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Résumé en Français

Cette thèse concerne un domaine de la cryptographie au carrefour de la théorie des
nombres, de la géométrie algébrique et de la théorie de la complexité. La cryptographie
est une discipline s’attachant à protéger des données (ou messages) assurant en particulier

leur con�dentialité, intégrité et authenticité. Ainsi, la cryptographie comprend des techniques dites
de chi�rement, rendant un message inintelligible à autre que qui-de-droit, et dites de signature,
permettant de véri�er que le message n’ait pas été altéré et qu’il provienne de l’émetteur présumé.

La sécurité de la cryptographie usuelle repose sur des problèmes mathématiques réputés di�ciles
à résoudre : trouver un logarithme discret (DLOG), ou décomposer de grands nombres en facteurs
premiers (FACT). Toutefois, cette cryptographie est menacée par une percée technologique : l’ordi-
nateur quantique. En e�et, les opérations élémentaires des ordinateurs quantique et classiques étant
de natures di�érentes elles rendent ce premier capable de résoudre les problèmes DLOG et FACT
e�cacement. Cette menace a fait s’intéresser les chercheurs à des alternatives pouvant lui résister.

L’une de ces alternatives, parmi les plus prometteuses de cette décennie, repose sur des problèmes
géométriques d’un objet mathématique connu sous le nom de réseau euclidien. Outre sa potentielle
résistance à l’ordinateur quantique, la cryptographie à base de réseaux euclidiens ouvre également
de nouvelles perspectives en permettant d’e�ectuer de multiples opérations sur les données chi�rés
sans avoir à les déchi�rer. Cependant, bon nombre de constructions sur les réseaux euclidiens
nécessitent un générateur de bruit gaussien à haute précision. Ces générateurs sont essentiels à la
sécurité des schémas qui les abritent, mais limite souvent leur e�cacité.

Ce résumé comprend une introduction à cette cryptographie, reprenant en partie l’article de
vulgarisation intitulé Une Cryptographie Nouvelle : Le Réseau Euclidien écrit par Léo Ducas-Binda et
publié dans GNU/Linux Magasin n°178, ainsi qu’un résumé des contributions de cette thèse.
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Des réseaux euclidiens à la cryptographie

Les réseaux euclidiens ont d’abord été utilisés pour casser certains schémas cryptographiques
avant de se rendre compte qu’ils pouvaient aussi servir à en construire de nouveaux. Miklós Ajtai
fut pionnier de cette nouvelle discipline en démontrant dans ces travaux de 1996 que les réseaux
euclidiens peuvent servir de base solide à la cryptographie. Plus précisément, il démontra qu’il
n’existe pas d’instance faible pour les problèmes sur les réseaux, c’est-à-dire que ces problèmes sont,
à paramètres �xés, aussi di�ciles pour tout réseau considéré, contrairement au problème FACT qui,
par exemple, admet certains choix de facteurs premiers peu judicieux rendant la factorisation facile.
De plus, le fait que les problèmes de réseaux euclidiens interviennent dans de nombreux domaines
en informatique depuis près d’un demi-siècle sans que cela n’ait permis de les résoudre e�cacement
semble une garantie supplémentaire quant à la sécurité des schémas cryptographiques basés sur ces
problèmes.

Portés par les idées d’Ajtai, des schémas cryptographiques basés sur les réseaux euclidiens ont
rapidement été développés comme le schéma de chi�rement NTRU et celui de signature NTRUsign,
mais ce dernier subie plusieurs attaques malgré les di�érentes tentative pour le rendre plus résistant.
Il faudra attendre les années 2000 et les e�orts considérables de plusieurs chercheurs pour surmonter
les nombreuses di�cultés théoriques liées à l’utilisation de ce nouvel objet en cryptographie et
particulièrement en signature. Mais si cette étude théorique a permis de révéler le potentiel de cette
cryptographie nouvelle, elle a également laissé de coté les questions d’e�cacité produisant des
schémas cryptographiques inutilisables en pratique bien que théoriquement sûrs. En parallèle, cette
cryptographie des réseaux étonne la communauté en résolvant pour la première fois un problème
considéré comme le Graal de la cryptographie en permettant d’obtenir un schéma de chi�rement
dit pleinement homomorphe, c’est-à-dire permettant d’exécuter n’importe quel programme sur
les données chi�rées sans devoir au préalable les déchi�rer, ouvrant ainsi la voie à un monde de
possibilités nouvelles.

Depuis quelques années, la question de l’e�cacité de cette cryptographie est redevenue pertinente
et le NIST, organisme américain chargé de la standardisation de schémas cryptographiques, a lancé
la course au post-quantique avec un appel international pour la création de standards à l’épreuve de
l’ordinateur quantique. Dans cette compétition les schémas cryptographiques basés sur les réseaux
euclidiens représentent plus de 40% des candidats, il ne serait alors pas étonnant de voir cette
cryptographie nouvelle pro�ter de sa grande �exibilité a�n de prendre, dans quelques années, la
place de cryptographie usuelle. Cependant, l’écart existant entre instances prouvées sûres et instances
utilisables en pratique représente encore aujourd’hui un dé� de taille pour cette cryptographie. En
e�et, la taille de certains paramètres nécessaire pour garantir une sécurité prouvée est trop élevée,
ce qui conduit à leurs préférer des paramètres empiriques basés sur les attaques les plus e�caces en
pratique. Notons que ce processus de détermination empirique de paramètres correspond à ce qui
se fait aujourd’hui pour la mise-en-œuvre de la cryptographie, mais que cette méthode nécessite
encore, pour être �able dans le contexte de la cryptographie à base de réseaux euclidien, un e�ort
considérable de recherche d’attaques optimales.

La géométrie des réseaux euclidiens

Un réseaux euclidien est dé�ni comme un sous-groupe discret d’un espace vectoriel euclidien. Dit
autrement, un réseaux euclidien est simplement un ensemble de points arrangés régulièrement dans
l’espace. La �gure 1 représente un réseau euclidien de dimension deux. Plus précisément, quand
nous disons arrangés régulièrement nous parlons de la structure additive de cet ensemble de points.
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b1

b2

b1 + b2

Figure 1. – Réseau euclidien (points noirs) en dimension 2 et exemple d’addition de points.

En e�et, un réseaux euclidien est un ensemble de points d’un espace que l’on peut additionner ou
soustraire entre eux1. La notion de discret s’oppose elle à celle de continu, une droite passant par
l’origine aurait aussi cette structure additive, mais la droite est un ensemble continu en ce sens
qu’au voisinage d’un point de la droite nous trouverons toujours un autre point de droite et ce aussi
petit que soit le voisinage considéré, une telle droite n’est donc pas un réseau euclidien. En�n, un
espace vectoriel euclidien est simplement un espace droit, comme l’espace en trois dimension auquel
nous sommes habitués, par opposition aux espaces courbes qu’on peut par exemple trouver dans la
théorie de la relativité d’Albert Einstein.

Le nombre de points d’un réseau euclidien étant in�ni, il est impossible de le décrire en donnant
la liste complète de ceux-ci. On le décrira donc en utilisant une base, c’est-à-dire un ensemble de
points, ou vecteurs, qui engendrent entièrement le réseau euclidien, comme décrit en �gure 2.

b1

b2

b1 + b2

2b1

2b2

−b1

−b2

b1 − b2

b2 − b1 2b2 − b1

2b1 − b2

a

Figure 2. – Une base générant un réseau euclidien.

N’importe quel point du réseau euclidien peut être décrit par un système de coordonnées dans
1Additionner, respectivement soustraire, deux points de cet ensemble reviens à additionner, resp. soustraire, les vecteurs

allant de l’origine du repère à ces points.
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cette base. Ainsi, dans le réseau en deux dimensions de la �gure 2 le point a a pour coordonnées
(2, 3) dans la base (b1, b2), ce qui signi�e que a = 2b1 + 3b2. Notez que dans un réseaux euclidien
les coordonnées sont toujours des nombres entiers, mais les coordonnées de la base du réseau
euclidien dans base naturelle ne sont pas nécessairement des nombres entiers et celle-ci n’est pas
nécessairement rectangle. En fait, en dehors de certains réseaux euclidiens très simples, il n’existera
aucune base rectangle. Mais chaque réseau euclidien admet plein de bases di�érentes et certaines
sont plus rectangles que d’autres.

Sur la �gure 3, intuitivement la base bleu semble meilleure que la base rouge, elle n’est pas
parfaitement rectangle, mais elle est plus rectangle que la base rouge. Nous allons voir en quoi avoir
une bonne base pour un réseau est utile, mais notez que tirer un point aléatoire du réseau euclidien
est facile même avec une mauvaise base simplement en choisissant aléatoirement ses coordonnées.

Figure 3. – Deux bases d’un même réseau euclidien, la bonne base en bleu et la mauvaise en rouge.

Pour comprendre en quoi une base est meilleure qu’une autre il faut expliquer à quoi peuvent
servir les réseaux euclidiens. Lorsqu’on veut par exemple utiliser un canal analogique pour des
communications numériques, on souhaite transformer le signale continu transmis en une donnée
discrète, pour ce faire on peut faire correspondre la donnée analogique du signale avec un point
du réseau euclidien. Cependant, il y a forcément du bruit qui vient perturber le signal, nous allons
donc considérer que la donnée analogique transmise correspond à un point de l’espace complet dans
lequel se plonge notre réseau euclidien. En supposant que l’erreur soit su�samment petite, on peut
retrouver la donnée numérique transmise : c’est le point du réseau euclidien le plus proche de la
donnée analogique reçu. Sur la �gure 4 l’émetteur cherche à transmettre le point d, mais les erreurs
analogiques le transforment en t = d+ e pour une petite erreur e. Le récepteur retrouvera le point
d qui est le point du réseau le plus proche de t.

Les bases servent à découper l’espace pour retrouver le point le plus proche comme exposé sur la
�gure 5. Retrouver ce point le plus proche semble facile en dimension deux en dessinant quelques
cercles, mais cela se complique si on considère un réseau euclidien avec plus de dimensions. Il existe
divers algorithmes dus à Laszlo Babai pour retrouver rapidement un point proche et ces algorithmes
utilisent une base du réseau euclidien. Ces algorithmes pavent l’espace en fonction de la base, et
chaque point du réseau euclidien est au centre de l’un de ces pavés. Comme on le voit sur la �gure 5,
la tolérance aux erreurs, correspondant au rayon des cercles inscrit dans chaque pavé, dépend de la
forme du pavé et donc de la base. Ainsi une bonne base sera une base pour laquelle la tolérance aux



Des Réseaux Euclidiens à la Cryptographie ix

t

d

Figure 4. – Correction d’erreur utilisant un réseau carré.

erreurs est élevée.

Figure 5. – Correction d’erreur avec une bonne base (à gauche) et une mauvaise base (à droite).

Lorsque le nombre de dimensions est petit trouver une bonne base pour un réseau euclidien
est aisé, on parle de réduction de réseau. Mais les algorithmes de réduction de réseau s’avèrent
exponentiels, ainsi, s’il est facile de réduire un réseau de dimension deux ou trois à la main, un
algorithme un peu malin réduira un réseau de dimension 30 à 40 en quelques secondes et les records
sur clusters atteignent péniblement 130 dimensions. Ainsi, on estime qu’avec 200 ou 250 dimensions,
la réduction de réseau prendrait des milliards d’années de calculs.

Chi�rer avec les réseaux euclidiens

Les réseaux euclidiens présentent des problèmes qui sont résolubles seulement si l’on connaît une
bonne base, mais qui sont di�ciles sinon. Ainsi tous les ingrédients sont réunis pour construire des
schémas cryptographiques basée sur une trappe. En cryptographie une trappe est une donnée qui
permet de résoudre e�cacement un problème qui, sans cette trappe, est di�cile à résoudre. On peut
se servir d’une telle trappe comme d’une clé secrète, cette clé secrète étant dans le cas des réseaux
euclidiens une bonne base. Notez que la cryptographie à base de réseaux euclidiens ne fait intervenir
que des calculs simple et n’implique pas de grands nombres premiers ou de structure complexe.

Pour chi�rer un message en utilisant un réseau euclidien on va considérer ce message comme une
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erreur et ajouter cette erreur à un point aléatoire du réseau euclidien. Ainsi, il sera aisé de retrouver
le message pour quelqu’un connaissant une bonne base, mais il sera di�cile de le retrouver avec une
mauvaise base et, comme vu précédemment, si la dimension du réseau euclidien est su�samment
grande il est également di�cile de retrouver une bonne base à partir d’une mauvaise base. En
fait, considérer le message comme une erreur n’est pas tout à fait su�sant car les messages sont
généralement prédictibles. Il faut leur ajouter une erreur aléatoire supplémentaire.
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Figure 6. – Chi�rement des messages (0 ou 1) devenant des points proches des points du réseau.

Considérons l’exemple simpli�é de la �gure 6 où le message (0 ou 1) est chi�ré en l’un des points
correspondant proche d’un point du réseau euclidien. Le déchi�rement consiste alors simplement à
trouver le point du réseau euclidien le plus proche, en utilisant un des algorithmes de Babai avec la
bonne base, puis à le soustraire au chi�ré a�n de retrouver l’erreur et ainsi pouvoir conclure.

L’un de ces algorithmes de Babai est plutôt simple. Il prend en entrée la base sous forme d’une
matrice et le point de l’espace, avec l’erreur, sous forme de vecteur. Ce vecteur est donnée dans le
système de coordonnées naturel et on commence par le convertir vers le système de coordonnées
du réseau euclidien en le multipliant par l’inverse de la matrice base. On arrondit ensuite toutes les
coordonnées du vecteur obtenu et on le reconvertit vers la base naturelle en la multipliant par la
matrice base. Le résultat est un point du réseau euclidien représenté par un vecteur constitué de
nombres entiers.

Reste à savoir comment trouver une bonne et une mauvaise base pour un même réseau euclidien,
la bonne base servant de clé privée et la mauvaise base servant de clé publique. Pour la clé privée,
la bonne base, il su�t de la choisir. En e�et, dé�nir un réseau euclidien puis chercher une bonne
base serait di�cile, mais on peut simplement choisir une bonne base et cette base dé�nit un réseau
euclidien. Pour dériver une clé publique, une mauvaise base, à partir de cette bonne base on peut
essayer de prendre une combinaison aléatoire des vecteurs de la bonne base, mais la vraie bonne
solution est plus subtile, trop subtile pour être détaillée ici.

Calculer sans déchi�rer

Cette méthode de chi�rement a une propriété étonnante : si on additionne deux messages chi�rés et
que l’on déchi�re le résultat, alors le résultat sera la somme des deux messages, à condition bien
sûr que son erreur soit su�samment petite (i.e. que l’erreur ne fasse pas sortir le point de son pavé
engendré par la bonne base).
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Figure 7. – Si l’erreur est petite, la somme des chi�rés est un chi�ré de la somme (XOR) des clairs.

Dans la �gure 7, il semble qu’e�ectuer une addition soit la limite : si on essaye de répéter cette
opération, alors l’erreur ferait sortir le chi�ré du parallélépipède bleu et le déchi�rement de celui-ci
serait incorrect. Cependant cette �gure est un peu trompeuse, en pratique on peut concevoir des
réseaux euclidiens qui pourraient supporter plein d’addition d’a�lés, mais il y a toujours une limite.

Cette propriété est appelée homomorphisme partiel, ce qui signi�e que la structure est préservée,
ainsi le chi�rement décrit ci-dessus préserve la structure additive du réseau euclidien et l’addition
entre chi�rés se traduira par une addition des éléments chi�rés après déchi�rement sans avoir à les
déchi�rer. Notez que cet homomorphisme partiel n’est pas exceptionnel, d’autres schémas crypto-
graphiques, comme le très répandu RSA basé sur le problème FACT, ont aussi des homomorphismes
partiels.

Cet homomorphisme est dit partiel car seule la structure additive est préservée. Il faudra attendre
les travaux de Craig Gentry qui réussira à faire en sorte que l’on puisse aussi faire des multiplication
par produit tensoriel sans déchi�rement en plus des additions, idée qui avait précédemment été
étudiée par Carlos Aguilar Melchor, Philippe Gaborit et Javier Herranz. Certains peuvent se de-
mander en quoi ceci est si remarquable, mais nous allons voir que nous disposons maintenant d’un
cryptosystème qui permet d’exécuter n’importe quel programme sans avoir à déchi�rer les données.

En e�et, si nous chi�rons le message bit-à-bit, c’est-à-dire si chaque bit est chi�ré séparément,
alors l’addition binaire (i.e. modulo 2) correspond à la porte logique XOR (i.e. ou exclusif) et la
multiplication binaire correspond à la porte logique AND (i.e. et). Et vous savez sûrement que cet
ensemble de deux portes logiques est universel : n’importe quel programme peut être exprimé sous
forme de circuit qui n’utilise que des portes XOR et AND. On peut donc appliquer ces circuits aux
données chi�rées et en théorie faire travailler un ordinateur sur des données qu’il ne peut pas
comprendre.

Signer avec les réseaux euclidiens

La signature d’un message en utilisant un réseau euclidien fonctionne sur le même principe que
le chi�rement. Le signataire doit disposer d’une bonne base ainsi que d’une mauvaise base d’un
même réseau euclidien. Il rend alors publique la mauvaise base, celle-ci permettant à qui le souhaite
de véri�er la validité des signatures et il garde privée la bonne base, lui permettant de signer des
messages. A�n de signer un message, celui-ci va être transformé de manière publique et déterministe
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(i.e. cette même transformation peut être e�ectuée par tout un chacun a�n d’obtenir le même
résultat) en un point de l’espace quelconque appelé point cible. Le signataire va alors, à la manière
du déchi�rement vu précédemment, utiliser un des algorithmes de Babai avec sa bonne base pour
trouver un point du réseau proche de ce point cible. Ce point du réseau, transmis dans le système de
coordonnées naturel, fait o�ce de signature.

Cette signature permet à chacun possédant le message et la mauvaise base de véri�er que cette
signature correspond bien à la fois au signataire et au message. Cette véri�cation consiste en deux
étapes, il faut d’abord véri�er, grâce à la mauvaise base, que la signature est bien un point du réseau
euclidien, ensuite il su�t de calculer la distance qui l’éloigne du point cible. Le point cible étant
propre au message et le véri�eur étant le seul à pouvoir trouver un point du réseau proche de ce
point cible cela prouve bien qu’il est le signataire de ce message.

Cependant, cette méthode de signature comporte une faille dévastatrice permettant à un attaquant,
disposant d’un petit nombre de signatures, de retrouver la bonne base du réseau et ainsi de forger de
fausses signatures. Cela est dû au fait que si l’on soustrait le point signature au point cible le point
obtenu est toujours un point du parallélépipède engendré par la bonne base (centré en l’origine),
ainsi les di�érentes signatures vont permettre de dessiner ce parallélépipède et il sera alors aisé de
retrouver la bonne base. A�n de corriger ce problème, une solution proposée par Craig Gentry, Chris
Peikert et Vinod Vaikuntanathan consiste à masquer la structure de la bonne base en choisissant
aléatoirement la signature parmi les points du réseau proches du point cible. Plus précisément, la
distribution des signatures va alors suivre une distribution gaussienne discrète centrée en le point
cible, qui est indépendante de la bonne base utilisée, ce qui garantit qu’aucune information ne fuite
concernant la bonne base.

L’utilisation d’une distribution gaussienne se justi�e par sa forte entropie à faible écart-type,
permettant ainsi de masquer correctement la structure de la bonne base tout en conservant une taille
de signature raisonnable. En e�et, le véri�eur disposant du message et pouvant ainsi retrouver le
point cible, seule la di�érente entre le point cible et le point proche du réseau est transmise comme
signature. Si théoriquement l’utilisation de distributions gaussiennes discrètes corrige élégamment
ce problème, il en demeure cependant un en pratique, car échantillonner selon une loi gaussienne
discrète avec la précision et les di�érentes contraintes propres à la cryptographie n’est pas chose
aisée. Et si les techniques basées sur l’échantillonnage gaussien se sont multipliées en cryptographie
à base de réseaux euclidiens ces dernières années, les solutions à ce problème d’implémentation
restent rares et insatisfaisantes.

Contributions de cette thèse

Dans cette section, nous présentons un résumé informel des di�érents travaux e�ectués durant mon
doctorat. Chacun d’entre-eux sera développé dans la suite de la thèse.

Falcon : un nouveau schéma de signature

Falcon est un schéma de signature basé sur les réseaux euclidiens, candidat à la standardisation
du NIST sur la cryptographie post-quantique, fruit d’une collaboration avec Pierre-Alain Fouque,
Je�rey Ho�stein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Gregor Sei-
ler, William Whyte et Zhenfei Zhang. Falcon est une instanciation sur les réseaux NTRU de la
méthode de signature hache-puis-signe de Gentry, Peikert et Vaikuntanathan (GPV) [GPV08] dé-
crite précédemment. Les réseaux NTRU sont une classe particulière de réseaux euclidiens pro�tant
d’une structure d’anneau qui rend certaines opérations beaucoup plus e�caces. Dans Falcon, nous
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utilisons également une nouvelle technique d’échantillonnage gaussien sur les réseaux euclidiens
que nous appelons fast Fourier sampling. En résumé, Falcon peut être décrit de manière succincte
comme suit :

Falcon = GPV + Réseaux NTRU + Fast Fourier sampling

NTRUSign
[HHP+03]

Méthode
GPV [GPV08]

NTRUSign
prouvable

[SS11]

Instanciation
de GPV en

IBE [DLP14]
Falcon

Fast Fourier
Sampling
[DP16]

Figure 8. – L’arbre généalogique de Falcon

Généalogie de Falcon. L’arbre généalogique de Falcon commence avec le schéma de signature
NTRUSign [HHP+03] de Ho�stein et al. qui fut le premier, avec GGH [GGH97], à proposer des
signatures basées sur les réseaux euclidiens. L’utilisation de réseaux NTRU dans NTRUSign lui
permet d’être très compacte. Cependant, comme vu précédemment ces deux schémas sont aujour-
d’hui cassés à cause d’une fuite d’information dans leur processus de signature qui conduit à une
attaque dévastatrice permettant de retrouver la clé secrète après un petit nombre de signature [NR06;
DN12b].

Comme décrit précédemment, Gentry, Peikert et Vaikuntanathan [GPV08] ont proposé une
solution à cette attaque utilisant un algorithme de décodage randomisé pour calculer la signature.
En plus de corriger le problème de fuite d’information dans la processus de signature, cette solution
permet de disposer de schémas de signature disposant d’une sécurité prouvable. Il en résulte une
méthode générale (la méthode GPV) pour construire des schémas sûrs de signature sur les réseaux
euclidiens.

L’étape suivante dans l’histoire de Falcon consiste en deux travaux sur l’instanciation de la
méthode GPV sur les réseaux NTRU. Le premier, dû à Stehlé et Steinfeld [SS11], consiste à combiné
la méthode GPV avec les réseaux NTRU a�n d’obtenir un schéma NTRUSign disposant d’une
sécurité prouvable. Le second, plus pratique, dû à Ducas, Lyubashevsky et Prest [DLP14], propose
une instanciation sur les réseaux NTRU et une implémentation du schéma de chi�rement basé sur
l’identité (IBE) présenté avec la méthode GPV. Notons que cet IBE peut être directement converti en
un schéma de signature.

Un nouvel algorithme de décodage randomisé. Après celui de la famille de réseaux, le second
choix lors de l’instanciation de la méthode GPV est celui de l’algorithme de décodage randomisé.
Il en existe plusieurs, chacun ayant ses avantages et ses limitations. Évidemment, l’e�cacité est
importante, mais il y a une métrique d’importance égale que nous nommerons qualité : le plus
proche du point cible est le point renvoyé, le plus sécurisé sera le schéma de signature.
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1. Algorithme de Klein [Kle00] : Variante randomisé de l’algorithme nearest plane de Babai. De
bonne qualité, mais une complexité en temps quadratique en la dimension du réseau euclidien,
quel que soit la structure de celui-ci.

2. Algorithme de Peikert [Pei10] : Variante randomisé de l’algorithme round-o� de Babai. De
complexité en temps quasi-linéaire en la dimension du réseau euclidien (au lieu de quadratique)
lorsque le réseau a une structure d’anneau, mais de qualité moyenne.

3. Algorithme de Micciancio et Peikert [MP12] : Une approche nouvelle, simple et e�cace, mais
incompatible avec les réseaux NTRU.

4. Algorithme de Ducas et Prest [DP16] : Variante de l’algorithme nearest plane de Babai spéciale-
ment conçu pour les réseaux à structure d’anneau. Il fonctionne récursivement à la manière de
l’algorithme de transformé de Fourier rapide. Cet algorithme peut être randomisé : il en résulte
un générateur de bonne qualité et de complexité en temps quasi-linéaire en la dimension du
réseau euclidien lorsque le réseau a une structure d’anneau.

Algorithme Rapide Proche de la cible Compatible NTRU
Klein [Kle00] Non Oui Oui

Peikert [Pei10] Oui Non Oui

Micciancio-Peikert [MP12] Oui Oui Non

Ducas-Prest [DP16] Oui Oui Oui

Table 1. – Comparaison des di�érents algorithmes de décodage randomisé

À l’aune des quatres approches décrite ci-dessus, il nous a semblé clair qu’une varainte randomisé
de l’algorithme de Ducas et Prest était le choix le mieux adapté pour Falcon étant donné le choix des
réseaux NTRU. Cependant, l’instanciation pratique de cet algorithme restait une question ouverte.

Performances. Falcon s’appuie sur ces travaux pour proposer un schéma hache-puis-signe sur
les réseaux euclidiens e�cace en temps, mémoire et communications et pro�tant de fortes garanties
de sécurité.

L’implémentation de référence de Falcon atteint les performances suivantes sur un processeur
Intel® Core® i7-6567U (Cadencé à 3, 3 GHz), où la taille de signature correspond à la taille moyenne
d’une signature compressée :

dimension signature/s verification/s taille de signature
512 6081 37175 617o
768 3547 20637 994o
1024 3072 17697 1233o

Échantillonneur gaussien en centre arbitraire pour la cryptographie

Cet article intitulé Sampling fromArbitrary Centered Discrete Gaussians for Lattice-based Cryptography

est le fruit d’une collaboration avec Carlos Aguilar-Melchor et Martin R. Albrecht et a été présenté à
la conférence international Applied Cryptography and Network Security (ACNS) 2017.
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Les schémas de signature hache-puis-signe sur les réseaux euclidiens, comme Falcon, consistent
à hacher le message vers un point de l’espace avant d’utiliser un algorithme de décodage pour
retrouver un point proche du réseau. Ces algorithmes de décodage utilisent une base courte (bonne
base) du réseau euclidien qui doit rester secrète a�n de garantir la sécurité du cryptosystème, mais
ceux-ci laissent fuir des informations sur cette base secrète à chaque utilisation ce qui a permis des
attaques dévastatrices [NR06; DN12b].

La méthode GPV corrige ce problème en modi�ant la distribution de sortie de l’algorithme de
décodage a�n de la rendre indépendante de la base secrète utilisée. Elle permet ainsi d’obtenir des
schémas de signature pro�tant de fortes garanties de sécurité grâce à l’utilisation d’algorithmes de
décodage randomisés selon une loi gaussienne discrète dont le centre est dépendant du message
à signer et n’est donc pas connu à priori. Cependant, les algorithmes d’échantillonnage selon ces
distributions gaussiennes discrètes répondant aux fortes contraintes de la cryptographie sont encore
insatisfaisant.

D’un côté, les techniques d’échantillonnage dépendantes du centre de la distribution, comme la
méthode par inversion (par tables d’inverses), la méthode Knuth-Yao, l’alias méthode, la méthode
Zigurat discrète et leurs variantes, sont les plus rapides connues pour échantillonner selon une loi
gaussienne discrète. Cependant, elles utilisent des tables de pré-calculs relativement grandes pour
chaque centre réel possible dans [0, 1[, ce qui les rend ine�caces quand le centre de la distribution est
variable. De l’autre côté, les méthodes par rejet permettent d’échantillonner selon une loi gaussienne
discrète pour tout centre réel sans pré-calculs importants, mais nécessitent des calculs coûteux et
plusieurs essais par échantillon.

Dans cet article, nous nous intéressons à la réduction du nombre de centres pour lesquels nous
avons à pré-calculer des tables lorsque l’on veut utiliser des méthodes dépendantes du centre pour
échantillonner selon un centre variable et nous proposons un algorithme d’échantillonnage en
centre variable : Twin-CDT, aussi rapide que sa variante en centre �xe. En�n, nous présentons des
résultats expérimentaux provenant de notre implémentation open-source en C++ qui indiquent que
notre algorithme d’échantillonnage améliore le débit de l’algorithme de décodage randomisé de
Peikert par un facteur 3 avec au plus 6,2 Mo de mémoire dédiée.

Nous considérons le cas où le centre de la Gaussienne n’est pas connu avant l’échantillonnage,
comme c’est le cas en signature hache-puis-signe sur les réseaux euclidiens (comme Falcon). Le
centre peut-être n’importe quel nombre réel, mais sans perte de généralité on peut considérer
uniquement les centres dans [0, 1). Parce que les tables d’inverses sont dépendantes du centre, une
première option naïve serait de pré-calculer une table d’inverses pour chaque centre possible dans
[0, 1) selon la précision souhaitée. Évidemment, cette première option a le même coût calculatoire que
l’algorithme en centre �xe utilisant une unique table d’inverses, i.e.O(λ log sλ), pour λ le paramètre
de sécurité et s le paramètre de la gaussienne. Cependant, cette option est complètement impraticable
avec 2λ tables d’inverses pré-calculées de taille O(sλ1.5). Un compromis opposé consiste à calculer
la table d’inverses à-la-volée, évitant tout coût de stockage, qui augmente le coût calculatoire à un
O(sλ3.5) en supposant que le coût de calcul de la fonction exponentielle est en O(λ3).

Un nouvel algorithme d’échantillonnage gaussien en centre arbitraire. Une question inté-
ressante consiste à se demander si nous pouvons garder le même coût calculatoire que l’algorithme
en centre �xe avec un nombre polynomial de nombre de tables d’inverses. Pour répondre à cette
question, nous commençons par �xer le nombre n de centres également espacés dans [0, 1) et
pré-calculons les tables d’inverses pour ces centres. Ensuite, nous appliquons l’algorithme par table
d’inverse aux deux tables pré-calculés, pour lesquels les centres sont les plus proches du centre
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souhaité, avec la même probabilité cumulée tirée uniformément. En supposant que le nombre de
centre soit su�sant, les valeurs retournées par les deux tables d’inverses seront la plupart du temps
les mêmes, dans ce cas nous pouvons conclure, grâce à un simple argument de monotonie, que
la valeur retournée aurait été la même pour la table d’inverse calculée du centre souhaité. Nous
pouvons ainsi retourner cette valeur comme un échantillon valide. Sinon, la plus grande valeur va
immédiatement suivre la plus petite et nous devons calculer la fonction de répartition de la petite
valeur pour le centre souhaité a�n de savoir si la probabilité cumulée tirée uniformément est plus
petite ou plus grande. Si elle est plus plus petite, la plus petite valeur est renvoyée, sinon c’est la
plus grande.

Comme dit précédemment, pour réduire la mémoire nécessaire à l’exécution de l’algorithme par
table d’inverses quand le centre est déterminé durant l’échantillonnage, nous pouvons pré-calculer
les tables d’inverses pour un nombre n de centres également espacés dans [0, 1) et calculer la
fonction de répartition quand nécessaire. L’algorithme 0.1, respectivement 0.2, décrivent les phases
de pré-calculs, resp. d’échantillonnage, de l’algorithme Twin-CDT. L’algorithme 0.1 pré-calcule les

Algorithm 0.1 Twin-CDT : Pré-calculs
Entrée : un paramètre gaussien s et un nombre de contres n
Sortie : une matrice pré-calculée T

1: initialiser une matrice vide T ∈ FPn×2dτse+3
λ

2: for i← 0, . . . , n− 1 do

3: for j ← 0, . . . , 2dτse+ 2 do

4: Ti,j ← FPm : cdfs,i/n(j − dτse − 1)

tables d’inverses, jusqu’à une précision de mantisse m qui garantit que les λ bits les plus signi�catifs
soient corrects pour chaque évaluation de la fonction de répartition, puis les stocke avec λ bits de
précision comme une matrice T, où la i-ème ligne est la table d’inverses correspondante au i-ème
centre pré-calculé i/n.

Algorithm 0.2 Twin-CDT : Échantillonnage
Entrée : un centre c et une matrice pré-calculée T
Sortie : un échantillon x que suit Ds,c

1: p← 0.U{0,1}λ
2: v1 ← i− dτse − 1 t.q. Tbn(c−bcc)c,i−1 ≤ p < Tbn(c−bcc)c,i
3: v2 ← j − dτse − 1 t.q. Tdn(c−bcc)e,j−1 ≤ p < Tdn(c−bcc)e,j
4: if v1 = v2 then

5:
6: return v1 + bcc
7: else

8: if p < FPm : cdfs,c−bcc(v1) then
9:

10: return v1 + bcc
11: else

12:
13: return v2 + bcc

Pour échantillonner selon la distribution gaussienne discrète DZ,s,c, l’ algorithme 0.2 cherche un
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antécédent par la fonction de répartition d’une probabilité cumulée p, tirée suivant une distribution
uniforme sur [0, 1), dans les deux tables d’inverses correspondantes au centre bn(c − bcc)c/n
(respectivement dn(c−bcc)e/n) qui retourne uns valeur v1 (resp. v2). Si la même valeur est retournée
pour les deux tables d’inverses (i.e. v1 = v2), alors cette valeur additionnée à la partie entière du
centre souhaité est un échantillon valide, sinon on calcule cdfs,c−bcc(v1) et retourne v1 + bcc si
p < cdfs,c(v1) et v2 + bcc sinon.

Échantillonnage gaussien par tables d’inverses : de la multi à la double précision

Cet article intitulé CDT-based Gaussian Sampling : From Multi to Double Precision est le fruit d’une
collaboration avec Carlos Aguilar-Melchor et a été publié dans le journal IEEE Transactions on

Computers.
A�n de garantir la sécurité des schémas cryptographiques les employant, il est nécessaire de

limiter l’écart entre la distribution de probabilité en sortie du générateur gaussien et la distribution
théorique. Pour ce faire, nous utilisons généralement la distance statistique en cryptographie. La
divergence de Rényi est une seconde méthode permettant de mesurer l’écart entre deux distributions
de probabilités qui a trouvé plusieurs applications en cryptographie à base de réseaux euclidiens
durant ces dernières années comme alternative à la distance statistique. En particulier une borne
intéressante a été présentée récemment pour la divergence de Rényi de distributions ayant une
erreur relative bornée.

Dans cet article nous montrons que cette borne peut être utilisée pour limiter la précision requise
de certains algorithmes d’échantillonnage gaussien utilisés en cryptographie à la double précision
standard en point-�ottant dé�nie par la norme IEEE 754 pour les paramètres usuels en signature
basée sur les réseaux euclidiens. Cette technique, reposant sur une modi�cation simple de la table
de pré-calculs de la fonction de répartition, réduit la mémoire utilisée par ces algorithmes et rend
leur implémentation en temps-constant plus simple et plus rapide.

Nous appliquons également cette technique à notre algorithme Twin-CDT d’échantillonnage en
centre variable qui nécessite occasionnellement une évaluation de la fonction de répartition. Ainsi,
la quantité de calculs coûteux en point-�ottant est drastiquement réduite rendant l’implémentation
temps-contant et résistante au attaques par cache de cet algorithme viable et e�cace. En�n, nous
présentons des résultats expérimentaux qui indiquent qu’en comparaison avec une méthode par
rejet, notre approche est jusqu’à 75 fois plus rapide que la plus rapide des méthodes existantes en
centre variable (l’échantillonneur de Karney) et améliore le débit de signature de GPV par un facteur
4 à 8 en fonction du paramètre de sécurité.

L’arithmétique en virgule-�ottante. Les ordinateurs ayant une mémoire limitée, ils ne peuvent
donc pas manipuler avec exactitude des nombres réels. En pratique, on peut utiliser l’arithmétique
en virgule-�ottante (FPA) pour manipuler des nombres réels approximés. L’arithmétique en virgule-
�ottante est une arithmétique utilisant une représentation sous forme de formule des nombres
réels comme une approximation permettant di�érents compromis entre domaine et précision. Un
nombre réel est représenté approximativementen FPA, suivant le format binaire en double précision
IEEE 754 (binary64), comme une mantisse m ∈]− 2,−1] ∪ [1, 2[ de précision p = 53 bits tel que
|m| · 252 ∈ [252, 253 − 1] ∩ Z, décalé grâce à un exposant (biaisé) de 11 bits e ∈ [−1022, 1023] ∩ Z
en base deux. Tel que tout nombre en virgule-�ottante x̄ ∈ FPp (i.e. tout nombre qui peut être
représenter exactement comme un nombre en virgule-�ottante étant donnée une précision p) est
de la forme x̄ = m · 2e. Il est intéressant de noter que, dans le format IEEE 754 binary64, le bit le
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plus signi�catif de |m| est toujours égal à un, il n’a donc pas besoin d’être stocké, la mantisse est
représentée par un bit de signe et les 52 bits de sa partie décimale.

En arithmétique en virgule-�ottante, soit x̄ l’approximation en virgule-�ottante avec p bits du
mantisse d’un nombre réel x, l’erreur relative de x̄ est dé�nie comme δRE(x, x̄) := |x− x̄|/|x|. La
norme IEEE 754 sur les nombres en virgule-�ottante garantit que l’erreur relative est bornée par
δRE(x, x̄) ≤ 21−p pour toute opération arithmétique élémentaire (addition, soustraction, multiplica-
tion, division, racine carrée et multiplication-avec-accumulation) et les implémentations usuelles
calculent aussi les fonctions transcendantales basiques avec δRE(x, x̄) ≤ 22−p. Rappelons aussi la
notion d’erreur relative de Micciancio et Walter étendue à toutes distributions P et Q avec le même
support S := Supp(P ) = Supp(Q) :

δRE(P,Q) := max
x∈S

δRE(P (x), Q(x)) = max
x∈S

|P (x)−Q(x)|
P (x)

.

Remarquons également que la distance statistique est bornée par ∆(P,Q) ≤ 1
2δRE(P,Q). Et que dif-

férentes bornes ont successivement été présentées pour la divergence de Rényi de deux distributions
P et Q de même support dont l’erreur relative est bornée. Pour δRE(P,Q) ≤ 1/4, on a :

R1(P‖Q) ≤ exp
(
δRE(P,Q)2

)
([PDG14, Lemme 2] renforcé dans [MW17, Lemme 2.1]). (1)

Et pour a > 1 :

Ra(P‖Q) ≤
(

1 +
a(a− 1)δRE(P,Q)2

2(1− δRE(P,Q))a+1

) 1
a−1

([Pre17, Lemme 3]). (2)

Les mesures de proximité entre deux distributions. Si nous supposons que nos ordinateurs
peuvent manipuler exactement des nombres réels, nous pouvons demander aux séquences aléatoires
obtenues en sortie d’un générateur de nombres non-uniformes de suivre exactement la distribution
souhaitée. Les algorithmes ou générateurs avec cette propriété sont appelés exactes. Des générateurs
exacts sont réalisables, pour des densités non-transcendantales, si nous utilisons une arithmétique en
précision étendue. Cependant, pour des raisons d’e�cacité, dans ce manuscrit nous nous intéressons
aux générateur inexacts, qui sont généralement des algorithmes basés sur des approximations
mathématiques. Cependant, en cryptographie il est préférable d’avoir des garanties de sécurité, nous
utilisons donc une mesure de proximité a�n de déterminer la précision requise pour la mise-en-œuvre
de générateurs de nombres aléatoires non-uniformes.

La distance statistique et la divergence de Rényi sont deux mesures de proximité entre deux
distributions de probabilité. La divergence de Rényi a trouvé plusieurs applications ces dernières
années en cryptographie basée sur les réseaux euclidiens comme alternative à la distance statistique.
La distance statistique entre deux distributions discrètes P et Q, avec le même supporte S :=
Supp(P ) = Supp(Q), est dé�nie comme :

∆(P,Q) :=
1

2

∑
x∈S
|P (x)−Q(x)|

La divergence de Rényi est une alternative à la distance statistique, où la di�érence de la distance
statistique est remplacée par un ratio dans la divergence de Rényi. Pour toutes distributions P et Q
telles que Supp(P ) ⊆ Supp(Q) et a ∈]1,+∞[, on dé�nie la divergence de Rényi d’ordre a par :

Ra(P‖Q) :=

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1
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On dé�nie aussi la divergence de Rényi d’ordres 1 et +∞ par : We de�ne the Rényi divergences of
orders 1 and +∞ by

R1(P‖Q) := exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)


et

R∞(P‖Q) := max
x∈Supp(P )

P (x)

Q(x)

Notons que la divergence de Rényi d’ordre 1 est connue comme (l’exponentielle de) la divergence
de Kullback-Leibler et remarquons que la divergence de Rényi n’est pas une distance.

Nous rappelons également quelques propriétés importantes de la divergence de Rényi de [BLL+15;
EH14] : Soit a ∈ [1,+∞]. Soit P et Q deux distributions avec Supp(P ) ⊆ Supp(Q). On a les
propriétés suivantes :

• Pour toute fonction f , où P f (resp. Qf ) dénote la distribution de f(y) obtenue en tirant y
selon P (resp. Q), on a :

Ra(P
f‖Qf ) ≤ Ra(P‖Q).

• Supposons que P et Q soient les deux distributions d’une pair de variables aléatoires (Y1, Y2).
Pour i ∈ {1, 2}, soit Pi (resp. Qi) la distribution de Yi sous P (resp. Q). Alors, si Y1 et Y2 sont
indépendantes, on a :

Ra(P‖Q) = Ra(P1‖Q1)Ra(P2‖Q2).

• Soit A ⊆ Supp(Q) un événement arbitraire. Si a ∈]1,+∞[, alors :

Q(A) ≥ P (A)
a
a−1 /Ra(P‖Q),

Q(A) ≥ P (A)/R∞(P‖Q).

Une question importante, à propos de l’arithmétique en virgule-�ottante utilisée dans un algo-
rithme cryptographique, est de savoir comment celle-ci a�ecte les performances et la sécurité de
cet algorithme. En e�et, comme expliqué dans [DN12a] la précision utilisée pour l’arithmétique en
virgule-�ottante a un impacte important, car les opérations en virgule-�ottante deviennent bien plus
coûteuses lorsque la précision dépasse la précision matérielle supportée dans l’unité arithmétique et
logique du processeur. En particulier, les processeurs modernes fournissent une arithmétique en
virgule-�ottante suivant la double précision standard IEEE 754 (p = 53), mais la quadruple précision
(p = 113) est généralement environ 10 à 20 fois plus lente pour les opérations basiques.

L’algorithme CDT. Rappelons que la méthode d’échantillonnage par inversion repose sur l’ob-
servation que si X est une variable aléatoire continue de fonction de répartition cdf , alors cdf(X)
suit une distribution uniforme sur [0, 1[. D’où la méthode par inversion : cdf−1(U[0,1)) a la même
distribution que X . L’algorithme CDT [Pei10] est basé sur cette méthode avec la spéci�cité que les
images par la fonction de répartition sont pré-calculées et stockées dans une table, nommée CDT,
pour le sous-ensemble signi�catif du domaine. Par sous-ensemble signi�cation du domaine nous
entendons un intervalle su�samment large en accord avec la distance statistique souhaitée. En e�et,
en supposant que les valeurs de la table CDT pré-calculée soit stockée avec une précision in�nie,
la distance statistique entre la sortie de l’algorithme CDT et la distribution parfaite est égale à la
moitié de la somme des probabilités non-couvertes par la table pré-calculée.
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Algorithm 0.3 CDT : Pré-calculs
Entrée : un paramètre gaussien s et un centre c
Sortie : une table pré-calculée T

1: initialiser une table vide T
2: for i← 0, . . . , 2dtse do
3: Ti ← cdfs,c(i− dtse)

Algorithm 0.4 CDT : Échantillonnage
Entrée : une table pré-calculée T
Sortie : un échantillon x que suit Ds,c

1: u← U[0,1)

2:
3: return i− dtse t.q. Ti−1 ≤ u < Ti

Réduire l’erreur relative de l’algorithme CDT. Soit D̄s,c la distribution de sortie de l’algo-
rithme 0.4, soit S := [−dtse, dtse] ∩ Z le support tronqué et p la précision de la mantisse, on
a :

δRE(Ds,c, D̄s,c) ≤
ρs,c(Z)− ρs,c(S)

2
+ max

x∈S

cdfs,c(x)

Ds,c(x)
2−p

En considérant une CDT dans l’ordre naturel, comme générée par l’algorithme 0.3, l’erreur relative
de D̄s,c est signi�cativement large dû au fait que la queue de Ds,c(x) devient très faible lorsque
cdfs,c(x) ≈ 1. Une solution pour réduire cette erreur relative consiste à réordonner le support S tel
que les plus faibles probabilités soient avant les plus grandes dans la table CDT. Pour ce faire, nous
employons une relation d’ordre total ≺ sur le support S, dé�nie pour tout entiers x et y comme :

x ≺ y si et seulement si
{
Ds,c(x) < Ds,c(y)

Ds,c(x) = Ds,c(y) et x < y
.

Nous notons aussi � la relation qui étend ≺ en ajoutant que x est en relation avec lui-même,
i.e. x � y si et seulement si, x ≺ y ou x = y.

On appelle S≺ := (xi)0≤i≤2dtse := (S,≺) le support réordonné en accord avec la relation d’ordre
≺. En supposant que c ∈ [0, 1[, la permutation pour passer de S à S≺ est plutôt simple :

S≺ = ((−1)i+1(dtse − i))0≤i≤2dtse−2‖(b0, b1)

= (−dtse, dtse,−dtse+ 1, dtse − 1, . . . ,−2, 2,−1, b0, b1)

où

(b0, b1) =

{
(1, 0) si 0 ≤ c < 1

2

(0, 1) si 1
2 ≤ c < 1

Maintenant nous pouvons dé�nir une nouvelle fonction de répartition de Ds,c sur S≺, pour tout
entier x ∈ S :

rcdfs,c(x) :=

y�x∑
y∈S

Ds,c(y).
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Algorithm 0.5 CDT réordonnée : Pré-calcul
Entrée : un paramètre gaussien s, un centre c et un support réordonné tronqué S≺ = (xi)0≤i≤2dtse
Sortie : une CDT réordonnée pré-calculée T

1: initialiser une table vide T
2: for i← 0, . . . , 2dtse do
3: Ti ← rcdfs,c(xi)

Algorithm 0.6 CDT réordonnée : Échantillonnage
Entrée : une CDT réordonnée pré-calculée T et un support réordonné tronqué S≺ = (xi)0≤i≤2dtse
Sortie : un échantillon x suivant Ds,c

1: u← U[0,1]

2:
3: return xi t.q. Ti−1 ≤ u < Ti

Nous modi�ons les algorithmes 0.3 et 0.4 en les algorithmes 0.5 et 0.6 pour utiliser rcdf au lieu de
cdf .

Soit D̄≺s,c la distribution de sortie de l’algorithme 0.6 et p la précision de la mantisse, pour s ≥ 1,
cette CDT réordonnée (rCDT) réduit l’erreur relative des probabilités cumulées stockées à :

δRE(Ds,c, D̄
≺
s,c) < 2−p+2.3+log2 s (3)

Démonstration. SoitS−,S+ respectivement les parts négative et strictement positives deS, i.e.S− :=
[−dtse, 0] ∩ Z et S+ := [1, dtse] ∩ Z. On sait que :

rcdfs,c(x)

Ds,c(x)
=

y�x∑
y∈S−

Ds,c(y)

Ds,c(x)
+

z�x∑
z∈S+

Ds,c(z)

Ds,c(x)

Et, par une comparaison somme-intégrale :

y�x∑
y∈S−

Ds,c(y)

Ds,c(x)
+

z�x∑
z∈S+

Ds,c(z)

Ds,c(x)
≤ 2 + 2

∫ ∞
y=|x|

ρs,c(y)

ρs,c(|x|)

≤ 2 + s
√

2π

Dans des travaux précédents, la précision été déterminée par des analyses basées sur la distance
statistique [Pei10] ou sur la divergence de Kullback-Leibler [PDG14] pour une CDT classique et une
demie-CDT renversée. Dans la suite, les distributions Φ et Φ′ représentent le schéma cryptographique
vue par l’adversaire dans le cas approximé (resp. idéal). Nous supposons qu’une requête à l’oracle de
fonctionnalité clé-privée correspond à m requêtes à l’algorithme d’échantillonnage gaussien, avec
un paramètre gaussien maximum s := maxi=1,...,m si, et, en accord avec l’appel à proposition du
NIST pour une standardisation post-quantique, nous limitions le nombre de requêtes de l’attaquant
à l’oracle de fonctionnalité clé-privée par qs = 264.
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Analyse basée sur la distance statistique. Tout adversaire avec une probabilité de succès
ε′ sur le schéma implémenté avec un échantillonnage gaussien parfait a une probabilité ε ≤
ε′ + ∆(Φ,Φ′) contre le schéma implémenté avec un échantillonnage approché. Supposons que
les paramètres pour le schéma idéal sont sélectionnés pour avoir ε′ ≤ 2−λ−1. Pour assurer une
sécurité contre mqs requêtes, chaque variable aléatoire gaussienne approchée (D̄si,ci)i doit être
à une distance statistique ∆(Φ,Φ′)/(mqs) de la distribution désirée (Dsi,ci)i. En utilisant 3, on a
∆(D̄si,ci , Dsi,ci) ≤ 2−p+1.3+log2 si , ce qui nous amène à une précision de mantisse requise dans la
CDT réordonnée pour λ bits de sécurité :

p ≥ λ+ 2.3 + log2(smqs).

Analyse basée sur la divergence de Kullback-Leibler. Dans [PDG14] la distance statistique
est remplacée par la divergence de Kullback-Leibler, i.e. la divergence de Rényi divergence d’ordre
a = 1, pour réduire la précision p de la table pré-calculée. Ils montrent que pour tout adversaire avec
une probabilité de succès ε′ ≤ 2−λ−1 sur le schéma implémenté avec un échantillonnage gaussien
parfait a une probabilité de succès ε ≤ ε′ +

√
logR1(Φ‖Φ′)/2 contre le schéma implémenté avec

un échantillonnage gaussien approché. Supposons que les paramètres pour le schéma idéal sont
sélectionnés pour avoir ε′ ≤ 2−λ−1. Par la propriété multiplicative de la Rényi divergence sur mqs
échantillons indépendants, on a R1(Φ‖Φ′) ≤ (maxi=1,...,mR1(D̄si,ci‖Dsi,ci))

mqs . En utilisant 3
et 1 nous amène à une précision de mantisse requise dans la CDT réordonnée pour λ bits de sécurité :

p ≥ λ+ 3.3 + log2(s
√
mqs).

Analyse basée sur la divergence de Rényi. Comme décrit dans [BLL+15], la propriété de
conservation des probabilité de la divergence de Rényi est multiplicative pour a > 1 au lieu
d’additive pour a = 1 et pour la distance statistique. Tout adversaire avec une probabilité de
succès ε′ sur le schéma implémenté avec un échantillonnage gaussien parfait a une probabilité
ε ≤ (ε′Ra(Φ‖Φ′))

a−1
a contre le schéma implémenté avec un échantillonnage approché. Supposons

que les paramètres pour le schéma idéal sont sélectionnés pour avoir ε′ ≤ 2−
a
a−1

λ−1, i.e. supposons
que pour tout k > 0 on ait λ ≤ (a− 1)k, alors les paramètres pour le schéma idéal sont sélectionnés
pour avoir (λ+ k + 1) bits de sécurité. Par la propriété multiplicative de la Rényi divergence
sur les mqs échantillons indépendants, on a Ra(Φ‖Φ′) ≤ (maxi=1,...,mRa(D̄si,ci‖Dsi,ci))

mqs . En
utilisant 3 et 2 nous amène à une précision de mantisse requise dans la CDT réordonnée pour λ bits
de sécurité :

p ≥ 1.3 + log2(s
√
amqs)

En particulier, si on prend a = 256, on peut prendre p = 53, i.e. la précision du standard double
précision IEEE 754, en respectant log2(s

√
mqs) ≤ 47.7, ce qui est habituellement le cas pour les

schémas de signature basés sur les réseaux euclidiens où qs = 264, m ≤ 211 et s ≤ 28.

En comparant les analyses de sécurité ci-dessus, on remarque que la divergence de Rényi permet
d’obtenir la précision de mantisse la plus faible. De plus, cette taille est, dans l’analyse de sécurité
basée sur la divergence de Rényi, est indépendante du paramètre de sécurité ciblé, ce qui est
particulièrement intéressant. Avec p = 53, i.e. la précision du standard double précision IEEE 754,
cela nous permet de limité la taille de la table CDT complète pré-calculée à 128ds

√
λ/2e+ 64 bits et

une demie table CDT pré-calculée à 64ds
√
λ/2e+ 64 bits. En e�et, quant la distribution gaussienne

est symétrique, une demie table de probabilités su�t. La méthode d’échantillonnage consiste alors à
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échantillonner selon la demie distribution, avec une probabilité deux fois plus petite pour le centre
de la symétrie, avant de tirer un bit uniforme pour déterminer le signe.

Outre la réduction de mémoire utilisée, l’utilisation de la double précision standard IEEE 754
permet d’accélérer signi�cativement les calculs dans le cas d’un échantillonnage en centre variable,
comme utilisé dans les schémas de signature hache-puis-signe basés sur les réseaux euclidiens. Elle
permet aussi de stocker chaque entrée de la table dans un seul registre ce qui permet une protection
plus simple et e�cace de l’algorithme d’échantillonnage contre les attaques par observation du
temps d’exécution ou par manipulation du cache.

Déléguer des opérations cryptographiques avec le chi�rement homomorphe

Cet article intitulé Delegating Elliptic-Curve Operations with Homomorphic Encryption est le fruit
d’une collaboration avec Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Philippe Gaborit et
Tancrède Lepoint et a été présenté au séminaire IEEE Workshop on Security and Privacy in the Cloud

(SPC) 2018.
Le paysage du chi�rement entièrement homomorphe (FHE/SWHE) a connu de grands change-

ments au cours des six dernières années. À mesure que les coûts de calcul chutent, des bibliothèques
implémentant ces schémas sont développées et de nouvelles applications deviennent possibles.
Plusieurs prototypes, démontrant leur utilité concernant le diagnostique médical, le traitement du
signal, les statistiques génomiques et l’accès con�dentiel à des bases de données, ont suscité un
vif espoir quant au déploiement du chi�rement entièrement homomorphe dans un proche avenir.
Cependant, dans la plupart de ces applications, augmenter la sécurité et les fonctionnalités amène
d’important coûts en temps et en communications.

Dans cet article, nous nous éloignons de l’utilisation bit-à-bit du chi�rement entièrement ho-
momorphe et démontrons qu’appliqué à l’évaluation de circuits arithmétiques sur des données
chi�rées, les schémas de chi�rement entièrement homomorphe peuvent être e�caces en pratique.
En particulier, nous nous intéressons à la délégation d’opérations pour la cryptographie basée sur
les courbes elliptiques. Plus précisément, nous montrons comment réduire la charge de calcul de la
multiplication scalaire du générateur par un scalaire secret. Nous montrons qu’il est ainsi possible
de réduire ces coûts de calcul, même par rapport aux protocoles de délégation traditionnels.

L’e�cacité pratique de notre protocole est démontrée par une implémentation utilisant notre
adaptation de la bibliothèque HElib, modi�ée a�n de pouvoir e�ectuer des calculs dans un espace
des clairs avec un module multi-précision.
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Introduction 1
This thesis is about one small field of cryptography on the crossroads of number the-

ory, algebraic geometry and computational complexity theory. Historically, cryptography
was mainly about securing communications, in particular to ensure data con�dentiality, data

integrity and authentication. Yet over the past few decades, the �eld has blossomed into a discipline
having much broader and richer goals, encompassing almost any scenario involving communication
or computation in the presence of potentially malicious behavior.

Classical public-key cryptography is mainly built upon two mathematical problems which are
assumed hard to solve with actual technology: the problem of factoring integers (FACT) and the
discrete logarithm problem (DLOG). However, a technological innovation threats cryptographic
algorithms relying on these problems: the “quantum computer”. Indeed, basic operations of quantum
and classical computers are di�erent in nature making a quantum computer with enough qubits
ables to e�ciently solve FACT and DLOG. This threat motivated the design of new public-key
cryptographic problems able to resist against quantum computers.

A new cryptography, based on geometrical problems over mathematical objects called lattices, is
one of the most promising alternatives. Indeed, lattice-based cryptography has generated consid-
erable interest in the last decade due to many attractive features, including conjectured security
against quantum attacks, strong security guarantees from worst-case hardness assumptions and
constructions of fully homomorphic encryption schemes. In this introduction we brie�y survey
some of the pioneering and modern works in lattice cryptography. Note that many parts of this
introduction are extracted from the Peikert’s survey [Pei16] and some from Micciancio’s historical
talk at the University of California, Berkeley, on July 6th 2015.
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4 Chapter 1. Introduction

1.1. A New Promising Cryptography

A lattice is a set of points in space that are arranged regularly. One relevant feature of lattices is
that these points are in a real space of dimension n, therefore lattices are mathematical objects that
mix together some continuous and discrete properties. They are described by real numbers, but it is
a discrete set of points in the topology sense that these points are far apart from each other. We will
see how these can map in the study of lattice cryptography.

Any history about lattices in the context of computer science has necessarily to start with the
Lenstra-Lenstra-Lovász (LLL) algorithm presented in their 1982 paper [LLL82]. This paper is know
for its algorithms that can be used to e�ciently �nd approximate solutions to lattice problems. The
approximation factor grows exponentially with the dimension of the lattice, but this algorithm works
well in practice and it has been used in cryptanalysis to break some schemes, e.g. the Merkle-Hellman
cryptosystem [Sha84].

However, it has been necessary to wait 1996 to have the idea to use lattices in the design of
cryptographic primitives [Ajt96], which marks the beginning of this new lattice-based cryptography.

1.1.1. Strong Security Guarantees

Cryptography inherently requires average-case intractability, i.e. problems for which random in-
stances (drawn from a speci�ed probability distribution) are hard to solve. This is qualitatively
di�erent from the worst-case notion of hardness usually considered in the computational complexity
theory, where a problem is considered hard if there merely exist some di�cult instances. Problems
that appear hard in the worst case often turn out to be easier on the average, especially for distri-
butions that produce instances having some extra “structure”, e.g. the existence of a secret key for
decryption.

In his groundbreaking work, Ajtai [Ajt96] gave the �rst worst-case to average-case reductions for
lattice problems, and with them the �rst cryptographic object with a proof of security assuming
the hardness of well-studied computational problems on lattices. In particular, Ajtai’s work gave
the �rst cryptographic function based on a standard worst-case complexity assumption of any kind.
Ajtai introduced the (average-case) “short integer solution” (SIS) problem and its associated one-way
function, and proved that solving it is at least as hard as approximating various lattice problems in
the worst case. Both SIS and Ajtai’s function are still heavily used to this day.

Worst-case to average-case reduction. In order to �nd a “hard problem”, one usually resorts
to one of two possible methods. One is to choose an NP-hard problem from the computational
complexity theory. NP-hard and NP-complete problems are as hard as any other problem in the
same class.

If any problem among the NP-hard problems, e.g. the NP-hard problem we have chosen, can be
solved e�ciently then all the NP-hard problems can also be solved e�ciently. Thus chosing an
NP-hard problem ensures that there will not be an e�cient solution for it except if a groundbreaking
algorithm solves all the hard problems known at the same time, which does not seem plausible.
Alternatively, one can choose a question that has been studied for a long time, such as prime
factorization. Indeed, we believe that prime factoring is hard, at least classically, and there is
evidence of hardness there.

However, regardless of the method applied, the problem is only assumed hard in the worst case. In
other words, there is no algorithm that could solve e�ciently every instances, but there may be some
weak instances. And, as a consequence on cryptographic applications, there is no guidance about
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how to create hard instances of the problem. A possible solution is to �nd a set of random instances
of the problem, and then show that if we can solve these random instances with non-negligible
probability, then we can solve the hard mathematical problem in the worst case. This allows us to
pick instances according to a random distribution with the guarantee that these random instances
are as hard as the hardest instance. That is exactly what Ajtai did in his paper of 1996.

Discrete-log cryptography versus lattice-based cryptography. Note that we already have a
similar property with the discrete logarithm problem (DLOG) which is random self-reducible. Let G
be any group, denote its group operation by multiplication and let g be a generator of G. Given
gh the DLOG problem consists in �nd h. This problem is random self-reducible in the sense that
if we can solve this problem when g and h are chosen at random, then we can solve the problem
also in the worst case. This means that we know how to choose g and h to make the problem hard.
However, this does not give any guidance about how to choose the group G.

So what is the di�erence between these two kinds of hardness? In the lattice case, the assumption
is that there is no algorithm that can solve lattice problems e�ciently. Speci�cally, the complexity
of solving lattice problems grow exponentially or at least superpolynomially in the dimension of the
lattice n. In saying that, we consider a set of distributions, one for every value of n. In the same way,
for the DLOG problem we consider a set of distributions, one for every group G, and the conjecture
is that the complexity of solving DLOG grows superpolynomially in the bit size of the order of G.

However, these two problems are not quite the same. The reason is that, since to choose a lattice
of dimension n at random guarantees to have a hard instance, n is a security parameter, while for a
�xed bit size of the order we have exponentially many possible groups G without any guarantee on
the hardness of their instance.

In the case of lattices, considering the sequence of problems of increasing dimension we can
noticed that lattice problems in dimension n can be reduced to lattice problems in a larger dimension
m. The way we do it is just by adding some coordinates. In a technical sense, solving lattice problems
in a larger dimension is at least as hard as solving lattice problems in lower dimensions. No such
reduction is known for the DLOG problem.

1.1.2. Lattices Background

An n dimensional lattice Λ is any subset of Rn that is both:

1. an additive subgroup: 0 ∈ Λ and −x,x + y ∈ Λ for every x,y ∈ Λ; and

2. discrete: every x ∈ Λ has a neighborhood in Rn in which x is the only lattice point.

Examples includes the integer lattice Zn, the scaled lattice cΛ for any real number c and lattice Λ.
The minimum distance of a lattice Λ is the length of a shortest nonzero lattice vector:

λ1(Λ) := min
v∈Λ\{0}

‖v‖.

(Unless otherwise speci�ed ‖ · ‖ denotes the Euclidean norm.) More generally, the ith successive
minimum λi(Λ) is the smallest r such that Λ has i linearly independent vectors of norm at most r.

Because a lattice Λ is an additive subgroup of Rn, we have the quotient group Rn/Λ of cosets

c + Λ = {c + v : v ∈ Λ}, c ∈ Rn,
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whith the usual induced addition operation operation operation (c1 +Λ)+(c2 +Λ) = (c1 +c2)+Λ.
A fundamental domain of Λ is a setF ⊂ Rn that contains exactly one representative c̄ ∈ (c+Λ)∩F
of every coset c+Λ. For example, the half-open intervals [0, 1) and [−1

2 ,
1
2) are fundamental domains

of the integer lattice Z, where coset c+ Z has representative c− bcc and c− bce respectively.

Bases and fundamental parallelepipeds. Although every (non-trivial) lattice Λ is in�nite, it
is always �nitely generated by the integer linear combinations of some linearly independent basis
vectors B = {b1, . . . ,bk}:

Λ = Λ(B) := B · Zk =

{
k∑
i=1

zibi : zi ∈ Z

}
.

The integer k is called the rank of the basis and is an invariant of the lattice. For the remainder of
this manuscript we restrict our attention to full-rank lattices, where k = n. A lattice basis B is not
unique: for any unimodular matrix U ∈ Zn×n (i.e. one having determinant ±1), B ·U is also a
basis of Λ(B), because U · Zn = Zn.

For a lattice Λ having basis B, a commonly used fundamental domain is the origin-centered
fundamental parallelepiped P(B) := B · [−1

2 ,
1
2)n where coset c + Λ has representative c −B ·⌊

B−1 · c
⌉
.

The dual lattice. The dual (sometimes called reciprocal) of a lattice Λ ⊂ Rn is de�ned as

Λ∗ := {w : 〈w,Λ〉 ⊆ Z},

i.e. the set of points whose inner products with the vectors in Λ are all integers. It is straightforward
to verify that Λ∗ is a lattice. For example (Zn)∗ = Zn and (cΛ)∗ = c−1Λ∗ for any nonzero real c
and lattice Λ. It is also easy to verify that if B is a basis of Λ, then B−t := (Bt)−1 = (B−1)t is a
basis of Λ∗.

Computational problems. We now de�ne some of the intensively studied computational prob-
lems on lattices which appear to be di�cult (except for very large approximation factors) and that
have been most useful in cryptography. Perhaps the most well-studied computational problem on
lattices is the shortest vector problem:

De�nition 1.1 (Shortest Vector Problem (SVP)). Given an arbitrary basisB of some latticeΛ = Λ(B),
�nd a shortest nonzero lattice vector, i.e. a v ∈ Λ for which ‖v‖ = λ1(Λ).

Particularly important to lattice cryptography are approximation problems, which are param-
eterized by an approximation factor γ ≥ 1 that is typically taken to be a function of the lattice
dimension n, i.e. γ = γ(n). For example, the approximation version of SVP is as follows (note that
by setting γ(n) = 1 we recover the problem de�ned above):

De�nition 1.2 (Approximate Shortest Vector Problem (SVPγ )). Given a basisB of an n-dimensional

lattice Λ = Λ(B), �nd a nonzero lattice vector v ∈ Λ for which ‖v‖ ≤ γ(n) · λ1(Λ).

As described below, several cryptosystems can be proved secure assuming the hardness of certain
lattice problems, in the worst case. However, to date no such proof is known for the search version
of SVPγ . Instead, there are proofs based on the following decision version of approximate-SVP, as
well as a search problem related to the nth successive minimum:



1

1.1. A New Promising Cryptography 7

De�nition 1.3 (Decisional Approximate SVP (GapSVPγ)). Given a basis B of an n-dimensional

lattice Λ = Λ(B) where either λ1(Λ) ≤ 1 or λ1(Λ) > γ(n), determine which is the case.

De�nition 1.4 (Approximate Shortest Independent Vectors Problem (SIVPγ)). Given a basis B of

a full-rank n-dimensional lattice Λ = Λ(B), output a set S = {si} ⊂ Λ of n linearly independent

lattice vectors where ‖si‖ ≤ γ(n) · λn(Λ) for all i.

A �nal important problem for cryptography is the following bounded-distance decoding (BDD)
problem, which asks to �nd the lattice vector that is closest to a given target point t ∈ Rn, where
the target is promised to be “rather close” to the lattice. This promise, and the uniqueness of the
solution, are what distinguish BDDγ from the approximate closest vector problem CVPγ , wherein
the target can be an arbitrary point.

De�nition 1.5 (Bounded Distance Decoding Problem (BDDγ )). Given a basisB of an n-dimensional

lattice Λ = Λ(B) and a target point t ∈ Rn with the guarantee that D(t,Λ) < d = λ1(Λ)/(2γ(n)),
�nd the unique lattice vector v ∈ Λ such that ‖t− v‖ < d.

1.1.3. Early Constructions

NTRU encryption. In a concurrent work with Ajtai’s in 1996, Ho�stein, Pipher and Silver-
man [HPS98] devised the public-key encryption scheme NTRUEncrypt. This was the �rst practical
cryptosystem in lattice-based cryptography thanks to the use of polynomial rings, which is inter-
preted in terms of algebraically structured lattices. Moreover, NTRUEncrypt has quite compact
keys and it has withstood signi�cant cryptanalysis e�orts when appropriately parametrized. Unlike
Ajtai’s constructions, there is no known reduction from any worst-case lattice problem to any
standard version of the NTRU problem. However, a variant of NTRUEncrypt has been proved
secure [SS11], assuming the hardness of ring-LWE (see De�nition 1.10).

NTRUEncrypt is parameterized by a polynomial ring R = Z[X]/(f(X)), with f(X) = Xn − 1
for a pime n or f(X) = Xn + 1 for an n that is a power of two, and a su�ciently large odd modulus
q that de�nes the quotient ring Rq = R/qR. The public key is h = 2g · s−1 ∈ Rq for two “short”
polynomials g, s ∈ R, i.e. ones having relatively small integer coe�cients, where the secret key s is
also chosen to be invertible modulo both q and two. Encryption essentially involves multiplying h
by a short “blinding” factor r ∈ R and adding a short error term e ∈ R that encodes the message
bits in its coe�cients modulo two, to get a cithertext c = h · r + e ∈ Rq . Decryption is done by
multiplying the ciphertext by the secret key to get c · s = 2g · r + e · s ∈ Rq and interpreting the
result as a short element of R, which works because all of g, r, e and s are short. From this, one
recovers e · s modulo two, and thereby e modulo two, to recover the message bits. Note that there
are more e�cient variants of this, e.g. choosing s = 1 (mod 2), so that e · s = e (mod 2).

Goldreich-Goldwasser-Halevi encryption and signatures. Inspired by Ajtai’s seminal work [Ajt96]
along with McEliece’s code-based cryptosystem [McE78], Goldreich, Goldwasser, Halevi (GGH) [GGH97]
proposed a public-key encryption scheme and digital signature scheme based on lattice problems.
Unlike the works of Ajtai, the GGH proposals did not come with any worst-case security guaran-
tees; their conjectured security was merely heuristic. This encryption scheme was successfully
cryptanalyzed for practical parameter sizes (but not broken asymptotically) [Ngu99], and the GGH
signature scheme was later broken completely [NR06]. However, the central ideas underlying the
GGH proposals were later resurrected and instantiated in ways that admit security proofs under
worst-case hardness assumptions, and have subsequently led to an enormous variety of applications.
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The main idea behind GGH encryption and signatures is that a public key is a “bad” basis of some
lattice, while the corresponding secret key is a “good” basis of the same lattice. Roughly speaking,
a “bad” basis is one consisting of long and highly non-orthogonal lattice vectors, while a “good”
basis consists of relatively short lattice vectors. Notice that with a good basis one can solve BDDγ ,
where γ is related to the norm of the good basis vectors, while, given a bad basis, solving BDDγ is a
hard problem. Such bases can be generated together, e.g. by �rst choosing the good basis and then
multiplying it by some randomly chosen unimodular transformation (which preserves the lattice)
to obtain the bad basis. Alternatively, every integer lattice has a special basis, called the Hermite

normal form, which is in a precise sense a “hardest possible” basis for the lattice, because it can be
e�ciently computed from any other basis. So the Hermite normal form is a best-possible choice for
the public basis [Mic01].

In the GGH encryption scheme, the sender uses the public key to choose a “random” lattice point
v ∈ Λ that somehow encodes the message, and then adds to it some small error e ∈ Rn, letting the
ciphertext be c = v + e ∈ Rn. The error is small enough to ensure that c is much closer to v than
to any other lattice point, so the ciphertext unambiguously represents the message, and recovering
v from c is a random instance of the bounded-distance decoding (BDD) problem. The receiver, using
its knowledge of the good basis, can easily decode c back to v and recover the message. For security,
one may conjecture that an eavesdropper who knows only the bad basis cannot decode c, or even
learn anything about v, which implies that the message is hidden.

In the GGH signature scheme, a message to be signed is mapped to a point m ∈ Rn, e.g. by a
suitable public hash function. The signer then uses its good basis to �nd a lattice vector v ∈ Λ
relatively close to m, which serves as the signature. A veri�er, using only the public bad basis, can
verify that v is a lattice vector and is su�ciently close to m. For security, one may conjecture that
a forger who knows only the bad basis and some previous message-signature pairs cannot �nd a
lattice vector su�ciently close to m′ for an unsigned message m′. It turns out, however, that this
conjecture is false, as shown most severely in [NR06]. The main problem is that signatures leak
signi�cant information about the geometry of the secret good basis, and after a relatively small
number of signatures, an adversary can eventually recover the secret basis entirely, allowing it to
forge signatures for arbitrary messages.

NTRU meets GGH. Following the ideas in [GGH97], compact ring-based instantiations using
NTRU-type lattices, known as NTRUSign, were proposed in [HHP+03]. These were subject to
various practical attacks, in addition to the generic ones that apply to all GGH-type signatures. The
second proposal [HHP+03] includes a “perturbation” technique that is intended to make signatures
reveal signi�cantly less information about the secret key at the cost of larger keys and parameters.
The main idea is that the algorithm that decodes the (hashed) message m ∈ Rn to a nearby lattice
vector v ∈ Λ is substantially less linear, because it involves two unrelated lattice bases. However,
the ideas of [NR06] were extended to also break this variant [DN12b].

1.2. Modern Lattice-based Cryptography

Following the seminal work of Ajtai [Ajt96], worst-case to average-case reductions for lattice
problems were proved forming, with some Gaussian-like probability distributions over lattices, the
foundations of the modern lattice-based cryptography.

A particularly interesting modern construction in lattice-based cryptography is a framework
using these Gaussian-like probability distribution over lattices to construct provably secure hash-
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and-sign signature schemes. Indeed, inspired by the early ideas of Goldreich, Goldwasser and
Halevi (GGH) [GGH97], Gentry, Peikert and Halevi (GPV) [GPV08] showed that certain types of
trapdoor functions can be constructed from lattice problems, and in particular (ring-)SIS/LWE (see
the de�nitions 1.6, 1.7 and 1.10), thereby correcting the leakage problem of the GGH signature
scheme.

The powerful notion of fully homomorphic encryption (FHE), �rst envisioned by Rivest, Adleman
and Dertouzos [RAD78], allows an untrusted worker to perform arbitrary computations on encrypted
data, without learning anything about that data. For three decades FHE remained an elusive “holy
grail” goal, until Gentry [Gen09] proposed the �rst candidate construction of FHE, which was based
on lattices (as were all subsequent constructions), and more precisely on problems using again
Gaussian-like distributions. More recently, lattices have provided the only known realizations of
other versatile and powerful cryptographic notions, such as attribute-based encryption for arbitrary
access policies [GVW13; BGG+14] and general-purpose code obfuscation [GGH+13].

1.2.1. Modern Foundations

The short integer solution (SIS) problem was �rst introduced in the seminal work of Ajtai [Ajt96],
and has served as the foundation for one-way and collision-resistant hash functions, identi�cation
schemes, digital signatures, and other so-called “minicrypt” primitives (but not public-key encryp-
tion). Informally, the SIS problem asks, given many uniformly random elements of a certain large
�nite additive group, to �nd a su�ciently “short” nontrivial integer combination of them that sums
to zero. More formally, SIS is parameterized by positive integers n and q de�ning the group Znq ,
a positive real β, and a number m of group elements. For concreteness, one should think of n as
being the main hardness parameter (e.g. n ≥ 100), and q > β being a (small) polynomial in n. The
parameter m is of secondary importance, so we sometimes leave it unspeci�ed.

De�nition 1.6 (Short Integer Solution (SISn,q,β,m)). Given m uniformly random vectors ai ∈ Znq ,
forming the columns of a matrixA ∈ Zn×mq , �nd a nonzero integer vector z ∈ Zm of norm ‖z‖ ≤ β
such that

fA(z) := Az =
∑
i

ai · zi = 0 ∈ Znq .

The SIS problem can be seen as an average-case short-vector problem on a certain family of
so-called “q-ary” m-dimensional integer lattices, namely, the lattices

Λ⊥(A) :=
{
z ∈ Zm : Az = 0 ∈ Znq

}
⊇ qZm.

Borrowing the terminology of coding theory, here A acts as a “parity-check” matrix that de�nes the
lattice Λ⊥(A), where A is chosen uniformly at random.

One can also consider an inhomogeneous version of the SIS problem, which is to �nd a short
integer solution to Ax = u ∈ Znq , where A, u are uniformly random and independent. It is not
hard to show that the homogeneous and inhomogeneous problems are essentially equivalent for
typical parameters.

Starting from Ajtai’s seminal work [Ajt96], a long sequence of works has established progressively
stronger results about the hardness of the SIS problem relative to worst-case lattice problems. All
such results are instances of the following template:

Theorem 1.1. For anym = poly(n), any β > 0 and any su�ciently large q ≥ β · poly(n), solving
SISn,q,β,m with non-negligible probability is at least as hard as solving the decisional approximate
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shortest vector problem GapSVPγ and the approximate shortest independent vectors problems SIVPγ

(among others) on arbitrary n-dimensional lattices (i.e. in the worst case) with overwhelming probability,

for some γ = β · poly(n).

Notice that the exact values of m and q (apart from its lower bound) play essentially no role in
the ultimate hardness guarantee, but that the approximation factor γ degrades with the norm bound
β on the SIS solution. Inspired by the ideas behind NTRUEncrypt [HPS98], Micciancio [Mic02]
introduced a compact ring-based analogue of Ajtai’s SIS problem. This analogue has come to be
known as the ring-SIS problem.

A very important work of Regev [Reg05] from 2005 introduced the average-case learning with

errors (LWE) problem, which is the “encryption-enabling” analogue of the SIS problem. Indeed,
the two problems are syntactically very similar, and can meaningfully be seen as duals of each
other. LWE is parameterized by positive integers n and q, and an error distribution χ over Z. For
concreteness, n and q can be thought of as roughly the same as is SIS, and χ is usually taken to be a
discrete Gaussian of width αq for some α < 1, which is often called the relative “error rate”.

De�nition 1.7 (LWE distribution). For a vector s ∈ Znq called the secret, the LWE distribution As,χ
over Znq × Zq is sampled by choosing a ∈ Znq uniformly at random, choosing e← χ, and outputting
(a, b = 〈s,a〉+ e mod q).

There are two main versions of the LWE problem: search, which is to �nd the secret given LWE
samples, and decision, which is to distinguish between LWE samples and uniformly random ones.
We additionally parameterize these problems by the number m of available samples, which we
typically take to be large enough that the secret is uniquely de�ned with high probability. As with
SIS, the parameter m is of secondary importance, so we often leave it unspeci�ed.

De�nition 1.8 (Search-LWEn,q,χ,m). Givenm independent samples (ai, bi) ∈ Znq × Zq drawn from

As,χ for a uniformly random s ∈ Znq (�xed for all samples), �nd s.

De�nition 1.9 (Decision-LWEn,q,χ,m). Given m independent samples (ai, bi) ∈ Znq × Zq where
every sample is distributed according to either: (1) As,χ for a uniformly random s ∈ Znq (�xed for all

samples), or (2) the uniform distribution, distinguish which is the case (with non-negligible advantage).

Regev proved the following worst-case hardness theorem for LWE (stated here in a slightly
stronger form from [Pei16]):

Theorem 1.2 ([Reg05]). For anym = poly(n), any modulus q ≤ 2poly(n)
and any (discretized) Gaus-

sian error distribution χ of parameter αq ≥ 2
√
n where 0 < α < 1, solving the decision-LWEn,q,χ,m

problem is at least as hard as quantumly solving GapSVPγ and SIVPγ on arbitrary n-dimensional

lattices, for some γ = Õ(n/α).

Notice that, just as in the worst-case hardness theorem for SIS, the exact values of m and q
(apart from its lower bound of 2

√
n/α) play essentially no role in the ultimate hardness guarantee.

However, the approximation factor γ degrades with the inverse error rate 1/α of the LWE problem.
In work published in 2010, Lyubashevsky, Peikert and Regev [LPR10] introduced ring-LWE, the

ring-based analogue of LWE and proved the hardness theorems described below. Ring-LWE is
parameterized by a ring R of degree n over Z, a positive integer modulus q de�ning the quotient
ring Rq = R/qR and an error distribution χ over R. Typically, one takes R to be a cyclotomic ring,
i.e. Z[X]/Φd(X) with φ(d) = n and where Φd(X) is the nth cyclotomic polynomial, and χ to be
some kind of discretized Gaussian in the canonical embedding of R, which we can roughly think of
as having an “error rate” α < 1 relative to q.
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De�nition 1.10 (Ring-LWE distribution). For an s ∈ Rq called the secret, the ring-LWE distribution

As,χ over Rq × Rq is sampled by choosing a ∈ Rq uniformly at random, choosing e ← χ and

outputting (a, b = s · a+ e mod q).

The decision version of the R-LWE problem is to distinguish between ring-LWE samples and
uniformly random ones. As usual, we also parameterize the problem by the number m of available
samples, which is sometimes left unspeci�ed.

Just as in LWE, without errors the ring-LWE problem is easy, because in case (1) we can e�ciently
�nd s: given a sample (ai, bi) where ai ∈ Rq is invertible (most elements of Rq are), we have
s = bi · a−1

i , whereas in case (2) there will almost never be a single s that is consistent with all
samples. (Ring-)LWE has a normal form, in which the secret s is chosen from the error distribution
(modulo q) rather than uniformly.

The primary advantage of ring-LWE is its compactness and e�ciency: each sample (ai, bi) yields
an n-dimensional pseudorandom ring element bi ∈ Rq , rather than just a single pseudorandom
scalar bi ∈ Zq as in LWE. In addition, ring multiplication can be performed in only quasi-linear
Õ(n) time using FFT-like techniques, so we can generate these n pseudorandom scalar in just
Õ(1) amortized time each. For example, this all yields a public-key encryption scheme with only
Õ(1)-factor overheads in encryption/decryption time and ciphertext space, versus sending the
plaintext in the clear.

Like LWE, ring-LWE enjoys a worst-case hardness guarantee, informally stated here:

Theorem1.3 ([LPR10]). For anym = poly(n), cyclotomic ringR of degreen (overZ), and appropriate
choices of modulus q and error distribution χ of error rate α < 1, solving the R-LWEq,χ,m problem

is at least as hard as quantumly solving the SVPγ problem on arbitrary ideal lattices in R, for some

γ = poly(n)/α.

Notice that as with LWE, the approximation factor γ varies inversely with the error rate α of
χ. Unlike with LWE, however, the factor γ also degrades slightly with the number of samples m.
This degradation may be an artifact of the proof technique, and in any case it can be avoided by
choosing the error distribution itself at random from a certain family.

Recall from Section 1.1.2 that the NTRU cryptosystem of Ho�stein, Pipher and Silverman [HPS98]
was an early lattice-based cryptographic proposal. Several computational problems naturally relate
to the NTRU system. One such problem is the following:

De�nition 1.11 (NTRU learning problem). For an invertible s ∈ R∗q and a distribution χ on R,
de�ne Ns,χ to be the distribution that outputs e/s ∈ Rq where e← χ. The NTRU learning problem
is: given independent samples ai ∈ Rq where every sample is distributed according to either: (1) Ns,χ
for some randomly chosen s ∈ R∗q (�xed for all samples), of (2) the uniform distribution, distinguish

which is the case (with non-negligible advantage).

The NTRU and ring-LWE problems are syntactically very similar and can even be viewed as
homogeneous and inhomogeneous versions of the same problem. Speci�cally, for NTRU samples
ai ∈ Rq there is a secret s such that every ai · s = ei (mod q) for some short ei ∈ R, while for
ring-LWE samples (ai, bi) ∈ Rq × Rq , there is a secret s such that every ai · s+ bi = ei (mod q)
for some short ei ∈ R.

The problems presented in this section (an many modern works on lattices in complexity and
cryptography) rely on Gaussian-like probability distributions over lattices, called discrete Gaussians.
Here we recall the relevant de�nitions.
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Gaussians. For any positive integer n and real s > 0, which is taken to be s = 1 when omitted,
de�ne the Gaussian function ρs : Rn → R+

of parameter (or width) s as

ρs(x) := exp(−π‖x‖2/s2) = ρ(x/s).

Notice that ρs is invariant under rotations of Rn and that ρs(x) =
∏n
i=1 ρs(xi) and that for x ∈ Z

and c ∈ R we extend this de�nition to ρs,c(x) := ρs(x− c).
The (continuous) Gaussian distributionDRn,s of parameter s overRn is de�ned to have probability

density function proportional to ρs, i.e.

DRn,s(x) := ρs(x)/

∫
Rn
ρs(z) dz = ρs(x)/sn.

For a lattice coset c+ Λ ⊂ Rn with c ∈ Rn and parameter s > 0, the discrete Gaussian probability
distribution Dc+Λ,s is simply the Gaussian distribution restricted to the coset:

Dc+Λ,s(x) ∝
{
ρs(x) if x ∈ c + Λ

0 otherwise.

For one-dimensional discrete Gaussian distributions we omit the �rst parameter and add the center
c ∈ R as parameter, i.e. for any x ∈ Z:

Ds,c(x) := Dc+Z,s(x) = ρs,c(x)/
∑
y∈Z

ρs,c(y).

Smoothing parameter. Micciancio and Regev [MR04] introduced a very important quantity
called the smoothing parameter of a lattice Λ. Informally, this is the amount of Gaussian “blur”
required to “smooth out” essentially all the discrete structure of Λ. In other words, the smoothing
parameter ηε(Λ) quanti�es the minimal discrete Gaussian parameter s > 0 required to obtain a
given level of smoothness on the lattice Λ, if one picks a noise vector over a lattice from a discrete
Gaussian distribution with width parameter at least as large as the smoothing parameter, and
reduces this modulo the fundamental parallelepiped of the lattice, then the resulting distribution
is very close to uniform on the fundamental parallelepiped. Alternatively, it can be seen as the
smallest width parameter s > 0 such that every coset c + Λ has nearly the same Gaussian mass
ρs(c + Λ) :=

∑
x∈c+Λ ρs(x), up to some small relative error.

Formally, the smoothing parameter ηε(Λ) is parameterized by a tolerance ε > 0 and is de�ned
using the dual lattice as the minimal s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε. This condition can be
used to formalize and prove the above-described “smoothing” properties. Notice that from [MR07,
Lemma 3.3] for any n-dimensional lattice Λ and positive real ε > 0

ηε(Λ) ≤
√

log(2n(1 + 1/ε))

π
· λn(Λ).

1.2.2. Provably Secure Lattice Signatures from Gaussian Sampling

Informally, a trapdoor function is a function that is easy to evaluate and hard to invert on its own,
but which can be generated together with some extra “trapdoor” information that makes inversion
easy. There are many versions of this basic concept, depending on whether the function in question
is injective, surjective, bijective, “lossy”, etc. The prototypical candidate trapdoor function is the
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RSA function [RSA78] fN,e(x) = xe mod N , where N is the product of distinct primes p,q and
gcd(e, φ(N)) = 1. The RSA function is a bijection on Z∗N , and the trapdoor is d = e−1 mod φ(N),
because (xe)d = x mod N . Alternatively, the factorization p, q ofN is a trapdoor, because one can
e�ciently compute d from these factors. There are relatively few trapdoor candidates, all commonly
accepted ones relied on the conjectured hardness of integer factorization [RSA78; Rab79; Pai99].

Inspired by the early ideas of Goldreich, Goldwasser and Halevi (GGH) [GGH97], Gentry, Peikert
and Halevi (GPV) [GPV08] showed that certain types of trapdoor functions can be constructed from
lattice problems, and in particular (ring-)SIS/LWE. The work of GPV and several follow-ups used
these trapdoor functions to construct many powerful cryptographic applications, including digital
signature schemes, (hierarchical) identity-based and attribute-based encryption, and much more.

In the GGH signature scheme, signing a message roughly corresponds to solving an approximate
closest vector problem (CVP) on the average, which can be accomplished using a short basis. In this
case, the target can be an arbitrary point that not be especially close to the lattice, and it has many
valid signatures corresponding to su�ciently nearby lattice vectors. Recall, however, that the GGH
signature scheme and some of its derivatives (e.g. NTRUSign) turned out to be insecure [NR06],
because an attacker use a small number of signatures to e�ciently reconstruct the secret trapdoor
basis. This is because the signing algorithm implicitly leaks information about the geometry of the
secret basis it uses.

The work of GPV gave a di�erent, randomized approach to signing that provably leaks no

information about the secret basis (apart from a bound on its length, which is already public
knowledge). A key property is that the probability distribution of a signature is the same no matter

which short basis is used to produce it. This fact facilitates a formal proof of unforgeability in the
random-oracle model, assuming the average-case hardness of a CVP-like problem as SIS.

In parallel with the above trapdoor technique, applying the Fiat-Shamir heuristic [FS87] was
also explored for lattice-based signatures [LM08; Lyu08; Lyu09; Lyu12; DDLL13]. Notice that both
paradigms achieve comparable levels of compactness, but hash-and-sign has interesting properties:
GPV comes with a security proof in the random oracle [GPV08], and a security proof in the quantum
random oracle model was later provided in [BDF+11]. This stands in contrast with schemes using
the Fiat-Shamir heuristic, which are notoriously harder to render secure in the QROM [KLS17;
Unr17]. In addition, it enjoys message-recovery capabilities [PLP16], its veri�cation procedure is
very simple, and it can be converted into an IBE scheme in a straightforward manner.

1.2.2.1. Gaussian Sampling over a Lattice Coset

A key technical ingredient behind the GPV approach is an algorithm for sampling from a discrete
Gaussian distribution over a lattice coset, given any su�ciently good basis of the underlying lattice.
More precisely, letting S̃ = {s̃i} denote the Gram-Schmidt orthogonalization of an ordered set of
vectors S = {si} and letting ‖B‖ := maxi ‖bi‖ for any set of vectors B = {bi}, we have:

Theorem 1.4 ([GPV08]). There is a randomized polynomial-time algorithm that, given any basis S
of a lattice Λ = Λ(S) ⊂ Rn, any coset c + Λ and any Gaussian parameter s ≥ ‖S̃‖ ·

√
logO(n/ε),

outputs a sample whose distribution is within statistical distance ε of the discrete Gaussian Dc+Λ,s.

The sampling algorithm from Theorem 1.4 is a randomized variant of Babai’s “nearest-plane”
algorithm [Bab86], where in each iteration we randomly choose a “plane” according to a one-
dimensional discrete Gaussian over an appropriate coset c+ Z, instead of deterministically. Inter-
estingly, Klein [Kle00] proposed �rst the same randomized variant of nearest-plane, but for the
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problem of bounded-distance decoding (BDD). Subsequent works gave other sampling algorithms
that o�er various trade-o�s among e�ciency, statistical error and width of the sampled distribution.

Since the introduction of discrete Gaussian sampling for cryptographic purposes [GPV08], many
re�nements and alternative algorithms have been proposed: we discuss some of them here, but these
sampling algorithms are discused in more detail in Section 3.1.2. The randomized nearest-plane
algorithm for discrete Gaussian sampling described in [GPV08] is rather ine�cient in general: it
requires very high-precision arithmetic to store and operate on an appropriate representation of the
Gram-Schmidt orthogonalized basis and it involves n sequential iterations, each of which requires an
n-dimensional inner product of high-precision vectors. Also, this super-quadratic runtime persists to
the ring setting, where by contrast all other commonly used ring operations have a only quasi-linear
cost.

Peikert [Pei10] gave a more e�cient and parallel discrete Gaussian sampling algorithm, which has
a quasi-linear cost in the ring setting. In the same way as the algorithm described in [GPV08] this
new algorithm is a randomized variant of Babai’s “round-o�” algorithm [Bab86]. As an illustrative
�rst attempt, to sample in parallel from c+ Λ with c ∈ Rn using a short basis S of Λ, one might try
randomly rounding each coe�cient of the basis vectors independently, i.e. let x← S ·DS−1c+Zn,r for
some appropriate r ≥ ηε(Zn). This produces a vector close to c, but unfortunately, the distribution
is “skewed” due to the multiplication by S. More formally, it is a non-spherical discrete Gaussian
with covariance matrix E[x · xt] ≈ r2 · SSt, which reveals a lot about S. The main idea in [Pei10]
is to add an appropriately distributed perturbation term to “unskew” the distribution of x, making
it spherical. Its primary disadvantage is that the vectors it produce are longer in average, which
corresponds to worse security (and thus larger keys and signatures to compensate).

1.2.3. Fully Homomorphic Encryption

In 1978, Rivest, Adleman and Dertouzos [RAD78] proposed a concept which has come to be known
as fully homomorphic encryption (FHE). In brief, an FHE scheme allows computation on encrypted

data, or more concisely, homomorphic computation: given a ciphertext that encrypts some data µ,
one can compute a ciphertext that encrypts f(µ) for any desired (e�ciently computable) function f .
We emphasize that this is possible without ever needing to decrypt the data or know the decryption
key.

Fully homomorphic encryption was known to have abundant applications in cryptography, but
for three decades no plausibly secure scheme was known. This changed in 2009, when Gentry
proposed a candidate FHE scheme based on ideal lattices [Gen09]. Gentry’s seminal work generated
tremendous excitement, and was quickly followed by many works (e.g. [DGHV10; Gen10; SV14;
BV11b; CMNT11; BV11a; BGV12; CNT12; GHS12b; Bra12; GHPS12; CCK+13; GSW13]), that o�ered
various improvements in conceptual and technical simplicity, e�ciency, security guarantees, etc.

FHE from LWE. The earliest “�rst generation” FHE constructions [Gen09; DGHV10] were based
on ad-hoc average-case assumptions about ideal lattices and the “approximate GCD” probelm,
respectively. In a sequence of works, Brakerski and Vaikuntanathan (BV) [BV11b; BV11a] gave a
“second generation” of FHE constructions, which were based on standard assumptions supported by
worst-case hardnes, namely, (ring-)LWE. Here we describe the main idea behind the LWE-based
scheme from [BV11a], with additional improvements from a subsequent work with Gentry [BGV12].

The BV scheme encrypts a single bit per ciphertext, and supports homomorphic addition and
multiplication modulo two. Notice that this scheme is easily generalizable to a message space of
Zp for any integer p. This is su�cient for FHE because by composing such operations, one can
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homomorphically evaluate any boolean circuit. In the BV system, a secret key is an LWE secret,
and an encryption of a bit is simply an LWE sample for an odd modulus q, where the error term e
encodes the message as its least-signi�cant bit. More precisely, a cipher that encrypts µ ∈ Z2 under
a secret key s ∈ Zn is a vector c ∈ Znq such that

〈s, c〉 = st · c = e (mod q), (1.1)

where e ∈ Z is some small error such that e = µ (mod 2), i.e. e ∈ µ+ 2Z. To decrypt c using s, one
just computes 〈s, c〉 ∈ Zq , lifts the result to its unique representative e ∈ Z ∩ [− q

2 ,
q
2) and outputs

µ = e mod 2.
Notice that by taking s = (−s̄, 1), a ciphertext vector c = (c̄, c) is just an LWE sample with an

(n− 1)-dimensional secret s̄ and error term e, because c = 〈s̄, c̄〉+ e (mod q). In the symmetric-key
setting, such a ciphertext can be produced directly using s̄; in the asymmetric-key setting we can
just add a random combination of LWE samples with respect to s̄, which are given in the public
key. Note that this is essentially how all LWE public-key encryption schemes work. Using these
observations it is straightforward to show that ciphertexts are pseudorandom, hence the encryption
is passively secure, assuming the hardness of decision-LWE.

We remark that the decryption relation expressed in Equation 1.1, where e ∈ µ+2Z, is sometimes
called the “least signi�cant bit” encoding of the message, as opposed to the “most signi�cant bit”
encoding where 〈s, c〉 ≈ µ ·

⌊ q
2

⌉
mod q). It turns out that the two losslessly switch between them

without knowing the secret key.

Homomorphic operations. We now describe homomorphic addition and multiplication. For
i = 1, 2, let ci ∈ Znq be a ciphertext that encrypts µi ∈ Z2 under secret key s, with small error term
ei ∈ µi + 2Z. Homomorphic addition is simple: c1 + c2 ∈ Znq encrypts µ1 + µ2 ∈ Z2, because

〈s, c1 + c2〉 = 〈s, c1〉+ 〈s, c2〉 = e1 + e2 (mod q),

and of course e1 + e2 ∈ µ1 + µ2 + 2Z is still small. Notice, however, that we cannot add an
unbounded number of ciphertexts, because eventually the magnitude of the error will grow larger
than q/2, in which case decryption may fail; we return to this issue shortly.

Homomorphic multiplication is a bit trickier, the idea is to use the tensor (or Kronecker) product.
Note that this idea has been �rstly studied by Aguilar-Melchor, Gaborit and Herranz in the late
published article [MGH10]. We start with the observation that the tensor product c1 ⊗ c2 =
(c1,i · c2,j)i,j ∈ Zn2

q is a valid encryption of µ1µ2 ∈ Z2 under an alternative secret key s⊗ s ∈ Zn2

q ,
i.e. the secret key tensored with itself. This is because by the mixed-product property of tensor
products

〈s⊗ s, c1 ⊗ c2〉 = 〈s, c1〉 · 〈s, c2〉 = e1 · e2 (mod q),

and e1 · e2 ∈ µ1µ2 + 2Z is still rather small, as long as the original errors were small enough to
begin with. So just as with homomorphic addition, the number of homomorphic multiplications is
bounded a priori.

Key switching. Homomorphic multiplication as described above has an even more signi�cant
problem than the error growth: the dimension of the cithertext also grows extremely fast, i.e. ex-
ponentially with the number of multiplied cithertexts, due to the use of the tensor product. To
resolve the issue, BV introduced a clever dimension reduction — also called key switching — technique.
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Suppose we have an nin-dimensional ciphertext cin (e.g. in = c1 ⊗ c2 as above) that encrypts some
message µ under a secret key sin (e.g. sin = s⊗s as above), under the “most-signi�cant bit” encoding:

〈sin ⊗ cin〉 = stin · cin ≈ µ ·
⌊q

2

⌉
(mod q),

We wish to convert cin to an ncout-dimensional ciphertext cout that still encrypts µ, but with respect
to some possibly di�erent secret key sout. The �rst main insight is that

〈sin ⊗ cin〉 = stin · cin = (stinG) ·G−1(cin) ≈ µ ·
⌊q

2

⌉
(mod q), (1.2)

where G is a gadget matrix with nin rows; G−1(cin) is a short integer vector. Key-switching is made
possible by publishing a suitable “encryption” of sin under sout, namely, a matrix K over Zq such
that

stinK ≈ stoutG (mod q), (1.3)

where the approximation hides small errors. Essentially, the columns of K are LWE samples with
respect to sout, with stinG added to the last row. Assuming the hardness of LWE, it is easy to prove
that such a K is pseudorandom and hence safe to publish, as long as sin and sout are independent1.

To key-switch the ciphertext cin using K, we simply output cout = K ·G−1(cin). Combining
this with Equations 1.2 and 1.3, we see that

stout · cout = (stoutK) ·G−1(cin) ≈ (stinG) ·G−1(cin) ≈ µ ·
⌊q

2

⌉
(mod q),

where the �rst approximation holds by Equation 1.3 and because G−1(cin) is a short integer vector.
Therefore, cout encrypts µ under sout, as desired.

Error management and modulus switching. Recall from above that homomorphic addition
and multiplication increase the magnitude of the error terms in the resulting ciphertexts; in par-
ticular, the error in a homomorphic product of ciphertexts is the product of the individual errors
(plus a little more, due to key-switching). This severely limits the homomorphic capacity and the
hardness/e�ciency tradeo� of the scheme: the modulus q must be larger than the error in the
�nal ciphertext, so freshly encrypted ciphertexts must have very small error rate relative to q.
More speci�cally, the scheme as described so far can homomorphically evaluate circuits of only a
�xed logarithmic depth d = O(log λ) in the security parameter λ, because the modulus must be
q = λΩ(2d).

A very simple but powerful modulus reduction technique, �rst used in [BV11a] and then exploited
to its full potential in [BGV12], greatly extends the homomorphic capacity to circuits of any a-priori
bounded polynomial depth d = poly(λ) in the security parameter. The idea is that by strategically
scaling down the modulus by some poly(n) factor (typically, before homomorphic multiplication),
we can decrease the absolute error |e| to some small �xed polynomial, even though the relative error
rate |e|/q remains essentially unchanged. Because the absolute error is what determines the error
growth in homomorphic multiplication, modulus reduction yields an arbitrage that allows us to
evaluate a depth-d circuit with an (original) modulus of only q = λΩ(d). More speci�cally, after
evaluating d layers of a circuit, our original modulus q shrinks to q/nO(d) while the absolute error

1Note that if we want to switch from key sin = s⊗ s back to the original sout = s, then the keys are not independent. In
such a case we can simply make the “circular security” assumption the publishing K is safe, though this assumption
is still not very well understood.
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remains poly(n). So it su�ces to set the original modulus as q = nΘ(d) is order to ensure correct
decryption after a depth-d computation.

The modulus reduction technique relies on the normal from of the LWE problem, where the
secret s ∈ Zn is a rather short integer vector drawn from the error distribution. The main idea is
that rounding an LWE sample (having a short secret) from Zq to Zq′ scales the absolute error by a
q′/q factor, plus a small additive term:

〈s, c〉 ∈ e+ qZ =⇒ 〈s, bceq′〉 ∈ 〈s,
q′

q
· c + [−1

2
,
1

2
]n〉 ⊆ (

q′

q
· e + ‖s‖√n · [−1

2
,
1

2
] + q′Z).

In the FHE context, one can verify that the above rounding also preserves the encrypted message,
when the ciphertext is in most-signi�cant bit form (i.e. 〈s, c〉 ≈ µ ·

⌊ q
2

⌉
(mod q)).

We also mention that Brakerski [Bra12] gave an alternative “scale invariant” method of homo-
morphic multiplication that increases the error rate by only a �xed poly(n) factor, regardless of the
absolute error of the input ciphertexts. Using this method, modulus reduction becomes optimal.
However, it can still be useful because the ciphertext sizes and computation times become smaller
as the modulus shrinks.

Bootstrapping. Even with all of the above techniques, homomorphic operations still always
increase the error rate of a ciphertext, by as much as a polynomial factor per operation. Therefore,
the schemes described so far can only homomorphically evaluate circuits of an a-priori bounded
depth; such systems are frequently called “somewhat homomorphic” or “leveled” (we ignore the
precise technical distinction between these terms).

A beautiful idea from Gentry’s original work [Gen09], called bootstrapping or sometimes refreshing,
makes it possible to reduce the error rate of a ciphertext, thus enabling unbounded homomorphic
computation. Suppose we have a ciphertext c that encrypts some (unknown) message µ under a
secret key s, where the error rate of c is too large to perform further homomorphic operations on it.
The idea behind boostrapping is to homomorphically evaluae the decryption function on a low-error
encryption cs = Enc(s) of the secret key s, which is included as part of the public key. More
speci�cally, we homomorphically evaluate the function fc(·) = Dec(·, c) on the ciphertext cs. (Note
that the ciphertext c to be refreshed is “hard-coded” into the function fc(·), whereas the secret key
is treated as the function argument.) Because fc(s) = Dec(s, c) = µ, it follows that homomorphic
evaluation of fc on as encryption of s (namely, cs) produces an encryption of µ. Moreover, as long
as the circuit depth of fc and the error rate of cs are small enough, the error rate of the output
ciphertext will be substantially smaller than that of the input ciphertext c, as desired. In particular,
decryption can be performed in O(log λ) depth, so it su�ces for cs to have some λ−O(log λ) error
rate.

Because bootstrapping involves the homomorphic evaluation of a somewhat complex function, it
is not very e�cient (see for example [GH11b]). However, boostrapping has been intensively studied
and improved in various ways [GH11a; BGV12], culminating in ring-LWE-based methods that run
in only polylogarithmic Õ(1) time per encrypted bit [GHS12a; AP13], where the hidden logO(1)(λ)
factors are not exceedingly large.

We conclude this discussion by noting that, in order to yield unbounded homomorphic operations,
boostrapping requires a “circular” encryption of the secret key under itself. It is unknown whether
it is provably secure (under a standard assumption) to reveal such an encryption, but no attack
expoiting such a circular encryption is known. So to date, all unbounded FHE schemes require an
additional assumption of circular security for the secret key.
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1.3. Contributions of this Thesis

This thesis studies lattice-based cryptography and especially its Gaussian sampling component. It
brings in at once new theoretical results, new constructions and new practical improvements. These
results mainly come from: a candidate to the NIST post-quantum cryptography standardization
process; two published papers; and two not yet published papers.

1.3.1. Falcon: Fast-Fourier Lattice-based Compact Signatures over

NTRU [FHK+17]

Falcon is a cryptographic signature algorithm submitted to NIST Post-Quantum Cryptography
Project with P.-A. Fouque, J. Ho�stein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, G. Seiler, W.
Whyte and Z. Zhang.

The point of a post-quantum cryptographic algorithm is to keep on ensuring its security charac-
teristics even faced with quantum computers. Quantum computers are deemed feasible, according to
our current understanding of the laws of physics, but some signi�cant technological issues remain to
be solved in order to build a fully operational unit. Such a quantum computer would very e�ciently
break the usual asymmetric encryption and digital signature algorithms based on number theory
(RSA, DSA, Di�e-Hellman, ElGamal, and their elliptic curve variants). Falcon is based on the
theoretical framework of Gentry, Peikert and Vaikuntanathan for lattice-based signature schemes.
We instantiate that framework over NTRU lattices, with a trapdoor sampler called "fast Fourier
sampling". The underlying hard problem is the short integer solution problem (SIS) over NTRU
lattices, for which no e�cient solving algorithm is currently known in the general case, even with
the help of quantum computers.

Falcon o�ers the following features:

• Security: a true Gaussian sampler is used internally, which guarantees negligible leakage of
information on the secret key up to a practically in�nite number of signatures (say 264).

• Compactness: thanks to the use of NTRU lattices, signatures are substantially shorter than
in any lattice-based signature scheme with the same security guarantees, while the public
keys are around the same size.

• Speed: use of fast Fourier sampling allows for very fast implementations, in the thousands of
signatures per second on a common computer; veri�cation is �ve to ten times faster.

• Scalability: operations have costO(n log n) for degree n, allowing the use of very long-term
security parameters at moderate cost.

• RAMEconomy: the enhanced key generation algorithm of Falcon uses less than 30 kilobytes
of RAM, a hundredfold improvement over previous designs such as NTRUSign. Falcon is
compatible with small, memory-constrained embedded devices.

1.3.2. Sampling From Arbitrary Centered Discrete Gaussians For Lattice-based

Cryptography [AAR17]

This publication is cosigned with C. Aguilar-Melchor and M. R. Albrecht and published at the 15th
International Conference on Applied Cryptography and Network Security (ACNS) 2017.

Non-Centered Discrete Gaussian sampling is a fundamental building block in many lattice-based
constructions in cryptography, such as signature and identity-based encryption schemes. On the
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one hand, approaches that rely on center-dependent precomputation, e.g. cumulative distribution
tables (CDT), Knuth-Yao, the alias method, discrete Zigurat and their variants, are the fastest
known algorithms to sample from a discrete Gaussian distribution. However, center-dependent
precomputation must be done for many potential centers in [0, 1) in order to be usable by these
algoritms, making them impracticable for non-centered discrete Gaussian sampling. On the other
hand, rejection sampling allows to sample from a discrete Gaussian distribution for all real centers
without prohibitive precomputation costs but needs costly �oating-point arithmetic and several
trials per sample.

In this work, we study how to reduce the number of centers for which we have to precompute
tables and propose a non-centered CDT algorithm with practicable size of precomputed tables as
fast as its centered variant. Finally, we provide some experimental results for our open-source C++
implementation indicating that our sampler increases the rate of Peikert’s algorithm for sampling
from arbitrary lattices by a factor 3 with precomputation storage up to 6.2 MB.

1.3.3. CDT-based Gaussian Sampling: From Multi to Double Precision [AR18]

This publication is cosigned with C. Aguilar-Melchor and published in the IEEE Transactions on
Computers (TC) journal.

The Rényi divergence is a measure of closeness of two probability distributions which has found
several applications over the last years as an alternative to the statistical distance in lattice-based
cryptography. A tight bound has recently been presented for the Rényi divergence of distributions
that have a bounded relative error. We show that it can be used to bound the precision requirement
in Gaussian sampling to the IEEE 754 �oating-point standard double precision for usual lattice-based
signature parameters by using a modi�ed cumulative distribution table (CDT), which reduces the
memory needed by CDT-based algorithms and, makes their constant-time implementation faster
and simpler.

Then, we apply this approach to a variable-center variant of the CDT algorithm which occasionally
requires the online computation of the cumulative distribution function. As a result, the amount
of costly �oating-point operations is drastically decreased, which makes the constant-time and
cache-resistant variants of this algorithm viable and e�cient. Finally, we provide some experimental
results indicating that comparing to rejection sampling our approach increases the GPV signature
rate by a factor 4 to 8 depending on the security parameter.

1.3.4. Delegating Elliptic-Curve Operations with Homommorphic

Encryption [ADG+18]

This publication is cosigned with C. Aguilar-Melchor, J.-C. Deneuville, P. Gaborit and T. Lepoint
and published in the IEEE Workshop on Security and Privacy in the Cloud (SPC) 2018.

The landscape of Fully Homomorphic Encryption (FHE) has known great changes these past
years. As computational costs drop, libraries are developed and new applications become possible.
Prototypes demonstrating private health diagnosis, signal processing, genome statistics and database
queries plus the recent NIST’s call for post-quantum proposals spur hope on the practical deployment
of FHE in the near future. However, in most of these applications, increasing the privacy, security or
enabling new functionalities comes in pair with some signi�cant computation and/or communication
burden.

In this work, we depart from the latter paradigm and demonstrate that FHE might be useful to
increase the practical performance of elliptic-curve cryptography. More precisely, we show how
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to reduce the computational burden of computing elliptic-curve points from a generator through
delegation. We show that using homomorphic encryption it is possible to reduce in practice compu-
tational costs even with respect to traditional, not based on homomorphic-encryption, delegation
protocols. We demonstrate the feasibility of our protocols with proof-of-concept implementations
using HElib (adapted to handle multiprecision plaintext space moduli).
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Simple, easy-to-understand algorithms will
survive longer, all other things being
roughly equal. Unfortunately, such
algorithms are usually slower than their
more sophisticated counterparts. The
notion of time itself is of course relative.

Non-Uniform Random Variate Generation –
Luc Devroye



2

Gaussian Sampling over the

Integers for Lattice Trapdoors 2
Gaussian sampling over the integers is a core building block for many lattice-based

cryptographic schemes, and in particular for which using a GPV-like trapdoor, as discussed
in section 1.2.2.1. The GPV signature framework is quite demanding when it comes to

Gaussian sampling over the integers. The Gaussians from which we need to sample have very
small standard deviation and their center cannot be determined before the signature algorithm is
executed. Indeed, most of the existing Gaussian sampling algorithms work only for �xed center
(e.g. Inversion Sampling with a cumulative distribution table (CDT) [Pei10], Knuth-Yao [DG14],
Discrete Ziggurat [BCG+14], Bernoulli Sampling [DDLL13]) or do not work for small standard
deviation (Convoluted Sampling [MW17]). Before the techniques developed in this chapter, the only
samplers which �t the GPV use case was the rejection methods (e.g. the Karney’s sampler [Kar16]),
which do not use precomputed data, but need costly arithmetic and several trials per sample.

In this chapter, after some preliminaries, in section 2.1, about non-uniform random number
generation and discrete gaussian distributions, we present, in section 2.2, a study to limit the number
of centers for which we have to precompute CDTs in the variable-center case, which leads to a
variable-center CDT algorithm with practicable size of precomputation as fast as its �xed-center
variant. Then, in section 2.3, we show that using the Rényi divergence, which is a measure of
closeness of two probability distributions, we can bound the precision requirement in CDT-based
Gaussian sampling to the IEEE 754 �oating-point standard double precision for usual lattice-based
signature parameters. Finally, in section 2.4, we present techniques to protect implementations
against timing-attacks, and provide performances indicating that our approach outperforms by a
factor of up to 75 times the fastest known rejection method (i.e. the Karney’s sampler).

Contents

2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1. Non-Uniform Random Number Generation . . . . . . . . . . . . . . . . 28
2.1.2. Gaussian Sampling over the Integers . . . . . . . . . . . . . . . . . . . . 31

2.2. Twin-CDT, An Arbitrary Centered CDT-based Sampler . . . . . . . . . . . 33

2.2.1. Variable-Center with Polynomial Number of CDTs . . . . . . . . . . . . 33
2.2.2. A More Flexible Time-Memory Tradeo� . . . . . . . . . . . . . . . . . . 37

2.3. CDT-based Gaussian Sampling: From Multi to Double Precision . . . . . . 40

2.3.1. Security and Floating-Point Precision . . . . . . . . . . . . . . . . . . . . 40
2.3.2. Double Precision Variable Center CDT Algorithm . . . . . . . . . . . . . 44

2.4. Implementation and Performances . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.2. Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



28 Chapter 2. Gaussian Sampling over the Integers for Lattice Trapdoors

2.1. Preliminaries

In this section, we present some preliminaries about the theory of non-uniform random variate
generation [Dev86], and useful tools in cryptography, about �oating-point arithmetic and statistical
closeness measures, to ensure the accuracy of these algorithms. Then we discute some properties of
the discrete Gaussian distributions, and present the known methods to sample according to them.

2.1.1. Non-Uniform Random Number Generation

Non-uniform random number generation is about to generate sequences of integers with certain
non-uniform distributions, given that a perfect uniform random number generator is available. The
assumption that a perfect uniform random number generator is available is now quite unrealistic,
but, in cryptography this assumption is usually replaced by the use of a pseudo-random number
generator (PRNG) which has been designed to be cryptographically secure (e.g. Salsa20 [Ber08]). This
uniform (pseudo-)random number generator is our fundamental building block, we assume that the
random sequence of bits obtained from it, separated in words U1, U2, . . ., is uniform, i.e. the uniform
random generator produces a sequence U1, U2, . . . with ∀i ∈ N∗, Ui ∈ {0, 1}` of independent
random variables with a uniform distribution on {0, 1}`.

A (non-uniform) random number generator is a program that halts with probability one and exits
with an integer X . This X is called a random variate. Because of our theoretical assumption we can
treat random variate as if they were random variables. Note also that if we can produce one random
variate X , then we are able to produce a sequence X1, X2, . . . of independent random variates
distributed as X (this follows from our assumption that an uniform random number generator is
available). This facilitates our task a lot: rather than having to concentrate on in�nite sequences, we
just need to look at the properties of single random variates.

For theoretical purposes, it is necessary to equate time with the number of “fundamental” oper-
ations performed before the algorithm halts, this is called time complexity of the algorithm. This
leads to our second assumption: The fundamental operations in our computer include addition,
multiplication, division, compare, truncate, move, generate a uniform random variate and exp. (This
does not implies that each of these operations takes one unit of time, the size of the operand(s) has
to be considered.) The time complexity of an algorithm, denoted T , is the time required to produce
one random variate. In many (non-constant-time) cases, T itself is a random variable since it is a
function of U1, U2, . . .. We note that we are mainly interested in generating independent sequences
of random variables. The average time complexity per random variate in a sequence of length n is

1

n

n∑
i=1

Ti

where Ti is the complexity for the i-th random variate. By the strong law of large numbers, we
know that this average tends with probability one to the expected complexity, E(T ).

2.1.1.1. Floating-Point Arithmetic

Since computers are �nite memory machines, they cannot store real numbers, let alone generate
random variables with a given density. This led us to assume that our computer can store and
manipulate real numbers. Obviously, in practice computers can use �oating-point arithmetic (FPA)
to deal with this. Floating-point arithmetic is arithmetic using formulaic representation of real
numbers as an approximation so as to support a trade-o� between range and precision. A real number
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is, following the IEEE 754 double-precision binary �oating-point (binary64) format, represented
approximately in FPA to a mantissa m ∈ (−2,−1] ∪ [1, 2) of precision p = 53 bits such that
|m| · 252 ∈ [252, 253 − 1] ∩ Z, scaled using an 11-bit (biased) exponent e ∈ [−1022, 1023] ∩ Z in
base two. Such that any �oating-point number x̄ ∈ FPp (i.e. any number that can be represented
exactly as a �oating-point number given a precision p) is of the form x̄ = m · 2e. It is interesting to
note that, in the IEEE 754 binary64 format, the most signi�cant bit of |m| is always equal to one,
therefore it is not stored, the mantissa is represented to a bit sign and the 52 bits of its fractional
part.

Relative error. In �oating-point arithmetic the relative error of a number x̄, which is the �oating-
point approximation with a p-bit mantissa of a real number x, is de�ned as δRE(x, x̄) := |x− x̄|/|x|.
The IEEE 754 speci�cation on denormalized numbers guarantees that the relative error is bounded
by δRE(x, x̄) ≤ 21−p for any elementary arithmetic operation (addition, substraction, multiplication,
division, square root and fused multiply-add) and numeric libraries compute usually also the basic
transcendental functions with δRE(x, x̄) ≤ 22−p. We recall also the useful extended notion of relative
error, from [MW17], to any two distributions P and Q with the same support S := Supp(P ) =
Supp(Q):

δRE(P,Q) := max
x∈S

δRE(P (x), Q(x)) = max
x∈S

|P (x)−Q(x)|
P (x)

.

2.1.1.2. Statistical Closeness Measures

With the assumptions given above, we can demand that the random sequence obtained by a non-
uniform random number generator has the exact distribution that was asked. Algorithms or genera-
tors with this property is called exact. Exact algorithms approach realty, for non-transcendental
densities, if we use extended precision arithmetic (e.g. MPFR [FHL+07]). In this manuscript, for the
sake of e�ciency, we are interested about inexact algorithms, which are usually algorithms that are
based upon a mathematical approximation. However, in cryptography, it is preferable to have some
security guarantees, therefore we use a measure of closeness to determine the precision needed by
practical implementations of non-uniform random number generators.

The well known statistical distance and the Rényi divergence are two measures of closeness of
two probability distributions. The Rényi divergence has found several applications over the last
years as an alternative to the statistical distance in lattice-based cryptography.

Statistical distance. The statistical distance (SD for short) between two discrete probability
distributions P and Q, with the same support S := Supp(P ) = Supp(Q), is de�ned as:

∆(P,Q) :=
1

2

∑
x∈S
|P (x)−Q(x)|

Rényi divergence. We recall the de�nition from [BLL+15] of the Rényi divergence (RD for
short): For any two discrete probability distributions P and Q such that Supp(P ) ⊆ Supp(Q) and
a ∈ (1,+∞), we de�ne the Rényi divergence of order a by

Ra(P‖Q) :=

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1
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We de�ne the Rényi divergences of orders 1 and +∞ by

R1(P‖Q) := exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)


and

R∞(P‖Q) := max
x∈Supp(P )

P (x)

Q(x)

The Rényi divergence is an alternative to the statistical distance as measure of distribution closeness,
where we replace the di�erence in the statistical distance, by the ratio in the Rényi divergence. Note
that the Rényi divergence of order 1 is know as (the exponential of) the Kullback-Leibler divergence
(KLD for short). Remark that the Rényi divergence is not a distance. We recall also some important
properties of the Rényi divergence from [BLL+15; EH14]:

Lemma 2.1 ([BLL+15, Lemma 2.7]). Let a ∈ [1,+∞]. Let P and Q denote distributions with

Supp(P ) ⊆ Supp(Q). Then the following properties hold:

• Data Processing Inequality: For any function f , where P f (resp. Qf ) denotes the distributions
of f(y) induced by sampling y from P (resp. Q), we have:

Ra(P
f‖Qf ) ≤ Ra(P‖Q).

• Multiplicativity: Assume P and Q are the two distributions of a pair of random variables

(Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distribution of Yi under P (resp.

Q). Then, if Y1 and Y2 are independent, we have:

Ra(P‖Q) = Ra(P1‖Q1)Ra(P2‖Q2).

• Probability Preservation: Let A ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,+∞), then:

Q(A) ≥ P (A)
a
a−1 /Ra(P‖Q),

Q(A) ≥ P (A)/R∞(P‖Q).

It is worth noting that the statistical distance ∆(P,Q) ≤ 1
2δRE(P,Q).

Lemma 2.2 ([PDG14, Lemma 2] strengthened in [MW17, Lemma 2.1]). Let P and Q be two distri-

butions with the same support, if δRE(P,Q) ≤ 1/4, then:

R1(P‖Q) ≤ exp
(
δRE(P,Q)2

)
.

Lemma 2.3 ([Pre17, Lemma 3]). Let P and Q be two distributions with the same support, then for

a ∈ (1,+∞):

Ra(P‖Q) ≤
(

1 +
a(a− 1)δRE(P,Q)2

2(1− δRE(P,Q))a+1

) 1
a−1

.
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2.1.2. Gaussian Sampling over the Integers

Throughout this chapter, we denote the set of real numbers by R and the integers by Z. We extend
any real function f() to a countable set A by de�ning f(A) =

∑
x∈A f(x). For any distribution D,

we note Supp(D) its support and we denote by UI the uniform distribution on I . We note λ the
security parameter of a cryptographic scheme and qs the number of queries that an attacker can
make to the private-key functionality oracle.

The discrete Gaussian distribution on Z is de�ned as the probability distribution whose unnor-
malized density function is

ρ : Z→ [0, 1]

x→ e
−x2
2

If s ∈ R∗+ and c ∈ R, then we extend this de�nition to

ρs,c(x) := ρ

(
x− c
s

)
.

and denote ρs,0(x) by ρs(x). For any mean c ∈ R and parameter s ∈ R∗+ we can now de�ne the
discrete Gaussian distribution Ds,c, for any integer x, as

Ds,c(x) :=
ρs,c(x)

ρs,c(Z)
.

Note that the standard deviation of this distribution is σ = s/
√

2π. We also de�ne cdfs,c as the
cumulative distribution function (cdf) of Ds,c

cdfs,c(x) :=
x∑

i=−∞
Ds,c(i).

Gaussian measure. An interesting property of discrete Gaussian distributions with a parameter
s greater than the smoothing parameter (see section 1.2.1) is that the Gaussian measure, i.e. ρs,c(Z)
for Ds,c, is essentially the same for all centers.

Lemma 2.4 (From the proof of [MR07, Lemma 4.4]). For any ε ∈ (0, 1), s > ηε(Z) and c ∈ R we

have:

ρs,0(Z)

ρs,c(Z)
∈
[
1,

1 + ε

1− ε

]
Tailcut parameter. To deal with the in�nite domain of Gaussian distributions, algorithms usually
take advantage of their rapid decay to sample from a �nite domain. The next lemma is useful in
determining the tailcut parameter t.

Lemma 2.5 ([GPV08, Lemma 4.2]). For any ε > 0, s > ηε(Z) and t > 0, we have:

Etailcut := Pr
X∼Ds,c

[|X − c| > ts] < 2e−πt
2 1 + ε

1− ε .

In particular, Lemma 2.5 implies that Etailcut < 2−λ for t =
√
λ/2, ε ≤ 1/3 and λ ≥ 12.

Gaussian sampling over the integers is a core building block for many lattice-based cryptographic
schemes. As a consequence, several algorithms for performing this operation have been proposed
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in the recent years. However, while indi�erentiability from an ideal Gaussian, speed, memory-
e�ciency, conceptual simplicity, genericity and resistance against side-channel attacks all seem
important goals to reach, it has proved di�cult for the algorithms proposed to achieve all these
properties simultaneously.

On the one hand, center-dependent samplers are the fastest known to sample from a discrete
Gaussian distribution. However, they use a relatively large precomputed table for each possible
real center, w.l.o.g. in [0, 1), making them impracticable for variable-center distributions, as used
in lattice trapdoors (e.g. in Falcon). On the other hand, rejection methods allow to sample from a
discrete Gaussian distribution for all real centers without prohibitive precomputation cost but needs
costly arithmetic and several trials per sample.

2.1.2.1. Rejection Methods

Straightforward rejection sampling [Von51] is a classical method to sample from any distribution by
sampling from a uniform distribution and accept the value with a probability equal to its probability
in the target distribution. It does not use precomputed data but needs �oating-point arithmetic
and several trials by sample. A variant of this straightforward rejection sampling approach use
“lazy” �oating-point computations [DN12a] with IEEE 754 standard double precision �oating-point
numbers in most cases.

Bernoulli sampling [DDLL13] introduces an exponential bias from Bernoulli variables, which can
be e�ciently sampled specially in circuits. The bias is then corrected in a rejection phase based
on another Bernoulli variable. This approach is particularly suited for embedded devices for the
simplicity of the computation, the small center-dependent precomputation, and the near-optimal
entropy consumption.

Currently the fastest rejection approach for arbitrary variable center is the Karney sampler [Kar16]
which does not use �oating-point arithmetic. It is based on the von Neumann’s algorithm to sample
from the exponential distribution [Neu51], requires no precomputed tables and consumes a smaller
amount of random bits than Bernoulli sampling, though it is slower.

Note that none of these methods requires large precomputation depending on the distribution’s
center c. In all the alternative approaches we present hereafter, there is some large center-dependent
precomputation. When the center is not know this can result in prohibitive costs and handling these
becomes a major issue around which our work is focused.

2.1.2.2. Center-Dependent Approaches

The cumulative distribution table algorithm is based on the inversion method [Dev86]. All non-
negligible cumulative probabilities are stored in a table and at sampling time one generates a
cumulative probability in [0, 1) uniformly at random, performs a binary search through the table
and returns the corresponding value.

Several alternatives to straightforward CDT are possible. Of special interest are: the alias
method [Wal74] which encodes CDTs in a more involved but more e�cient approach; BAC Sam-
pling [Saa16] which uses arithmetic coding tables to sample with an optimal consumption of random
bits; and Discrete Ziggurat [BCG+14] which adapts from the Ziggurat method [MT84] for a �exible
time-memory trade-o�.

Finally, Knuth-Yao sampling [KY76] uses a random bit generator to traverse a binary tree formed
from the bit representation of the probability of each possible sample, the terminal node is labeled
by the corresponding sample. The main advantage of this method is that it consumes a near-optimal
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amount of random bits. A block variant and other practical improvements are suggested in [DG14].
This method is strongly center-dependent and it appears di�cult to reduce its required precision
using the Rényi divergence.

2.1.2.3. Convoluted Sampling

Recently a new sampler was presented in [MW17] using a convolution theorem to combine samples.
This algorithm allows to sample according to Gaussian distributions with arbitrary center as follows.
Assume the center c has k binary fractionnal digits, i.e. c ∈ Z/2k. Then, we can use a �rst integer
Gaussian sampler (scaled by 2−k) to randomly round c to a center in Z/2k−1. Then, we use a
second sample (scaled by 2−(k−1)) to round the new center to a coarser set Z/2k−2, and so on for
k times, until we obtain a sample in Z as desired. Since the �nal output is obtained by combining
a number of Gaussian samples together, the result still follows a Gaussian distribution. Moreover,
since the scaling factors grow geometrically, the standard deviation of the �nal output is (up to a
small constant factor) the same as the one of the original samples.

This sampler is currently the most e�ective in time and memory for large standard deviation.
However, it is important to note that the standard deviation for the base sampler has to be greater than
the smoothing parameter ηε(Z) [MR07] for the convolution to yield the correct output distribution.
Therefore, this approach is not suited to settings where the standard deviation is small, i.e. near to
the smoothing parameter as is often the case in lattice-based hash-and-sign signature.

2.2. Twin-CDT, An Arbitrary Centered CDT-based Sampler

In this section we develop techniques from the article Sampling from Arbitrary Centered Discrete

Gaussians for Latiice-Based Cryptography coauthored with Carlos Aguilar-Melchor and Martin
R. Albrecht. We speed-up discrete Gaussian sampling when the center is not known in advance,
obtaining a �exible time-memory trade-o� comparing favorably to rejection sampling methods. We
start with the cumulative distribution table (CDT) suggested in [Pei10] and lower the computational
cost of the precomputation phase and the global memory required when sampling from a variable-
center discrete Gaussian by precomputing the CDT for a relatively small number of centers (O(λ3)
to be as fast as the �xed-center CDT algorithm) and by computing the cdf when needed, i.e. when
for a given uniform random input, the values returned by the CDTs for the two closest precomputed
centers di�er. Second, we present an adaptation of the lazy technique described in [DN12a] to
compute most of the cdf in double IEEE standard double precision, thus decreasing the number of
precomputed CDTs. Finally, we propose a more �exible approach which takes advantage of the
information already present in the precomputed CDTs. For this we use a Taylor expansion around
the precomputed centers and values instead of this lazy technique, thus enabling to reduce the
number of precomputed CDTs to a ω(λ) to be as fast as the �xed-center CDT algorithm. We stress,
though, that our construction is not constant time, which limits its utility. We address this important
issue in section 2.4.1.2.

2.2.1. Variable-Center with Polynomial Number of CDTs

We consider the case in which the mean is variable, i.e. the center is not known before the online
phase, as it is the case for lattice-based hash-and-sign signatures. The center can be any real
number, but without loss of generality we will only consider centers in [0, 1). Because CDTs
are center-dependent, a �rst naive option would be to precompute a CDT for each possible real
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center in [0, 1) in accordance with the desired accuracy. Obviously, this �rst option has the same
time complexity than the classical CDT algorithm, i.e. O(λ log sλ) for λ the security parameter.
However, it is completely impractical with 2λ precomputed CDTs of size O(sλ1.5). An opposite
trade-o� is to compute the CDT on-the-�y, avoiding any precomputation storage, which increase
the computational cost to O(sλ3.5) assuming that the computation of the exponential function run
in O(λ3) (see Section 2.2.1.2 for a justi�cation of this assumption).

An interesting question is can we keep the time complexity of the classical CDT algorithm with a
polynomial number of precomputed CDTs. To answer this question, we start by �xing the number
n of equally spaced centers in [0, 1) and precompute the CDTs for each of these. Then, we apply the
CDT algorithm to the two precomputed centers closest to the desired center for the same cumulative
probability uniformly draw. Assuming that the number of precomputed CDTs is su�cient, the
values returned from both CDTs will be equal most of the time, in this case we can conclude, thanks
to a simple monotonic argument, that the returned value would have been the same for the CDT at
the desired center and return it as a valid sample. Otherwise, the largest value will immediately
follow the smallest and we will then have to compute the cdf at the smallest value for the desired
center in order to know if the cumulative probability is lower or higher than this cdf. If it is lower
then the smaller value will be returned as sample, else it will be the largest.

2.2.1.1. The Twin-CDT Algorithm

As discussed above, to decrease the memory required by the CDT algorithm when the distribution
center is determined during the online phase, we can precompute CDTs for a number n of centers
equally spaced in [0, 1) and compute the cdf when necessary. The algorithm 2.7, resp. 2.8, describes
the o�ine, resp. online phase, of the Twin-CDT algorithm. The algorithm 2.7 precomputes CDTs, up

Algorithm 2.7 Twin-CDT: O�ine Phase
Input: a Gaussian parameter s and a number of centers n
Output: a precomputed matrix T

1: initialize an empty matrix T ∈ FPn×2dtse+3
λ

2: for i← 0, . . . , n− 1 do

3: for j ← 0, . . . , 2dtse+ 2 do

4: Ti,j ← FPm : cdfs,i/n(j − dtse − 1)

to a precision m that guarantees the λ most signi�cant bits of each cdf, and store them with λ bits
of precision as a matrix T, where the i-th line is the CDT corresponding to the i-th precomputed
center i/n. To sample from Ds,c, algorithm 2.8 searches the preimages by the cdf of a cumulative
probability p, draw from the uniform distribution on [0, 1), in both CDTs corresponding to the
center bn(c− bcc)c/n (respectively dn(c− bcc)e/n) which return a value v1 (resp. v2). If the same
value is returned from the both CDTs (i.e. v1 = v2), then this value added the desired center integer
part is a valid sample, else it computes cdfs,c−bcc(v1) and returns v1 + bcc if p < cdfs,c(v1) and
v2 + bcc else.

Correctness. We establish correctness in the lemma below.

Lemma 2.6. Assuming that m is large enough to ensure λ correct bits during the cdf computation,

the statistical distance between the output distribution of algorithm 2.8 instantiated to sample from

DZm,σ,c and DZm,σ,c is bounded by 2−λ.
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Algorithm 2.8 Twin-CDT: Online Phase
Input: a center c and a precomputed matrix T
Output: a sample x that follows Ds,c

1: p← 0.U{0,1}λ
2: v1 ← i− dtse − 1 s.t. Tbn(c−bcc)c,i−1 ≤ p < Tbn(c−bcc)c,i
3: v2 ← j − dtse − 1 s.t. Tdn(c−bcc)e,j−1 ≤ p < Tdn(c−bcc)e,j
4: if v1 = v2 then

5: return v1 + bcc
6: else

7: if p < FPm : cdfs,c−bcc(v1) then
8: return v1 + bcc
9: else

10: return v2 + bcc

Proof. First note that from the discrete nature of the considered distribution we have Ds,c =
Ds,c−bcc + bcc. Now recall that the probability integral transform states that if X is a continuous
random variable with cumulative distribution function cdf , then cdf(X) has a uniform distribution
on [0, 1). Hence the inversion method: cdf−1(U[0,1)) has the same distribution as X . Finally by
noting that for all s, p ∈ R, cdfs,c(p) is monotonic in c, if cdf−1

s,c1(p) = cdf−1
s,c2(p) := v, then

cdf−1
s,c (p) = v for all c ∈ [c1, c2], and as a consequence, for all v ∈ [−dtse − 1, dtse + 1], the

probability of outputting v is equal to FPm : cdfs,c(v)− FPm : cdfs,c(v − 1) which is 2−λ-close to
Ds,c(v).

The remaining issue in the correctness analysis of algorithm 2.8 is to determine the error occurring
during the m-precision cdf computation. Indeed, this error allows us to learn what precision m is
needed to correctly compute the λ most signi�cant bits of the cdf. This error is characterized in
Lemma 2.7.
Lemma 2.7. Letm ∈ Z be a positive integer and ε = 21−m

. Let c̄, s̄, h̄ ∈ FPm be at distance respec-

tively at most δc, δc and δh from c, s, h ∈ R and h = 1/ρs,c(Z). Let ∆f(x) := |FPm : f(x)− f(x)|.
We also assume that the following inequalities hold: s ≥ 4, t ≥ 10, sδs ≤ 0.01, δc ≤ 0.01, s2ε ≤ 0.01,
(ts + 1)ε ≤ 1/2. We have the following error bound on ∆cdfs,c(x) for any integer x such that

|x| ≤ ts+ 2
∆cdfs,c(x) ≤ 3.5t3s2ε

Proof. We derive the following bounds using [Duc13, Facts 6.12, 6.14, 6.22]:

∆cdfs,c(x) ≤ ∆

 dtse+1∑
i=−dtse−1

ρs,c(i)

(1

s
+ 3.6sε

)
+ 3.6sε

∆

 dtse+1∑
i=−dtse−1

ρs,c(i)

 ≤ 3.2t3s3ε

For the sake of readability the FPA error bound of Lemma 2.7 is fully simpli�ed and is therefore
not tight. For practical implementation, one can derive a better bound using an ad-hoc approach
such as done in [PS08].
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E�ciency. On average, the evaluation of the cdf requires dtse+1.5 evaluations of the exponential
function. For the sake of clarity, we assume that the exponential function is computed using a direct
power series evaluation with schoolbook multiplication, so its time complexity is O(λ3). We refer
the reader to [Bre+06] for a discussion of di�erent ways to compute the exponential function in
high-precision.

Lemma 2.8 establishes that the time complexity of the twin-CDT algorithm isO(λ log sλ+λ4/n),
so with n = O(λ3) it has asymptotically the same computational cost than the classical CDT
algorithm.

Lemma 2.8. Let Pcdf be the probability of computing the cdf during the execution of algorithm 2.8,

assuming that ts ≥ 10, we have

Pcdf ≤ 2.2ts
(

1− e− 1.25t
sn ∆measure

)
Proof.

Pcdf ≤ max
c∈[0,1)

 dtse+1∑
i=−dtse−1

∣∣∣cdfs,c(i)− cdfs,c+ 1
n

(i)
∣∣∣


Assuming that ts ≥ 10, we have

e−
1.25t
sn ∆measure cdfs,c(i) ≤ cdfs,c+ 1

n
(i) ≤ cdfs,c(i)

Hence the upper bound.

On the other hand, the precomputation matrix generated by algorithm 2.7 take n times the size
of one CDT, hence the space complexity, which is O(nsλ1.5). Note that for n su�ciently big to
make the cdf computational cost negligible, the memory space required by this algorithm is about
1 gigabyte for the parameters considered in cryptography and thus prohibitively expensive for
practical use.

2.2.1.2. The Lazy-CDT Algorithm

A �rst idea to decrease the number of precomputed CDTs is to avoid costly cdf evaluations by using
the same lazy trick as in [DN12a] for rejection sampling. Indeed, a careful analysis of algorithm 2.8
shows most of the time many of the computed cdf bits are not used. This gives us to a new strategy
which consists of computing the bits of cdfs,c(v1) lazily. When the values corresponding to the
generated probability for the two closest centers are di�erent, the Lazy-CDT algorithm �rst only
computes the cdf at a precision m′ to ensure k < λ correct bits (say m′ = 53). If the comparison is
decided with those k bits, it returns the sample. Otherwise, it recomputes the cdf at a precision m
to ensure λ correct bits.

Correctness. In addition to the choice of m, discussed in Section 2.2.1.1, to achieve λ bits of
precision, the correctness of algorithm 2.9 also requires to know k which is the number of correct
bits after the �oating-point computation of the cdf with m′ bits of mantissa. For this purpose, given
m′ Lemma 2.7 provides a theoretical lower bound on k.
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Algorithm 2.9 Lazy-CDT: Online Phase
Input: a center c and a precomputed matrix T
Output: a sample x that follows Ds,c

1: p← 0.U{0,1}λ
2: v1 ← i− dtse − 1 s.t. Tbn(c−bcc)c,i−1 ≤ p < Tbn(c−bcc)c,i
3: v2 ← j − dtse − 1 s.t. Tdn(c−bcc)e,j−1 ≤ p < Tdn(c−bcc)e,j
4: if v1 = v2 then

5: return v1 + bcc
6: else

7: if FPk : p < FPm′ : cdfs,c−bcc(v1) then
8: return v1 + bcc
9: else

10: if FPk : p > FPm′ : cdfs,c−bcc(v1) then
11: return v2 + bcc
12: else

13: if p > FPm : cdfs,c−bcc(v1) then
14: return v1 + bcc
15: else

16: return v2 + bcc

E�ciency. As explained in [DN12a] the precision used for �oating-point arithmetic has non-
negligible impact, because fp-operation become much expensive when the precision goes over the
hardware precision. For instance, modern processors typically provide �oating-point arithmetic
following the double IEEE standard double precision (m = 53), but quad-�oat FPA (m = 113) is
usually about 10-20 times slower for basic operations, and the overhead is much more for mul-
tiprecision FPA. Therefore the maximal hardware precision is a natural choice for m′. However
this choice for m′ in algorithm 2.9 is a strong constraint for cryptographic applications, where the
error occurring during the �oating-point cdf computation is usually greater than 10 bits, making
the time-memory tradeo� of algorithm 2.9 in�exible. Note that the probability of triggering high
precision in algorithm 2.9 given that v1 6= v2 is about 2q−kPcdf, where q is the number of common
leading bits of cdfs,bn(c−bcc)c/n(v1) and cdfs,dn(c−bcc)e/n(v2). By using this lazy trick in addition to
lookup tables as described in Section 2.4.1.1 with parameters considered in cryptography, we achieve
a computational cost lower than the classical centered CDT algorithm with a memory requirement
in the order of 1 megabyte.

2.2.2. A More Flexible Time-Memory Tradeo�

In view of limitations of the lazy approach described above, a natural question is if we can �nd a
better solution to approximate the cdf. The major advantage of this lazy trick is that it does not
require additional memory. However, in our context the CDTs are precomputed and rather than
approximate the cdf from scratch it would be interesting to reuse the information contained in these
precomputations. Consider the cdf as a function of the center and note that each precomputed cdf is
zero degree term of the Taylor expansion of the cdf around a precomputed center. Hence, we may
approximate the cdf by its Taylor expansions by precomputing some higher degree terms.

At a �rst glance, this seems to increase the memory requirements of the sampling algorithm, but
we will show that this approach allows to drastically reduce the number of precomputed to a ω(λ)
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centers thanks to a probability which decreases rapidly with the degree of the Taylor expansion.
Moreover, this approximation is faster than the cdf lazy computation and it has no strong constraints
related to the maximal hardware precision. As a result, we obtain a �exible time-memory tradeo�
which reaches, in particular, the same time complexity as the CDT algorithm for centered discrete
Gaussians with a practical memory requirements for cryptographic parameters.

We recall the well known Taylor’s theorem which provides a polynomial approximation around a
given point for any function su�ciently di�erentiable.

Theorem 2.9 (Taylor’s theorem). Let d ∈ Z+
and let the function f : R→ R be d times di�erentiable

in some neighborhood U of a ∈ R. Then for any x ∈ U

f(x) = Td,f,a(x) +Rd,f,a(x)

where

Td,f,a(x) =

d∑
i=0

f (i)(a)

i!
(x− a)i

and

Rd,f,a(x) =

∫ x

a

f (d+1)(t)

d!
(x− t)ddt

2.2.2.1. The Taylor-CDT Algorithm

Our Taylor-CDT algorithm is similar to the Lazy-CDT algorithm (Algorithm 2.9) described above,
except that the lazy computation of the cdf is replaced by the Taylor expansion of the cdf, viewed as
a function of the Gaussian center, around each precomputed centers for all possible values. The
zero-degree term of each of these Taylor expansions is present in the corresponding CDT element
Ti,j and the d higher-degree terms are stored as an element Ei,j of another matrix E. As for the
other approaches, these precomputations shall be performed at a su�cient precision m to ensure λ
correct bits.

Algorithm 2.10 Taylor-CDT: O�ine Phase
Input: a Gaussian parameter s, a number of centers n, a Taylor expansion degree d
Output: two precomputed matrices T and E

1: initialize two empty matrices T ∈ FPn×2dtse+3
λ and E ∈ (FPdλ)n×2dtse+3

2: for i← 0, . . . , n− 1 do

3: for j ← 0, . . . , 2dtse+ 2 do

4: Ti,j ← FPm : cdfs,i/n(j − dtse − 1)
5: Ei,j ← FPm : Td,cdfs,x(j−dtse−1),i/n(x)−Ti,j

During the online phase, algorithm 2.11 proceed as follow. Draw p from the uniform distribution
over [0, 1) and search p in the CDTs of the two closest precomputed centers to the desired center
decimal part. If the two values found are equal, add the desired center integer part to this value and
return it as a valid sample. Otherwise, select the closest precomputed center to the desired center
decimal part and evaluate, at the desired center decimal part, the Taylor expansion corresponding
to this center and the value found in its CDT. If p is smaller or bigger than this evaluation with
respect for the error approximation upper bound Eexpansion, characterized in Lemma 2.10, add the
desired center integer part to the corresponding value and return it as a valid sample. Otherwise, it
is necessary to compute the full cdf to decide which value to return.
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E�ciency. Algorithm 2.11 performs two binary searches on CDTs in O(λ log sλ), d additions
and multiplications on FPm in O(m2) with probability Pcdf ≈ 3λ/n (see Lemma 2.8) and a cdf
computation on FPm inO(sλ3.5) with probability close to 2q+1PcdfEexpansion, where q is the number
of common leading bits of cdfs,bn(c−bcc)c/n(v1) and cdfs,dn(c−bcc)e/n(v2) and Eexpansion is the Taylor
expansion approximation error bound described in Lemma 2.10.

Algorithm 2.11 Taylor-CDT: Online Phase
Input: a center c and two precomputed matrices T and E
Output: a sample x that follows Ds,c

1: p← 0.U{0,1}λ
2: v1 ← i− dtse − 1 s.t. Tbn(c−bcc)c,i−1 ≤ p < Tbn(c−bcc)c,i
3: v2 ← j − dtse − 1 s.t. Tdn(c−bcc)e,j−1 ≤ p < Tdn(c−bcc)e,j
4: if v1 = v2 then

5: return v1 + bcc
6: else

7: if |c− bn(c− bcc)c| < |c− dn(c− bcc)e| then
8: c′ ← bn(c− bcc)c
9: else

10: c′ ← dn(c− bcc)e
11: i← j

12: if p < Tc′,i + Ec′,i(c− bcc)− Eexpansion then

13: return v1 + bcc
14: else

15: if p > Tc′,i + Ec′,i(c− bcc) + Eexpansion then

16: return v2 + bcc
17: else

18: if p > FPm : cdfs,c−bcc(v1) then
19: return v1 + bcc
20: else

21: return v2 + bcc

Lemma 2.10. Let Eexpansion be the maximal Euclidean distance between cdfs,x(v) and Td,cdfs,x(v),c(x),
its Taylor expansion around c, for all v ∈ [−dtse − 1, dtse + 1], c ∈ [0, 1) and x ∈ [c, c + 1/2n],
assuming that t ≥ 2.5, s ≥ 4, we have

Eexpansion <
4td+2

nd+1s
d+1
2

Proof. From Theorem 2.9 we have

Eexpansion = max
c∈[0,1)

x∈[c,c+1/2n]
v∈[−dtse−1,dtse+1]

 v∑
i=−dtse−1

∫ x

c

ρ
(d+1)
s,t (i)

d! ρs,t(Z)
(c+

1

2n
− t)

d

dt



By using well-known series-integral comparison we obtain ρs,t(Z) ≥ s
√

2π−1 and since
∣∣∣ρ(d)
s,t (i)

∣∣∣ <
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d(1.3t)d2d

sd/2
for s ≥ 4 and t ≥ 2.5, it follows that

Eexpansion ≤
(d+ 1)(1.3)d+1td+2

d!nd+1s
d+1
2

A careful analysis of this technique show that with d = 4 we achieve the same asymptotic
computational cost as the classical CDT algorithm with n = ω(λ), where the hidden factor is less
than 1/4, therefore for this degree the space complexity of algorithm 2.10 and 2.11 is only λ times
bigger than for centered sampling, showing that these algorithms can achieve a memory requirement
as low as 1 MB. Finally, note that taking care to add the �oating-point computation error to the
error of approximation, one can compute the Taylor expansion evaluation at the maximal hardware
precision to reduce its computational cost.

2.3. CDT-based Gaussian Sampling: From Multi to Double

Precision

In this section we present a new approach to reduce the �oating-point precision needed in Gaussian
sampling for lattice-based cryptography from the article CDT-based Gaussian Sampling: From Multi

to Double Precision coauthored with Carlos Aguilar-Melchor. The main idea behind this approach
is to reduce the relative error of the cumulative distribution table (CDT) [Pei10] algorithm, then
employ a tight bound from [Pre17] for the Rényi divergence of distributions that have a bounded
relative error, to obtain a reordered CDT algorithm using only standard double precision, while
keeping the same security levels, for usual lattice-based signature scheme parameters. This makes
it simpler to implement but also more e�cient, specially in constant-time. From that, we adapt
the Twin-CDT algorithm presented in section 2.2, which is a variable-center variant of the CDT
algorithm, to be compatible with our reordered CDTs, and we provide an analysis of its e�ciency in
this context which show that the amount of �oating-point operations is drastically decreased.

2.3.1. Security and Floating-Point Precision

A critical practical issue is how the use of �oating point arithmetic a�ects performance and security.
Indeed, as explained in [DN12a] the precision used for �oating-point arithmetic has non-negligible
impact, because �oating-point operations become much more expensive when the requested preci-
sion goes over the hardware precision. For instance, modern processors typically provide �oating-
point arithmetic following the IEEE 754 standard double precision (p = 53), but quad-�oat �oating
point arithmetic (p = 113) is usually about 10-20 times slower for basic operations. The overhead
increases rapidly for multiprecision �oating point arithmetic.

In [PDG14], a half-CDT was reordered to reduce the relative error in a security analysis of the
CDT algorithm centered at zero, using the Kullback-Leibler divergence. In this section, after brie�y
recalling the CDT algorithm, we also use reordering to reduce the relative error in our setting.
Then we present a statistical and Kullback-Leibler distance analysis, as it was done in [PDG14], to
establish the �oating-point mantissa size p needed in our reordered CDT (rCDT for short) algorithm
to maintain the security level of cryptographic schemes using this approximate sampler instead
of an ideal sampler. The result of these analysis is that p is too large to �t in IEEE 754 standard
double precision arithmetic for lattice-based signature applications. We therefore introduce a
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Rényi divergence analysis using techniques from [BLL+15]. Going beyond the Kullback-Leibler
analysis reveals to be crucial as, taking into account standard assumptions about the amount of
times an attacker can use oracles, we are �nally able to show that the precision needed for �oating-
point arithmetic in Gaussian sampling for lattice-based signature is small enough to use IEEE 754
arithmetic.

2.3.1.1. The CDT Algorithm

It is worth recalling that the correctness of the inverse transformation method comes from the integral
transform which states that if X is a continuous random variable with cumulative distribution
function cdf , then cdf(X) has a uniform distribution on [0, 1). Hence the inversion method:
cdf−1(U[0,1)) has the same distribution as X . The CDT algorithm [Pei10] is based on this method
with the speci�city that the image by cdf of the signi�cant domain-subset is precomputed and
stored as a cumulative distribution table (CDT). By signi�cant domain-subset we mean an interval

Algorithm 2.12 CDT: O�ine Phase
Input: a Gaussian parameter s and a centers c
Output: a precomputed CDT T

1: initialize an empty table T
2: for i← 0, . . . , 2dtse do
3: Ti ← cdfs,c(i− dtse)

Algorithm 2.13 CDT: Online Phase
Input: a precomputed CDT T
Output: a sample x that follows Ds,c

1: u← U[0,1)

2: return i− dtse s.t. Ti−1 ≤ u < Ti

large enough in accordance with the desired statistical distance. Indeed, assuming that the CDT
values are stored with in�nite precision, the statistical distance between the CDT algorithm and an
ideal sampler for the same distribution is equal to half of the sum of the probabilities that were not
precomputed.

2.3.1.2. Smaller Relative Error

Let D̄s,c be the output distribution of algorithm 2.13, let S := [−dtse, dtse] ∩ Z be the truncated
support and let p be the �oating-point precision, i.e. the number of bits in the mantissa, we have:

δRE(Ds,c, D̄s,c) ≤
ρs,c(Z)− ρs,c(S)

2
+ max

x∈S

cdfs,c(x)

Ds,c(x)
2−p

Using a CDT in the natural order, as generated by algorithm 2.12, the relative error of D̄s,c is
signi�cantly large due to the fact that in the tail Ds,c(x) is very small while cdfs,c(x) ≈ 1. A
straightforward solution to reduce this relative error would be to reorder the support S such that
the smallest probability comes �rst in the CDT. To this end we use the total order relation ≺ on the
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support S, de�ned for any two integers x and y as:

x ≺ y if and only if
{
Ds,c(x) < Ds,c(y)

Ds,c(x) = Ds,c(y) and x < y
.

We also denote by � the relation which expands ≺ by adding that x is in relation with itself,
i.e. x � y if and only if, x ≺ y or x = y. We denote by S≺ := (xi)0≤i≤2dtse := (S,≺) the reordered
support according to the order relation ≺. Assuming that c ∈ [0, 1)1 the permutation to move from
S to S≺ is quite simple:

S≺ = ((−1)i+1(dtse − i))0≤i≤2dtse−2‖(b0, b1)

= (−dtse, dtse,−dtse+ 1, dtse − 1, . . . ,−2, 2,−1, b0, b1)

where

(b0, b1) =

{
(1, 0) if 0 ≤ c < 1

2

(0, 1) if 1
2 ≤ c < 1

Now we can de�ne a new cumulative distribution function ofDs,c over S≺, for any integer x ∈ S,
as:

rcdfs,c(x) :=

y�x∑
y∈S

Ds,c(y).

Note that we assume in the rest of this section that the tailcut parameter t is large enough to ensure
the term due to the support truncation (ρs,c(Z)−ρs,c(S))/2 is smaller than the precision-dependent
term in the relative error of any output distribution. We also modify algorithms 2.12 and 2.13 into
algorithms 2.14 and 2.15 to use rcdf instead of cdf . The lemma above shows that the reordered

Algorithm 2.14 Reordered CDT: O�ine Phase
Input: a Gaussian parameter s, a center c and a reordered truncated support S≺ = (xi)0≤i≤2dtse
Output: a precomputed reordered CDT T

1: initialize an empty table T
2: for i← 0, . . . , 2dtse do
3: Ti ← rcdfs,c(xi)

Algorithm 2.15 Reordered CDT: Online Phase
Input: a precomputed reordered CDT T and a reordered truncated support S≺ = (xi)0≤i≤2dtse
Output: a sample x that follows Ds,c

1: u← U[0,1]

2: return xi s.t. Ti−1 ≤ u < Ti

CDT (rCDT) algorithm decreases the relative error of stored cumulative probabilities by a factor up
to 2s.

1It is easy to reduce any center c ∈ R to c′ := c− |c| ∈ [0, 1) without loss of generality for any probability distribution
over the integers.
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Lemma 2.11. Let D̄≺s,c be the output distribution of algorithm 2.15 and p be the number of bits in the

mantissa for each �oating-point number used in algorithm 2.15, for s ≥ 1 we have:

δRE(Ds,c, D̄
≺
s,c) < 2−p+2.3+log2 s

Proof. Let S−, S+ be respectively the negative part and the strictly positive part of S, i.e. S− :=
[−dtse, 0] ∩ Z and S+ := [1, dtse] ∩ Z. We know that:

rcdfs,c(x)

Ds,c(x)
=

y�x∑
y∈S−

Ds,c(y)

Ds,c(x)
+

z�x∑
z∈S+

Ds,c(z)

Ds,c(x)

And from a standard sum-integral comparison argument:

y�x∑
y∈S−

Ds,c(y)

Ds,c(x)
+

z�x∑
z∈S+

Ds,c(z)

Ds,c(x)
≤ 2 + 2

∫ ∞
y=|x|

ρs,c(y)

ρs,c(|x|)

≤ 2 + s
√

2π

2.3.1.3. Security Analysis

In previous works, the precision was determined by an analysis based on the statistical distance
[Pei10] or the Kullback-Leibler divergence [PDG14] for classical CDT and reversed half-CDT. In this
section, the distributions Φ and Φ′ denote the cryptographic scheme in the view of the adversary in
the approximate (resp. ideal) cases. We assume that a query to the private-key functionality oracle
corresponds tom queries to the Gaussian sampling algorithm, with a maximum Gaussian parameter
s := maxi=1,...,m si, and, in accordance with the NIST call for proposals2 for the post-quantum
cryptography standardization, we bound the number of queries from the attacker to the private-key
functionality oracle by qs. Note that in the NIST call for proposals qs = 264.

Statistical distance analysis. Any adversary with success probability ε′ on the scheme imple-
mented with perfect Gaussian sampling has a success probability ε ≤ ε′ + ∆(Φ,Φ′) against the
scheme implemented with approximative Gaussian sampling. We assume that the parameters
for the ideal scheme are selected to have ε′ ≤ 2−λ−1. To ensure a security against mqs queries,
each of the approximated Gaussian random variables (D̄si,ci)i should be within statistical distance
∆(Φ,Φ′)/(mqs) of the desired (Dsi,ci)i. Using ∆(D̄si,ci , Dsi,ci) ≤ 2−p+1.3+log2 si from Lemma 2.11
leads to a mantissa precision requirement on the rCDT for λ-bits of security:

p ≥ λ+ 2.3 + log2(smqs).

Kullback-Leibler divergence analysis. In [PDG14] the statistical distance analysis is replaced
by the Kullback-Leibler divergence, i.e. the Rényi divergence of order a = 1, to reduce the preci-
sion p needed in the precomputed table. They show that any adversary with success probability
ε′ ≤ 2−λ−1 on the scheme implemented with perfect Gaussian sampling has a success probability

2http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
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ε ≤ ε′+
√

logR1(Φ‖Φ′)/2 against the scheme implemented with approximative Gaussian sampling.
We assume that the parameters for the ideal scheme are selected to have ε′ ≤ 2−λ−1. By the multi-
plicative property of the Rényi divergence over themqs independant samples, we haveR1(Φ‖Φ′) ≤
(maxi=1,...,mR1(D̄si,ci‖Dsi,ci))

mqs . Using R1(D̄si,ci‖Dsi,ci) ≤ exp(2−2p+4.6+2 log2 s) from Lem-
mas 2.11 and 2.2 leads to a mantissa precision requirement on the rCDT for λ-bits of security:

p ≥ λ+ 3.3 + log2(s
√
mqs).

Rényi divergence analysis. As described in [BLL+15], the probability preservation property of
the Rényi divergence is multiplicative for a > 1 rather than additive for a = 1 and the statisti-
cal distance. Any adversary with success probability ε′ on the scheme implemented with perfect
Gaussian has a success probability ε ≤ (ε′Ra(Φ‖Φ′))

a−1
a against the scheme implemented with

approximative Gaussian sampling. We assume that the parameters for the ideal scheme are selected
to have ε′ ≤ 2−

a
a−1

λ−1, i.e. assuming that for any k > 0 we have λ ≤ (a− 1)k, then the parameters
for the ideal scheme are selected to have (λ+ k + 1)-bits of security. By the multiplicative prop-
erty of the Rényi divergence we get that Ra(Φ‖Φ′) ≤ (maxi=1,...,mRa(D̄si,ci‖Dsi,ci))

mqs . Using
Lemmas 2.11 and 2.3 leads to a mantissa precision requirement on the rCDT for λ-bits of security:

p ≥ 1.3 + log2(s
√
amqs)

For instance if we take a = 256, we can take p = 53, i.e. the standard IEEE 754 double precision, as
long as we have log2(s

√
mqs) ≤ 47.7, which is the case for usual lattice-based signature schemes

where qs = 264, m ≤ 211 and s ≤ 28.

Comparing the presented security analysis (statistical distance, Kullback-Leibler divergence and
Rényi divergence), we conclude that the Rényi divergence analysis results in the smallest mantissa
size p. Moreover, this size is, in the Rényi divergence analysis, independent of the targeted security
parameter which is a nice side e�ect. With p = 53, i.e. the standard IEEE 754 double precision,
this leads to 128ds

√
λ/2e+ 64 bits of memory for a full CDT and 64ds

√
λ/2e+ 64 bits for half a

CDT3. This results in a signi�cant reduction of the memory needed by (reordered) CDT algorithm
with respect to the other approaches. Besides this memory reduction, an important consequence of
considering standard IEEE 754 double precision is that this allows to store each CDT entry in only
one register which makes the resistance to the timing and cache attacks easier to achieve and limits
its overhead.

2.3.2. Double Precision Variable Center CDT Algorithm

Now we consider the case in which the center is not know before the online phase, as it is the case for
lattice-based hash-and-sign signatures. Indeed, to sample from a discrete Gaussian distribution Ds,c,
the (reordered) CDT algorithm requires knowledge of the target distribution’s center c during the
o�ine phase. However, for lattice-based cryptographic hash-and-sign signatures, the distribution
center depends on the message to be signed, i.e. it is determined during the online phase. Note that
the center can be any real number, but from the discrete nature of the considered distribution we
have Ds,c = Ds,c−bcc + bcc, therefore we will only consider centers in [0, 1). Because CDTs are

3When the considered Gaussian density function is symmetric, half a CDT can be stored instead of the full CDT. The
method then proceeds to sample from the half distribution and draws a random bit to determine the sign. Note that
this is the setting that has been considered for the CDT presented in [PDG14] with the Kullback-Leibler divergence.
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center-dependent, a �rst naive option, as discussed in section 2.2, would be to precompute a CDT
for each possible real center in [0, 1) in accordance with the desired accuracy. Obviously, this �rst
option has the same time complexity than the classical CDT algorithm. However, it is completely
impractical with an exponential number of precomputed CDTs. An opposite trade-o� is to compute
the CDT on-the-�y, avoiding any precomputation storage while sacri�cing e�ciency with several
�oating-point computations of the exponential function for each sample. In this section we adapt
the Twin-CDT algorithm to our reordered cdf (rcdf), then we analyze its e�ciency and propose a
trick to implement it in constant time.

2.3.2.1. The Double Precision Twin-CDT Algorithm

Let n be a time-memory trade-o� parameter corresponding to the number of equally spaced centers
in [0, 1) for which CDTs are precomputed. The reordered Twin-CDT algorithm applies the reordered
CDT algorithm (algorithm 2.15) to the two precomputed centers closest to the desired center.
Assuming that n is large enough, values returned from both CDTs will be equal most of the time.
In this case we can conclude, thanks to a simple monotonic argument, that the returned value
would have been the same for the CDT at the desired center. Otherwise, in accordance with the
order relation ≺ de�ned in Section 2.3.1.2, the largest returned value will immediately follow the
smallest and we will then have to compute the rcdf at the smallest value for the desired center in
order to know if the cumulative probability is lower or higher than this rcdf . If it is lower then the
smaller value will be returned as sample, else it will be the largest. Algorithm 2.16 and 2.17 describe
respectively the o�ine and online phases of this double precision Twin-CDT algorithm in our
context. Algorithm 2.16 precomputes these CDTs and store them as a matrix T, where the i-th line
is the CDT corresponding to the i-th precomputed center i/n. To sample from Ds,c, algorithm 2.17

Algorithm 2.16 Double Precision Twin-CDT: O�ine Phase
Input: a Gaussian parameter s and a number of centers n and a reordered truncated support

S≺ = (xi)0≤i≤2dtse
Output: a precomputed matrix T

1: initialize an empty matrix T
2: for i← 0, . . . , n− 1 do

3: for j ← 0, . . . , 2dtse do
4: Ti,j ← rcdfs,i/n(xj)

searches the preimages by the cdf of a cumulative probability u, draw from the uniform distribution
on [0, 1), in both CDTs corresponding to the center bn(c− bcc)c/n (respectively dn(c− bcc)e/n)
which return a value v1 (resp. v2). If the same value is returned from the both CDTs (i.e. v1 = v2),
then this value, added to the desired center integer part, is a valid sample, else one computes
rcdfs,c−bcc(v1) and returns v1 + bcc if u < rcdfs,c(v1) and v2 + bcc else4.

Correctness. The precision needed in the double precision Twin-CDT algorithm (algorithms 2.16
and 2.17) to achieve a given level of security is the same as for the reordered-CDT algorithm
(algorithms 2.14 and 2.15) as discussed in Section 2.3.1.3. We establish correctness of algorithm 2.17
in the lemma below.

4When n is too small to have |v1 − v2| ≤ 1 for any u ∈ [0, 1], we have to compute at most |v1 − v2| evaluations of the
rcdf function to conclude.
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Algorithm 2.17 Double Precision Twin-CDT: Online Phase
Input: a center c, a precomputed matrix T and a reordered truncated support S≺ = (xi)0≤i≤2dtse
Output: a sample x that follows Ds,c

1: u← U[0,1)

2: v1 ← xi s.t. Tbn(c−bcc)c,i−1 ≤ u < Tbn(c−bcc)c,i
3: v2 ← xj s.t. Tdn(c−bcc)e,j−1 ≤ u < Tdn(c−bcc)e,j
4: if v1 = v2 then

5: return v1 + bcc
6: else

7: if u < rcdfs,c−bcc(v1) then
8: return v1 + bcc
9: else

10: return v2 + bcc

Lemma 2.12. Assuming that the calculations are done with in�nite precision. If the precomputed

matrix T has been generated by algorithm 2.16 instantiated with rcdfs,z(x) :=
∑y≺x

y∈S Ds,z(y), then
the output distribution of algorithm 2.17 is Ds,c for any given input c ∈ R.

Proof. By noting that for all s, p ∈ R, rcdf−1
s,c (p) is monotonic in c, we have: if rcdf−1

s,c1(p) =

rcdf−1
s,c2(p) := xi, then rcdf−1

s,c (p) = xi for all c ∈ [c1, c2] and, as a consequence, for all xi ∈ S≺, the
probability of outputting xi is equal to rcdfs,c(xi)− rcdfs,c(xi−1) which is equal to Ds,c(xi).

E�ciency. An important issue in the e�ciency analysis of Algortihm 2.17 is how small is the
probability of computing the rcdf function. An upper bound is presented in section 2.2 for classical
CDTs. In the lemma below we show that this probability is less than 6

√
λ/n for reordered CDTs,

even for small values of s (say s ≈ 1).

Lemma 2.13. Let Prcdf be the probability of computing the rcdf during the execution of algorithm 2.17

instantiated to sample from Ds,c. Assuming s ≥ 1, t ≥ 4, n ≥ t
s + 3

s2
, ε ≤ 1

40nt and Etailcut ≤ 1
20nst ,

we have

Prcdf ≤
12t

ns

Proof. We �rst note that Algortihm 2.17 compute rcdf only when rcdf−1
s,c (u) 6= rcdf−1

s,c+ 1
n

(u). Hence
the following bound:

Prcdf ≤
∑
x∈S

∣∣∣rcdfs,c(x)− rcdfs,c+ 1
n

(x)
∣∣∣

≤
∑
x∈S

y�x∑
y∈S

∣∣∣∣∣ ρs,c(y)

ρs,c(S)
−
ρs,c+ 1

n
(y)

ρs,c+ 1
n

(S)

∣∣∣∣∣
≤
∑
xi∈S≺

(2dtse − i+ 1)

∣∣∣∣∣ρs,c(xi)ρs,c(S)
−
ρs,c+ 1

n
(xi)

ρs,c+ 1
n

(S)

∣∣∣∣∣
Then, we use Lemma 2.5 and Lemma 2.4 to deal with the distances between Gaussian measures
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ρs,c(S), ρs,c(Z), ρs,c+ 1
n

(Z) and ρs,c+ 1
n

(S):∣∣∣∣∣ρs,c(xi)ρs,c(S)
−
ρs,c+ 1

n
(xi)

ρs,c+ 1
n

(S)

∣∣∣∣∣ ≤
∣∣∣∣∣ρs,c(xi)ρs,c(Z)

−
ρs,c+ 1

n
(xi)

ρs,c+ 1
n

(Z)

∣∣∣∣∣+ 2Etailcut

and ∣∣∣∣∣ρs,c(xi)ρs,c(Z)
−
ρs,c+ 1

n
(xi)

ρs,c+ 1
n

(Z)

∣∣∣∣∣ ≤
∣∣∣∣∣ρs,c(xi)− ρs,c+ 1

n
(xi) + 4ε

ρs,c(Z)

∣∣∣∣∣ .
Assuming that n ≥ t

s + 3
s2

and using that ρs,c+ 1
n

(x) = ρs,c(x) exp
(
xi−c
2ns2
− 1

2n2s2

)
leads to:

ρs,c(xi)− ρs,c+ 1
n

(xi) ≤
(
xi − c
ns2

− 1

n2s2

)
ρs,c(xi)

Finally, we have: ∑
xi∈S≺

(2dtse − i+ 1) ρs,c(xi) ≤ 3ts

and from ρs,c(x) ≤ e−k for all x ≤
√

2ks:

∑
x∈S

y�x∑
y∈S

yρs,c(y) ≤
∑
x∈S
x≤1

xρs,c(x)

≤ 1√
e

+

t∑
k=0

e−k b
√

2(k−1)sc∑
x=d
√

2kse

x


≤ 8.1s2

Hence the upper bound.

From Lemma 2.13 we have the average time complexity of the reordered Twin-CDT sampler
(algorithm 2.17) which, assuming that the double precision is enough according to Section 2.3.1.3, is
O(λnCexp+log s

√
λ), where Cexp is the time complexity of computing the exponential function. Note

that theO(log s
√
λ) term is due to the search in the two CDTs using a binary search algorithm, there

is a factor
√
λ/n in front of Cexp for the Prcdf and another factor s

√
λ for the O(st) evaluations of

exp needed to compute the rcdf . About its space complexity, the precomputation matrix generated
by algorithm 2.16 takes clearly n times the size of one CDT, hence a space complexity of O(ns

√
λ).

2.3.2.2. CDF Approximation

The main drawback in the (double precision) Twin-CDT algorithm describe above is the costly
computation of the (reordered) cdf which needs about ts evaluations of the exponential function in
average. The idea to avoid cdf evaluations is to use an approximation of the cdf whose evaluation is
faster than that of cdf. At the �rst glance, this seems to increase the memory needed by the sampling
algorithm, but as shown in section 2.2 the running time saving may allow to reduce the number of
precomputed centers thanks to the fast convergence.
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In section 2.2 we propose to evaluate a precomputed sum of Taylor expansions instead of the cdf
in the Twin-CDT algorithm. This approach allows a more �exible time-memory trade-o� which
takes advantage of the information already present in the precomputed CDTs. In the same way,
by considering the cdf as a function of the center, we note that each precomputed rcdfs,c(x) is the
Taylor expansion zero degree term of the cdf around the value x and the precomputed center c. Let
Td,rcdfs,x(v),c(x) be the Taylor expansions of the rcdf , viewed as a function of the Gaussian center x,
around each precomputed center c for all possible values v. The zero-degree term of each of these
Taylor expansions is present in the corresponding rCDT element Ti,j and the d higher-degree terms
are stored as an element Ei,j of another matrix E. During the online phase, algorithm 2.19 proceeds

Algorithm 2.18 Double Precision Taylor-CDT: O�ine Phase
Input: a Gaussian parameter s, a number of centers n, a Taylor expansion degree d and a reordered

truncated support S≺ = (xi)0≤i≤2dtse
Output: two precomputed matrices T and E

1: initialize two empty matrices T and E
2: for i← 0, . . . , n− 1 do

3: for j ← 0, . . . , 2dτse do
4: Ti,j ← rcdfs,i/n(xj)
5: Ei,j ← Td,rcdfs,x(xj),i/n(x)−Ti,j

as follows. Draw u from the uniform distribution over [0, 1) and search u in the rCDTs of the two
closest precomputed centers to the desired center decimal part. If the two values found are equal
(v1 = v2), add the desired center integer part to this value and return it as a valid sample. Otherwise
(v1 < v2), evaluate, at the desired center decimal part, the Taylor expansion corresponding to v1

and the center having returned it. If u is smaller than this evaluation add the desired center integer
part to v1 and return it as a valid sample. Otherwise, add the desired center integer part to v2 and
return it.

Algorithm 2.19 Double Precision Taylor-CDT: Online Phase
Input: a center c, two precomputed matrices T,E and a reordered truncated support S≺ =

(xi)0≤i≤2dtse
Output: a sample x that follows Ds,c

1: u← U[0,1)

2: v1 ← xi s.t. Tbn(c−bcc)c,i−1 ≤ p < Tbn(c−bcc)c,i
3: v2 ← xj s.t. Tdn(c−bcc)e,j−1 ≤ p < Tdn(c−bcc)e,j
4: if v1 = v2 then

5: return v1 + bcc
6: else

7: if u < Tbn(c−bcc)c,i + Ebn(c−bcc)c,i(c− bcc) then
8: return v1 + bcc
9: else

10: return v2 + bcc
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Correctness. From Lemma 2.10, assuming d ≥ 2, algorithm 2.19 is correct for:

d ≥ 54

log2 n+ 1
2 log2 s− log2 λ

Note that another option consists in evaluating the Taylor expansion with a smaller degree d′ and
returning the sampler only if the approximation error allows it and otherwise evaluate the rcdf .

This Taylor approximation allows us to evaluate only a small degree polynomial instead of the
rcdf which, since the time complexity of the rcdf evaluation depends on s, is particularly interesting
when s is large. Moreover, the approximation error decreases rapidly with d, which helps to decrease
the number of precomputed CDTs n and, as a consequence, the memory required for the execution
of the (double precision) Twin-CDT sampler. This remains true even if we take into account the
additional precomputation due to the d coe�cients of the Taylor expansion.

2.4. Implementation and Performances

In this section we present implementation techniques and the performances of our implementations.

2.4.1. Implementation

In this section we present a lookup-table trick and two techniques to protect implementations
against timing-attacks based on statistical arguments, we bound the amount of worst-case situations
that can occur. As a result, we conclude that constant-time and cache-resistant variants are also
viable.

2.4.1.1. Lookup Tables

We shall now show how to use partial lookup tables to avoid the binary search in most cases
when using CDT algorithms, this technique is the CDT analogue of the Knuth-Yao algorithm
improvement described in [CRVV15]. Note that this strategy is particularly �tting for discrete
Gaussian distributions with relatively small expected values. The basic idea is to subdivide the
uniform distribution U[0,1] into ` uniform distributions on subsets of the same size U[i/`,(i+1)/`],
with ` a power of two. We then precompute a partial lookup table on these subsets which allows
to return the sample at once when the subset considered does not include a cdf image. We note
that instead of subdividing the uniform range into stripes of the same size, we can also recursively
subdivide only some stripes of the previous subdivision. However, for the sake of clarity and ease of
exposure, this improvement is not included in this paper and we will describe this technique for the
classical centered CDT algorithm.

First, we initialize a lookup table of size ` = 2l where the i-th entry corresponds to a subinterval
[i/`, (i + 1)/`] of [0, 1]. Second, after precomputing the CDT, we mark all the entries for which
there is at least one CDT element in their corresponding subinterval [i/`, (i+ 1)/`] with ⊥, and all
remaining entries with >. Each entry marked with > allows to return a sample without the need to
perform a binary search in the CDT, because only one value corresponds to this subinterval which
is the �rst CDT element greater or equal to (i+ 1)/`.
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E�ciency. The e�ciency of this technique is directly related to the number of entries, marked
with >, whose subintervals do not contain a CDT element. We denote the probability of performing
binary search by Pbinsrch, obviously the probability to return the sample immediately after choosing
i, which is a part of p, is 1− Pbinsrch. Lemma 2.14 gives a lower bound of Pbinsrch.

Lemma 2.14. For any ` ≥ 28
and s ≥ η 1

2
(Z). Let Pbinsrch be the probability of performing binary

search during the execution of the CDT algorithm implemented with the lookup table trick described

above, we have

Pbinsrch < 1.2s
√

log2 `/`

Proof.

Pbinsrch =
`−∑dc+τsei=bc−τsc b` cdfs,c(i)c − b` cdfs,c(i− 1)c

`

From Lemma 2.5 we have ⌊
` cdfs,c

(⌊
c− 0.6s

√
log2 `

⌋)⌋
= 0⌊

`
(

1− cdfs,c

(⌈
c+ 0.6s

√
log2 `

⌉))⌋
= 0

2.4.1.2. Constant Time

A general problem with sampling algorithms in cryptography is that the running time can leak
information about the output sample or the input, which clearly hurts security. A �rst potential
source of leakage is the search algorithm used in the (Twin) CDT algorithm, indeed the usual
binary search algorithm stops when the target value matches the middle element, which can leak
information about the output sample. A simple workaround is to continue the search in the lower or
upper half of the array eliminating the other half from consideration, as if the target value had not
been found. Note that this modi�cation does not change the time complexity of the binary search
algorithm, i.e. O(log(ts)) in our context.

To have a constant-time implementation of the (double precision) Twin-CDT, we have to carefully
use a constant-time evaluation or approximation of the rcdf , and we have to handle the worst-case
computations of this algorithm, in the sense that this part is executed only with probability q
(depending if v1 6= v2 for the Twin-CDT algorithm). Note that the worst-case computational cost of
rcdf can be very large but our algorithm exploits the fact that the probability of this worst-case is
low enough so that the average cost is reasonable.

In order to hide when these worst-case computations are done a naive solution would be to do them
on every iteration of the protocol. This would result in a complete loss of the advantages brought
by our approach and raise the computational cost to the one of a naive on-the-�y CDT approach.
The problem is that the probability of the worst-case situation is low but not cryptographically-low
and thus for a single iteration of the sampling algorithm the naive solution is the only solution.

Fortunately, in cryptographic applications of Gaussian sampling, we need vectors (with thousands
of coordinates) of samples and thus we can use probabilistic tools to limit the amount of worst-
case situations that can occur. The probability that over many samples, the amount of worst-
case situations deviates by a multiplicative factor from the expected value can be shown to be
cryptographically small even for small factors. We thus can pad the amount of such worst-case
situations without increasing their impact on the average cost signi�cantly.
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More explicitly, we take advantage of the fact that the cryptographic scheme samples vectors of
m variables at once to pad this worst-case part over the m executions of the sampling algorithm.
Let K be the number of times the worst-case part has been executed during m executions of the
algorithm and q, as already stated, the probability that the worst-case part needs to be run on one
iteration. From Hoe�ding’s inequality we have:

Pr
K∼B(m,q)

[K > m(x+ q)] ≤ 2e−2mx2 .

Thus, if we pad the amount of worst-case computations tom(x+q) with 2mx2 = λ the probability
that the padding will not su�ce and will result in a non-constant time execution will be bounded by
2−λ which is clearly enough for cryptographic applications. The expected amount of worst-case
computations is mq and thus the computational overhead for this padded m sample algorithm
is of mx worst-case computations. Thus the per sample overhead is of x =

√
λ/2m worst-case

computations. As typically m� λ the overhead in this approach is in practice not signi�cant.

2.4.1.3. Cache attacks

With a worst-case padding technique, the amount of worst-case operations done is constant (except
with cryptographically low probability in our case). However, a cache attack technique, such as
used in [BHLY16] could be used to infer which were the samples for which a worst-case operation
would really have been done. The idea is that if we run m sampling algorithms refusing to do the
worst-case operations, and only after do all the worst-case operations in a row and write back the
results to the samples that really required the worst-case computation, pattern accesses (and thus
cache attacks) will completely break the usefulness of the padding we did.

In practice, as shown in the experimental results in the section 2.4.2, the per sample computational
cost is on dozens of cycles for cryptographical applications. In this case, it is easy to get protected
against cache attacks. For example, the worst-case inputs (resp. results) can be read from (resp.
written back to) the m samples using a Square-root ORAM protocol [ZWR+16] which will cost in
the average

√
m memory accesses per read/write operation with total pattern access protection.

Again as m is typically in the thousands,
√
m memory access will not change signi�cantly the

amount of cycles needed per sample. Considering cache attacks on the regular-case computations,
the sizes being of same order, overhead would be of same magnitude.

2.4.2. Performances

In this section, we present the performances of our open-source (GPLv3+) C++ implementation5 of
the multi-precision twin-CDT sampler which uses the MPFR [FHL+07] and GMP [Gt15] libraries as
well as Salsa20 [Ber08] as the pseudorandom number generator. We also present the performances
of our C implementation of the double-precision twin-CDT sampler which use Salsa20 [Ber08] as
the pseudorandom number generator. The table 2.1 present a comparison with traightforward and
Karney rejection methods implemented in the dgs library [Alb14].

2.4.2.1. Multi-Precision Twin-CDT

Our non-centered discrete Gaussian sampler was implemented with a binary search executed byte by
byte if ` = 28 and 2-bytes by 2-bytes if ` = 216 without recursive subdivision ofU[0,1], therefore [0, 1]

5The implementation is available at https://github.com/tricosset/FGN.

https://github.com/tricosset/FGN
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Table 2.1. – Comparison of the Twin-CDT algorithm (for n ∈ {3, 10, 100} precomputed centers
and a security parameter λ = 256 which determines the tailcut parameter t =

√
λ/2)

with straightforward and Karney rejection methods (both from the dgs library [Alb14]).
All timings are on a 2.90GHz Intel(R) Core(R) i5–4210H, use one core and do not include
the pseudorandom generation.

Gaussian width parameter Algorithm

Samples per second

Multi-precision Double-precision

2

Twin-CDT-100 2 581 195 52 935 721
Twin-CDT-10 1 443 257 43 104 933
Twin-CDT-3 673 397 35 086 446

Karney 40 359 775 795
Rejection 10 389 122 564

4

Twin-CDT-100 2 340 994 46 910 085
Twin-CDT-10 987 421 38 566 583
Twin-CDT-3 395 089 31 660 993

Karney 30 946 623 441
Rejection 9 451 120 772

8

Twin-CDT-100 2 049 566 42 683 912
Twin-CDT-10 609 408 36 123 197
Twin-CDT-3 210 078 25 932 004

Karney 27 388 587 544
Rejection 9 308 118 203

16

Twin-CDT-100 1 563 816 36 210 391
Twin-CDT-10 340 939 25 957 210
Twin-CDT-3 112 685 21 142 623

Karney 24 879 557 413
Rejection 9 685 119 166

32

Twin-CDT-100 1 057 773 29 434 654
Twin-CDT-10 180 366 27 238 625
Twin-CDT-3 58 336 24 402 531

Karney 25 553 567 214
Rejection 9 492 120 039

is subdivided in ` intervals of the same size and cdf(x) is stored for all x ∈ [−dτσe − 1, dτσe+ 1].
The implementation of our non-centered discrete Gaussian sampler uses a �xed number of pre-
computed centers n = 28 with a lookup table of size ` = 28 and includes the lazy cdf evaluation
optimization. We tested the performance of our non-centered discrete Gaussian sampler by using it
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Table 2.2. – Performance of sampling from D(g),σ′ as implemented in [ACLL15] and with our non-
centered discrete Gaussian sampler with ` = n = 28. The column D(g),σ′/s gives
the number of samples returned per second, the column “memory” the maximum
amount of memory consumed by the process. All timings are on a Intel(R) Xeon(R)
CPU E5-2667 (strombenzin). Precomputation uses 2 cores, the online phase uses one
core.

[ACLL15]
N log σ′ precomp time D(g),σ′/s memory

256 38.2 0.08 s 8.46 ms 118.17 11,556 kB
512 42.0 0.17 s 16.96 ms 58.95 11,340 kB

1024 45.8 0.32 s 38.05 ms 26.28 21,424 kB
2048 49.6 0.93 s 78.17 ms 12.79 41,960 kB
4096 53.3 2.26 s 157.53 ms 6.35 86,640 kB
8192 57.0 6.08 s 337.32 ms 2.96 192,520 kB

16384 60.7 13.36 s 700.75 ms 1.43 301,200 kB

this work
N log σ′ precomp time D(g),σ′/s memory

256 38.2 0.31 s 2.91 ms 343.16 17,080 kB
512 42.0 0.39 s 5.99 ms 166.88 21,276 kB

1024 45.8 0.65 s 11.89 ms 84.12 38,280 kB
2048 49.6 1.04 s 25.07 ms 39.89 74,668 kB
4096 53.3 2.35 s 48.63 ms 20.56 148,936 kB
8192 57.0 7.27 s 96.67 ms 10.34 302,616 kB

16384 60.7 14.41 s 205.35 ms 4.87 618,448 kB

as a subroutine for Peikert’s sampler [Pei10] for sampling from D(g),σ′,0 with g ∈ Z[x]/(xN + 1)
for N a power of two. To this end, we adapted the implementation of this sampler from [ACLL15]
where we swap out the sampler from the dgs library [Alb14] (implementing rejection sampling
and [DDLL13]) used in [ACLL15] with our sampler for sampling for DZ,σ,c. Note that sampling
from D(g),σ′,0 is more involved and thus slower than sampling from DZN ,σ′,0. That is, to sample
from D(g),σ′,0, [ACLL15] �rst computes an approximate square root of Σ2 = σ′2 · g−T · g−1 − r2

with r = 2 · d√logN e. Then, given an approximation
√
Σ2
′ of
√
Σ2 it samples a vector x←$ RN

from a standard normal distribution and interpret it as a polynomial in Q[X]/(xN + 1); computes
y =
√
Σ2
′ ·x in Q[X]/(xN + 1) and returns g · (byer), where byer denotes sampling a vector in ZN

where the i-th component follows DZ,r,yi . Thus, implementing Peikert’s sampler requires sampling
from DZ,r,yi for changing centers yi and sampling from a standard normal distribution. We give
experimental results in the table 2.2, indicating that our sampler increases the rate by a factor ≈ 3.

2.4.2.2. Double-Precision Twin-CDT

The double precision Twin-CDT algorithm was implemented with standard IEEE 754 double precision
�oating-point arithmetic and binary search executed byte by byte. The implementation uses a
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Table 2.3. – Performance of the GPV signature generation. All timings are on a 2.90GHz Intel(R)
Core(R) i5–4210H and use one core.

Security parameter λ 80 192

Polynomial degree N 512 1024
Number of samples per signature 1024 2048
Gaussian parameter s ≈ 0.9 ≈ 2.4

Signature generation (rejection sampling) 65.5 ms 168.9 ms
Signature generation (Twin-CDT) 8.3 ms 42.2 ms

lookup table of size ` = 28 as described in section 2.4.1.1, does not include the Taylor approximation
described in section 2.3.2.2 and is not constant-time. We tested the performance of our double
precision Twin-CDT algorithm by using it as subroutine for GPV signature generation, as well as
for a general set of parameters.

GPV performance. In [DLP14], a particular distribution over NTRU [HPS98] lattices is used to
increase the e�ciency of GPV-based schemes. A lattice-based IBE scheme, whose the key extraction
algorithm consists of a GPV signature generation, is also presented with concrete parameters. Its
implementation6 is considered the current reference for evaluating GPV performance (whether it is
used for key extraction or signature generation). We adapted this implementation, which initially
used rejection sampling, with our double precision Twin-CDT implementation. Note that the tested
rejection sampler used the MPFR [FHL+07] library as well as Salsa20 as the pseudorandom number
generator and that the Twin-CDT algorithm uses two precomputed CDTs (i.e. n = 2) for each
Gaussian parameter si with i ∈ {0, . . . , 2N}, where N is the NTRU polynomial degree. We give
experimental results in the table 2.3, indicating that our approach increases the GPV signature rate
(or similarly the key extraction rate) by a factor 4 to 8 depending on the security parameter.

Fixed gaussian parameter with varying center. In this setting the Gaussian parameter is �xed
but the center may vary. We present, in the table 2.4, some experimental results. Our implementation
is clearly non-optimized, which leads us to believe that one can improve its performance with a
reasonable e�ort. In accordance with sections 2.3.1.3 and 2.4.1.1, the memory used is equal to
128ds

√
λ/2en+ 64 bits. When referring to other implementations the reader has to be aware of the

two common de�nitions of ρ(·) in the literature, some use the Gaussian parameter s as in this paper
and others use σ = s

√
2π. Note that the improvement gained by using more memory deteriorates

in our implementation up to the point where using more memory does not decrease signi�cantly
more the running time. To obtain a more �exible time-memory trade-o� one can use the Taylor
approximation described in section 2.3.2.2.
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Table 2.4. – Performance of the Twin-CDT algorithm in double precision. All timings are on a
2.90GHz Intel(R) Core(R) i5–4210H and use one core. The trade-o� parameter n is the
number of centers for which the CDTs are precomputed, s is the Gaussian parameter
and λ is the security parameter, which determines the tailcut parameter t =

√
λ/2

.

s λ n Samples per second Memory used

2

128

3 35 226 936 1.4 KB
10 43 123 782 4.6 KB
100 52 777 917 46 KB

256

3 35 086 446 1.6 KB
10 43 104 933 5.2 KB
100 52 935 721 52 KB

4

128

3 31 422 214 1.9 KB
10 38 973 842 6.3 KB
100 47 707 711 63 KB

256

3 31 660 993 2.3 KB
10 38 566 583 7.7 KB
100 46 910 085 77 KB

8

128

3 26 036 426 3 KB
10 36 814 796 10 KB
100 43 857 717 100 KB

256

3 25 932 004 3.9 KB
10 36 123 197 13 KB
100 42 683 912 128 KB

16

128

3 21 610 550 5.2 KB
10 25 983 612 17 KB
100 36 111 573 172 KB

256

3 21 142 623 6.9 KB
10 25 957 210 23 KB
100 36 210 391 231 KB

32

128

3 23 742 886 9.5 KB
10 27 456 854 32 KB
100 29 420 447 318 KB

256

3 24 402 531 13 KB
10 27 238 625 44 KB
100 29 434 654 436 KB
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It’s the ship that made the Kessel run in
less than twelve parsecs. I’ve outrun
Imperial starships. Not the local bulk
cruisers, mind you. I’m talking about the
big Corellian ships, now. She’s fast enough
for you, old man.

Star Wars (Han Solo) – George Lucas
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Falcon, A New Compact

Signature Scheme over NTRU 3
Falcon is a lattice-based signature scheme. It stands for the following acronym:

Fast Fourier lattice-based compact signatures over NTRU

This chapter is a detailed version of the Falcon speci�cation [FHK+17] coauthored with Pierre-
Alain Fouque, Je�rey Ho�stein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest,
Gregor Seiler, William Whyte, Zhenfei Zhang and submitted to NIST Post-Quantum Cryptography
Project on November 30th, 2017.
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The high-level design of Falcon is simple: we instantiate the theoretical framework described by
Gentry, Peikert and Vaikuntanathan [GPV08] for constructing hash-and-sign lattice-based signature
schemes. This framework requires two ingredients:

• A class of cryptographic lattices. We chose the class of NTRU lattices.

• A trapdoor sampler. We rely on a new technique which we call fast Fourier sampling.

In a nutshell, the Falcon signature scheme may therefore be described as follows:

Falcon = GPV framework + NTRU lattices + Fast Fourier sampling

NTRUSign
[HHP+03]

GPV Frame-
work [GPV08]

Provable
NTRUSign

[SS11]

Instantiation
of GPV IBE

[DLP14]
Falcon

Fast Fourier
Sampling
[DP16]

Figure 3.1. – The genealogic tree of Falcon

Falcon is the product of many years of work, not only by the authors but also by others. The �rst
work is the signature scheme NTRUSign [HHP+03] by Ho�stein et al., which was the �rst, along
with GGH [GGH97], to propose lattice-based signatures. The use of NTRU lattices by NTRUSign
allows it to be very compact. However, both had a �ow in the deterministic signing procedure which
led to devastating key-recovery attacks [NR06; DN12b].

At STOC 2008, Gentry, Peikert and Vaikuntanathan [GPV08] proposed a method which not only
corrected the �awed signing procedure but, even better, did it in a provably secure way. The result
was a generic framework (the GPV framework) for building secure hash-and-sign lattice-based
signature schemes.

The next step towards Falcon was the work of Stehlé and Steinfeld [SS11], who combined the
GPV framework with NTRU lattices. The result could be called – somewhat surprisingly – a provably
secure NTRUSign.

In a more practical work, Ducas et al. [DLP14] proposed a practical instantiation and implemen-
tation of the IBE part of the GPV framework over NTRU lattices. This IBE can be converted in a
straightforward manner into a signature scheme. However, doing this would have resulted in a
signing time in O(n2).

To address the issue of a slow signing time, Ducas and Prest [DP16] proposed a new algorithm
running in time O(n log n). However, how to practically instantiate this algorithm remained an
open question.
Falcon builds on these works to propose a practical lattice-based hash-and-sign scheme. The

�gure 3.1 shows the genealogic tree of Falcon.
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The design rationale of Falcon stems from a simple observation: when switching from signatures
based on RSA or the discrete logarithm to post-quantum signatures, communication complexity
is likely going to be a larger problem than speed. Indeed, many post-quantum schemes have a
simple algebraic description which makes them fast, but they always require either larger keys than
pre-quantum schemes, larger signatures, or both.

We expect such performance issues will hinder transition from pre-quantum to post-quantum
schemes. Hence our leading design principle, which underlied most of our decisions, was to minimize
the following quantity:

|pk|+|sig| = (bitsize of the public key) + (bitsize of a signature).

This led us to consider lattice-based signatures, which manage to keep both |pk| and |sig| rather
small, especially for structured lattices. When it comes to lattice-based signatures, there are essen-
tially two paradigms: Fiat-Shamir or hash-and-sign.

Both paradigms achieve comparable levels of compactness, but hash-and-sign have interesting
properties: the GPV framework [GPV08], which describes how to obtain hash-and-sign lattice-based
signature schemes, is secure in the classical and quantum oracle models [GPV08; BDF+11]. In
addition, it enjoys message-recovery capabilities [PLP16]. So we chose this framework. We detail
this choice and its implications in section 3.1.

The next step was to choose a class of cryptographic lattices to instantiate this framework. A
close to optimal choice with respect to our main design principle – compactness – is NTRU lattices:
as sketched in [DLP14], they allow to obtain a rather compact instantiation of the GPV framework.
In addition, they come with a ring structure which speeds up many operations by two orders
of magnitude (e.g. a factor O(n/ log n) for signature veri�cation). We detail this choice and its
implications in section 3.1.1.

The last step was the trapdoor sampler. We devised a new trapdoor sampler which is asymptotically
as fast as the fastest generic trapdoor sampler [Pei10] and provides the same level of security as the
most secure sampler [Kle00]. We detail this choice and its implications in section 3.1.2.

3.1. Instantiate the GPV Framework over NTRU Lattices

In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] established a framework for obtaining secure
lattice-based signatures. At a very high level, this framework may be described as follows:

• The public key contains a full-rank matrix A ∈ Zn×mq (withm > n) generating a q-ary lattice
Λ.

• The private key contains a matrix B ∈ Zm×mq generating Λ⊥q , where Λ⊥q denotes the lattice or-
thogonal to Λ modulo q: for any x ∈ Λ and y ∈ Λ⊥q , we have 〈x,y〉 = 0 mod q. Equivalently,
the rows of A and B are pairwise orthogonal: B×At = 0.

• Given a message m, a signature of m is a short value s ∈ Zmq such that sAt = H(m),
where H : {0, 1}∗ → Znq is a hash function. Given A, verifying that s is a valid signature is
straightforward: it only requires to check that s is indeed short and veri�es sAt = H(m).

• Computing a valid signature is more delicate. First, an arbitrary preimage c0 ∈ Zmq is
computed, which veri�es c0A

t = c. As c0 is not required to be short and m ≥ n, this
can simply be done through standard linear algebra. B is then used in order to compute
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a vector v ∈ Λ⊥q close to c0. The di�erence s = c0 − v is a valid signature: indeed,
sAt = c0A

t − vAt = c− 0 = c, and if c0 and v are close enough, then s is short.

In this abstract form, this description of a signature scheme is not speci�c to the GPV framework:
it was �rst instantiated in the GGH [GGH97] and NTRUSign [HHP+03] signature schemes. However,
GGH and NTRUSign su�er of total break attacks, whereas the GPV framework is proven to be
secure in the classical and quantum random oracle models assuming the hardness of SIS for some
parameters. The reason behind this is somewhat subtle, and lies in the fact that GGH/NTRUSign
and the GPV framework have radically di�erent ways of computing v in the signing procedure.

Computing v in GGH and NTRUSign. In GGH and NTRUSign, v is computed using an al-
gorithm called the round-o� algorithm and �rst formalized by Babai [Bab85; Bab86]. In this
deterministic algorithm, c0 is �rst expressed as a real linear combination of the rows of B, the
vector of these real coordinates is then rounded coe�cient-wise and multiplied again by B: in a
nutshell, v←

⌊
c0B

−1
⌉
B, where b·e denotes coe�cient-wise rounding. At the end of the procedure,

s = v − c0 is guaranteed to lie in the parallelepiped [−1, 1]m ×B, which allows to tightly bound
the norm ‖s‖.

The problem with this approach is that each signature s lies in [−1, 1]m × B, and therefore
each s leaks a little information about the basis B. This fact was successfully exploited by several
attacks [NR06; DN12b] which led to a total break on the schemes.

Computing v in the GPV framework. A major contribution of [GPV08], which is also the key
di�erence between the GPV framework and GGH/NTRUSign, is the way v is computed. Instead
of the round-o� algorithm, the GPV framework relies on a randomized variant by [Kle00] of the
nearest plane algorithm, also formalized by Babai. Just as for the round-o� algorithm, using the
nearest plane algorithm would have leaked the secret basis B and resulted in a total break of the
scheme. However, Klein’s algorithm prevents this: it is randomized in a way such that for a given
m, s is sampled according to a spherical Gaussian distribution over the shifted lattice c0 + Λ⊥q . This
method is not only impervious to the attacks described hereabove, but is also proven to leak no
information about the basis B. Klein’s algorithm was in fact the �rst of a family of algorithms called
trapdoor samplers. More details about trapdoor samplers are given in section 3.1.2.

3.1.0.1. Features and instantiation of the GPV framework

The topic of this section is to make explicit a few aspects and features of the GPV framework.

Security in the classical and quantum oracle models. In the original paper [GPV08], the GPV
framework has been proven to be secure in the random oracle model under the SIS assumption. In
our case, we use NTRU lattices so we need to adapt the proof for a “NTRU-SIS” assumption, but this
adaptation is straightforward. In addition, the GPV framework has also been proven to be secure in
the quantum oracle model [BDF+11].

Signatures with message recovery. In [PLP16], it has been shown that a preliminary version
of Falcon can be instantiated in message-recovery mode: the message m can be recovered from
the signature sig. It requires to make the signature twice longer, but it allows to entirely recover a
message which size is a bit less than half the size of the original signature. In situations where we
can apply it, it makes Falcon even more competitive from a compactness viewpoint.
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Identity-based encryption. Falcon can be turned into an identity-based encryption scheme.
This is described in [DLP14]. However, this requires de-randomizing the signature procedure (see
the paragraph “Statefulness, de-randomization or hash randomization”).

3.1.0.2. Statefulness, de-randomization or hash randomization

In the GPV framework, two di�erent signatures s, s′ of a same hash H(m) can never be made public
simultaneously, because doing so breaks the security proof [GPV08, Section 6.1].

Statefulness. A �rst solution proposed in [GPV08, Section 6.1] is to make the scheme stateful by
maintaining a list of the signed messages and of their signatures. However, maintaining such a state
poses a number of operational issues, so we do not consider it as a credible solution.

De-randomization. A second possibility proposed by [GPV08] is to de-randomize the signing
procedure. However, this raises another issue as pseudorandomness would need to be generated
in a consistent way over all the implementations (it is not uncommon to have a same signing key
used in di�erent devices). While this solution can be applied in a few speci�c usecases, we do not
consider it for the Falcon signature scheme.

Hash randomization. A third solution is to prepend a salt r ∈ {0, 1}k to the message m before
hashing it. Provided that k is large enough, this e�ectively prevents collisions from occuring with
non-negligible probability. From an operational perspective, this solution is the easiest to apply, and
it is still covered by the security proof of the GPV framework (see [GPV08, Section 6.2]). For a given
security level λ and up to qs signature queries, taking k = λ+ log2(qs) is enough to guarantee that
the probability of collision is less than qs · 2−λ.

Out of the three solutions, Falcon opts for hash randomization: a salt r ∈ {0, 1}320 is randomly
generated and prepended to the message before hashing it. The bitsize 320 is equal to λ+ log2(qs)
for λ = 256 the highest security level required by NIST, and qs = 264 the maximal number of
signature which may be queried from a single signer. This size is actually overkill for security levels
λ < 256, but �xing a single size across all the security levels makes things easier from an API
perspective: for example, one can hash a message without knowing the security level of the private
signing key.

3.1.1. NTRU Lattices

The �rst choice when instantiating the GPV framework is the class of lattices to use. The design
rationale obviously plays a large part in this. Indeed, if emphasis is placed on security without
compromise, then the logical choice is to use standard lattices without any additional structure, as
was done e.g. in the key-exchange scheme Frodo [BCD+16].

Our main design principle is compactness. For this reason, Falcon rely on the class of NTRU
lattices, introduced by Ho�stein, Pipher and Silverman [HPS98]; they come with an additional
ring structure which not only does allow to reduce the public keys’ size by a factor O(n), but also
speeds up many computations by a factor at least O(n/ log n). Even in the broader class of lattices
over rings, NTRU lattices are among the most compacts: the public key can reduced to a single
polynomial h ∈ Zq[x] of degree at most n − 1. In doing this we follow the idea of Stehlé and
Steinfeld [SS11], which have shown that the GPV framework can be used in conjunction with NTRU
lattices in a provably secure way.
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Compactness, however, would be useless without security. From this perspective, NTRU lattices
also have reasons to inspire con�dence as they have resisted extensive cryptanalysis for about two
decades, and we parameterize them in a way which we believe makes them even more resistant.

3.1.1.1. Introduction to NTRU lattices

Let φ ∈ Z[x] be a monic polynomial, and q ∈ N?. A set of NTRU secrets consists of four polynomials
f, g, F,G ∈ Z[x]/(φ) which verify the NTRU equation:

fG− gF = q mod φ (3.1)

Provided that f is invertible modulo q, we can de�ne the polynomial h← g · f−1 mod q.
Typically, h will be a public key, whereas f, g, F,G will be secret keys. Indeed, one can check

that the matrices
[

1 h

0 q

]
and

[
f g

F G

]
generate the same lattice, but the �rst matrix contains

two large polynomials (h and q), whereas the second matrix contains only small polynomials, which
allows to solve problems as illustrated in section 3.1. If f, g are generated with enough entropy,
then h will look pseudo-random [SS11]. However in practice, even when f, g are quite small, it
remains hard to �nd small polynomials f ′, g′ such that h = g′ · (f ′)−1 mod q. The hardness of this
problem constitutes the NTRU assumption.

3.1.1.2. Instantiation with the GPV framework

We now instantiate the GPV framework described in section 3.1 over NTRU lattices:

• The public basis is A =
[

1 h?
]
, but this is equivalent to knowing h.

• The secret basis is
B =

[
g −f
G −F

]
(3.2)

One can check that the matrices A and B are indeed orthogonal: B×A? = 0 mod q.

• The signature of a message m consists of a salt r plus a pair of polynomials (s1, s2) such that
s1 + s2h = H(r‖m). We note that since s1 is completely determined by m, r and s2, there is
no need to send it: the signature can simply be (r, s2).

3.1.1.3. Choosing optimal parameters

Our trapdoor sampler samples signatures of norm essentially proportional to ‖B‖GS, where ‖B‖GS
denotes the Gram-Schmidt norm of B.

Previous works ([DLP14] and [Pre15, Sections 6.4.1 and 6.5.1]) have provided heuristic and
experimental evidence that in practice, ‖B‖GS is minimized for ‖(f, g)‖ ≈ 1.17

√
q. Therefore, we

generate f, g as discrete Gaussians in Z[x]/(φ) centered in 0, so that the expected value of ‖(f, g)‖
is about 1.17

√
q. Once this is done, very e�cient ways to compute ‖B‖GS are known, and if this

value is more than 1.17
√
q, new polynomials f, g’s are regenerated and the procedure starts over.

Quasi-optimality. The bound ‖B‖GS ≤ 1.17
√
q that we reach in practice is within a factor 1.17

of the theoretic lower bound for ‖B‖GS. Indeed, for any B of the form given in equation 3.2 with
f, g, F,G verifying the equation 3.1, we have det(B) = fG− gF = q. So √q is a theoretic lower
bound of ‖B‖GS.
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3.1.2. Fast Fourier Sampling

The second choice when instantiating the GPV framework is the trapdoor sampler. A trapdoor
sampler takes as input a matrix A, a trapdoor T, a target c and outputs a short vector s such that
stA = c mod q. With the notations of section 3.1, this is equivalent to �nding v ∈ Λ⊥q close to c0,
so we may indi�erently refer by the term “trapdoor samplers” to algorithms which perform one
task or the other.

We now list the existing trapdoor samplers, their advantages and limitations. Obviously, being
e�cient is important for a trapdoor sampler. However, an equally important metric is the “quality”
of the sampler: the shorter the vector s is (or equivalently, the closer v is to c0), the more secure
this sampler will be.

1. Klein’s algorithm [Kle00] takes as a trapdoor the matrix B. It outputs vectors s of norm
proportional to ‖B‖GS, which is short and therefore good for security. On the downside, its
time and space complexity are in O(m2).

2. Just like Klein’s algorithm is a randomized version of the nearest plane algorithm, Peikert
proposed a randomized version of the round-o� algorithm [Pei10]. The good part about it
is that when B has a structure over rings – as in our case – then it can be made to run in
time and space O(m logm). However, it outputs vectors of norm proportional to the spectral
norm ‖B‖2 of B. This is larger than what we get with Klein’s algorithm, and therefore it is
worse security-wise.

3. Micciancio and Peikert [MP12] proposed a novel approach in which A and its trapdoor are
constructed in a way which allows simple and e�cient trapdoor sampling. This approach
was generalized in [LW15]. Unfortunately, it is not straightforwardly compatible with NTRU
lattices and whether we can reach the same level of compactness as with NTRU lattices is
unclear.

4. Ducas and Prest [DP16] proposed a variant of Babai’s nearest plane algorithm for lattices over
rings. It proceeds in a recursive way which is very similar to the fast Fourier transform, and
for this reason they dubbed it “fast Fourier nearest plane”. This algorithm can be randomized
as well: it results in a trapdoor sampler which combines the quality of Klein’s algorithm, the
e�ciency of Peikert’s and can be used over NTRU lattices.

Of the four approaches we just described, it seems clear to us that a randomized variant of the
fast Fourier nearest plane [DP16] is the most adequate choice given our design rationale and our
previous design choices (NTRU lattices). For this reason, it is the trapdoor sampler used in Falcon.

Sampler Fast Short output s NTRU-friendly
Klein [Kle00] No Yes Yes

Peikert [Pei10] Yes No Yes

Micciancio-Peikert [MP12] Yes Yes No

Ducas-Prest [DP16] Yes Yes Yes

Table 3.1. – Comparison of the di�erent trapdoor samplers
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Choosing the standard deviation. When using a trapdoor sampler, an important parameter to
set is the standard deviation σ. If it is too low, then it is no longer guaranteed that the sampler not
leak the secret basis (and indeed, for all known samplers, a value σ = 0 opens the door to learning
attacks à la [NR06; DN12b]). But if it is too high, the sampler does not return optimally short vectors
and the scheme is not as secure as it could be. So there is a compromise to be found.

Our fast Fourier sampler shares many similarities with Klein’s sampler, including the optimal
value for σ (i.e. the shortest which is known not to leak the secret basis). According to [Pre17],
it is su�cient for the security level and number of queries set by NIST to take σ ≤ 1.312 ‖B‖GS,
which in our case translates to σ ≤ 1.55

√
q.

3.1.3. Security

3.1.3.1. Known Attacks

Key Recovery. The most e�cient attacks come from lattice reduction. We start by considering

the lattice (Z[x]/(φ))2

[
0 q

1 h

]
. After using lattice reduction on this basis, we enumerate all

lattice points in a ball of radius
√

2nσ′, centered on the origin. With signi�cant probability, we are
therefore able to �nd

[
g f

]
. If we use a block-size of B, enumeration takes negligible time if

the 2n−Bth Gram-Schmidt norm is larger than 0.75
√
Bσ′. For the best known lattice reduction

algorithm, DBKZ [MW16], it is ( B
2πe

)(1−n/B)√
q.

It is then easy to deduce B, and to show that B = n + o(n). This gives B = 652 when n = 768
and B = 921 when n = 1024. The security implied is detailed in the following table, using the
methodology of New Hope [ADPS16].

n B Classical Quantum
512 392 114 103
768 652 195 172
1024 921 263 230

Forging a Signature. Forging a signature can be perfomed by �nding a lattice point at distance
bounded by β from a random point, in the same lattice as above. This task is also eased by �rst
carrying out lattice reduction on the original basis. One possibility is to enumerate all lattice points
in a ball of radius

√
nq
πe . As this ball is larger than the one of the previous attack, it would be slower.

It may seem as if it would be much smaller than the previous attack due to a factor Θ(
√
n) in the

radius. It is not the case, since the lattice has an (almost) orthogonal basis, which implies there are
few (2o(n)) points at distance in o(

√
n). This implies that the proposed method essentially starts

by recovering the secret key, so that it is slower than the previous algorithm. Also, embedding the
point in the lattice does not help: the distance to the lattice is Θ(

√
n) greater than the shortest

non-zero point.

Combinatorial attack. If we were to choose q = O(n), the size of the coe�cients would be
constant. Then, Kirchner-Fouque [KF15] BKW variant would run in time 2n/((2+o(1)) log logn) to
recover the key, i.e. asymptotically faster than the previous algorithms. It indicates that the most
compact scheme uses q = n1+ε+o(1) for some ε > 0. However, since n is not huge, our moderate q
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is enough to make this attack irrelevant. Indeed, even assuming that nearest neighbor search runs
in constant time and other optimistic assumptions, the best combinatorial attack runs in time 2135

for n = 512.

Hybrid attack. The hybrid attack [How07] combines a meet-in-the-middle algorithm and the
key recovery algorithm. It was used with great e�ect against NTRU, due to its choice of sparse
polynomials. This is however not the case here, so that its impact is much more modest, and
counterbalanced by the lack of sieve-enumeration.

Dense, high rank sublattice. Recent works [ABD16; CJL16; KF17] have shown that when f, g
are extremely small compared to q, it is easy to attack cryptographic schemes based on NTRU lattices.
To the contrary, in Falcon we take f, g to be not too small while q is hardly large: a side-e�ect is
that this makes our scheme impervious to the so-called “overstretched NTRU” attacks. In particular,
even if f, g were taken to be binary, we would have to select q > n2.83 for this property to be useful
for cryptanalysis. Our large margin should allow even signi�cant improvements of this algorithm
to be irrelevant to our case.

Algebraic attacks. While there is a rich algebraic structure in Falcon, there is no known way to
improve all the algorithms previously mentioned with respect to their general lattice equivalent by
more than a factor n2. However, there exist e�cient algorithms for �nding not-so-small elements in
ideals of Z[x]/(φ) [CDW17].

3.1.3.2. Precision of the Floating-Point Arithmetic

Trapdoor samplers usually require the use of �oating-point arithmetics, and our fast Fourier
sampler is no exception. This naturally raises the question of the precision required to claim mean-
ingful security bounds. A naive analysis would require a precision of O(λ) bits (nonwithstanding
logarithmic factors), but this would result in a substantially slower signature generation procedure.

In order to analyze the required precision, we use a Rényi divergence argument. As in [MW17],
we denote by a . b the fact that a ≤ b + o(b), which allows to discard negligible factors in a
rigorous way. Our fast Fourier sampler is a recursive algorithm which relies on 2n discrete samplers
DZ,cj ,σj . We suppose that the values cj (resp. σj) are known with an absolute error (resp. relative
error) at most δc (resp. δσ) and denote by D (resp. D̄) the output distribution of our sampler with
in�nite (resp. �nite) precision. We can then re-use the precision analysis of Klein’s sampler in
[Pre17, Section 4.5]. For any output of our sampler with non-negligible probability, in the worst
case: ∣∣∣∣log

(D̄(z)

D(z)

)∣∣∣∣ . 2n

[√
154

1.312
δc + (2π + 1)δσ

]
≤ 20n(δc + δσ) (3.3)

In the average case, the value 2n in equation 3.3 can be replaced with
√

2n. Following the security
arguments of [Pre17, Section 3.3], this allows to claim that in average, there is no security loss to be
expected if (δc + δσ) ≤ 2−46.

To check if this is the case for Falcon, we have run Falcon in two di�erent precisions, a high
precision of 200 bits and a standard precision of 53 bits, and compared the values of the cj , σj ’s.
The result of these experiments is that we always have (δc + δσ) ≤ 2−40: while this is higher than
2−46, the di�erence is of only 6 bits. Therefore, we consider that 53 bits of precision are su�cient
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for NIST’s parameters (security level λ ≤ 256, number of queries qs ≤ 264), and that the possibility
of our signature procedure leaking information about the secret basis is a purely theoretic threat.

3.1.4. Advantages and Limitations of Falcon

This section lists the advantages and limitations of Falcon.

3.1.4.1. Advantages

Compactness. The main advantage of Falcon is its compactness. This doesn’t really come as
a surprise as Falcon was designed with compactness as the main criterion. Stateless hash-based
signatures often have small public keys, but large signatures [BHH+15; AE17]. Conversely, some
multivariate [KPG99; DS05] and code-based [CFS01] signature schemes achieve very small signatures
but they require large public keys. Lattice-based schemes [DLL+17] can somewhat o�er the best of
both worlds, but we do not know of any post-quantum signature schemes getting |pk|+ |sig| to be
as small as Falcon does.

Fast signature generation and veri�cation. The signature generation and veri�cation proce-
dures are very fast. This is especially true for the veri�cation algorithm, but even the signature
algorithm can perform more than 1000 signatures per second on a moderately-powered computer.

Security in the ROM and QROM. The GPV framework comes with a security proof in the
random oracle, and a security proof in the quantum random oracle model was later provided
in [BDF+11]. This stands in contrast with schemes using the Fiat-Shamir heuristic, which are
notoriously harder to render secure in the QROM [KLS17; Unr17].

Modular design. The design of Falcon is modular. Indeed, we instantiate the GPV framework
with NTRU lattices, but it would be easy to replace NTRU lattices with another class of lattices if
necessary. Similarly, we use fast Fourier sampling as our trapdoor sampler, but it is not necessary
either. Actually, an extreme simplicity/speed trade-o� would be to replace our fast Fourier sampler
with Klein’s sampler: signature generation would be about two orders of magnitudes slower, but it
would be simpler to implement and the security would remain exactly the same.

Message recovery mode. In some situations, it can be advantageous to use Falcon in message-
recovery mode. The signature becomes twice as long but the message does not need to be sent
anymore, which induces a gain on the total communication complexity.

Identity-based encryption. As shown in [DLP14], Falcon can be converted into an identity-
based encryption scheme in a straightforward manner.

Easy signature veri�cation. The signature procedure is very simple: essentially, one just needs
to compute [H(r‖m)− s2h] mod q, which boils down to a few NTT operations and a hash compu-
tation.
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3.1.4.2. Limitations

Falcon also has a few limitations. These limitations are implementation-related and interestingly,
they concern only the signer. We list them below.

Delicate implementation. We believe that both the key generation procedure and the fast
Fourier sampling are non-trivial to understand and delicate to implement, and constitue the main
shortcoming of Falcon. On the bright side, the fast Fourier sampling uses subroutines of the fast
Fourier transform as well as trees, two objects most implementers are familiar with.

Floating-point arithmetic. Our signing procedure uses �oating-point arithmetic with 53 bits of
precision. While this poses no problem for a software implementation, it may prove to be a major
limitation when implementation on constrained devices – in particular those without a �oating-point
unit – will be considered.

Unclear side-channel resistance. Falcon relies heavily on discrete Gaussian sampling over
the integers. How to implement this securely with respect to timing and side-channel attacks has
remained largely unstudied, save for a few exceptions [MW17; RRVV14].

3.2. The Falcon Signature Scheme

Main elements in Falcon are polynomials of degree n with integer coe�cients. The degree n is
normally a power of two (typically 512 or 1024) or a small multiple of a power of two (e.g. 768).
Computations are done modulo a monic polynomial of degree n denoted φ (in practice, φ will be a
cyclotomic polynomial).

Mathematically, within the algorithm, some polynomials are intepreted as vectors, and some
others as matrices: a polynomial f modulo φ then stands for a square n× n matrix, whose rows
are xif mod φ for all i from 0 to n− 1. It can be shown that additions and multiplications of such
matrices map to additions and multiplications of polynomials modulo φ. We can therefore express
most of Falcon in terms of operations on polynomials, even when we really are handling matrices
that de�ne a lattice.

The public key is a basis for a lattice of dimension 2n:[ −h In
qIn On

]
(3.4)

where In is the identity matrix of dimension n, On contains only zeros, and h is a polynomial
modulo φ that stands for an n× n sub-matrix, as explained above. Coe�cients of h are integers
that range from 0 to q − 1, where q is a speci�c small prime (in the recommended parameters, q is
either 12289 or 18433).

The corresponding private key is another basis for the very same lattice, expressed as:[
g −f
G −F

]
(3.5)

where f , g, F andG are short integral polynomials modulo φ, that ful�ll the two following relations:

h = g/f mod φ mod q
fG− gF = q mod φ

(3.6)
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Such a lattice is known as a complete NTRU lattice, and the second relation, in particular, is called
the NTRU equation. Take care that while the relation h = g/f is expressed modulo q, the lattice
itself, and the polynomials, use nominally unbounded integers.

Key pair generation involves choosing random f and g polynomials using an appropriate distribu-
tion that yields short, but not too short, vectors; then, the NTRU equation is solved to �nd matching
F and G. Key and their generation are described in section 3.2.2.

Signature generation consists in �rst hashing the message to sign, along with a random nonce, into
a polynomial cmodulo φ, whose coe�cients are uniformly mapped to integers in the 0 to q−1 range;
this process is described in section 3.2.5. Then, the signer uses his knowledge of the secret lattice basis
(f, g, F,G) to produce a pair of short polynomials (s1, s2) such that s1 = c− s2h mod φ mod q.
The signature properly said is s2.

Finding small vectors s1 and s2 is, in all generality, an expensive process. Falcon leverages the
special structure of φ to implement it as a divide-and-conquer algorithm similar to the Fast Fourier
Transform, which greatly speeds up operations. Moreover, some “noise” is added to the sampled
vectors, with carefully tuned Gaussian distributions, to prevent signatures from leaking too much
information about the private key. The signature generation process is described in section 3.2.6.

Signature veri�cation consists in recomputing s1 from the hashed message c and the signature s2,
and then verifying that (s1, s2) is an appropriately short vector. Signature veri�cation can be done
entirely with integer computations modulo q; it is described in section 3.2.7.

Encoding formats for keys and signatures are described in section 3.2.8. In particular, since the
signature is a short polynomial s2, its elements are on average close to 0, which allows for a custom
compressed format that reduces signature size.

Recommended parameters for several security levels are de�ned in section 3.2.9.

3.2.1. Preliminaries

In this section, we provide an overview of the used techniques. As Falcon is arguably math-heavy, a
clear comprehension of the mathematical principles in action goes a long way towards understanding
and implementing it.

Falcon works with elements in number �elds of the form Q[x]/(φ). Here φ denotes a cyclotomic
polynomial, that is, a polynomial of the form φ(x) =

∏
ζ∈Ω(x − ζ) where Ω denotes the set of

primitive m-th roots of unity for an integer m. In particular, we will always use one of these two
types of polynomials:

• φ = xn + 1 for n = 2κ; as this polynomial is binary and will entail manipulating binary
trees, we will say that we are in the binary case whenever we work with it; we note that in
this case φ(x) =

∏
k∈Z×m(x− ζk), with m = 2n and ζ an arbitrary primitive m-th root of 1

(e.g. ζ = exp(2iπ
m )).

• φ = xn− xn/2 + 1 with n = 3 · 2κ; as this polynomial is ternary and will entail manipulating
ternary trees, we will say that we are in the ternary case whenever we work with it. We note
that in this case φ(x) =

∏
k∈Z×m(x− ζk), where m = 3n and ζ is a primitive m-th root of 1.

The interesting part about these number �elds Q[x]/(φ) is that they come with a tower-of-�elds
structure. Indeed, in the binary case, we have the following tower of �elds:

Q ⊆ Q[x]/(x2 + 1) ⊆ · · · ⊆ Q[x]/(xn/2 + 1) ⊆ Q[x]/(xn + 1) (3.7)

Similarly, in the ternary case, we have the following tower of �elds:
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Q ⊆ Q[x]/(x2 − x + 1) ⊆ Q[x]/(x6 − x3 + 1) ⊆ Q[x]/(x12 − x6 + 1) ⊆ . . .
. . . ⊆ Q[x]/(xn/2 − xn/4 + 1) ⊆ Q[x]/(xn − xn/2 + 1)

(3.8)

In both the binary and ternary cases, we will rely on this tower-of-�elds structure. Even more
importantly for our purposes, by splitting polynomials between their odd and even coe�cients we
have the following chain of space isomorphisms:

Qn ∼= (Q[x]/(x2 + 1))n/2 ∼= . . . ∼= (Q[x]/(xn/2 + 1))2 ∼= Q[x]/(xn + 1) (3.9)

Similarly, in the ternary case, we have the following chain of space isomorphisms:

Qn ∼= (Q[x]/(x2 − x + 1))n/2 ∼= (Q[x]/(x6 − x3 + 1))n/6 ∼= . . . ∼= Q[x]/(xn − xn/2 + 1) (3.10)

The equations 3.7, 3.8, 3.9 and 3.10 remain valid when replacing Q by Z, in which case they
describe a tower of rings and a chain of module isomorphisms.

We will see in section 3.2.4 that for appropriately de�ned multiplications, these are actually chains
of ring isomorphisms. The equations 3.9 and 3.10 will be used to make our signature generation fast
and “good”: in lattice-based cryptography, the smaller the norm of signatures are, the better. So by
“good” we mean that our signature generation will output signatures with a small norm.

On one hand, classical algebraic operations in the �elds Q[x]/(xn− xn/2 + 1) and Q[x]/(xn + 1)
are fast, and using them will make our signature generation fast. On the other hand, we will use the
isomorphisms exposed in equations 3.9 and 3.10 as a leverage to output signatures with small norm.
However, using these endomorphisms to their full potential is not easy, as it entails manipulating
individual coe�cients of polynomials (or of their Fourier transform) and working with binary or
even ternary trees. We will see that most of the technicalities of Falcon arise from this.

Cryptographic parameters. For a cryptographic signature scheme, λ denotes its security level
and qs the maximal number of signature queries which may be made. Following the assumptions of
[NIS16], we suppose that qs ≤ 264.

Matrices, vectors and scalars. Matrices will usually be in bold uppercase (e.g. B), vectors in
bold lowercase (e.g. v) and scalars – which include polynomials – in italic (e.g. s). We use the row
convention for vectors. The transpose of a matrix B may be noted Bt. It is to be noted that for a
polynomial f , we do not use f ′ to denote its derivative in this document.

Quotient rings. For q ∈ N?, we denote by Zq the quotient ring Z/qZ; in Falcon, q is prime so
Zq becomes a �nite �eld. We also denote by Z×q the group of invertible elements of Zq , and by ϕ
Euler’s totient function: ϕ(q) = |Z×q |.

Number �elds. We denote by φ a monic polynomial of Z[x], irreducible in Q[x], of degree n and
with distinct roots over C. In Falcon, we will always consider φ to take one of these two forms:

• Binary case. φ = xn + 1 for n = 2κ;

• Ternary case. φ = xn − xn/2 + 1 with n = 3 · 2κ.
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Let a =
∑n−1

i=0 aix
i and b =

∑n−1
i=0 bix

i be arbitrary elements of the number �eld Q = Q[x]/(φ).
We note a? and call (Hermitian) adjoint of a the unique element of Q such that for any root ζ of φ,
a?(ζ) = a(ζ), where · is the usual complex conjugation over C. For the values of φ considered in
Falcon, a? can be expressed simply:

• Binary case. If φ = xn + 1 with n = 2κ a power of 2, then

a? = a0 −
n−1∑
i=1

aix
n−i (3.11)

• Ternary case. If φ = xn − xn/2 + 1 with n = 3 · 2κ, then

a? = a0 +
n−1∑
i=1

ai(x
n/2−i − xn−i) (3.12)

We extend this de�nition to vectors and matrices: the adjoint B?of a matrix B ∈ Qn×m (resp. a
vector v) is the component-wise adjoint of the transpose of B (resp. v).

The inner product over Q is 〈a, b〉 = 1
deg(φ)

∑
φ(ζ)=0 a(ζ) · b(ζ), and the associated norm is

‖a‖ =
√
〈a, a〉. We extend this de�nition to vectors: for u = (ui)i and v = (vi)i in Qm, we de�ne

〈u,v〉 as
∑

i〈ui, vi〉. Of special interest to us is the expression of the norm for speci�c values of φ.
• Binary case. The norm coincides with the usual coe�cient-wise euclidean norm:

‖a‖2 =
∑

0≤i<n
a2
i ; (3.13)

• Ternary case. The norm can be expressed as:

‖a‖2 =
∑

0≤i<n/2

(a2
i + aiai+n/2 + a2

i+n/2). (3.14)

Ring Lattices. For the rings Q = Q[x]/(φ) and Z = Z[x]/(φ), positive integers m ≥ n and a
full-rank matrix B ∈ Qn×m, we denote by Λ(B) and call lattice generated by B the set Zn ·B =
{zB|z ∈ Zn}. By extension, a set Λ is a lattice if there exists a matrix B such that Λ = Λ(B). We
may say that Λ ⊆ Zm is a q-ary lattice if qZm ⊆ Λ.

Discrete Gaussians. For σ, µ ∈ R with σ > 0, we de�ne the Gaussian function ρσ,µ as ρσ,µ(x) =
exp(−|x− µ|2/2σ2), and the discrete Gaussian distribution DZ,σ,µ over the integers as

DZ,σ,µ(x) =
ρσ,µ(x)∑
z∈Z ρσ,µ(z)

. (3.15)

The parameter µ may be omitted when it is equal to zero.

Field norm. Let K be a number �eld of degree n = [K : Q] over Q and L be a Galois extension
of K. We denote by Gal(L/K) the Galois group of L/K. The �eld norm NL/K : L→ K is a map
de�ned for any f ∈ L by the product of the Galois conjugates of f :

NL/K(f) =
∏

g∈Gal(L/K)

g(f). (3.16)

Equivalently, NL/K(f) can be de�ned as the determinant of the K-linear map y ∈ L 7→ fy. One
can check that the �eld norm is a multiplicative morphism.
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The Gram-Schmidt orthogonalization. Any matrix B ∈ Qn×m can be decomposed as follows:

B = L× B̃, (3.17)

where L is lower triangular with 1’s on the diagonal, and the rows b̃i’s of B̃ verify bib
?
j = 0

for i 6= j. When B is full-rank , this decomposition is unique, and it is called the Gram-Schmidt
orthogonalization (or GSO). We will also call Gram-Schmidt norm of B the following value:

‖B‖GS = max
b̃i∈B̃

‖b̃i‖. (3.18)

The LDL
?
decomposition. Closely related to the GSO is the LDL? decomposition. It writes any

full-rank Gram matrix as a product LDL?, where L ∈ Qn×n is lower triangular with 1’s on the
diagonal, and D ∈ Qn×n is diagonal. It can be computed using algorithm 3.26.

The LDL? decomposition and the GSO are closely related as for a basis B, there exists a unique
GSO B = L · B̃ and for a full-rank Gram matrix G, there exists a unique LDL? decomposition
G = LDL?. If G = BB?, then G = L · (B̃B̃?) · L? is a valid LDL? decomposition of G. As both
decompositions are unique, the matrices L in both cases are actually the same. In a nutshell:[

L · B̃ is the GSO of B
]
⇔
[
L · (B̃B̃?) · L? is the LDL? decomposition of (BB?)

]
. (3.19)

The reason why we present both equivalent decompositions is because the GSO is a more familiar
concept in lattice-based cryptography, whereas the use of LDL? decomposition is faster and therefore
makes more sense from an algorithmic point of view.

3.2.2. Key Pair Generation

3.2.2.1. Public Parameters

Public keys use some public parameters that are shared by many key pairs:

1. A cyclotomic polynomial φ ∈ Z[x], which is monic and irreducible. In Falcon, φ is either of
these two types of polynomials:

• Binary case. φ = xn + 1, where n = 2κ is a power of 2;

• Ternary case. φ = xn − xn/2 + 1, where n = 3 · 2κ is 3 times a power of 2;

2. A modulus q ∈ N?. In Falcon, q may take either of these two values:

• Binary case. If n = 2κ is a power of 2, then q = 12289;

• Ternary case. If n = 3 · 2κ is 3 times a power of 2, then q = 18433;

In both cases, q is chosen so that (φ mod q) splits over Zq[x].

3. A real bound β > 0.

For clarity, all the parameters presented may be omitted (e.g. in algorithms’ headers) when clear
from context.
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3.2.2.2. Private Key

The core of a Falcon private key sk consists of four polynomials f, g, F,G ∈ Z[x]/(φ) with short
integer coe�cients, verifying the NTRU equation:

fG− gF = q mod φ. (3.20)

The polynomial f shall furthermore be invertible in Zq[x]/(φ).
Given f and g such that there exists a solution (F,G) to the NTRU equation, F and G may be

recomputed dynamically, but that process is computationally expensive; therefore, it is normally
expected that at least F will be stored along f and g (given f , g and F , G can be e�ciently
recomputed).

Two additional elements are computed from the private key, and may be recomputed dynamically,
or stored along f , g and F :

• The FFT representations of f , g, F and G, ordered in the form of a matrix:

B̂ =

[
FFT(g) −FFT(f)

FFT(G) −FFT(F )

]
, (3.21)

where FFT(a) denotes the fast Fourier transform of a in the underlying ring (here, the ring is
R[x]/(φ)).

• A Falcon tree T, described at the end of this section. An important subtlety in Falcon is that
the nature of the Falcon tree di�ers depending on φ: in the binary case (i.e. φ = xn + 1),
the Falcon tree is a binary tree – each node has at most two children –, and in the ternary
case (i.e. φ = xn − xn/2 + 1), the Falcon tree is a ternary tree – each node has at most three
children.

FFT representations are described in section 3.2.3. The FFT representation of a polynomial
formally consists of n complex numbers (a complex number is normally encoded as two 64-bit
�oating-point values); however, the FFT representation of a real polynomial f is redundant, because
for each complex root ζ of φ, its conjugate ζ is also a root of φ, and f(ζ) = f(ζ). Therefore, the
FFT representation of a polynomial may be stored as n/2 complex numbers, and B̂, when stored,
requires 2n complex numbers.

Falcon binary trees. Falcon binary trees are de�ned inductively as follows:

• A Falcon binary tree T of height 0 consists of a single node whose value is a real σ > 0.

• A Falcon binary tree T of height κ veri�es these properties:
– The value of its root, noted T.value, is a polynomial ` ∈ Q[x]/(xn + 1) with n = 2κ.
– Its left and right children, noted T.le�child and T.rightchild, are Falcon binary trees of

height κ− 1.

The values of internal nodes – which are real polynomials – are stored in FFT representation (i.e. as
complex numbers, see section 3.2.3 for a formal de�nition). Hence all the nodes of a Falcon binary
tree contain polynomials in FFT representation, except the leaves which contain real values > 0. A
Falcon binary tree of height 3 is represented in the �gure 3.2. As illustrated by the �gure, a Falcon
binary tree can be easily represented by an array of 2κ(1 + κ) complex numbers (or exactly half as
many, if the redundancy of FFT representation is leveraged, as explained above), and access to the
left and right children can be performed e�ciently using simple pointer arithmetic.
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Figure 3.2. – A Falcon binary tree of height 3

Falcon ternary trees. In the ternary case, a mostly binary tree is built, except in one level whose
nodes have three children instead of two. Generally speaking, leaf nodes correspond to degree 1,
and each upper level either doubles or triples the degree; the tree root then corresponds to the
degree n of φ. Since n = 3 · 2κ, there must be exactly one level that corresponds to a “degree
tripling”; nodes in that level have three children each. Exactly which level consists in ternary nodes
is in fact left open as an implementation choice. The description of Falcon in this speci�cation
corresponds to a tripling immediately above the leaf nodes. As in the binary case, the index of each
node in a continuous array representation can be e�ciently computed. The contents of a Falcon
tree T are computed from the private key elements f , g, F and G using the algorithms described in
section 3.2.2.6.

3.2.2.3. Public key

The Falcon public key pk corresponding to the private key sk = (f, g, F,G) is a polynomial
h ∈ Zq[x]/(φ) such that:

h = gf−1 mod (φ, q). (3.22)

3.2.2.4. Key Pair Generation

The key pair generation is arguably the most technical part of Falcon to describe. It can be
chronologically and conceptually decomposed in two clearly separate parts, which each contain
their own technicalities, make use of di�erent mathematical tools and require to address di�erent
challenges.

• Solving the NTRU equation. The �rst step of the key pair generation consists of computing
polynomials f, g, F,G ∈ Z[x]/(φ) which verify the equation 3.20 – the NTRU equation.
Generating f and g is easy enough, but the hard part is to compute e�ciently polynomials
F,G such that equation 3.20 is veri�ed.

In order to do this, we propose a novel method which exploits the tower-of-rings structure
explicited in the equations 3.7 and 3.8. We use the �eld norm N to map the NTRU equation
onto a smaller ring Z[x]/(φ′) of the tower of rings, all the way down to Z. We then solve the
equation in Z – which amounts to an extended gcd – and use the properties of the norm to
lift the solutions (F,G) in the tower of rings, up to the ring Z[x]/(φ).
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From an implementation point of view, the main technicality of this part is that it requires
to handle polynomials with large coe�cients (a few thousands of bit per coe�cient in the
lowest levels of the recursion). This step is speci�ed in section 3.2.2.5.

• Computing a Falcon tree. Once suitable polynomials f, g, F,G are generated, the second part
of the key generation consists of preprocessing them into an adequate format: by adequate
we mean that this format should be reasonably compact and allow fast signature generation
on-the-go.

Falcon trees are precisely this adequate format. To compute a Falcon tree, we compute the
LDL? decomposition G = LDL? of the matrix G = BB?, where

B =

[
g −f
G −F

]
, (3.23)

which is equivalent to computing the Gram-Schmidt orthogonalization B = L× B̃. If we
were using Klein’s well-known sampler (or a variant thereof) as a trapdoor sampler, knowing
L would be su�cient but a bit unsatisfactory as we would not exploit the tower-of-rings
structure of Q[x]/(φ).

So instead of stopping there, we store L (or rather L10, its only non-trivial term) in the root
of a tree, use the splitting operators de�ned in section 3.2.4 to “break” the diagonal elements
Dii of D into matrices Gi over smaller rings Q[x]/(φ′), at which point we create subtrees for
each matrix Gi and recursively start over the process of LDL? decomposition and splitting.

The recursion continues until the matrix G has its coe�cients in Q, which correspond to the
bottom of the recursion tree. How this is done is speci�ed in section 3.2.2.6.

The main technicality of this part is that it exploits the tower-of-rings structure of Q[x]/(φ)
by breaking its elements onto smaller rings. In addition, intermediate results are stored in a
tree, which requires precise bookkeeping as elements of di�erent tree levels do not live in
the same �eld. Finally, for performance reasons, the step is realized completely in the FFT
domain.

Once these two steps are done, the rest of the key pair generation is straightforward. A �nal
step normalizes the leaves of the LDL tree to turn it into a Falcon tree. The result is wrapped in a
private key sk and the corresponding public key pk is h = gf−1 mod q.

A formal description is given in the algorithms 3.20 to 3.28, the main algorithm being the procedure
Keygen (algorithm 3.20). The general architecture of the key pair generation is also illustrated in
�gure 3.3.

3.2.2.5. Generating the polynomials f, g, F,G.

The �rst step of the key pair generation generates suitable polynomials f, g, F,G verifying the
NTRU equation: fG− gF = q mod φ. This is speci�ed in algorithm 3.21 (NTRUGen). We provide
a general explanation of the algorithm:

1. At the �rst step, the polynomials f, g are generated randomly. A few conditions over f, g are
checked to ensure they are suitable for our purposes (steps 1 to 11). It particular, it shall be
checked that:
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Keygen

NTRUGen ffLDL?

NTRUSolve LDL?

Figure 3.3. – Flowchart of the key generation

Algorithm 3.20 Keygen(φ, q)

Require: A monic polynomial φ ∈ Z[x], a modulus q
Ensure: A secret key sk, a public key pk

1: f, g, F,G, γ ← NTRUGen(φ, q) . Solving the NTRU equation

2: B←
[
g −f
G −F

]
3: B̂← FFT(B)
4: G← B̂× B̂?

5: T← ffLDL?(G) . Computing the LDL? tree
6: if φ is binary then

7: σ ← 1.55
√
q

8: else if φ is ternary then

9: σ ← 1.32 · 21/4√q
10: for each leaf leaf of T do . Normalization step
11: leaf.value← σ/

√
leaf.value

12: sk← (B̂, T)
13: h← gf−1 mod q
14: pk← h
15: return sk, pk
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a) A public key h can be computed from f, g. This is true if and only if f is invertible mod q,
which is true if and only if Res(f, φ) mod q 6= 0, where Res denotes the resultant. The
NTT can be used to perform this check and then compute h (f is invertible in Zq[x]/(φ)
if and only if its NTT representation contains no zero).

b) The polynomials f, g, F,G allow to generate short signatures. This is the case if and
only if γ = max

{
‖(g,−f)‖ ,

∥∥∥( qf?

ff?+gg? ,
qg?

ff?+gg? )
∥∥∥} is small enough.

2. At the second step, short polynomials F,G are computed such that f, g, F,G verify the NTRU
equation. This is done by the procedure NTRUSolve, which exists in two versions: binary
(algorithm 3.23) and ternary (algorithm 3.25).

Algorithm 3.21 NTRUGen(φ, q) (Binary case)
Require: A monic polynomial φ ∈ Z[x] of degree n, a modulus q
Ensure: Polynomials f, g, F,G

1: σ′ ← 1.17
√
q/2n . σ′ is chosen so that E[‖(f, g)‖] = 1.17

√
q

2: for i from 0 to n− 1 do

3: fi ← DZ,σ′,0
4: gi ← DZ,σ′,0

5: f ←∑
i fix

i . f ∈ Z[x]/(φ)
6: g ←∑

i gix
i . g ∈ Z[x]/(φ)

7: if Res(f, φ) mod q = 0 then . Check that f is invertible mod q
8: restart

9: γ ← max
{
‖(g,−f)‖ ,

∥∥∥( qf?

ff?+gg? ,
qg?

ff?+gg? )
∥∥∥}

10: if γ > 1.17
√
q then . Check that signatures will be short

11: restart

12: F,G← NTRUSolven,q(f, g) . Computing F,G such that fG− gF = 1 mod φ
13: return f, g, F,G

Things are slightly di�erent in the ternary case: to ensure the proper distribution, coe�cients
of f and g must be generated as Gaussians in the FFT embedding, then converted back to normal
representation, and only then rounded to integers. Moreover, the vector norms must be evaluated
in the FFT embedding as well. This is due to the fact that the FFT, in the ternary case, is not an
orthogonal transform, and we need f and g to use a proper spheroid in the FFT embedding. Details
are expressed in algorithm 3.22.

Solving the NTRU equation: the binary case. We now explain how to solve the equation 3.20
in the binary case. As said before, we repeatedly use the �eld norm N (see section 3.2.4.5 for explicit
formulae) to map f, g to a smaller ring Z[x]/(xn/2 + 1), until we reach the ring Z. Solving 3.20 then
amounts to computing an extended GCD over Z, which is simple. Once this is done, we use the
multiplicative properties of the �eld norm to repeatedly lift the solutions up to Z[x]/(xn + 1), at
which point we have solved the equation 3.20. NTRUSolve uses the procedure Reduce as a subroutine
to reduce the size of the solutions F,G. Unlike NTRUSolve, the description of this subroutine is
the same in the binary and ternary cases. The principle of Reduce is a simple generalization of
textbook vectors’ reduction. Given vectors u,v ∈ Zk, reducing u with respect to v is done by
simply performing u← u−

⌊
uv?

vv?

⌉
v. Reduce does the same by replacing Zk by (Z[x]/(φ))2, u by

(F,G) and v by (f, g).
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Algorithm 3.22 NTRUGen(φ, q) (Ternary case)
Require: A monic polynomial φ ∈ Z[x] of degree n, a modulus q
Ensure: Polynomials f, g, F,G

1: σ′ ←
√
q/
√

8
2: for j from 0 to n− 1 do

3: Generate random uniform real numbers a, b, c, d ∈]0..1]
4: f̂j ← σ′

√−2 log aei(2π)b

5: ĝj ← σ′
√−2 log cei(2π)d

6: f ← invFFT(f̂)
7: g ← invFFT(ĝ)
8: for j from 0 to n− 1 do

9: fj ← bfje
10: gj ← bgje
11: if Res(f, φ) mod q = 0 then . Check that f is invertible mod q
12: restart

13: γ ← max
{
‖(g,−f)‖ ,

∥∥∥( qf?

ff?+gg? ,
qg?

ff?+gg? )
∥∥∥}

14: if γ > 4nq/
√

8 then . Check that signatures will be short
15: restart

16: F,G← NTRUSolven,q(f, g) . Computing F,G such that fG− gF = 1 mod φ
17: return f, g, F,G

Algorithm 3.23 NTRUSolven,q(f, g) (Binary case)
Require: f, g ∈ Z[x]/(xn + 1) with n a power of two
Ensure: Polynomials F,G such that the equation 3.20 is veri�ed

1: if n = 1 then

2: Compute u, v ∈ Z such that uf − vg = gcd(f, g)
3: if gcd(f, g) 6= 1 then

4: abort

5: (F,G)← (vq, uq)
6: return (F,G)
7: else

8: f ′ ← N(f) . f ′, g′, F ′, G′ ∈ Z[x]/(xn/2 + 1)
9: g′ ← N(g)

10: (F ′, G′)← NTRUSolven/2,q(f ′, g′)
11: F ← F ′(x2)g′(x2)/g(x) . F,G ∈ Z[x]/(xn + 1)
12: G← G′(x2)g′(x2)/g(x)
13: Reduce(f, g, F,G) . (F,G) is reduced with respect to (f, g)

14: return (F,G)
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Algorithm 3.24 Reduce(f, g, F,G)

Require: Polynomials f, g, F,G ∈ Z[x]/(φ)
Ensure: (F,G) is reduced with respect to (f, g)

1: do

2: k ←
⌊
Ff?+Gg?

ff?+gg?

⌉
. Ff?+Gg?

ff?+gg? ∈ Q[x]/(φ) and k ∈ Z[x]/(φ)

3: F ← F − kf
4: G← G− kg
5: while k 6= 0 . Multiple iterations may be needed, e.g. if k is computed in small precision.

Solving the NTRU equation: the ternary case. For the ternary case, the principle of NTRU-
Solve is the same, except that the recursion is less straightforward as there are more cases to consider.
However, the polynomials N(f)(xk)/f(x) can still be expressed simply. Reprising the notations of
section 3.2.4.5:

1. If n > 6, then N(f)(x2)/f(x) = f(−x) = f0(x2)− xf1(x2).

2. If n = 6, then N(f)(x3)/f(x) = f(x7)f(x13). This is equal to

f2
0 (x3) + x2f2

1 (x3) + x4f2
2 (x3)− xf0f1(x3)− x2f0f2(x3)− x3f1f2(x3).

3. If n = 2, then N(f)(x2)/f(x) = f(x5) = f0 + f1 − xf1.

The ternary version of NTRUSolve is more complex than the binary; a complete speci�cation is
given in algorithm 3.25.

3.2.2.6. Computing a Falcon Tree

The second step of the key generation consists of preprocessing the polynomials f, g, F,G into an
adequate secret key format. The secret key is of the form sk = (B̂, T), where:

• B̂ =

[
FFT(g) −FFT(f)

FFT(G) −FFT(F )

]
• T is a Falcon tree computed in two steps:

1. First, a tree T is computed from G← B̂× B̂?, called an LDL tree. This is speci�ed in
algorithm 3.27. At this point, T is a Falcon tree but it is not normalized.

2. Second, T is normalized with respect to a standard deviation σ. It is described near the
end of algorithm 3.20.

The polynomials manipulated in the algorithm 3.27 and its subroutine algorithm 3.26 are
all in FFT representation. While it is possible to convert these algorithms to the coe�cient
representation, doing so would be suboptimal from an e�ciency viewpoint.

At a high level, the method for computing the LDL tree at step 1 (before normalization) is simple:

1. We compute the LDL decomposition of G: we write G = L × D × L?, with L a lower
triangular matrix with 1’s on the diagonal and D a diagonal matrix. Such a decomposition is
easy to compute: we recall a method for computing the LDL decomposition in algorithm 3.26.
We store the matrix L in T.value, which is the value of the root of T. Since L is a lower
triangular matrix with 1’s on the diagonal of dimensions – in our case – (2× 2) or (3× 3),
this only amounts to storing one or three elements of Q[x]/(φ).
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Algorithm 3.25 NTRUSolven,q(f, g) (Ternary case)

Require: f, g ∈ Z[x]/(xn − xn/2 + 1) with n = 3 · 2κ
Ensure: Polynomials F,G such that the equation 3.20 is veri�ed

1: if n = 1 then

2: Compute u, v ∈ Z such that uf − vg = gcd(f, g)
3: if gcd(f, g) 6= 1 then

4: abort

5: (F,G)← (vq, uq)
6: return (F,G)
7: else

8: if n = 6 then

9: k ← 3
10: else

11: k ← 2
12: f ′ ← N(f) . f ′, g′, F ′, G′ ∈ Z[x]/(xn/k − xn/(2k) + 1)
13: g′ ← N(g)
14: (F ′, G′)← NTRUSolve(n/k),q(f

′, g′)

15: F ← F ′(xk) · g′(xk)/g(x) . F,G ∈ Z[x]/(xn − xn/2 + 1)
16: G← G′(xk) · f ′(xk)/f(x)
17: Reduce(f, g, F,G)

18: return (F,G)

2. We then use the splitting operator to “break” each diagonal element of D into a matrix of
smaller elements. More precisely, for a diagonal element d ∈ Q[x]/(φ), we consider the
associated endomorphism ψd : z ∈ Q[x]/(φ) 7→ dz and write its transformation matrix over
the smaller ring Q[x]/(φ′).

a) Binary case. If φ = xn + 1, then we take φ′ = xn/2 + 1. Following the argument of
section 3.2.4.4, the transformation matrix of ψd can be written as[

d0 d1

xd1 d0

](
=

[
d0 d1

d?1 d0

])
1. (3.24)

b) Ternary case. If φ = xn−xn/2 + 1, then depending on the value of n we may take either
φ′ = xn/2 − xn/4 + 1 or φ′ = xn/3 − xn/6 + 1. The �rst case amounts to splitting d
in two, and we can then simply use the equation 3.24. In the second case, we split d in
three, so we need to express ψd di�erently, and its transformation matrix is d0 d1 d2

xd2 d0 d1

xd1 xd2 d0

=

 d0 d1 d2

d?1 d0 d1

d?2 d?1 d0

 1. (3.25)

For each diagonal element broken into a self-adjoint matrix Gi over a smaller ring, we
recursively compute its LDL tree as in step 1 and store the result in the left, middle or right
child of T (which we denote T.le�child, T.middlechild and T.rightchild respectively).

1The equality in parenthesis is true if and only if d is self-adjoint, i.e. d? = d.
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We continue the recursion until we end up with coe�cients in the ring Q (in the binary case)
or Q[x]/(x2 − x+ 1) (in the ternary case).

A detailed speci�cation of this “LDL tree” strategy is given in the following subsections of this
section.

Algorithm 3.26 LDL?(G)

Require: A full-rank autoadjoint matrix G = (Gij) ∈ FFT(Q[x]/(φ))n×n

Ensure: The LDL? decomposition G = LDL? over FFT(Q[x]/(φ))
Format: All polynomials are in FFT representation.

1: L,D← 0 n×n

2: for i from 1 to n do

3: Lii ← 1
4: Di ← Gii −

∑
j<i Lij � L?ij �Dj

5: for j from 1 to i− 1 do

6: Lij ← 1
Dj

(
Gij −

∑
k<j Lik � L?jk �Dk

)
7: return (L,D)

The binary case. In the binary case, the application of our LDL tree strategy is rather simple
and can be implemented using only the bisection (splitting a polynomial in two). It is speci�ed in
algorithm 3.27.

Algorithm 3.27 ffLDL?(G) (Binary case)

Require: A full-rank Gram matrix G ∈ FFT (Q[x]/(xn + 1))2×2

Ensure: A binary tree T
Format: All polynomials are in FFT representation.

1: (L,D)← LDL?(G) . L =

[
1 0

L10 1

]
,D =

[
D00 0

0 D11

]
2: T.value← L10

3: if (n = 1) then
4: T.le�child← D00

5: T.rightchild← D11

6: return T
7: else

8: d00, d01 ← split�t2(D00)
9: d10, d11 ← split�t2(D11)

10: G0 ←
[
d00 d01

xd01 d00

]
, G1 ←

[
d10 d11

xd11 d10

]
.G0,G1 ∈ FFT

(
Q[x]/(xn/2 + 1)

)2×2

11: T.le�child← ffLDL?(G0)
12: T.rightchild← ffLDL?(G1)
13: return T

The ternary case. In the binary case, aplying our LDL tree strategy is more complex and also
requires the trisection (splitting a polynomial in three). It is speci�ed in algorithm 3.28. In the
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Algorithm 3.28 ffLDL?(G) (Ternary case: φ = xn − xn/2 + 1)

Require: A full-rank Gram matrix G ∈ FFT
(
Q[x]/(xn − xn/2 + 1)

)k×k, with k ∈ {2, 3}
Ensure: A binary tree T
Format: All polynomials are in FFT representation.

1: (L,D)← LDL?(G)
2: if (n > 6) then . k = 2
3: d00, d01 ← split�t2(D00)
4: d10, d11 ← split�t2(D11)

5: G0 ←
[
d00 d01

xd01 d00

]
, G1 ←

[
d10 d11

xd11 d10

]
6: T.value← L10

7: T.le�child← ffLDL?(G0)
8: T.rightchild← ffLDL?(G1)
9: return T

10: if (n = 6) then . k = 2
11: d00, d01, d02 ← split�t3(D00)
12: d10, d11, d12 ← split�t3(D11)

13: G0 ←

 d00 d01 d02

xd02 d00 d01

xd01 xd02 d00

 ,G1 ←

 d10 d11 d12

xd12 d10 d11

xd11 xd12 d10


14: T.value← L10

15: T.le�child← ffLDL?(G0)
16: T.rightchild← ffLDL?(G1)
17: return T
18: if (n = 2) then . k = 3
19: T.value← (L10, L20, L21)
20: T.le�child← D00

21: T.middlechild← D11

22: T.rightchild← D22

23: return T
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ternary case, normalization uses a slightly di�erent value for σ. Also, once the normalized leaf value
v is computed, it may be relevant to precompute and store 2v/

√
3, as the latter value will also be

used for signature generation. This is speci�c to the ternary case.

3.2.3. FFT and NTT

The FFT. Let f ∈ Q[x]/(φ). We note Ωφ the set of complex roots of φ. We suppose that φ is
monic with distrinct roots over C, so that φ(x) =

∏
ζ∈Ωφ

(x − ζ). We denote by FFTφ(f) the fast

Fourier transform of f with respect to φ:

FFTφ(f) = (f(ζ))ζ∈Ωφ (3.26)

When φ is clear from context, we simply note FFT(f). We may also use the notation f̂ to indicate that
f̂ is the FFT of f . FFTφ is a ring isomorphism, and we note invFFTφ its inverse. The multiplication
in the FFT domain is denoted by �. We extend the FFT and its inverse to matrices and vectors by
component-wise application.

Additions, subtractions, multiplications and divisions of polynomials modulo φ can be computed
in FFT representations by simply performing them on each coordinate. In particular, this makes
multiplications and divisions very e�cient.

Of particular interest to us is the FFT for the particular values of φ taken in Falcon:

• Binary case: Ωφ = {ζk|k ∈ Z×2n}, with ζ a primitive 2n-th complex root of 1.

• Ternary case: Ωφ = {ζk|k ∈ Z×3n}, with ζ a primitive 3n-th complex root of 1.

Anote on implementing the FFT. There exist several ways of implementing the FFT, which may
yield slightly di�erent results. For example, some implementations of the FFT scale our de�nition by
a constant factor (e.g. 1/ deg(φ)). Another di�erentiation point is the order of (the roots of) the FFT.
Common orders are the increasing order (i.e. the roots are sorted by their order on the unit circle,
starting at 1 and moving clockwise) or (variants of) the bit-reversal order. In the case of Falcon:

• The FFT is not scaled by a constant factor.

• There is no constraint on the order of the FFT, the choice is left to the implementer. However,
the chosen order shall be consistent for all the algorithms using the FFT.

Representation of polynomials in algorithms. The algorithms which specify Falcon heavily
rely on the fast Fourier transform, and some of them explicitly require that the inputs and/or
outputs are given in FFT representation. When the directive “Format:” is present at the beginning
of an algorithm, it speci�es in which format (coe�cient or FFT representation) the input/output
polynomials shall be represented. When the directive “Format:” is absent, no assumption on the
format of the input/output polynomials is made.

The NTT. The NTT (Number Theoretic Transform) is the analog of the FFT in the �eld Zp,
where p is a prime such that p = 1 mod 2n (binary case) or p = 1 mod 3n (ternary case). Under
these conditions, φ has exactly n roots (ωi) over Zp, and any polynomial f ∈ Zp[x]/(φ) can be
represented by the values f(ωi). Conversion to and from NTT representation can be done e�ciently
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inO(n log n) operations inZp. When in NTT representation, additions, subtractions, multiplications
and divisions of polynomials (modulo φ and p) can be performed coordinate-wise in Zp.

In Falcon, the NTT allows for faster implementations of public key operations (using Zq) and
key pair generation (with various medium-sized primes p). Private key operations, though, rely on
the fast Fourier sampling, which uses the FFT, not the NTT.

3.2.4. Splitting and Merging

In this section, we make explicit the chains of isomorphisms described in section 3.2.1, by presenting
splitting (resp. merging) operators which allow to travel these chains from right to left (resp. left to
right).

Let φ, φ′ be cyclotomic polynomials such that we either have φ(x) = φ′(x2) or φ(x) = φ′(x3).
In this section we de�ne operators which are at the heart of our signing algorithm. Our algorithms
require the ability to split an element of Q[x]/(φ) into two or three smaller elements of Q[x]/(φ′).
Conversely, we will require the ability to merge small elements of Q[x]/(φ′) into a larger element
of Q[x]/(φ).

3.2.4.1. Bisection: when φ(x) = φ′(x2)

In this section we suppose that φ(x) = φ′(x2) and de�ne operators splitting a polynomial f ∈
Q[x]/(φ) in two smaller polynomials of Q[x]/(φ′), or performing the reciprocal merging operation.

The split�t2 operator. Let n be the degree of φ, and f =
∑n−1

i=0 aix
i be an arbitrary element of

Q[x]/(φ), f can be decomposed uniquely as f(x) = f0(x2) + xf1(x2), with f0, f1 ∈ Q[x]/(φ′). In
coe�cient representation, such a decomposition is straightforward to write:

f0 =
∑

0≤i<n/2

a2ix
i and f1 =

∑
0≤i<n/2

a2i+1x
i (3.27)

f is simply split with respect to its even or odd coe�cients. We note (f0, f1) = split2(f). In Falcon,
polynomials are repeatedly split, multiplied together, split again and so forth. To avoid switching
back and forth between the coe�cient and FFT representation, we always perform the split operation
in the FFT representation. It is de�ned in algorithm 3.29.

Algorithm 3.29 split�t2(FFT(f))

Require: FFT(f) = (f(ζ))ζ for some f ∈ Q[x]/(φ)
Ensure: FFT(f0) = (f0(ζ ′))ζ′ and FFT(f1) = (f1(ζ ′))ζ′ for some f0, f1 ∈ Q[x]/(φ′)
Format: All polynomials are in FFT representation.

1: for ζ such that φ(ζ) = 0 and Im(ζ) > 0 do

2: ζ ′ ← ζ2

3: f0(ζ ′)← 1
2 [f(ζ) + f(−ζ)]

4: f1(ζ ′)← 1
2ζ [f(ζ)− f(−ζ)]

5: return (FFT(f0), FFT(f1))

split�t2 is split2 realized in the FFT representation: for any f, FFT(split2(f)) = split�t2(FFT(f)).
Readers familiar with the Fourier transform will recognize that split�t2 is a subroutine of the inverse
fast Fourier transform, more precisely the part which from FFT(f) computes two FFT’s twice smaller.
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f ∈ Q[x]/(φ) f0, f1 ∈ Q[x]/(φ′)

f̂ ∈ FFT(Q[x]/(φ)) f̂0, f̂1 ∈ FFT(Q[x]/(φ′))

FFT FFTinvFFT invFFT

split2

split�t2

merge2

merge�t2

Figure 3.4. – Relationship between FFT, invFFT, split2, merge2, split�t2 and merge�t2

The merge�t2 operator. With the previous notations, we de�ne the operator merge2 as follows:
merge2(f0, f1) = f0(x2) + xf1(x2) ∈ Q[x]/(φ). Similarly to split2, it is often relevant from an
e�ciently standpoint to perform merge2 in the FFT representation. This is done in algorithm 3.30.

Algorithm 3.30 merge�t2(f0, f1)

Require: FFT(f0) = (f0(ζ ′))ζ′ and FFT(f1) = (f1(ζ ′))ζ′ for some f0, f1 ∈ Q[x]/(φ′)
Ensure: FFT(f) = (f(ζ))ζ for some f ∈ Q[x]/(φ)
Format: All polynomials are in FFT representation.

1: for ζ such that φ(ζ) = 0 do

2: ζ ′ ← ζ2

3: f(ζ)← f0(ζ ′) + ζf1(ζ ′)

4: return FFT(f)

It is immediate that split2 and merge2 are inverses of each other, and equivalently split�t2 and
merge�t2 are inverses of each other. Just as for split�t2, readers familiar with the Fourier transform
can observe that merge�t2 is a step of the fast Fourier transform: it is the reconstruction step which
from two small FFT’s computes a larger FFT.

Relationship with the FFT. There is no requirement on the order in which the values f(ζ) (resp.
f0(ζ ′), resp. f1(ζ ′)) are to be stored, and the choice of this order is left to the implementer. It is
however recommended to use a unique order convention for the FFT, invFFT, split�t2 and merge�t2

operators. Since the FFT and invFFT need to implemented anyway, this unique convention can be
achieved, e.g. by implementing split�t2 as part of invFFT, and merge�t2 as part of the FFT.

The intricate relationships between the split2 and merge2 operators, their counterparts in the FFT
representation and the (inverse) fast Fourier transform are illustrated in the commutative diagram
of �gure 3.4.

3.2.4.2. Trisection: when φ(x) = φ′(x3)

In this section we suppose that φ(x) = φ′(x3). In Falcon, this may happen only if φ is ternary.
We de�ne splitting and merging operators similarly to the bisection case. For any f ∈ Q[x]/(φ),
we can uniquely write f(x) = f0(x3) + xf1(x3) + x2f2(x3) with f0, f1, f2 ∈ Q[x]/(φ). We then
de�ne split3 as split3(f) = (f0, f1, f2), and merge3 as being the reciprocal operator. Translations of
these operators in the FFT domain are given in algorithms 3.31 and 3.32.
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Algorithm 3.31 split�t3(FFT(f))

Require: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(φ)
Ensure: FFT(f0), FFT(f1), FFT(f2) for f0, f1, f2 ∈ Q[x]/(φ′)
Format: All polynomials are in FFT representation.

1: for ζ such that φ(ζ) = 0 and arg(ζ) ∈ (0, 2π
3 ) do

2: ζ ′ ← ζ3

3: f0(ζ ′)← 1
3

[
f(ζ) + f(jζ) + f(j2ζ)

]
. j is a primitive cube root of 1: j = ei(2π)/3

4: f1(ζ ′)← 1
3ζ

[
f(ζ) + j2f(jζ) + jf(j2ζ)

]
5: f2(ζ ′)← 1

3ζ2

[
f(ζ) + jf(jζ) + j2f(j2ζ)

]
6: return (FFT(f0), FFT(f1), FFT(f2))

Algorithm 3.32 merge�t3(f0, f1, f2)

Require: FFT(f0), FFT(f1), FFT(f2) for f0, f1, f2 ∈ Q[x]/(φ′)
Ensure: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(φ)
Format: All polynomials are in FFT representation.

1: for ζ such that φ(ζ) = 0 do

2: ζ ′ ← ζ3

3: f(ζ)← f0(ζ ′) + ζf1(ζ ′) + ζ2f2(ζ ′)
4: f(jζ)← f0(ζ ′) + jζf1(ζ ′) + j2ζ2f2(ζ ′)
5: f(j2ζ)← f0(ζ ′) + j2ζf1(ζ ′) + jζ2f2(ζ ′)

6: return FFT(f)

Relationshipwith the FFT. The operators split3, merge3, split�t3 and merge�t3 have an identical
relationship with the FFT as their bisection counterparts do (see section 3.2.4.1 and �gure 3.4).

3.2.4.3. The special case φ(x) = x2 − x+ 1

The roots of the polynomial x2−x+1 are the two sixth roots of unity ζ6 = 1
2 +
√

3
2 i and ζ̄6 = 1

2−
√

3
2 i.

In contrast to the other cases it is not true that for a root ζ also −ζ is a root of x2 − x+ 1. We give
specialized split and merge algorithms for this case in Algorithms 3.33 and 3.34. Let f = f0 +f1 be a
polynomial in Q[x]/(x2−x+1). Then its FFT representation is given by f(ζ6) = f0 + 1

2f1 +
√

3
2 f1i

and the complex conjugate. The splitted polynomials f0 and f1 lie in Q and hence their FFT
representation is just f0 and f1. We have f1 = 2√

3
=f(ζ6) and f0 = <f(ζ6)− 1

2f1.

Algorithm 3.33 split�t6(FFT(f))

Require: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(x2 − x+ 1)
Ensure: f0, f1 ∈ Q
Format: All polynomials are in FFT representation.

1: ζ ← 1
2 +

√
3

2 i . sixth root of unity
2: f1 ← 2√

3
=(f(ζ)) . = denotes the imaginary part

3: f0 ← <(f(ζ))− 1
2f1 . < denotes the real part

4: return (f0, f1)
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Algorithm 3.34 merge�t6(f0, f1)

Require: f0, f1 ∈ Q
Ensure: FFT(f) = (f(ζ))ζ for f ∈ Q[x]/(x2 − x+ 1)
Format: All polynomials are in FFT representation.

1: for ζ such that ζ2 − ζ + 1 = 0 do

2: f(ζ)← f0 + ζf1

3: return FFT(f)

3.2.4.4. Algebraic interpretation

The purpose of the splitting and merging operators that we de�ned is not only to represent elements
of Q[x]/(φ) using smaller elements of Q[x]/(φ′), but to do so in a manner which is compatible with
ring operations. As an illustration, we consider the operation:

a = bc (3.28)

where a, b, c ∈ Q[x]/(φ). For f ∈ Q[x]/(φ), we consider the associated endomorphism ψf : z ∈
Q[x]/(φ) 7→ fz. The equation 3.28 can be rewritten as a = ψc(b). We will show how to use the
splitting operator to express it as a vector-matrix product in the module (Q[x]/(φ′))k.

1. Bisection. By the splitting isomorphism split2, a and b (resp. ψc) can also be considered as
elements (resp. an endomorphism) of (Q[x]/(φ′))2. The equation 3.28 can be expressed over
Q[x]/(φ′) as

[
a0 a1

]
=
[
b0 b1

] [ c0 c1

xc1 c0

]
(3.29)

2. Trisection. The equation 3.28 is now expressed as

[
a0 a1 a2

]
=
[
b0 b1 b2

]  c0 c1 c2

xc2 c0 c1

xc1 xc2 c0

 (3.30)

More formally, we have used the fact that splitting operators are isomorphisms betweenQ[x]/(φ) and
(Q[x]/(φ′))k, which express elements of Q[x]/(φ) in the (Q[x]/(φ′))-basis {1, x} for the bisection,
or {1, x, x2} for the trisection (hence “breaking” a, b in vectors of smaller elements).

Similarly, writing the transformation matrix of the endomorphism ψc in the basis {1, x} (resp.
{1, x, x2}) yields the 2× 2 (resp. 3× 3) matrix of the equation 3.29 (resp. 3.30)

3.2.4.5. Relationship with the �eld norm

The splitting and merging operators allow to easily express the �eld norm for some speci�c cy-
clotomic �elds. Let L = Q[x]/(φ),K = Q[x]/(φ′) and f ∈ L. Since by de�nition NL/K(f) =
detK(ψd), we can use the equations 3.29 and 3.30 to compute it explicitly. This yields:

1. If φ′(x2) = φ(x), then NL/K(f) = f2
0 − xf2

1 , where (f0, f1) = split2(f);

2. If φ′(x3) = φ(x), then NL/K(f) = f3
0 +xf3

1 +x2f3
2 +3f0f1f2, where (f0, f1, f2) = split3(f);
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3. If φ(x) = x2 − x+ 1, then NL/Q(f) = f2
0 + f0f1 + f2

1 , where f = f0 + xf1.

For f ∈ L with L = Q[x]/(φ), we will also denote N(f) = NL/K(f), where:

1. if ∃ a cyclotomic polynomial φ′ such that φ′(x2) = φ(x), then K = Q[x]/(φ′);

2. else, if ∃ a cyclotomic polynomial φ such that φ′(x3) = φ(x), then K = Q[x]/(φ′);

3. else, K = Q.

For the values of φ considered in this document, this allows to de�ne N(f) in an unambiguous way
for any f ∈ Q[x]/(φ).

3.2.5. Hashing

As for any hash-and-sign signature scheme, the �rst step to sign a message or verify a signature
consists of hashing the message. In our case, the message needs to be hashed into a polynomial in
Zq[x]/(φ). An approved extendable-output hash function (XOF), as speci�ed in FIPS 202 [NIS15],
shall be used during this procedure.

This XOF shall have a security level at least equal to the security level targeted by our signature
scheme. In addition, we should be able to start hashing a message without knowing the security
level at which it will be signed. For these reasons, we use a unique XOF for all security levels:
SHAKE-256.

• SHAKE-256 -Init () denotes the initialization of a SHAKE-256 hashing context;

• SHAKE-256 -Inject (ctx, str) denotes the injection of the data str in the hashing context ctx;

• SHAKE-256 -Extract (ctx, b) denotes extraction from a hashing context ctx of b bits of pseudo-
randomness.

In Falcon, big-endian convention is used to interpret a chunk of b bits, extracted from a SHAKE-
256 instance, into an integer in the 0 to 2b − 1 range (the �rst of the b bits has numerical weight
2b−1, the last has weight 1).

Algorithm 3.35 HashToPoint(str, q, n)

Require: A string str, a modulus q ≤ 216, a degree n ∈ N?
Ensure: An polynomial c =

∑n−1
i=0 cix

i in Zq[x]
1: k ← b216/qc
2: ctx← SHAKE-256-Init()
3: SHAKE-256-Inject(ctx, str)
4: i← 0
5: while i < n do

6: t← SHAKE-256-Extract(ctx, 16)
7: if t < kq then
8: ci ← t mod q
9: i← i+ 1

10: return c

Algorithm 3.35 de�nes the hashing process used in Falcon. It is de�ned for any q ≤ 216.
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Possible variants.

• If q > 216, then larger chunks can be extracted from SHAKE-256 at each step.

• Algorithm 3.35 may be di�cult to e�ciently implement in a constant-time way; constant-
timeness may be a desirable feature if the signed data is also secret.
A variant which is easier to implement with constant-time code extracts 64 bits instead of 16
at step 6, and omits the conditional check of step 7. While the omission of the check means
that some target values modulo q will be slightly more probable than others, a Rényi argu-
ment [Pre17] allows to claim that this variant is secure for the parameters set by NIST [NIS16].

Of course, any variant deviating from the procedure expressed in algorithm 3.35 implies that the
same message will hash to a di�erent value, which breaks interoperability.

3.2.6. Signature Generation

At a high level, the principle of the signature generation algorithm is simple: it �rst computes a
hash value c ∈ Zq[x]/(φ) from the message m and a salt r, and it then uses its knowledge of the
secret key f, g, F,G to compute two short values s1, s2 such that s1 + s2h = c mod q.

A naive way to �nd such short values (s1, s2) would be to compute t← (c, 0) ·B−1, to round it
coe�cient-wise to a vector z and to output (s1, s2)← (t− z)B; one can check that (s1, s2) does
indeed �ll all the requirements to be a legitimate, but this method is known to be insecure and to
leak the secret key.

The proper way to generate (s1, s2) without leaking the secret key is to use a trapdoor sampler
(see section 3.1.2 for a brief reminder on trapdoor samplers). In Falcon, we use a trapdoor sampler
called fast Fourier sampling. The computation of the falcon tree T by the procedure ffLDL? during
the key pair generation was the initialization step of this trapdoor sampler.

The heart of our signature generation, the procedure �Sampling (algorithm 3.37), will adaptatively
apply a randomized rounding (according to a discrete Gaussian distribution) on the coe�cients of t.
But it will do so in an adaptative manner, using the information stored in the Falcon tree T.

At a high level, our fast Fourier sampling algorithm can be seen as a recursive variant of Klein’s
well known trapdoor sampler (also known as the GPV sampler). Klein’s sampler uses a matrix L
(and the norm of Gram-Schmidt vectors) as a trapdoor, whereas ours uses a tree of such matrices (or
rather, a tree of their non-trivial elements). Given t = (t0, t1), our algorithm �rst splits t1 using
the splitting operator, recursively applies itself to it (using the right child T.rightchild of T), and
uses the merging operator to lift the solution to the base ring of Z[x]/(φ); it then applies itself
again recursively with t0. It is important to notice that the recursions cannot be done in parallel:
the second recursion takes into account the result of the �rst recursion, and this is done using
information contained in T.value.

The most delicate part of our signature algorithm is the fast Fourier sampling described in
algorithm 3.37, because it makes use of the Falcon tree and of discrete Gaussians over Z. The rest
of the algorithm, including the compression of the signature, is rather straightforward to implement.

Formally, given a secret key sk and a message m, the signer uses sk to sign m as follows:
1. A random salt r is generated uniformly in {0, 1}320. The concatenated string (r‖m) is then

hashed to a point c ∈ Zq[x]/(φ) as speci�ed by algorithm 3.35

2. A (not necessarily short) preimage t of c is computed, and is then given as input to the fast
Fourier sampling algorithm, which outputs two short polynomials s1, s2 ∈ Z[x]/(φ) (in FFT
representation) such that s1 + s2h = c mod q, as speci�ed by algorithm 3.37.
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Sign

HashToPoint �Sampling Compress

SHAKE-256 DZ,·,·

Figure 3.5. – Flowchart of the signature

3. s2 is encoded (compressed) to a bitstring s as speci�ed in section 3.2.8.

4. The signature consists of the pair (r, s).

Anote on sampling overZ. The algorithm 3.37 requires access to an oracleD for the distribution
DZ,σ′,c′ , where σ′ can be the value of any leaf of the private Falcon tree T, and c′ ∈ Q is arbitrary2.
How to implementD is outside the scope of this chapter. It is only required that the Rényi divergence
between this oracle and an ideal discrete Gaussian DZ,σ′,c′ veri�es R512(D‖DZ,σ′,c′) ≤ 1 + 2−66,
for the de�nition of the Rényi divergence given in e.g. [BLL+15]. It is noteworthy that the range of
possible values for the standard deviation in the Gaussian sampler is limited: it is always greater
than 1.2, and always lower than 1.9 (in the binary case) or 2.20 (in the ternary case). The Falcon
reference implementation uses a Gaussian sampler based on rejection sampling against a bimodal
distribution.

The general architecture of the signing procedure is illustrated in �gure 3.5.

Algorithm 3.36 Sign (m, sk, β)
Require: A message m, a secret key sk, a bound β
Ensure: A signature sig of m

1: r← {0, 1}320 uniformly
2: c← HashToPoint(r‖m)
3: t← (FFT(c), FFT(0)) · B̂−1

4: do

5: z← �Samplingn(t, T)
6: s = (t− z)B̂
7: while ‖s‖ > β
8: (s1, s2)← invFFT(s)
9: s← Compress(s2)

10: return sig = (r, s)

2In the ternary case, leaf values may also be multiplied by 2/
√
3.
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3.2.6.1. Fast Fourier sampling: the binary case

This section describes our fast Fourier sampling algorithm in the binary case. This is done in
algorithm 3.37. It is worth noticing that we perform all the operations in FFT representation for
e�ciency reasons, but the whole algorithm could also be executed in coe�cient representation
instead, at a price of a O(n/ log n) penalty in speed.

Algorithm 3.37 �Sampling n(t, T) (Binary case)

Require: t = (t0, t1) ∈ FFT (Q[x]/(xn + 1))2, a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT (Z[x]/(xn + 1))2

Format: All polynomials are in FFT representation.
1: if n = 1 then

2: σ′ ← T.value
3: z0 ← DZ, t0, σ′ . Since n = 1, t0 = invFFT(t0) ∈ Q and z0 = invFFT(z0) ∈ Z
4: z1 ← DZ, t1, σ′ . Since n = 1, t1 = invFFT(t1) ∈ Q and z1 = invFFT(z1) ∈ Z
5: return z = (z0, z1)

6: (`, T0, T1)← (T.value, T.le�child, T.rightchild)

7: t1 ← split�t2(t1) . t1 ∈ FFT
(
Q[x]/(xn/2 + 1)

)2
8: z1 ← �Sampling n/2(t1, T1) . First recursive call to �Sampling n/2

9: z1 ← merge�t2(z1) . z1 ∈ FFT
(
Z[x]/(xn/2 + 1)

)2
10: t′0 ← t0 + (t1 − z1)� `
11: t0 ← split�t2(t

′
0)

12: z0 ← �Sampling n/2(t0, T0) . Second recursive call to �Sampling n/2

13: z0 ← merge�t2(z0)
14: return z = (z0, z1)

3.2.6.2. Fast Fourier sampling: the ternary case

This section describes our fast Fourier sampling algorithm in the ternary case. This is done in
algorithm 3.38. Once again, the description is more complex than in the binary case but the general
strategy remains the same.

We explain the last step for n = 2. The scalar product on Q2 induced by the isomorphism
Q[X]/(x2 − x+ 1) ∼= Q2 is

〈(a0, a1), (b0, b1)〉 = a0b0 + a1b1 +
1

2
a0b1 +

1

2
a1b0.

Let t = t0 + t1x ∈ Q[x]/(x2−x+ 1). Then the matrix over Q corresponding to the endomorphism
ψt : z 7→ tz is given by [

t0 t1
−t1 t0 + t1

]
.

We need to Gram-Schmidt orthogonalize this matrix with respect to the norm above. One �nds for
the Gram-Schmidt coe�cient:

` =
〈(−t1, t0 + t1), (t0, t1)〉
〈(t0, t1), (t0, t1)〉 =

1

2
.



3

3.2. The Falcon Signature Scheme 95

The lengths of the Gram-Schmidt vectors are ‖(t0, t1)‖ and ‖(−t1 − 1
2 t0, t0 + 1

2 t1)‖ =
√

3
2 ‖(t0, t1)‖.

In the LDL∗ decomposition of the basis matrix over Q[x]/(x2− x+ 1), the diagonal coe�cients of
D are precisely the norms ‖t‖2.

Algorithm 3.38 �Sampling n(t, T) (Ternary case)

Require: t = (t0, t1) ∈ FFT
(
Q[x]/(xn − xn/2 + 1)

)k, a Falcon tree T

Ensure: z = (z0, z1) ∈ FFT
(
Z[x]/(xn − xn/2 + 1)

)k
Format: All polynomials are in FFT representation.

1: if (n > 6) then . k = 2
2: (`, T0, T1)← (T.value, T.le�child, T.rightchild)
3: z1 ← merge�t2 ◦ �Sampling n/2(split�t2(t1), T1)
4: t′0 ← t0 + (t1 − z1)� `
5: z0 ← merge�t2 ◦ �Sampling n/2(split�t2(t

′
0), T0)

6: return z = (z0, z1)

7: if (n = 6) then . k = 2
8: (`, T0, T1)← (T.value, T.le�child, T.rightchild)
9: z1 ← merge�t3 ◦ �Sampling n/3(split�t3(t1), T1)

10: t′0 ← t0 + (t1 − z1)� `
11: z0 ← merge�t3 ◦ �Sampling n/3(split�t3(t

′
0), T0)

12: return z = (z0, z1)

13: if (n = 2) then . k = 3
14: ((`10, `20, `21), T0, T1, T2)← (T.value, T.le�child, T.middlechild, T.rightchild)
15: z2 ← merge�t6 ◦ �Sampling n/2(split�t6(t2), T2)
16: t′1 ← t1 + (t2 − z2)� `21

17: z1 ← merge�t6 ◦ �Sampling n/2(split�t6(t
′
1), T1)

18: t′0 ← t0 + (t1 − z1)� `10 + (t2 − z2)� `20

19: z0 ← merge�t6 ◦ �Sampling n/2(split�t6(t
′
1), T0)

20: return z = (z0, z1, z2)

21: if (n = 1) then . k = 2
22: σ′ ← T.value
23: z1 ← DZ, t1, 2√

3
σ′

24: t′0 ← t0 + 1
2(t1 − z1)

25: z0 ← DZ, t′0, σ′

26: return z = (z0, z1)

Note that in the ternary case, for each tree leaf value σ′, the Gaussian sampler is invoked twice,
with standard deviations σ′ and 2σ′/

√
3. The practical consequence is that the range of inputs for

the Gaussian sampler is larger in the ternary case, compared to the binary case.

3.2.7. Signature Veri�cation

The signature veri�cation procedure is much simpler than the key pair generation and the signature
generation, both to describe and to implement. Given a public key pk = h, a message m, a signature
sig = (r,s) and an acceptance bound β, the veri�er uses pk to verify that sig is a valid signature for
the message m as speci�ed hereinafter:
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1. The value r (called "the salt") and the message m are concatenated to a string (r‖m) which is
hashed to a polynomial c ∈ Zq[x]/(φ) as speci�ed by algorithm 3.35.

2. s is decoded (decompressed) to a polynomial s2 ∈ Z[x]/(φ) as speci�ed in section 3.2.8.

3. The value s1 = c− s2h mod q is computed.

4. If ‖(s1, s2)‖ ≤ β, then the signature is accepted as valid. Otherwise, it is rejected.

The only subtlety here is that, as recalled in the notations, ‖‖ denotes the embedding norm and
not the coe�cient norm. However, it is possible to compute it in linear time. Given two polynomials
a and b in Zq[x]/(φ), whose coe�cients are denoted aj and bj , respectively, the norm ‖(a, b)‖ is
such that, in the binary case:

‖(a, b)‖2 =
n−1∑
j=0

(a2
j + b2j ) (3.31)

and, in the ternary case:

‖(a, b)‖2 =
n−1∑
j=0

(a2
j + b2j ) +

n/2−1∑
j=0

(ajaj+n/2 + bjbj+n/2) (3.32)

The signature veri�cation is described in algorithm 3.39.

Algorithm 3.39 Vf(m, sig, pk, β)
Require: A message m, a signature sig = (r, s), a public key pk = h ∈ Zq[x]/(φ), a bound β
Ensure: Accept or reject

1: c← HashToPoint(r‖m, q, n)
2: s2 ← Decompress(s)
3: s1 ← c− s2h mod q
4: if ‖(s1, s2)‖ ≤ β then

5: accept

6: else

7: reject

Computation of s1 can be performed entirely in Zq[x]/(φ); the resulting values should then be
normalized to the d−q/2e to bq/2c range.

In order to avoid computing a square root, the squared norm can be computed, using only integer
operations, and then compared to β2.

3.2.8. Encoding Formats

3.2.8.1. Bits and Bytes

A byte is a sequence of eight bits (formally, an octet). Within a byte, bits are ordered from left to
right. A byte has a numerical value, which is obtained by adding the weighted bits; the leftmost bit,
also called “top bit” or “most signi�cant”, has weight 128; the next bit has weight 64, and so on, until
the rightmost bit, which has weight 1.

Some of the encoding formats de�ned below use sequences of bits. When a sequence of bits is
represented as bytes, the following rules apply:
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• The �rst byte will contain the �rst eight bits of the sequence; the second byte will contain the
next eight bits, and so on.

• Within each byte, bits are ordered left-to-right in the same order as they appear in the source
bit sequence.

• If the bit sequence length is not a multiple of 8, up to 7 extra padding bits are added at the
end of the sequence. The extra padding bits MUST have value zero.

This handling of bits matches widely deployed standard, e.g. bit ordering in the SHA-2 and SHA-3
functions, and BIT STRING values in ASN.1.

3.2.8.2. Compressing Gaussians

In Falcon as in other lattice-based signatures schemes, it is not uncommon to have to deal with
discrete Gaussians. In particular, the signature of a message essentially consists of a polynomial s ∈
Zq[x]/(φ) which coe�cients are distributed around 0 according to a discrete Gaussian distribution
of standard deviation σ = 1.55

√
q � q. A naive encoding of swould require about dlog2 qe ·deg(φ)

bits, which is far from optimal for communication complexity.
In this section we specify algorithms for compressing and decompressing e�ciently polynomials

such as s. The description of this compression procedure is simple:

1. For each coe�cient si, a compressed string stri is de�ned as follows:

a) The �rst bit of stri is the sign of si;

b) The 7 next bits of stri are the 7 least signi�cant bits of |si|, in order of signi�cance, i.e.
most to least signi�cant (in the ternary case, we use 8 bits here, owing to the larger value
of q);

c) The last bits of stri are an encoding of the most signi�cant bits of |si| using unary coding.
If b|si|/27c = k, then its encoding is 0 . . . 0︸ ︷︷ ︸

k times

1;

2. The compression of s is the concatenated string str← (str0‖str1‖ . . . ‖strn−1).

The rationale behind this encoding is based on two observations. First, since si mod 27 is close
to uniform, there is nothing to be gained by trying to compress the 7 least signi�cant bits of si.
Second, if a Hu�man table is computed for the most signi�cant bits of |si|, it results in the unary
code we just described. So our unary code is actually a Hu�man code for the distribution of the
most signi�cant bits of |si|. A formal description is given in algorithm 3.40, for the binary case. For
the ternary case, the same algorithm is used, except that 8 low bits are used instead of 7.
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Algorithm 3.40 Compress(s) (Binary case)
Require: A polynomial s =

∑
six

i ∈ Z[x] of degree < n
Ensure: A compressed representation str of s

1: str← {} . str is the empty string
2: for i from 0 to n− 1 do . At each step, str← (str‖stri)
3: str← (str‖b), where b = 1 if si > 0, b = 0 otherwise
4: str← (str‖b0b1 . . . b6), where bj = b|si|/2jc mod 2
5: k ← b|si|/27c
6: for j from 1 to k do

7: str← (str‖0)

8: str← (str‖1)

9: return str

The corresponding decompression algorithm is given in algorithm 3.41. There again, the ternary
case is similar, except that it expects 8 low bits instead of 7. For any polynomial s ∈ Z[x], it holds
that Decompress ◦ Compress(s) = s.

Algorithm 3.41 Decompress(str) (Binary case)
Ensure: A string str = (str[i])i=0...`−1 of length `
Require: A polynomial s =

∑
six

i ∈ Z[x]
1: j ← 0
2: for i from 0 to n− 1 do

3: s′i ←
∑6

j=0 2jstr[1 + j] . We recover the lowest bits of |si|.
4: k ← 0 . We recover the highest bits of |si|.
5: while str[7 + k] = 0 do

6: k ← k + 1

7: si ← (−1)str[0]+1 · (s′i + 27k) . We recover si.
8: str← str[9 + k . . . `− 1] . We remove the bits of str already read.
9: return s =

∑n−1
i=0 six

i

3.2.8.3. Signatures

A Falcon signature consists of two strings r and s. They are normally encoded separately, because
the salt r must be known before beginning to hash the message itself, while the s value can be
obtained or veri�ed only after the whole message has been processed. In a format that supports
streamed processing of long messages, the salt r would normally be encoded before the message,
while the s value would appear after the message bytes.

s encodes the polynomial s2 in a sequence of bytes. The �rst byte has the following format (bits
indicated from most to least signi�cant):

t c c 0 n n n n

with these conventions:

• The leftmost bit t is 1 in the ternary case, 0 in the binary case.
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• Bits cc indicates the compression algorithm: 00 is “uncompressed”, and 01 is “compressed”.
Values 10 and 11 are reserved and shall not be used for now.

• The fourth bit is reserved and must be zero.

• Bits nnnn encode a value `. In the binary case, degree is n = 2`; in the ternary case, degree is
n = 3 · 2`−1. Degree must be in the allowed range (2 to 1024 in binary, 12 to 768 in ternary).

Following this header byte is the encoded s2 value (s string). If the compression algorithm
is “uncompressed”, then the n coe�cients of s2 follow, in signed (two’s complement) big-endian
16-bit encoding. If the algorithm is “compressed”, then the compression algorithm described in
section 3.2.8.2 is applied and yields s as a sequence of bits; extra bits in the �nal byte (if the length
of s is not a multiple of 8) are set to 0.

3.2.8.4. Public Keys

A Falcon public key is a polynomial h whose coe�cients are considered modulo q. An encoded
public key starts with a header byte:

t 0 0 0 n n n n

with these conventions:

• The leftmost bit t is 1 in the ternary case, 0 in the binary case.

• The next three bits are reserved and must be zero.

• Bits nnnn encode a value `. In the binary case, degree is n = 2`; in the ternary case, degree is
n = 3 · 2`−1. Degree must be in the allowed range (2 to 1024 in binary, 12 to 768 in ternary).

After the header byte comes the encoding of h: each value (in the 0 to q− 1 range) is encoded as a
14-bit or 15-bit sequence (in the binary case, q = 12289 and 14 bits per value are used; in the ternary
case, q = 18433 and 15 bits are used). The encoded values are concatenated into a bit sequence of
14n or 15n bits, which is then represented as d14n/8e or d15n/8e bytes.

3.2.8.5. Private Keys

Private keys use the following header byte:

t c c g n n n n

with these conventions:

• The leftmost bit t is 1 in the ternary case, 0 in the binary case.

• Bits cc indicates the compression algorithm: 00 is “uncompressed”, and 01 is “compressed”.
Values 10 and 11 are reserved and shall not be used for now.

• Bit g is 0 if the key includes the polynomial G, or 1 if G is absent.

• Bits nnnn encode a value `. In the binary case, degree is n = 2`; in the ternary case, degree is
n = 3 · 2`−1. Degree must be in the allowed range (2 to 1024 in binary, 12 to 768 in ternary).
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Following the header byte are the encodings of f , g, F , and optionally G, in that order. When
no compression is used (bit c is 0), each coordinate is encoded as a 16-bit signed value (two’s
complement, big-endian convention). When compression is used, each polynomial is compressed
with the algorithm described in section 3.2.8.2; each of the four polynomial yields a bit sequence
which is split into bytes with up to 7 padding bits so that each encoded polynomial starts at a byte
boundary.

When G is absent (bit g is 1), users must recompute it. This is easily done thanks to the NTRU
equation:

G = (q + gF )/f mod φ (3.33)

Since the coe�cients of f , g, F and G are small, this computation can be done modulo q as well,
using the same techniques as signature veri�cation (e.g. the NTT).

3.2.9. Recommended Parameters

In this section, we specify three set of parameters to address the �ve security levels required by
NIST [NIS16, Section 4.A.5]. These can be found in table 3.2.

Level Dimension n Polynomial φ Modulus q Acceptance bound β2

1 - AES128 512 xn + 1 12289 43533782

2 - SHA256
768 xn − xn/2 + 1 18433 1004644913 - AES192

4 - SHA384
1024 xn + 1 12289 870675655 - AES256

Table 3.2. – Falcon security parameters

Acceptance bound. It is important that signers and veri�ers agree exactly on the acceptance
bound, since signatures may come arbitrarily close to that bound (signers restart the signing process
when they exceed it). We thus de�ne the bound β in the binary case (with q = 12289) such that:

β2 =

⌊
87067565n

1024

⌋
(3.34)

and, in the ternary case (with q = 18433):

β2 =

⌊
100464491n

768

⌋
(3.35)

3.3. Implementation and Performances

We list here a number of noteworthy points related to implementation.

3.3.1. Floating-Point

Signature generation, and also part of key pair generation, involve the use of complex numbers.
These can be approximated with standard IEEE 754 �oating-point numbers (“binary64” format,
commonly known as “double precision”). Each such number is encoded over 64 bits, that split into
the following elements:
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• a sign s = ±1 (1 bit);

• an exponent e in the −1022 to +1023 range (11 bits);

• a mantissa m such that 1 ≤ m < 2 (52 bits).

In general, the represented value is sm2e. The mantissa is encoded as 252(m− 1); it has 53 bits of
precision, but its top bit, of value 1 by de�nition, is omitted in the encoding.

The exponent e uses 11 bits, but its range covers only 2046 values, not 2048. The two extra possible
values for that �eld encode special cases:

• The value zero. IEEE 754 has two zeros, that di�er by the sign bit.

• Subnormals: they use the minimum value for the exponent (−1022) but the implicit top bit of
the mantissa is 0 instead of 1.

• In�nites (positive and negative).

• Erroneous values, known as NaN (Not a Number).

Apart from zero, Falcon does not exercise these special cases; exponents remain relatively close
to zero; no in�nite or NaN is obtained.

The C language speci�cation does not guarantee that itsdouble type maps to IEEE 754 “binary64”
type, only that it provides an exponent range and precision that match at least that IEEE type. Support
of subnormals, in�nites and NaNs is left as implementation-de�ned. In practice, most C compilers
will provide what the underlying hardware directly implements, and may include full IEEE support
for the special cases at the price of some non-negligible overhead, e.g. extra tests and supplementary
code for subnormals, in�nites and NaNs. Common x86 CPU, in 64-bit mode, use SSE2 registers and
operations for �oating-point, and the hardware already provides complete IEEE 754 support. Other
processor types have only a partial support; e.g. many PowerPC cores meant for embedded systems
do not handle subnormals (such values are then rounded to zeros). Falcon works properly with
such limited �oating-point types.

Some processors do not have a FPU at all. These will need to use some emulation using integer
operations. As explained above, special cases need not be implemented.

3.3.2. FFT and NTT

3.3.2.1. FFT

The Fast Fourier Transform for a polynomial f computes f(ζ) for all roots ζ of φ (over C). It is
normally expressed recursively. If φ = xn + 1, and f = f0(x2) + xf1(x2), then the following holds
for any root ζ of φ:

f(ζ) = f0(ζ2) + ζf1(ζ2)
f(−ζ) = f0(ζ2)− ζf1(ζ2)

(3.36)

ζ2 is a root of xn/2 + 1: thus, the FFT of f is easily computed, with n/2 multiplications and n
additions or subtractions, from the FFT of f0 and f1, both being polynomials of degree less than n/2,
and taken modulo φ′ = xn/2 + 1. This leads to a recursive algorithm of cost O(n log n) operations.

The FFT can be implemented iteratively, with minimal data movement and no extra bu�er: in
the equations above, the computed f(ζ) and f(−ζ) will replace f0(ζ2) and f1(ζ2). This leads
to an implementation known as “bit reversal”, due to the resulting ordering of the f(ζ): if ζj =
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ei(π/2n)(2j+1), then f(ζj) ends up in slot rev(j), where rev is the bit-reversal function over log2 n
bits (it encodes its input in binary with left-to-right order, then reinterprets it back as an integer in
right-to-left order).

In the iterative, bit-reversed FFT, the �rst step is computing the FFT of n/2 sub-polynomials of
degree 1, corresponding to source index pairs (0, n/2), (1, n/2 + 1), and so on.

Some noteworthy points for FFT implementation in Falcon are the following:

• The FFT uses a table of pre-computed roots ζj = ei(π/2n)(2j+1). The inverse FFT nominally
requires, similarly, a table of inverses of these roots. However, ζ−1

j = ζj ; thus, inverses can
be e�ciently recomputed by negating the imaginary part.

• φ has n distinct roots in C, leading to n values f(ζj), each being a complex number, with a
real and an imaginary part. Storage space requirements are then 2n �oating-point numbers.
However, if f is real, then, for every root ζ of φ, ζ is also a root of φ, and f(ζ) = f(ζ). Thus,
the FFT representation is redundant, and half of the values can be omitted, reducing storage
space requirements to n/2 complex numbers, hence n �oating-point values.

• The Hermitian adjoint of f is obtained in FFT representation by simply computing the
conjugate of each f(ζ), i.e. negating the imaginary part. This means that when a polynomial
is equal to its Hermitian adjoint (e.g. ff?+gg?), then its FFT representation contains only real
values. If then multiplying or dividing by such a polynomial, the unnecessary multiplications
by 0 can be optimized away.

• The C language (since 1999) o�ers direct support for complex numbers. However, it may be
convenient to keep the real and imaginary parts separate, for values in FFT representation.
If the real and imaginary parts are kept at indexes k and k + n/2, respectively, then some
performance bene�ts are obtained:

– The �rst step of FFT becomes free. That step involves gathering pairs of coe�cients
at indexes (k, k + n/2), and assembling them with a root of x2 + 1, which is i. The
source coe�cients are still real numbers, thus (f0, fn/2) yields f0 +ifn/2, whose real and
imaginary parts must be stored at indexes 0 and n/2 respectively, where they already
are. The whole loop disappears.

– When a polynomial is equal to its Hermitian adjoint, all its values in FFT representation
are real. The imaginary parts are all null, and they represent the second half of the array.
Storage requirements are then halved, without requiring any special reordering or move
of values.

3.3.2.2. Ternary FFT

In the ternary case, the same general rules apply, but with some variations. Informally, in the binary
case, the FFT is a succession of degree doublings; in the ternary case, there are three di�erent
operations:

• Initial step: modulus is φ = x2 − x+ 1, whose roots are not i and −i; instead, its roots are
eiπ/3 and e−iπ/3. The �rst step of the FFT is no longer free.

• Degree doublings are similar to the binary case; roots of xn − xn/2 + 1 are the square roots
of the roots of xn/2 − xn/4 + 1.
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• Since n is a multiple of 3, there must be a degree tripling operation. Degree tripling uses the
following equations:

f(ζ) = f0(ζ3) + ζf1(ζ3) + ζ2f2(ζ3)
f(ζδ) = f0(ζ3) + ζδf1(ζ3) + ζ2δ2f2(ζ3)
f(ζδ2) = f0(ζ3) + ζδ2f1(ζ3) + ζ2δf2(ζ3)

(3.37)

where δ = ei(2π/3) (a primitive cube root of 1).

The degree tripling operation can occur before the doublings, or after, or even in between.
However, this choice must match the sequence of splittings and mergings in the Fast Fourier
sampling. The description made in algorithm 3.38 elects to perform the degree tripling operation
near the initial step, i.e. to bring the modulus from x2 − x+ 1 to x6 − x3 + 1.

3.3.2.3. NTT

The Number Theoretic Transform is the analog of the FFT, in the �nite �eld Zp of integers modulo a
prime p. In the binary case, φ = xn + 1 will have roots in Zp if and only if p = 1 mod 2n. In the
ternary case, φ = xn − xn/2 + 1 is a divisor of x3n/2 + 1, hence we will need p = 1 mod 3n. The
NTT, for an input polynomial f whose coe�cients are integers modulo p, computes f(ω) mod p
for all roots ω of φ in Zp.

Signature veri�cation is naturally implemented modulo q. That small modulus was chosen
precisely to allow the NTT to be used:

• Binary case: q = 12289 = 1 + 12 · 2048

• Ternary case: q = 18433 = 1 + 8 · 2304

Computations modulo q can be implemented with pure 32-bit integer arithmetics, avoiding divisions
and branches, both being relatively expensive. For instance, modular addition of x and y may use
this function:

static inline uint32_t
mq_add(uint32_t x, uint32_t y, uint32_t q)
{

uint32_t d;

d = x + y - q;
return d + (q & -(d >> 31));

}

This code snippet uses the fact that C guarantees operations on uint32_t to be performed modulo
232; since operands �ts on 15 bits, the top bit of the intermediate value d will be 1 if and only if the
subtraction of q yields a negative value.

For multiplications, Montgomery multiplication is e�ective:

static inline uint32_t
mq_montymul(uint32_t x, uint32_t y, uint32_t q, uint32_t q0i)
{

uint32_t z, w;
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z = x * y;
w = ((z * q0i) & 0xFFFF) * q;
z = ((z + w) >> 16) - q;
return z + (q & -(z >> 31));

}

The parameter q0i contains 1/q mod 216, a value which can be hardcoded since q is also known
at compile-time. Montgomery multiplication, given x and y, computes xy/(216) mod q. The
intermediate value z can be shown to be less than 2q, which is why a single conditional subtraction
is su�cient.

Modular divisions are not needed for signature veri�cation, but they are handy for computing the
public key h from f anf g, as part of key pair generation. Inversion of x modulo q can be computed
in a number of ways; exponentation is straightforward: 1/x = xq−2 mod q. For both 12289 and
18433, minimal addition chains on the exponent yield the result in 18 Montgomery multiplications
(assuming input and output are in Montgomery representation).

Key pair generation may also use the NTT, modulo a number of small primes pi, and the branchless
implementation techniques described above. The choice of the size of such small moduli pi depends
on the abilities of the current architecture. The Falcon reference implementation, that aims at
portability, uses moduli pi which are slightly below 231, a choice which has some nice properties:

• Modular reductions after additions or subtractions can be computed with pure 32-bit unsigned
arithmetics.

• Values may �t in the signed int32_t type.

• When doing Montgomery multiplications, intermediate values are less than 263 and thus can
be managed with the standard type uint64_t.

On a 64-bit machine with 64× 64→ 128 multiplications, 63-bit moduli would be a nice choice.

3.3.3. LDL Tree

From the private key properly said (the f , g, F and G short polynomials), signature generation
involves two main steps: building the LDL tree, and then using it to sample a short vector. The
LDL tree depends only on the private key, not the data to be signed, and is reusable for an arbitrary
number of signatures; thus, it can be considered part of the private key. However, that tree is
rather bulky (about 90 kB for n = 1024), and will use �oating-point values, making its serialization
complex to de�ne in all generality. Therefore, the Falcon reference code rebuilds the LDL tree
dynamically when the private key is loaded; its API still allows a built tree to be applied to many
signature generation instances.

It would be possible to regenerate the LDL tree on the go, for a computational overhead similar
to that of sampling the short vector itself; this would save space, since at no point would the full
tree need to be present in RAM, only a path from the tree root to the current leaf. For degree n, a
saved path would amount to about 2n �oating-point values, i.e. roughly 16 kB. On the other hand,
computational cost per signature would double.

Both LDL tree construction and sampling involve operations on polynomials, including multipli-
cations (and divisions). It is highly recommended to use FFT representation, since multiplication and
division of two degree-n polynomials in FFT representation requires only n elementary operations.
The LDL tree is thus best kept in FFT.
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3.3.4. Gaussian Sampler

When sampling a short vector, the inner Gaussian sampler is invoked twice for each leaf of the
LDL tree. Each invocation should produce an integer value that follows a Gaussian distribution
centered on a value µ and with standard deviation σ. The centers µ change from call to call, and are
dynamically computed based on the message to sign, and the values returned by previous calls to
the sampler. The values of σ are the leaves of the LDL tree: they depend on the private key, but not
on the message; they range between 1.2 and 1.9 (in the ternary case, they may reach up to 2.20).

In the Falcon reference code, rejection sampling with regards to a bimodal Gaussian is used:

• The target µ is moved into the [0..1[ interval by adding an appropriate integer value, which
will be subtracted from the sampling result at the end. For the rest of this description, we
assume that 0 ≤ µ < 1.

• A nonnegative integer z is randomly sampled following a half Gaussian distribution of standard
deviation σ0 = 2, centered on 0 (in the ternary case, we use σ0 =

√
5 ≈ 2.236).

• A random bit b is obtained, to compute z′ = b + (2b − 1)z. The integer z′ follows a bi-
modal Gaussian distribution, and in the range of possible values for z′ (depending on b), that
distribution is above the target Gaussian of center µ and standard deviation σ.

• Rejection sampling is applied. z′ follows the distribution:

G(z) = e−(z−b)2/(2σ2
0) (3.38)

and we target the distribution:

S(z) = e−(z−µ)2/(2σ2) (3.39)

We thus generate a random bit d, whose value is 1 with probability:

P (d = 1) = S(z)/G(z)

= e(z−b)2/(2σ2
0)−(z−µ)2/(2σ2) (3.40)

If bit d is 1, then we return z′; otherwise, we start over.

Random values are obtained from a custom PRNG; the reference code uses ChaCha20, but any
PRNG whose output is indistinguishable from random bits can be used. On a recent x86 CPU, it
would make sense to use AES in CTR mode, to leverage the very good performance of the AES
opcodes implemented by the CPU.

TODO
With a careful Rényi argument, the 53-bit precision of �oating-point values used in the sampler

computations are su�cient to achieve the required security levels.

3.3.5. Key Pair Generation

3.3.5.1. Gaussian Sampling

The f and g polynomials must be generated with an appropriate distribution. In the binary case, it
is su�cient to generate each coe�cient independently, with a Gaussian distribution centered on 0;
values are easily tabulated.
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In the ternary case, the coe�cients should use a Gaussian distribution in the FFT embedding. For
each of the n/2 coe�cients f̂j of the FFT representation of f , two uniformly random values aj and
bj are generated in the ]0..1] range; the coe�cient is then set to:

f̂j = σ
√
−2 log aje

i2πbj (3.41)

An inverse FFT is then applied, and the resulting values rounded to the nearest integers, to obtain
f . The aj and bj needs not be generated with high precision; the Falcon reference code uses 32
random bits for each. The polynomial g is generated in a similar way.

3.3.5.2. Filtering

As per the Falcon speci�cation, once f and g have been generated, some tests must be applied to
determine their appropriateness:

• The (g,−f) and its orthogonalized version must be short enough. In the ternary case, the
norm must be measured on the FFT representation (this must be computed after the rounding
of coe�cients to integers, which may be done only in non-FFT representation).

• f must be invertible modulo φ and q; this is necessary in order to be able to compute the public
key h = g/f mod φ mod q. In practice, the NTT is used on f : all the resulting coe�cients
of f in NTT representation must be distinct from zero. Computing h is then straightforward.

• The Falcon reference implementation furthermore requires that Res(f, φ) and Res(g, φ)
be both odd. If they are both even, the NTRU equation does not have a solution, but our
implementation cannot tolerate that one is even and the other is odd. Computing the resultant
modulo 2 is inexpensive; in the binary case, this is equal to the sum of the coe�cients modulo
2.

If any of these tests fails, new (f, g) must be generated.

3.3.5.3. Solving The NTRU Equation

Solving the NTRU equation is formally a recursive process. At each depth:
1. Input polynomials f and g are received as input; they are modulo φ = xn + 1 for a given

degree n.

2. New values f ′ = N(f) and g′ = N(g) are computed; they live modulo φ′ = xn/2 + 1, i.e. half
the degree of φ. However, their coe�cients are typically twice longer than the coe�cients of
f and g.

3. The solver is invoked recursively over f ′ and g′, and yields a solution (F ′, G′) such that
f ′G′ − g′F ′ = q.

4. Unreduced values (F,G) are generated, as:
F = F ′(x2)g′(x2)/g(x) mod φ
G = G′(x2)f ′(x2)/f(x) mod φ

(3.42)

F and G are modulo φ (of degree n), and their coe�cients have a size which is about three
times that of the coe�cients of inputs f and g.

5. Babai’s nearest plane algorithm is applied, to bring coe�cients of F and G down to that of
the coe�cients of f and g.
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RNS and NTT. The operations implied in the recursion are much easier when operating on the
NTT representation of polynomials. Indeed, if working modulo p, and ω is a root of xn + 1 modulo
p, then:

f ′(ω2) = N(f)(ω2) = f(ω)f(−ω)
F (ω) = F ′(ω2)g(−ω)

(3.43)

Therefore, the NTT representations of f ′ and g′ can be easily computed from the NTT representations
of f and g; and, similarly, the NTT representation of F and G (unreduced) are as easily obtained
from the NTT representations of F ′ and G′. This naturally leads to the use of a Residue Number
System (RNS), in which a value x is encoded as a sequence of values xj = x mod pj for a number
of distinct small primes pj . In the Falcon reference implementation, the pj are chosen such that
pj < 231 (to make computations easy with pure integer arithmetics) and pj = 1 mod 2048 (to
allow the NTT to be applied). Conversion from the RNS encoding to a plain integer in base 231 is
a straightforward application of the Chinese Remainder Theorem; if done prime by prime, then
the only required big-integer primitives will be additions, subtractions, and multiplication by a
one-word value. In general, coe�cient values are signed, while the CRT yields values ranging from
0 to

∏
pj − 1; normalisation is applied by assuming that the �nal value is substantially smaller, in

absolute value, than the product of the used primes pj .

Coe�cient sizes. Key pair generation has the unique feature that it is allowed occasional failures:
it may reject some cases which are nominally valid, but do not match some assumptions. This does
not induce any weakness or substantial performance degradation, as long as such rejections are
rare enough not to substantially reduce the space of generated private keys. In that sense, it is
convenient to use a priori estimates of coe�cient sizes, to perform the relevant memory allocations
and decide how many small primes pj are required for the RNS representation of any integer at any
point of the algorithm. The following maximum sizes of coe�cients, in bits, have been measured
over thousands of random key pairs, at various depths of the recursion (in the binary case):

depth max f , g std. dev. max F , G std. dev.

10 6307.52 24.48 6319.66 24.51
9 3138.35 12.25 9403.29 27.55
8 1576.87 7.49 4703.30 14.77
7 794.17 4.98 2361.84 9.31
6 400.67 3.10 1188.68 6.04
5 202.22 1.87 599.81 3.87
4 101.62 1.02 303.49 2.38
3 50.37 0.53 153.65 1.39
2 24.07 0.25 78.20 0.73
1 10.99 0.08 39.82 0.41
0 4.00 0.00 19.61 0.49

These sizes are expressed in bits; for each depth, each category of value, and each key pair, the
maximum size of the absolute value is gathered. The array above lists the observed averages and
standard deviations for these values. A Falcon key pair generator may thus simply assume that
values �t correspondingly dimensioned bu�ers, e.g. by using the measured average added to, say,
six times the standard deviation. This would ensure that values almost always �t. A �nal test at the
end of the process, to verify that the computed F and G match the NTRU equation, is su�cient to
detect failures. Note that for depth 10, the maximum size of F and G is the one resulting from the
extended GCD, thus similar to that of f and g.
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Binary GCD. At the deepest recursion level, inputs f and g are plain integers (the modulus is
φ = x + 1); a solution can be computed directly with the Extended Euclidean Algorithm, or a
variant thereof. The Falcon reference implementation uses the binary GCD. This algorithm can be
expressed in the following way:

• Values a, b, u0, u1, v0 and v1 are initialized and maintained with the following invariants:

a = fu0 − gv0

b = fu1 − gv1
(3.44)

Initial values are:
a = f
u0 = 1
v0 = 0
b = g
u1 = g
v1 = f − 1

(3.45)

• At each step, a or b is reduced: if a and/or b is even, then it is divided by 2; otherwise, if both
values are odd, then the smaller of the two is subtracted from the larger, and the result, now
even, is divided by 2. Corresponding operations are applied on u0, v0, u1 and v1 to maintain
the invariants. Note that computations on u0 and u1 are done modulo g, while computations
on v0 and v1 are done modulo f .

• Algorithm stops when a = b, at which point the common value is the GCD of f and g.

If the GCD is 1, then a solution (F,G) = (qv0, qu0) can be returned. Otherwise, the Falcon
reference implementation rejects the (f, g) pair. Note that the (rare) case of a GCD equal to q
itself is also rejected; as noted above, this does not induce any particular algorithm weakness. The
description above is a bit-by-bit algorithm. However, it can be seen that most of the decisions are
taken only on the low bits and high bits of a and b. It is thus possible to group updates of a, b and
other values by groups of, say, 31 bits, yielding much better performance.

Iterative version. Each recursion depth involves receiving (f, g) from the upper level, and saving
them for the duration of the recursive call. Since degrees are halved and coe�cients double in size
at each level, the storage space for such an (f, g) pair is mostly constant, around 13000 bits per
depth. For n = 1024, depth goes to 10, inducing a space requirement of at least 130000 bits, or 16 kB,
just for that storage. In order to reduce space requirements, the Falcon reference implementation
recomputes (f, g) dynamically from start when needed. Measures indicate a relatively low CPU
overhead (about 15%). A side-e�ect of this recomputation is that each recursion level has nothing to
save. The algorithm thus becomes iterative.

Babai’s reduction. When candidates F andG have been assembled, they must be reduced against
the current f and g. Reduction is performed as successive approximate reductions, that are computed
with the FFT:

• Coe�cients of f , g, F and G are converted to �oating-point values, yielding ḟ , ġ, Ḟ and
Ġ. Scaling is applied so that the maximum coe�cient of Ḟ and Ġ is about 230 times the
maximum coe�cient of ḟ and ġ; scaling also ensures that all values �t in the exponent range
of �oating-point values.
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• An integer polynomial k is computed as:

k =

⌊
Ḟ ḟ? + Ġġ?

ḟ ḟ? + ġġ?

⌉
(3.46)

This computation is typically performed in FFT representation, where multiplication and
division of polynomials are easy. Rounding to integers, though, must be done in coe�cient
representation.

• kf and kg are subtracted from F and G, respectively. Note that this operation must be exact,
and is performed on the integer values, not the �oating-point approximations. At high degree
(i.e. low recursion depth), RNS and NTT are used: the more e�cient multiplications in NTT
o�set the extra cost for converting values to RNS and back.

This process reduces the maximum sizes of coe�cients of F and G by about 30 bits at each iteration;
it is applied repeatedly as long as it works, i.e. the maximum size is indeed reduced. A failure is
reported if the �nal maximum size of F and G coe�cients does not �t the target size, i.e. the size of
the bu�ers allocated for these values.

3.3.6. Performances

The Falcon reference implementation achieves the following performance on an Intel® Core®
i7-6567U CPU (clocked at 3.3 GHz):

degree keygen (ms) keygen (RAM) sign/s vrfy/s pub length sig length
512 6.98 14336 6081.9 37175.3 897 617.38
768 12.69 27648 3547.9 20637.7 1441 993.91
1024 19.64 28672 3072.5 17697.4 1793 1233.29

The following notes apply:

• RAM usage for key pair generation is expressed in bytes. It includes temporary bu�ers for all
intermediate values, including the �oating-point polynomials used for Babai’s reduction.

• Public key length and average signature length are expressed in bytes. The size of public keys
includes a one-byte header that identi�es the degree and modulus. For signatures, compression
is used, which makes the size slightly variable; the average is reported here.

• The Falcon reference implementation uses only standard C code, not inline assembly, in-
trinsics or 128-bit integers. In particular, it is expected that replacing the internal PRNG (a
straightforward, portable implementation of ChaCha20) with AES-CTR using the dedicated
CPU opcodes will yield a substantial performance improvement. SSE2 and AVX opcodes
should help with FFT, and 64-bit multiplications (with 128-bit results) might improve key
generation time as well.

• The i7-6567U processor implements dynamic frequency scaling based on load and temperature.
As such, measures are not very precise and tend to move by as much as 15% between any two
benchmark runs.
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• Signature generation time does not include the LDL tree building, which is done when the
private key is loaded. These �gures thus correspond to batch usage, when many values must
be signed with a given key. This matches, for instance, the use case of a busy TLS server. If, in
a speci�c scenario, keys are used only once, then the LDL tree building cost must be added
to each signature attempt. It is expected that this would about double the CPU cost of each
signature.





Far better it is to dare mighty things, to win
glorious triumphs, even though checkered
by failure, than to take rank with those
poor spirits who neither enjoy much nor
su�er much, because they live in the gray
twilight that knows not victory nor defeat.

The Strenuous Life – Theodore Roosevelt
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Regarded as cryptography’s “Holy Grail”, fully homomorphic encryption (FHE) enables com-
putation of (almost) arbitrary functions on encrypted data [Gen09; BGV12]. Secure delegation
of computationally costly operations is one of the most intuitive applications of homomorphic
encryption. Indeed, instead of computing a given function for some secret inputs the delegator can
encrypt the inputs, send them to a delegatee that computes the function over the encrypted data
using FHE, and �nally the delegator can retrieve the result and decrypt it.

The usual approach to compute a function through FHE is to �nd a binary circuit with AND and
XOR gates allowing to evaluate the function. As a XOR gate is equivalent to an addition modulo
two and AND gate to a multiplication modulo two, if an FHE scheme allows to do enough plaintext
additions and multiplications modulo two, it can be used to evaluate this circuit over bit-by-bit
encrypted data.

In practice, the computational cost of such an approach, both for the delegator and the delegatee,
grows rapidly with the multiplicative-depth of the FHE computation, which is equal to the AND-
depth (i.e. the maximal amount of successive AND gates an input must go through) of the circuit.
Therefore, it is important to obtain low AND-depth circuits for the functions that must be evaluated.

Another interesting class of circuits are arithmetic circuits. In the context of FHE, these circuits
are de�ned as circuits in which gates are exclusively integer additions or multiplications modulo
a given �xed modulus (no division, inversions, bit operations, �oating-point representation, etc.).
When the function to be evaluated is a modular arithmetic polynomial, we can reduce signi�cantly
the multiplicative depth by replacing the binary circuit with an arithmetic circuit. In this case, we
can directly use an FHE’s natural addition and multiplication to evaluate the circuit by setting its
plaintext modulus as the circuit modulus.

Point computation. The considered points on elliptic-curve cryptography belong to a cyclic
group, and therefore every point can be obtained through a scalar multiplication with a given
generator. This is generally the most costly operation that is required on a protocol based on
elliptic-curve cryptography. Hence, as in previous works, we focus on delegating this operation.

Computing a scalar multiplication can be reduced, through a classical double-and-add [Knu97]
algorithm, to computing additions of points. Point addition algorithms depend a lot on the coordinate
system used. In this sense, the most popular are projective coordinates which allow to make scalar
multiplication of elliptic-curve points with a shallow arithmetic circuit. Combining these two facts,
we deduce that it is possible to compute a scalar multiplication in an elliptic-curve through shallow
arithmetic circuits.

This work. Practical implementations of FHE are not well suited for large plaintext moduli which
are essential in elliptic-curve cryptography. In order to evaluate the e�ciency of homomorphic
encryption in this setting we have modi�ed some existing libraries and proposed some new homo-
morphic encryption implementations that are adapted to it. We expect those libraries, to be released
with an open-source license, to be useful in other contexts too.

Our delegation protocol is generic and it is possible to delegate the computation of a scalar
operation over generic groups. Thus it is also possible to use the delegation techniques described
here over other groups such as RSA multiplicative groups, but even with optimizations such as
RNS representation and Montgomery Reductions (such as [BI04]), our tests demonstrate that the
computational cost is too high to consider practical bene�ts in a foreseeable future. Given this fact,
and space constraints, we focus on the groups used on elliptic-curve cryptography. More precisely
we will use as an example computations over P-256 [NIS16] which grants 128 bits security for
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cryptographic protocols.
In order to provide an e�cient delegation protocol in the elliptic-curve setting we have revisited

the literature on elliptic-curve point additions. Usually these algorithms try to reduce the number of
�eld operations done, whereas in our setting we want to have the lowest possible multiplicative depth.
We show that a recent algorithm, by Renes et al. [cryptoeprint:2015:1060] gives an algorithm that
�ts perfectly the homomorphic encryption setting with only two levels of multiplications.

A straightforward delegation protocol of the double-and-add protocol would result in a circuit
with a very large multiplicative depth. For example for P-256 we would have 512 point addition depth
(to hide through 256 iterations whether we do an add or a double-and-add). Using the point addition
described above this will result in a multiplicative depth of 1024 which is absolutely unreachable
with current homomorphic encryption schemes.

We propose an improved protocol, which relies on pre-computation and windowing, leading to
delegation protocols such that the arithmetic circuit to be evaluated is extremely shallow. The exact
depth depends on the pre-computation memory / performance trade-o�. For example for a client
with 64 MBytes of pre-computed data the delegatee only needs to evaluate an arithmetic circuit
with multiplicative depth 8 in the P-256 setting.

The main bottleneck for our delegation protocol is the amount of data that needs to be sent to the
delegatee. FHE encryption has a low transmission rate and encrypting and sending large amounts
of data is therefore the most costly operation for the client. Again for the example of P-256 with
64MBytes of pre-computed data, the client has to send 200Kbits for every scalar multiplication
done. Thus even with a gigabit Ethernet connection he cannot delegate more than �ve thousand
multiplications per second. From a computational point of view the protocol is realistic and requires
a few milliseconds of computation from the server per scalar multiplication.

Note that if we reduce the computational constraints on the delegatee and reduce to the maximum
the delegator costs we can use a trans-encryption technique [MJSC16]. With such an approach the
client only needs to send 16Kbits per scalar multiplication and can delegate a much larger amount
of operations.

The practicality of our technique is validated through proof-of-concept implementations of the
delegator and delegatee. Our implementations are based on an adaptation of HElib [HS14; HS15]
so as to handle large plaintext spaces (HElib is restricted to single precision prime powers). The
delegatee implementation has been deployed on an Amazon EC2 instance (c4.8xlarge) to allow
reproducibility and veri�cation of our results.

HE practical implementation. The most popular library, HELib [HS14; HS15] was developed
by Halevi and Shoup. It relies on Shoup’s Number Theory Library [Sho15] (NTL) and implements
a variant of the BGV [BGV12] scheme of Brakerski, Gentry and Vaikuntanathan. It also features
many optimizations proposed by Gentry, Halevi and Smart [GHS12c]. HElib restricts the modulus
to t = pr with p and r being simple-precision integers. We modi�ed this library to accept such
moduli but without size restrictions on p.

Precomputations and delegated computations. Many works in the early 90’s proposed to
speed up protocols either based on factoring [Sch91; BGMW93; LL94; de 95; BPV98] or discrete
logs [BPV98] by using precomputations. While we also use precomputations in our protocol, most
of speed-up is achieved through the delegation of some computations to an external, While we also
use precomputations in our protocol (see Fig. A.1 for an overview and A.3 for more details), most of
speed-up is achieved through the delegation of some computations to an external, untrusted source
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of computational power, using additional techniques such as windowing [Knu97].
Additionally, several protocols to delegate computation have been proposed in the literature,

especially regarding to the delegation of scalar operations [Fei86; MKI90; NS01; HL05; VCG+06;
CLV16]. In [CLV16], Chevalier et al. present various delegation protocols and a proof that the
attained performance is optimal. However, the proof they give considers that the only operation
that the delegatee can do is a set of scalar multiplications for scalars given in the clear. Using
homomorphic encryption we can make the delegatee compute a scalar multiplication without
knowing which scalar is being used and therefore we can go beyond their de�nition of optimality.

Prototypes using homomorphic encryption. Open-source libraries for homomorphic encryp-
tion are available online [LN14; HS14; HS15; MBG+16], and were used as building blocks in several
prototypes in the recent years, such as statistics computations [NLV01], machine learning [GLN13],
signal processing [AFF+13], database queries [BGH+13; CKK15], private health diagnosis [BLN14],
genome statistics [LLN15], and edit distance [CKL15]. To the best of our knowledge, no prototype
tackled the delegation of scalar multiplications in the elliptic curve setting (nor exponentiations in
the RSA setting).

Notations. Let Zq be the set of integers modulo q, Fq be the �nite �eld of q elements, and denote
E(Fq) the group of points (x, y) ∈ F2

q belonging to an elliptic curve E and G an element of E(Fq)
(which in practice will often be a generator). Sampling uniformly an element x from a set S is
denoted x $← S. If q is an integer, denote `w,q the length of its representation using a basis of w
elements (e.g. `2,q is its bit length).

ECDSA. We brie�y recall the ECDSA signature scheme. Introduced by Vanstone in 1992 (see [HMV03]),
ECDSA is the elliptic-curve analogue of DSA and features short keys and signature sizes. Its sig-
nature and veri�cation procedures are provided in algorithms 1.42 and 1.43. We do not recall the
key generation procedure, which is of no relevance to this work. The domain parameters provided

Algorithm 1.42 ECDSA.Sign
Require: m, pk = (q, E,G,Q = sG, n) and sk = s, m being a message, q an integer, E an elliptic

curve over Fq , G,Q two points of E, s an element of Fq , and n the order of G on E
Ensure: ECDSA signature (r, t) ∈ F2

q of m
1: repeat

2: k
$← {1, . . . , n− 1}

3: (x, y)← kG
4: r ← x mod n
5: t← k−1(h(m) + sx) mod n
6: until r 6= 0 and t 6= 0
7: return (r, t)

by the NIST include three types of curves: over prime �elds (P-xxx), over binary �elds (B-xxx) or
Koblitz curves (K-xxx). Note that, when compared to prime curves, curves over binary �elds and
Koblitz curves would reduce considerably the outsourcing costs given their small characteristic.
However, such curves are not usually proposed in the client setting (e.g. in the implementations
we compare to). For this reason, in this work, we only consider elliptic curves over prime �elds.
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Algorithm 1.43 ECDSA.Verif
Require: q, E, G, Q, (r, t), m, as de�ned in ECDSA.Sign

Ensure: true if and only if (r, t) is a valid signature on m
1: if Q =∞ or Q 6∈ E(Fq) then
2: return false

3: else

4: (x, y)← (h(m)t−1 mod n)G+ (rt−1 mod n)Q
5: if r = x mod n then

6: return true

7: else

8: return false

For such curves, q denotes the �eld size, (a, b) are two �eld elements de�ning the short Weierstraß
equation

y2 = x3 + ax− b, with 4a3 + 27b2 6= 0 mod q,

and G is a base point of prime order n on the curve. As usual for such curves, we consider that
|E(Fq)| = n (i.e. a cofactor h = 1).

Homomorphic encryption and HElib. An homomorphic encryption (HE) scheme [Gen09]
allows to publicly process encrypted data without knowing the secret key. In this section we
recall the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme [BGV12] —
implemented in the software library HElib [HS14; HS15] — that we use in our prototypes. This
description is mostly taken from [GHS12c].

BGV. BGV is de�ned over polynomial rings of the formR = Z[x]/(Φm(x)) wherem is a parameter
and Φm the m-th cyclotomic polynomial. The plaintext space is usually the ring Rp = R/pR for an
integer p.

A plaintext polynomial a(x) ∈ Rp is encrypted as a vector over Rq = R/qR, where q is an odd
public modulus. More speci�cally, BGV contains a chain of moduli of decreasing size q0 > q1 >
· · · > qL and freshly encrypted ciphertexts are de�ned modulo q0. During homomorphic evaluation,
we keep switching to smaller moduli after each multiplication until we get ciphertexts modulo qL,
which cannot be multiplied anymore — L is therefore an upper bound on the multiplicative depth
of the circuit we can compute.

Homomorphic operations. The plaintext space of BGV are elements of Rp, and homomorphic
additions (resp. multiplications) correspond to additions (resp. multiplications) over the ring Rp.1

Batching. Rather than encrypting elements of Rp = Zp[x]/(Φm(x)), the BGV cryptosystem can
be slightly modi�ed to encrypt vectors of elements of Zp [SV10; SV14; CCK+13] in an SIMD fashion:
homomorphic operations implicitly perform the componentwise operations over the plaintext
vectors (and rotations are easy to perform via the Frobenius endomorphism). Such a feature is
called batching and essentially allows, for the cost of an homomorphic evaluation, to evaluate the
function independently on several inputs [BGV12]. Let us recall brie�y the batching technique for

1One can easily obtain a scheme with plaintext space Zp by embedding Zp into Rp via a ∈ Zp 7→ a ∈ Rp. Hence
homomorphic operations correspond to arithmetic operations over the ring Zp.
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BGV from [SV10; SV14]. If the cyclotomic polynomial Φm(x) factors modulo the plaintext space p
into a product of irreducible factors Φm(x) =

∏`−1
j=0 Fj(x) (mod p), then a plaintext polynomial

a(x) ∈ Rp can be viewed as encoding ` di�erent small polynomials, aj = a mod Fj , and each
constant coe�cient of the aj can be set to an element of Zp. Unfortunately, not every tuple (p,m)
yield an e�cient batching — we will discuss how we selected (p,m) in Sec. A.2.1.

HElib. HElib [HS14; HS15] is, as of today, a standard library for HE prototypes. HElib is a C++
library that implements the BGV scheme (with batching) for arbitrary plaintext space modulus pr ,
with p and r in simple-precision. This software library uses NTL [Sho15] and includes numerous
optimizations described in [GHS12c; HS14; HS15]. HElib supports multi-threading and is distributed
under the terms of the GNU GPL version 2.

A.1. Delegating Elliptic-Curve Point Computation

Recall that we want to delegate the computation of kG to an Untrusted Cloud (UC) for a secret k
and a public or secret G. The high-level idea of the protocol is that we will send k and G (actually a
representation thereof) encrypted under an HE scheme E so that the Cloud can homomorphically
compute kG without knowing k nor G. Then the client will be able to decrypt and obtain kG.
Note that our protocol, described in this section, does not reveal G but this point can be publicly
known by other means (e.g. if using a standard which speci�es a generator that should be used
in a protocol). Assume the client C is connected to an external source of computational power
(e.g. the Cloud, a LAN server or a Cryptographic Coprocessor in a PCI-e card) that we denote UC. In
Sec. A.1.2, we give a high-level overview of our protocol; in the rest of the section, we detail each
step of the protocol, and in Sec. A.1.6 we give the full protocol for completeness.

A.1.1. Throughput Limitation

Potentially, the computational power of the UC could be as large as needed. In such a setting the
bottleneck can be two-fold: (1) the client communication bandwidth and (2) the HE scheme encryp-
tion/decryption throughput and the client post-processing. In practice, both potential bottlenecks
have a similar impact, and give an upper bound on the amount of encrypted data that can enter/exit
the client.

If the UC is in a LAN, or even better in a PCI-e card, available bandwidths can be very high. In
the PCI-e setting, bandwidth can theoretically reach 252.064 Gbit/s (PCI-e x32 v4.0 with 16-lane
slot). However, the client will not be able to do homomorphic encryptions or decryptions at such
speeds. In practice a throughput limitation around some Gigabits will always exist, and will be the
main performance bottleneck.

A.1.2. High-Level Description

The high-level description of this delegation protocol is provided in �gure A.1. In a �rst step, some
precomputation will be performed onG (see Sec. A.1.3 — essentially it will compute a set of windowed
scalar multiplications of G), then in Step 2), some of the precomputed values, useful to compute kG,
are encrypted under the HE scheme E and sent to the UC. The UC will homomorphically compute
kG in Step 3), and will send back the computation to the client (Step 4)). Finally, the client will
decrypt the result.
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C UC
1) Precompute
data on G 2) Parameters and EncE((k,G))

3) Compute
EncE(kG)4) Res = EncE(kG)

5) kG = DecE(Res)

Elliptic-Curve Point Computation Delegation Protocol

Figure A.1. – High-level description of the delegation protocol: delegation of the elliptic-curve
point computation.

In the rest of this section, we will specify in detail every step of this protocol, and namely: (i)
what precomputations need to be performed on G (Sec. A.1.3), (ii) which server computation, EC
representation, and point addition should be used (Sec. A.1.5).

A.1.3. Step 1): Initialization and Windowing

Each doubling or point addition to compute kG from k will increase the multiplicative depth of the
UC computation. Therefore, we use a classical window technique to trade computation complexity
for memory.2 In Sec. A.1.5, we will detail how to represent the EC points to obtain an addition
formula of multiplicative depth 2.

More precisely during step 1, for a ω bits window size, the client precomputes all 2ω · `2,n/ω
points of the form Pi,j = (i · 2ω(j−1))G for i from 0 to 2ω − 1, and for j from 1 to `2,n/ω (we
discuss the memory implications of this windowing technique in Sec. A.2.2). Thus, for every scalar
k =

∑`2,n/ω
j=1 k(j) · 2ωj , we have that

kG =

`2,n/ω∑
j=1

k(j)2ωj

G =

`2,n/ω∑
j=1

Pk(j),j ,

and computing the scalar multiplication only costs `2,n/ω point additions.

The whole process is described in �gure A.3 for a single delegated EC point computation. Note
that the main cost for the client is to send the ordered set (EncE(xj),EncE(yj))j for Pkj ,j = (xj , yj)
and j ∈ [0..`2,n/ω).

A.1.4. Using HE Batching

Instead of encrypting only one xj (resp. yj) per ciphertext, we will use HE batching to encrypt
several (say m of them) xj ’s in parallel for di�erent inputs scalars k’s (and the same j). Thus, for the

2We leave as an interesting open problem a �ne-grained analysis of the homomorphic evaluations of the best time-
memory trade-o�s for regular implementation of scalar multiplication over prime-�eld elliptic curves [Riv11].
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same communication and UC computation complexities, we will be able to compute several kG’s in
parallel.

A.1.5. Steps 2) and 3): Revisiting Elliptic Curve Point Additions

In EC cryptography there are dozens of ways to perform additions and point doubling (see [HMV03]
for instance). Most algorithms were designed to minimize the number of multiplications on Fq
one has to perform.3 In practice the existing algorithms are not a priori optimized in terms of
multiplicative circuit depth and we must revisit the existing work to get the best possible algorithm
given this new optimization target.

In the rest of this chapter, we focus on ECs with short Weierstraß equation of the form E(Fq) :
y2 = x3 − 3x + b, for q ≥ 5 (the ones used in NIST standards). Recently Renes et al. proposed
an e�cient complete addition law that is valid not only for curves of composite order, but also
for all prime order NIST curves [RCB16], using standard projective coordinates. In such a rep-
resentation, points P (x, y) ∈ E(Fq) can be written with triple (X,Y, Z) where x = X/Z and
y = Y/Z [HMV03]. Such coordinates were designed to speed up the point addition and doubling
computation by avoiding �eld inversions for the bene�t of multiplications.

Renes et al. presented an addition law [RCB16, Algorithm 4] point addition circuits with a
multiplicative depth of 2; we brie�y review these formulae. Let P1(X1, Y1, Z1) and P2(X2, Y2, Z2)
be points in the projective embedding of E(Fq), and denote by P3(X3, Y3, Z3) their sum. Notice
that there are no requirements on P1 and P2 being di�erent, nor on being distinct from O(0, 1, 0).

For sake of clarity, we introduce some intermediate variables that can be computed with a
multiplicative depth of one:

T0 = (X1Y2 +X2Y1),

T1 = Y1Y2,

T2 = 3(X1Z2 +X2Z1 − bZ1Z2),

T3 = Y1Z2 + Y2Z1,

T4 = b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2,

T5 = 3(X1X2 − Z1Z2).

Then the complete addition law on the projective embedding is given by the formula:

X3 = T0(T1 + T2)− 3T3T4,

Y3 = (T1 − T2)(T1 + T2) + 3T5T4,

Z3 = T3(T1 − T2) + T0T5.

As mentioned in [RCB16], the “plaintext” cost of this formula is 12M + 2mb + 29a, where M
(resp. mb resp. a) is the cost of a multiplication of two �eld elements (resp. multiplication by a
constant, resp. addition). Therefore, the cost of evaluating this formula in the encrypted domain
is 12 homomorphic multiplications, plus 2 multiplications by a constant, plus 29 homomorphic
additions. The main advantage of this formula is that it can be evaluated as a depth 2 circuit.

On a di�erent but non negligible side, this addition law is also optimal in terms of communication
complexity. Indeed, as it requires at least three coordinates to avoid �eld inversions — which are

3Also they were designed to resist side-channel attacks by using the same “uni�ed” formula for addition and point
doubling, but we do not have to worry about such attacks because in homomorphic encryption, the operation �ow is
independent of the input scalar.
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problematic for homomorphic computations — the formula of Renes et al. reaches the optimal
lower bound. Moreover, the points we start our additions with are on standard coordinates which
means that when putting them into projective coordinates, the third coordinate is always 1. We can
therefore send just two coordinates per point.

For our proof-of-concept implementation of the protocol using a modi�ed HElib BGV, [RCB16,
Algorithm 4] turned out to be the addition law yielding best performances. This can be explained
by the relatively low number of multiplications required by this formula, additionally to the optimal
depth and representation.

A reasonable question is whether one can reduce signi�cantly the amount of operations by
using more coordinates or increasing depth. The short answer proved to be no given the literature
on EC point addition formulas (see [BL08]). Roughly, a deeper circuit can sometimes save one
coordinate in the point representation, but the FHE parameters become too large. Vice-versa an
additional coordinate either imply additional multiplications or communications that are not worth
it. Nevertheless, tradeo�s for constrained devices are possible and �nding the best tuple (EC, set of
coordinates, addition algorithm, homomorphic encryption scheme) for computing over encrypted
EC points remains an interesting open question.

Figure A.2 below shows that the complete addition formula of [cryptoeprint:2015:1060] has
multiplicative depth 2.

A.1.6. Full Protocol

For completeness, we provide in �gure A.3 the full description of the protocol. For the delegator
C, the main e�ort is on steps 5 and 6. They de�ne his maximum capacity to delegate the point
computations.

A.1.7. Security

As usual in delegation protocols we consider the delegatee honest but curious. In this setting the
IND-CPA property of our scheme combined with a standard hybrid argument ensures the attacker
learns nothing about the plaintexts sent to him nor about the result of the computation.

In this section, we provide the basic de�nitions of security of the underlying schemes, and show
that in particular the protocol is secure against a semi-honest adversary when used to delegate the
ECDSA signature scheme. We then discuss the malicious adversary setting.

A.1.7.1. Basic de�nitions

The usual de�nition of security for an homomorphic encryption scheme is indistinguishability
against chosen plaintext attacks. The encryption scheme we use ensures this property under
standard assumptions [BGV12].

De�nition A.1 (IND-CPA). Let E = (KeyGen, Enc,Dec) be a encryption scheme, and let A be a

probabilistic polynomial-time (PPT) adversary. E is indistinguishable under chosen-plaintext attack
(IND-CPA) if for all pair of plaintexts (m0,m1), we have

AdvA = |Pr [A(Enc(m0)) = 1]− Pr [A(Enc(m1)) = 1]|

is negligible.

For signature schemes, the standard de�nition of security is (existential) unforgeability against
chosen message attacks. ECDSA ensures this property in the random oracle model [Vau03].
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De�nition A.2 (UF-CMA). Let S = (KeyGen, Sign,Verif) be a signature scheme, and let A be a

probabilistic polynomial-time (PPT) adversary which can sign messages of his choice to produce any

message properly signed, with the exception of this message itself. S is unforgeable under chosen

messages attack (UF-CMA) if we have

AdvA = Pr
[
ASign(sk,·)(pk) = (m,σ);Verif(pk,m, σ) = 1

]
is negligible.

A.1.7.2. Proof of Security for the Outsourcing of ECDSA

The main goal of this section is to show that the outsourcing protocol does not result in loosing the
UF-CMA property when considering the new inputs an attacker may have. In other words we want
to show that if the ECDSA is UF-CMA and the encryption scheme is IND-CPA, then the resulting
outsourced protocol is also UF-CMA.

The basic idea in this proof is that an adversary able to use the encrypted output with the IND-CPA
scheme to break the UF-CMA of the global scheme is also able to break the security of the IND-CPA
scheme or able to break the UF-CMA of the ECDSA protocol. Indeed if he is not able to break the
UF-CMA of the ECDSA protocol, then he can build a distinguisher for an IND-CPA challenge.

For clarity, the notation related to coordinates has been removed, and a simpli�ed description of
the protocol is considered.

Algorithm 1.44 OPECDSA

Require: (h(mi))1≤i≤b
Ensure: (σi)1≤i≤b = (ri, ti)1≤i≤b

1: C generates ki
$← {1, . . . , n− 1} in basis 2ω

2: C sends
(

EncE
((

P
k
(j)
i ,j

)
1≤i≤b

))
1≤j≤`

to UC

3: UC sends
∑`

j=1 EncE
((

P
k
(j)
i ,j

)
1≤i≤b

)
to C

4: C returns (ri = xi mod n, ti = k−1
i (h(mi)+s·xi) mod n)1≤i≤b where (xi, yi) =

∑
j Pk(j)i ,j

=

kiG

Theorem A.1. If E is IND-CPA and ECDSA is UF-CMA, then OPECDSA is UF-CMA.

Proof. To prove security we use the following games.

Game 0: This is OPECDSA itself;

Game 1: This game is the same as Game 0, except that the client computes kiG by itself in step 4.

1. C generates ki
$← {1, . . . , n− 1} in basis 2ω

2. C sends
(

EncE
((

P
k
(j)
i ,j

)
1≤i≤b

))
1≤j≤`

to UC.

3. UC sends
∑`

j=1 EncE
((

P
k
(j)
i ,j

)
1≤i≤b

)
to C.
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4. C computes (xi, yi)1≤i≤b = (kiG)1≤i≤b

5. C returns (ri = xi mod n, ti = k−1
i (h(mi) + s · xi) mod n)1≤i≤b

Game 2: This game is the same as Game 1, except that all the P
k
(j)
i ,j

are replaced by 0.

1. C generates ki
$← {1, . . . , n− 1} in basis 2ω

2. C sends
(

EncE
(

(0)1≤i≤b

))
1≤j≤`

to UC.

3. UC sends
∑`

j=1 EncE
(

(0)1≤i≤b

)
to C.

4. C computes (xi, yi)1≤i≤b = (kiG)1≤i≤b

5. C returns (ri = xi mod n, ti = k−1
i (h(mi) + s · xi) mod n)1≤i≤b

Consider a PPT adversaryA having an advantageAdvGiA to produce a forgery in Game i, knowing
the input, output, transmissions and internal UC processing, such that AdvG0

A = ε and for all games
Gi

AdvGiA = Pr
[
AGi(sk,·)(pk) = (m,σ); Verif(pk,m, σ) = 1

]
.

Clearly AdvG1
A = AdvG0

A = ε since the view of the adversary is exactly the same in the two
games. Next, by lemma A.2, we have that AdvG1

A = AdvG2
A + ε(λ) where ε(λ) is negligible in the

security parameter λ. Finally Game 2 corresponds to a local ECDSA signature generation, therefore
AdvG2

A = AdvECDSA
A and AdvECDSA

A is negligible by the UF-CMA hypothesis of ECDSA.

Lemma A.2. If E is IND-CPA, then AdvG1
A = AdvG2

A + ε(λ) where ε(λ) is negligible.

Proof. Assume that ε(λ) is not negligible. We can then construct a distinguisher B having success
probability ≥ 1/2 + ε(λ)/` against the semantic security of Enc.

The proof follows from a simple hybrid argument. We de�ne ` + 1 di�erent games G1,j′ for
j′ = 0, . . . , ` as:

Game (1, j′): This game is the same as Game 1, except that all the P
k
(j)
i ,j

’s are replaced by

P ′
k
(j)
i ,j

=

{
0 for j ≤ j′
P
k
(j)
i ,j

for j > j′.

1. C generates ki
$← {1, . . . , n− 1} in basis 2ω

2. C sends
(

EncE

((
P ′
k
(j)
i ,j

)
1≤i≤b

))
1≤j≤`

to UC.

3. UC sends
∑`

j=1 EncE

((
P ′
k
(j)
i ,j

)
1≤i≤b

)
to C.

4. C computes (xi, yi)1≤i≤b = (kiG)1≤i≤b

5. C returns (ri = xi mod n, ti = k−1
i (h(mi) + s · xi) mod n)1≤i≤b



124 Appendix A. Delegating Elliptic-Curve Operations with Homomorphic Encryption

In particular, we have that Game (1,0) is exactly Game 1 and that Game (1, `) is exactly Game 2.
Therefore there exists an index j0 such that A has advantage at least ε(λ)/` to distinguish between
Game (1, j0) and Game (1, j0 + 1).

In the following, we construct a distinguisher B that will include its challenge between these two
games.

• B generates fresh ECDSA keys (sk′ECDSA, pk
′
ECDSA)

• B generates ki
$← {1, . . . , n− 1} in basis 2ω

• B generates all the P ′
k
(j)
i ,j

’s as

P ′
k
(j)
i ,j

=

{
0 for j ≤ j0
P
k
(j)
i ,j

for j > j0.

• B asks for a challenge on messages P0 = 0 and P1 = P ′
k
(j)
i ,j0+1

, and receives a challenge
ciphertext Enc (Pβ) for an unknown β ∈ {0, 1}

• Then B encrypts the P ′
k
(j)
i ,j

, but replaces the encryption of P
k
(j)
i ,j0+1

by the challenge. We
denote by E the resulting set of ciphertexts. Note that if the challenge is encrypting P0 = 0,
then the set E corresponds to the set of ciphertexts of Game (1, j0 + 1), and otherwise it
corresponds to the set of ciphertexts of Game (1, j0).

• Next B runs A with E in the ECDSA protocol, and gets its answer (m,σ)

• if Verif(pk′ECDSA,m, σ) = 1

then B returns 0

else B returns 1.

If b = 0, this means that the setting was that of Game (1, j0), and therefore P1 was encrypted in
the challenge; however it was P0 = 0. This contradicts the IND-CPA security of the E encryption
scheme (because ` is logarithmic in λ) and concludes the proof.

A.1.7.3. Malicious adversaries

The proofs presented above consider semi-honest (also known as honest-but-curious) adversaries. In
particular, it supposes that the UC behaves as expected during the protocol execution. A malicious,
active, UC might divert from the protocol so that the elliptic curve points used for the elliptic-curve
point are not correct. With such an attack, the signatures that are published do not follow the
ECDSA protocol, and therefore we cannot say they do not reveal enough information for an attacker
to break the system.

For example, if the cloud sends back the ki’s as the x coordinates of the obtained points, the client
will reveal the ki’s and the attacker will immediately be able to retrieve the secret key used for the
signature.

It is possible to modify the protocol so as to ensure resistance against malicious adversaries at a
very high cost, but in practice a simpler business-like solution is possible for a lower cost (in practice,
most companies will opt for the latter setting). Namely, one can set up traps by including replication
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in the ki’s, i.e. instead of sampling b di�erent ki’s randomly and batching them all together, to
sample b/κ di�erent ki’s and to repeat each of the ki’s in κ di�erent components. (In practice, a few
replicas will be enough.) In order to cheat without getting caught in this setting, the malicious UC
will have to be consistent with the unknown geometry and his probability of success will therefore
be small (similar to the covert model of [Lin13]). In order to make it worthless for UC to be malicious,
the businesses can set up a contract with the UC in which the cost of getting caught when cheating
is more important than the possible gain.

A.2. Implementation and Performances

We implemented prototypes of our delegation protocol. The code was written in C++ using the open-
source HElib library (available at https://github.com/shaih/HElib) [HS14; HS15]. Our
implementation is available under the GNU GPL license at https://github.com/tricosset/
HElib-MP.

A.2.1. Parameters Constraints and Extending HElib

The P-256 Curve. The commercially available EC solutions usually implement NIST’s P-256 EC.
Since our goal is to demonstrate the feasibility of our delegation protocol, we chose to focus on
the same curve. However, we would like to emphasize that this does not help us: the P-256 curve
is quite bad for our setting! On the contrary, curves over binary �elds, Koblitz curves or Edwards
curves might yield much faster protocols given their small characteristic and their point addition
formulae. The study of the fastest EC to be used in combination with homomorphic encryption is
certainly an interesting theoretical open problem orthogonal to this work.

Recall that the P-256 curve is the EC

(EP-256) : y2 = x3 − 3x+ b ∈ FpP-256 , where
pP-256 = 2256 − 2224 + 2192 + 296 − 1

b = 410583637251521421293261297800472684091
14441015993725554835256314039467401291

Extension of HElib to Large p’s. The HElib library only handles plaintext space modulus pr
with p and r in single precision. For our protocol however, since we considered the EC P-256, we
have to work with plaintext space modulus p = pP-256; we therefore modi�ed HElib to handle that
case.4

Since larger p is associated with an increase in noise magnitude in the ciphertext and, as a
consequence, with a larger ciphertext space modulus q needed to correctly decrypt the ciphertext
after the circuit evaluation, we need to carefully choose the BGV parameters, as outlined in the
section below.

Selection of BGVParameters. HElib automatically selects all the parameters for the BGV scheme
from the tuple (m, p, L) where m is the index of the cyclotomic polynomial Φm(x), p the plaintext
space modulus and L the multiplicative depth of the circuit to be homomorphically evaluated. For
the sake of security we need to choose m such that the degree of Φm(x), which is equal to φ(m)

4A similar modi�cation had been performed in https://github.com/dwu4/fhe-si, but was based on
an earlier version of HElib without many of the recent improvements (special primes, etc.).

https://github.com/shaih/HElib
https://github.com/tricosset/HElib-MP
https://github.com/tricosset/HElib-MP
https://github.com/dwu4/fhe-si
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m 460051 490463 1048576

φ(m) 460050 490462 524288

b 1 490462 262144

Table A.1. – Degree φ(m) of the cyclotomic polynomial Φm(x), and number b of factors thereof
modulo p = pP-256.

where φ is the Euler’s totient function, is large enough to ensure the desired level of security. To
do so, we used the script provided in [APS15] to estimate the bit security of the Learning with
Errors instances. Thus for q of 16384 bits, which is the largest size of q considered is this work, and
n > 460000 we have a security level greater than 130 bits.

As described in Sec. A, our protocol needs to perform batching, i.e. needs to embed several
plaintext elements per ciphertext. Now, for every (m, p), the cyclotomic polynomial Φm(x) factors
modulo p into a product of b irreducible factors Φm(x) =

∏b
j=1 Fj(x) (mod p) for a b = b(m, p) ∈

{1, . . . ,deg(Φm(x)) = φ(m)} where φ is Euler’s totient function. Unfortunately, not every tuple
(p,m) yield an e�cient batching; for example p = pP-256 and m = 460051 do not allow batching
at all — cf. Tab. A.1. In particular, full batching will be possible when b = φ(m), i.e. when all the
roots of Φm(x) are in Zp. Since Φm(x) divides xm − 1, all the roots of Φm(x) will be in Zp when
m | p− 1. Now we have that

pP-256 − 1 = 2 · 3 · 52 · 17 · 257 · 641 · 1531 · 65537 · 490463 · 6700417 · p′,

for p′ = 83594504224[...]3916927241 a large prime. We select m = 490463 and by Tab. A.1,
this yields a scheme that works with polynomials of degree 490463 − 1 = 490462, and that can
batch 490462 elements. This batching size is quite large but as point computation can often be
precomputed (e.g. in signatures, or in computation delegations as in [CLV16]) this issue is generally
mitigated.

A.2.2. Windowing

In our delegation protocol, one can select di�erent window sizes ω to encrypt the scalars ki’s. A
larger window size will increase the memory used but will decrease the communication cost —
cf. Tab. A.3. Also with larger windows, the UC will have to perform less homomorphic computations.
The limiting factor is therefore the memory used by the client. Note that in the case the client is
very limited in memory (e.g. a smartcard), this can be stored in unprotected memory with a MAC,
or even outsourced (e.g. to the phone storage).

More precisely, the ki’s are decomposed in basis 2ω , and give 2λ/ω EC points represented by the
two coordinates (x, y) in FpP-256 . Note that the decomposition is easy to compute: it simply consists
of the 2λ/ω successive sequences of ω bits of the ki’s binary decompositions. The precomputation
costs are as follow:

• (2λ)2/ω · 2ω · 2 bits in (unprotected) memory storage for the client, and

• 2λ/ω ·2 · ζE,pP-256 bits in communication between the client and the UC, where ζE,pP-256 denotes
the bits needed to encrypt a coordinate in FpP-256 with the BGV scheme E .

Moreover, the addition of the encrypted coordinates (which we denote EncE(x) and EncE(y))
of the elliptic points received by the UC has a multiplicative depth linear in dadd and a number of
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Window Mult. # Elliptic Curve Communication Costs Request Point Response
size depth Additions C→ UC UC→ C Encryption (C) Computation (UC) Decryption (C)

8 2 16 23.8 KB 14.1 KB 2.3 ms 51.0 ms 455.9 µs
8 4 16 + 8 35.6 KB 6.4 KB 3.4 ms 118.4 ms 231.4 µs
8 6 16 + 8 + 4 47.7 KB 3.0 KB 4.4 ms 190.4 ms 102.2 µs
8 8 16 + 8 + 4 + 2 59.7 KB 1.4 KB 5.8 ms 265.5 ms 51.01 µs
8 10 16 + 8 + 4 + 2 + 1 71.5 KB 0.6 KB 7.2 ms 342.6 ms 28.7 µs

16 2 8 11.9 KB 7.0 KB 1.2 ms 25.4 ms 242.8 µs
16 4 8 + 4 12.8 KB 3.2 KB 1.7 ms 63.7 ms 112.0 µs
16 6 8 + 4 + 2 23.9 KB 1.5 KB 2.4 ms 103.2 ms 51.9 µs
16 8 8 + 4 + 2 + 1 29.9 KB 0.7 KB 2.9 ms 136.7 ms 30.4 µs

32 2 4 6.0 KB 3.5 KB 0.7 ms 13.6 ms 131.8 µs
32 4 4 + 2 8.9 KB 1.6 KB 1.0 ms 29.9 ms 53.9 µs
32 6 4 + 2 + 1 11.9 KB 0.7 KB 1.2 ms 51.5 ms 32.2 µs

Table A.2. – Amortized costs for EC point computation for di�erent window sizes and evaluations
of di�erent multiplicative depths — the homomorphic evaluation consists of “# Elliptic
Curve Additions” additions of points over the curve P-256. All timings are on a Intel®
CoreTM i5-4210H CPU and use one core.

Parameters λ = 128

ω = 8 ω = 16 ω = 32

Enc. points sent 32 16 8

Com. cost (bits) 64 · ζE,q 32 · ζE,q 16 · ζE,q
Outsourced Mem. (Client) 512KB 64MB 2TB

Mult. depth 5dadd 4dadd 3dadd

Table A.3. – Impact of Windowing over storage and communication costs. λ is the bit-security
level, ω the bit-size of the window, ζE,q is the number of bits required to encrypt an
element of Fq , and dadd the multiplicative depth of the point addition circuit.

multiplications that is closely related to the representation of those points (in our case, we have
dadd = 2, cf. Sec. A.1.5). It is precisely this depth that determines the size of the BGV parameters
paramsE and hence, the size of data that is sent. Tab. A.3 shows the impacts of di�erent window
sizes over communications and memory usage.

As the UC receives `2,n/ω points to add, his addition circuit has depth d = log2 (`2,n/ω), which
implies that our homomorphic encryption scheme E must be able to handle d times the depth dadd
of an homomorphic EC point-addition.

Finally, we can reduce UC’s computational cost of the point computation at the expense of an
additional work factor for the client by allowing UC to abort the computation prematurely and let
the client �nish the job. This optimization is discussed in the next Section.
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A.2.3. Early Aborts

In our delegation protocol, the UC compute homomorphically the coordinates of

kG =

`2,n/ω∑
j=1

k(j)2ωj

G =

`2,n/ω∑
j=1

Pk(j),j ,

given the encryptions of the coordinates of the Pk(j),j . In order to reduce the total depth of the
point additions computation (namely log2(`2,n/ω) · dadd using a binary tree), the UC can perform
the addition up to a speci�c multiplicative depth and send back the results (the coordinates of the
partial sums) to the client. The latter will have to �nish the point addition computation over the
plaintexts. This in terms allows to lower the multiplicative depth capability of the BGV scheme at
the expense of increasing the number of encrypted coordinates sent to the client. The resulting
trade-o� depends mainly on the ciphertext expansion. Notice that the more computation does the
UC, the larger is the multiplicative depth and the ciphertext expansion, but the less ciphertexts are
sent. Several early abortions trade-o�s are considered in Tab. A.2.

A.2.4. Full Evaluation

Our prototype was deployed on a commercially available cloud computing service — namely a
c4.8xlarge AWS instance, with turboboost turned o� and running on a single thread, while
the client was on a mid-range laptop. We benchmarked on di�erent window sizes ω = 8, 16, 32 and
di�erent early aborts (corresponding to resp. multiplicative depths 1 · dadd, 2 · dadd, . . . , 5 · dadd).

We consider communications costs from the client to the UC (encrypted coordinates of the
points to be added), and from the UC to the client (encrypted results). Of course we also consider
computational costs for the client and UC. All the results are given in Tab. A.2. Note that the
communication and computational costs are for a batch of 1024 point computations, so to obtain
the costs per point the �gures should be divided by 1024.

One of the most interesting compromises is a windowing size of 16 bits and full additions (no
early abort) which can be executed in 74 seconds on a single thread and results in 200Mbits of
uploaded data and 3Mbits of downloaded data. In order to use this window size the client also needs
to access an internal or locally outsourced memory cache of 32MBytes.

Note that all the operations done by the UC are coordinate wise over vectors of 1024 coordinates
given the encryption scheme parameters chosen. Therefore we can suppose that the computation
can bene�t from a linear gain in a multi-threaded environment with a large amount of threads. It
would be possible to send the computation to two c4.8xlarge servers which can handle each
36 threads and thus get a reply in roughly a second.

For the client the main computational limit is the throughput at which it can produce the encrypted
�ow to be sent to the UC and decrypt the �ow that comes from the UC. Our client could produce an
encryption �ow of 800Mbits/s and decrypt an incoming �ow of 1.1Gbits/s. Such processing speeds
would allow using 8 c4.8xlarge instances and retrieve thus up to 4 · 1024 encrypted points per
second.

Note that if the UC is in the cloud and the client requires using it at its maximum throughput,
having a constant upload bandwidth usage of 800Mbits/s can be quite costly. The cloud would be
more adapted for a sporadic usage. If the processing power is required often, installing computing
blades locally (through a LAN or PCI connection) would be a much more interesting strategy.
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Figure A.2. – Complete addition using [cryptoeprint:2015:1060]: only 3 coordinates, multi-
plicative depth 2, and 12 multiplications (see original algorithm for this). Dashed
lines correspond to additions, �lled ones to multiplications. We note this algorithm
ECC.Add and its homomorphic encryption version HE.ECC.Add.
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ECC point computation outsourcing protocol

Input: The elliptic-curve parameters, a value η ∈ N∗, η scalars ki, and a FHE scheme E , a batching
size b for the FHE scheme, a window size ω, and an EC point representation.
Output: A set of η elliptic-curve points kiG.

1. Only once: C computes all the 2ω`2,n/ω points {Pi,j} = {
(
i · 2ω(j−1)

)
G}j=1..`2,n/ω

i=0..2ω−1 . Noting
` = `2,n/ω, for k ∈ {1, . . . , n− 1} and (k(1), . . . k(`)) the decomposition of k in base 2ω we
have kG = Pk(1),1 + . . .+ Pk(`),`.

2. For each ki de�ne (k
(1)
i , . . . , k

(`)
i ) as its decomposition in basis 2ω .

3. For each j ∈ {1, . . . , `}, C de�nes MXj = (projX(P
k
(j)
1 ,j

), . . . , projX(P
k
(j)
b ,j

)).

4. For each j ∈ {1, . . . , `}, C de�nes MYj = (projY (P
k
(j)
1 ,j

), . . . , projY (P
k
(j)
b ,j

)).

5. C computes for each j ∈ {1, . . . , `}, CXj = EncE(MXj) and CYj = EncE(MYj).

6. C sends (CX1, CY1, . . . , CX`, CY`) to UC.

7. UC generates CZ1 = . . . = CZ` = EncE((1, . . . , 1)), note Cj = (CXj , CYj , CZj).

8. UC computes homomorphically C = HE.ECC.Add(Cj1 , Cj2) taking two by two the vectors
of encrypted coordinate sets and iterating recursively until there is only one result (see
�gures A.2).

C1 C2

+ECC

C1,2

C3 C4

+ECC

C3,4

· · ·

· · ·
...

...

C`−1 C`
+ECC

C`−1,`

+ECC

C1,...,`

9. UC sends the encrypted result C1,...,l to C.

10. C decrypts the result and for each i ∈ {1, . . . b} the coordinates Xi, Yi, Zi are used to de�ne
a point (xi, yi) with xi = Xi/Zi and yi = Yi/Zi.

Figure A.3. – Full EC point computation delegation protocol with batching
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Résumé : La cryptographie à base de réseaux euclidiens a généré un vif intérêt durant les deux
dernières décennies grâce à des propriétés intéressantes, incluant une conjecture de résistance à
l’ordinateur quantique, de fortes garanties de sécurité provenant d’hypothèses de di�culté sur le
pire cas et la construction de schémas de chi�rement pleinement homomorphes. Cela dit, bien
qu’elle soit cruciale à bon nombre de schémas à base de réseaux euclidiens, la génération de bruit
gaussien reste peu étudiée et continue de limiter l’e�cacité de cette cryptographie nouvelle.
Cette thèse s’attelle dans un premier temps à améliorer l’e�cacité des générateurs de bruit gaussien
pour les signatures hache-puis-signe à base de réseaux euclidiens. Nous proposons un nouvel
algorithme non-centré, avec un compromis temps-mémoire �exible, aussi rapide que sa variante
centrée pour des tables pré-calculées de tailles acceptables en pratique. Nous employons également
la divergence de Rényi a�n de réduire la précision nécessaire à la double précision standard.
Notre second propos tient à construire Falcon, un nouveau schéma de signature hache-puis-signe,
basé sur la méthode théorique de Gentry, Peikert et Vaikuntanathan pour les signatures à base de
réseaux euclidiens. Nous instancions cette méthode sur les réseaux NTRU avec un nouvel algorithme
de génération de trappes.

Abstract: Lattice-based cryptography has generated considerable interest in the last two decades
due to attractive features, including conjectured security against quantum attacks, strong security
guarantees from worst-case hardness assumptions and constructions of fully homomorphic encryp-
tion schemes. On the other hand, even though it is a crucial part of many lattice-based schemes,
Gaussian sampling is still lagging and continues to limit the e�ectiveness of this new cryptography.
The �rst goal of this thesis is to improve the e�ciency of Gaussian sampling for lattice-based hash-
and-sign signature schemes. We propose a non-centered algorithm, with a �exible time-memory
tradeo�, as fast as its centered variant for practicable size of precomputed tables. We also use the
Rényi divergence to bound the precision requirement to the standard double precision.
Our second objective is to construct Falcon, a new hash-and-sign signature scheme, based on the
theoretical framework of Gentry, Peikert and Vaikuntanathan for lattice-based signatures. We
instantiate that framework over NTRU lattices with a new trapdoor sampler.
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