′ ∈R Z∗
p and com-

putes y = y′ + a′b′, then B sets Y = e(g0, g0)
y =

e(g0, g0)
y′
e(g0, g0)

a′b′ , B = gx0 = ga
′

0 , g1 = gϖ0 .

For each attribute atti ∈ U , B chooses an element
χi ∈R Z∗

p and outputs Ai = g
a′χ−1

i
0 = gti0 . If

atti ∈ Γ∗, the equation ti = a′χ−1
i holds; otherwise,

Ai = gχi

0 = gti0 , namely χi = ti. Finally, B returns
the partial public keys (Y,B, g1, {Ai}i∈[1,n]) to A.

• Phase 1. A adaptively submits an attribute set S ⊆ U
to B to issue secret key query. B first chooses an
element v ∈R Z∗

p and outputs v = v′ − b′, then
B defines K0 = gy+xv

0 = gy
′+a′v′

0 = gy
′

0 Bv′
,

K1 = ga
′v′

0 gz1 = Bv′
gz1 , K2 = ga

′z
0 = Bz . For

each attribute att∗j ∈ S, if att∗j ∈ Γ∗, B returns

Kj,3 = g
a′−1χρ1(j)a

′v

0 = g
a′v′t−1

ρ1(j)

0 = B
v′t−1

ρ1(j) ; oth-

erwise, B outputs Kj,3 = g
χ−1
ρ1(j)

v′a′

0 = B
v′t−1

ρ1(j) .
Finally, B returns the secret key to A.

• Challenge. A randomly submits two messages m0,m1

on which to be challenged to B, B first sends Γ∗

to the chosen FN which selects an element θ ∈R

Z∗
p to construct shares of θ for all corresponding

attributes and returns the challenging ciphertexts
(gθ0 , g

θ
1 , {Ci}) for all attributes atti ∈ Γ∗. Then, B

picks an element h ∈R Z∗
p , a random bit κ ∈

{0, 1} and computes C ′ = gh0 = gc
′

0 , C ′
1 = gc

′

0 gθ0 ,
C ′

2 = gθ1g
c′

1 = gc
′

0 gθϖ0 , CCκ = mκe(g0, g0)
yh =

mκe(g0, g0)
a′b′c′+y′c′ = mκZe(g0, g0)

y′c′ . Finally, B
sends the tuple (Γ∗, CCκ, C

′, C ′
1, C

′
2, {Ci}) to A.

• Phase 2. A repeatedly the process in Phase 1, but the
restriction is that the two messages m0,m1 cannot be
challenged.

• Guess. A returns a guess bit κ′ ∈ {0, 1}. B returns
κ∗ = 0 indicating that Z = e(g0, g0)

a′b′c′ on the
condition that κ′ = κ; otherwise, B returns κ∗ = 1
indicating that Z is a random element in group GT .

If Z = e(g0, g0)
a′b′c′ , then A can break the securi-

ty game with an advantage ϵ, and the B’s advantage
AdvBDBDH(1k) in solving the DBDH problem is 1

2 + ϵ;
otherwise, AdvBDBDH(1k) = 1

2 . Hence, the advantage of B
in breaking the security game outlined above is defined as
AdvBDBDH(1k) = 1

2 (
1
2 + ϵ+ 1

2 )−
1
2 = ϵ

2 . This completes the
proof of Theorem 1.

Besides, to guarantee the security of LFGS system, the
malicious attackers cannot distinguish an encryption of a
keyword W0 from an encryption of a keyword W1 for which
he does not gain the corresponding trapdoor. Thus, the
LFGS system should resist the chosen-keyword attack with
the following theorem.

Theorem 2. If there exists a PPT adversary A can break
the CKA security of LFGS system with a non-negligible
advantage ϵ, then we can construct a simulator B which
can solve the DBDH problem with an advantage ϵ/2.

Proof: Given the security parameter k and the whole
attribute set U , the challenger C chooses several elements
a′, b′, c′, ξ ∈R Z∗

p and random bit κ∗ ∈ {0, 1}. If κ∗ = 0,
C sets Z = e(g0, g0)

a′b′c′ ; otherwise, C sets Z = e(g0, g0)
ξ .

Then, C sends the tuple {ga′

0 , gb
′

0 , g
c′

0 , Z} to B that will plays
a challenger in the following security game.

• Initialization. A first selects a challenging access struc-
ture Γ∗, then A sends Γ∗ to B.
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• Setup. B first sets Y = e(g0, g0)
y = e(g0, g0)

a′b′

with the equation y = a′b′ holds, then B select-
s u, r ∈R Z∗

p and sets PKEU = e(g0, g0)
a′b′u,

PKFN = e(g0, g0)
a′b′r. Besides, for each attribute

atti ∈ U , B picks an element ti ∈R Z∗
p and com-

putes Ai = gti0 . Finally, B outputs the above public
parameters.

• Phase 1. A can ask for different trapdoor queries by
submitting any keyword W and the corresponding
attribute set S which does not satisfy the challenging
access structure Γ∗, and B responses these queries by
conducting the following three operations:

– Trap-I(W,S): For each attribute att∗j ∈ S, B
first selects a′j , b

′
j ∈R Z∗

p and defines bj = b′b′j ,
aj = b′a′j . Then, B sets a =

∑
aj =

∑
b′a′j .

Besides, B picks an element η ∈R Z∗
p and com-

putes T1 = g
−η

∑
b′a′

j

0 , Tj,1 = g
η(a′

j−b′j)/tρ1(j)

0 =

g
η(aj−bj)/tρ1(j)

0 . Finally, B returns the symbol
TW,1 = (T1, {Tj,1}) to A.

– Trap-II(W,S): B first selects an element λ ∈R

Z∗
p , then B computes T0 = u + λ, T ′

1 = Tλ
1 ,

T ′
j,1 = T

λ/H1(W )
j,1 , Tj,2 = g

b′jη/H1(W )tρ1(j)

0 . Fi-
nally, B sends the tuple (T0, T

′
1, {T ′

j,1, Tj,2}) to
A.

– Trap-III(W,S): B first computes T ′
0 = ηT0 +

r, PK∗
FN = Z−r , PK∗

EU = Z−uη . Then,
for each attribute att∗j ∈ S, B computes
T ′
j,2 = T η

j,2. Finally, B sends the tuple
(PK∗

FN , PK∗
EU , T

′
0, T

′
1, {T ′

j,1, T
′
j,2}) to A.

• Challenge. A randomly submits two keyword W0,W1

on which to be challenged to B, B chooses a random
bit κ ∈ {0, 1} and encrypts Wκ with the challenging
access structure Γ∗. B first sets I0 = Z, I1 = gc

′

0 , then
computes I∗ρ1(j)

= g
c′ρ1(j)H1(Wκ)
0 . Finally, B returns

the tuple (I0, I1, {I∗ρ1(j)
}) to A.

• Phase 2. The process is as same as that in Phase 1,
but the restriction is that queried keywords in Phase
1 cannot be issued again in this phase.

• Guess. A outputs a guess bit κ′ ∈ {0, 1}. If κ′ = κ, B
outputs κ∗ = 0 indicating that the equation Z =
e(g0, g0)

a′b′c′ holds; otherwise, B outputs κ∗ = 1
indicating that Z is a random element in GT .

When κ∗ = 1, it indicates that A does not obtain any
information about κ. Thus, we can obtain Pr[Γ ̸= Γ′|κ∗ =
1] = 1

2 . If B outputs κ∗ = 1 on condition that Γ ̸= Γ′,
we also gain Pr[κ∗ = κ∗|κ∗] = Pr[κ∗ = 1|κ∗ = 1] = 1

2 .
When κ∗ = 0, A can obtain a valid encryption for keyword
Wκ and can break the above security game with a non-
negligible advantage ϵ. In this case, we can further have
Pr[κ = κ′|κ∗ = 0] = 1

2 + ϵ. If B outputs κ∗ = κ∗ on
condition that Γ = Γ′, we can have Pr[κ∗ = κ∗|κ∗ = 0] =
Pr[κ∗ = 0|κ∗ = 0] = 1

2 + ϵ. Therefore, the B’s advantage in
breaking the DBDH problem is Pr[κ∗ = κ∗]− 1

2 = Pr[κ∗ =
κ∗|κ∗ = 1]Pr[κ∗ = 1] + Pr[κ∗ = κ∗|κ∗ = 0]Pr[κ∗ =
0]− 1

2 = ϵ
2 . This completes the proof of Theorem 2.

TABLE 2
Functional comparison in various schemes

Schemes Function 1 Function 2 Function 3 Function 4
VABKS [15] !

ABKS-UR [16] ! !

SCP-ABKS [17] ! !

m2-ABKS [19] ! !

KSF-OABE [35] !

MO-ABKS [36] ! !

HFGA [37] ! !

Basic LFGS ! !

Extended LFGS ! ! ! !

“Function 1”: Fine-grained keyword search;
“Function 2”: Conjunctive keyword search;
“Function 3”: Attribute update;
“Function 4”: Fog computing.

6.2 Performance Analysis

Before analyzing the performance of LFGS system, we first
compared our LFGS system with several state-of-the-art
CP-ABKS schemes [15], [16], [17], [19], [35], [36], [37] in
TABLE 2, and we notice that the extended LFGS system sup-
ports fine-grained keyword search3, conjunctive keyword
search, attribute update and fog computing simultaneously.
As for the performance analysis of LFGS system, we mainly
present its theoretical and actual performance by comparing
with the state-of-the-art schemes, i.e., HFGA scheme [37],
ABKS-UR scheme [16].. Note that we omit the performance
analysis of extend LFGS system as the conjunctive keyword
search and attribute update do not bring high computation-
al and storage burden.

With regard to theoretical analysis, we first present the
computation in TABLE 3. We mainly consider several time-
consuming operations like bilinear pairing operation P ,
exponentiation operation E (resp., ET ) in group G (resp.,
GT ). Note that the computational costs of LFGS scheme
are affected by the number of submitted attributes, while
those of other two schemes are influenced by the number
of system attributes. Because of S ⊆ U , we can assume that
|S| < n in practical applications. Hence, compared with
the efficient ABKS-UR scheme, the LFGS system can further
reduce the EUs’ computational burden. Furthermore, the
LFGS system has fewer computational costs on the chosen
FN than the HFGA system in fog computing environment.

Besides, we present the storage costs of aforementioned
three schemes in TABLE 4, where the element lengths in
G,GT ,Zp are defined as |G|, |GT | and |Zp|, respectively.
With the same reason shown in TABLE 3, the LFGS system
still outperforms other two schemes in terms of storage costs
of different algorithms.

As for the actual performance analysis, we conduc-
t experimental simulations using real-world Enron Email
Dataset4 which includes half a million records from 150
users to evaluate the actual performance of aforementioned
schemes. This public email dataset used in many SE schemes
contains half a million records from about 150 users, mostly
senior management of Enron, and the Enron corpus contains

3. It means that it just supports single keyword search.
4. http://www.cs.cmu.edu/∼enron/
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TABLE 3
Computation costs in various schemes

Algorithms LFGS HFGA [37] ABKS-UR [16]
FN EU FN EU FN EU

KeyGen (2|S|+ 3)E + 2ET (|S|+ 1)E + 2ET 2ET (4n+ 1)E + ET — (2n+ 1)E + ET

Enc (n+ 2)E (n+ 3)E + 2ET — (2n+ 4)E + ET — (n+ 1)E + ET

Trap (2|S|+ 1)E + ET (2|S|+ 1)E (4n+ 1)E + ET (4n+ 1)E — (2n+ 1)E
Search (|S|+ 1)P + E + ET (2n+ 1)P + 2nE + ET (n+ 1)P + ET

Dec (n+ 2)P P (2n+ 1)P + (2n+ 1)E ET — —

Notes. “|S|”: The number of submitted attributes; “n”: The number of system attributes.

TABLE 4
Storage costs in various schemes

Algorithms LFGS HFGA [37]
FN EU FN EU

KeyGen (2|S|+ 4)|G|+ 2|GT |+ |Zp| (|S|+ 1)|G|+ 2|GT |+ |Zp| 2|GT |+ 2|Zp| (4n+ 1)|G|+ 2|GT |+ (2n+ 1)|Zp|
Enc n|Zp|+ (n+ 2)|G| (n+ 4)|G|+ (n+ 1)|Zp|+ 2|GT | — (2n+ 4)|G|+ n|Zp|+ 2|GT |
Trap (2|S|+ 1)|G|+ |GT |+ 2|Zp| (2|S|+ 1)|G|+ 2|Zp| (4n+ 1)|G|+ |GT |+ |Zp| (4n+ 1)|G|+ |Zp|
Search (|S|+ 1)|GT | (2n+ 2)|GT |+ 2n|G|
Dec (n+ 1)|GT | |GT |+ |Zp| (2n+ 1)|G|+ (2n+ 1)GT |GT |
Scheme KeyGen Enc Trap Search
ABKS-UR |Zp|+ (2n+ 1)|G|+ |GT | (2n+ 1)|G|+ |GT |+ 2|GT | |Zp|+ (2n+ 1)|G| (n+ 3)|GT |
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Fig. 7. Performance analysis in various schemes: (a) Computational costs in KeyGen algorithm; (b) Storage costs in KeyGen algorithm; (c)
Computational costs in Enc algorithm; (d) Storage costs in Enc algorithm; (e) Computational costs in Trap algorithm; (f) Storage costs in Trap
algorithm; (g) Computational costs in Search algorithm; (h) Storage costs in Search algorithm.

a total of about 0.5 MB (Megabyte) message. Experiments
are implemented on an Ubuntu Server 15.04 with Intel
Core i5 Processor 2.3 GHz by using C and Paring Based
Cryptography (PBC) Library. In PBC Library, the Type A is
denoted as E(Fq) : y

2 = x3+x, the group G and group GT

of order p are subgroups of E(Fq), where the parameters p
and q are equivalent to 160 bits and 512 bits, respectively.
In line with prior schemes, we choose 10000 files from the
public dataset and conduct the experimental tests for 100
times. For comparison, we set |S| = n ∈ [1, 50] in the whole
paper.

In Fig. 7 (a), (b), we show the actual performance of
KeyGen algorithm in different schemes (i.e., LFGS, HFGA,
ABKS-UR, etc.). As for the computational costs of key gen-

eration, the EUs in LFGS system have much less computa-
tional burden than those in HFGA and ABKS-UR schemes.
This is because the theoretical costs of KeyGen algorithm
in aforementioned three schemes are (|S| + 1)E + 2ET ,
(4n+1)E+ET , (2n+1)E+ET , respectively. For example,
when setting |S| = n = 40, the LFGS system takes 247.7 ms
to generate secret keys for EUs, while the HFGS and ABKS-
UR scheme take 180.3 ms, 639.6 ms to conduct the same
operations, respectively. Although the HFGA scheme exerts
less computational overhead on FNs than LFGS system,
it brings much more computational burden to resource-
limited EUs, which is impractical in actual scenarios. Be-
sides, the result of storage costs comparison is as same as
that of computational cost comparison. Hence, the LFGS
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system outperforms the other two schemes in terms of
computational and storage costs of key generation.

In Fig. 7 (c), (d), we notice that the lightweight LFGS
system can shift partial ciphertexts generation computation
from EUs to the chosen FNs without loss of data confi-
dentiality in Enc algorithm, which significantly reduces the
computational burden of resource-constrained EUs. How-
ever, the other two schemes only enable the EUs to generate
ciphertexts. Note that the computational overhead of FNs
and EUs in LFGS system is slightly less than that of EUs in
ABKS-UR scheme but much less than that of EUs in HFGA.
Besides, the storage costs of FNs and EUs in LFGS system
are much fewer than those of EUs in HFGA and ABKS-
UR schemes. For example, when setting |S| = n = 50, the
FNs and EUs in LFGS system need 533.7 s and 560.8 s to
generate ciphertexts for 10000 files, respectively, while the
EUs in HFGA and ABKS-UR schemes take 838.3 s and 611
s, respectively. Furthermore, the storage overhead of FNs
and EUs in LFGS system is 68.2 MB (Megabytes) and 72.3
MB, respectively, and that of EUs in HFGA and ABKS-UR
schemes is 147.5 MB and 144.5 MB, respectively. Therefore,
the LFGS system can reduce the computational and storage
costs of EUs with the help of FNs in the fog computation
environment. Fortunately, the Enc algorithm is a one-time
operation, which does not affect the search experience of
EUs.

In Fig. 7 (e), (f), we demonstrate the computational and
storage burden of trapdoor generation in Trap algorithm.
The actual performance of LFGS system is similar to that
of ABKS-UR scheme, and is better than that of HFGA sys-
tem. Compared with the HFGA scheme, the LFGS system
does not incur extra computational and storage burden
when applied in fog computing. For example, when setting
|S| = n = 30, the computational and storage costs of FNs
and EUs in LFGS system are (253ms, 7.84 KB), (238 ms,
7.7 KB), respectively, while those of FNs and EUs in HFGA
scheme are (507 ms, 17 KB), (494 ms, 16.9 KB), respectively.
Although the ABKS-UR scheme is more efficient than HFGA
scheme with regard to trapdoor generation, it does not
apply to the above fog computing environment. Thus, the
LFGS system not only has better performance in terms of
trapdoor generation but also can gain a broad range of
applications in practice.

In Fig. 7 (g), (h), we show the performance of ciphertexts
retrieval in Search algorithm. By varying the number of
attributes from 1 to 50, the computational and storage over-
head of ciphertexts search is almost linear with the variable
|S| = n. Besides, the performance of Search algorithm in
LFGS system and ABKS-UR scheme is superior to that of
HFGA scheme. For example, when setting |S| = n = 20, the
ciphertexts search time and length of ciphertexts retrieval
are 89.9 ms and 2.75 KB, respectively, while those of HFGA
scheme and ABKS-UR scheme are (426 ms, 9.75 KB), (97.3
ms, 3 KB), respectively.

In Fig. 8, we just present the performance of cipher-
texts decryption in LFGS system and HFGA scheme as
the ABKS-UR scheme encrypts the file content by utiliz-
ing the traditional public/symmetric encryption algorithms.
From TABLE 4 we know that the EUs in LFGS system
and HFGA scheme just need one pairing operation P and
exponentiation operation ET to decrypt each ciphertext
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Fig. 8. Performance of Dec algorithm: (a) Computational costs; (b)
Storage costs.

in Dec algorithm, and the most of computational and s-
torage burden of ciphertexts decryption are conducted by
the chosen FNs. However, the FNs in LFGS system (the
computational and storage overhead is (n+2)P , (n+1)|GT |,
respectively) still has better performance than those in H-
FGA schemes (the computational and storage overhead is
(2n+1)P+(2n+1)E, (2n+1)|G|+(2n+1)GT , respectively).
For example, when setting |S| = n = 50, the performance of
FNs in LFGS system and HFGA scheme is (279.4 ms, 9.125
KB), (1045 ms, 26.25 KB), respectively, while that of EUs
keeps almost unchanged.

To summarize, the actual performance assessments of
above schemes are completely in accord with the theoretical
analysis shown in TABLE 3 and TABLE 4. Compared with
the HFGA scheme, the LFGS system does not incur much
computational and storage burden on FNs and EUs in fog
computing environment. The EUs in ABKS-UR scheme has
approximately similar performance in Enc, Trap and Search
algorithms on condition that |S| = n. However, in practice,
the value of S is far less than that of n. Hence, the LFGS
system is much more efficient than the ABKS-UR scheme as
well as the HFGA scheme.

To further demonstrate the practicality of LFGS system
in actual scenarios, we also conduct a series of experiments
over other datasets except for Enron Email dataset, such
as National Science Foundation Research Awards Abstract
1990-2003 dataset (or NSF dataset)5 and Request For Com-
ments database (or RFC dataset)6 in TABLE 5 and TABLE 6,
where TABLE 5 and TABLE 6 present the computational and
storage costs of LFGS system and HFGA scheme in three
datasets, respectively. By setting |S| = n = 20, we notice
that the performance of LFGS system and HFGA scheme in
Enron Email dataset is approximately equal to that in NSF
dataset and RFC dataset. That is to say, the various datasets
do not significantly affect the performance of LFGS system.
Thus, our LFGS system is feasible and efficient in a broad
range of applications.

7 CONCLUSIONS

In this paper, we demonstrated a Lightweight Fine-Grained
Search (LFGS) system for the resource-limited EUs in fog
computing. On the one hand, the basic LFGS system could
greatly reduce the computational and storage burden of
EUs by outsourcing partial computation and storage to the

5. http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
6. http://www.ietf.org/rfc.html
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TABLE 5
Computational costs in various datasets

Schemes (LFGS, HFGA [37])
Algorithms KeyGen Enc Trap Search Dec
Entities FN EU FN EU FN EU CSP FN EU
Enron Dataset (133.3, 0.924) (97.7, 313.2) (219716, —) (203847, 363393) (179, 349) (160, 323) (89.9, 426) (122.8, 407) (4.36, 0.49)
NSF Dataset (137.1, 0.947) (98.1, 308.4) (219301, —) (202721, 366592) (187, 346) (167, 341) (84.2, 417) (117.9, 403) (4.91, 0.63)
RFC Dataset (141.3, 1.124) (99.2, 321.1) (220128, —) (208994, 367358) (194, 353) (179, 331) (89.2, 421) (125.4, 413) (5.07, 0.62)

Notes. The symbol (⋆, ⋆) denotes the computational costs (ms) of LFGS system and HFGA scheme, respectively, where |S| = n = 20.

TABLE 6
Storage costs in various datasets

Schemes (LFGS, HFGA [37])
Algorithms KeyGen Enc Trap Search Dec
Entities FN EU FN EU FN EU CSP FN EU
Enron Dataset (5.02, 0.34) (2.84, 10.83) (28663, —) (29186, 68095) (5.54, 11.62) (5.41, 11.48) (2.75, 9.75) (3.00, 9.75) (0.53, 0.32)
NSF Dataset (5.37, 0.41) (2.93, 11.12) (28105, —) (28623, 67814) (5.78, 12.15) (5.62, 11.81) (2.43, 9.38) (2.83, 9.49) (0.58, 0.43)
RFC Dataset (5.44, 0.46) (3.06, 11.29) (28913, —) (29912, 68632) (5.83, 12.34) (5.78, 11.95) (2.91, 10.23) (3.27, 9.92) (0.62, 0.45)

Notes. The symbol (⋆, ⋆) denotes the storage costs (KB) of LFGS system and HFGA scheme, respectively, where |S| = n = 20.

honest-but-curious FNs without leaking sensitive informa-
tion; on the other hand, the extended LFGS system could
support conjunctive keyword search and attribute update
to further narrow down the search scope and avoid u-
nauthorized accesses, respectively. Furthermore, the formal
security analysis showed that the LFGS system is selectively
secure against CKA and CPA, and the empirical experi-
ments using a real-world dataset illustrated the efficiency
and feasibility of LFGS system in fog computing.

As a part of our future work, we will continue to concen-
trate on expressive search including fuzzy keyword search,
semantic keyword search, and so on. Besides, the secure
channel utilized in our LFGS system should be eliminated
as secure channel will incur high communication burden.
Hence, we still need to further improve the efficiency of
LFGS system so that it can be applied in various schemes.
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