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Abstract

In chapters 1 and 2 we study deformations of Legendrian curves in P*C2.

In chapter 1 we construct versal and semiuniversal objects in the category of de-
formations of the parametrization of a germ of a Legendrian curve as well as in the
subcategory of equimultiple deformations. We show that these objects are given by the
conormal or fake conormal of an hypersurface in C? x C”.

In chapter 2 we prove the existence of equisingular versal and semiuniversal de-
formations of a Legendrian curve, on this instance making use of deformations of the
equation. By equisingular we mean that the plane projection of the fibres have fixed
topological type. We prove in particular that the base space of such an equisingular
versal deformation is smooth and construct it explicitly when the special fibre has semi-
quasihomogeneous or Newton non-degenerate plane projection.

Chapter 3 concerns the construction of a moduli space for Legendrian curves singular-
ities which are contactomorphic-equivalent and equisingular through a contact analogue
of the Kodaira-Spencer map for curve singularities. We focus on the specific case of
Legendrian curves which are the conormal of a plane curve with one Puiseux pair. To
do so, it is fundamental to understand how deformations of such singularities behave,
which was done in the previous chapter. The equisingular semiuniversal microlocal de-
formations constructed in chapter 2 already contain in their base space all the relevant
fibres in the construction of such a moduli space. This is so because all deformations
are isomorphic through a contact transformation to the pull-back of a semiuniversal
deformation.

Key-words: Algebraic Geometry; Relative Contact Geometry; Deformations of Legen-
drian Curves; Deformation Theory; Legendrian Curves; Moduli Spaces; Plane Curves;
Singularity theory.






Resumo

Seja X uma variedade complexa de dimensao 3 e Ox o feixe das fungoes holomorfas
sobre X. Seja Q}( o Ox-médulo das formas diferenciais de grau 1 sobre X. Uma forma
diferencial w em Q}( diz-se uma forma de contacto se w A dw nao se anula em nenhum
ponto de X. Pelo Teorema de Darboux para formas de contacto existe localmente um
sistema de coordenadas (x,y,p) tal que w = dy — pdx. Um sub-feixe localmente livre
L de Q& diz-se uma estrutura de contacto sobre X se cada ponto de X possui uma
vizinhancga aberta tal que sobre essa vizinhanca £ é gerado enquanto Ox-mdédulo por
uma forma de contacto. Se £ é uma estrutura de contacto, o par (X, L) diz-se uma
variedade de contacto. Uma aplicagao holomorfa x entre duas variedades de contacto
(X1, L1), (X2, L2) diz-se uma transformagdao de contacto se x*w é um gerador local de
L1 sempre que w seja um gerador local de Lo. Seja L um subconjunto analitico de (X, £)
de dimensao 1. Diz-se que L é uma curva Legendriana se qualquer seccao de £ se anula
sobre a parte regular de L.

Consideremos sobre C? com coordenadas (z,y) o fibrado cotangente T*C? = C? x
C? munido da forma diferencial canénica de grau 1, § = &dx + ndy, onde (£,7) sdo
coordenadas do espaco dual de C2. Seja 7 : P*C? = C? x P! — C? o fibrado cotangente
projectivo de C? tal que 7(z,y;¢ : 1) = (z,y). Os abertos U [V] definidos por n #
0[¢ # 0] definem uma estrutura de variedade complexa sobre P*C2. Munido das formas
diferenciais 0/n = dy — pdx [0/¢ = dx — qdy], onde p = —&/n[q = —n/€], P*C? tem
estrutura de variedade de contacto.

Dada uma curva plana Y de C? definimos o conormal de Y como sendo a "menor”
curva Legendriana de P*C? que se projecta sobre Y. Consideremos uma parametrizacio

p(t) = (2(t), y(t))

de um germe na origem de uma curva plana irredutivel Y com cone tangente definido por
az+by = 0, com (a,b) # (0,0). O germe de curva no ponto (a, b) de P*C? parametrizada
por

U(t) = (z(t),y(t); =y (t) : 2'())
é o conormal de Y. Se Y é um germe de curva plana com cone tangente irredutivel,
a unido dos conormais das componentes irredutiveis de Y define um germe de curva
Legendriana, o conormal de Y.

Os capitulos 1 e 2 estudam propriedades de deformacGes de curvas Legendrianas em
P*C2.

Uma deformagdo de um germe de espaco complexo (X,x) sobre um espago base
(S,s) é definida por um morfismo flat ¢ : (Z7,z) — (S, s) tal que (X,z) é isomorfo &
fibra (¢~1(s),z). Se (X, ) puder ser imerso em (C",0) e (2", ) puder ser imerso em
(C™,0) x (S,s) de tal forma que o morfismo ¢ respeite essas imersoes, a deformacao
diz-se imersa. Uma deformacao ¢ de (X, z) diz-se versal se, para além de uma condigao
técnica, exigirmos que toda uma outra deformacdo de (X, x) possa ser obtida a partir
de ¢ a menos de isomorfismo. Um germe diz-se rigido se uma sua deformacao trivial for
versal.
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No capitulo 1 adoptamos o ponto de vista de deformacdes da parametrizacao de
germes de curvas Legendrianas, obtendo como resultados principais expressoes para de-
formagbes cujos conormais definem deformacGes versais na categoria das deformacoes
de um germe de curva Legendriana e na subcategoria das deformagoes que preservem a
multiplicidade da curva.

No capitulo 2 estudamos deformagoes de um germe definido por equacoes no espaco
cotangente projectivo. Este ponto de vista tem a vantagem de poder ser estendido a
dimensoes superiores. Estamos interessados em particular em deformagoes que manten-
ham fixo o tipo topoldgico da sua projeccao, ditas equisingulares. No entanto, a definigao
Obvia de deformagcao neste caso tem alguns problemas: nem toda a deformacao de uma
curva legendriana teria como fibras curvas legendrianas, além de que todas as fibras
de uma deformacao flat seriam rigidas. Adoptamos portanto também aqui a defini¢ao
introduzida em [4], em que as deformagdes de uma curva em P*C? sio conormais de
deformacoes em C? da sua projeccdo plana. Temos como resultados principais deste
capitulo:

e Existéncia de uma deformacao versal equisingular de uma curva Legendriana. Em
particular provamos que o espago base de uma tal deformacao é suave.

e Construcao de uma deformacao versal equisingular de uma curva Legendriana que
tenha como projeccao uma curva semi-quasi-homogénea ou Newton-nao-degenerada,
estendendo os resultados de [4].

No capitulo 3 abordamos a questao da nao universalidade das deformagoes semiuniver-
sais obtidas no capitulo 2 para curvas com planas com um par de Puiseux. Pretendemos,
dentro do espago base das deformacoes semi-universais microlocais, identificar exacta-
mente que fibras é que sao microlocalmente equivalentes, isto é, cujos conormais sao
isomorfos por transformacoes de contacto. Um espaco com ”boa estrutura” em que cada
ponto corresponde a uma classe de uma certa relacao de equivaléncia é dito um espaco
de moduli para essa relacdo de equivaléncia. De uma forma geral, o espaco base das
deformagoes semi-universais microlocais nao é um espago de moduli para a relacao de
equivaléncia microlocal. Existe no entanto uma estratificacdo desse espaco de tal forma
a que, em cada estrato, o quociente pela relacao de equivaléncia tenha de facto essa "boa
estrutura” e seja portanto um espago de moduli. As técnicas aqui usadas sdo inspiradas
no trabalho desenvolvido por Gert-Martin Greuel e Gerhard Pfister sobre quocientes
geométricos por acgdes de grupos unipotentes (ver [7] e [10]).

Palavras chave: Curvas Planas; Curvas Legendrianas; Espacos de Moduli; Defor-
magoes de Curvas Legendrianas; Geometria Algébrica; Teoria das Deformacoes; Teoria
das Singularidades.
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Chapter 1

Deformations of Legendrian
Curves

1.1 Introduction

Legendrian varieties are analytic subsets of the projective cotangent bundle of a smooth
manifold or, more generally, of a contact manifold. They are projectivizations of conic
Lagrangian varieties. These are specifically important in D-modules theory and microlo-
cal analysis (see [15], [16], [17]). Its deformation theory is still an almost virgin territory
(see [24]).

In sections 1.2, 1.3 and 1.4 we introduce the languages of contact geometry and defor-
mation theory. In sections 1.5 and 1.6 we construct the semiuniversal and equimultiple
semiuniversal deformations of the parametrization of a germ of a Legendrian curve, ex-
tending to Legendrian curves previous results on deformations of germs of plane curves
(see [9]).

These results will be useful to the study of equisingular deformations of Legendrian
curves and its moduli spaces in chapters 2 and 3.

1.2 Contact Geometry

Let (X,Ox) be a complex manifold of dimension 3. A differential form w of degree 1
is said to be a contact form if w A dw never vanishes. Let w be a contact form. By
Darboux’s theorem for contact forms there is locally a system of coordinates (z,y,p)
such that w = dy — pdx. If w is a contact form and f is a holomorphic function that
never vanishes, fw is also a contact form. We say that a locally free subsheaf £ of
Q}( is a contact structure on X if L is locally generated by a contact form. If £ is a
contact structure on X the pair (X, £) is said to be a contact manifold. Let (X1, L)
and (Xg, L5) be contact manifolds. Let x : X; — X2 be a holomorphic map. We say
that x is a contact transformation if x*w is a local generator of £1 whenever w is a local
generator of Ls.



Let 6 = &dx + ndy denote the canonical 1-form of T*C? = C2 x C2. Let 7 : P*C? =
C? x P! — C? be the projective cotangent bundle of C%, where m(z,y; ¢ : n) = (x,v).
Let U [V] be the open subset of P*C? defined by 1 # 0[¢ # 0]. Then 0/n[0/¢] defines
a contact form dy — pdx [dz — qdy] on U [V], where p = —{/n[q = —n/&]. Moreover,
dy — pdx and dx — gdy define a structure of contact manifold on P*C?2.

If ®(z,y) = (a(x,y),b(z,y)) with a,b € C{x,y} is an automorphism of (C2,(0,0)),
we associate to ® the germ of contact transformation

x : (P*C%,(0,0;0: 1)) — (P*C?, (0,0; —0,b(0,0) : 9,a(0,0))
defined by
x(x,y; €2 n) = (a(=,y), b(z,y); Oyb€ — Ozxbn : —0ya + Ozan) . (1.2.1)

If D® g leaves invariant {y = 0}, then 9,6(0,0) = 0, 9,a(0,0) # 0 and x(0,0;0: 1) =
(0,0;0: 1). Moreover,

x(@,y,p) = (a(z,y), b(z,y), (9ybp + 0:b) /(Dyap + Oza)) -

Let (X, L) be a contact manifold. A curve L in X is said to be Legendrian if 1*w = 0
for each section w of £, where 2 : L — X.
Let Z be the germ at (0,0) of an irreducible plane curve parametrized by

p(t) = (2(t), y(t))- (1.2.2)
We define the conormal of Z as the curve parametrized by
b(t) = (z(t),y(t); —y'(t) - 2'(2)). (1.2.3)

The conormal of Z is the germ of a Legendrian curve of P*C2.

We will denote the conormal of Z by P4 C? and the parametrization (1.2.3) by Con ¢.

Assume that the tangent cone C(Z) is defined by the equation azx + by = 0, with
(a,b) # (0,0). Then P%C? is a germ of a Legendrian curve at (0,0;a : b).

Let f € C{t}. We say the f has order k and write ord f = k or ord; f = k if f/tF is
a unit of C{t}.

Remark 1.2.1. Let Z be the plane curve parametrized by (1.2.2). Let L = P3C2.
Then:

(i) C(Z) = {y = 0} if and only if ordy > ordx. If C(Z) = {y = 0}, L admits the
parametrization
U(t) = (x(t), y(t),y/ (t)/2'(¢))
on the chart (z,y,p).
(ii) C(Z) ={y =0} and C(L) = {x =y = 0} if and only if ordx < ordy < 2ordx.

(iii) C(Z) ={y =0} and {x =y =0} € C(L) C {y = 0} if and only if ordy > 20rd z.



(iv) C(L) ={y = p =0} if and only if ordy > 2ord x.
(v) mult L < mult Z. Moreover, mult L = mult Z if and only if ordy > 2ord z.

If L is the germ of a Legendrian curve at (0,0;a : b), w(L) is a germ of a plane curve
of (C2,(0,0)). Notice that all branches of w(L) have the same tangent cone.

If Z is the germ of a plane curve with irreducible tangent cone, the union L of the
conormal of the branches of Z is a germ of a Legendrian curve. We say that L is the
conormal of Z.

If C(Z) has several components, the union of the conormals of the branches of Z is
a union of several germs of Legendrian curves.

If L is a germ of Legendrian curve, L is the conormal of 7(L).

Consider in the vector space C?, with coordinates z, p, the symplectic form dp A dx.
We associate to each symplectic linear automorphism

(p,x) — (ap + Bz, vp + ox)

of C2 the contact transformation

1 1
(z,y,p) = (yp + dz,y + 5047]92 + Byxp + 565952, ap + px). (1.2.4)
We say that (1.2.4) a paraboloidal contact transformation.

In the case a = =0 and v = —f5 = 1 we get the so called Legendre transformation

U(z,y,p) = (p,y — pr, —).

We say that a germ of a Legendrian curve L of (P*C2,(0,0;a : b)) is in generic
position if C(L) 2 7~1(0,0).

Remark 1.2.2. Let L be the germ of a Legendrian curve on a contact manifold (X, £)
at a point 0. By the Darboux’s theorem for contact forms there is a germ of a contact
transformation y : (X,0) — (U, (0,0,0)), where U = {n # 0} is the open subset of P*C?
considered above. Hence C(7(x(L))) = {y = 0}. Applying a paraboloidal transforma-
tion to x(L) we can assume that x(L) is in generic position. If C(L) is irreducible, we
can assume C(x(L)) = {y =p = 0}.

Following the above remark, from now on we will always assume that every Legen-

drian curve germ is embedded in (C?x ) w), where w = dy — pdz.

Example 1.2.3. The plane curve Z = {y? — 2% = 0} admits a parametrization ¢(t) =
(t2,¢%). The conormal L of Z admits the parametrization v(t) = (2,43, 3¢). Hence
C(L) = 7=1(0,0) and L is not in generic position. If x is the Legendre transformation,
C(x(L)) = {y = p = 0} and L is in generic position. Moreover, m(x(L)) is a smooth
curve.



Example 1.2.4. The plane curve Z = {(y?—23)(y?—2°) = 0} admits a parametrization
given by
p1(t1) = (1%, 41%),  palta) = (t2% ).

The conormal L of Z admits the parametrization given by

3 5
Pi(tr) = (8%, 47, 5751), Pa(te) = (t2%,12°, 57523)-

Hence C(L1) = 7—1(0,0) and L is not in generic position. If x is the paraboloidal contact
transformation

1
X: (xay7p) = (l’ +p7y + §p27p)>

then x (L) has branches with parametrization given by

3 9 3
x(W1)(t) = (0> + chtl?’ + =42, oty),

8 2
X (12)(t2)

5 25 . 5
(2% + 51523, to® + gtgﬁ, 5t23).

Then
Cix(L1)={y=p—2=0}, Cx(L2))={y=p=0}

and L is in generic position.

1.3 Relative Contact Geometry

Set x = (z1,...,2n) and z = (21,...,2y). Let I be an ideal of the ring C{z}. Let I
be the ideal of C{x,z} generated by I. Let f € C{x,z}. We will denote by [ fdz; the
solution of the Cauchy problem

8301-9 = f, ge (xi)(C{X,Z}.

Lemma 1.3.1. (a) Let f € C{x,z}, f =), aax® with aq € C{z}. Then f € I if and
only if aq € I for each .

(b) If f € I, then Oy, f, [ fdz; € T for 1 <i<n.

(c) Let ay,...,an—1 € C{x,z}. Let b,y € I. Assume that 0z,00 = 0. If B is the
solution of the Cauchy problem

n—1
02,8 =Y ai0s,B=b,  B—PocC{x,z}ay, (1.3.1)

i=1

thenﬂef



Proof. There are g1,...,g¢ € C{z} such that I = (g1,...,9¢). If a, € I for each «, there
are h; o € C{z} such that a, = Zle hiagi- Hence f = Zle(za hiox“)g; € I.

If f € I, there are H; € C{x,z} such that f = Zle H,g;. There are b;, € C{z}
such that H; =) b ox®. Therefore a, = Zle bi.agi € I and (a) follows.

In order to prove (b), note that Oy, f = 3., a0z, X" = Y. brx® where, if a =
(1,...,ap), & = (a1,...,0; — 1,...,0a,) and by = «aa,. From (a), we get that
Or, f € I. In the same manner, [ fdz; € I.

We can perform a change of variables that rectifies the vector field 0, — 2?2_11 ;O
(see for example [2], pp 227-229), reducing the Cauchy problem (1.3.1) to the Cauchy
problem

a:cnﬁ =0, B —DBo € (C{X,Z}:En.
Hence, as 8 = [ 8, Bdxy, statement (c) follows from (b). O

Let J be an ideal of C{z} contained in I. Let X, S and T be analytic spaces with local
rings C{x}, C{z}/I and C{z}/J. Hence X xS and X xT have local rings O := C{x,z} /I
and O := C{x,z}/J. Let a1,...,an_1,b € O and g € O/z,,0. Let a;,b € O and
g € O/x, 0 be representatives of aj, b and g. Consider the Cauchy problems

n—1
Op f+ > ai0af=b,  f+z,0=g (1.3.2)
=1
and
n—1
Or, £+ a0 f=b, f+z,0=g. (1.3.3)
=1

Theorem 1.3.2. (a) There is one and only one solution of the Cauchy problem (1.5.2).
(b) If f is a solution of (1.3.2), £ = f + 1 is a solution of (1.3.3).

(c) If £ is a solution of (1.3.3) there is a representative f of f that is a solution of
(1.3.2).

Proof. By Lemma 1.3.1 (b), 8in~, the ideal generated by the partial derivatives in order
to x; of elements of I, is equal to 1. Hence (b) holds.

Assume J = (0). The existence and uniqueness of the solution of (1.3.2) is a special
case of the classical Cauchy-Kowalevski Theorem. There is one and only one formal
solution of (1.3.2). Its convergence follows from the majorant method.

The existence of a solution of (1.3.3) follows from (b).

Let fy,fs be two solutions of (1.3.3). Let f; be a representative of fj for j = 1,2.
Then 0, (fo — f1) + Z?;ll a;0z,(f2 — f1) € I and fo—fi+ 2,0 € I +1,0. By Lemma
1.3.1, fo — f1 € I. Therefore f; = f5. This ends the proof of statement (a).

If f is a solution of (1.3.3), it follows from (a) that there is a unique f that is a
solution of (1.3.2). It remains to see that f is a representative of f. This follows from

(b) and from the uniqueness of the solution of the Cauchy problem. Hence (c) holds.
O



Set QX|S ;. Odx;. We call the elements of QX|S germs of relative differential
forms on X x S. The map d : O — QX|S given by df = Y1 | Ox;fdx; is called the
relative differential of f.

Assume that dim X = 3 and let £ be a contact structure on X. Let p: X xS — X be
the first projection. Let w be a generator of £. We will denote by Lg the sub O-module
of Qh g generated by p*w. We call Lg a relative contact structure of X x S. We call
(X xS, Lg) arelative contact manifold. We say that an isomorphism of analytic spaces

X: XxS—=XxS (1.3.4)

is a relative contact transformation if x(0,s) = (0,s), x*w € Lg for each w € Lg and
the diagram
idx

X

X (1.3.5)

commutes.

The demand of the commutativeness of diagram (1.3.5) is a very restrictive condition
but these are the only relative contact transformations we will need. We can and will
assume that the local ring of X equals C{z,y,p} and that L is generated by dy — pdz.

Set O = C{xz,v, p,z}/[ and O = C{z,vy, p,z}/J Let mx be the maximal ideal of
C{z,y, p}. Let m[m] be the maximal ideal of C{z}/I[C{z}/J]. Let n[n] be the ideal of
O [O] generated by mym [mx ).

Remark 1.3.3. If (1.3.4) is a relative contact transformation, there are «, 3,y € n such
that 0,6 € n and
x(,y,p,2) = (x+ o,y + B,p+7,2). (1.3.6)

Theorem 1.3.4. (a) Let x : X xS — X xS be a relative contact transformation. There
is Bo € n such that 0pPy = 0, 080 € n, B is the solution of the Cauchy problem

oo’ 0B 004 0B  0adp 804
(1 + o + 8y> ap ap 9y opor 8p’ B — Bo € pO (1.3.7)

da o\t (0B o8 o O«

(b) Given «, By € n such that 0,80 = 0 and 0,0y € n, there is a unique contact trans-
formation x verifying the conditions of statement (a). We will denote x by Xa,g, -

and



(¢) Given a relative contact transformation X : X x T'— X x T there is one and only
one contact transformation x : X x S — X x S such that the diagram

XxS—X-Xx8 (1.3.9)

X xT—Xe X xT

commutes.

(d) Given a, By € n and @, Bo € W such that OpBo =0, 8PBO =0, 9.0 € n, OB € 1 and
a, By are representatives of a, Bo, set X = Xa,pys X = Xz Bo- Then diagram (1.5.9)
commutes.

Proof. Statements (a) and (b) are a relative version of Theorem 3.2 of [1]. In [1] we
assume S = {0}. The proof works as long S is smooth. The proof in the singular case is
a consequence of the singular variant of the Cauchy-Kowalevski Theorem introduced in
1.3.2. Statement (c) follows from statement (b) of Theorem 1.3.2. To see that (d) holds,
note that from (¢) of Theorem 1.3.2 it follows that If 8y is a representative [y, then
(unique by (b)) is a representative of f3.

O

Remark 1.3.5. (i) The inclusion S < T is said to be a small extension if the sur-
jective map between local rings ¢ : Op = Og has one dimensional kernel as vector
space over C. If the kernel of ¢ is generated by e, we have that, as complex vector
spaces, Or = Og @ €C. Every extension of Artinian local rings factors through
small extensions.

(ii) emgp = 0: let mg [m7]| denote the maximal of Og [Or]. If a € myp, as ac € Ker o,
one has (A—a)e = 0 for some A € C which we suppose non-zero. Now, as A—a ¢ mp
and Or is local, A — @ is a unit meaning that £ = 0 which is absurd. We conclude
that A = 0 and so emp = 0.

(iii) e € my: suppose € is a unit. There is a € Or such that ac = 1 which implies
v(a)e(e) =1 which is absurd. We conclude that ¢ is a non-unit and as Or is local
g emp.

Theorem 1.3.6. Let S — T be a small extension such that Og = C{z} and
Or 2 C{z,e}/(e? €21, ...c2m) = C{z} ® Ce.

Assume x : X x S — X x S is a relative contact transformation given at the ring level

by
(:L'ayvp) = (HI)HQa H3)>

a, fo € my, such that 0,580 = 0 and By € (x2,5y). Then, there are uniquely determined
B,y € mx such that 8 — By € pOx and X : X xT — X x T, given by

2(%:97177275) - (Hl + 80(,H2 + 867}[3 + 677Z7€)7



is a relative contact transformation extending x (see diagram (1.3.9)). Moreover, the
Cauchy problem (1.3.7) for X takes the simplified form

8 da
»  Pap B — Bo € C{z,y,p}p (1.3.10)
and ap op 0 0
il gp oy | 0

Proof. We have that X is a relative contact transformation if and only if there is f := f'+

ef" € Or{z,y,p} with f ¢ (z,y,p)Or{z,y,p}, f' € Os{z,y,p}, f" € C{z,y,p} = Ox
such that

d(Hy +€B) — (Hs + ev)d(Hy + ear) = f(dy — pdx). (1.3.12)
Since y is a relative contact transformation we can suppose that
dH2 - HgdHl = f’(dy —pdéE).

Using the fact that emp, = 0 (see Remark 1.3.5 (ii)) we see that (1.3.12) is equivalent
to

25 _ oa

oap  Pop
05, 98 da 00
98  Oa

n_ YPo Ut

d oy Poy

As 8-y € (p)C{x,y,p} we have that §, and consequently -, are completely determined
by « and (. O

Remark 1.3.7. Set a = ), app®, B = Zkﬂkpk, v o= Zk'ykpk, where ay, Bk, Ve €
C{z,y} for each k > 0 and 3y € (z2,y). Under the assumptions of Theorem 1.3.6,

(i) Be = Etoy_1, E>1.

(ii) Moreover,

. % . 650 (90(0 _180&]{,1 _ 1 80&]{,2 E>9
Wo_ax’%_ﬁy or T Tk o k-1 oy ’ -

Since,

o _ 2(%4_ )
ay,‘y{) - 856 ax 71 I

Bo is the solution of the Cauchy problem

9B _ O _ 9% 2

9



1.4 Categories of Deformations

A category € is called a groupoid if all morphisms of € are isomorphisms.
Let p: § — € be a functor. Let S be an object of €. We will denote by F(S) the
subcategory of § given by the following conditions:

e VU is an object of §(S) if p(¥) = S.
e X is a morphism of F(5) if p(x) = ids.

Let x [¥] be a morphism [an object] of §. Let f[S] be a morphism [an object] of €.
We say that x [V] is a morphism [an object]| of § over f[S] if p(x) = f [p(¥) = S].

A morphism x' : ¥/ — W of F over f: S" — S is called cartesian if for each morphism
X" W” — W of § over f there is exactly one morphism x : ¥ — ¥’ over idg such that
X/ o) X — X”-

If the morphism Y’ : ¥/ — W over f is cartesian, ¥’ is well defined up to a unique
isomorphism. We will denote ¥’ by f*W¥ or ¥ xg 5.

We say that § is a fibered category over € if

1. For each morphism f : S — S in € and each object ¥ of § over S there is a
morphism Y’ : ¥/ — ¥ over f that is cartesian.

2. The composition of cartesian morphisms is cartesian.

A fibered groupoid is a fibered category such that §(5) is a groupoid for each S € €.
The functor p : § — € is said to be a cofibered groupoid if the dual functor p° : §° — €° is
a fibered groupoid. Let us denote the element (f°)*¥ by f.¥ or Y ®4 A’ where A := Og
[A":= Og].

Lemma 1.4.1. If p : § — € is a fibered category each map in § is cartesian. In
particular, if p : § — € satisfies condition 1. above and §(S) is a groupoid for each
object S of €, then § is a fibered groupoid over €.

Proof. Let x : & — ¥ be an arbitrary morphism of §. It is enough to show that yx is
cartesian. Set f = p(x). Let x’ : ® — ¥ be another morphism over f. Let f*¥ — ¥
be a cartesian morphism over f. There are morphisms « : ® — f*¥, 3: ® — f*¥ such
that the solid diagram

[0}

f*\I/B:qR\ o' (1.4.1)
\ lx/
X
U

commutes. Hence 37! o « is the only morphism over f such that diagram (1.4.1) com-
mutes.

O]
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Lemma 1.4.2. If p: § — € is a fibered groupoid x is an isomorphism of § if and only
if p(x) is an isomorphism of €.

Proof. The only if part is just a consequence of the functorial proprties of p. Suppose
X : ® — VU is a morphism in § such that p(x) : S — T is an isomorphism. There is
g: T — S with p(x) og = idp and g o p(x) = idg. From (1) of the definition of fibered
category we conclude the existence of x' : ¥ — ® cartesian over g. As x’' o x € F(5),
xox €F(T) and F(S),F(T) are groupoids x’' o x, x o ¥’ and consequently y(as well as
X') are isomorphisms. O

Let n be the category of analytic complex space germs. Let 0 denote the complex
vector space of dimension 0. Let p : § — 2dn be a fibered category.

Definition 1.4.3. Let T be an analytic complex space germ. Let ¢ [¥] be an object of
§(0) [§(T)]. We say that ¥ is a versal deformation of v if given

e a closed embedding f : T" — T’,
e a morphism of complex analytic space germs g : 7" — T,
e an object U’ of F(T”") such that f*¥' = ¢*\¥,
there is a morphism of complex analytic space germs h : T/ — T such that
hof=g and V=R

If W is versal and for each ¥’ the tangent map T'(h) : Tp» — T is determined by ¥/, ¥
is called a semiuniversal deformation of 1.

Let T be a germ of a complex analytic space. Let A be the local ring of T" and let m
be the maximal ideal of A. Let T}, be the complex analytic space with local ring A/m"
for each positive integer n. The canonical morphisms

A—A/m”  and  A/m" — A/m"H

induce morphisms «,, : T, = T and 8, : T,41 — T},
A morphism f: 7" — T’ induces morphisms f, : 7)) — T, such that the diagram

commutes.

11



Definition 1.4.4. We will follow the terminology of Definition 1.4.3. Let g, = g o .
We say that U is a formally versal deformation of ¢ if there are morphisms h,, : T), — T
such that

hno frn=gn [V =g,¥, hpo 67/1 = hny1 and h;kz\ll = O‘;L*\I]/‘

If W is formally versal and for each W' the tangent maps T'(hy,) : Tr» — Tr are determined
by o," W', W is called a formally semiuniversal deformation of 1.

If p: § — € is a cofibered groupoid ¥ € § is said to be a versal [formally versal]
object if ¥ is versal as object of §° in the fibered groupoid p° : §° — €°.

Remark 1.4.5. Actually, the usual definition of formal versality comes from Definition
1.4.3 demanding that Op» and Op are Artinian. Definition 1.4.4 is inspired by the
following:

Let p: § — € be a cofibered groupoid over the category of analytic local C-algebras.
Through completion, this functor naturally extends to a functor p : @ — € over the
category of complete local C-algebras. Then a formally versal object in T is just a
projective system (¥ € §(13,))n>0-

By Schlessinger’s Theorem (see [26], Theorem 1.11) each ¢ € §(C) has a formal
semiuniversal deformation in §. Restricting to formal versality, that is, restricting to 7"
and 7" Artinian in Definition 1.4.3, has the advantage of letting us assume that 7" < T”
is a small extension (see Remark 1.3.5).

The next result will be useful in the proofs of Lemma 1.4.7 and Theorem 1.4.8.

Lemma 1.4.6. Let § — € be a cofibered groupoid. A deformation b € §F(B) is versal
[formally versallif and only if b @p B{x} [b®@p B[[x]]]is versal [formally versal], where
B{x} := B{x1,...,xn}.

Proof. Let us prove the convergent case. We prove only that b € §(B) is complete if and
only if b ® p B{x} is complete, as the proof of the equivalence of versalities is basically
the same but with more complicated notation.

Let i : B — B{x} denote the natural inclusion such that i.b = b ®p B{x} and let
¢ € §(C). Suppose b is complete. There is f : B — C such that ¢ & f.b inducing a
natural morphism f’' : B{x} — C such that f = f'o4. Then ¢ & f.b = f.(ixb) and
b®p B{x} is complete.

Conversely, suppose b ®p B{x} is complete. There is f’ : B{x} — C such that
¢ 2 fl(ixb) = (f' 0 i).b, hence b is complete.

O

Lemma 1.4.7 and Theorem 1.4.8 are proven in [6] which is originally written in
German. As, to our knowledge, there exists no English translation of [6], we present the
proofs of these results for convenience of the reader.

12



Lemma 1.4.7 ([6], Lemma 5.3). Suppose p : § — € is cofibered groupoid. Let b € §(B)

be formally semiuniversal, a € F(A) formally versal and b — @ a morphism. Then A is

a (formal) power series ring over B.
Proof. Since a is formally versal there is a morphism a — b. The composition b — @ — b
is an endomorphism of b, for which the associated map
_ /2 /2
mp/my — mp/my
is necessarily the identity because of the formal semiuniversality. In particular, the map
= 2 _ 2
a:mpg/mp — mg/m7

is injective. Let n = dimcCoker(a). If C := B[[x]], := B[[x1,...,7,]] we get an
isomorphism

B:my/m% — ma/m3
inducing an isomorphism C; = A, where C} := C/(mg?) and A; := A/(m4z%). Asa
is formally versal, we’re able to complete (indicated by a dashed arrow) the following
diagram with solid arrows

G- —bo5C
d®AA1*~>B®BC’1.

The morphism @ — b® 5 C induces a C-homomorphism ¢ : A — C such that ¢ = 3. As
[ is an isomorphism, by the inverse function theorem (see Theorem 1.1.21 of [9]) ¢ is an
isomorphism. O

Theorem 1.4.8 ([6], Theorem 5.2). Let § — € be a cofibered groupoid. Let a € F(A) be
a versal deformation of 1 € §F(C). Then:

(a) There is a semiuniversal deformation of 1 in §.
(b) Every formally versal [semiuniversal |deformation of ¢ is versal [semiuniversal |.

Proof. (a) : Let b be a formally semiuniversal object and b — @ a morphism. By Lemma

1.4.7 A is a (formal) power series ring over B such that A = B[[x]]. Let ai,...,a, be
elements in A whose images in A are mapped through g (see proof of Lemma 1.4.7) to
Zi,...,Tn. We claim that if B := A/(ay,...,an), b:=a®4 B is semiuniversal. Firstly,

we notice that according to the contruction b = b. Let C = B{x}. As in the proof
of Lemma 1.4.7 we find a B-isomorphism A; = (1, and again it’s possible to lift the
induced morphism a — a ®4 A1 2 b®p Cy to a morphism a — b ®p C, which in turn
induces an isomorphism ¢ : A — C'. In particular, by Lemma 1.4.2 a 2 b®p C and so
by Lemma 1.4.6 b is also versal.

(b): Let c¢in § be a formally versal object, b a semiuniversal deformation of c®C'/m¢
and b — ¢ a morphism. According to Lemma 1.4.7 C is a formal power series ring over

13



B and so C is a convergent power series ring over B. Consequently, as for b, ¢ is also

versal (as in the proof of (a)).
O

Let Z be a curve of C" with irreducible components Zi,...,Z,. Set C = LIy C;
where each C; is a copy of C. Let ¢; be a parametrization of Z;, 1 < i < r. Let
¢ : C — C" be the map such that ¢le, = @i, 1 <i < r. We call ¢ the parametrization
of Z.

Let T be an analytic space. A morphism of analytic spaces ® : C x T — C" x T is
called a deformation of @ over T if the diagram

T
|

T—2.CrxT

,

T

commutes. The analytic space T is called de base space of the deformation.
We will denote by ®; the composition

CixT—sCxTXZC'xT>C, 1<i<r

The maps ®;, 1 < i < r, determine P.
Let ® be a deformation of ¢ over T. Let f : T — T be a morphism of analytic
spaces. We will denote by f*® the deformation of ¢ over T" given by

(f*®); = ®; 0 (idg, x f).

We call f*® the pullback of ® by f.

Let ® : C x T — C" x T be another deformation of ¢ over 7. A morphism from
@’ into ® is a pair (x,&) where Y : C" x T — C" x T and £ : Cx T — C x T are
isomorphisms of analytic spaces such that the diagram

T CxT—2-C"xT——>T

<(C—>(CRX§X idr

T< CxT-—2¥oCxT— T

cominutes.
Let @' be a deformation of ¢ over S and f : S — T a morphism of analytic spaces.
A morphism of ® into ® over f is a morphism from @' into f*®. There is a functor p

14



that associates T" to a deformation W over T and f to a morphism of deformations over

f

Given t € T let Z; be the curve parametrized by the composition
Cx{t} > CxT3CrxT —Cn

We say that Z, is the fiber of the deformation ® at the point t.
All analytic spaces considered are identified with a germ taken at some point of a

representative space. Let 0 [0] denote the point of representatives of T, C",C" x T [C]
where the germ is taken.
The deformation & is said be a a deformation with section if there are morphisms

o: T —-C"xT

and .

7:T—CxT, s [[(3i(s),s), 3:(0) =0;

i=1
such that
oc=®,00;

for each i = 1,...,r. A section is said to be trivial if o(s) = (0, s) such that

((I)iyl(ﬁi(s)), ey (I)z,n(5z(5))) = (O, Ceey 0) S (Cn,
foreachi=1,...,r.

Deformations with section equipped with isomorphisms compatible with the section
define a subcategory of the deformations of . Suppose @ is a deformation with section
of v. Let

ord p := (ord ¢y, ...,ordp,),

where ord ¢; = maz{m : ¢;(mcn) C mZ }. Let
I3, :== Ker(o; : Og, 1 — Or)
I, := Ker(c" : Oc247 — Or).
Set
ord ® := (ord ®q,...,0rd ®,),

where
ord ®; := max{m : ®;(I,) C I}

Then @ is said to be equimultiple if ord ¢ = ord ®. Note that if the section is trivial
then

IO': (‘T17"'7$n)7
I@'i = (tl)v

15



where z1, . ..,z, [t;] are coordinates for C* [Cy].

All deformations with section are isomorphic to a deformation with trivial section (see
Proposition 1.2.2 of [9]). Assume ® has trivial section, ®;(t;,s) = (X1(t;,s), ..., Xni(ti,s))
with 1 < ¢ < r and that Z; has multiplicity m;. Then, ®; is equimultiple if and only if
Xji€ (t™) foreach 1 <i<r, 1<j<nand ®is equimultiple if and only if each ®; is
equimultiple

Assume Z is a plane curve. Set

(IDi(ti,s) = (Xi(ti, S), Yi(ti,s)) s 1 S ) S T. (142)
We will denote by Def,, [De f;m] the category of deformations [equimultiple deformations

lof . We say that ® is an object of Dwa[Defw] if ® is equimultiple and Y; € (t;z;)
Ve (2?)], 1 <i<r.

If T'is reduced, ® € Def™ [Dz fo Def ] if and only if all fibres of ® are equimultiple
[have tangent cone {y = 0}, and are in generic position].

Consider in C3 the contact structure given by the differential form w = dy — pdz.
Assume Z is a Legendrian curve parametrized by 1) : C — C3. Let ¥ be a deformation
of ¢ given by

U, (ti,s) = (Xi(ts,s), Yi(ts,s), Pi(ti,s)) . (1.4.3)
for 1 < ¢ < r. We say that U is a Legendrian deformation of ¢ if ¥}(p*w) = 0, for
1 <i < r. We say that (x,§) is an isomorphism of Legendrian deformations if x is

a relative contact transformation. We will denote by 5e\f¢ [@im] the category of
Legendrian [equimultiple Legendrian| deformations of ¢. All deformations are assumed
to have trivial section.

Assume that ¥ = Con parametrizei a germ of a Legendrian curve L, in generic

position. If (1.4.2) defines an object of Def,, setting
Pi(ti,S) = 8tz}/z(t’n S)/ath’L(tla S)a 1 S 1 S r,

the deformation ¥ given by (1.4.3) is a Legendrian deformation of ). We say that ¥
is the conormal of ® and denote ¥ by Con®. If ¥ € @w is given by (1.4.3), the
deformation ® of ¢ given by (1.4.2) is said to be the plane projection of ¥. We will
denote ® by W7,

We define in this way the functors

— — —
Con : Def, — Defy, 7 :Def, — Def,.

Notice that the conormal of the plane projection of a Legendrian deformation always

exists and we have that Con (¥") = V¥ for each ¥ € Def,, and (Con®)™ = & where
—

® € Def,.

Example 1.4.9. Set ¢(t) = (¢,0), ¥ = Conp and X (t,s) =t, Y(t,s) = st. Then we
get P(t,s) = s and although X, Y define an object of De f&™, its conormal ¥ is not an

element of 5e\f¢, because ¥ is a deformation with section s +— (0,0, s, s).
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Example 1.4.10. Set p(t) = (t2,°), X(t,s) = t2, Y(t,s) = t° + st®. Then we get

%
2P(t,s) = 5t3 4+ 3st. Altough X,Y defines an object of Def,, its conormal is not
equimultiple.

Remark 1.4.11. Under the assumptions above,
- —. em —— em -
Con (Def,) C Def, and (Def, )™ C Def,.

Lemma 1.4.12. If € is one of the categories 5;70111’ @Zm, p: € — An is a fibered
groupoid.

Proof. Let f : S — T be a morphism of 2An. Let ¥ be a deformation over 7. Then,

(X,€) : f[*U — W is cartesian, with

5(752‘,S) = (ti,S), %(1‘7317]97 S) = (xayapa S)'

This is because if (x,£) : ¥/ — ¥ is a morphism over f, then by definition of
morphism of deformations over different base spaces, (x, &) is a morphism from ¥’ into
f*U over idg. O

1.5 Equimultiple Versal Deformations

For Sophus Lie a contact transformation was a transformation that takes curves into
curves, instead of points into points. We can recover the initial point of view. Given a
plane curve Z at the origin, with tangent cone {y = 0}, and a contact transformation
X from a neighbourhood of (0;dy) into itself, x acts on Z in the following way: x - Z is
the plane projection of the image by x of the conormal of Z. We can define in a similar
way the action of a relative contact transformation on a deformation of a plane curve Z,
obtainning another deformation of Z.

We say that ® € Def(T') is trivial (relative to the action of the group of relative
contact transformations over T') if there is x such that x - ® := 7o x o Con® is the
constant deformation of ¢ over T, given by

(ti,s) '—)goi(ti), 1= 1,...,7’.

Let Z be the germ of a plane curve parametrized by ¢ : C — C?. In the following we
will identify each ideal of Oz with its image by ¢* : Oz — Og. Hence

x1 Y1

,
Oz=C N I C@C{ti}ZO@.
Ly Yr =1
Set x = [Z1,... ,jcr]t, where #; is the derivative of x; in order to ¢;, 1 < ¢ < r. Let

YT o y@y
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be an element of the free Oz-module

0 0
O@%@OC@. (1.5.1)

Notice that (1.5.1) has a structure of Oz-module induced by ¢*.
Let m; be the multiplicity of Z;, 1 < ¢ < r. Consider the Og-module

N s 0 N 2. 0
tMC{t;} = tiC{t = | . 1.5.2
(GZB {}ax)@(iejz {}8y> (15.2)
Let mg¢ be the sub Og-module of (1.5.2) generated by

(a ar) Xg—i-2
17"'7 T 8I yay )

where a; € t;C{t;}, 1 <i<r. Fori=1,...,r set p; = ¢;/&;. For each k > 0 set
t
R

Let I be the sub Oz-module of (1.5.2) generated by

0 k 0
kY A = E> 1.
Pos Trri? oy =
Set
= (@LtrCitg) o (S Ci )
_ . o) 0 T
mep + (2,9) 57 © (2%,y) 5, +1

o=
Given a category € we will denote by € the set of isomorphism classes of elements of

¢

Theorem 1.5.1. Let ¢ be the parametrization of a germ of a Legendrian curve L of
a contact manifold X. Let x : X — C3 be a contact transformation such that x(L) is
in generic position. Let ¢ be the plane projection of x o . Then there is a canonical
isomorphism

o~

— em ~
Def " (T:) = M,

Proof. Let ¥ € @fqzm(Tg). Then, V is the conormal of its projection ® € Def (1)
(see Remark 1.4.11). Moreover, ¥ is given by

U,(t;,€) = (x; + €ai, yi + b, pi + ¢;),

where a;, b;,¢; € C{t;}, orda; > m;, ordb; > 2m;, i = 1,...,r. The deformation ¥ is
trivial if and only if ® is trivial for the action of the relative contact transformations. ®
is trivial if and only if there are

&i(t) =t; = t; +ehy,
x(z,y,p,€) = (x +ea,y+eh,p+ev,¢e),
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such that y is a relative contact transformation, &; is an isomorphism,

057/877 € (x7y7p)(c{x7yup}v hz S tz(c{tz}v 1 S 1 S r
and
zi(t;) + €ai(t;) = xi(t;) + € i (Li
yi(ti) + ebi(ts) = yi(t:) + eB(wi(t:), vi(ti), pi(ts)),

for i = 1,...,r. By Taylor’s formula z;(t;) = x;(t;) 4+ e2(t;)hi(ts), yi(t;)
i (t)hi(ts) and

fori=1,...,7. Hence ® is trivialized by x if and only if

ai(ti) = @i(ti)hi(t:) + a(xi(ti), yi(ti), pi(ti)),
bi(ts) = yi(t)hi(ts) + B(wi(ti), yi(ts), pits)),

= yi(t;) +

fori=1,...,7. By Remark 1.3.7 (i), (1.5.3) and (1.5.4) are equivalent to the condition

0 9 . 0 =

Set

(@1 7 Clt:} ) & (D1, i Clt} )
mep + (2,y) % © (2, 9) 5

(@z 1 z (C{t }&E) (@l 1 lszC{t }8y>

mep + (2,y) % © (22,9) %

P = )

M, =
By Proposition 17.2.27 of [9],
Def ;m(TE) = M,.

A similar argument shows that

We have linear maps

(1.5.5)



Theorem 1.5.2 ([9], Il Theorem 2.38 (3)). Set k = dim M,. Letal, b/ € @_, t7C{t;},
1<j<k If

i bi
NV i o, |2 (1.5.6)
Ox oy :j Ox J oy’ o

ay T

1 <5 <k, represents a basis of M, the deformation ® : C x CF — C2 x C* given by

k
Xi(ti,s) = xi(t;) + Zag(ti)sj, Yi(ti,s) = yi(ti) + Z b (t:)s;, (1.5.7)
j=1
i=1,...,7, is a semiuniversal deformation of ¢ in Def .

Lemma 1.5.3. Set k = dimM,. Let al € @ t™C{t:}, b € @ 2™ C{t:},

=1 z
1 <j < k. If (1.5.6) represents a basis of Mw the deformation <I> given by (1.5.7),
1 <i <, is a semiuniversal deformation of ¢ in Def,. Moreover, Con® is a versal
deformation of ¥ in D/e\fim

Proof. We will only show the completeness of 5 and Con 5 Since the linear inclusion
map ¢ referred in (1.5.5) is injective, the deformation 5 is the restriction to ﬁ o of the
deformation ® introduced in Theorem 1.5.2. Let ®¢ € Dgf@ (T'). Since @ € Def ™(T),
there is a morphism of analytic spaces f : T" — M, such that ®; = f*®. Since ®g €
D;fw(T), f(T) C ]\_2@- Hence f*g = f*®

Ifve @;m(T), NS szW(T). Hence there is f : T — ]\_2@0 such that U™ = f*g
Therefore ¥ = Con ¥™ = Con f*zﬁ = f*Con g O

Theorem 1.5.4. Let a’ € @]_,t!"C{t;}, b’ € P|_, szl(C{tl} 1 <j </t Assume

that (1.5.6) represents a basis [a system of generators |of Mw- Let & be the deformation
given by (1.5.7), 1 <i <r. Then Con® is a semiuniversal [versal |deformation of 1 in
., em

Defw .

Proof. By Theorem 1.4.8 and Lemma 1.5.3 it is enough to show that Con ® is formally
semiuniversal [versall.
Let ¢ : T' <+ T be a small extension. Let ¥ € Defy, (T). Set ¥ = ¢*U. Let
7' : T — C* be a morphism of complex analytic spaces. Assume that (x/,¢’) define an
isomorphism
n*Con® = ¥,

We need to find 7 : T — C* and ¥, ¢ such that ’ = noz and x, ¢ define an isomorphism

n*Con® = ¥
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that extends (x/,¢’). Let A[A'] be the local ring of T'[T’]. Let ¢ be the generator of
Ker(A — A’). We can assume A’ = C{z}/I, where z = (21,...,2m). Set

A'=C{z} and A=C{ze}/(%cz1,... c%m).

Let m4 be the maximal ideal of A. Since ms6 = 0 and § € my, there is a morphism of
local analytic algebras from A onto A that takes € into ¢ such that the diagram

A A (1.5.8)

commutes. Assume T [I"] has local ring A[A’]. We also denote by ¢ the morphism
JOR - ~ o e

T" = T. We denote by x the morphisms 7' < T and 7" < T". Let ¥ € Def,, (T) be a
lifting of W.

We fix a linear map o : A’ — A’ such that k*o = idy. Set ¥ = Xo(a),0(80)> Where

N
X' = XapB,- Define 77 by 7*s; = o(n*s;), i = 1,...,¢. Let ¢ be the lifting of &
determined by ¢. Then

U =Y "1of*Con® o E’—l

is a lifting of ¥/ and L
X oW ol =7*Cond. (1.5.9)

By Theorem 1.3.4 it is enough to find liftings ¥, &, 7 of ¥, &, 7 such that
X-UT ol =id
in order to prove the theorem.

Consider the following commutative diagram

If Con @ is given by
Xi(ti,S), }/;‘(ti,S), P’L(tlas) S C{Svti}7

then 77"* Con ® is given by
Xi(ti, 17 (), Yi(ti, 77 (2)), Pilti, 7] (2)) € A{t:} = Cz, t:}
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fori=1,...,r. Suppose that U is given by
U/(ti,z), V] (ti,z), W/(ti,z) € C{z,t;}.
Then, ¥ must be given by
Uy = Ul + ey, Vi = V! +ev;, Wi = W] +ew; € A{t;} = Clz, t;} ® C{t;}

with w;, v;,w; € C{t;} and i = 1,...,r. By definition of deformation we have that, for
each 1,

(Us, Vi, Wi) = (zi(ti), yi(ti), pi(ti)) mod my.
Suppose 77’ : T" — C! is given by (7, . .., 1), with 77} € C{z}. Then 7 must be given by
7 =1 +en’ for some 7;° = (717, ...,79) € C*. Suppose that ' : C3 x T" — C3 x T" is

given at the ring level by
(x,y,p) = (H1, Hy, Hy),

such that H' = id mod my, with H] € (x,y,p)A'{z,y,p}. Let the automorphism
¢ :CxT — CxT be given at the ring level by

tﬂ—)h;

such that h' = id mod m 3, with hj € (t;)C{z,t;}.
Then, from 1.5.9 follows that

Yi(ti, ) = Hy(Uj (), Vi (R;), Wi (h;)), (1.5.10)
Pi(ti, ) = Hy(Uj(h;), Vi (h;), W ().

Now, 77/ must be extended to 77 such that the first two previous equations extend as well.
That is, we must have

Xi(ti,7) = (H{ + ea)(Us(h; + ehy)), Vi(hj + ehl), Wi(hj + ehy), (1.5.11)
Yi(t;,n) = (Hj + eB)(Ui(h; + b)), Vi(hj + ehl), W;(h} + ehy).

with «, 8 € (z,y,p)C{z,y,p}, hY € (t;)C{t;} such that
(z,y,p) = (Hy + ea, Hy + B, Hy + £7)

gives a relative contact transformation over T for some v € (z,y,p)C{x,y,p}. The
existence of this extended relative contact transformation is guaranteed by Theorem
1.3.6. Moreover, again by Theorem 1.3.6 this extension depends only on the choices of
a and fBy. So, we need only to find «, By, 7° and hY such that (1.5.11) holds. Using
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Taylor’s formula and €2 = 0 we see that
Lox,
Xz(tla ﬁ/ + 55‘7'0) = Xl(t’m ﬁ/) + 82 87’Z<t“ 7)ns
= 9%
(em;=0) X;(ti, 77 +€Z a (i, 0)7), (1.5.12)
}/i(ti,’ﬁ/-f-EﬁO) 1 7,7~/ +5Z tZaO

Again by Taylor’s formula and noticing that emz = 0, emz, = 0 in g, B = id mod m e
and (U;, V;) = (xi(ti), yi(ti)) mod m 3 we see that
Ui(hj + eh) = Ui(h}) + eUs(h) g
= Uj(h}) + e(@h] + wy), (1.5.13)
Vi(hi + ehi) = Vi () + e(gihs +vy).

Now, H' = id mod m 3,, so

O0H] OH] 8H1
o =1mod my,, 9y op mA,A {z,y,p}.
In particular,
8H’ B 8H’ _0
oy " Top

By this and arguing as in (1.5.12) and (1.5.13) we see that

(H} + ea)(U/(h]) + e(:vlh +u;), V/(h) + 6(y2h +v;), Wi(h%) + s(plh + w;))
= H(UL), VIR, WI)) + (e (UL, V7 (1), WD) + 1600 + 1))

) (
( (
= H{ (U] (hy), Vi (), Wi (h7)) + e(awi, yis i) + @l + wi),
) + e (@:hd 4 ug), Vi (B) + e(9:hd 4 vi), W (hL) + e(pih? + w;))
(h3), Vi (hg), Wi (h7)) + (B (i, yi, i) + il + 7).

Substituting this in (1.5.11) and using (1.5.10) and (1.5.12) we see that we have to find

7’,‘]'0 = (/F],?a . 7?]?) S CE, hZO SllCh that

z .
(ui(t;) => ]( L(t;,0), gz(ti,0)>— (1.5.14)

J=1

—h (t) ((@(ta), 4 (ts)) — (omi(te), yi(te), pilta)), B(wi(ts), yi(ti), pi(ti))-
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Note that, because of Remark 1.3.7 () ( ( i(ti), yi(ts), pi(ti)), B(xi(ti), yi(ti), pi(ts))) € T
for each i. Also note that ¥ Defw (T) means that u; € t7C{t;},v; € 2 C{t;}.
Then, if the vectors

<3X1 (tl,O),...,aX”(tr,O)> L <3H<t1,o),,_.,8ﬂ(tho)) )

0s; 0s; oz 0s; 0Os; 0y
, . B , ) B ,
= (ai(t1),... ,ag(tr))a—x + (] (1), - - - ,M(tr))%, j=1,...,¢

form a basis of [generate] J/W\(P, we can solve (1.5.14) with unique 79, ...,79 [respectively,
solve] for all i = 1,...,r. This implies that the conormal of ® is a formally semiuniversal
[respectively, versal] equimultiple deformation of ¢ over C*. O
1.6 Versal Deformations

Let f € C{z1,...,2,}. According to the notation introduced in section 1.3, we will

denote by [ fdz; the solution of the Cauchy problem

dg
a.TUZ'

= fa g€ (xl)
Let ¥ be a Legendrian curve with parametrization given by

t; — (a:i(ti),yi(ti),pi(ti)) 1= 1,...,7’. (1.6.1)

We will say that the fake plane projection of (1.6.1) is the plane curve o with parametriza-
tion given by
t; — («Ti(ti)7pi(ti)) 1= 1,...,T. (1.6.2)

We will denote o by ™.
Given a plane curve o with parametrization (1.6.2), we will say that the fake conormal
of o is the Legendrian curve ¢ with parametrization (1.6.1), where

yi(t;) = /pi(ti)i'i(ti)dti-

We will denote 1 by Conyo. Applying the construction above to each fibre of a
deformation we obtain functors

Ty :D/e\fw — Def,, Cony :Defa—>ﬁe\fw.

Notice that
Cony (V™) =V, (Cony ()™ =X (1.6.3)

for each ¥ € 5;@ and each ¥ € Def,.
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Let ¢ be the parametrization of a Legendrian curve given by (1.6.1). Let o be the
fake plane projection of ¥. Set ¢ := x5+ ax +p5 a . Let If be the linear subspace of

aa ® m(Ca (@t C{t; } ) ® (le:? ti(c{ti}88p>

LD (b B0y N 0 (0% 0 )
9 ox oy P pf)p’ Ox 8y 8p’

k0 1 <804k k+1+804kpk+2>a k>,

P T k+1\ oz dy

where ay € (z,9), 8o € (z%,y) for each k > 0. Set

generated by

and

o)
M) = ———
mgeo + If

Theorem 1.6.1. Assuming the notations above, D/e\fw (T,) = M.
Proof. Let ¥ € 56\161!) (T-) be given by

Vi(ti,e) = (X4, Y3, ;) = (% + a4, yi + €bi, pi + €c;),
where a;, b;, ¢; € C{t;}t; and Y; = [ P60y, X;dt;, i =1,...,r. Hence

b; = /(ZL‘lCZ +dipi)dti, 1=1,...,7.
By (1.6.3) W is trivial if and only if there an isomorphism ¢ : C x T, — C x T. given by
t; — t; = t; + h;, hi € C{t;}t;, i=1,...,7,

and a relative contact transformation y : C3 x T, — C? x T. given by

(z,y,p,€) = (x +ea,y +eB,p+ev,¢)

such that
Xi = zi(l) + ea@i(t), yi(6), pi(h:),
Pi = pilti) + ex(wi(ts), yi(ts), pi(ti)),
i=1,...,r. Following the argument of the proof of Theorem 1.5.1, U™/ is trivial if and
only if
ai(t;) = 2i(ti)hi(ti) + o(i(ti), yi(ti), pi(ti)),
ci(ti) = pi(ti)hi(ti) + v(xi(ti), vi(t:), pi(ti)),
i=1,...,r. The result follows from Remark 1.3.7 (ii). ]
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Lemma 1.6.2. Let ¢ be the parametrization of a Legendrian curve. Let ® be the semi-
universal deformation in Def, of the fake plane projection o of 1. Then Cony® is a

versal deformation of ¥ in ﬁe\fd,.
Proof. Tt follows the argument of Lemma 1.5.3. O

Theorem 1.6.3. Let a’, ¢/ € mg such that

9 .9 g P 4 P

J___ Y . R . _

W= || (1.6.4)
aj cl

1 < j <, represents a basis [a system of generators |of MJ Let ® € Def, be given by

¢ ¢
Xi(tis) = wi(ti) + Y al(ti)sj, Piltiys) = pi(ts) + ) ¢l (ti)sj, (1.6.5)
j=1 j=1
i=1,...,7. Then Cons ® is a semiuniversal [versal |deformation of ¢ in D/e\fw.
Proof. Tt follows the argument of Theorem 1.5.4, using Remark 1.3.7 (ii). O

1.7 Examples

Example 1.7.1. Let o(t) = (£3,t19), ¢(t) = (3,410, 2247), o(t) = (t3, 32¢7). The defor-
mations given by

o X(t,s) =13, Y (t,s) = sit? + sot® + s3t7 4 s4t° 4+ 110 4 s5ttt 4 st
o X(t,8) = s1t + sot? + 3, Y (t,8) = st + s4t® + ss5t* + s6t° + s7t7 + sgt®+
+ 10 4 st + 510t
are respectively
e an equimultiple semiuniversal deformation;

e a semiuniversal deformation

of ¢. The conormal of the deformation given by

X(t,s) =13, Y (t,s) = s1t” + st + 10 4 szttt
is an equimultiple semiuniversal deformation of ¥. The fake conormal of the deformation
given by
2 43 2 4 5, 107 8
X(t,s) = sit + sot” +¢°, P(t,s) = sgt + sqt” + sst™ + s¢t” + ?t + s7t°%;
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is a semiuniversal deformation of the fake conormal of . The conormal of the deforma-
tion given by
X(t,8) = s1t + sot® + 3, Y (t,s) = aot® + ast® + ast? + ast® + agtd+

+ art” + agt® + agt? + a1t + aqptth;

with
g — 5183 s = 51584 + 28953 vy = 383 + 25284
- 2 ) - 3 M - 4 M
354 + 8185 25985 + 5156 385 + 25286
OZ5 = 5 Y 046 = 6 Y a7 = 7 ?
e — 10s1 + 9sg e — 35157 + 2059 o — 14 S987
8 24 ) 9 27 ) 10 5 )
387
ajp = —
11 11 )

is a semiuniversal deformation of .

Example 1.7.2. Let Z = {(x,y) € C? : (y* — 2°)(y?> — 2") = 0}. Consider the
parametrization ¢ of Z given by

z1(t) =11, yi(th) =] To(ta) = 13, y2(ta) = ti.

Let o be the fake projection of the conormal of ¢ given by

5 7
z1(t) =t1, pi(t1) = 575:{’ zo(t2) = 13, pa(ta) = §t§.

The deformations given by

e Xi(t1,8) = t1, Yi(t1,s) = sits + 5,
Xo(tg,s) = t3, Ya(tg,s) = sot3 + ssts + sats + ssty + sets + to+
+ 57t§;

o Xi(t1,s) = sit1 +t1,  Yi(t1,s) = sst1 + sat} + 1,
Xo(to,s) = soto + 13, Ya(ta,s) = ssto + seta + srts + sgts + sot + s1otS+
+ 8] + s11t3;
are respectively
e an equimultiple semiuniversal deformation;
e a semiuniversal deformation
of ¢. The conormal of the deformation given by
Xi(t1,8) = t3, Yi(ty,s) = t3,
Xo(ta,s) = t3, Ya(ta,s) = sits + soth + s3ts 4+ 5 + sut5;
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is an equimultiple semiuniversal deformation of the conormal of ¢.
The fake conormal of the deformation given by

5
Xi(t1,8) = sit1 + 13, Pi(t,s) = s3t1 + 575?7
7
Xs(ta,s) = sata + 13, Py(tg,s) = sato + sst3 + sets + srts + §t3 + s5tS;

is a semiuniversal deformation of the fake conormal of o. The conormal of the deforma-
tion given by

Xi(t1,8) = s1t1 + 11, Yi(t1,s) = ootf + st} + aat] + 17,
Xo(ta,s) = sata + 13, Ya(ta,s) = Pats + Bts + Bats + Bsts + Bets+
+ Brth + Bsts;
with
5153 253 581
g = —— a3 = — oy = —
2 9 ) 3 3 ) 4 S ;
8284 284+ 285 285 + 8286
B2 = 5 B3 = 3 , Bs = 1 ,
256 + 5257 4s7 + 7s2 8988
=== _==7 =172 — 14 2228
Bs 3 , Be 5 b7 + -
2sg
68 - ?7

is a semiuniversal deformation of the conormal of .
Example 1.7.3. Let
Z ={(z,y) € C%: y(y* — 2259% + 210 — 42y — 2'1) = 0}.
Consider the parametrization ¢ of Z given by
zi(t) =1, yi(th) = 6%+ @a(ta) = ta, y2(ta) = 0.
The deformation given by
Xi(t1,8) = t1, Yi(ty,s) = 10+ t1 4+ 51183 + 51018 + s13t] + 5148 + 515110 + s1611°
+ 51761t + s1stl” + s19t1° + so0ti’ + st + st

Xo(ta,s) =ta, Ya(ta,s) =ty + s1ta + sath + sty + sats + ssth + st

+ s7th + ssth + sotd + s10ty’;

is an equimultiple semiuniversal deformation of .
The conormal of the deformation given by

Xi(t1,s) =t1,  Yi(t1,s) = 1% + 131 + sot) + s5t10 + 54113 + s5t3% + s6t1” + 57118,
Xg(tg,s) = 1o, Yg(tg,s) :t2+slt%.
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is an equimultiple semiuniversal deformation of the conormal of ¢.
Let us exemplify how to get rid of

0 N,
(0,0)5 + (o,tg)a—y (1.7.1)

when we go from the plane to the Legendrian case. All the other parameters that don’t
figure in the Legendrian case but do so in the plane case can be eliminated proceeding
in a similar way. Let J denote the sub Oz-module of (1.5.2) given by

) 0 o -~
me o+ (7,y) 5 @ (wz,y)afy +1I.
We have that

which is equal to

10, 114 .\ 0 1([/10\? 5 1011, [11\* o \ @
04—t — (=) o r2——¢ — )t —.
<4l+41’08x+2 p) AT Ty 1’an

We have that 9 5
¢ = (4t3,1)=— + (10t] + 11£1°,0)

Ox oy’
and 1 0 10 11 0
Lo o (410 4y 9 V16, 117 o
which means that
0 0 0 10 11 0
10 - _ —Y,16 - 17
(t ’0)783: + (0,0)—8y (0,0)fax + < 1 ty + 1 1 ,O> —ay mod J.

Similarly

(til,o);; - (0,0)§y = —(0,0) 9 (th + Ht%8,0> 9 mod J.

As xt = (t15,¢]) we have that

0 16 9 _ ﬁ 4 é
(0,0)% + (t1 70) a—y = —(0,0) B + (O,t2) 3y mod J.

This means that, mod.J, we can write (1.7.1) as a linear combination of (070)8% +
7 o) 0 0
(t",0) 5, and (0,0)5; + (t1%,0) 5, -
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Chapter 2

Equisingular Deformations of
Legendrian Curves

2.1 Introduction

To consider deformations of the parametrization of a Legendrian curve is a good first
approach in order to understand Legendrian curves. Unfortunately, this approach can-
not be generalized to higher dimensions. On the other hand the obvious definition of
deformation has its own problems. First, not all deformations of a Legendrian curve are
Legendrian. Second, flat deformations of the conormal of y* — 2™ = 0 are all rigid, as
we recall in example 2.5.3, hence there would be too many rigid Legendrian curves.

We pursue here the approach initiated in [4], following Sophus Lie original approach
to contact transformations: to look at [relative] contact transformations as maps that
take [deformations of] plane curves into [deformations of] plane curves. We study the
category of equisingular deformations of the conormal of a plane curve Y replacing it by
an equivalent category Defy"", a category of equisingular deformations of ¥ where the
isomorphisms do not come only from diffeomorphisms of the plane but also from contact
transformations. Here p stands for "microlocal”, which means "locally” in the cotangent
bundle (cf. [15], [16]).

Example 2.4.4 presents contact transformations that transform a germ of a plane
curve Y into the germ of a plane curve YX such that Y and YX are not topologically
equivalent or are topologically equivalent but not analytically equivalent.

We call equisingular deformation of a Legendrian curve to a deformation with eq-
uisingular plane projection. The flatness of the plane projection is a constraint strong
enough to avoid the problems related with the use of a naive definition of deformation
and loose enough so that we have enough deformations.

In section 2.6 we use the results of section 2.5 on equisingular deformations of the
parametrization of a Legendrian curve to show that there are semiuniversal equisingular
deformations of a Legendrian curve. In particular, we show that the base space of the
semiuniversal equisingular deformation is smooth. This argument does not produce a
constructive proof of the existence of the semiuniversal deformation in its standard form.
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In section 2.7 we construct a semiuniversal equisingular deformation of a Legendrian
curve L when L is the conormal of a Newton non-degenerate plane curve, generalizing
the results of [4]. This type of assumption was already necessary when dealing with
plane curves (see [9]). This construction is used in [18] (chapter 3) to extend the results
of [4] and [10], constructing moduli spaces for Legendrian curves that are the conormal
of a semiquasihomogeneous plane curve with a fixed equisingularity class.

In section 2.2 we recall some basic results on deformations of curves. In sections 2.3
and 2.4 we introduce relative contact geometry (see [1], [22] and [19]).

2.2 Deformations

We will only consider germs of complex spaces, maps and ideals, although sometimes we
chose convenient representatives. We will follow the definitions and notations of [9].

Let S be the germ of an complex space at a point o. Let mg be the maximal ideal
of the local ring Og, Let T,S be the dual of the vector space ms/m%. Let X be a
smooth manifold and = € X. We denote by 2 or 15 [1x] the immersions (5, 0) — (1,5, 0)
(X xS, (x,0)) = (X x T,S,(x,0))].

Let 9T be an Or,s,0-module [ be a section of M, Y be an analytic set of (1,5, 0)].
Let 9t be an Og,-module [a be a section of M, Y be an analytic set of (S,0)]. We say
that 9 [&, Y] is a lifting of M [a, Y] if *M = M [1*@ = a,1* [y = Iy].

Let Y be a reduced analytic set of (C™,0). In order to define a deformation of Y
over S we need to choose a section o of the projection ¢ : C" x § — S. We say that
a section o : T,8 — C™ x T,S is a lifting of ¢ if 0 04 = i 0 0. Unless we say otherwise
we assume o to be trivial. If S is reduced, o is trivial if and only if o(S) = {0} x S. In
general, ¢ is trivial if and only if it admits a trivial lifting to 7,.5.

Let ) be an analytic subset of C" x S. For each s € S, let ); be the fiber of

Vs C'x8— 8. (2.2.1)

Let i : Y < Y be a morphism of complex spaces that defines an isomorphism of Y into
Yo. We say that Y — Y defines the deformation (2.2.1) of Y over S if (2.2.1) is flat.

Every deformation is isomorphic to a deformation with trivial section.

Assume that Y is an hypersurface of C"* and f is a generator of the defining ideal
of Y. Let j be the immersion C" — C™ x T and let r be the projection C" x T — C™.
There is a generator F' of the defining ideal of ) such that j*F = f. We say that F
defines a deformation of the equation of Y.

Let Y — YV; — C" xT — T be two deformations of a reduced analytic set Y over T
We say that an isomorphism y : C" x T'— C™ x T is an isomorphism of deformations if
gox =4q,roxoj=1idcr and x induces an isomorphism from )y onto )s.

Given a morphism of complex spaces f : S — T and a deformation ) of Y over T,
f*Y =5 x7 Y defines a deformation of Y over S.

We say that a deformation Y of Y over T is a versal deformation of Y if given

e a closed embedding of complex space germs f : T" < T,
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e a morphism g : 7" — T,
e a deformation )’ of Y over T” such that f*)’ = g* ),

there is a morphism of complex analytic space germs h : T — T such that
hof=g and ey =y,

If Y is versal and for each )’ the tangent map T'(h) : T» — Tp is determined by )', Y
is called a semiuniversal deformation of Y.

We will now introduce deformations of a parametrization.

Assume the curve Y has irreducible components Yi,...,Y,. Set C = Ly C; where
each C; is a copy of C. Let ; be a parametrization of ¥;, 1 <4 < r. Themap ¢ : C — C"
such that ¢|s, = @i, 1 <i <7 is called a parametrization of Y.

Let 7,1, denote the inclusions C < C x T, C® < C" x T. Let ¢ denote the projection
C x T — T. We say that a morphism of complex spaces ® : C x T' — C" x T is a
deformation of ¢ over T if 1,09 =® oz and ¢, 0o ® = q.

We denote by ®; the composition C; x T <+ CxT — C*" x T — C", 1 <4 <r. The
maps ®;, 1 < i < r, determine ®. Let ® be a deformation of ¢ over T. Let f: S — T
be a morphism of complex spaces. We denote by f*® the deformation of ¢ over S given
by

(f*(I))Z = (I" o (idé X f)

Let ® : C x T — C" x T be another deformation of ¢ over 7. A morphism from
@’ into ® is a pair (x,&) where Y : C" xT — C*" x T and £ : CxT — C x T are
isomorphisms of complex spaces such that the diagram

~—  CxT—C"xT—> 2.
T CxT—2>CrxT T 2.2.2

(CTL X {O} X idp

)

T CxT-¥oCrxT——>T

cominutes.

Let @' be a deformation of ¢ over S and f : S — T a morphism of complex spaces.
A morphism of ® into ® over f is a morphism from @ into f*®. There is a functor p
that associates T to a deformation ¥ over T and f to a morphism of deformations over
I

Given a parametrization ¢ of a plane curve Y and a deformation ® of ¢, ® is the
parametrization of a hypersurface ) of C2 x T that defines a deformation of (the equation
of) Y

Let Y, Z be two germs of plane curves of (C2,0).

Definition 2.2.1. Two plane curves Y, Z are equisingular if there are neighborhoods
V,W of 0 and an homeomorphism ¢ : V'— W such that o(Y NV)=2ZnNW.
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Theorem 2.2.2. Let (Y;)icr [(Z;)jes] be the set of branches Y [Z]. The curves Y, Z are
equisingular if and only if there is a bijection ¢ : I — J such that Y; and Z,;) have the
same Puiseuz exponents for each i € I and the contact orders o(Y;,Y}), o(Zy), Zys(j))
are equal, for eachi,j € 1,1 +# j.

The definition of equisingular deformation of the parametrization [equation] of a
plane curve over an complex space is very long and technical. We will omit it. See defi-
nitions /1.2.36 and I1.2.6 of [9]. We will present now the main properties of equisingular
deformations, which characterize them completely.

Theorem 2.2.3. (II Theorem 2.64 of [9]) Let Y be a reduced plane curve. Let ¢ be a
parametrization of Y. Let f be an equation of Y. Every equisingular deformation of
 induces a unique equisingular deformation of f. Fvery equisingular deformation of f
comes from a deformation of .

Theorem 2.2.4. (II Corollary 2.68 of [9]) A deformation of the equation of a reduced
plane curve Y over a reduced complex space is equisingular if and only if the topology of
the fibers does not change.

Theorem 2.2.5. Let S < (C*,0) be an immersion of complex spaces. Let ¢ be a
parametrization of a reduced plane curve. A deformation of ¢ over S is equisingular if
and only it admits a lifting to an equisingular deformation of ¢ over (C*,0).

Proof. Tt follows from Theorem 117.2.38 of [9]. O

Proposition 2.2.6. (II Proposition 2.11 of [9]) Assume f1, ..., f¢ define germs of reduced
irreducible curves of (C2,0) and F defines an equisingular deformation over a germ of
complexr space S of the curve defined by f1--- fo. Then F = Fy---Fy, where each F;
defines an equisingular deformation of f; over S.

2.3 Relative contact geometry

We usually identify a subset of P*~! with a conic subset of C". Given a manifold M we
will also identify a subset of the projective cotangent bundle P*M with a conic subset
of the cotangent bundle T*M (for the canonical C*-action of T*M).

Let ¢ : X — S be a morphism of complex spaces. Let p;, ¢ = 1,2 be the canonical
projections from X xg X to X. Let A denote the diagonal of X — X xg X and the
diagonal immersion X — X xXg X. Let Ia be the defining ideal of the diagonal of
X xg X. We say that the coherent Ox-module Q%{/S = A*(Ip/I%) is the sheaf of
relative differential forms of X — S (see [11]).

Given a local section f of Ox set f; = fop;, i = 1,2. Consider the morphism
d:O0x — Qﬁ(/s given by

f fi—f»  mod IX.

Notice that, given an open set U of X and f,g € Ox(U), ¢ € ¢ Og,

d(fg) = fdg + gdf, and  d(ef) = edf (2.3.1)
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If z1,...,2, € Ox(U) are such that Q§/5|U = @, Opdaz;, we say that (z1,...,2,) is a
partial system of local coordinates on U of X — S.
Notice that (x1,...,x,) is a partial system of local coordinates of X — S on U if and
only if Q"X/S|U = Oydzxy N+ Ndxy,.
If (x!,...,2") is a partial system of local coordinates on U of X — S, x}{ — z%,
i =1,...,n, generate Ia|y. Given f € Ox(U), there are a; € Ox(U) such that df =
S aidzt. We set
of
Bz = a4,
When M, S are manifolds, X = M x S and ¢ is the projection M x S — S this definition
of partial derivative coincides with the usual one because of (2.3.1). When S is a point,
Qﬁ( /s equals the sheaf of differential forms Q}(

If Qk/s is a locally free Ox-module, we denote by 7 = 7x/g : T*(X/S) — X the

1=1,...,n.

vector bundle with sheaf of sections Qﬁ( /s Whenever it is reasonable we will write 7
instead of mx/g. We denote by 7x/g : T(X/S) — X the dual vector bundle of 7% (X/S).
We say that T'(X/S) [T*(X/S)] is the relative tangent bundle [cotangent bundle] of
X = 5.

Let ¢ : X1 = X3, ¢; : X; — S be morphisms of complex spaces such that gz = ¢;.
Let A; : X; — X; xg X; be the diagonal map, ¢ = 1,2. If we denote by ¢g the
canonical map from X; xg X7 to Xo x5 Xo, 95 : In, —+ Ia, induces a morphism
P Q%Q /s~ le /s that generalizes the pullback of differential forms. Moreover, ¢*
induces a morphism of Ox,-modules

o 0"V, 5 = Ox; ®p-10x, 0%, 5 = O, s (2.3.2)

If Q%Q/S’ i = 1,2, and the kernel and cokernel of (2.3.2) are locally free, we have a
morphism of vector bundles

po X1 xx, T*(X2/S) = T*(X1/S). (2.3.3)

If ¢ is an inclusion map, we say that the kernel of (2.3.3), and its projectivization, are
the conormal bundle of X1 relative to S. We will denote by T% (X2/5) or P% (X2/5)
the conormal bundle of X relative to S. We denote by

Wy - T(Xl/S) — X1 X Xq T(XQ/S)

the dual morphism of p,. We say that @, is the relative tangent morphism of ¢ over S.
These are straightforward generalizations of the constructions of [15].

If (z1,...,2y,) is a partial system of local coordinates of X — S and (y1,...,ym) is a
system of local coordinates of a manifold Y, (x1,...,Zn, y1, ..., Ym) is a partial system of
local coordinates of X x Y — X — S. Hence Qk /s locally free implies Q}XXy /s locally

iree. Moreover, if Qk /s is locally free and £ — X is a vector bundle, Q}E /8 is locally
Tee.
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Let (z1,...,zy) be a partial system of local coordinates of X — S on an open set U
of X. Set V = W;(}S(U). There are &1, ..., &0 € Ops(x/5)(V) such that, for each o € V,

0 =2 i1&i(o)dz;.

Notice that (x1, ..., Zn, &1, ..., &) is a partial system of local coordinates of T7%(X/S) — S.
Let o€ X, u e T,T%(X/S). Let

wr(0) : To(T*(X/S)/S) = T,(X/S)

be the relative tangent morphism of 7 over S at o. There is one and only one 8 €
Q%*(X/S)/S such that,

0(0)(u) = o(w@x(0)(u)),
for each 0 € X, each 0 € T} (X/S) and each u € T,,(T*(X/S)/S). Given a partial system
of local coordinates (x1, ..., 2,) of X — S on an open set U,

We say that 0x/g = 0 is the canonical 1-form of T*(X/S).

Notice that (df)(o) is a symplectic form of T,,(T*(X/S)/S), for each o € T*(X/S).
We say that (z1, ..., Tn, &1, .., &n) 18 & partial system of symplectic coordinates of T*(X/S)
(associated to (x1,...,xy)).

Assume M is a manifold. When ¢ is the projection M x S — S we will replace
"M x S/S” by "M|S”. Let r be the projection M x S — M. Notice that Q}ws =
Onxs @p-10,, r_lﬁ}w is a locally free Oy« s-module. Moreover, T*(M|S) = T*M x
(M x S). If 2 is the inclusion T*(M|S) — T*(M x S), ©*0yxs = Ops- A system of
local coordinates of M is a partial system of local coordinates of M x S — S.

We say that Qles is the sheaf of relative differential forms of M over S. We say
that T*(M|S) is the relative cotangent bundle of M over S.

Let N be a complex manifold of dimension 2n — 1. Let S be a complex space. We
say that a section w of Q}V‘S is a relative contact form of N over S if w A dw™ ! is a

local generator of Q?\%l Let € be a locally free subsheaf of QJlVI g- We say that € is a
structure of relative contact manifold on N over S if € is locally generated by a relative
contact form of N over S. We say that (N x S, €) is a relative contact manifold over S.
When S is a point we obtain the usual notion of contact manifold.

Let (N1 x S,€;1), (N2 x S,€&,) be relative contact manifolds over S. Let x be a
morphism from Nj x S into N2 x S such that gy, o x = qn,. We say that x is a relative
contact transformation of (N7 x S, €;) into (Ng x S, &) if the pull-back by x of each
local generator of €5 is a local generator of ¢;.

We say that the projectivization 7x/g : P*(X/S) — X of the vector bundle T*(X/S)
is the projective cotangent bundle of X — S.

Let (x1,...,x,) be a partial system of local coordinates on an open set U of X.
Let (1,...,2n,&1,..-,&) be the associated partial system of symplectic coordinates of
T*(X/S) on V =7"YU). Set p;; = fifj_l, i # 7,

Vi={(z,§) € V: & #0}, w; = &40, 1=1,..,n.
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each w; defines a relative contact form dz; —>_, . p; jdv; on P*(X/S), endowing P*(X/5)
with a structure of relative contact manifold over S.

Let w be a germ at (x,0) of a relative contact form of €. A lifting w of w defines a
germ € of a relative contact structure of N x T,S — T,S. Moreover, € is a lifting of the
germ at o of €.

Let (N x S, €) be a relative contact manifold over a complex manifold S. Assume N
has dimension 2n — 1 and S has dimension £. Let £ be a reduced analytic set of N x S
of pure dimension n+/¢—1. We say that L is a relative Legendrian variety of N x .S over
S if for each section w of €, w vanishes on the regular part of £. When S is a point, we
say that £ is a Legendrian variety of N.

Let £ be an analytic set of N x S. Let (z,0) € £. Assume S is an irreducible germ
of a complex space at 0. We say that L is a relative Legendrian variety of N over S at
(z,0) if there is a relative Legendrian variety £ of (N,xz) over (7,S5,0) that is a lifting
of the germ of £ at (z,0). Assume S is a germ of a complex space at o with irreducible
components S;,7 € I. We say that L is a relative Legendrian variety of N over S at
(x,0) if S; xg L is a relative Legendrian variety of S; xg N over S; at (z,0), for each
1e€1.

We say that L is a relative Legendrian variety of N x S if £ is a relative Legendrian
variety of N x S at (z,0) for each (z,0) € L.

The main problem of defining relative Legendrian variety over a complex space S
comes from the fact that S does not have to be pure dimensional, hence we cannot a
assign a pure dimension to the Legendrian variety.

Lemma 2.3.1. Let x be a relative contact transformation from (N1 x S, €q) into (Ng x
S,&y). Let Ly be a relative Legendrian curve of (N1 xS, &y). If Lo is the analytic subset
of Ny x S defined by the pull back by x~' of the defining ideal of L1, Lo is a relative
Legendrian variety of (N x S, €q).

Proof. Let x : (N1 x S,&1) — (No x S, &) be a relative contact transformation over S.
Let (z1,0) be a point of N1 x S. Set (x2,0) = x(x1,0). There is a morphism of germs of
complex spaces

N‘(N1><TS(:L’1, )) (NQXTS(IL’Q, ))

such that X oy, = 1y, o x. We say that such a morphism is a lifting of x. Let Qﬁg be
a lifting of €, at (x2,0). Then ¢ = X*@g is a lifting of €; at (z1,0). Moreover, X is a
germ of a relative contact transformation.

Let £1 be a germ of a relative Legendrian variety at (z1,0). There is a lifting L1 of
L1 that is a germ of relative Legendrian variety of N1 x T,S. Hence %(El) is a germ of
a relative Legendrian variety of Ny x T,S and Y(£1) is a lifting of £y at (z2,0). O

Let Y be a reduced analytic set of M. Let ) be a flat deformation of Y over S. Set
X =M x S\ Vsing. We say that the Zariski closure of P, (X/S) in P*(M[S) is the
conormal P3,(M|S) of Y over S.
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Theorem 2.3.2. The conormal of Y over S is a relative Legendrian variety of P*(M|S).
If Y has irreducible components Vi, ..., Vr,

Py, (M|S) = U;_ Py, (M]S). (2.3.4)
Proof. We have a commutative diagram

yreg c;) X

lA)}reg lAX

J
yreg Xg yreg —— X XSX

Since IA)}ng = J* ((IAX + IyregXSyreg)/IyregXSyreg)7

Aﬁjreg (IAyreg /Iiyreg) 1> Z*A}((IAX + IyregXSyreg)/(IiX + IyregXSyreg))’ (235)

Let (2,0) € Yieg. Let m be the ideal of Opryg (4,0) generated by m,. Let (y1,...,Yn)
be a system of local coordinates of (M,z) such that Iy, = (Yx+1,...,Yn). There are
F; € OMXS,(I,O)? j =k+1,...,n such that Iy,(z,o) = (Fi41,-.., Fp) and F; —y; € m,
j=k+1,...,n. Set

dh=y,  i=1,.,k 2 =F i=k+1,..n.

Notice that (x!,...,2") is a partial system of local coordinates of X — S. Since near
(z,0)

1 k+1

1 k41
In, = (27 — 23, ..., 2] —25) and Iyx,y = (2] +

n n
y e 15 Lo 7"'73:2)1

it follows from (2.3.5) that dz!,...,dz" is a local basis of Q%,/S, dz', ..., dx" is a local

: 1
basis of QM‘S,

pilda))y =da?, j=1,.. k, and  pi(dxl) =0, j=k+1,...n

Hence the kernel of p; at (x,0) equals @?:kHC{J:l, ..., x®Ydx7. Given the partial system
of symplectic coordinates (z?, ..., 2", &1, ..., &™), the ideal of the kernel of

pPi - yreg Xx T*(X/S) — T*<yreg/5)

is generated by z*t1, ... am, €1, ... &

It is enough to prove the second statement when S is smooth. Its proof relies on the
fact that each connected component of ) is dense in one of the irreducible components
of V. O
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Let ¢ : X — S be a morphism of complex spaces. Let y € Y C X. We say that Y is
a submanifold of X — S at y if there is a partial system of local coordinates (x1, ..., ;)
of X —» S near y and 1 < k < n such that Y = {z; = --- = 2 = 0} near y. We say
that Y is a submanifold of X — S if Y is a submanifold of X — S at y for each y € Y.

Notice that a submanifold of X — S is not necessarily a manifold, although it behaves
like one in several ways.

Let Y C X. Let y: Ac ={t € C: |t| < e} — Y be an holomorphic curve such that
~v(0) = y. We associate to v a tangent vector u of Y at y setting u - f = (f o~)(0)), for
each f € Ox,. We associate to v an element u of Ty,(X/S) setting

u-f=df(y)(+'(0)),  f€Oxy (2.3.6)

If Y is a submanifold of X — S the set of relative vector fields (2.3.6) define a linear
subspace T, (Y/S) of T,,(X/S).
Let us fix a point o of S. Consider the canonical maps

T*M L T*(M|S) = (T*M) x § L T*M.
Since T, (T*(M|S)/S) = T,y T*M and

(dOhs)(0) = (i"dOar)(r()),

(dfpr1s) (o) is a symplectic form of T, (T™(M|S)/S).
The Poisson bracket of (T*M) induces a Poisson bracket in T*(M|S). Let f €
OT*(M|S)' Setting fs('fcag) = f(:l,',f,S)

{f’g}T*(M|S)(x7£7 s) = {fs» gsyr=m(,§).

Let W be a submanifold of T*(M|S). Setting W5 = {(z,§) € T*M : (z,{,s) € W}, W
is an involutive submanifold of 7*(M|S) if and only if Wj is an involutive submanifold
of T*M for each s € S. It is well known that W is an involutive submanifold of 7™M
if and only if T,Wj is an involutive linear subspace of T,,T* M for each o € W

Lemma 2.3.3. Let L be a conic submanifold of T*(M|S). The manifold L is a Legen-
drian submanifold of P*(M|S) if and only if T,(L/S) is a linear Lagrangian subspace of
T, (T*(M|S)/S) for each o € L.

Proof. The submanifold W considered above is an involutive submanifold of 7% (M |S) if
and only if T,(W/S) is a linear involutive subspace of T,,(T*(M|S)/S) for each o € W.
The result follows from an argument of dimension. O

Theorem 2.3.4. Let L be an irreducible germ of a relative Legendrian analytic set of
P*(M|S). If the analytic set w(L) is a flat deformation over S of an analytic set of M,
L= IP’;(L)(M\S).
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Proof. There is s € S such that Y x {s} € Y. Let o be a smooth point of Y. There
is an open set U of Y and a system of local coordinates (yi,...,y,) on U such that
YNU ={y1 =+ = yr = 0}. Since Y is flat, there is a neighborhood V of s and a
system of partial symplectic coordinates (z1,...,Zn,&1,...,&) on 7~ (U x V) such that

m(L)NU xV ={z; =--- =z = 0}.
Repeating the argument of Lemma 2.3.3,
LT N7 (L)reg) = P3,, (M X 5\ Vsing/5).

Since £ is closed P},(M|[S) C L. Since L is irreducible and both spaces have the same
dimension, the inclusion is an equality. O

We present now an alternative construction of the conormal of a flat deformation
of an hypersurface. This construction is more suitable to compute the conormal using
computer algebra methods. For this purpose it is enough to consider the case where S
is smooth.

Let F' be a generator of the defining ideal of V. Let Jp,(,) be the ideal of C{c, z,¢, s}
generated by

F, & — cFy,, i=1,..,n. (2.3.7)

The ideal

RF,(IZ) - 3F,(zi) N (C{.f, 3 S}'
defines a conic analytic subset of T*M x S, hence it also defines an analytic subset
Cong)y of P*(M]|S).

Lemma 2.3.5. The ideal 8 (,,) does not depend on the choice of ' or (z;).

Proof. Given another system of local coordinates (y;) there are function 7; such that
Zi nidy; = ZZ &dx;. Since

2oimidyy = 3 2imiYy gy dug = X535 gy ida,

Ay Oy Oyi

Since the Jacobian matrix of the coordinate change is invertible, Jr,(,,) does not depend
on (z;).

Assume that ¢ does not vanish. Since & — c(@F)qs; = & — cpFy, — cFoy,, JorF is
generated by

F, & —cF, i=1,...,n, (2.3.8)

79

where & = 71, i =1,...,n.
Consider the actions of C* into T*M x S x C and T*M x S given by

t- (), (&), (s5), ¢) = (i), (t€), (), te),
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t- (@), (&), (55)) = (1), (t€), (57))-

By (2.3.7), the ideals Jr [RF| are generated by homogeneous polynomials on &1, ..., &y, ¢
[€1, ..., &n]. Assume that K is generated by the homogeneous polynomials

Pk(fh ...,fn), k= 1, e, M.

It follows from (2.3.7) and (2.3.8) that R,F is generated by P(¢],....&,), k= 1,...,m. If
Py, is homogeneous of degree di, Py(&], ..., &) = ¢~ % Py(&1, ..., &,). Hence & = Rop. O

Theorem 2.3.6. IfY is a flat deformation over S of an hypersurface of M, P3,(M|S) =
Cong).

Proof. If Y is non singular at a point o, there is a partial system of symplectic coordi-
nates (1, ...,%n,&1,...,§,) such that F' = x1 in a neighborhood U of o. Hence Jp,(,,) is
generated by

&1 —¢,8,...,&,, 11, (2.3.9)

Therefore Rr(,,) is generated by x1, &, ...,§,. Hence PJ,(M|S) = Cons) in 7 1(U).
Therefore Cong) contains P},(M|S). Assume that there is an irreducible component I' of
Cong) that is not contained in P3,(M|S). Then I'is contained in Vsing X a1 x sP* (M x S|.S).
Hence the set of zeros of Jy ;) contains points of

ysing XMXST*MXSX(C\MXSX(C.

But it follows from (2.3.7) that the intersection of the set of zeros of Jp (., with
Vsing X Mxs T*M x § x C is contained in M x S x C. O

The following Singular routine (see [5]) computes the relative conormal of the hyper-
surface defined by 22 + y? + sz when we assume 0 = udx + vdy + wdz and we look at
s has a deformation parameter.

ring r=0,(c,u,v,w,X,y,2z,s),dp;

poly F=z2+y3+sx4;

ideal I=F,u-cxdiff(F,x),v-cxdiff(F,y),w-cxdiff(F,z);
ideal J=eliminate(I,c);

J;

If we consider the suitable contact coordinates, and choose a different ordering we can
reduce substantially the number of equations we obtain.

Let T be the complex space with local ring C{e}/(¢?). Let I, J be ideals of the ring
C{s1,...,Sm}. Assume J C I. Let X,S,T be the germs of complex spaces with local
rings C{z,y,p}, C{s}/I,C{s}/J. Consider the mapsi: X — X xS, j: X xS — X xT
andg: X x§— 5.

Let mx, mg be the maximal ideals of C{x,y, p}, C{s}/I. Let ng be the ideal of Oxxgs
generated by mxmg.
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Let x : X x.§ — X x S be a relative contact transformation. If x verifies
xoi=1, gox=gq and x(0,s) =(0,s) for each s. (2.3.10)
there are «, 3,7 € ng such that

X(@,y.p,8) = (@ +a,y+B,p+7,3). (2.3.11)

Theorem 2.3.7. (a) Let x : X xS — X x S be a relative contact transformation
that verifies (2.3.10). Then ~y is determined by o and . Moreover, there is [y €
ng + pOxxs such that B is the solution of the Cauchy problem

1+8£+p8£ 9 0adB  0adB _ Oda
Ox oy

= p— 2.3.12
Op p@p Oy OpOx pap’ (2.3.12)
B+ pOxxs = fo.

(b) Given o € ng, By € ng + pOxxs, there is a unique relative contact transformation
X that verifies (2.3.10) and the conditions of statement (a). We denote x by Xa,3,-

(¢) If S =T the Cauchy problem (2.3.12) simplifies into

0 0
(9§ = P(TZ, B+ pOxxr. = Po. (2.3.13)

(d) Let X = Xa,8 : X X T — X x T be a relative contact transformation. Then, x is a
lifting to T" of j*X = Xjra,j*8, : X X S = X x S. If x equals (2.3.11),

7X@, y,p,8) = (x+j o,y + 5B, p+ 5", s).

(e) Assume Op = C{s}, Or, = C{s,e}/(e% es1,...€8m). Given a relative contact
transformation

x(x,y,p,8) = (x + A,y + B,p+ C,s) (2.3.14)

over T and o, 3,7 € mx,
xo(z,y,p,8,6) = (x+ A+ea,y+ B+eB,p+ C +e€7,s,¢) (2.3.15)
1s a relative contact transformation over Ty if and only if
(z,y,p,e) = (x +ea,y +eB,p+e7) (2.3.16)

s a relative contact transformation over I.. Moreover, all liftings of x to Ty are of
the type (2.3.15).

Proof. See Theorems 2.4 and 2.6 of [19]. O
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2.4 Relative Legendrian Curves

Let @ = £dx + ndy be the canonical 1-form of T*C2 = C? x C2. Hence 7 = 7¢2 : P*C? =
C? x P! — C2 is given by 7(z,y;¢ : ) = (z,y). Let U [V] be the open subset of P*C?
defined by 1 # 0[¢ # 0]. Then 0/n[0/¢] defines a contact form dy — pdx [dz — gdy] on
U [V], where p = —¢/n[q = —n/&]. Moreover, dy — pdx and dx — qdy define the structure
of contact manifold on P*C2.

If L is a germ of a Legendrian curve of P*M and L is not a fiber of mps, mpr(L) is a
germ of plane curve with irreducible tangent cone and L = IP;M( L)M .

Let Y be the germ of a plane curve with irreducible tangent cone at a point o of
a surface M. Let L be the conormal of Y. Let o be the only point of L such that
ma (o) = o. Let k be the multiplicity of Y. Let f be a defining function of Y. In this
situation we will always choose a system of local coordinates (z,y) of M such that the
tangent cone C(Y) of Y equals {y = 0}.

Lemma 2.4.1. The following statements are equivalent:

Proof. The equivalence of statements holds if and only if it holds for each branch. Assume
Y irreducible. Assume x(t) = t*¥ and y(t) = t"p(t) = 3(t), where ¢ is a unit of C{t}.
Since C(Y) = {y = 0}, n > k. There is an unit v of of C{t} such that p(t) = t"*a(¢).
Statements (a) and (b) hold if and only if n — k > k. Statement (d) holds if and only if
n > 2k. Remark that

F=v 30 a =TI, (y — §(6'))

where 6 = exp(27i/k). Since a; is an homogeneous polynomial of degree i on the p(67t),
j=1,..k a; € (") and a; generates (z"). Therefore (c) is verified if and only if
n/k > 2. O

We say that a plane curve Y is generic [a Legendrian curve L is in generic position]
if it is verifies the conditions of Lemma 2.4.1.

Given a germ of a Legendrian curve L of U at ¢ there is a germ of a contact trans-
formation x : (U,0) — (U, o) such that x(L) is in generic position (see [16] Corollary
1.6.4.).

Lemma 2.4.2. Let o denote the origin of U. Assume L, L1, Lo are germs of Legendrian
branches in generic position.

(a) Cyo(L) = {y = p = 0} if and only if given a parametrization t — (x(t),y(t)) of a
branch of Y, 2* & (y).
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(b) Cy(L1) # Cyx(L2) if and only if m(L1) and w(Lg) have contact of order 2.

Proof. Under the notations of Lemma 2.4.1, C,(L) = {y = p = 0} if n > 2k 4+ 1 and
Co(L) ={y=p—9(0)z =0} if n = 2k. O

Remark that if Y is a germ of a plane curve of C? at the origin and C(Y) = {y = 0},
its conormal is a Legendrian variety contained in U. By Darboux’s Theorem each germ
of a contact manifold of dimension 3 is isomorphic to the germ of U at o, endowed with
the contact structure of U defined by dy — pdx.

Definition 2.4.3. Let S be a reduced complex space. Let Y be a reduced plane curve.
Let Y be a deformation of Y over S. We say that ) is generic if its fibers are generic. If
S is a non reduced complex space we say that ) is generic if ) admits a generic lifting.

Given a flat deformation ) of a plane curve Y over a complex space S we will denote
IP’;,(C2|S) by Con()).
Consider the contact transformations from C? to C? given by

O(x,y,p) = (A\z, \py, up), A, p € C*, (2.4.1)

bd
& (z,y,p) = (ax + bp,y + %xQ + ?p2 + bexp, cx + dp), Z Z‘ =1, (2.4.2)
p/\(xvyap) = (ZL‘,y—)\ZEQ/Q,p—)\I'), AeC. (243)

The contact transformations (2.4.2) are called paraboloidal contact transformations.

Example 2.4.4. (a) Let k,n be integers such that (k,n) = 1 and 0 < k& < n. Let
Y = {y¥ —2" = 0}. Consider the contact transformation x(z,v,p) = (p,y —p, —x).
The conormal L of Y is parametrized by

p=tt y=t"p="

Therefore, YX = 7 (x(L)) admits the equation (zy/(k —n))¥ = 2"*. We say that

Y X is the action of the contact transformation y on the plane curve Y.
(b) Setting Y = {y3—27 =0}, x(x,y,p) = (x+p,y+p?/2,p), YX admits a parametriza-
tion
=t 4+ (7/3)t*, y =17 + (49/18)¢%.
Changing parameters we get

z=35 y=s + A+ h.ot.,

with A # 0. Following [30], YX and Y have the same topological type but are not
analytically equivalent.
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Theorem 2.4.5. (See [1] or [22].) Let ® : (C3,0) — (C3,0) the the germ of a contact
transformation. Then ® = ®1DPo®P3, where ®y is of type (2.4.1), ®q is of type (2.4.2) and
O3 is of type (2.3.11), with o, 5,y € C{x,y,p}. Moreover, there is By € C{x,y} such
that 8 verifies the Cauchy problem (2.3.12), 8 — By € (p) and

da 9By 98 928

OZ,B,’Y, 607 %7 %7 aipv 8$8p

If D2(0)({y =p=0}) ={y =p =0}, P2 = idcs.
Let ¥ be an additive submonoid of the set of non negative integers. Let Yy be a
minimal set of generators of 3. Let Osx, be the set of power series ), a;t' such that

a; = 0if i € ¥. Let O be the set of power series ), a;t! € Os, such that a; # 0 if
1 € Y.

€ (z,y,p). (2.4.4)

Lemma 2.4.6. (Lemma 3.5.4 of [28]) Let o, 5,7 € C{t}. Assume a(0) # 0.

(a) If (ta)* = thy, a € Oy if and only if v € Ox, and o € O% if and only if v € O%.

(b) If t = sB(s) solves s = ta(t), a € Oy if and only if f € Ox, and a € O, if and only
if B € O5,.

Theorem 2.4.7 (Theorem 1.3, [4]). Let x : (C3,0) — (C3,0) be a germ of a contact
transformation. Let L be a germ of a Legendrian curve of C® at the origin. If L and
X(L) are in generic position, w(L) and m(x(L)) are equisingular.

Proof. Assume C, (L) is irreducible. Since when x = py or x is of type (2.4.1) m(L) and
m(x(L)) are equisingular, we can assume that

Co(L) = Co(x(L)) ={y=p =0}

and x is of type (2.3.11). Let Lj, Ly be branches of L. Let S[k] be the semigroup
[multiplicity] of w(L1). Let S’ be the semigroup generated by (Sy — k) N N. There are
parametrizations
t = (i(t), yi(t), pi(t)) (2.4.5)
of L;, i = 1,2 such that x1(t) = t*, y1 € Of and p1 € Og. By (2.4.4) x(L1) admits
a parametrizaton (2.4.5) with z1(t) = tF-unit, z; € Og/, y1 € OF. By Lemma 2.4.6 we
can assume that, after a reparametrization, x(t) = t* and y; € O%. Hence m(Ly) and
m(x(L1)) are equisingular.
Assume 7(L;) has multiplicity k;, ¢ = 1,2 and k is the least common multiple of
ki, ko. Assume mw(L;) and 7(Lg2) have contact of order v. Then we can assume that

«Tf'z(t) = tkik/kja {Za.]} - {17 2}7
y2=y1 mod Og and y2 Zy1 mod Og,, (2.4.6)

where Sy = {0} U/ + N, S = Sy, S¢ = Syrr1 and S" = Syp_i. Therefore po = p;
mod Og. Composing x with (2.4.5) we obtain a parametrization (2.4.5) of x(L;) such
that

z; =tF - unit, 2o =21 mod Og and y» =y; mod Og, i =1,2.
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By Lemma 2.4.6, after reparametrization, (2.4.6) holds. The theorem is proved when
C,(L) is irreducible.

Assume there is \; such that 7(L;) = {y = \z?}, i = 1,2 and A\ # . If x is
paraboloidal, there are p; such that 7(x(L;)) = {y = pxz?}, i = 1,2 and pu1 # po. By
Lemma 2.4.2 if C,(L1) # Cy(L2), the contact order of m(L;) and 7(Lg) equals 2. Hence
the truncation of the Puiseux expansion of 7(L;) equals A\;z2, i = 1,2. Therefore the
contact order of m(x(L1)) and 7(x(L2)) equals 2. O

Definition 2.4.8. Two Legendrian curves are equisingular if their generic plane projec-
tions are equisingular.

Lemma 2.4.9. Assume Y is a generic plane curve and Y < Y defines an equisingular
deformation of Y with trivial normal cone along its trivial section. Then Y is generic.

Proof. By Proposition 2.2.6 we can assume that Y is irreducible. Moreover, we can
assume that ) is a deformation over a vector space and Cy,—,—0}(Y) = {y = 0}. Let
=tk y= D isnad a;t', n > 2k be a parametrization of Y. After reparametrization,
we can assume that ) admits a parametrization of the type

x =t y=>, ot (2.4.7)

with a; € Og, a; = 0if i < n and k does note divide 7. Since the normal cone of ) along
its section is trivial, oy, = 0. Since (2.4.7) and

p=>ia;tik
define a parametrization of Con()),
Cla—y—0} (Con(Y)) = {y = p — 2kagrz = 0}.
O

Definition 2.4.10. Let L be (a germ of) a Legendrian curve of C3 in generic position.
Let L be a relative Legendrian curve over (a germ of) a complex space S at o. We say
that an imersion i : L — L defines a deformation

LT xS —S (2.4.8)

of the Legendrian curve L over S if i induces an isomorphism of L onto £, and there
is a generic deformation ) of a plane curve Y over S such that x(L£) is isomorphic to
Con) by a relative contact transformation verifying (2.3.10).

We say that the deformation (2.4.8) is equisingular if ) is equisingular. We denote

by 5(5028 the category of equisingular deformations of L.
Remark 2.4.11. We do not demand the flatness of the morphism (2.4.8).

Lemma 2.4.12. Using the notations of definition 2.4.10, given a section o : S — L of
C3x S — 8, there is a relative contact transformation x such that x oo is trivial. Hence
L is isomorphic to a deformation with trivial section.

45



Proof. We can assume that S is the germ at the origin of a vector space. Set o(s) =
(®(5),4(s),P(s),s). Setting x(z,y,p,s) = (x — Z(s),y —Y(s),p, s), we can assume that
Z,y vanish. Now x(z,v,p, s) = (x,y — p(s)z,p — p(s), s) trivializes o. O

Theorem 2.4.13. Assume Y defines an equisingular deformation of a generic plane
curve Y with trivial normal cone along its trivial section. Let x be a relative contact
transformation verifying (2.3.10). Then YX = 7 (x(Con))) is a generic equisingular
deformation of Y.

Proof. We can assume that S is the germ of a vector space. We only have to prove that
(1) (YX)s is generic and (ii) (YX)s are equisingular, for small enough s. Let (YX),; be
one branch of (YX),. Since (VX),; is generic its conormal admits a parametrization

V() = (t*, 1" + hoot., (n/k)t"F 4+ h.o.t.),

with n > 2k (see Lemma 2.4.1). By Theorem 2.4.5, x5 = ®;®oP3. Since ®; preserves
genericity, we can assume ®; = i¢d. Notice that (ys,i)% is parametrized by

t = (z(t),y()), (2.4.9)

where z(t) = at® +b(n/k)t" % 4 h.o.t. and y € (t?*). If s is small enough we can assume
a close to 1 and b close to 0. Hence (x) = (t¥). Therefore we can assume ®y = id.
Finally (Vs;)®? is parametrized by (2.4.9), with

z(t) = t* + 9 (a), y(t) = " +4*(8).

By (2.4.4) (z) = (t*) and y € (¢?*) for small s. Now (ii) follows from Theorem 2.4.7, for
s small enough. O

2.5 Deformations of the parametrization

Let ¢ : C — C3 be the parametrization of a Legendrian curve L. We say that a
deformation W of 1 is a Legendrian deformation of v if the analytic set parametrized
by W is a relative Legendrian curve. We say that (x, £) is an isomorphism of Legendrian
deformations if y : C3 x T'— C3 x T is a relative contact transformation (see (2.2.2)).

Definition 2.5.1. Let ¢ : C — C? be the parametrization of a generic plane curve Y
with tangent cone {y = 0}. Let De f;° be the category of equisingular deformations of .

Let ) be an object of Def;*. We say that ) is an object of the full subcategory DefS*
of DefS® if Y is generic and the normal cone of Y along {z =y = 0} equals {y = 0}.

Let ¢ : C = C3 be the parametrization of a curve L in generic position. We will
denote by Def,, the category of equisingular Legendrian deformations of 9.

Theorem 2.5.2. Let ¢ : C — C? be the parametrization of a generic plane curve Y
with tangent cone {y = 0}. Then the semiuniversal deformation of ¢ in Defz® is also a

—»

semiuniversal deformation in DefS*.
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Proof. Assume ¢;(t;) = (wi(t:),yi(t:)), i = 1,...,7. Let IS be the vector space of the
ady + b9y such that a = [a1,...,a,;]", b= [b1,...,b]", where a;,b; € C{t;}t; and
ti = (@i(ti) +eai(ts), yi(ti) + ebi(ts)),

i =1,...,r, is an equisingular deformation of ¢ along the trivial section over T.. Let
T4 be the quotient of I5* by the linear subspace of its elements that define trivial

deformations. Let ‘ '
a’ Oy + b 0y, j=1,...,¢,

be a family of representatives of a basis of T1 . Set
—x,,—i—zj 1 Zsj, 1—yz+zj 1bjsj
i=1,...,r. By Theorem I7.2.38 of [9],
Q,(t;) = (Xi(ts), Yi(ti), i=1,...,m7
defines a semiuniversal deformation of ¢ in Def7®. It is enough to show that ®;, i =

—»

1,...,r is an element of DefS*. Let m; be the multiplicity of ®;. Then (x;) = ().

)

Since ®; is equimultiple X;,Y; € (¢]*"). Since y; € (t%“) and ®; is equisingular
ti = (Xi(ta), Yi(ts)/ Xi(t:))
is equimultiple (see IT of [9]). Therefore Y; € (£7™). O

Assume 1 is a parametrization of the conormal of the curve parametrized by ¢. Let
®[¥] be the deformation [Legendrian deformation] of @[] given by

(I)i(ti,s) = (Xi(ti,s),Yi(ti,s)), [\I’i(ti,s) = (Xi(ti,S),Yi(ti,s),Pi(ti,S))].

There are functors Con : DefS* — 56716;, T 5{5"2}5 — Def;® given by

(Con®); = (XY ov: (Mi

—1
(%) ) (¥7): = (X i),

Example 2.5.3. Let ® be the deformation z = t3, y = ¢t10 + st!! of the plane curve Y
given by the equation 3% — 2'? and parametrized by « = t3, y = t'9. The deformation ®
induces the flat deformation given by

y? — 210 — 3527y — Bzl
The conormal ¥ of ® is given by x = 3, y = t19 + st!!, 3p = 107 + 11st5.

The semigroup of the conormal curve of {y% —2!% = 0} equals {3,6,7,9, 10} UN+12.
The semigroup of the conormal of the deformed curve also contains the number 11.
Hence the deformation is not flat (see [3]).

It is shown in [4] that each flat deformation of the conormal of y* — 2™ = 0 is rigid.
This result shows that the obvious choice of a definition of deformation of a Legendrian
variety is not a very good one. This is the reason to introduce Definitions 2.4.10 and
2.5.1.
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Definition 2.5.4. Let Def;”" be the category given in the following way: the objects

of Def;*" are the objects of Def,5*; the morphisms of Def;*" are the pairs (x, &) where
x:C3 xT — C3 x T is a relative contact transformation that acts on a deformation ®
by

(x-®); = (x o Con®;)™,

and leaves invariant the normal cone along {x =y = 0} of the image of ®.

Notice that, by Theorem 2.4.13 y - ® defined above is in fact an object of Def;™".

Let €, be a category of deformations of a curve parametrized by ¢. Let S be a
complex space. We will denote by €, (.5) the category of deformations of €, over S. We
will denote by €,(S) the set of isomorphism classes of objects of €,(S).

The functors Con : Def ;" — 5(;)“;5, T 55}"2,8 — Defs>" are surjective and define
natural equivalences between the functors

T DefS"(T)  and T ﬁfoj(T).

Let ¢ : C — C? be a parametrization of a generic plane curve Y with irreducible
components Y7, ..., Y. Assume @;(t) = (x;(t;),vi(t:)), i =1, ..., 7.
We will identify each ideal of Oy with its image by ¢* : Oy — Og:

Oy =C {[xl O LN TP .yr]t} C @1 C{ti} = O¢.

Set x = [i1,.. .,i:r]t, where #; is the derivative of x; in order to ¢;, 1 < i < r. Let
¢ 1= X0, +y0, be an element of the free Og-module Og0, ® Ogdy, which has a structure
of Oy-module induced by ¢*.

Let up, .., Uy, v1, ..., v, € C{t;}. We say that

(U, ooy Uy ) Oy @ (1, ..., V) Oy

belongs to the equisingularity module ¥ (see IT of [9]) of ¢ if the deformation ® given
by ®;(t;,e) = (xi(t;) +eui(ts), yi(t:) +evi(ti)) is equisingular and has trivial normal cone
along its trivial section.

Let mg be the sub Og-module of ¥ generated by

(al,...,ar) (k8x+y6y), a; Gti(C{ti}, 1<1<r.

For i = 1,...,r set p; = 1;/4;. For each k > 0 set p* = [plf, e ,pff]t. Let I be the sub
Oy-module of Ogd, ® Og0, generated by (k + 1pFo, + kpk“(?y, k>1.

Theorem 2.5.5. The module I is contained in E@s and

~

Def &HM(Te) = £F /(e + (2,)0: @ (22, 9)0, +1).
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Proof. Let (ui,...,uy)0z + (v1,...,0,)0y € T and ® be the deformation given by

Q;i(ti,e) = (wilts) + eui(ti), yi(ts) + evi(ti))- (2.5.1)
We can suppose that for each ¢ =1,...,7
l
¢ ‘
= piy vi= o

for some ¢ > 1. Because Y is generic we have that ord:, p; > ordy; z;, 2ord:, p; > ordy, y;
and, by Lemma 2.4.1, ® has generic fibres. The deformation ® is the result of the action
over the trivial deformation of Y of the relative contact transformation

/
r+17

x(,y,p,e) = (x +eplLy +e 1 pe).

As the trivial deformation is equisingular, ® is equisingular.

Let ® € Def;”" be given as in (2.5.1), where u;, v; € C{t;}, ordy, u; > m;, ord, v; >
2m;, ¢ = 1,...,r, where m; is the multiplicity of ¥;. We have that & is trivial if and
only if there are

&ilti) =t = ti + ehi,
x(z,y,pe) = (x +ea,y+eB,p+ev,¢e),

such that y is a relative contact transformation, &; is an isomorphism,

Oé,ﬂ,’)/ S (%%P)C{%yap}v h’L € tz(c{tz}a 1 < { <r

and
i(ti) + eui(ti) = 2i(t;) + ealwi(ts), yi(li), pi (L)),
yi(ts) + evits) = yi(ti) + eB(mi(ts), i (L), pi(ts)),
= 1,...,r. By Taylor’s formula z;(t;) = x;(t;) + e2i(t:)hi(ts), vi(t:) = wi(ts) +

S*
~—
S
<7
—
SH
~—
~—
I

a(zi(t:), yil ea(z;(ts), yi(ts), pi(ts)),
Blai(ti), yi(t), pi(ts) = eB(wi(ts), yi(ts), pi(ti)),
for i =1,...,r. Hence ® is trivialized by y if and only if
ui(ti) = i(t)hi(ts) + a(zi(ts), yi(ti), pi(ti)),
vi(ti) = y(t)hi(ts) + B(xi(ts), vi(ti), pi(ti)),

fori=1,...,r. By Theorem 2.3.7 (c), (2.5.2) and (2.5.3) are equivalent to the condition

3
9

)
)

w0, +vo, € mgp + (2,9)9: © (2%,9)9, + I.
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Theorem 2.5.6. Set ¢ = dim Def;‘s’“(TE). Assume that

I P LA
I 4 p— = |: i 2.54
a 8x+ oy g 8x+ | oy’ (2.5.4)
al bl

1 < j < ¥, represents a basis of Defzs’“(Tg). Let ® : C x CF — C? x C* be the
deformation of ¢ given by

14

Xi(ti,s) = xi(ti) + Y _al(ti)s;, Yiltis) = yi(ts) + Z bl (t:)s;, (2.5.5)
j=1
i=1,...,r. Then Con ® is a semiuniversal deformation of 1 in 52)‘:;.

This Theorem is the equivalent for Legendrian curves of Theorem 17.2.38 of [9] for
plane curves.

Remark 2.5.7. Set

M, =35/ (mgp + (2,y)0: ® (2*,)9y) -
Then
Def *(T2) = M,

Let k = dim M, and assume that (2.5.4), 1 < j < k, represents a basis of M. Let
® : C x C* — C? x CF be the deformation of ¢ given by

k

Xi(ti,s) = zi(t;) + Zaf(ti)sj, Yi(ti,s) = yi(t —i—ZbJ

Jj=1

—»

Then @ is semiuniversal in DefS* (see [9] II Theorem 2.38). If ¥ € @ZS(T), then

U™ € Defs*(T). Hence thereis f : T — ]\_2(;, such that U™ = f*®. Therefore ¥ =

ConV¥™ = Con f*® = f*Con®. This shows that Con ® is complete in 5;)“;}5. It is
actually versal and the proof is only technically more complicated.

Proof. (of Theorem 2.5.6) It is enough to show that Con ® is formally semiuniversal (see
remark 2.5.7 and [6] Satz 5.2).

Let ¢ : T' < T be a small extension. Let U € Def, (T). Set ¥ = ¢*W. Let
7' : T — C* be a morphism of complex analytic spaces. Assume that (x/,¢’) define an
isomorphism

n*Con® = ¥,
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We need to find n : T'— C* and , € such that 7/ = no and x, ¢ define an isomorphism
n*Con® = W

that extends (x/,&’).
Let A[A’] be the local ring of T'[T"]. Let ¢ be the generator of Ker(4A — A’). We
can assume A’ = C{z}/I, where z = (21, ..., zm). Set

A'=C{z} and A=C{z,e}/(% ez1,....c2m).

Let m4 be the maximal ideal of A. Since ma6 = 0 and § € my, there is a morphism of
local analytic algebras from A onto A that takes € into ¢ such that the diagram

A—s A (2.5.6)

|

A——s A

commutes. Assume T [I”] has local ring A[A’]. We also denote by 2 the morphism
T' < T. We denote by « the morphisms 7 < T and 7" < T". Let U € @;m(f) be a
lifting of W.

We fix a linear map o : A’ < A’ such that k*c = idy. Set ¥ = Xo(a),0(Bo)s
where X' = xa,8,- Define 77 by 7/*s; = o(n*s;), i =1,...,1. Let ¢ be the lifting of &’
determined by o. Then

\T}/ — 5(//71 ° ﬁ/*Con(I) ° g/71
is a lifting of ¥’ and
Yol of =if*Con ®. (2.5.7)

By Theorem 2.3.7 it is enough to find liftings ¥, &, 7 of ¥, &, 7 such that
Y-UTof =D
in order to prove the theorem.

Consider the following commutative diagram



If Con ® is given by
Xi(tivs)a m(tivs)a Pl(tlas) € C{Sati}7

then 77"* Con ® is given by
Xi(ti, 17 (2)), Yilti, (@), Pi(ti,77(2) € A{t:} = C{z.t:}
for i =1,...,r. Suppose that U’ is given by
U{(ti,z), V/(ti,z), Wz-'(ti,z) € C{z,t;}.
Then, ¥ must be given by
Ui = Ul +eus, Vi = V] +evi, Wy =W, +ew; € A{t;} = C{z, t;} & eC{t;}

with u;,v;,w; € C{t;} and i = 1,...,r. By definition of deformation we have that, for
each 7,

(Ui, Vi, Wi) = (4(ts), yi(ti), pi(ti)) mod m 5.
Suppose 77 : T — C' is given by (M- --,1m)), with 77, € C{z}. Then 7 must be given by
7 =1 +en? for some 7° = (7)?,...,79) € C’. Suppose that ¥’ : C3 x T" — C3 x T" is

given at the ring level by
($7 y?p) '_> (H:,[? Hé? Hé)?

such that H' = id mod my, with H] € (x,y,p)A'{z,y,p}. Let the automorphism
¢ :CxT — CxT be given at the ring level by

ti'—>h;

such that h' = id mod m 3, with hj € (t;)C{z,t;}.
Then, from (2.5.7) it follows that

Xi(ts, ) = H(U; (h), Vi’ (), W (1)),
Yi(ts, ) = Hy(U; (h), Vi (), W (1)), (2.5.8)
Pi(ts, 1) = Ha(Uj(h3), Vi (hi), Wi (h7))-

Now, 77 must be extended to 7 such that the first two previous equations extend as well.
That is, we must have

Xi(t;,m) = (H} 4 ) (Us (b, + eh), Vi(h; + ehd), Wi(h + eh), (2.5.9)
Y;(ti, ) = (Hy + B8)(Ui(h} + €hy)), Vi(hi + ehf)), Wi(hj + ehy).

with , 8 € (z,y,p)C{x,y,p}, hY € (t;)C{t;} such that
(¢,9,p) = (Hy +ea, Hy + ¢, Hy + £7)

gives a relative contact transformation over 7' for some v € (z,y,p)C{z,y,p}. The
existence of this extended relative contact transformation is guaranteed by Theorem
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2.3.7 (e). Moreover, this extension depends only on the choices of a and f3y. So, we need
only to find «, By, 7° and hY such that (2.5.9) holds. Using Taylor’s formula and &2 = 0
we see that

J4
Xi(to, 7 +en’) = Xi(ti, i)+ Y 0s, Xi(ts, )71}
j=1

¢
(6mg = 0) =X (tza + 52 8sJ)( ti, 0) (2510)
J=1

l
Yilto, 7 +€n°) = Yi(to, ) +€ Y _ 05, Yilts, 0)7f)
j=1

Again by Taylor’s formula and noticing that emz =0, emz, = 0 in g, h' =id mod m 3,
and (U;, Vi) = (zi(ti), yi(ti)) mod m 3 we see that

Ui(hj + ehl) = Uy(h}) + Ui (hj)h{
= Uj(h}) + e(@h] + wy), (2.5.11)
Vi(hi + ehi) = Vi (h}) + e(gih + vi).
Now, H' = id mod m 3,, so
O,H{ =1modmy,  9,H|,8,H] € mzA'{x,y,p}.

In particular,
g0y H| = edp,Hy = 0.

By this and arguing as in (2.5.10) and (2.5.11) we see that

(H; + ea)(UL(RL) + e(2:h 4+ w;), VI (BL) + e(yshl + v;), W (RL) + e(p:hd + w;))
= Hi(U;(h), Vi (he), Wi (h)) + e(a(U; (h), Vi (h), Wi () + L(shg + i)
= H{ (U] (hy), Vi (h}), Wi (h})) + e, yis i) + @+ wi),

(H) 4 eB) (UL (h]) 4 e(a:hY 4 wi), VI (1) + e(gsh 4 vi), Wi (hL) + e(pihY + w;))
= Hy(U;(h), Vi (h), Wi (B)) + e (B, yis pi) + §ihi) + vi).

Substituting this in (2.5.9) and using (2.5.8) and (2.5.10) we see that we have to find
,"70 - (ﬁ{l)a s 777?) € (CE, h? such that

17 (05, Xi(t:,0), 0s,Y;(t;,0)) — (2.5.12)

(ul = i

J

¢
—h (t) ((@(ta), 4 (ts)) — (owi(te), yi(t), pilta)), B(wi(ts), yi(ta), pi(ti))-

—
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Note that, because of Theorem 2.3.7 (c),

~

(alzi(ts), yi(ti), pi(ti)), B(zi(ts), vi(ts), pi(ti))) € 1
for each i. Also note that ¥ € 66\']628(%) means that (u;,v;) € X&' Then, if the vectors

(8st1(t1, 0), o ,83].Xr(tr, 0)) Oy + (83jY1(t1, 0), R 8sj1/r(tr7 0)) 8y
= (al(t1),...,al(t,)Dp + (W) (11), ..., bi(L,))Dy, j=1,...,0

form a basis of Def;‘*’“(TE), we can solve (2.5.12) with unique 7%,...,7 for all i =
1,...,7r. This implies that the conormal of ® is a formally semiuniversal equisingular
deformation of ¢ over C’. O

2.6 Deformations of the equation I

Let Y be a generic curve with parametrization ¢ and equation f. Let L be the conormal
of Y.

Definition 2.6.1. We will denote by Def¢* (or Defy*) the full subcategory of generic
equisingular deformations of (the equation f of) the plane curve Y such that its normal
cone along {z =y = 0} equals {y = 0}.

Let T be a complex space. We associate to a deformation ® of ¢ the deformation )
defined by the kernel of ®* : Oc2,p — OF, . We obtain in this way a functor

U :Def;® — Deff”.

Theorem 2.6.2. The functor ¥ is surjective and induces a natural equivalence between

the functors T Def;S(T) and T Def]fs(T).
Given a morphism of complex spaces o : T — S and ® € De?;S(S),
"I (P) = V(0" D).

Proof. See Theorem I1.2.64 of [9]. O

Let YV be an object of DefS*. Since the normal cone of ) along {z = y = 0} equals
{y =0}, Con(Yy) CU xT.

Let ¢ be the parametrization of the conormal of ¢. Let ® € Defs*(T). Let ¥ be
the conormal of ®. Let 5(\11) denote the image of ¥. By Theorem 2.3.4

(V) = Con(9(T™)). (2.6.1)
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Lemma 2.6.3. The functor 9 is sur]ectwe and induces a natural equivalence between
the functors T Def ( ) and T — Def ( ).

Given a morphism of complex spaces o : T — S and ¥ € 5;;";8(5),
(W) = V(o™ D). (2.6.2)

Proof. If L is in 5(5"6;(T), L7 is in De?fs(T). Therefore L™ = 9(P), for some ¢ €
De?js(T). Setting ¥ = Con(P), 1/9\(\11) =L
By Theorem 2.6.2 and (2.6.1), ¥ induces a natural equivalence and (2.6.2) holds. [

Theorem 2.6.4. For ec each Legendrian curve L there is a semiuniversal deformation L
of L in the category DefL Moreover, L is defined over a smooth analytic manifold.

Proof. Let ¥ be the semiuniversal deformation of the parametrization ¢ of L in the
category Defw By Lemma 2.6.3, we can take £ = 19( ). O

2.7 Deformations of the equation II

Definition 2.7.1. Let Deffes’” (or Defy™") be the category given in the following way:

the objects of Deffes’“ are the objects of Deff?; two objects )V, Z of Deffes’”(T) are
isomorphic if there is a relative contact transformation x over T' such that Z = YX.

Lemma 2.7.2. Assume f € C{z,y} is the defining function of a generic plane curve
Y. Let L be the conormal of Y. For each ¢ > 1 there is hy € C{x,y} such that

(04 1)p’ fo + £p"F 1 f, = hy mod Iy,
Moreover, hy is unique modulo Iy .

Proof. Let A be the germ of C at the origin. Let k; [¢;] be the multiplicity [the conductor]
of the branch Y; of Y, 7 = 1,....,n. Let o : A — L; be the normalization of the
conormal L, of Y, 7 = 1,...,n. Let v; be the valuation of C{z,y,p} associated to o,
7 =1,...,n. The restriction of v, to C{x,y} defines the valuation of C{x,y} associated
to the normalization of Y, 7 = 1,...,n. By [30], Section 1.2

'UT(fT,y) =cr+kr — 1, and UT(xfT,m) = UT(yfT,y)a (2.7.1)

for 7 =1,...,n. By (2.7.1) and [30] there is a,, € C{z,y} such that v, (¢p**1f,, —a.,) =
+00, 7 =1,...,n, for each £ > 1. Setting as = > ar [, fj;

vT(Epery—ag) = 400, fort>1, 7=1,..,n.
A similar reasoning shows that there are b, € C{x, y} such that

vr((0+ 1)p€fm—bg) = +00, for{>1, 7=1,....n.
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Remark 2.7.3. Assume Y is irreducible with multiplicity v. Suppose Y € Defy*(T),
where T is a reduced complex space and let £ be the relative conormal of ). Let ® be
the deformation of the parametrization of Y such that ¥(®) = ). Let ¥ be the conormal
of ®. There A; € Op such that

Uty :tz/7 \I/*y O Z Aiti and \I/*p: ﬁtnfu_i_ Z EAitiful
1>n+1 v i>n+1 v

Given f € Op{z,y,p}, f € Iz if and only if ¥*f = 0.
Theorem 2.7.4. Let Y be a generic curve. Let T be a complex space. Let 1q : T — Tj

be a small extension and xo be a relative contact transformation over Ty. Let Yy €

Dfo(To), Y =14 and x = 1jx0. Assume xo equals (2.3.15) and Y [Yo, VX, Vi°] are
defined by F [Fy, FX, F°], where Fy = F + eg, g € C{z,y}, and FX is a lifting of f.
Then, if Fi° is a lifting of FX,

823

Ff* = FX+eg+eapfy+eBofy + EZkzlm

hi. (2.7.2)

Proof. Remark that if x equals (2.3.14) and Iy is generated by F, Iyx is generated by
FX € O¢24g such that

FX(z,y,s) = F(x + A,y + B, s) mod I ).

Let L denote the conormal of Y. Let L][Ly] denote the relative conormal of Y[)p]. We
can assume § = (81, ..., Sm),

Or = C{s}, O, = C{s,e}/n., n. = (s1€, ..., Sme, €2).

Since I, (2o) = Ly(c) +€0csxm, Nyo(2o) = Ly(c) &1L we have the following congruences
modulo I, (ry:

F* =Fy(x+ A+ca,y+ B+epB,s,e)
=F(z+A+ea,y+ B+eB,s)+eg
=F(z+ A y+ B,s) +eg+ecad, F+epB0,F

ag
=FX+eg+caofs +ebofy + 5Zk21mhk'

d

Corollary 2.7.5. Let F = f+4eg be a defining function of a deformation ) € Defjfs(Tg).
Let X8, be a contact transformation over T.. Then

823

Sk, 2.7.3
kr1 ok (2.7.3)

f+eg+eaofs +eBofy + ey

defines the action of Xa,, on V.
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Definition 2.7.6. Let f be a generic plane curve with tangent cone {y = 0}. We
will denote by I; the ideal of C{z,y} generated by the functions g such that f + g is
equisingular over T; and has trivial normal cone along its trivial section. We call Iy the
equisingularity ideal of f.

We will denote by I;f the ideal of C{x,y} generated by f, (z,v)fs, (2% y)f, and hy,
£>1.

Let f = Zkz,é are be a convergent power series. Let u,v,d be positive integers.
Assume u, v coprime. If aj ¢ # 0 implies uk +v¢ > d and there are ki1, {1, ko, {2 such that
(l{fl,fl) 7'5 (k‘Q,EQ) and Ak, 05 75 0, 1= 1,2, we call

fu,’l),d(x7 y) = Zuk+v€:d ak7£xky€

a face of f. We say that f is semiquasihomogeneous (SQH) of type (u,v;d) if f, 4 is a
face of f and f, , 4 has isolated singularities. We say that f is Newton non-degenerate
(NND) if z,y do not divide f and the singular locus of each face of f is contained in

{zy = 0}.
Lemma 2.7.7. If f is generic, I}‘ C Iy.
Proof. Let o € (z,y), 8 € (2%,y). Set X = Xa,0 [X = X058, X = Xpt0)- By Lemma 2.7.4,
fX equals
f+eafs, [f +eBfy, [+ehy/(L+1)].

By Lemma 2.4.13, fX is equisingular. Since the derivative of x leaves invariant {y = 0},
then (x,y) fz, (2%,y)f, C If and hy € I, for each £ > 1. O

Theorem 2.7.8. If f is generic,
Def;s’“(Ta) o~ If/I;f.

Proof. Let G € Defjfs’”(Tg). There is g € Iy such that G = f + eg. The deformation
f + eg is trivial in Defjfs’“(Te) if and only if there are h € C{x,y} and a contact
transformation (2.3.11) such that

Gx+a,y+B,e)=1+eh)f mod el,. (2.7.4)
By Corollary 2.7.5, (2.7.4) holds if and only if
Qy
g+a0fx+ﬁ0fy+%:€+1h£ = hf mod (f).

Hence G is trivial if and only if g € T ;f . O

Remark 2.7.9. Each equisingular deformation F' of a SQH or NND plane curve f is
isomorphic to a deformation F, such that F is equisingular via trivial sections (see [29]
and [9]). This means that, in the SQH or NND case, if A — A’ is a small extension
with kernel ¢ such that }' € Def;™"(A'),¥ € Def; " (A) defined by F', respectively
F = F' +ea(z,y), then f + ca(x,y) defines a deformation in Deffes’“(Ts)(see Theorem
8.2 of [29]).
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Theorem 2.7.10. Assume Y is a generic plane curve with conormal L, defined by a
power series f. Assume f is SQH or f is NND. If g1,...,g, € I represent a basis of
If/I;f with Newton order > 1, the deformation G defined by

G(ﬂf, Y, 81545 Sn) = f(ﬂﬁ,y) + Z Sigi (275)
=1

is a semiuniversal deformation of f in De f;s’“ )

Proof. The choice of g1, ..., g, identifies Iy/I }‘ with C™. It is enough to show that (3.2.4)

is a formally versal deformation of f in De f;s’“ and there is a versal deformation of f in

De f;s’“ (see [6] Satz 5.2). The second requirement follows from Theorem 2.6.4. Let us
prove that the first requirement is fulfilled. We will follow the terminology of the proof
of Theorem 2.7.4. Let n : T — C™ be a morphism of complex spaces and let x be a
relative contact transformation over T' such that n*G = YX. It is enough to show that
there are a unique morphism 7 : 7o — C" and a relative contact transformation g over
To such that

Mot =1n and nG = Vi°. (2.7.6)

Because *G = VX there is h € (s)Oc2 7 such that

(1+h)n*G = FX.
In order for 2.7.6 to hold, we need to find a € C" , 0 € O¢2 and x¢ such that

n’ =n+ea, and (1+ h+eo)nyG = F§°.
By Theorem 2.3.7 there are A, By such that
X = XA,By

and o exists if and only if there are «, 8y such that

X0 = XA+ea,Bo+efo-
By Theorem 2.7.4, FS‘O equals (2.7.2). Moreover,

1+h+eo)yG=0Q+h)n"G+econ G+e(l+h)d " aig

2.7.7
=FX+4cof +e(1+h)Y " aigi. ( )

Hence we need to solve the equation
g1 +h)"t =" aigi — (1+h)"Heaf +aofe + Bofy + 3, 7 he)- (2.7.8)
Since, as noted in Remark 2.7.9, g(1+h)~! ¢ Iy there are unique aq, ..., a, such that
g1 +h)"P =" a9 € Iy

Hence there are oy, Sy, o such that (2.7.8) holds. ]
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Corollary 2.7.11. T/hgg;elative conormal of G is a semiuniversal deformation of the
conormal L of Y on Def .

Proof. Suppose ¢ : T" < T is an embedding of complex spaces, L € 5e\feLS(T), L =
V' Loe DefzS(T’). Let ' : T" — C" be a morphism of complex spaces and x’ a relative
contact transformation such that

X' (L) = n*Con(G). (2.7.9)

Let V' = 7(£') and Y = 7(L). Equation (2.7.9) implies that Y'X = 5/*G € Def (1)
Because G is semiuniversal, there is  : T — C™ with 1’ = o1 and x relative contact
transformation extending x’ such that YX = n*G. This means that n*Con(G) = x(L),
hence Con(G) is semiuniversal. O

7 9 13 17
Figure 2.1: Monomial base for }Ce{f(%
fix

Figure 2.2: Monomial base for 0 f7(x’y(§:}z’é }Q,y) AL

Example 2.7.12. If f(z,y) = (> +27)(y> + 2'°), f is NND and Iy is generated by the
polynomials foy, yf and x'y’ such that 3i+ 75 > 42 and 3i+ 105 > 51 (see Proposition
I1.2.17 of [9]).

Let us first find a basis for De fjfs (T:). Then using the h;’s we see which terms can
be eliminated in order to get a basis for Def}fs’“(Ta) = If/IJﬁL.

Consider the SINGULAR session (see [5]):
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Czy}
fv(x’y)fz7(x27y)fy) ’

Figure 2.3: Monomial base for i

LIB "equising.lib";

ring r=0, (x,y),1ls;

poly f=(y3+x7)*(y3+x10);

ideal yJ=f,x*diff (f,x),y*diff(f,x) ,x2*diff(£f,y),y*diff(f,y);
list Ies=esIdeal(f,1);

polynomial is Newton non-degenerate

V V V V V

//

// equisingularity ideal is computed!

> vdim(std(Ies[2])); // Ies[2] is the equisingularity ideal // with
fixed trivial section

54

> vdim(std(yJ));

62

Let I$ (f) denote the equisingularity ideal with fixed trivial section. The command
kbase (std(Ies[2])); provides us with a monomial base (54 monomials) for the vector
space (see fig. 2.1)

Clz,y}
155.(f)

The command kbase (std(yJ)) ; provides us with a monomial base (62 monomials)
for the vector space (see fig. 2.2).

C{z,y}
(fa (1’, y)fl‘v ($27 y)fy) .

Note that the monomial 23® does not belong to I # as it changes the tangent cone of f.
The monomial 19?2 is under the Newton diagram of f, therefore it can’t be a part of an

equisingular deformation of f. As z3y® and x'%y? are congruent in De f st (T-) a monomial

base for De f st (T%) is given by the monomials marked with circles in fig. 2.3. This already
tells us that dimc Def]fs’”(Tg) < 7, which makes sense, since dimc Def;S(TE) =7 as
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can be seen continuing the previous SINGULAR, session:

> tjurina(f)-tau es(f); // tau es(f) is equal to the
// codimension of the stratum with fixed Milnor number
7

A semiuniversal object in Deff* (see Proposition 11.2.69, Corollary I1.2.71 of [9] and
Remark 2.7.13) is given by:

f(x, y) + 811‘3y5 + 82m5y4 + 53x11y2 + 343312y2 + 85x14y + s6x15y + 5750163/.

The following SINGULAR session confirms that this deformation is in fact equisingular:

> LIB "all.lib";
> ring R = 0,(s1,s2,s3,s4,s5,s6,s7,x,y) ,ds;
> poly f = (y3+x7)*(y3+x10);
> poly F = f+s1*x3yb+s2*x11y2+s3*x12y2+s4*x14y+s5+%x15y+s6*x16y+s7*xby4;
> 1list L = esStratum(F);
> L;
[1]:
[1]:
[1]1=0
[1]:
[2]=0
[2]:
0

Using the expressions (for both branches as the hy’s are only unique mod Iy ) for

hi we see that 2%y, 2'%y can be eliminated from the basis of Def]fS(Ts). Using the

expressions of hy we can eliminate x''y?, z'2y2. So, a basis for If/I}‘ is given by the

monomials z3y°, z°y*, x'%y. According to Theorem 2.7.10, the deformation defined by

f(x,y) + s12%y° + seay* + s3xtty

. .. . . es,
is a semiuniversal deformation of f in Def ¥ i

Remark 2.7.13. Proposition 17.2.69 (b) of [9] should say that there is a basis of
I°(f)/(f,7(f)) such that ¢° is a semiuniversal equisingular deformation of (C,0), as
for an arbitrary basis the result doesn’t always hold. In the example above for instance,
the monomial z'%y? belongs to I°(f) but f + slx'%? is not equisingular. Thus, in
Corollary 11.2.71 (a) of [9] the authors should further require that the g; have Newton
order > 1.
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Chapter 3

Moduli Spaces of germs of
Semiquasihomogeneous
Legendrian Curves

3.1 Introduction

Greuel, Laudal, Pfister et all (see [10], [13]) constructed moduli spaces of germs of plane
curves equisingular to a plane curve {y* + 2" = 0}, (k,n) = 1. Their main tools are the
Kodaira Spencer map of the equisingular semiuniversal deformation of the curve and the
results of [7]. We extend their results to Legendrian curves.

Let Y be the germ of a plane curve that is a generic plane projection of a Legendrian
curve L. The equisingularity type of Y does not depend on the projection (see [25]). Two
Legendrian curves are equisingular if their generic plane projections are equisingular. We
say that an irreducible Legendrian curve L is semiquasihomogeneous if its generic plane
projection is equisingular to a quasihomogeneous plane curve {y*+n" = 0}, for some k,n
such that (k,n) = 1. Hence the generic plane projection of L is a semiquasihomogeneous
plane curve.

In section 3.2 we recall the main results of relative contact geometry. In section 3.3
we construct the microlocal Kodaira Spencer map and study its kernel Lpg, a Lie algebra
of vector fields over the base space CB of the semiuniversal equisingular deformation
of the plane curve {y* +n" = 0}. We use Lp in order to construct a Lie algebra of
vector fields L£¢ over the base space C¢ of the microlocal semiuniversal equisingular
deformation of {y* +n" = 0}. In section 3.4 we recall some results of [7]. In section 3.5
we study the stratification of C¢ induced by Lo and show that the conormals of two
fibers F,, F. of the microlocal semiuniversal equisingular deformation of {y* +n™ = 0}
are isomorphic if and only if b and ¢ are in the same integral manifold of Lo. Moreover,
we construct the moduli spaces. The final section in dedicated to presenting an example.

62



3.2 Relative contact geometry

Let ¢ : X — S be a morphism of complex spaces. We can associate to ¢ a coherent
Ox-module Q%(/S’ the sheaf of relative differential forms of X — S, and a differential

morphism d : Ox — Q}(/S (see [11] or [20]).

If Q%{/s is a locally free Ox-module, we denote by 7 = 7x/g : T*(X/S) — X the
vector bundle with sheaf of sections Qﬁ(/s. We say that T'(X/S) [T*(X/S)] is the relative
tangent bundle [cotangent bundle] of X — S.

Let o : X1 = Xb, ¢; : X; — S be morphisms of complex spaces such that gz = ¢;.
There is a morphism of Ox,-modules

Po 9 Uk, 5 = Ox, ®p-10x, ¥ Dxyys = Uy, /s (3.2.1)

If Qﬁg/s’ i = 1,2, and the kernel and cokernel of (3.2.1) are locally free, we have a
morphism of vector bundles

Py 2X1 X Xo T*(XQ/S) —>T*(X1/S) (3.2.2)

If ¢ is an inclusion map, we say that the kernel of (3.2.2), and its projectivization, are
the conormal bundle of X1 relative to S. We will denote by T% (X2/5) or P% (X2/5)
the conormal bundle of X7 relative to S.

Assume M is a manifold. When ¢ is the projection M x S — S we will replace
"M x S/S” by "M|S”. Let r be the projection M x S — M. Notice that Q}W‘S =
Onxs ®p-10,, 7"_19]1\/1 is a locally free Opsxs-module. Moreover, T*(M|S) = T*M x S.

We say that Q}\/ﬂs is the sheaf of relative differential forms of M over S. We say
that T*(M|S) is the relative cotangent bundle of M over S.

Let N be a complex manifold of dimension 2n — 1. Let S be a complex space. We
say that a section w of Q}V‘S is a relative contact form of N over S if w A dw™ ! is a

local generator of Q?\T,ﬁgl Let € be a locally free subsheaf of Q}\” g- We say that € is a
structure of relative contact manifold on N over S if € is locally generated by a relative
contact form of N over S. We say that (IV x S, €) is a relative contact manifold over S.
When S is a point we obtain the usual notion of contact manifold.

Let (N1 x S,€;1), (N2 x S,€&,) be relative contact manifolds over S. Let x be a
morphism from Nj X S into Na x S such that gy, o x = qn,. We say that x is a relative
contact transformation of (N7 x S, €;) into (Na x S, &) if the pull-back by x of each
local generator of €; is a local generator of €.

We say that the projectivization mx /g : P*(X/S) — X of the vector bundle T*(X/S5)
is the projective cotangent bundle of X — S.

Let (z1,...,x,) be a partial system of local coordinates on an open set U of X.
Let (z1,...,2n,&1,...,&n) be the associated partial system of symplectic coordinates of
T*(X/S) on V =n 1 (U). Set p;j = &&; ', i # 4,

Vi={@& e V: &40},  wi=6'9  i=1..n

63



each w; defines a relative contact form dz; —>_, . p; jdv; on P*(X/S), endowing P*(X/5)
with a structure of relative contact manifold over S.

Let w be a germ at (x,0) of a relative contact form of €. A lifting w of w defines a
germ € of a relative contact structure of N x T,S — T,S. Moreover, € is a lifting of the
germ at o of €.

Let (N x S, €) be a relative contact manifold over a complex manifold S. Assume N
has dimension 2n — 1 and S has dimension £. Let £ be a reduced analytic set of N x S
of pure dimension n+/¢—1. We say that L is a relative Legendrian variety of N x .S over
S if for each section w of €, w vanishes on the regular part of £. When S is a point, we
say that £ is a Legendrian variety of N.

Let £ be an analytic set of N x S. Let (z,0) € £. Assume S is an irreducible germ
of a complex space at 0. We say that L is a relative Legendrian variety of N over S at
(z,0) if there is a relative Legendrian variety £ of (N,xz) over (7,S5,0) that is a lifting
of the germ of £ at (z,0). Assume S is a germ of a complex space at o with irreducible
components S;,7 € I. We say that L is a relative Legendrian variety of N over S at
(x,0) if S; xg L is a relative Legendrian variety of S; xg N over S; at (z,0), for each
1e€1.

We say that L is a relative Legendrian variety of N x S if £ is a relative Legendrian
variety of N x S at (z,0) for each (z,0) € L.

Let Y be a reduced analytic set of M. Let ) be a flat deformation of Y over S. Set
X =M x S\ Vsing. We say that the Zariski closure of P}, (X/S) in P*(M|S) is the
conormal P3,(M|S) of Y over S.

Theorem 3.2.1. The conormal of Y over S is a relative Legendrian variety of P*(M|S).
If YV has irreducible components Vi, ..., Vr,

P3(M|S) = Uj_ %, (M]S).

Theorem 3.2.2. Let L be an irreducible germ of a relative Legendrian analytic set of
P*(M]|S). If the analytic set w(L) is a flat deformation over S of an analytic set of M,
L= IF’;‘F(E)(M|S).

Let 6 = &dx + ndy be the canonical 1-form of T*C? = C? x C2. Hence m = m¢2 :
P*C? = C? x P! — C? is given by 7(z,y; € : n) = (z,y). Let U [V] be the open subset of
P*C? defined by 1 # 0[€ # 0]. Then 0/n[0/£] defines a contact form dy — pdx [dx — qdy]
on U [V], where p = —§/nlq = —n/&]. Moreover, dy — pdz and dx — qdy define the
structure of contact manifold on P*C?2.

If L is a germ of a Legendrian curve of P*M and L is not a fiber of mps, mpr(L) is a
germ of plane curve with irreducible tangent cone and L = ]P’;'er L)M .

Let Y be the germ of a plane curve with irreducible tangent cone at a point o of
a surface M. Let L be the conormal of Y. Let o be the only point of L such that
mpm (o) = o. Let k be the multiplicity of Y. Let f be a defining function of Y. In this
situation we will always choose a system of local coordinates (z,y) of M such that the
tangent cone C(Y) of Y equals {y = 0}.
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Lemma 3.2.3. The following statements are equivalent:
1. multy (L) =mult,(Y);
2. Cs(L) 2 (Dm(0))~1(0,0);
3. f e @y
4. if t — (x(t),y(t)) parametrizes a branch of Y, x? divides y.

Definition 3.2.4. Let S be a reduced complex space. Let Y be a reduced plane curve.
Let Y be a deformation of Y over S. We say that ) is generic if its fibers are generic. If
S is a non reduced complex space we say that ) is generic if J admits a generic lifting.

Given a flat deformation ) of a plane curve Y over a complex space S we will denote
P35, (C?|S) by Con(Y).

Theorem 3.2.5 (Theorem 1.3, [4]). Let x : (C3,0) — (C3,0) be a germ of a contact
transformation. Let L be a germ of a Legendrian curve of C® at the origin. If L and
X(L) are in generic position, w(L) and m(x(L)) are equisingular.

Definition 3.2.6. Two Legendrian curves are equisingular if their generic plane projec-
tions are equisingular.

Lemma 3.2.7. Assume Y is a generic plane curve and Y — ) defines an equisingular
deformation of Y with trivial normal cone along its trivial section. Then Y is generic.

Definition 3.2.8. Let L be (a germ of) a Legendrian curve of C? in generic position.
Let L be a relative Legendrian curve over (a germ of) a complex space S at 0. We say
that an immersion ¢ : L <— L defines a deformation

LT xS — S (3.2.3)

of the Legendrian curve L over S if ¢ induces an isomorphism of L onto £, and there
is a generic deformation ) of a plane curve Y over S such that x(£) is isomorphic to
Con) by a relative contact transformation verifying (3.2.6).

We say that the deformation (3.2.3) is equisingular if ) is equisingular. We denote

by D/e\fzs the category of equisingular deformations of L.
Remark 3.2.9. We do not demand the flatness of the morphism (3.2.3).

Lemma 3.2.10. Using the notations of definition 3.2.8, given a section o : S — L of
C3 xS — S, there is a relative contact transformation x such that x oo is trivial. Hence
L is isomorphic to a deformation with trivial section.

Consider the mapsi: X —< X x Sandg: X xS — S.
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Theorem 3.2.11. Assume Y defines an equisingular deformation of a generic plane
curve Y with trivial normal cone along its trivial section. Let x : X X § — X X S be a
relative contact transformation verifying

xoi=1, gox=¢q and x(0,s) = (0,s) for each s.
Then YX = m (x(Con))) is a generic equisingular deformation of Y.

Definition 3.2.12. Let Def]fs’” (or Defy™") be the category given in the following

way: the objects of Deffes’“ are the objects of Deff*; two objects ¥, Z of Deffes’“(T)
are isomorphic if there is a relative contact transformation x over T' such that Z = VX,

Lemma 3.2.13. Assume f € C{x,y} is the defining function of a generic plane curve
Y. Let L be the conormal of Y. For each ¢ > 1 there is hy € C{x,y} such that

(0 +1)p'f, + €p£+1fy = hy mod I,.
Moreover, hy is unique modulo Iy .

Definition 3.2.14. Let f be a generic plane curve with tangent cone {y = 0}. We
will denote by Iy the ideal of C{x,y} generated by the functions g such that f + g is
equisingular over T and has trivial normal cone along its trivial section. We call Iy the
equisingularity ideal of f.

We will denote by I}‘ the ideal of C{xz,y} generated by f, (z,y)fs, (#2,y)f, and hy,
(> 1.

Theorem 3.2.15. Assume Y is a generic plane curve with conormal L, defined by a
power series f. Assume f is SQH or f is NND. If g1,...,gn € Iy represent a basis of
If/I}‘ with Newton order > 1 , the deformation G defined by

G(l‘a Yy S1y-eey Sn) = f(xvy) + Z Sigi (324)
i=1

18 a semiuniversal deformation of f in Def;fs’“.

Lemma 3.2.16. Let S be the germ of a complex space. Assume F' defines an object F
in Def*(S). Giveny > 1 there are H' € Og{x,y} such that

HY=p"0,F mod [Con(]-') + Ap.
If f has multiplicity k, HY =0 for v > k — 1.
Proof. Let us first show that

HY = (7 + 1)])783;}7 + ’yp'erlayF mod ICon(]-')-
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This is a relative version of Lemma 7.2 of [20]. Since F is equisingular, the multiplicity

and the conductor are constant. Moreover, there are parametrizations of each component

of F. Therefore, we can generalize the argument in the proof of the quoted Lemma.
Now it is enough to show that

O F + poyF =0 mod I¢on(r)- (3.2.5)

Assume F is irreducible. Let (¢,s) — (X, Y, P) be a parametrization of Con(F). Since
F(X,Y) = 0 we conclude that

0. F0, X + 0,Fo,Y = 0.
Since P = 0,Y/0; X, (3.2.5) holds. O

Let T. be the complex space with local ring C{e}/(¢2). Let I, J be ideals of the ring
C{s1,...,8m}. Assume J C I. Let X,S,T be the germs of complex spaces with local
rings C{z,y,p}, C{s}/I,C{s}/J. Consider the mapsi: X — X x5, j: X xS — X xT
andg: X xS — S.

Let mx, mg be the maximal ideals of C{x,y,p}, C{s}/I. Let ng be the ideal of Oxxs
generated by mxmg.

Let x : X x.§ — X x § be a relative contact transformation. If x verifies

xoi=1, gox=gq and x(0,s) =(0,s) for each s. (3.2.6)
there are «, 8,7 € ng such that

X, y,p,8) = (@ +a,y+B,p+17,8s). (3.2.7)

Theorem 3.2.17. (1) Let x : X xS — X x S be a relative contact transformation that
verifies (3.2.6). Then v is determined by « and 3. Moreover, there is Sy € ng + pOx s
such that B is the solution of the Cauchy problem

<1+30‘+ 3a>35_ 0008 0adf _ Oa

Ox p@y op p@p Oy Op Ox _paip7 (3.2.8)

B+ pOxxs = Bo-

(2) Given a € ng, By € ng + pOxxs, there is a unique relative contact transformation
X that verifies (3.2.6) and the conditions of statement (a). We denote x by Xa,3,-

(3) If S = T; the Cauchy problem (3.2.8) simplifies into

08 oa

o Pop B+ pOxx1. = Po. (3.2.9)

Consider the contact transformations from C? to C? given by

O(x,y,p) = (A, A\uy, up), A\, p € C*, (3.2.10)
bd
O(x,y,p) = (ax + bp,y + %xg + Epz + bexp, cx + dp), CCL 2’ =1, (3.2.11)
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Theorem 3.2.18. (See [1] or [22].) Let ® : (C3,0) — (C3,0) the the germ of a contact
transformation. Then ® = ®1DPo®P3, where Py is of type (3.2.10), P2 is of type (3.2.11)
and @3 is of type (3.2.7), with o, B,v € C{x,y,p}. Moreover, there is Sy € C{x,y} such
that B verifies the Cauchy problem (3.2.8), 58— By € (p) and

da 0By 0B 0B

0575375 607 %7 Ea %a 3m8p

1 DB(O)({y = p = 0}) = {y = p = 0}, B2 = idcs.

Proposition 3.2.19. Let f and g be two microlocally equivalent SQH or NND generic
plane curves. Then, f and g have equisingular semiuniversal microlocal deformations
with isomorphic base spaces.

€ (z,y,p). (3.2.12)

Proof. Let X,Y denote the germs of analytic subsets at the origin of C3 defined by
Con f and Con g respectively. Let y : C> — C? be a contact transformation such that
x(Y) = X and & := (i,®) : X — C?> x C* — C’ be a semiuniversal equisingular
deformation of X (to see that such an object exists see Theorem 3.2.15 and Chapter 2).
Let us show that (i o x, ®) is a semiuniversal equisingular deformation of Y:

Let Y := (4,¥) : Y «— C3 x C¥ — C* be an equisingular deformation of Y. Because
X is versal there is ¢ : C* — C’ such that p*X = (j o x~!, ).

X X (3.2.13)

C3xCk =~ C3xcCk

A
ck = Ck
Then, (¢*io x,p*®) = (j, V) which means that ¢*(i o x,®) = ). The result follows

from the fact that a semiuniversal deformation is unique up to isomorphism (see Lemma
I11.1.12 of [9]). O

Recall that, for a SQH or NND generic plane curve f, there is a semiuniversal mi-
crolocal equisingular deformation with base space CF, where k is the the dimension as
vector space over C of If/I]‘f. So, because of Proposition 3.2.19 and Proposition 17.2.17
of [9], the following defines an invariant between microlocally equivalent fibers of F'.

Definition 3.2.20. Let f be a SQH or NND generic plane curve. Then

C{z,y}

7(f) :=dimc i
f

is the microlocal Tjurina number of f.
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3.3 The microlocal Kodaira-Spencer map

Assume k,n are coprime integers, 0 < 2k < n. Set f = y* — 2", pu = (n — 2)(k — 2).
Consider in Clx,y] the grading given by o(x'y’) = ki + nj, (i,j) € N2 Set w =
o(z"2y*2) — kn, w = o(x" FyF=2) — kn, e(xiy?) = (i,5) € N2,
B={(i,j)eN*:i<n-2, j<k-2},
C={(,j)eB:i+j<n-2}

D =1{(i,7) € B: o(z'y’) — kn < w},

Aog={(i,j) € A: ki+nj > kn},for each A C B.

Z,

Let mq,...,m, be the family x'yl, (i,j) € B, ordered by degree. Set b = #By. If
p—=b+1<40< p,set o(f) = o(my) — kn and o(s,(p)) = —o(£).

Let A C B. Set Iy = {{ : e(my) € Ao}, sa = (SO(Z))EGIA. Set CA = C#40 with
coordinates s4. Notice that Ip = {u—b+1,...,u}. Moreover,

Fa=f+ Y souyme
LET 4

is homogeneous of degree kn.
Let Y be the plane curve defined by f. Let I' be the conormal of Y. Let F4 be the
deformation defined by F4. Notice that

e Fp is a semiuniversal equisingular deformation of Y,
e F¢ is a semiuniversal equisingular microlocal deformation of Y,

e if C C AC B, Fu is a complete equisingular microlocal deformation of Y.

Let A, be the ideal of C[s4] generated by 0,F4 and 0yF4. Assume o(p) =n —k
in order to guarantee that the contact form dy — pdx is homogeneous.

Lemma 3.3.1. Assume C C AC B and v > 1. There is H) € Clsal{z,y} such that
H| = p "0, F4 mod Icon(Fy) +AF, where H| is homogeneous of degree v(n—k)+kn—k.
Ify>k—1,Hy€Ap,. [CCACACB, Hj = H)}|ow-

Proof. Set 1o = 0, where 6% = —1. There are 1; € (s4)C[s4], i > 1, such that
X(t,sa)=t"  Y(t,sa) = ¢t""
i>0

defines a parametrization ® of F4. Setting P(t,54) =D ;~¢ ”T”wit”*k”, X, Y, P defines
a parametrization ¥ of Con(F,4). Since z is homogeneous of degree k and z = t*, we
assume t homogeneous of degree 1. Let us show that Y is homogeneous of degree n. The
C*-action acts on ¢ by

a-B(t,sy) = | a®th a™ | 61" + Z(a y)att"
i>1
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Since F'4 is homogeneous, for each s4,

tr Bt sa) = | 5,067+ (a-¢py)a't"
i>1

is another parametrization of the curve defined by (z,y) — Fa(z,y,s4). Since the first
term of both parametrizations coincide, ®, = ®, a - ¥; = a~"¢); and ® is homogeneous.
Therefore, ¥ is homogeneous.

There is an integer ¢ such that ®*(Ap,) D t°Cl[sal{t}. Remark that pY0,F}4 is
homogeneous of degree y(n — k) + kn — k. We construct H) in the following manner.
There is a monomial ax'y’, a € C[s 4] such that the monomials of lowest t-order ®*(az’y’)
and W*(p?0,F4) coincide. Replace p?0,Fa by p70,Fa —ax'y’ and iterate the procedure.
After a finite number of steps we construct H )} such that

U*(p 0, Fa — H)) € t°Clsal{t}.

Therefore,
PO Fa — H:Zl S ICon(]:A) +Ap,.

Remark that the monomial ax’y’ is homogeneous of degree vy(n — k) + kn — k. O

Set ©p = DercClsg], 9,40) = 0s,,, and 0(9y)) = o({) for each £ € Ip. Assume
C C A CACB. Let ©4 4 be the C[sa]-submodule of ©p generated by Ooe), L € Lar.
Set ©4 = ©4.4. There are maps

TALA
@A <~ @A,A’ — @A/,

. - . !
where 74 4/ is the restriction to cA.

Definition 3.3.2. Let I7 be the ideal of C[sp][[z,y]] generated by F, AFp and HJ,
v=1,...,k—2. We say that the map

p:Op = Clsp]l[z,yl]/ I},

given by p(§) = 0Fp + I is the microlocal Kodaira-Spencer map of f. We will denote
the kernel of p by Lp.

Assume we have defined £ 4. We set
EA,A’ =L4N GA,A’ and L4 = 7",47,4/([,,47,4/).

Let L be a Lie subalgebra of © 4. Consider in C4 the binary relation ~ given by p ~ ¢
if there is a vector field § of L and an integral curve « of § such that p and ¢ are in the
trajectory of v. We denote by L the equivalence relation generated by ~. We say that
a subset M of C4 is an integral manifold of L if M is an equivalence class of L.
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Assume C' C A C B. The family my, 1 < £ < p, defines a basis of the C[s4]-module
Ry = Clsal[[z, y]l/AF 4.
Set HY = F4. The relations

I
meH ) = Z €)M mod AF (3.3.1)

v=1
define CZU € Clsy] foreach 0 <y <k—2,1</{,v<pu. Assume A = B and set

w
&= > 4 050 C=1,....,0,7v=0,...,k—2. (3.3.2)
v=p—b+1

If my = 2'y’ we will also denote &) by 87, For 1 <y <k —2, set

agzo(mg), ozZzoz?—l—v(n—k:)—k, (=1,..., 4,
agj = o(z'y?), O‘Zj = 042]» +v(n—k)—k, (i,7) € B.

Lemma 3.3.3. With the previous notations, we have that:

1. The vector fields &) (57]) are homogeneous of degree o] (O‘Zj)7 0<~<k-2
1<?¢<u((ij)€B).

0;;(0) #0 if and only if y > 1, i <y—1,y+j<k—2.
5Zj =0 z'foczj > w.
The Lie algebra Lp is generated as Clsg|-module by {6] : 0 <~y < k-2, o < w}.

If o > w, 0s, € Lp.

S e L

If (u,v) € B\ C there is 6 € Lp such that § = 0s, + ¢ is homogeneous of degree
o = ku + nv — kn, where € is a linear combination of O i1 € Ig, 1 > o, with
coefficients in C[sp].

o(i)”?

Proof. (3): Just notice that if 048]- > w = o(my,) — kn then o(m; ;F'g) > o(m,). Now,
because n > 2k, o(H}) > kn = o(Fp) for any v = 1,...,k—2, the result holds for v > 0.
(4): Fory =0 (1 <y <k —2) and each ¢ = 1,...,u such that o(my) < w, we
have that p(6)) = 6/ Fp + I = meFp + It (meH}, + 1) = 0+ I So, {§) : 0 <~ <
k—2, aZSw}CEB.
Now, let

m
0= Z wyOs,(,, € OB
v=p—b+1
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such that p(d) = 0. Then

I
0Fp= Y wymy,=MFp+MHp+...+M_yHj ?modAFg,
v=p—b+1

with Mo, ..., Mi_s € C[sp][[z,y]]. Suppose

o
My = Z My gmg mod AFp,
/=1

n
Mj_o = Z Mj._2 ¢my mod AFp,
=1

where the M, € C[sp| foreach £ =1,..., 4, 7v=0,...,k —2. Then
MoFp =My 1mi1Fp+ ...+ My ,m,Fp mod AFp
=Mo1m1Fp + ...+ MypympFp mod AFp
:MO,I(S?FB +...+ M0755£FB mod AFg.
Similarly, for any vy =1,...,k — 2

MyH} =My ymiHp + ...+ M, ymyH} mod AFp
=M,10]Fp + ...+ M,y6) Fg mod AFp.

So,
k—2 b
0Fp = > M,y 5] Fp mod AFg,
v=0 /(=1
which means that
k—2 b
s= 3> M)
v=0 /=1

O]

Let Lp be the Lie algebra generated by 6/, v =0,...,k—2, ¢ =1,...,b. Remark
that CB/Lp = CP/Lp. Consider a matrix with lines given by the coefficients of the
vector fields 52, vy=0,....,k—2,0=1,...,b. After performing Gaussian diagonalization
we can assume that:

e For each o € Ip\ I there is a line corresponding to a vector field 630(g> + &, where
c€e® B,C-

e The remaining lines correspond to vector fields d), £ € J, of Op c.
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The vector fields &y, £ € J, generate Lp ¢ as a C[sp|-module. Let dy be the restriction
of 0} to CY for each £ € J. The vector fields &;, ¢ € J, generate Lo as C[sc]-module.
Note that {0, ¢ € J} is in general not uniquely determined but the C[sc]-module
generated by them is. Let Lo be the Lie algebra generated by {d,, ¢ € J}. Since
Lc C Lp the inclusion map C¢ < C? defines a map C¢/Le — CB/Lp. By statement
(6) of Lemma 3.3.3, this map is surjective.

Assume there is a vector field dy, £ € J, of order a. Let {§%¢ : i € I,} be the set
of vector fields d;, ¢ € J, of order «, with I, = {1,...,#I,}. If there is ¢y such that
5% (sg) = 0 for £ < £y and §%%(sy,) # 0, we assume that i < j. If I, = {1}, set 6% = §>1.

Remark 3.3.4. If £ = 7,n = 15, we have that a semiuniversal equisingular microlocal
deformation of f given by

Fo = y7 + 2"+ 82x11y2 + 53x9y3 + 54x7y4 + 55x5y5 + 310x10y3 + 511x8y4
+ 512x6y5 + 318m9y4 + 519x7y5 + 826m8y5.

Notice that the vector fields 5871 and 5570 give origin to the linearly independent vector
fields
615,1 — 3838818 + 4848519 4+ ...

7 (4 157
5152 — <15 <7¢§ -3 (7> 34> — 434> Dsyg + -+

Theorem 3.3.5. The map C¢/Lo — CB/Lp is bijective.

and

Proof. Let I, be the subset of Ip that contains I and the p smallest elements of Ip\ I¢.
Set Cp, = {(i,j) € B : ki + nj — kn € I,}. The Lie algebra Lc, = L¢, U Lp generates
Lc, as C[sc,]-module. There is p such that C, = D. By statement (5) of Lemma
3.3.3 the integral manifolds of Lp are of the type M x CB\P | where M is an integral
manifold of L¢,. Therefore, CP/Lp = CP/Lp. Assume C%+'/L¢, ., = CP/Lp and
Ic, ,\Cp = {c}. The Lie algebra L, ., is generated by L¢, and a vector field 95, +e,
where € € L¢,,, . Consider the flow of 880@ + € with initial condition at a point of
CC. We can use this flow to construct an homogeneous affine isomorphism of CCr+1
into itself that equals the identity on C®» and rectifies 8«90(0) + ¢, leaving invariant Lc,.
Hence, C% /L¢, = C%+1 /L¢, ..

O

Remark 3.3.6. Let us denote by P(sc) the restriction of P € C[sp][[x,]] to C°.
Then, Fp(sc) = Fo, AFp(sc) = AFc and H)(s¢) = H for each v =1,...,k—2. Let
{0¢,u, € € J} C Derc C[sc| be the set of vector fields obtained if we proceed as in the
definition of {4}, ¢ € J}, now with C' in the place of B. Then < {dy,} >=< {§;} > as
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C[sc¢]-modules. To see this just notice that, if

m
m; ' :Z ?]mj mod AFpg
j=1
m
ml-Hg :ZCijJ mod AFpg
j=1
then

n

m; Fp(sc) :ZC’J sc)mj mod AF(sc)
7j=1

n

Zc 1 i(sc)m; mod AF (s¢).

]:

—_

3.4 Geometric Quotients of Unipotent Group Actions

An affine algebraic group is said to be unipotent if it is isomorphic to a group of upper
triangular matrices of the form Id 4 €, where ¢ is nilpotent. If G is unipotent its Lie
algebra L is nilpotent and the map exp : L — G is algebraic. Given a nilpotent Lie
algebra L, there is a unipotent group G = exp L such that L is the Lie algebra of G.

Let A be a Noetherian C-algebra. A linear map D : A — A is a derivation of A if
D(fg) = fD(g) + gD(f). A derivation D of A is nilpotent if for each f € A there is n
such that D"(f) = 0. Let Der™(A) denote the Lie algebra of nilpotent derivations of
A. Here, we set A = C[s¢].

Let G be an algebraic group acting algebraically on an algebraic variety X. If Y is
an algebraic variety and 7 : X — Y a morphism then 7 is called a geometric quotient, if

1. 7 is surjective and open,
2. (1,0x)Y = Oy,
3. m is a orbit map, i.e. the fibres of 7 are orbits of G.

If a geometric quotient exists it is uniquely determined and we just say that X /G exists.
Here, G will act on each strata of C¢ = Spec A through the action of G on each fiber of
G. On Theorem 3.5.3 we prove that C¢/. is a classifying space for germs of Legendrian
curves with generic plane projection {y* + 2" = 0}. The integral manifolds of Lo are
the orbits of the action of Gy := exp Lo. Set L := [L¢, Le] and G = exp L. Note that L
is nilpotent (G unipotent) and Lo /L = Cdp, where d¢ is the Euler field.

Definition 3.4.1. Let G be a unipotent algebraic group, Z = Spec A an affine G-variety
and X C Z open and G-stable. Let 7 : X — Y := Spec AY be the canonical map. A
point x € X is called stable under the action of G with respect to A (or with respect to
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Z) if the following holds:

There exists an f € AY such that z € Xr={ye X, fly) #0} and 7 : Xy = Yy :=
Spec A? is open and an orbit map. If X = Z = Spec A we call a point stable with
respect to A just stable.

Let X*(A) denote the set of stable points of X (under G with respect to A).
Proposition 3.4.2 ([7]). With the previous notations, we have that:

1. X5(A) is open and G-stable.

2. X°(A)/G exists and is a quasiaffine algebraic variety.

3. If V C Spec AY is open, U = 7Y (V) and 7 : U = V is a geometric quotient then
UcC X*(A).

4. If X is reduced then X*(A) is dense in X.

Definition 3.4.3. A geometric quotient 7w : X — Y is locally trivial if an open covering
{Vi}ier of Y and n; > 0 exist, such that 771 (V;) &£ V; x Af over V.

We use the following notations:
Let L C Der™(A) be a nilpotent Lie-algebra and d : A — Homc(L, A) the differential
defined by da(d) = 6(a). If B C A is a subalgebra then [B := {a € A : 6(a) €
Bforall 6 € L}. If a C A is an ideal, V(a) denotes the closed subscheme Spec A/a of
Spec A and D(a) the open subscheme Spec A — V(a).

Let A be a noetherian C-algebra and L C Der™!(A) a finite dimensional nilpotent
Lie-algebra. Suppose that A = U;czF?(A) has a filtration

F*:0=FYA) cF'A) cFYA)c...
by sub-vector spaces F*(A) such that
(F) SF'(A) C F"1(A) for alli € Z and all 6 € L.
Assume, furthermore, that
Zo:L=20(L) 2 Z1(L) 2 ... 2 Zy(L) 2 Zps1(L) =0

is filtered by sub-Lie-algebras Z;(L) such that
(Z) (L, Z;(L)] 2 Zj41(L) for all j € Z.

The filtration Z, of L induces projections

mj: Home(L, A) = Home(Z;(L), A).

For a point ¢ € Spec A with residue field x(t) let

T'Z‘(t) = dzmﬂ(t)AdF’(A) ®A /i(t) 1= 1,...,p,
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with p minimal such that AdFP(A) = AdA,
si(t) == dimy, )T (AdA) @4 K(t) j=1,...,¢,

such that s;(t) is the orbit dimension of Z;(L) at t.
Let Spec A = UU, be the flattening stratification of the modules

Home(L, A)JAdF'(A), i=1,...,p

and
Home(Z;(L), A)/m;(AdA), j=1,...,¢

Theorem 3.4.4 ([7]). Each stratum U, is invariant by L and admits a locally trivial
geometric quotient with respect to the action of L. The functions r;(t) and s;(t) are
constant along U,. Let x1,...,2, € A,01,...,04 € L satisfying the following properties:

e there are vy,...,v,,0 < vy < ... < v, =p, such that dz1,...,dx,, generate the
A-module AdF'(A);

e there are po, ..., pe, 1 = po < p1 < ... < pg such that 6,;,...,0m € Z;(L) and
Z;(L) C Zizyj Ad;.
Then

rank‘(éa(mg)(t))ﬁgw = ri(t) i=1,...,p,
rank(6a(s)(t))azu, = 5;i(t) j=1,...,¢

The strata U, are defined set theoretically by fizing (3.4.1) and (3.4.2).

3.5 Filtrations and Strata

Set L = [Lc, Le]. Fix a integer a such that k > a > 0. For each i € Z let F! be the
C-vector space generated by monomials in C[sc] of degree > —(a + ik). Since o(d) > k
for each homogeneous vector field of L, LF] C Fj ~L for each j. For each m € Z let II*
be the ideal of C[[z,y]] generated by the monomials of degree > a + mk. Let p be the
smallest i such that dF! generates C[s¢]dC[s¢c] as a C[sc]-module.

Given a € Z, set o := nk — k> — 2n — a. For each integer j set S; ={a:s4v €
EP™ ,a # 0} and let Z} be the sub-Lie algebra of L generated by the homogeneous
vector fields 0 € L such that o(d) € Sj. Remark that

Z9=1,2%,=0 and [L,2C 2%,

For each t € CC let I!' be the ideal of C|[[z, y]] generated by Fi, AF; and H},..., HF 2.
Set

54

71(t) = dim(c(C[[x,yH/(If,Ig”)’
7m(t) = dime C[[z, y)]/(AF;, (Fy, HY, ..., HF %) 0 pp=1+2n=m),

a,

\]
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form=mn,...,n+ pand

= ~ ~n+ ~ ~n+
Tat) = (a1 (), 71 "(0); Tan (D), - T " ().

We say that 7, () is the microlocal Hilbert function of X;. Set

p=#C=p—(k—-2)(k—-1)/2
Yy =p—#{myell - tels},
iy = p—#{my € IR 0 e Ip o).

We only define 75 (t) for m =n,...,n+ p because

(the microlocal Tjurina number of X;) if m is big and
Ton(t) = dime Cllz, gl /17", Th(t) = Ay

(hence independent of ¢) if m is small.

Let {U2} be the flattening stratification of C¢ corresponding to F* and Z¢. It follows
from Theorem 3.4.4 that U — U%/L is a geometric quotient. Moreover, Lo/L = C*
acts on U?/L and U%/Lc = U%/L¢ is a geometric quotient of U% by L¢. For t € C©
let us define

e(t) = (ul(t), ..., ul(t); v (t), ..., v5(t)) € N*#*2,

where
u§(t) = rank(6(s's)(t))or(s)<atjhs I =0seusp,

and
v (8) = rank(0(s ) (D)opycs,s G =0serep.

Lemma 3.5.1. The function t — e(t) is constant on US and takes different values for
different o. The analytic structure of US is defined by the corresponding subminors of
(6(s0)(t)). Moreover, ul(t) = Ay — ?Z]L] (t) and v}(t) = fig ™ — ?Z'QH (t). In particular,
ug(t) = vp(t) = 1 — 7(Xy) where T(Xy) is the microlocal Tjurina number of the curve

stngularity X;.

Proof. That e(t) is constant on US and takes different values for different « is a conse-
quence of Theorem, 3.4.4, as is the claim about the analytic structure of each strata.

Let t € U2 and consider for each m € {n,...,n+p} the induced C-base {myc;,, (t)} =
{myey,, } of C{x,y}/(AF, I"). Then, for each ¢ € J,,

b
myFy = Z 5?(so(j))(t)m“,b+j mod (AFy, I]")
i=1
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and

b
myH, = Z 07 (So(;)) (t)My—pyj mod (AFy, 1))
i=1

for v = 1,...,k — 2. Then, by definition of 73(¢) and from the definition of {4},
uf(t) = Ay =717 (@),

The proof of the claim about the v{(¢) is similar with the difference that we’re now
interested in the relations mod AF; between the m,F;, myH, that belong to Jo~i2nem
for each m € {n,...,n+ p}. Note that m,Fy, mgH; € I£7"7*"~™ if and only if o), a) €
Sr—n-

O

Lemma 3.5.2. If a,b € CP are such that Con(F,) = Con(Fy), there is ¢ : C — CB
microlocally trivial such that (0) = a and (1) = b.

Proof. Let xo be a contact transformation given by «, 3y such that Fj, = uF,° for some
unit u € C{z,y}. We can assume deg xo > 0. There is a relative contact transformation
x(t) over C such that x(0) = idcs and x(1) = xo. Then

G(t) = u(tx, ty)Fg(:r, y,a)

is an unfolding of F, such that G(1) = Fj. By versality of Fp and because Fy, is semi-
quasihomogeneous (j(F,) = (Fg,j(Fy))) there is a relative coordinate transformation

d:CxC?—CxC?
(t7x7y> = (t7®17¢)2)

and ¢ : C — CP such that
@ (G(1) = Fy)-

(see Remark 1.1 and Corollary 3.3 of [8]). Now, because Fp is semiuniversal (hence
does not contain trivial subfamilies with respect to right equivalence) ®(1) (G(1)) =
(1) (Fy) = Fy(1) implies that (1) = b.

O

Theorem 3.5.3. Given a,b € CY, Con(F,) = Con(Fy) if and only if a and b are in the
same integral manifold of L¢.

Proof. By Theorem 3.3.5 we can replace C' by B.

Let us first prove sufficiency. Let C' C A C B and S be a complex space. We say that
a holomorphic map 1 : S — C4 is trivial if for each o € S, ¥*F4 is a trivial deformation
of Deffes’“(S, 0). Assume 1 : (C,0) — CPB is the germ of an integral curve of a vector
field 6 in L£p. Set ¢ = (0). Let v. : T- — CP be the morphism induced by 1. There
are ag, ai, . ..,a, oo, fo € C{sp}|[[x,y]] such that

J4
0Fg = agFg + ZCLJ'HJ]B + a0, Fg + ,BoayFB.
j=1
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Set u = 1+ 2ag(g), @ = alg) + Xy a;(q)p? and 8 = B(g) + Xy shra;(a)p+'. By
Theorem 3.2.17 there is v € C{z, y, p} such that

(x,y,p,€) = (x + ag,y + fe,p + ¢, €)

defines a relative contact transformation x* over T.. Let G € C{z,y,p,e} be defined by
G(z,y,p,e) = Fp(z + as,y + Pe,q). Since v*Fp = uG mod (¢) and

0:0" Fp = 0-uG mod ICon(]-'q) + (6)7

we have that

¢*IB = uG mod Ixs(Con(]-'q)) + (82).
Therefore, X Fjp is a trivial deformation of Def;™"(T.). Then U*Fp is a trivial defor-
mation of Deffes’“((C, 0) (see the proof of Theorem 3.2.15 in chapter 2).

Conversely, assume that there is a germ of contact transformation x; such that
(EXY) = (Fy). We can assume deg x1 > 0. If x1 is of type (3.2.10), by Lemma 3.5.2
there is a trivial curve 1 : C — CP such that 1(0) = a and (1) = b. Moreover, 1 is
an integral curve of the Euler vector field. Since the derivative of x; leaves {y = p = 0}
invariant, we can assume by Theorem 3.2.18 that x; is of type (3.2.7). Set X = Xta,t4,-
There is a curve with polynomial coefficients 1) : C — CP such that FX = *Fp,
¥(0) = a and ¥(1) = b.

Let Q be an open set of C. Let 9 : Q — CP be a trivial curve. Let us show that )
is contained in an integral manifold of L. Let U be the union of the strata U, such
that, for each ¢ € U the microlocal Tjurina number of F, equals the microlocal Tjurina
number of F,. Remark that the trajectory of 1 is contained in U. By Theorem 3.4.4
Lpy verifies the Frobenius Theorem. Hence, it is enough to show that, for each ¢y € €,
there is § € Lp such that 1'(tg) = §(¢(tp)). We can assume ¢ty = 0. Since 1) is trivial,
there are a relative contact transformation x and u € C{x,y,t} such that u(x,y,0) =1
and

F(.Z‘, Y, ¢(t)) = UFX('%'7 Y, Q) mod Ix(Con(]:q))'
If x is of type 3.2.10, we can assume 9§ is the Euler field. Hence we can assume that y is
of type (3.2.7). Therefore there are ¢ > 1 and a,b,a; € C{x,y}, 1 <i < ¢, such that

k—2
F(z,y,¥(t)) = uF(x,y,q) + Z agtHg + atd, F, + btd, F, mod (t*).
=1

Deriving in order to t and evaluating at 0, there is ag € C{z,y} such that
o e
Y iieco Y00z = agFy + Y477 agHY + a0y Fy + b0y Fy.
There are § € Lp and € € Ap, such that
5FB = aoFB + 25;12 ang; + €.

Hence o
2yen Vi (0)2'y — (q)Fp = e(q) + ads Fy + boy Fy.
If§ = Z(i,j)eBo aijOs; ;5 a;5(1(0)) = ;J(O) for each (i,7) € By. O
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Theorem 3.5.4. (1) Let e = (eq,...,e,) € NPT and let U denote the unique stratum
(assumed to be not empty) such that e®(t) = e for each t € U*. The geometric quotient
US/L is quasiaffine and of finite type over C. It is a coarse moduli space for the functor
which associates to any complex space S the set of isomorphism classes of flat families
(with section) over S of plane curve singularities with fized semigroup (k,n) and fized
microlocal Hilbert function Ty .

(2) Let T, be the open dense set defined by singularities with minimal microlocal Tju-
rina number Tyin. Then the geometric quotient Tz . /Lo exists and is a coarse moduli
space for curves with semigroup (k,n) and microlocal Tjurina number Tp,. Moreover,
T% . /Lc is locally isomorphic to an open subset of a weighted projective space.

Proof. 1t follows from Lemma 3.5.1 and Theorems 3.4.4 and 3.5.3. O

3.6 Example
The function
Fo = yb + 21 + s00%% + 5327y + s42%y* + 5908y + s102%* + s1627y.

is a semiuniversal equisingular microlocal deformation of f = 3% + z13.
The Lie algebra L is generated by the vector fields

60 = 2590;, + 35305, + 45405, + 95905, + 1051005, + 1651605,
68 = 35305, + (454 — %s%)@sm + 1051005,

67 = 25904 + 353054,

612 = 45405,

o3 = 35305,

61 = 25905,

Choosing a = 6 we get Fy) = (s2,53,54), Fy = (52,53, 54, 59, 510), Fyy = (52, 83, 54, 59, 510, 516)-
So, p = 2 and the stratification {Ug} given by fixing e*(t) = (u§(t), u§(t), us(t); v§(t), v{(t), v (1))
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Figure 3.1: This figure concerns the case k = 6 and n = 13. The diamonds represent
the set of orders of the vector fields generating Lc. The black circles and black squares
represent Cy. The leading monomials of Hy,..., Hy are represented as well. The white
square represents the leading monomial of xHs and yH; which produce the vector field
514 with order represented by a black diamond. The order of the vector fields 3, 89, &1,
69 and &3 are represented by white diamonds.

is given by
Uy ={t = (ta,ts3,ta,t9, t10,t16) € SpecClsc] : e*(t) = (1,3,4;1,3,4)}
—{t: 912 — Stoty + %t% #£0}.
Uy ={t € SpecClsc] : e®(t) = (1,2,3;1,2,3)}
:{t:9t§—8t2t4+%t§ =0and t2 # 0ort3 # 0 or ty4 # 0}.

Us ={t € SpecClsc] : e*(t) = (0,1,2;0,1,2)}
={t:ty =1t3 =t4 =0and t;op # 0}.

Uy ={t € SpecClsc]| : e*(t) = (0,1,1;0,0,1)}
={t:ty =t3 =1t4 =t19p = 0 and tg # 0}.

Us ={t € SpecClsc]| : e*(t) = (0,0,1;0,0,1)}

:{t:t2:---:t10:Oandt167€0}.
Us ={t € SpecC|sc]| : e*(t) = (0,0,0;0,0,0)}
—{tity = =t =0}

U; is the stratum with minimal microlocal Tjurina number.
Let us present detailed calculations concerning the generators of Lo in the previous
example. Let Y denote the germ at the origin of {F = 0}. The relative conormal £ of
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Y can be parametrized by

T = —tﬁ,
y = t13 4 ot 4 ahst?® 4 hgt!T 4 Pstt® + Yt + rt?0 4 ahgt® 4 pgt? 4 - -
13 7 5 9 8 10 17 11 12 19 13 10 14 7 15
= — 1T — Sapgt? — —apgt?0 — ittt — 35t — et — Zaprttt — —ygt
D 5 2@02 3¢3 5 Py s 5 (3 3 Wy 2¢8
11
_ ii,ngtlﬁ 4o

where ¢; € (s¢)C[s¢| are homogeneous of degree —i. These are the a; such that the
polynomial in C[t] given by the following SINGULAR session is zero:

> ring r=(0,a2,a3,a4,ab,a6,a’7,a8,a9,s2,s3,s4,s9,s10,s16), (x,y,t) ,dp;

> poly F=y6+x13+s2*%x9y2+s3*x7y3+s4*x5y4+s9*x8y3+s10*x6y4+s16*x7y4;

> subst(F,x,-t6);

-t7°78 +(-82) %y 2%t 54+ (s9) xy " 3*t 48+ (-s16) *y 4*t 42+ (-s3) *y " 3*t 42

+(810) *y 4%t~ 36+ (-s4) *y 4%t 30+y 6

> subst (-t 78 +(-s2) *y 2%t 54+ (s9) xy 3%t 48+ (-s16) *y 4xt 42+ (-s3) *y " 3xt 42
+(s10) *xy 4xt"36+(-s4) *y 4*t"30+y " 6,y,t 13+a2+t " 15+a3*t 16+ad*t " 17+ab*t"18
+abxt”19+a7*t " 20+a8+*t " 21+a9*t"22)

As we'll see, the only v; we actually need to find the generators of L¢ is

o = 59/6.

Let us calculate the vector fields generating L. Here, all equalities are mod AF¢ and in
the vector fields we identify, by abuse of language, the monomials and the corresponding

O0’s :

o 014

JJ.HQ _ $p28xFC — 13p2$13 + 952]323393/2 4.

Notice that, as a consequence of Lemma 3.3.3, the monomials occurring with order
bigger than deg(x"y*) can be ignored in this calculation. From now on, whenever
we use the symbol - -- we mean that bigger order monomials can be ignored. Now,
continuing the previous SINGULAR session:

> poly p=(-13t7-15%a2*t9-16*a3*t10-17*ad*t11-18%ab*t12-19*ab*t13-20*a7*t14
-21%a8*t15-22%a9*t16) /6;

> poly X=-t6;

> poly Y=t13+a2*t15+a3*t16+ad*tl17+ab*t18+abxt19+a7*t20+a8*t21+a9*t22;

> p 2*%X"13-(13/6) "2xX " 11%Y"2;
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(-35%a9"2) /4*t"110+(-293*a8+*a9) /18*t " 109+ (-271*a7*a9-136%a8"2) /18*t " 108+ (-
249%ab6*xa9-251*a7*a8) /18*t 107+ (-454*ab*a9-460*ab*a8-231*a7 " 2) /36*t " 106+ (-
205*%ad*a9-209*ab*a8-211*a6*a7)/18*t " 105+ (-183*a3*a9-188*ad*a8-191*ab*a7-
96*a6"2)/18*t 104+ (-161*a2*a9-167+a3*a8-171*ad*a7-173*ab*a6)/18*t" 103+ (-
292*a2*xa8-302*a3*a7-308*ad*ab6-155%a5"2) /36*t 102+ (-131*a2*a7-135*a3*ab-
137*ad*ab-117*a9) /18*%t 101+ (-116*a2*a6-119*a3*ab5-60*ad " 2-104*a8) /18t~ 100
+(-101*a2*a5-103*a3*ad-91*a7) /18%t " 99+ (-172*a2+ad-87*a3" 2-156%a6) /36*t " 98
+(-71*a2%a3-65*ab) /18*t 97+ (-14*a2" 2-26%*ad) /9xt " 96+ (-13*a3) /6*t 95+ (-
13%a2) /9%t 94

we see that

13° 1
p2atd — (6) 212 4 ng)?x?y‘l 4.

Now, 5?1), given by yH1, which has the same order as zHy can be used to, through
elementary operations, eliminate from 67 the monomial z''y?. Thus,

o = 82x7y4.

513.

—6.13yFc = 282x9y3 + 333x7y4 4.

But, as

13\ °
Hs = <6> 132%3 + - -

we see that, through elementary operations involving &3, we can eliminate from 49
the monomial z%y3. Thus,
013 = 35327y

512

—6.132% Fo = 2502 y? + 3s3a”y” + dsaayt + -

through elementary operations involving §3 and §3 we can eliminate the monomials

r11y? and 2%3 from 69 and get:

09 = (4s4 + xs3)x"y*, x € C.
Finally, using 6'4 to eliminate *s327y*, we have that
612 = 45427yt

57

cHy = 2pd, Fo = 13pa'® + 982px9y2 + 783px7y3 + 584p:v5y4 + 889px8y3 + -

and

13
pr'd = 2212y 4

6

THAAET R AR
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Remark 3.6.1. The reason why we can ignore in pz'? the monomials that occur
after 6y is that

1. All monomials after z%y*, except for z7y*, can be eliminated because of
Lemma 3.3.3 and through elementary operations involving 63 and J3.

2. Even z7y?* can be ignored, observing that pz'3 is homogeneous of degree 7
and as such, the only variables involved in the coefficient (in C[s¢]) of z7y*
may be sy, s3 or s4. Now, using 6'4, 6! and ¢'2 we can eliminate, through
elementary operations, the monomial z"y* from §7.

From
Yo Fo = 13@12y + 982x8y3 + 783.%'6y4 + 5$4$4y5 + 839x7y4 4+
we get that
13 3 7 5 8
gxmy = —58295893 - 683$6y4 - 684964315 - 689x7y4 +oe

Reasoning as in remark 3.6.1 we see that syz*y® can be ignored. Thus,

3 7 8
13px13 =13 ((-282 + f;) x8y3 + <—683 + i;) x6y4 — 639x7y4 + )

Now,

13
p;(;gyz = —xsy _|_ [

6
13

px7y3 = €x6y4 + ...
13

pm8y3 = €x7y4 + ...

Once again, the monomials ignored can be eliminated, reasoning as in Remark
3.6.1. So,

xH1—<13( 252+18)+9632>xy +<13( 683+12 +7653 oy +

1
+ <—13289 + 86339> :c7y4
13

13 4
:1—882x8y3 + 533:66?44.
We get that
6 = S—;:Ugy3 + %31'61/4.
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o 06:

—6.132Fc = 2s92'%%% + 35328y + 4s42%9* + 95927y + 1051027y + - - -

Because (monomials ignored as in Remark 3.6.1)

Hy :p2awFC — 13p2x12 +952p2$8y2 oo,

13)° 13
p2l? = (6) 21092 + soxbyt + .-,

6.9
and )
13
p2aty? = <6> 2yt
wet get
6\ Hs
—6.13xFc — 2 — | ==
e (13) 13

6\ 13 6\29 [13)?
2383$8y3 + (454 — 289 <13> @52 — 289 (13) 3 <6> 52> 3363/4 + 105109:73/4 =

58
=3s32%y% + <454 — 395%) 28yt + 1081027y

So,
6 8,3 58 2\ 6 4 7, 4
0° = 3s32°y” + | 4s4 — 3952 ) Y + 10s192"y".
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