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Abstract.

We consider how two physical realities can be represented over a common set of spacetime coordinates. As an example we will
utilize quantum electrodynamics since this is a familiar and well-understood theory. We will designate one world the 'red' one and
the other the 'green' one. We will try to show how they can interact in a physically plausible way. We will also examine whether
such an interacting  theory is renormalizable.  It will be  shown that  we can  extend  these  ideas  to the Standard Model.  There  are
implications for this theory if we consider General  Relativity and these will be discussed briefly. If there are, in fact, such other
realities these could provide a plausible explanation for dark matter.

Introduction. 

The possibility of  multiple  universes and  other  realities has  often been discussed (1).  Everett's  Many-Worlds
Interpretation is, perhaps, to be regarded as the starting point. In most cases and respects, these other universes
are precluded from interacting with ours and there is, of course, a good reason for this – we have no compelling
evidence  for  the  existence  of  such  interactions.  All  the  same,  it  might  be  interesting  to  theorize  about  how
another  reality might  interact  with  our  own.  But  this  can  only be  done  subject  to  the  constraint  that  nothing
implausible is proposed – anything that would plainly violate our everyday observations must not result from
such speculation. It should be mentioned that another reality, one that shared our spacetime and influenced it
gravitationally, could be considered a candidate for dark matter provided it  interacted with us  so weakly and
infrequently as to be seldom observed. 

I will try to show that a theory of multiple realities can, in fact, be constructed using quantum electrody-
namics (QED) as a simple and familiar example. We can imagine one reality – call it  the 'red'  one populated
with  'red'  electrons  and  'red'  photons.  We  will  suppose  that  there  is  another,  'green,'  reality  populated  with
'green'  electrons and photons. There will  exist  a common coordinate  system  between them. We will  take this
idea  in  a  very  literal  way and  just  imagine  that  the  various  fields  are  all  functions  of  a  common coordinate
system defined over a shared Minkowski spacetime. If we are observers living in the 'red' reality we will imag-
ine  that  the  'green'  reality exists  all  around  us  and  is  defined  over whatever spacetime coordinate system we
decide  to  use.  Ordinarily,  we just  cannot  see this  'green'  reality because its  particles do not  interact  with  our
'red'  ones.  We will  introduce  a  new function,  c(x,  t),  which  reflects  the  degree to  which  the  'red'  and  'green'
realities  interact  with  one  another.  The  reader  will  want  a  more  mathematically  rigorous  description  of  this
common coordinate system and such will be forthcoming. We will always assume that the laws of physics are
the same in both realities and that the two kinds of electrons have the same mass and charge in their respective
realities. 

QED in Two Realities.

We start out by writing the Lagrangian as it would look if these realities were always completely independent:

1) Lem = ΨR [ΓΜ[i ¶Μ - e AR Μ] - m]ΨR  - 1
4

FR
ΜΝFR ΜΝ 

                  + ΨG [ΓΜ[i ¶Μ - e AG Μ] - m]ΨG - 1
4

FG
ΜΝFG ΜΝ.

        
The  objects  ΨR,  AR,  are  understood  to  pertain  to  the  'red'  reality. The  'G'  subscript  means they belong to  the

'green' reality. A common spacetime coordinate system is shared by both the 'red' and 'green' particles. FR
ΜΝ  is

the electromagnetic field strength tensor appropriate to the 'red' world. FG
ΜΝ  pertains to the 'green' reality. Now

an interaction between these realities could  occur if  there  were to  take place a  mixing  of  AR  and  AG  in  their

interaction with the electron fields according to:

2) ARΜ � I1 + cHx, tL2M -1�2
[ARΜ +  cHx, tL  AGΜ]  and

            AGΜ � I1 + cHx, tL2M -1�2
 [AGΜ +  cHx, tL  ARΜ]  where c(x, t) is taken to be a real scalar field.

           
Note that this mixing of quantum fields is confined to the photon fields. It is not applied to the electron fields.
Nor is it applied within the electromagnetic field strength tensors. When cHx, tL = 0 there is no interaction. As
cHx, tL  becomes  larger  'red'  observers  begin  to  experience  some  of  the  'green'  reality  and  vice-versa.

I1 + cHx, tL2M -1�2
functions  as  a  kind  of  normalization  factor.  Under  the  influence  of  this  transformation

the Lagrangian becomes:

3)       Lem = ΨR [ΓΜ[i ¶Μ - e I1 + cHx, tL2M -1�2AARΜ + cHx, tL AGΜE] - m]ΨR - 1
4

FR
ΜΝFR ΜΝ 

                  + ΨG [ΓΜ[i ¶Μ - e I1 + cHx, tL2M -1�2AAGΜ + cHx, tL ARΜE] - m]ΨG - 1
4

FG
ΜΝFG ΜΝ. 
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We will assume, for the moment, that cHx, tL is roughly constant over the spacetime volume of interest.
Also note that  cHx, tL is, right now, not a dynamical variable of this  theory. It is  like a physical "constant" that

changes with time and space. While this new Lagrangian maintains local gauge invariance only under circum-
stances where cHx, tL  is constant it  has the advantage of resulting, under these circumstances, in simple Feyn-
man rules and a physics which, in many respects, corresponds with that we would like to see for a theory that
doesn't grossly violate observed reality. In situations where c(x, t) varies things become more complicated. And
we must address this problem since our theory would be either not interesting or not believable, physically, if
c(x, t) could never change. 

These new Feynman rules are similar to the familiar ones but with two important differences: Firstly,
the vertices connecting an incoming and outgoing 'red' electron (or positron) line with a 'red' photon contribute

with  a  coupling  constant  e I1 + cHx, tL2M -1�2
.  It  is  likewise  for  the  'green'  particles.  Secondly,  new  vertices

appear which connect incoming and outgoing 'red' electron (or positron) lines with a 'green' photon and incom-
ing and outgoing 'green' electron (or positron) lines with a 'red' photon (fig.1).  (In the first two cases we omit
drawing the graphs with the outgoing electrons exchanged. But we know they are there.) These contribute with

a coupling constant which is e cHx, tL I1 + cHx, tL2M -1�2
. Consider the scattering of one 'red' electron off another

in  the  presence  of  an  interaction.  To  find  the  probability  amplitude  for  this  process  (to  second  order  in  the
coupling  constant)  we  will  sum  the  amplitudes  corresponding  to  the  usual  Feynman diagrams  and  new  dia-
grams in which it is a 'green' virtual photon that is being exchanged. Straightforward arithmetic shows that the
overall coupling constant is still  e.  Thus the resulting amplitude is  unchanged by the presence of the interac-
tion.  The  contribution  from the  'green'  virtual  photon  compensates  exactly  for  the  reduction  in  the  coupling
strength of the normal interaction. This is encouraging – as long as we are dealing with interactions between
'red'  particles and  other  'red'  particles,  electromagnetism should  continue  to  work normally in  the  'red'  world
even  if  cHx, tL  became  different  from  zero.  The  same  situation  would  obtain  in  the  'green'  world.  Suppose,
instead, that we try to scatter 'red' electrons off of 'green' electrons. Now things are a little different. In each of
the  two relevant  Feynman diagrams would  be  a  vertex  connecting either  'green'  fermions with  a  virtual  'red'
photon or  'red'  fermions with  a  'green'  virtual  photon.  Arithmetic  again  yields a  simple result.  If we are  'red'
observers looking at the behavior of 'red' electrons, we would have to conclude that the 'green' electrons had a

charge that was only 2 cHx, tL I1 + cHx, tL2M -1
e. We would always assume that our 'red' electrons have charge e.

If the 'green' electrons scatter abnormally, it must be because they have a reduced charge. Also, since there are
no vertices connecting an incoming 'red' electron with an outgoing 'green' electron, the scattering would be the
same as that produced by two non-identical particles; this makes sense as we would not want to say that 'green'
and 'red' particles are indistinguishable. 
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The Classical Limit.

We  want  to  know what  the  physics resulting  from this  would  look like  to  an  ordinary,  macroscopic,
observer. And  it  is  not  clear  how much more we can do  in  a  quantum mechanical  way. There,  if  we do  not
regard  c(x, t) as a constant, we have no easy way of doing the math. Let us look at Equation 3) from a semi-
classical point of view. We must recall that, according to Dirac theory, the 4-current density in the 'red' world is

given by e ΨR ΓΜΨR, and by e ΨG ΓΜΨG, in the 'green' one. Varying Equation 3) by ARΜ we find:

4) FR
ΜΝ

,Ν =  J Μ � I1 + cHx, tL2M1�2
+ J

� Μ
cHx, tL � I1 + cHx, tL2M1�2

 

where J Μ  denotes the 4-current density in the 'red' world, and J
� Μ

 that in the 'green' world. Varying by AGΜ, we

find a corresponding equation for things the 'green' world. Let us now vary Equation 3) by ΨR  so as to get the

Dirac equation for the behavior of  'red' electrons. We find:

5)  [ΓΜ[i ¶Μ - e I1 + cHx, tL2M -1�2AARΜ + cHx, tL AGΜE] - m]ΨR = 0.

This tells us what effective "4-potential" the 'red' electron is responding to. We can perform the same exercise
for  the  'green'  Dirac  equation.  We  obtain,  as  a  practical  matter,  a  Lorentz  force  law  for  'red'  electron  which
reads:

6)        m x
..

R
Μ
 = e JFR

Μ
Ν � I1 + cHx, tL2M1�2

+ FG
Μ

Ν cHx, tL � I1 + cHx, tL2M1�2
-

I1 + cHx, tL2M-3�2AcHx, tL Ic Hx, tL, Μ ARΝ - cHx, tL, Ν AR
ΜM -

Ic Hx, tL, Μ AGΝ - cHx, tL, Ν AG
ΜMEN x

 
R

Ν.

And we will obtain a reversed version for the 'green' electron, having the 'R's and 'G's interchanged.
Equation 6) is actually rather remarkable as it shows that we can deduce useful things by not trying to

use the quantized theory. Equation 6) follows from 5) in the most simple way. We know that Dirac's Equation –
the one with AΜ  as we are used to seeing it – gives us the familiar Lorentz force law when translated into the

classical  world.  (It  is  actually  rather  hard  to  deduce  this  mathematically.  But  it  is  certainly  true.)  Thus  by
treating the strange term that appears in Equation 5) exactly as if  it were AΜ  (i.e. constructing an FΜΝ  from it)

we arrive at Equation 6). And it must be true. 
It will be observed that this equation of motion does not respect local gauge invariance, nor should it.

As has been mentioned, gauge invariance requires the constancy of cHx, tL. And simply specifying a gauge will
not help us here. We could require, for example, ¶Μ AR,G

Μ  = 0. But this, alone, is insufficient. We could imag-

ine adding a 4-vector, L,Μ, to either AΜ  and this would not disturb the gauge condition so long as L,Μ
Μ  = 0. It

would, however, change Equation 6). The AR,G
Μ  in this theory must be definite, unambiguous, and not subject

to the addition of any factors. We would be better off endowing both of our photons with a vanishingly small

mass. In effect we add terms Ε2  AR,G
Μ AR,GΜ

 to the Lagrangians for our two photons (understanding that Ε is so

small that it can be taken to zero at the end of any practical calculation). The dynamical equations for the two A
fields become Proca equations. This is invaluable both because it automatically ensures ¶Μ AR,G

Μ  = 0 and also

rules out the addition of any intrusive gradients to our A fields. 
No assumptions regarding the constancy of cHx, tL have been made in deriving Equations 4) and 6) (and

their  two 'green'  counterparts).  These  will  be  true  under  any circumstances. It  seems likely that,  under  many
circumstances, cHx, tL can be treated as, more-or-less, a constant. This allows us to make some simplifications
to the mathematics. Since all we are interested in is the effective field that 'red' or 'green' electrons respond to,
let us simplify matters by writing:

7)     FΜΝ =  FR
ΜΝ � I1 + cHx, tL2M1�2

+ FG
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

and

8)     F
� ΜΝ

 =  FG
ΜΝ � I1 + cHx, tL2M1�2

+ FR
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

.

It now becomes possible to write Maxwell's equations and the Lorentz force law, in the presence of an interac-
tion, in a more compact form:

9) FΜΝ
,Ν =  J Μ + 2 J

� Μ
cHx, tL � I1 + cHx, tL2M 

10) FΑΒ,Γ + FΒΓ,Α  + FΓΑ,Β = 0

11) F
� ΜΝ

,Ν = J
� Μ

+ 2 J Μ cHx, tL � I1 + cHx, tL2M

12) F
�

ΑΒ,Γ + F
�

ΒΓ,Α  + F
�

ΓΑ,Β = 0

13) m xR
.. Μ

 = e FΜ
Ν xR

  Ν

14) m xG
.. Μ

 = e F
� Μ

Ν xG
  Ν
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This tells us what effective "4-potential" the 'red' electron is responding to. We can perform the same exercise
for  the  'green'  Dirac  equation.  We  obtain,  as  a  practical  matter,  a  Lorentz  force  law  for  'red'  electron  which
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6)        m x
..

R
Μ
 = e JFR

Μ
Ν � I1 + cHx, tL2M1�2

+ FG
Μ

Ν cHx, tL � I1 + cHx, tL2M1�2
-

I1 + cHx, tL2M-3�2AcHx, tL Ic Hx, tL, Μ ARΝ - cHx, tL, Ν AR
ΜM -

Ic Hx, tL, Μ AGΝ - cHx, tL, Ν AG
ΜMEN x

 
R

Ν.

And we will obtain a reversed version for the 'green' electron, having the 'R's and 'G's interchanged.
Equation 6) is actually rather remarkable as it shows that we can deduce useful things by not trying to

use the quantized theory. Equation 6) follows from 5) in the most simple way. We know that Dirac's Equation –
the one with AΜ  as we are used to seeing it – gives us the familiar Lorentz force law when translated into the

classical  world.  (It  is  actually  rather  hard  to  deduce  this  mathematically.  But  it  is  certainly  true.)  Thus  by
treating the strange term that appears in Equation 5) exactly as if  it were AΜ  (i.e. constructing an FΜΝ  from it)

we arrive at Equation 6). And it must be true. 
It will be observed that this equation of motion does not respect local gauge invariance, nor should it.

As has been mentioned, gauge invariance requires the constancy of cHx, tL. And simply specifying a gauge will
not help us here. We could require, for example, ¶Μ AR,G

Μ  = 0. But this, alone, is insufficient. We could imag-

ine adding a 4-vector, L,Μ, to either AΜ  and this would not disturb the gauge condition so long as L,Μ
Μ  = 0. It

would, however, change Equation 6). The AR,G
Μ  in this theory must be definite, unambiguous, and not subject

to the addition of any factors. We would be better off endowing both of our photons with a vanishingly small

mass. In effect we add terms Ε2  AR,G
Μ AR,GΜ

 to the Lagrangians for our two photons (understanding that Ε is so

small that it can be taken to zero at the end of any practical calculation). The dynamical equations for the two A
fields become Proca equations. This is invaluable both because it automatically ensures ¶Μ AR,G

Μ  = 0 and also

rules out the addition of any intrusive gradients to our A fields. 
No assumptions regarding the constancy of cHx, tL have been made in deriving Equations 4) and 6) (and

their  two 'green'  counterparts).  These  will  be  true  under  any circumstances. It  seems likely that,  under  many
circumstances, cHx, tL can be treated as, more-or-less, a constant. This allows us to make some simplifications
to the mathematics. Since all we are interested in is the effective field that 'red' or 'green' electrons respond to,
let us simplify matters by writing:

7)     FΜΝ =  FR
ΜΝ � I1 + cHx, tL2M1�2

+ FG
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

and

8)     F
� ΜΝ

 =  FG
ΜΝ � I1 + cHx, tL2M1�2

+ FR
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

.

It now becomes possible to write Maxwell's equations and the Lorentz force law, in the presence of an interac-
tion, in a more compact form:

9) FΜΝ
,Ν =  J Μ + 2 J

� Μ
cHx, tL � I1 + cHx, tL2M 

10) FΑΒ,Γ + FΒΓ,Α  + FΓΑ,Β = 0

11) F
� ΜΝ

,Ν = J
� Μ

+ 2 J Μ cHx, tL � I1 + cHx, tL2M

12) F
�

ΑΒ,Γ + F
�

ΒΓ,Α  + F
�

ΓΑ,Β = 0

13) m xR
.. Μ

 = e FΜ
Ν xR

  Ν

14) m xG
.. Μ

 = e F
� Μ

Ν xG
  Ν

where FΜΝdenotes the classical electromagnetic field strength tensor, measured by the 'red'  physicist, and F
� ΜΝ

that measured similarly by the 'green' one.
Now  the  4-divergences  of  the  left-hand  sides  of  Equation  4),  and  the  'green'  version  thereof,  both

vanish identically owing to the antisymmetry of FR
ΜΝ and FG

ΜΝ . The current densities should also have vanish-

ing 4-divergences. This implies that:

15) cHx, tL, Μ J Μ  = 0  and 

           cHx, tL, Μ J
� Μ

  = 0.

Equations 15) put some definite constraints on what c(x, t) can do. In most reasonable and electrically neutral
worlds we can assume the electromagnetic currents to be zero in most places. At worst they will, in the classi-
cal limit, be non-zero only at the specific locations of 'red' and 'green' point electrons or positrons. Elsewhere
c(x, t) is free to change subject to whatever other physics guides it. 

By  J Μ  we  mean   e  ΨR  ΓΜΨR  and  likewise  for  the  'green'  current.  This  may  cause  some  confusion

because it would seem that J 0  = e ΨR
ÖΨR which would have to be negative everywhere. Of course, J 0  is, prop-

erly, to be understood as a field theoretic operator. (We have presented some arguments in terms of one-particle

Dirac theory just to establish a few simple facts.) Considered as an operator J 0  would, in most places, have a
positive expectation value in a world full of 'red' positrons and a negative one if the world were dominated by
'red' electrons. Thus J Μ assumes a role identical to that of a classical electromagnetic current. Really, by J Μ we
mean <Y|J Μ|Y>  where |Y>  designates the state of this twofold World in a kind of extended Fock space popu-
lated with both 'red' and 'green' particles. We assume this Fock space to have a vacuum state and that its basis
states are constructed from this by the sequential action of the multiple creation operators that correspond to the
'green' and 'red'  particles in our theory. We assume, also, that 'green' and 'red' operators always commute – they
simply do  not  see  one  another  and  act  on  their  respective  Fock  "subspaces"  independently.  We  work  in  the
Dirac Interaction Picture.

Now we can imagine mixing AR and AG in a very different, but also physically reasonable way. We can

write:

3')       Lem = ΨR [ΓΜ[i ¶Μ - e I1 + cHx, tL2M -1�2AARΜ + cHx, tL AGΜE] - m]ΨR - 1
4

FR
ΜΝFR ΜΝ 

                  + ΨG [ΓΜ[i ¶Μ - e I1 + cHx, tL2M -1�2AAGΜ - cHx, tL ARΜE] - m]ΨG - 1
4

FG
ΜΝFG ΜΝ. 

            
Again, no change occurs in the electromagnetic interactions between particles of the same color, regardless of
what c(x, t) does. Also, there are no electromagnetic interactions between 'red' and 'green' particles whatsoever
in areas where c(x, t) is constant. In this case equations 9) and 11) become even simpler:

9') FΜΝ
,Ν =  J Μ

11') F
� ΜΝ

,Ν = J
� Μ

where F
� ΜΝ

= FG
ΜΝ � I1 + cHx, tL2M1�2

- FR
ΜΝ cHx, tL � I1 + cHx, tL2M1�2

.

Equation 6) changes as well. It remains the same for 'red' electrons. But for the 'green' ones we must not only
exchange R  and G  but  also change c(x,  t)  to -c(x,  t).  We will  refer to this  as the  Type-II model. It will  have
observable  consequences;  if,  for  instance,  we  consider  the  Compton  scattering  of  a  'red'  photon  off  a  'red'
electron in a high-c(x, t) region there will be some chance of seeing a 'green' photon emerge. We will usually
discuss the (more symmetrical) Type-I model but will also consider this alternative.
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Equation 6) changes as well. It remains the same for 'red' electrons. But for the 'green' ones we must not only
exchange R  and G  but  also change c(x,  t)  to -c(x,  t).  We will  refer to this  as the  Type-II model. It will  have
observable  consequences;  if,  for  instance,  we  consider  the  Compton  scattering  of  a  'red'  photon  off  a  'red'
electron in a high-c(x, t) region there will be some chance of seeing a 'green' photon emerge. We will usually
discuss the (more symmetrical) Type-I model but will also consider this alternative.

The Role of c(x, t).

There are many things this theory cannot tell us about c(x, t) . The most important of these is whether it should
be  treated  as  a  dynamical  variable  of  the  theory  –  one  with  its  own  place  in  the  Lagrangian of  our  twofold
reality – or as a completely external variable. First, let's suppose it's the latter way. Then c(x, t) is rather like a
physical "constant" that happens to vary with space and time. 

Suppose that c(x,  t)  is,  initially, zero everywhere but that it  becomes a bit  bigger than zero in a small
area where both a 'red' and a 'green' physicist have an electron of their own type under observation. As the 'red'
electron  starts  to  move under  the  influence  of  its  'green'  counterpart,  and  vice-versa,  both  physicists  will  be
amazed that 4-momentum is not being conserved. But there is no reason why it should be. Conservation of 4-
momentum follows from Noether's Theorem and relies on the independence of the Lagrangian from space and
time. By allowing c(x, t)  to change with space and time we have destroyed this invariance. Conservation of 4-
momentum will only hold if c(x, t) is constant everywhere. In a small area where c(x, t) is constant there will be
a conserved 4-momentum but it will be the sum of the 4-momenta present in both worlds plus any interaction
energy  between  the  variously  colored  particles  involved.  Charge  conservation  also  becomes  an  ambiguous
concept when c(x, t) changes. 

Maybe c(x, t) ought to be regarded as a dynamical variable of this theory rather than as something that
has to be introduced in an arbitrary way. It would then be possible to define a rigorously conserved 4-momen-
tum. One could incorporate c(x, t) into the Lagrangian 3) by any number of means. Suppose we try the simplest
one:

16)   Lreal = Lem + Κ cHx, tL,Μ cHx, tL,Μ  (where Κ is a real constant).

 
If  we  assume c(x,  t)  is  always quite  small  we  end  up  with  a  wave equation for  c(x,  t)  having a  source term
proportional to:

17)   J ΜAGΜ + J
� Μ

ARΜ.

It is not obvious that such an equation leads us to any productive physics. We would need simultaneous knowl-
edge of both the 'red' and 'green' realities to evaluate it in any particular case. And we can, of course, propose
other 'kinetic' terms for c(x, t), if we prefer those, and end up with a different theory. In any case, such a theory
would lead to a conserved 4-momentum derivable from Lreal. But this would no longer resemble that which we

conventionally recognize as 4-momentum. It would contain terms involving c(x, t). 
We do not want a theory that blatantly contradicts observed reality. Adopting something like Equation

16) might lead to consequences that would have been noticed long ago unless we arrange things (e.g. Κ ) in such
a way that those consequences would always be so small as to be imperceptible. And that would not lead to an
interesting  theory.  Also,  Equations  15)  already  put  severe  constraints  on  what  c(x,  t)  can  do.  Imposing any
further dynamical constraints on it might confine us to a very uninteresting theory. We are, perhaps, better off
regarding c(x,  t) as something like a physical "constant" that varies according to its own unknown physics. If
c(x,  t)  does  not  become very large in  very many places, we might  well  not  have noticed it.  Also it  seems to
seldom fluctuate much over atomic time and distance scales. If it did, this could result in easily noticed distur-
bances to our atoms' behavior. 
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The Importance of Congruence Between the Realities.

Referring back to Equations 15) we notice some interesting things. The 4-gradient of c(x, t) is constrained only

where J Μ or J
� Μ

 differs from zero. Where they do not, c(x, t) is free to change as it wishes. Suppose that both J Μ

and J
� Μ

differ from zero in some area. This places two constraints on the 4-gradient of c(x, t) and would restrict

more stringently the forms an interaction could take. Of course, if J Μ = J
� Μ

 the number of constraint equations
drops back to one. It should then be easier for an interaction to take place. The less different the two realities
are the more freedom c(x, t) has to change. And, if we want to consider a kinetic term (as in Equation 16)) we
see that  the source term, Equation 17),  would usually average out to zero if  the 'red'  and 'green' worlds were
completely  different  and  unrelated.   If  the  two  realties  are  rather  similar  the  source  term  may have  a  better
chance of becoming large in certain locations.

Is Such a Theory Renormalizable?

I consider this in the simple case where c(x, t) may be treated as a constant over the volume of spacetime where
the  interactions  of  interest  are  taking  place.  The  'red'  and  'green'  photon  loops  that  figure  in  calculating  the
vertex correction and electron self-mass terms sum to results that differ in no essential way from those encoun-
tered  in  normal  QED.  Of  course,  there  are  twice  as  many particles  to  keep in  mind.  But,  otherwise,  nothing
important is changed and we can renormalize these in the usual way.

The fermion loops that renormalize the photon propagators – the vacuum polarization terms – require a
more careful treatment. These loops can and do link incoming 'red' photon lines to outgoing 'green' photon lines
and vice-versa. There is, accordingly, some amplitude for a 'red' photon to be created at one vertex only to be
absorbed as a 'green'  photon somewhere else. We were very happy when the second-order diagrams in  fig.  1
showed that  'red'  electrons would see each other's charges as e  no matter what c(x,  t)  did.  We are less happy

when we inspect fig. 2  and find the intrusion of an additional factor 4 IcHx, tL2/(1 + cHx, tL2) coming from the

one-loop diagrams. This problem shows up at the e4 order. The closed loops diverge and must be regularized.
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                                                                                      fig.2

A propagator represents the amplitude for a particle to be created at one spacetime point and absorbed
at another. It is meant to be evaluated in its free-field theory and no interactions should be allowed for it once it
has been renormalized. A 'red' photon must therefore always be absorbed as 'red.' But there are many ways in
which this can happen. Let us look at fig. 3. At the one-loop level everything seems fine. But we see now just

what the problem is at the two-loop level. Again we find the factor 4 IcHx, tL2/(1 + cHx, tL2).  By renomalizing

this situation (there are a variety of methods we can imagine using) we absorb it into the new physical charge,
ephys,  which  is  what  we  actually  measure  in  the  laboratory. This  accommodates the  problem that  seemed  to

stem from fig. 2. Electron scattering will then proceed through finite diagrams just like the (loop-less) two left-
most diagrams in fig. 1. but with e replaced by ephys.  'Red' virtual photon lines will stay 'red' and 'green' ones

'green.'  It should be pointed out that a real (kΜ  kΜ  = 0)  photon will  always retain its  color. Moving at c these

states are frozen, so to speak, in time.
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Actually, there is an easier way of arriving at the same result. We can simply rotate AR and AG into (A1

+ A2)/ 2  and (A1 - A2)/ 2 , respectively. (We are not mixing anything or doing any strange physics here. We
are just giving new names to old things.) Re-expressed in terms of these fields we get a new Equation 3). The
kinetic  terms  for  the  AR,G  fields  stay,  formally,  unchanged.  The  newly  written  fermionic  terms  give  rise  to

vertices  such  that  A1  photon  lines,  although  they  may  be  interspersed  with  'red'  and  'green'  electron  loops
(whose net contributions always sum to one), never turn into A2  lines, and likewise for the A2. So both the A1

and  A2  photon lines  may be renormalized exactly  as  they are  in  normal  QED. After  this  the  result  is  simply
rewritten in terms of AR  and AG.  The renormalization of the Type-II theory is particularly simple since, here,

'red' and 'green' photon lines can never interconvert. We can renormalize this theory in the ordinary way.

c(x, t) under Various Circumstances.

Suppose that both worlds are always identical – ΨR = ΨG, AR = AG, always. Equation 3) now describes a situa-

tion void of any distinction between 'red' and 'green' particles. It describes a single reality with an electromag-
netic coupling constant that depends on c(x, t). If this is constant everywhere we can just reset e and recover
perfectly normal physics. If c(x, t) varies we end up with a strange world in which the electromagnetic interac-
tion changes from place to place. We do not seem to live in such a world and this simple possibility is ruled out
unless c(x, t) never varies by more than an unnoticeable amount. Dropping the requirement that ΨR = ΨG leads

to the same situation but with 'red' and 'green' electrons that do not behave as identical particles but still interact
through a common photon. We are better off assuming that our two worlds are not constrained to be identical.

If c(x, t) were to become just slightly different from zero over a defined area and time, 'red' observers
within this area would be able to "see" the 'green' and 'red' photons emitted by vibrating 'green' electrons in the
'green' world. These would become more apparent as c(x, t) increased. Now it might be possible for cHx, tL to
become less than zero. If this happened the 'green' elections would appear to be positively charged – a strange,
but not unimaginable, circumstance. 

Even if c(x, t) became different from zero in some spacetime volume, this would not affect the local
electromagnetic interactions between 'red' particles and other 'red' particles, and 'green' ones with 'green' in that
volume. If we lived in the 'red' reality, we would not see our 'red' atoms fall apart if c(x, t) changed. This is, of
course, very encouraging if we want this idea to be considered plausible. But this is not to say that c(x, t) would
be devoid of observable consequences, even in our 'red' world. Consider the decay of 'red' positronium. We can
easily write down the necessary Feynman diagrams. We find that the overall rate of its decay, in an area where

c(x, t) is non-zero, is reduced by a factor of 1 - cHx, tL2/I1 + cHx, tL2M2
. In particular, the rate at which it will

decay into two 'red' photons is reduced by a factor of 1/I1 + cHx, tL2M2
. If we are 'red' observers looking at all

this from outside the high c(x, t) area we will not be able to see the green photons resulting from this process.
We will only see our 'red' positronium decaying, somewhat slowly, into normal 'red' photons sometimes, into
only one 'red' photon other times, and, occasionally, into nothing at all! A rather disconcerting, but potentially
observable, situation. In this situation neither 4-momentum nor spin will always be conserved, according to the
'red' observer. 

Suppose that a 'red' observer ventured into a spacetime volume where c(x, t) = 1. Within that volume
his atoms would function normally. If their electrons vibrated they would they would give off 'red' and 'green'
photons in equal measure. He could also see 'green' objects, within that area, just as if they were his familiar
'red' objects. Suppose that, outside this area, far away, where c(x, t) = 0, there are vibrating 'red' and 'green'
electrons which, of course, are giving off only 'red' and 'green' photons, respectively. The observer inside the
c(x, t) = 1 region would be able to see the light from both of these. But its intensity would be reduced by a
factor of 1/2 in both cases.

Let us examine a still more radical case. Imagine that c(x, t) ® ¥ in a small spatiotemporal region with
it being zero everywhere without. There a 'red' observer could respond only to 'green' photons. If he ventured
into such a region he would see himself surround by the 'green' reality – he would respond to the 'green' pho-
tons hitting his retina. He could no longer respond to 'red' photons from "his" world. An observer in the 'green'
reality could see him since, as the electrons in his body vibrated, they would give off 'green' photons. If he left
this region, or if c(x, t)  returned to zero, neither could see the other again. We might wonder if he could
breathe in this region – maybe there is no oxygen in the other reality. Surely he could, as 'red' oxygen mole-
cules would diffuse into his region where they would interact with him as 'green' molecules which his now-
'green' lungs could process. Perhaps he sees a friendly 'green' observer in the other reality. Could he shake
hands with him? No. If he tried to reach his hand out of the interaction region it would simply find itself back
in 'red' reality and be able to interact only with 'red' things. But suppose this strange region of spacetime were
surrounded by a small area of milder interaction where c(x, t) was only, say, about 1. There both 'red' and
'green' atoms could interact and a handshake might be possible. It would probably be a strange affair. The
forces that repel my hand as I try to pass it through yours are a complicated combination of electrostatic, disper-
sion, and Pauli exchange forces. These latter would be absent since 'red' and 'green' fermions are not identical. I
am unsure what form an interaction between 'red' and 'green' matter would take under macroscopic circum-
stances such as these. But it would be peculiar. 

Recalling the Type-II theory we might think it was without any observable consequences. But such is
not the case. If a 'red' observer is in an area where c(x, t) = 0 and, far away in an area where c(x, t) is rather
large, a green electron is vibrating that observer will be able to see the 'red' photons it is emitting. If he wan-
dered into the c(x, t) ® ¥ region described above he would also see himself surrounded by the 'green' reality.
But he could never, possibly, shake hands with the friendly 'green' observer – c(x, t) would always be the same
in the area where their hands tried to interact therefore no interaction could be possible.
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The Standard Model.

It is of interest to see whether this idea can be generalized to a more realistic physical model. We will examine,
briefly, the Standard Model. We will employ the notation familiar from (2). 

Since we are considering two realities we just  double the Lagrangian to include both the 'red'  and
'green' fermion fields. More interesting is Lscalar - the one that contains the Higgs boson. There will now be two

of these - a 'red' one and a 'green' one. They will share the same properties and symmetry-breaking V[j] poten-
tial and couple in the usual way to the gauge fields of their own color. We will assume that, when c(x, t) differs

from zero, all the gauge fields transform according to fR ® ( fR + c(x, t) fG) � I1 + cHx, tL2M1�2
 and vice-versa

for the fGs both in respect of Lscalar and the Lagrangians that describe the 'red' and 'green' fermionic fields. The

kinetic terms for the gauge fields are, as before, left unchanged. 
What results is a theory that differs from the conventional Standard Model in only two ways (besides

the obvious fact that there are now two colors of each particle to keep track of). We end up with interaction
terms from Lfermion that give rise to vertices where, for instance, a 'red' neutrino goes in emerging as a 'red'

electron and a 'green' W +. A similar analysis pertains as in fig. 1. From Lscalar (both 'red' and 'green' together)

comes the new term:

18)   4 c(x, t)/(1+ cHx, tL2) [(g'2+ g2) ZRΜ ZG
Μ + g2 (WR

-
Μ WG

+Μ
 + WG

-
Μ WR

+Μ
)]

which we are not sure how to interpret physically. It is encouraging to see that the 'red' and 'green' physical
photons resulting from this variation of the Standard Model do not acquire any mass or couple in abnormal
ways. And the masses of the other particles are not affected by c(x, t).

An observer scattering 'red' neutrinos off of 'red' electrons would see no change regardless of what c(x,
t) did. But there would still be consequences if c(x, t) changed. Consider the Β-decay of a 'red' neutron. It is
mediated by the release of a W - boson from a 'red' d quark which then becomes a 'red' u quark. This boson then
becomes an electron and an antineutrino. If c(x, t) were different from zero the decay into a 'red' electron and
antineutrino would proceed unchanged. But decay could also proceed through different channels into a 'green'

electron  and  antineutrino  pair.  So  the  rate  of  Β-decay  would  be  increased  by  a  factor  of  1  +  4

cHx, tL2/I1 + cHx, tL2M2
. If the resulting 'green' electron and antineutrino moved out into a c(x, t) = 0 area the 'red'

physicist, looking at all of this, would conclude that a neutron just turned into a proton without producing
anything.

The Common Coordinate System and General Relativity.

Things would only become complicated if the 'red' and 'green' spacetimes were to have different geometries so
we need look at this problem in a different manner. We should suppose, instead, that there is only one metric
and one spacetime in which both our realities live. This common metric would have to be derived equally from
both the 'red' and 'green' worlds according to GΜΝ = 8 Π (TRΜΝ + TGΜΝ). In looking at it this way we remain close

to the original interpretation of a common coordinate system. The 4-divergence of the right-hand side of the
foregoing equation must vanish. So the sum of the 'red' and 'green' stress-energy tensors would be, in this sense
conserved. Although the divergence of each, considered individually, might not be zero. Of course, we can
easily extend this theory to encompass as many additional realities as we might like. If there were two extra
realities we would need three c(x, t)s, and more if there were others. (This is true, also, for the Type-II theory.)   

 But this begs the obvious question why we do not see gravity from seemingly non-existent planets or
light being bent by invisible stars. We would have to suppose that we are fortunate and there just aren't such
stars and planets nearby us in the other reality. On the other hand, if c(x, t) = 0 in almost all places and times,
we might regard the gravitational contribution from this invisible other reality as a plausible candidate for dark
matter. Now the amount of dark matter that seems to be present exceeds the obvious matter by about an order
of magnitude. We could explain this by saying that the 'green' universe contained quite a bit of matter. We
could, equally-well, suppose that there are something like five other universes, each similar to our own. The
differently colored particles would share many of the attributes of WIMPS. The distribution of these types of
matter would, presumably, depend on conditions existing at the initial singularity. Were the two or more types
homogeneously mixed we could expect to find more of these other worlds around us. If the initial conditions
were not homogeneous most of the other kind(s) of matter might be concentrated very far away (3).
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matter would, presumably, depend on conditions existing at the initial singularity. Were the two or more types
homogeneously mixed we could expect to find more of these other worlds around us. If the initial conditions
were not homogeneous most of the other kind(s) of matter might be concentrated very far away (3).

Conclusions.

This theory is by no means unique in proposing the existence of other realities. It is, however, rather unusual in
that it provides a mechanism whereby two realities could actually interact in such a manner that neither would
see any fatal disruption to its own physics but might, on occasion, encounter intrusions from the other. (This
might go some considerable way towards addressing the epistemological arguments that are often made against
parallel realities.)  The form such intrusions might take has been explored in the Β-decay and positronium
examples. Certainly, others could be imagined. An interesting feature that many such examples have in com-
mon is that, if observed, they could easily be written off as detector malfunctions; they would likely not be
regarded otherwise unless they were being looked for. Now c(x, t) does not seem to get very large in very many
places very often. But it could do so, here and there, occasionally, and go pretty-much unnoticed. And it has
never been looked for at all. 

References and Footnotes.

1)   See, for instance, https://en.wikipedia.org/wiki/Multiverse.

2)    Quigg, C.  Gauge Theories of  the  Strong,  Weak, and Electromagnetic Interactions,  Benjamin/Cummings,
1983.

3)    I  might  be  asked whether  we should  regard this  extra  reality, and  our  own,  as  Everett  branches derived
from a  common past.  This  might  not  seem an  unreasonable possibility (assuming that  Everett  is  right);  both
realities  would  share  the  same  laws  of  physics  and,  automatically,  a  common  coordinate  system.  And  both
realities  would  be quite  similar  –  something we have suggested may be conducive to c(x,  t)  becoming large.
But  this  is  not  plausible  for  a  simple  reason:  Suppose  we  place  the  quantum  mechanical  measurement  that
bifurcates  these  branches  at  some  point  in  the  common  Minkowski  coordinate  system  and  draw  a  future-
pointing light cone from it. The distinction between 'red' and 'green' worlds only occurs within this light cone.
Outside, it would be a single 'monochrome' world. Suppose that a 'monochrome' particle were to move into the
aforementioned light cone. What would happen? Would it turn 'red' or 'green'? If so, into which and why? If it
stayed 'monochrome' how would it interact with the colored particles? There is nothing in our Lagrangian that
tells us this. We could, instead, suppose that there were always two 'red' and 'green' realities with things outside
the  light  cone  being  the  same.  But  then  we  end  up  with  the  unacceptable  situation  where  the  charge  of  our
electrons changes with c(x, t). It is also worth mentioning, in relation to the dark matter argument, that gravita-
tional influences from Everett 'other worlds' have been looked for unsuccessfully (Page, D. N., Geilker, C. D.
Phys. Rev. Lett. 47, 979 (1981)).

12  QED5.nb



1)   See, for instance, https://en.wikipedia.org/wiki/Multiverse.

2)    Quigg, C.  Gauge Theories of  the  Strong,  Weak, and Electromagnetic Interactions,  Benjamin/Cummings,
1983.

3)    I  might  be  asked whether  we should  regard this  extra  reality, and  our  own,  as  Everett  branches derived
from a  common past.  This  might  not  seem an  unreasonable possibility (assuming that  Everett  is  right);  both
realities  would  share  the  same  laws  of  physics  and,  automatically,  a  common  coordinate  system.  And  both
realities  would  be quite  similar  –  something we have suggested may be conducive to c(x,  t)  becoming large.
But  this  is  not  plausible  for  a  simple  reason:  Suppose  we  place  the  quantum  mechanical  measurement  that
bifurcates  these  branches  at  some  point  in  the  common  Minkowski  coordinate  system  and  draw  a  future-
pointing light cone from it. The distinction between 'red' and 'green' worlds only occurs within this light cone.
Outside, it would be a single 'monochrome' world. Suppose that a 'monochrome' particle were to move into the
aforementioned light cone. What would happen? Would it turn 'red' or 'green'? If so, into which and why? If it
stayed 'monochrome' how would it interact with the colored particles? There is nothing in our Lagrangian that
tells us this. We could, instead, suppose that there were always two 'red' and 'green' realities with things outside
the  light  cone  being  the  same.  But  then  we  end  up  with  the  unacceptable  situation  where  the  charge  of  our
electrons changes with c(x, t). It is also worth mentioning, in relation to the dark matter argument, that gravita-
tional influences from Everett 'other worlds' have been looked for unsuccessfully (Page, D. N., Geilker, C. D.
Phys. Rev. Lett. 47, 979 (1981)).

QED5.nb  13


