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Abstract. I evaluate Schurz’s proposed meta-inductive justification of induc-

tion, a refinement of Reichenbach’s pragmatic justification that rests on results

from the machine learning branch of prediction with expert advice.
My conclusion is that the argument, suitably explicated, comes remarkably

close to its grand aim: an actual justification of induction. This finding, how-

ever, is subject to two main qualifications, and still disregards one important
challenge.

The first qualification concerns the empirical success of induction. Even

though, I argue, Schurz’s argument does not need to spell out what inductive
method actually consists in, it does need to postulate that there is something

like the inductive or scientific prediction strategy that has so far been signif-
icantly more successful than alternative approaches. The second qualification

concerns the difference between having a justification for inductive method

and for sticking with induction for now. Schurz’s argument can only provide
the latter. Finally, the remaining challenge concerns the pool of alternative

strategies, and the relevant notion of a meta-inductivist’s optimality that fea-

tures in the analytical step of Schurz’s argument. Building on the work done
here, I will argue in a follow-up paper that the argument needs a stronger

dynamic notion of a meta-inductivist’s optimality.

1. Introduction

Schurz (2008; 2009; most recently, 2018; 20xx) proposes a justification of induc-
tion based on the provable optimality of meta-induction, induction at the level of
competing methods of inference.

1.1. Schurz’s proposal. The naive reply to the problem of induction is that in-
duction is justified because it has been successful in the past. Naive, Hume showed,
because this suggested justification must be circular: it requires the principle of
induction itself. Either that, one can qualify, or it must rest on a higher principle
of induction: the justification of object-induction at the level of observed events
requires meta-induction at the level of inference methods (see Skyrms, 2000, 35ff).
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But then induction at this level would require justification, setting in motion an
infinite regress.

Now Schurz’s idea is essentially that this regress may be halted directly at the
second level: his idea is that it is possible to give a purely deductive or analytical
justification of meta-induction, induction at the level of methods. This deductive
justification comes in the form of mathematical results on the optimality of meta-
inductive strategies in the setting of sequential prediction, results from the field of
prediction with expert advice (Littlestone and Warmuth, 1994; Vovk, 1990, 1998;
Cesa-Bianchi et al., 1997; for overviews see Cesa-Bianchi and Lugosi, 2006; Vovk,
2001; Grünwald, 2007, 573ff).

Furthermore, “this analytic justification of meta-induction would at the same
time yield an a posteriori justification of object-induction in the real world: for we
know by experience that in the real world, noninductive prediction strategies have
not been successful so far, hence it would be meta-inductively justified to favor
object-inductivistic strategies” (Schurz, 2008, 282).

Schurz’s proposal is a refinement of the basic idea behind Reichenbach’s at-
tempted vindication of induction (Reichenbach, 1933, 421f; 1935, 479ff; 1938, 348ff;
Feigl, 1950; see Salmon, 1967, 52ff, 85ff; Skyrms, 2000, 44ff). This idea is that, while
we cannot deductively show induction to be reliable or guaranteed to be successful,
without the help of question-begging assumptions on the ‘uniformity of nature,’ we
might be able to show deductively that induction is optimal : it is guaranteed to be
successful, no matter the course of nature, if any method is.

1.2. Reichenbach’s pragmatic justification. Reichenbach’s proposal was based
on a particular rule of induction, that was motivated by his thoroughly probabilistic
epistemology and his frequentist interpretation of probability. This induction rule,
best known as the straight rule, infers probabilities of future events through induc-
tion by enumeration: it estimates the limiting relative frequencies by the current
relative frequencies.

Now Reichenbach’s argument is as follows. Either nature is in fact uniform—a
limiting relative frequency exists—or it is not. If it is, then the inductive method
(the straight rule) will be successful: it will converge on the correct limiting fre-
quency. If it is not, if no limiting relative frequency exists, then obviously no
method will be successful in this sense. Hence the inductive method is successful if
any strategy is.

Clearly, there are many weak spots in this argument. There is the sweeping
reduction of scientific inference to estimating limiting relative frequencies (Sellars,
1964, 212ff; Skyrms, 1965, 254ff); there is the fact that there are infinitely many
other methods that are likewise guaranteed to be successful in converging to an
existing limiting relative frequency (Reichenbach, 1938; Salmon, 1957). But most
destructive to the argument is the fact that it is simply not true that no method can
be successful if there is no limiting relative frequency (Herz, 1936). After all, event
sequences that never converge on a particular relative frequency of events might still
be successfully—even perfectly—predicted by one or another method: because such
sequences might still have much structure, or indeed because we cannot exclude the
‘method’ of a clairvoyant with perfect foresight.

To this last objection Reichenbach (1938, 357ff) replied that a successful such
alternative method has a high relative frequency of successful predictions, which
implies that his inductive method posits that this method’s predictions will continue
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to be accurate (by enumerative induction the limiting relative frequency of this
method’s predictions being successful is inferred to be high). Reichenbach did not
proceed to make this idea more precise, though: and indeed it does not seem feasible
to reconcile the different levels at which his straight rule is now working—both the
object-level of the events and the meta-level of other methods—in such a way that
his strategy can be vindicated as desired (Skyrms, 1965, 260f; 2000, 44ff; Schurz,
2008, 281).

1.3. Schurz’s proposal; this paper. By clearly separating object-induction on
the level of events and meta-induction on the level of prediction strategies, Schurz
manages to give a precise form to Reichenbach’s fundamental observation that
induction picks up the past success of alternative methods. By combining this with
the empirical fact of the object-inductive strategy’s success, Schurz claims to have
derived a proper, noncircular justification of object-induction.

Can Schurz’s proposal be considered successful? In this paper I work towards an
answer by reconstructing the argument, and clarifying and filling in aspects that, I
think, are somewhat opaque or missing in Schurz’s own presentation. My conclusion
will be that the argument, suitably explicated, goes a long way; but there are some
qualifications. One qualification is the need for a very strong empirical postulate on
the success of the scientific method, that, I will claim, we must identify the object-
inductive strategy with. Another is that the argument cannot provide justification
for the object-inductive strategy ; at best it can give justification for following the
object-inductivist, or the scientific method, for now. I also identify a subtle yet
important issue having to do with the relevant pool of alternative strategies, that
I leave for further investigation in a follow-up paper.

Another aim of this paper is to provide a brief and accessible overview of some
main results and insights from prediction with expert advice. While this approach
is as of yet little known outside of the theory of machine learning, its core ideas,
particularly the optimality of aggregating experts’ predictions based on their past
predictive success, promise to offer an interesting new perspective on opinion pooling
in social epistemology (see Dietrich and List, 2016). In particular, I will embed these
results in a more familiar Bayesian perspective.

1.4. Overview of this paper. First, in section 2, I will discuss the framework of
sequential prediction, including the notion of prediction game (the specification of
possible events and predictions, sect. 2.1, and a loss function, sect. 2.2), the goal of
designing an optimal strategy (sect. 2.3), and its adequacy for studying the problem
of induction (sect. 2.4). I will give special attention to the probabilistic prediction
game.

Next, in section 3, I will give a detailed reconstruction of Schurz’s argument.
The first step (sect. 3.1) is the analytical optimality of meta-induction: here I
will explain the relevant definitions of meta-inductive strategies and the relevant
results regarding their optimality, and I will show how this body of theory can be
understood as generalizing the Bayesian approach to prediction.

The second step (sect. 3.2) is the empirical success of object-induction: here I
will discuss the problem of the description of induction, and argue for a high-level
view where the object-inductive strategy is identified with scientific method, that
stands in competition with various nonscientific methods.
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The conclusion of Schurz’s argument (sect. 3.3) is that the optimal meta-inductive
strategy confers justification to the most successful strategy so far, the object-
inductive strategy. Here I will, first, discuss whether the meta-inductivist’s op-
timality actually amounts to a justification for it. Second, I will discuss whether
justification for the optimal meta-inductive strategy indeed goes over to justification
for object-induction. I conclude in section 4.

2. The framework of prediction

In this section I set out and motivate the framework of sequential prediction that
is presupposed throughout the paper. My presentation of this framework is fully
based on existent theory, as reported in the textbook by Cesa-Bianchi and Lugosi
(2006) and in Schurz’s papers. I stay as close as possible to Schurz’s presentation
and notation, but also deviate from it where I think this makes things more clear.

2.1. The prediction game: events and predictions. Schurz defines a predic-
tion game as a pair (yyyω,Π) of a history yyyω and a pool Π of prediction strategies.
It makes sense to extend this definition to include a third component, the loss
function; this I will discuss in sect. 2.2.

A history yyyω is an infinite sequence of events. Events are identified with values
in some set Val of possible values; I will provide examples below. Write yn for the
n-th element of yyyω, or the event in round n of the game (n ∈ N>0).

Predictions are elements in some set Valpred; again I will provide examples below.
A prediction strategy, an element of the pool Π, specifies in each round a prediction
about the next event. Write predn(P ) for the prediction of strategy P for round n.

Schurz in (2008; 2009) discusses two different types of prediction games: the
binary and the real-valued prediction game.

2.1.1. Example: the binary prediction game. Here the events can take one of two
possible values, 0 and 1; and the predictions are simply categorical guesses about
the possible values, 0 or 1. That is, Val = Valpred = {0, 1}.

This is the prediction game Schurz (2004) discusses in an early exposition of his
proposal. However, this simple prediction game is complicated in the sense that it
is impossible to specify optimal strategies, as explained below. This is perhaps why
Schurz in (2008; 2009) also considers the following more general game.

2.1.2. Example: the real-valued prediction game. In this game both the events and
the predictions take real values in the range [0, 1]. That is, Val = Valpred = [0, 1].

As explained in more detail below, for this game we can establish optimality
results. The reason is that we can get the most out of hedging strategies, that
predict by taking some weighted mean of the predictions of all the strategies in
the pool: namely, for real-valued predictions, and unlike binary predictions, any
weighted mean is still a valid prediction.

2.1.3. Example: the probabilistic binary prediction game. But this we can already
achieve by allowing real-valued predictions in the binary prediction game. Formally
this gives the game where Val = {0, 1} and Valpred = [0, 1].

A likely interpretation is that we have introduced the possibility of random-
nization in the binary prediction game: a prediction strategy now has access to
a random device, which in each round it can use to toss a virtual coin with any
desired bias p ∈ [0, 1], and give out prediction 1 if it lands heads and 0 if it lands
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tails. Note, however, that on this interpretation we are still in the categorical bi-
nary prediction game; the difference is that we have allowed prediction strategies
to be random variables. Concretely, this means that the bounds we derive below
are applicable to the binary prediction game only in expectation (see Cesa-Bianchi
and Lugosi, 2006, 67ff).

The alternative interpretation is that a strategy directly issues probabilistic rather
than categorical predictions. That is, a prediction strategy issues elements in
Valpred = [0, 1], where we interpret the latter as probabilities (for the next out-
come being 1, say). In particular, the loss function scores the difference between
the actual outcome and the issued probability, sect. 2.2 below.

This probabilistic binary prediction game constitutes, I think, a natural general
framework of prediction (also see sect. 2.4 below). It is therefore noteworthy that
this game does not receive much attention in Schurz’s published papers: less atten-
tion, in any case, than possible ways of simulating the hedging strategy in the game
where predictions must be categorical. Thus Schurz (2017, 828f; 2018, 3890) consid-
ers two possibilities: the aforementioned introduction of randomnization (2016, 48),
and the use of a collective of meta-inductivists, the categorical predictions of which
we then take the mean value of (2008, 298ff; 2009, 214f). Schurz prefers the second
solution to the interpretation of randomnization, making the valid point that the
latter “is not entirely general since it presupposes that the events are probabilisti-
cally independent from [the meta-inductivist’s] choice of prediction,” (2017, 828; cf.
Shalev-Shwartz and Ben-David, 2014, 252). Still, the introduction of a collective of
meta-inductivists is ultimately a way of simulating single probabilistic predictions,
and, due to rounding-off effects (see Schurz, 2008, 299; 2009, 215), an imperfect
way at that. It seems to me that both the choice of game and Schurz’s choice of
evaluating the mean success of a collective of strategies are modeling choices (cf.
Schurz, 2009, 215), that are less general and less elegant than evaluating the loss
of a single meta-inductivist that is allowed probabilistic predictions.

2.2. The prediction game: the loss function. Strategy P , when making pre-
diction predn(P ) = pred ∈ Valpred for round n, suffers, when the outcome is re-
vealed to be yn ∈ Val, a loss `(pred, yn).

That is, a loss function ` : Valpred ×Val→ [0,∞) quantifies how much a predic-
tion was off in light of the actual outcome. Assuming that the function is nonneg-
ative, that it returns 0 in case of the best possible prediction given the outcome,
and that it is increasing in divergence between the prediction and the outcome, we
are still left with much freedom in choosing a particular function.

2.2.1. Example: the zero-one loss function. Defined by `0/1(pred, y) = 0 if pred = y
and `(pred, y) = 1 otherwise, this is an obvious loss function in the categorical
binary prediction game.

2.2.2. Example: the absolute loss function. Defined by `abs(pred, y) = |pred − y|,
and called the natural loss function by Schurz, this is indeed an obvious loss function
in the real-valued prediction game. Note, moreover, that this function reduces to
the zero-one loss function in the categorical binary prediction game.

The absolute loss function can, of course, also be used in the probabilistic binary
prediction game. In fact, in the categorical prediction game that allows strategies
the use of randomnization, the p-expected zero-one loss coincides with the absolute
loss `abs(p, y) = |p − y| evaluated on probabilistic prediction p ∈ [0, 1]. It is in
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this sense that one might say that the categorical binary prediction game with
randomnization and the probabilistic binary prediction game coincide. However,
to repeat, the difference is that in the first case we are dealing with expected losses,
whereas in the second case the loss function deals with probabilistic predictions
directly.

The absolute loss function does fail to satisfy a usual requirement on loss func-
tions in a probabilistic context. Namely, the absolute loss function is not proper :
whenever p > 0.5 (respectively, p < 0.5), the p-expected loss of prediction q is
minimized by the extreme prediction q = 1 (by q = 0), rather than by p itself.

2.2.3. Example: the square loss function. Defined by `sq(pred, y) = (pred − y)2,
this loss function is proper.

2.2.4. Convex bounded loss functions. The absolute and the square loss function
are both convex in their first argument: for all γ ∈ [0, 1], predictions pred1,pred2 ∈
[0, 1] and outcomes y, it holds that

`(γ · pred1 + (1− γ) · pred2, y) ≤ γ · `(pred1, y) + (1− γ) · `(pred2, y).

In words, the loss of a prediction that is a weighted mean of several predictions, is
no worse than the weighted mean of the losses of these individual predictions. This
is an important technical property that underlies the below results on the existence
of optimal strategies; strategies that indeed proceed by taking weighted averages of
all available predictions.

The absolute and the square loss function are also bounded, meaning that their
range is the interval [0, 1]. The first main optimality result that I discuss below
(sects. 3.1.2–3.1.4) covers all convex bounded loss functions.

2.2.5. Example: the logarithmic loss function. Defined by

`log(pred, y) =

{
− ln(1− pred) if y = 0

− ln pred if y = 1
,

this is a prominent loss function (Cesa-Bianchi and Lugosi, 2006, 247ff), for its
technical properties as well as its information-theoretic interpretation (see, e.g.,
Grünwald, 2007; Sterkenburg, 2018, 137ff), and, as I will discuss in sect. 3.1.6
below, for its strong connection to Bayesian prediction.

The logarithmic loss function is proper and convex, but it is not bounded. (In-
deed, the loss of extreme prediction pred = 0 on outcome y = 1, and pred = 0 on
y = 1, is infinity.) As such, it falls outside of the scope of the below optimality
result on convex bounded loss functions—but this is no matter, because, as I will
explain below too (sects. 3.1.5–3.1.7), it actually enables stronger results.

2.2.6. Cumulative losses and loss rates. Schurz defines the score of strategy P in
round n by s(predn(P ), yn) := 1−`(predn(P ), yn), and the absolute success absn(P )
of P by the conclusion of round n as the sum

∑n
i=1 s(predi(P ), yi) of its scores up

to n. It is, however, more usual and indeed more convenient to evaluate things
directly in losses, so that I will rather consider the absolute or cumulative loss
given by Lossn(P ) :=

∑n
i=1 `(predi(P ), yi). Likewise, I define (parallel to Schurz’s

success rate) the loss rate lossn(P ) of P by n as the average Lossn(P )/n of its losses
up to n.



THE META-INDUCTIVE JUSTIFICATION OF INDUCTION 7

2.3. The goal: an optimal strategy. Given a pool Π of prediction strategies, we
aim to design a meta-inductive strategy MI that, having access to the predictions
of all the other strategies, predicts in such a way that it is optimal with respect
to Π. To a first approximation, strategy MI is optimal with respect to Π if by
following it we will always do about as good as we possibly could have done, given
that the strategies in Π represent what we could have done. In other words, MI is
optimal if it will always be about as successful as the most successful strategy in
the pool. Here ‘always’ means: on every history of events. Importantly, we make
no assumption whatsoever on possible histories. Another way of saying this is that
we aim to derive worst-case guarantees.

What should ‘about as successful’ mean? As a start, we can demand that MI
is at least as successful as any P ∈ Π in the long run. Let us define (parallel to
Schurz’s maximal success rate) by minlossn := minP∈Π∪{MI} lossn(P ) the minimum
loss rate among all the strategies (including the meta-inductivist itself) by round
n. Then we can demand that MI’s loss rate—its average loss per round—converges
to no more than the lowest loss rate achieved by any of the strategies, in the long
run:

(1) lim
n→∞

(lossn(MI)−minlossn) = 0.

(Again, there is no mention of the actual history: this is because it should hold for
all histories.)

We will see below that we can indeed design strategies that achieve (1), at least
for finite Π. This is still, however, a relatively weak demand: long-run convergence
does not guarantee anything about the performance of the meta-inductivist by any
given finite time. It does not guarantee anything about performance in the short
run—or the speed of convergence.

We can express speed of convergence in terms of a function f , that depends on
n and inevitably also on the size K := |Π| of the pool of strategies, such that for
all rounds n,

(2) lossn(MI) ≤ minlossn + f(n,K).

The function f bounds what we call the regret rate: it bounds MI’s surplus loss
rate up to n, as compared to the loss rate it would have incurred if it would always
have mimicked the strategy in Π that was, in hindsight, the most successful up to
n. The regret rate, to give an interesting optimality bound, needs to be decreasing
in n (or it would not even guarantee (1))—and the faster the better.

Work in the field of prediction with expert advice has indeed led to meta-
inductive algorithms that satisfy (2) for quickly decreasing f (Cesa-Bianchi and
Lugosi, 2006). For the general class of convex bounded loss functions we can

achieve an f(n,K) with a main term of the form
√

lnK/n, giving a regret rate
that decreases in 1/

√
n (sects. 3.1.2–3.1.4). Moreover, for an important subclass of

convex loss functions, f is of the form (lnK)/n, giving a regret rate that decreases
in 1/n (sects. 3.1.5–3.1.7). The latter indeed entails a finite constant bound (only
depending on K) on the difference between MI’s and any P ’s total losses, or, for
any P , the cumulative regret relative to P (of MI for not having mimicked P from
the start)

(3) Regretn(P ) := Lossn(MI)− Lossn(P ).
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In all of the following, when I loosely use the term ‘optimality,’ it is these kind
of short-run guarantees that I have in mind.

2.4. The prediction game and the problem of induction. The previous set
out the framework of the prediction game. It is within the confines of this framework
that Schurz’s proposed justification of induction proceeds. But, of course, there is
the concern that this framework of prediction falls short of capturing the essence of
inductive inference, and so a justification within this framework falls short of the
real goal: to justify inductive or scientific reasoning (cf. Arnold, 2010, 591).

One can, to begin with, object that scientific inquiry consists not so much in
producing forecasts as in inferring general conclusions: not so much in prediction
as in the formulation and the confirmation of hypotheses and theories. One can thus
object to the generality of the problem setting of prediction; one can further object
to the way predictive inference is rendered in our framework. Dawid (1984, 279),
when introducing what is essentially our probabilistic prediction game under the
header of “prequential forecasting,” is frank about its limitations: “[t]he data may
arrive en bloc, rather than in a natural order; if they come from a time-series, it may
be impossible, or not obviously desirable, to analyse them at every point of time, or
to formulate one-step ahead forecasts; and the restriction whereby all uncertainty
about the next observation is to be encoded in a probability distribution, while
acceptable to Bayesians, may not appeal to others.”

Nevertheless, while there certainly is a case to be made that prediction is only
a subsidiary part of science, there is also an important opposed tradition, indeed
fashionable in many parts of machine learning today, that takes it that scientific
inference ultimately comes down to inductive inference from particulars to par-
ticulars, or predictive inference. Moreover, while our framework certainly cannot
accommodate everything there is to say about prediction, and particularly the
choice of a loss function introduces an arguably highly context-dependent element,
I think, and will assume in this paper, that the probabilistic prediction game, in
which we can demonstrate the desired optimality for a wide class of loss functions,
possesses a level of generality that lends significance to the conclusions we draw
from it: ultimately, hopefully, an actual justification of induction.

3. The argument

The proposed justification of induction proceeds by two steps: an analytical
proof that meta-induction, which favors the most successful available strategy, is
an optimal strategy (sect. 3.1), and the empirical fact that object-induction has
so far been the most successful strategy (sect. 3.2). From this is to follow the
conclusion that the optimal strategy would now proceed object-inductively, thus
justifying object-induction (sect. 3.3).

3.1. Step one: the analytical optimality of meta-induction. Here I explain
the “mathematical-analytic” justification of meta-induction (Schurz, 2008, 282),
that amounts to the definition of a meta-inductive prediction strategy and a theorem
about its performance. Again, my presentation of the relevant mathematics is fully
based on existing results in the field of prediction with expert advice.

3.1.1. Towards optimality: follow the leader or hedge your bets? The most straight-
forward meta-inductive strategy is the strategy that in each round simply issues
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the same prediction as the then most successful strategy in the pool (Schurz’s “sim-
ple meta-inductivist,” 2008, 285ff; or “imitate-the-best,” 2009, 207; elsewhere also
“follow-the-best-expert,” Cesa-Bianchi and Lugosi, 2006, 41ff; or simply “follow-
the-leader,” De Rooij et al., 2014, 1282). This simple strategy often works well;
specifically, it approaches the leader’s success if there are not too many alterna-
tions in which strategy is the leader (ibid., 1295; generalizing Schurz’s observation,
2008, thm. 1; 2009, thm. 1, that it works well if from some round on one and the
same strategy will always be best). However, in the worst case this strategy can
be very bad. It is very bad in case of an adversarial history that forces an endless
rapid change in which strategy is the best, so that the meta-inductivist is always
switching to a strategy that will then issue a bad prediction, making it perform sig-
nificantly worse than each strategy in the pool (Schurz, 2008, 285ff; Schurz, 2009,
208; De Rooij et al., 2014, 1282).

In fact, a similar kind of scenario shows that in the categorical binary predic-
tion game, no meta-inductive strategy can be optimal. Namely, in the categorical
game, recall, strategies must give as predictions either 0 or 1; so (assuming that in
each round there are at least two strategies with different predictions) the meta-
inductivist must each round wholeheartedly follow the predictions of some strategy
or strategies, and an adversarial history can then make these strategies fail, while
the others in the pool are in that round maximally successful. So already in the
simplest scenario of the two constant strategies that always make the same pre-
diction, an adversarial history can make the meta-inductivist fail in each round,
whichever strategy it then follows, while clearly for each possible history at least
one of the strategies must at least half of the time predict correctly (Cesa-Bianchi
and Lugosi, 2006, 67; Schurz, 2008, 298f.)

The method to avert such scenarios—a method unavailable in the categorical
game, but unlocked in the probabilistic game—is to ‘hedge your bets.’ That is,
you predict in each round by some weighted average of the predictions of all the
elements in the pool. This gives the weighted-average meta-inductivist wMI defined
by

(4) predn+1(wMI) :=
∑
P∈Π

wn(P ) · predn+1(P ).

From this perspective (the “hedge setting,” De Rooij et al., 2014, 1282, in termi-
nology going back to Freund and Schapire, 1997), the challenge comes down to
choosing appropriate weights. It turns out that, with the right choice of weights,
that depend on the strategies’ losses, any adversarial history that inflicts a high
loss rate on the meta-inductivist must also inflict a high loss rate on all the other
strategies. That is, such a weighted-average meta-inductivist always keeps its regret
rate low: it is an optimal strategy.

3.1.2. The attractiveness-weighted meta-inductivist. The weighted-average strategy
first discussed by Schurz (2008, 296; 2009, 213) is the attractiveness-weighted meta-
inductivist, denoted awMI. The weight it assigns to strategy P after round n is
determined by how much better P did in hindsight: what Schurz calls P ’s at-
tractiveness but what is better known as the meta-inductivist’s cumulative regret
Regretn(P ) relative to P , defined by (3) in sect. 2.3 above. The attractiveness-
weighted meta-inductivist only takes into account those P that actually were more
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successful than it; those that were not, hence would give regrets that are nonposi-
tive, we can conveniently exclude with the help of the abbreviation (Regretn(P ))+ :=
max{0,Regretn(P )}. The predictions of awMI are then defined, for n ∈ N, by

(5) predn+1(awMI) :=

∑
P∈Π (Regretn(P ))+ · predn+1(P )∑

P∈Π (Regretn(P ))+

.

(Where we can stipulate Regret0(P ) = 1, say, for all P , so that in the first round
these terms simply cancel out.) This is the weighted-average meta-inductivist (4)
with weights

(6) wn(P ) =
(Regretn(P ))+

Z
,

where Z always denotes a normalization term, in this case Z =
∑
P∈Π (Regretn(P ))+.

One can show, for all bounded convex loss functions, that awMI satisfies the
long-run convergence bound (1). Namely, one can show (Cesa-Bianchi and Lugosi,
2006, cor. 2.1, Schurz, 2008, thm. 4; 2009, thm. 2) that awMI satisfies the bound
(2) for f of order 1/

√
n; specifically, for all bounded convex loss functions,

(7) lossn(awMI) ≤ minlossn +

√
K

n
.

3.1.3. Improvements: polynomial weights. As noted by Schurz (2008, 297), the at-
tractiveness weighted strategy is a special case of the polynomially-weighted-average
strategy in Cesa-Bianchi and Lugosi (2006, 12), where the unnormalized weights
are given by

(8) (Regretn(P ))
η
+

for some parameter η ≥ 1. Indeed, the bound (7), hence the worst-case speed of
convergence, can be improved by a different choice of parameter. In the words
of Cesa-Bianchi and Lugosi (2006, 13, notation mine), “The choice η = 1 yields
a particularly simple algorithm. On the other hand, the choice η = 2 lnK − 1
(for K > 2) . . . leads to lossn(awMI) ≤ minlossn +

√
e(2 lnK − 1)/n, yielding a

significantly better dependence on the number of experts K.” Namely, the factor
in the bound introduced by the size of the pool is now only its logarithm.

3.1.4. Improvements: exponential weights. The central strategy in the field, how-
ever, is the exponentially-weighted-average strategy, that employs unnormalized
weights of the form

(9) exp(η · Regretn(P ))

for parameter η > 0 (the weighted-majority algorithm, Littlestone and Warmuth,
1994; see Cesa-Bianchi and Lugosi, 2006, 14f; Shalev-Shwartz and Ben-David, 2014,
252ff; and Schurz, 2009, 214; Schurz and Thorn, 2016, 52). Note that (9) equals

exp(η · (Lossn(wMI)− Lossn(P ))) = exp(η · Lossn(wMI)) · exp(−η · Lossn(P )),

and the first factor exp(η · Lossn(wMI)) cancels out in the normalization. Conse-
quently, the choice of unnormalized weights (9) is equivalent to the choice

(10) exp(−η · Lossn(P )).

The exponentially-weighted strategy thus has the special property that its weights
and hence its predictions only depend on the other strategies’ past successes, and
not also on its own past success (Cesa-Bianchi and Lugosi, 2006, 14).
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Parameter η is also called the learning rate: the larger it is, the greater the
inflation of differences in losses, and the more aggressive the updating. In this case
the optimal way of tuning the parameter η is to let it decrease in a specific way in
the number of rounds (ibid., 17f). This still gives a bound with a main term of the

form
√

lnK/n, which is indeed provably the best we can hope to achieve in general
for the convex bounded loss functions (see ibid., 62f).

3.1.5. Improvements for other loss functions. The very strongest bound we could
ever hope to derive, whatever the loss function, is of the form (c lnK)/n for some
constant c—that is, a bound of order 1/n. Namely, for any given loss function, one
can design a pool of experts and a history such that any meta-inductive strategy’s
loss rate falls at least this much short of the best strategy’s (see ibid., 59ff).

As a matter of fact, we can derive this guarantee for a particular class of loss
functions, that includes, among others, the quadratic and the logarithmic loss. I will
now first discuss the important particular case of optimal probabilistic prediction
with the logarithmic loss function, which is all the more interesting for its natural
Bayesian interpretation.

3.1.6. The Bayesian meta-inductivist and the logarithmic loss function. In the prob-
abilistic binary prediction game, recall from sect. 2.1.3, strategies in each round
issue a probability pred ∈ [0, 1] of the next outcome being 1. As such, they can be
seen to give conditional likelihoods (where n ∈ N, yyyn denotes the event sequence up
to round n, and by stipulation P (· | yyy0) := P (·))

(11) P (yn+1 | yyyn) =

{
1− predn+1(P ) if yn+1 = 0

predn+1(P ) if yn+1 = 1
,

and so, by the chain rule of conditional probabilities

(12) P (yyyn) :=

n−1∏
i=0

P (yi+1 | yyyi),

likelihoods over finite histories (Cesa-Bianchi and Lugosi, 2006, 247f).
The Bayesian meta-inductivist PBayMI maintains a probability model over both

the space of possible histories and the pool of strategies. First, the marginal prior
probability of each of the strategies is stipulated by some initial weight function
w0; thus PBayMI(P ) := w0(P ). Second, the strategies’ likelihoods are stipulated
to determine conditional probabilities PBayMI(yyy

n | P ) := P (yyyn) of histories. This,
then, suffices to determine the marginal prior probability of histories. Namely, via
the law of total probability we have

(13) PBayMI(yyy
n) =

∑
P∈Π

w0(P ) · P (yyyn).

Now the Bayesian meta-inductivist’s predictions for round n+ 1 are, by Bayes’s
rule, simply given by the conditional probabilities on the past events by n,

(14) PBayMI(yn+1 | yyyn) =
PBayMI(yyy

n+1)

PBayMI(yyyn)
.

Alternatively but equivalently (cf. Grünwald, 2007, 77), for each round n + 1
we can first calculate the posterior marginal probabilities by this round, identified
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with the weights wn by this round, that the Bayesian meta-inductivist assigns to
the strategies. By Bayes’s rule, we update the new weights after round n to

(15) wn(P ) := w0(P | yyyn) =
w0(P ) · P (yyyn)

Z
,

with normalization Z =
∑
P∈Π w0(P ) ·P (yyyn). Then by the law of total probability

(16) PBayMI(· | yyyn) =
∑
P∈Π

wn(P ) · P (· | yyyn).

In particular,

(17) predn+1(BayMI) =
∑
P∈Π

wn(P ) · predn+1(P ).

In short, the Bayesian meta-inductivist for the probabilistic prediction game is the
weighted-average meta-inductivist with weights given by Bayes’s rule, (15).

An important difference, at first sight, from the attractiveness-weighted meta-
inductivist awMI, is that the weights of BayMI depend on the strategy’s probabilis-
tic predictions and so only indirectly on their losses. However, the Bayesian meta-
inductivist is strongly connected to the logarithmic loss function (Cesa-Bianchi and
Lugosi, 2006, 247ff), which can be seen by writing out

Lossn(P ) =

n−1∑
i=0

`(predi+1(P ), yi+1)

=

n−1∑
i=0

− lnP (yi+1 | yyyi)

= − ln

n−1∏
i=0

P (yi+1 | yyyi)

= − lnP (yyyn).

That is, for the logarithmic loss, P (yyyn) = exp(−Lossn(P )). Substituting this term
in the weight specification (15), we obtain

(18) wn(P ) =
w0(P ) · exp(−Lossn(P ))

Z
.

Another apparent difference with wMI is that BayMI still explicitly depends on
the prior weights given by w0. However, since we assume a finite pool, we can
choose uniform prior weights w0(P ) = 1/K, in which case they all cancel out and
we finally obtain

(19) wn(P ) =
exp(−Lossn(P ))

Z
.

In words, the (uniform-prior) Bayesian meta-inductivist for the logarithmic loss
function is the exponentially-weighted meta-inductivist introduced in sec. 3.1.4
above, with parameter η = 1 (ibid., 250).

Now it is easy to derive a bound on Lossn(BayMI) = − lnPBayMI(yyy
n), using the

simple fact that
∑
P∈Π w0(P ) · P (yyyn) ≥ w0(P ) · P (yyyn) for any particular strategy
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P (ibid.). Namely,

Lossn(BayMI) = − ln
∑
P∈Π

w0(P ) · P (yyyn)

≤ − ln (w0(P ) · P (yyyn))

= − lnw0(P ) + Lossn(P ).

In particular, with uniform choice of initial weights, we have for the loss rate that

(20) lossn(BayMI) ≤ minlossn +
lnK

n
.

3.1.7. Mimicking the Bayesian meta-inductivist for other loss functions. In the
same way that we evaluated the cumulative loss

(21) Lossn(BayMI) = − ln
∑
P∈Π

w0(P ) · exp(−Lossn(P ))

in the special case of the Bayesian meta-inductivist with the logarithmic loss (the
exponentially-weighted strategy with η = 1), we can, for any given loss function `,
as well as any learning rate η > 0, evaluate the term

(22) MixLossn := −1/η · ln
∑
P∈Π

w0(P ) · exp(−η · Lossn(P )),

the so-called cumulative mix-loss. In particular, much like before, we can derive for
any loss function that

(23) MixLossn ≤ −1/η · lnw0(P ) + Lossn(P ),

so that, for uniform weights, the mix-loss rate satisfies

(24) mixlossn ≤ minlossn +
lnK

η · n
.

But what does this actually mean? Well, for some loss functions `, the term
(22), the mix-loss, is strictly meaningless, which is to say that there is no actual
(meta-inductive) strategy that this cumulative loss term corresponds to. But for
an important subclass of convex loss functions, the so-called mixable loss functions,
and the right choice of η, the mix-loss (22) corresponds to an actual strategy (the
aggregating strategy due to Vovk, 1990, also see Vovk, 1998, 2001; Cesa-Bianchi and
Lugosi, 2006, 52ff; Grünwald, 2007, 573ff; Sterkenburg, 2018, 143ff). This meta-
inductive strategy aMI can be seen as explicitly mimicking the Bayesian strategy
with the logarithmic loss function, for this loss function, with the aim of achieving
the Bayesian performance bound (20). And indeed, virtually by definition, aMI is
optimal for the given mixable loss function in the strong sense of (24).

The mixable loss functions include such important functions as the logarithmic
loss (obviously: the mix-loss with η = 1 is the Bayesian strategy) and the square
loss, but not the absolute loss function.

3.1.8. Summary. We have considered a number of central meta-inductive strategies
for general classes of loss functions. These meta-inductive strategies are optimal
for the relevant prediction games; they not only satisfy long-run convergence to the
minimal loss rate among all strategies in the pool, but indeed short-run bounds
of order 1/

√
n (for the convex bounded loss functions) or even of order 1/n (the

mixable loss functions).
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We also saw that all of these optimal meta-inductive strategies are weighted-
average strategies (or, for some mixable games, aggregating strategies), that predict
by combining weighted predictions of all the other strategies in the pool. We indeed
saw that the exponentially-weighted strategies (optimal for the convex bounded
loss functions) and the aggregating strategies (for the mixable loss functions) can
be understood as generalizations of the standard Bayesian strategy for the specific
case of the logarithmic loss function.

Moreover, the assigned weights in all cases depend on the strategies’ losses, that
is, on their past performance. Now in the Bayesian case the weights also depend on
a prior weight assignment w0, and we can introduce such a prior weight factor in
the other meta-inductive strategies, too (see, e.g., Cesa-Bianchi and Lugosi, 2006,
exc. 2.5): but the effect of these weights cancels out in case of a uniform prior over
the finite pool of strategies, and I will assume this to be the reasonable choice (see
sect. 3.3.1 below). Under that stipulation, the weights depend on the strategies’
performance only, and strategies that have been more successful receive a higher
weight and have a larger share in the meta-inductivist’s prediction. It is in that
sense that we can say that the meta-inductive strategy favors strategies to that
extent in which they have been more or less successful than the other strategies so
far.

Thus, abstracting away from which of the standard loss functions we are actually
assuming, and hence which precisely is the strategy that we will now simply call ‘the
meta-inductive strategy MI,’ we can formulate the first, analytical step of Schurz’s
argument as

(A)
The meta-inductive strategy MI, that at each point in time favors strate-
gies to the extent of their relative success so far, is an optimal strategy.

3.2. Step two: the empirical success of object-induction. The second step
is the empirical observation that “so far object-induction has turned out to be the
most successful prediction strategy” (Schurz, 2008, 304).

3.2.1. The object-inductive strategy? The problem of the justification of induction
looks much intertwined with that of the description of inductive method (see Lip-
ton, 2004, 7ff; Skyrms, 2000, 51ff; Goodman, 1954, 68ff). Thus Schurz in (2004)
starts by asking “which inductive method should be attempted to justify,” and then
notes that “there is a fundamental method that more or less underlies all particu-
lar inductive methods – the straight rule” (243, translation mine). In subsequent
papers (2008, 283f; 300f; 2009, 206), Schurz also discusses the straight rule and
refined version thereof.

Even if Schurz’s purpose here is merely to illustrate some basic inductive strate-
gies and how to refine them in more complex environments, it does bring out the
worry that the proposed meta-inductive justification is conditional on some satisfy-
ing solution to the problem of description. But this is itself a fundamental problem;
certainly any conception of object-induction as some variant of the straight rule di-
rectly faces Goodman’s observation that induction is underdetermined in which
past regularities are actually extrapolated. Of course, we have assumed a set of
possible events, and the straight rule extrapolates the past relative frequencies of
these events; but that merely shifts the problem to whether and how we have man-
aged to carve out possible events in the world that are indeed extrapolatable or
projectible in this way. Schurz (2008, 279) writes, “I will avoid Goodman’s ‘new
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riddle’ of induction by assuming that the events are explicated in terms of qualita-
tive predicates or function symbols in the sense of Carnap (1947, 146).” But this
is a weak response: Carnap’s reply was found wanting from the start (Goodman,
1947; 1954, 78ff; Putnam, 1983, xf).

3.2.2. Meta-induction and entrenchment. So how to deal with the problem of de-
scription in the context of Schurz’s proposed justification? I can see two possible
ways out.

One is to face the problem of description head-on. Perhaps the optimality of
meta-induction can be employed to found an account of projectibility of regular-
ities in terms of their past successful projections or their entrenchment, much in
the spirit of Goodman’s own suggestions (1954, 84ff). Thus the pool of prediction
strategies is taken to represent the candidate projectable regularities, and we are
meta-inductively justified to favor the strategy most successful so far, or the reg-
ularity best entrenched. Of course, this is all fairly speculative: much more work
would need to be done to make this idea precise, and I will not attempt to do that
in this paper.

3.2.3. The scientific method. Rather, my proposed way out goes to the other ex-
treme: I will argue that in the context of Schurz’s argument, we can simply disregard
the problem of description.

What is crucial for the force of Hume’s skeptical argument is that it goes through
for any inductive method one could propose. The problem of induction can there-
fore actually be stated quite independently of the problem of description (Lipton,
2004, 11). But something similar holds for Schurz’s constructive argument. The
argument does not rely on any specific characteristics that the object-inductive
method might or might not have—it only relies on its past success. For Schurz’s
proposed justification of induction it is enough to accept that there is something
like an inductive method, and that it has been successful in the past.

In fact, it is fair to say that the problem of induction derives much of its relevance
from the identification of induction with scientific method, which turns the problem
of induction into the problem of providing rational grounds for scientific procedure.
This would indeed “not only be of fundamental epistemological importance; it would
also be of fundamental cultural importance as part of the enterprise of enhancing
scientific rationality (Schurz, 2008, 280; see, especially, Salmon, 1967, 54ff on the
significance of the problem of induction). Now most of us will agree that there
is something like scientific method, despite the fact that it is notoriously hard
to make perfectly precise what it consists in. There is such a thing—and it can
be distinguished from several nonscientific approaches (like consulting horoscopes,
or accepting the forecasts of demagogues). Moreover, most of us will agree that
science’s past predictions have been quite successful—more successful at least than
the past predictions of these alternative methods. Then the major challenge is to
turn this fact of science’s past success into a convincing argument for sticking to it,
rather than turning to alternative methods.

And this is what Schurz’s argument promises to do. Adopting a high-level per-
spective, where we take as object-inductive strategy OI the scientific method, which
we further take to stand in competition with a pool Π of alternative nonscientific
strategies, we plausibly have the empirical fact that OI has been most successful so
far; and the promise of Schurz’s argument is that this can then be plugged in with
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the analytical optimality (A) to lead to the desired justification of the scientific
method.1

3.2.4. Summary. In short, I take the second step to be that

(E)

As a matter of empirical fact, the object-inductive strategy OI, that we
identify with the scientific method (and that we take to be in competition
with various proposed nonscientific methods), has been, at this point in
time, the most successful prediction strategy (among the pool Π of all
of these competing strategies).

3.3. Conclusion: meta-induction favors object-induction. From the analyt-
ical observation (A) and the empirical observation (E) it follows that

(C)
The meta-inductive strategy MI for the pool Π of OI and its nonscientific
competing strategies, an optimal strategy for Π, favors most, at this
point in time, the object-inductive strategy OI.

Does conclusion (C) amount to the desired justification of OI? Only if we are
clear about at least two additional things: (1) the optimality of MI in fact amounts
to a justification for MI, and (2) the justification for MI is conferred to the strategy
that it favors most, in particular, OI.

3.3.1. The justification for an optimal strategy. An initial worry is that a Reichen-
bachian optimality justification, in its original form often referred to as the prag-
matic justification of induction, is only that: a pragmatic justification. In my
view, however, this denotation is a misnomer, insofar it suggests that a ‘pragmatic’
justification is not a proper, epistemic, justification. While a justification from op-
timality falls short of a justification from reliability, guaranteed success, it is still
an epistemic justification: guaranteed success whenever success can be achieved at
all. (Cf. Schurz, 2008, 282.)

Of course, this presupposes that we use an epistemically relevant notion of suc-
cess. In the previous we equated success with low losses, and then made the notion
of optimality precise in term of long-term and short-term relative success, or long-
term and short-term constraints on the regret.

Now success whenever success can be achieved at all in the long run, or a-
symptotic convergence to a regret rate of 0, already gives a nontrivial notion of
optimality. It cannot be attained, over all possible pools, by any purely object-
inductive strategy which predictions will not depend on the other strategies in the
given pool. This is essentially what Schurz calls the dominance of meta-induction
over object-induction (2017, 829f); and he writes that Reichenbach “has pointed
out that already the optimality argument may be considered as a sufficiently strong
justification of meta-induction, insofar as meta-induction is the only prediction
strategy for which optimality can be rationally demonstrated” (2008, 303).

1One might object that it is more natural to view ‘scientific method’ as a family of different object-

inductive strategies, rather than as a single strategy. This would indeed be closer to Schurz’s own

view, see sect. 3.2.1 above. I think this view would make the discussion in sect. 3.3 below somewhat
more involved but not different in essence; for this reason I will stick in this paper to the view of

a single OI.
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Recall, though, that Reichenbach’s own notion of long-run optimality included
infinitely many different strategies, and this is also the case for our notion. Con-
cretely, given an optimal strategy, we can devise infinitely many other strategies
that up to any given round issue any given predictions, before settling on the same
predictions as the original strategy. (Thus we can, for any given amount of cumu-
lative loss, devise a strategy that initially incurs at least this amount of loss on
some history, yet that is still optimal.) That means that if we seek justification for
an optimal strategy’s actual predictions, which will be relevant for the next step of
deriving justification for following OI’s predictions, sect. 3.3.2 below, then the long-
run criterion is not enough. If a strategy’s actual predictions were justified solely
by virtue of the strategy’s long-run success, then by the above we would have the
perverse result that in each round any possible prediction is justified (cf. Salmon,
1957).

Fortunately, the short-term regret bounds for meta-inductive strategies exclude
the possibility of arbitrary short-time regrets, hence predictions. To appreciate how
restrictive they are (and the resulting notion of optimality is), let us have a closer
look at the motivation for the nature of these bounds, particularly, their twofold
uniformity.

First of all, the loss bound (2) is for the various meta-inductive strategies derived
from the guarantee

(25) lossn(wMI) ≤ lossn(P ) + f(n,K),

for all P ∈ Π, i.e., from a bound that is uniform over all strategies. This is also
connected to the choice of uniform initial weights w0 for the weighted-average (or
aggregating) meta-inductivist. With non-uniform initial weights we would have
long-run optimality as before, and we would even have short-term guarantees, but
not of the uniform kind: in the short-term bound the term K would be replaced
by a strategy-dependent term 1/w0(P ). With non-uniform weights, we must have
assigned some strategies weights strictly smaller than 1/K, which translates in a
worse guarantee relative to these strategies, or a suboptimal performance if one of
these strategies turns out to be the most successful. In short, a uniform bound
presents the strongest possible single guarantee, independent of which strategy is
most successful. And the choice of uniform weights is not just arguably the most
reasonable choice in that the meta-inductivist should treat all competing strategies
initially on a par, or should later evaluate strategies on their success only (sect.
3.1.8 above); it is the reasonable choice in that it comes with the strongest possible
uniform short-term optimality guarantee.

Second of all, short-term optimality is a worst-case or uniform notion over all
possible histories, as stipulated in sect. 2.3 above. But one can think of other ways
of defining optimality in terms of loss bounds that are uniform over strategies yet
nonuniform over possible histories. Specifically, one can define a notion of opti-
mality that allows a somewhat looser all-cases relative loss rate bound in return
for a much stricter bound in specific cases of particularly regular or easy data.
However, such a notion must be motivated by a ruling that some possible histories
are somehow more likely or more relevant than others: as such, it constitutes an
assumption that some possible uniformities hold a privileged status. But the ele-
gance of Schurz’s argument is precisely that it promises a justification of induction
without any uniformity-of-nature assumptions. In particular, the first step, on the
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optimality of meta-induction, should be free of such assumptions. And for this,
worst-case optimality, a uniform bound over every possible history, appears the
right notion.

Now, if we accept this requirement of uniform optimality, we can directly define
the very best possible meta-inductive strategy, for a given loss function, as that
strategy that (for a given pool of strategies) minimizes the worst-case regret for
all strategies and all histories (the minimax regret, Cesa-Bianchi and Lugosi, 2006,
30ff). This theoretical strategy then gives the absolutely optimal predictions, for
the given loss function; and if we take these predictions to be thereby fully justified,
then results on various extents to which the absolutely optimal minimax regret
coincides with the short-term optimality bounds we discussed (ibid., 59ff; 252ff)
show that our meta-inductive strategy’s actual predictions are to various extents
justified, too.

I will not go further into the mathematical specifics, though, because the an-
alytical details of the question of justification ultimately cannot (and need not)
be separated from the empirical context of Schurz’s argument. It is, for instance,
sufficient for the argument to connect justification to a notion of optimality that is
strong enough that all optimal strategies give, at this point in time, a sufficiently
high weight to the object-inductive strategy, which is at least partly an empirical
question: we will discuss this next, in sect. 3.3.2.

Furthermore, the notion of optimality is, of course, a relative notion, relative
to a particular pool of strategies. That means that an optimal strategy can only
be justified insofar the original choice of pool of strategies is appropriate, a proper
rendition of all we could do. Now it seems there is an obvious such pool in the
context of Schurz’s argument, namely the pool of proposed alternative strategies
that figures in the empirical step (E). But this may actually not settle it; I return
to this important point in the conclusion of the paper, sect. 4.

3.3.2. The justification for a strategy favored most by an optimal strategy. Suppose
that we are justified in predicting with the optimal strategy MI, at each point in
time, and given, by (E), that optimal strategy MI, at this point in time, favors
most the object-inductive strategy OI. Now it sounds plausible enough that we are
justified in favoring OI, at this point in time. But this is not yet a justification for
strategy OI.

To begin with, there is a difference between actually following and merely favor-
ing a strategy, at any point in time. That a meta-inductivist assigns the highest
weight to a strategy does not entail that their predictions coincide. For instance,
the meta-inductivist might give a much higher weight to OI than to each of a large
number K of competitors; but those competitors might collectively still take up
most of the weight and issue a prediction opposed to the one issued by OI, so
that the prediction issued by the meta-inductivist is also very different from OI’s.
In that case it sounds implausible that MI confers justification to following OI’s
prediction.

Note, however, that such cases are excluded with a sufficiently strong empirical
step (E). They are excluded by an (E) that says that, as a matter of empirical
fact, the strategy OI has been so much more successful than its competitors, that
the meta-inductivist attributes it such a large share of the total weight that its
prediction (approximately) coincides with OI’s prediction. Indeed, in that clear-
cut case all optimal strategies would (approximately) give this same prediction,
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resolving remaining doubts about the justification for the specific predictions of
either of them (sect. 3.3.1 above). Since following MI’s prediction is then justified,
following OI’s prediction, being (approximately) the same prediction, is justified,
too. Thus a sufficiently strong (E) resolves the problem; but, of course, it remains up
for debate whether, as a matter of empirical fact, OI has really been that successful
(cf. Schurz, 2018, 3891).

This leads us to the final observation that we would at best have a justification
for following OI’s current prediction, which is not the same as a justification for
the strategy OI. Here it clearly shows in what way Schurz’s argument for the
justification of object-induction is more subtle than trying to establish that object-
induction is itself optimal, the original idea of Reichenbach (cf. Schurz, 2008, 281).
Strategy OI is, again, not itself optimal. In order to still conclude that we are
justified, from this point on, in always following strategy OI, we would need to
establish that the optimal strategy from this point on always favors OI. This would
be the case if OI from this point on is always (much) more successful than its
competitors: but observation (E), that OI has been the most successful so far, does
not, of course, entail that. We can easily come up with possible futures in which
OI loses its edge and some competitor strategy predicts vastly better (and so MI
ceases to favor OI): this is just the failure of the naive meta-inductive justification
of induction.

Thus Schurz’s argument, if successful, only gives a justification for sticking to
strategy OI for now : it only gives a justification for following its prediction at this
point in time.2 This is, to reiterate, strictly weaker than a justification for object-
induction, which is normally understood as a justification for always following the
strategy OI. Nevertheless, this would still be an important result. The relevance
of the problem of induction resides for large part in the question whether we can
give justification for following the scientific method now, in the face of several
nonscientific alternatives. If the argument is indeed successful, it arguably brings
us closer to a justification of induction than any argument before, and possibly the
closest we can ever get.

4. Conclusion

In this paper, I reconstructed and evaluated Schurz’s proposed meta-inductive
justification of induction. I also took the opportunity to discuss some of the main
observations from the field of prediction with expert advice, including the inter-
pretation of the optimal meta-inductive algorithms as generalizations of Bayesian
prediction strategies.

I argued that Schurz’s argument should be seen as operating from a high-level
perspective where we take it that there is something like the object-inductive or
scientific prediction strategy, which, from its past success, we wish to justify as the
preferred strategy among several proposed alternative strategies.

I pointed out the argument’s need for a strong—perhaps too strong—empirical
postulate that says that the scientific strategy has indeed been the most successful
among these alternatives by far. Furthermore, I pointed out that the argument
provides at best a justification for sticking with the scientific strategy for now,
although I stressed that this would still constitute an important result.

2Or even extending to some rounds in the future, depending on how much of a lead it actually
has on its competitors.
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There is, however, one important issue that I did not fully address in the current
paper. This is the choice of the pool of strategies that the meta-inductivist should
actually be optimal for (sect. 3.3.1 above). Again, it would seem that there is an
obvious pool in the context of Schurz’s argument, namely the pool of the scientific
strategy and its actually proposed alternatives. This necessarily being a finite pool
of strategies, it would also render Schurz’s argument immune against the charge
of Arnold (2010) that it is not generally possible to have optimal strategies for
infinite pools. However, as I will argue in a subsequent paper (Sterkenburg, 2019),
it is not clear that the relevant optimality suffices for the analytical component
(A) of the argument. Indeed, I will argue there that the analytical step requires a
notion of optimality that is robust against an expanding pool of strategies, posing
an important challenge still to Schurz’s proposal.
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