
Emotion Recognition on Twitter
Using Neural Networks

A dissertation presented
by

Niko Colnerič

to
The Faculty of Computer and Information Science

in partial fulfilment of the requirements for the degree of
Doctor of Science

in
Computer and Information Science

Ljubljana, 2019

APPROVAL

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which to a substantial extent has been accepted for the award of any

other degree or diploma of the university or other institute of higher learning, except
where due acknowledgement has been made in the text.

— Niko Colnerič —
May 2019

The submission has been approved by

dr. Janez Demšar
Professor of Computer and Information Science

advisor

dr. Marko Robnik Šikonja
Professor of Computer and Information Science

examiner

dr. Marko Bajec
Professor of Computer and Information Science

examiner

dr. Igor Mozetič
Senior Researcher

external examiner
Institut Jožef Stefan

dr. Carlo Strapparava
Senior Researcher

external examiner
The Fondazione Bruno Kessler

PREVIOUS PUBLICATION

I hereby declare that the research reported herein was previously published/submitted
for publication in peer reviewed journals or publicly presented at the following occa-
sions:

[1] Colnerič N & Demšar J (2018) Emotion Recognition on Twitter: Comparative Study and Train-
ing a Unison Model. IEEE Transactions on Affective Computing (in print).

I certify that I have obtained a written permission from the copyright owner(s) to
include the above published material(s) in my thesis. I certify that the above material
describes work completed during my registration as graduate student at the University
of Ljubljana.

“We believe that emotions are powerful inner forces
that affect our behavior and thoughts, even when we
would prefer that they did not.”

— Robert Plutchik, Theories of Emotion, 1980.

POVZETEK

Univerza v Ljubljani
Fakulteta za računalništvo in informatiko

Niko Colnerič
Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

Čeprav prodira globoko učenje na vsa področja procesiranja naravnega jezika, do zdaj še
ni bilo uporabljeno za prepoznavanje čustev. Večina dosedanjih študij prepoznavanja ču-
stev na tvitih uporablja preproste klasifikatorje na značilkah, ki pripadajo modelu vreče
besed ali pa jih raziskovalci konstruirajo ročno. Glavna tema disertacije je izboljšava mo-
delov za prepoznavanje čustev v tvitih z uporabo nevronskih mrež. V ta namen najprej
ustvarimo tri velike podatkovne množice, sestavljene iz učnih primerov, ki so označeni
glede na to, katero čustvopoEkmanovi, Plutchikovi ali POMS-ovi kategorizaciji izražajo.
Čustvene oznake pridelamo avtomatsko z uporabo Twitterjevega mehanizma za samo-
označevanje vsebine, s t. i. tematskimi oznakami (angl. hashtags). Nato primerjamo
natančnost klasifikatorjev z uporabo modelov vreče besed in latentnega semantičnega
indeksiranja z natančnostjo nevronskih mrež, tako rekurenčnih kot konvolucijskih, ki
na vhodu sprejmejo besede ali znake. Nadalje smo raziskovali prenosljivost reprezentacij
končnih skritih stanj modelov nevronskih mrež, natančneje, ali je reprezentacija, nauče-
na pri treniranju modela za neko klasifikacijo čustev, lahko koristna za napovedovanje
druge klasifikacije. Zaključimo z učenjem skupnega modela, ki je sposoben prepozna-
vati čustva vseh treh omenjenih klasifikacij, pri tem pa je omejen na uporabo skupne
reprezentacije.

Eksperimentalno pokažemo, da so nevronske mreže natančnejše od klasičnih pristo-
pov k prepoznavanju čustev. Kot najnatančnejše se izkažejo rekurenčnemreže, ki na vho-
du sprejemajo znake in tako predstavljajo celosten pristop k učenju (angl. end-to-end
learning). Čeprav je prenosljivost reprezentacij modelov, ki so trenirani na eni poda-
tkovni množici, precej slaba, se ta drastično izboljša pri skupnem modelu. Pri učenju
skupnega modela z znanimi metodami opazimo, da je natančnost zelo neuravnotežena
glede na podatkovne množice, predvsem zaradi velike razlike v številu učnih primerov
znotraj posameznemnožice. Zato zasnujemo novo strategijo treniranja takšnih skupnih

ix

x N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

modelov, s katero naučimo model, katerega natančnost je uravnotežena čez vse tri po-
datkovne množice.

Ključne besede prepoznavanje čustev, tekstovna analiza, Twitter, rekurenčne nevron-
ske mreže, konvolucijske nevronske mreže

ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Niko Colnerič
Emotion Recognition on Twitter Using Neural Networks

Deep learning has recently revolutionised many fields of natural language processing
but has not yet been applied to emotion recognition. Most recent studies of emotion
recognition on tweets used simple classifiers on a combination of bag-of-words and
human-engineered features. Hence, we worked on improving emotion-recognition al-
gorithms using neural networks. To this end, we created three large emotion-labelled
data sets corresponding to Ekman’s, Plutchik’s, and POMS’s emotions by exploiting
Twitter’s popular self-annotation mechanism — hashtags. We compared the perfor-
mance of bag-of-words and latent semantic indexing models with the performance of
neural networks. We trained several word- and character-based, recurrent and convolu-
tional neural networks. Further, we investigated the transferability of final hidden state
representations of neural networks: how appropriate is the representation trained on
one classification for recognising another one? Finally, we developed a single model for
recognising all three emotion classifications from a shared representation.

We show that neural networks can surpass traditional text classification approaches
for emotion recognition. Recurrent neural networkworkingdirectly on characterswith-
out any text preprocessing in a completely end-to-end fashion was the most successful
architecture. Although models trained on single data sets have revealed poor transfer-
ability, we improved the generality of final hidden state representation in the unison
model. When training the unison model, the standard training heuristic yielded un-
balanced performance, due to the vast difference in data set sizes. However, the newly
proposed training strategy produced a unison model with performance comparable to
that of single models.

Keywords emotion recognition, text mining, Twitter, recurrent neural networks, con-
volutional neural networks

xi

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor Janez Demšar, for guiding me
through the unpredictable waters of academia for the last five years, and Blaž Zupan,
for making the Bioinformatics Laboratory an aspiring place to work. I am thankful to
theAmerican Slovenian Education Foundation for enabling a research visit to Stanford
University, where my research initiated, and to Jure Leskovec and his group for sharing
their knowledge. I thank the colleagues from the Bioinformatics Laboratory for all the
fun and educational moments we shared. Last but not least, I’m grateful for the support
and understanding of my family and friends.

— Niko Colnerič, Ljubljana, May 2019.

xiii

CONTENTS

Povzetek ix

Abstract xi

Acknowledgements xiii

1 Introduction 1
1.1 Thesis Overview . 4
1.2 Scientific Contributions . 5
1.3 Technical Contribution . 5

2 Background 7
2.1 Emotion Classifications . 8

2.1.1 Ekman’s Set of Basic Emotions 8
2.1.2 Plutchik’s Wheel of Emotions 9
2.1.3 Profile of Mood States . 9

2.2 Traditional Text Classification . 11
2.3 Neural Networks . 14

2.3.1 Word Embeddings . 15
2.3.2 Recurrent Neural Networks 16
2.3.3 Convolutional Neural Networks for Text Classification . . . 21
2.3.4 Training of Neural Networks 23
2.3.5 Unison Learning . 25

2.4 Related Work . 26

xv

xvi N Colnerič Emotion Recognition on Twitter Using Neural Networks

3 Data 31
3.1 Labelling by Distant Supervision 33
3.2 Data Set Statistics . 37

4 Methods 43
4.1 Traditional Text Classification . 44

4.1.1 Bag of Words . 44
4.1.2 Latent Semantic Indexing 45
4.1.3 Classifiers . 46

4.2 Neural Network Models . 47
4.2.1 Embeddings . 48
4.2.2 Recurrent Neural Networks 49
4.2.3 Convolutional Neural Networks 49

4.3 Transfer Learning . 50
4.4 Unison Learning . 52

4.4.1 Alternating Batches . 54
4.4.2 Weighted Sampling Batches 54
4.4.3 Weighted Sampling Batches by Data Set Sizes 57

5 Results and Discussion 59
5.1 Traditional Text Classification . 61
5.2 Neural Networks . 66
5.3 Transfer Learning . 69
5.4 Unison Learning . 72
5.5 Unison Transfer Learning . 77
5.6 Comparison of Emotion Classifications 79
5.7 Limitations and Future Work . 83

6 Showcases 87
6.1 Python . 88
6.2 Orange . 90

7 Conclusion 95

Bibliography 99

Contents xvii

Razširjeni povzetek 105

1

Introduction

2 N Colnerič Emotion Recognition on Twitter Using Neural Networks

While the World Wide Web initially consisted of mainly static content prepared by the
authors of the site, it soon transformed into a media that anyone can contribute to
with ease. The main characteristic of so-called Web 2.0 is that the emphasis is on the
user-generated content. Many social networks, blogs, micro-blogging platforms, online
encyclopedias, and product reviews sites could not exist without users expressing and
sharing their knowledge, experiences, opinions, thoughts, and emotions. While these
provide an endless possibility to express oneself, we can not neglect the almost frighten-
ing production rate of such content. Themanual inspection of web-scale data is usually
infeasible, creating the need for automatic systems able of summarising, organising, clas-
sifying, andpresenting thedesireddata. Hence, the tools for natural languageprocessing
(NLP) and understanding are becoming pivotal in efforts to extract knowledge from the
abundance of online content.

Theproblemof automatic emotion recognition is defined as follows. For a givenpiece
of text, the algorithm should recognise which emotions the author expressed in the writ-
ing. As an instance of text categorisation problem, the algorithm should consider a set of
pre-defined categories and pick the most suitable for a given text. For example, consider
these short texts:

Someone went into my car during practice yesterday and stole my big hunk out
of the console ... I’m pissed!

I feel so guilty for eating.

Every time I think about leaving for school at the end of summer I get really bad
anxiety and my heart feels like it’s breaking.

Sun in my eyes but I don’t mind, what a beautiful day we’ve had in New York
today!

Do you know that feeling if your mom doesn’t allow you to buy the most beau-
tiful dress in the world?

I love how my dad doesn’t notice shit I do, but he notices everything I don’t!

That dream you have that every time you think of it your heart breaks a little
because you know it won’t come true.

Introduction 3

Not sure if I should look forward to tomorrow or not.

I need a day off and it’s only Tuesday.

When I write a paper and then it doesn’t save!

My job doesn’t stress me out at all.

Some authors, as in the first few examples, are quite transparent about the emotions
they want to express (e.g. ”I’m pissed!”, ”I feel so guilty”, or ”I get really bad anxiety”).
Others express the emotions more subtly. People overlooking your efforts might cause
annoyance, while saying that you need a day off might express fatigue. Both cases are
easy for humans to interpret due to the background knowledge we implicitly consider,
but they may be trickier for automatic systems. Finally, notice that from texts like ”My
job doesn’t stress me out at all.” it is almost impossible to infer whether this is a genuine
or sarcastic statement. Although some of these examples are quite easy to classify, others
are much more difficult — even for humans — which illustrates the challenges we face
when developing an automated emotion recognition system.

Applying such algorithms on the web-scale data can be used to gauge public opin-
ions [1], while their utility also extends to predicting real-life events. Observations of
online chat activity have been used to predict book sales [2]. Blog posts showed as pre-
dictors of product sales performance [3]. There is a correlation betweenmovie’s financial
success and a context around its references in blog posts [4], and it has been shown that
tweets about amovie are a good predictor of its box-office revenues [5]. Multiple studies
have used expressions from online content to predict stock market changes [6–8].

Most recent studies tackled the emotion-recognitionproblemwith a typical approach
to text categorisation. That is, they first took raw text and transformed it into a fixed
length vector representation. These representationsusually contain statistics on thenum-
ber of occurrences of specific words inside the document — known as bag-of-words
— accompanied with other, human-engineered features. Next, they passed these repre-
sentations together with emotion labels to a machine learning algorithm that trained a
model for recognising emotions. We refer to these as traditional text classification ap-
proaches.

Although these approaches have proven successful, many automatic systems for vari-
ousNLP tasks recently received a boost in performancewhen using neural networks [9].
One of the central questions of the thesis is: can neural networks improve the accuracy of

4 N Colnerič Emotion Recognition on Twitter Using Neural Networks

emotion recognition systems? As neural networks can recognise more complex patterns
than traditional text categorisation approaches, they have the potential to improve emo-
tion recognition systems.

Furthermore, previous studies were mostly recognising only one emotion classifica-
tion at a time although there is no consensus among psychologists about a universal
set of emotions, so multiple such classifications exist. This leads us to the second cent-
ral question of the thesis: can we develop a single model for recognising multiple emo-
tion classifications at the same time, with performance comparable to multiple separate
models? As this model can recognise emotions from various classifications at the same
time, and since it is trained concurrently on multiple data sets, we refer to it as a unison
model. Working with multiple classifications enables performance comparisons of dif-
ferent classifications across the same type of data, and tests whether emotions from some
classifications are harder to recognise than others. The motivation behind these exper-
imentations is that such multi-task settings can yield better performance due to better
generalisation and less over-fitting.

Throughout our experiments we focused primarily on completely autonomous sys-
tems in an end-to-end fashion. Hence, human interaction was kept to the minimum or
was eliminated entirely from the process of training our models wherever possible.

1.1 Thesis Overview
Chapter 2 presents the background this thesis builds upon. We first introduce three
emotion classifications: Ekman’s basic set of emotions, Plutchik’s wheel of emotions,
and Profile of Mood States (POMS). Then we describe approaches to traditional text
classification. We next describe neural networks, especially recurrent and convolutional
ones, andhowthey are applied to classificationof text documents. We conclude theback-
ground chapter with a section on training a single model on multiple data sets, which is
the base for building our unison model, and a section on related work.

Chapter 3 focuses on generating training data from a massive data set of tweets. We
first describe how we filtered out the tweets that are unsuitable for learning, and then
illustrate how hashtags were exploited for creating our target categories.

The experimental setup along with the methodology is the focus of Chapter 4. We
first explain experiments with traditional text classification approaches that serve as a
baseline for comparisonwith neural networks. Next, we investigate the transfer abilities

Introduction 5

of our neural networks models; more precisely, we test whether the embedding trained
on one classification is general enough for predicting a different one. We conclude the
chapter with a section about the unison model and present a novel training heuristic.

Experimental results along with discussion about each set of experiments are pre-
sented in Chapter 5, while Chapter 6 showcases the utility of our models in Python and
Orange. Concluding remarks are provided in Chapter 7.

1.2 Scientific Contributions
A novel training heuristic for training neural networks in multi-task settings

We proposed a novel training heuristic for training multi-task neural networks.
The heuristic focuses especially on settings with data sets of various complexity
and data set sizes. The motivation came from observing how researchers get the
intuition whether a neural network started overfitting. We used the difference
between the accuracy on training and evaluation data sets as a proxy for training
progress and exploited it to guide the sampling for the next training batch. We
showed that this training approach drastically improved the performance of our
unison model, especially for POMS — the largest among our data sets, which
underperformed using known training approach.

A universal emotion embedding for tweets

We developed a unison model for recognising emotions from three emotion clas-
sifications at the same time, while sharing the majority of its parameters across
tasks. Parameter sharing forced the model to discover general embedding able to
recognise emotions from multiple classifications.

1.3 Technical Contribution
Publicly available models for emotion recognition

Our best performingmodels are freely available in Python andOrange (see Chap-
ter 6), which enables future studies to compare with our work.

2

Background

8 N Colnerič Emotion Recognition on Twitter Using Neural Networks

We start the chapter by describing three emotion classification schemes we used to clas-
sify tweets in Section 2.1 and then focus on the methodology. We describe the tradi-
tional approach to text classification with the bag-of-words transformation of texts to
vectors in Section 2.2. Using simple classifiers on top of these transformations served as
a baseline for comparison. Section 2.3 focuses on neural networks. We presentword and
character embeddings that served as inputs to networks, recurrent and convolutional
neural network architectures, an approach to training such networks, and an example
of unified architecture. We conclude the chapter with a review of related work in Sec-
tion 2.4.

2.1 Emotion Classifications
There is a multitude of discrete emotion classification theories without a consensus on
a single one. Hence, we decided to work with the three that are the most popular in
natural language processing and have been used in previous studies: Ekman’s set of basic
emotions, Plutchik’s wheel of emotions, and Profile of Mood States (POMS). Working
with multiple classifications not only allowed the comparisons between them and with
the related work, but it also enabled the development of a single model for recognising
all classifications, which can lead to improved performance or better generalisation.

2.1.1 Ekman’s Set of Basic Emotions

Paul Ekman is an American psychologist who pioneered the studies of emotions. His
work is based on observing facial expressions as a universal way of expressing emotions
that cross cultural- end socio-economic borders. In his seminal work entitled An argu-
ment for basic emotions [10] he defined nine characteristics that distinguish basic emo-
tions. Out of those nine, three can be used to distinguish between different emotions—
a challengewe focus on in this thesis—while others can be used to differentiate between
emotions and other affective states such as moods, emotional traits, or attitudes. The
three characteristics for distinguishing between emotional states are the following:

distinctive universal signals: different facial expressions correspond to different
emotions,

distinctive physiology: autonomic nervous system activity differs across basic emo-
tions, and,

Background 9

distinctive universals antecedent events: as emotions can be a response to funda-
mental life-tasks, we can distinguish emotions based on the context in which they
appear.

Based on these observations he defined a set of basic emotions: anger, disgust, fear, joy,
sadness, and surprise. He considers each of these basic emotions not as a single affective
state but rather as a family of related states [10].

2.1.2 Plutchik’s Wheel of Emotions

Robert Plutchik’s General psychoevolutionary theory of emotion [11] defined ten postu-
lates, out of which we present four that are the most relevant for our work:

Postulate 5: There is a small number of basic, primary, or prototype emotions.

Postulate 6 : All other emotions are mixed or derivative states; that is, they occur
as combinations, mixtures, or compounds of primary emotions.

Postulate 8: Primary emotions can be conceptualised in terms of pairs of polar
opposites.

Postulate 10: Each emotion can exist in varying degrees of intensity or levels of
arousal.

The postulates lead to the development of Plutchik’s wheel of emotions depicted in
Figure 2.1. It defines eight basic, pairwise contrasting emotions: joy – sadness, trust –
disgust, fear – anger, and surprise – anticipation. The circular representation reflects the
opposition by putting each of the contrasting emotion pair opposite to one another.

For each basic emotion, the wheel also defines different intensity levels. For example,
rage is an intense expression of anger, and annoyance is its milder form.

Beyond the basic emotions, thewheel also presents composed ones. They are depicted
between twowings corresponding to basic emotions. For example, love is a combination
of joy and trust, while remorse includes elements of sadness and disgust.

2.1.3 Profile of Mood States

Profile of Mood States [12] is a psychological instrument for assessing the individual’s
mood state. The test consists of 65 adjectives describing moods or feelings, and a person

10 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 2.1
Plutchik’s wheel of
emotions.

disapprovalremorse

contempt awe

submission

loveoptimism

aggressiveness

pensiveness

annoyance anger rage

ecstasy

joy

serenity

terror fear apprehension

admiration

trust

acceptance

vigilance

anticipation

interest

boredom

disgust

loathing amazement

surprise

distractionsadness

grief

is asked to respond on a five-point scale how strongly he experienced a particular mood
in the last week. Those answers are aggregated into a seven-dimensional mood state rep-
resentation consisting of anger, depression, fatigue, vigour, tension, confusion, and friend-
liness. Each adjective contributes to the total score for only one dimension. The greatest
majority of adjectives contribute positively to their categories; not experiencing the mood
at all in the last week contributes zero points to the category while experiencing it ex-
tremely contributes four. For example, if the personwas highly annoyed in the last week,
this contributes positively to the anger category. For some adjectives, however, the rating
scheme is inverted— not at all contributes four points while extremely contributes zero.

Background 11

The global score for each dimension is obtained by summing the contributions of all
adjectives. The higher the score, the more that dimension is expressed in the individual.

The manual for the POMS test [12] along with the instructions on how to perform
the test on patients and the normative data is only available to certified psychologists.
However, we are only interested in its factor structure, which is publicly available in
Norcross et al. [13], and which we further supplemented with the information from
the BrianMac Sports Coach website1. We emphasise that despite the POMS manual
not being public, in our study we only worked with the information that is. We used
the following structure (note that adjectives with reverted rating scheme have a ”-” sign
prepended to the word):

Anger: angry, peeved, grouchy, spiteful, annoyed, resentful, bitter, ready to fight,
deceived, furious, bad-tempered, rebellious,

Depression: sorry for things done, unworthy, worthless, guilty, desperate, hope-
less, helpless, lonely, terrified, discouraged, gloomy, sad,miserable, blue, unhappy,

Fatigue: fatigued, exhausted, bushed, sluggish, worn out, weary, listless,

Vigour: active, energetic, full of pep, lively, vigorous, cheerful, carefree, alert,

Tension: tense, panicky, anxious, shaky, on edge, uneasy, restless, nervous, -relaxed,

Confusion: forgetful, unable to concentrate, muddled, confused, bewildered, un-
certain about things, -efficient,

Friendliness: friendly, clear-headed, considerate, sympathetic, helpful, trusting,
and good-natured.

2.2 Traditional Text Classification
Before we can apply a machine learning algorithm to a set of documents — usually re-
ferred to as a corpus — we need to transform them into a vector representation. A com-
mon approach to this is bag-of-words. Given a set of documents, we first construct a
set of all words that appear inside any document. Each word will correspond to one

1 https://www.brianmac.co.uk/pomscoring.htm

https://www.brianmac.co.uk/pomscoring.htm

12 N Colnerič Emotion Recognition on Twitter Using Neural Networks

dimension in the final vector representation; i.e. the dimensionality of a documents’
vector representation is determined by the number of different words appearing in doc-
uments. With dimensions defined, a given document is transformed into a vector by
counting the number of times a word corresponding to a particular dimension occurs
inside a document. An illustrative example of bag-of-words transformation for the fol-
lowing three documents is shown in Table 2.1:

𝑑𝑜𝑐1: John likes movies. I like movies too.

𝑑𝑜𝑐2: I like my co-workers.

𝑑𝑜𝑐3: My successful co-workers make me look incompetent.

Table 2.1
Bag-of-words representation of three documents with column vectors representing each document.

𝑑𝑜𝑐1 𝑑𝑜𝑐2 𝑑𝑜𝑐3
I 1 1 0
incompetent 0 0 1
John 1 0 0
My 0 0 1
my 0 1 0
co-workers 0 1 1
like 1 1 0
likes 1 0 0
look 0 0 1
make 0 0 1
me 0 0 1
movies 2 0 0
successful 0 0 1
too 1 0 0

Although this looks like a trivial transformation, there are a few critical questions we
need to consider. First, what defines a word? How to get a set of words for a given docu-
ment? Anaive approachwould split the text by spaces, but that does notworkwell with

Background 13

punctuations, dashes, etc. Hence, we usually rely on a pre-trained, language-specific,
off-the-shelve tool: a tokeniser. Second, do we want to keep punctuation? In the ex-
ample above, we did not. However, punctuation might indicate the tone the text is
expressing or can influence themeaning, so wemight want to keep it. Third, should our
analysis be case sensitive or not? Considering the example in Table 2.1 it seems reason-
able to group dimensions My and my into one dimension. Contrary, grouping us and
US wouldmake it impossible to distinguish between the pronoun and the abbreviation
for the United States. As this is task-specific, we need to use our best judgement when
transforming documents or compare the performance of both approaches. Fourth, do
we keep all words or only some? Keeping all words requires more resources when train-
ing classifiers and might hurt their performance. Also, it seems useless to keep words
that occur in only one document, since they usually bear little predictive power. On the
other hand, removing too much might remove some relevant information. A common
approach to filteringwords is to remove the least and themost commonwords. Filtering
out words from both end of the frequency spectrum should remove words that occur
in the majority of the documents as well as those that occur in only a few. Lastly, do
we want to group different word variations with same meaning together? For example,
like and likes are just morphological variations of the same verb, so perhaps it is better to
group them. Various stemming and lemmatisation algorithms exist that aim to reduce
inflected or derivedwords to theirword stem. These can either be a crude set of rules that
chop off word endings or methods based on vocabularies andmorphological analysis of
words.

The aim of the above discussion was not to provide the reader with a set of rules on
how to transform documents to vectors, but merely to raise some important questions
that need to be considered and to shed light on the required external resources.

Once documents are transformed into vectors, they are, along with the true labels of
the documents, fed into a machine learning algorithm, which returns a classifier. For
document classification, the following are especially popular: naive Bayes, logistic re-
gression, support vector machines, but others such as decision trees, random forests,
k-nearest neighbours can be used as well.

Training a simple classifier on top of the bag-of-words representation of documents
is considered a strong baseline for many document classification tasks. However, its
primary deficiency, besides a handful of parameters that require tuning, is that it dis-
regards the order of words. Considering the vector representation of 𝑑𝑜𝑐3 in Table 2.1

14 N Colnerič Emotion Recognition on Twitter Using Neural Networks

it is impossible to know whether the original sentence was ”My successful co-workers
make me look incompetent.” or ”My incompetent co-workers make me look successful.”.
Such differences might not be relevant for tasks like topic classification but are of para-
mount importance in other cases, like emotion recognition, where a more in-depth un-
derstanding of the sentence can be required to predict the target category successfully. A
usual approach to introducing some context into the bag-of-words transformation are
n-grams, which first require setting the value of n and second, they significantly increase
the dimensionality of the transformation.

Another flaw of the bag-of-words transformations is its sparseness and high dimen-
sionality. The larger the corpus, the larger the dimensionality of the bag-of-words trans-
formation, especially when working with n-grams. Since for a given document, only
some dimensions have non-zero values, various problems, referred to as the curse of di-
mensionality, occur. A method called Latent Semantic Indexing (LSI) can be used to
transform this high-dimensional sparse space into a lower-dimensional dense one. LSI
exploits the distributional hypothesis—words with a similar meaning will tend to have
similar distributions across large corpora— to shrink the dimensionality of the original
space. It does so by grouping the words with similar meaning into one dimension. If
the dimensions of original space correspond towords, after usingLSI they correspond to
concepts. The transformation is done by Singular Value Decomposition (SVD), which
transforms the original space into a new orthonormal one. Dimensions are set so that
the first one corresponds to the direction of the largest variation in the data. The next
one is perpendicular to the first one and is set to capture the most variation left. Hence,
when shrinking the dimensionality with LSI, the number of dimensions to keep is usu-
ally determined by the proportion of the variance in the data that we want to retain.
Studies report that around 70% variance [14] is a reasonable threshold.

LSI shrinks the dimensionality of the space while approximately preserving the dis-
tances between documents. Also, the transformation of representation from words to
concepts can denoise the original feature space and discover hidden correlations or top-
ics, which can boost the predictive power of classifiers.

2.3 Neural Networks
We present word embeddings, a typical neural network input, in Section 2.3.1. Next,
we describe recurrent neural networks in Section 2.3.2 and convolutional ones in Sec-

Background 15

tion 2.3.3. We conclude by discussing the training of neural networks in Section 2.3.4
and explaining the unison learning approach in Section 2.3.5.

2.3.1 Word Embeddings

Word embedding or word vectors are fixed-length vectorial representations of words.
Its most straightforward implementation is the so-called one-hot encoding. Similarly to
the bag-of-words approach, one-hot encodings have a number of dimensions equal to
the number of distinct words in the corpus with each dimension corresponding to one
word. Hence, the word vector for word cat would have all other dimensions set to zero,
except the dimension for a cat which is set to one: 𝑤𝑜𝑟𝑑𝑐𝑎𝑡 = [1, 0, 0, 0,, 0].

There are twoproblemswith this embedding thatwe eluded to in theprevious chapter.
Such embedding is enormous for a large dictionary, but more importantly, it ignores
similarities between words since the distance between any pair of words is exactly the
same, regardless if the words are semantically similar or not.

To alleviate these deficiencies, when working with neural networks, we typically use
shorter, dense words vectors that resemble semantic similarity between words. Among
the most popular ones are word2vec and GloVe, which were trained in an unsupervised
fashion on a large corpus.

Word2vec [15] is a group of two related shallow neural network models: continu-
ous bag-of-words (CBOW) and skip-gram. Both rely on a famous hypothesis by John
Rupert Firth: You shall know a word by the company it keeps. They were trained on
a corpus of Google News by iterating through the training corpus and using small con-
texts to update theword embedding. A context is a sequence of a few consecutivewords.
CBOW used all words except the middle one to predict what the centre word might be.
Contrary, Skip-gram used the centre word only and tried to predict the context around
it. Both models seem to capture the semantic similarity of words well. Since words are
now dense vectors, we can find similar words for a given word by finding the word em-
bedding that is the closest to it. For example, the nearest word to the word car is vehicle
and to My is my, hence the dilemma that we had in Section 2.2 is elegantly resolved by
letting word2vec decide which words should be considered equivalent. Further, these
vectors are surprisingly accurate in word analogy tasks. For example, a driver to a car is
as a pilot to __? To search for an answer with word vectors we employ simple algebraic
operations:

𝑤𝑜𝑟𝑑𝑐𝑎𝑟 − 𝑤𝑜𝑟𝑑𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑤𝑜𝑟𝑑𝑝𝑖𝑙𝑜𝑡 ≈ 𝑤𝑜𝑟𝑑𝑎𝑒𝑟𝑜𝑝𝑙𝑎𝑛𝑒

16 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Intuitively, the difference between vectors for a car and a driver is the same as the differ-
ence between vectors for an aeroplane and a pilot. The vectors are accurate enough to
capture such differences.

Although word2vec was trained by observing only one context at a time, GloVe [16]
trained word vectors by considering a global word-word co-occurrence counts as well.
GloVe, too, shows the astonishing performance on analogy and word similarity tasks. It
provides pre-trained word vectors trained on Wikipedia, Common Crawl, or Twitter.

While the above embeddings did not devote special attention to words withmultiple
meanings, some of themore recent ones, like ELMo [17], model words characteristics as
well as how those vary across different contexts. As this embedding was published while
our experimental work was already well under way, we have not included it in our study.

When working on an NLP task with neural networks, it has become a standard prac-
tice to start with these pre-trained, off-the-shelve, semantic word vectors. Depending
on the task and the amount of training data, these vectors can further be updated when
training a network or can remain fixed throughout the training process. Despite these
embeddings being usually trained on an enormous corpus, our data set might still con-
tain somewords forwhich embeddings are not provided. For those, we can either use an
all-zero vector as the embedding, or use one global embedding for all out-of-vocabulary
words, which we randomly initialise and then update during training to learn a single
representation for all unknown words.

2.3.2 Recurrent Neural Networks

Recurrent neural network (RNN) is a network capable of processing variable-length
sequences on input, which makes it particularly suitable for processing text. First, let us
define the notation. At time step 𝑡 we denote the vector for word embedding on input
with 𝑥𝑡 and the hidden state with ℎ𝑡 . Let 𝑛 be the length of the input sequence, 𝑚 the
dimensionality of word embeddings on input, 𝑑 the dimensionality of hidden states,
and 𝑧 the number of outputs of the network. RNN starts with a zero-initialised hidden
state ℎ0. It then processes input vectors one after another and updates the hidden state
considering the new input until the input sequence runs out and the final hidden state
is produced. Updates are done using dense (fully connected) layers of weights between
every neuron on the previous layer and every neuron on the next one. W(ℎℎ) is a matrix
of shape 𝑑×𝑑 withweights connecting the previous and the current hidden state.W(ℎ𝑥)

is amatrix of shape 𝑑×𝑚withweights connecting the input to the hidden state. At each

Background 17

time step 𝑡 the new hidden state is calculated as defined in Equation 2.1, where σ denotes
the activation function (e.g. sigmoid, tanh, or ReLu).

ℎ𝑡 = σ (W(ℎℎ)ℎ𝑡−1 +W(ℎ𝑥)𝑥𝑡) (2.1)

Notice that the RNN applies the same set of weights,W(ℎℎ) andW(ℎ𝑥), at every time
step. Once thewhole input is incorporated into the final hidden stateℎ𝑛, we use another
set of weights W(𝑠) of shape 𝑧 × 𝑑 that connects the final hidden state to the output.
The output of the network, 𝑦̂, is calculated using an Equation 2.2 for multiclass tasks or
Equation 2.3 for multilabel tasks.

𝑦̂ = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 (W(𝑠)ℎ𝑡) (2.2)

𝑦̂ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (W(𝑠)ℎ𝑡) (2.3)

To obtain the output, we apply either softmax or sigmoid activation function where
𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑥𝑗) = 𝑒𝑥𝑗

∑𝑧
𝑘=1 𝑒

𝑥𝑘 and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑗) = 1
1+𝑒−𝑥𝑗 . For multiclass tasks, where each

example only belongs to one category, we use softmax as it produces a probability dis-
tribution across a set of categories. For multilabel tasks, where each example can belong
to multiple categories, the neural network needs to provide a decision for each of them.
Hence, we use a sigmoid function that transforms the output for each of the categories
to a range [0, 1], which we treat as a probability for a given category. When making
predictions in multiclass setting, we pick the category whose probability is maximal. In
multilabel settings, we choose those categories whose probability is higher than 0.5. The
schematic overview of RNNs is presented in Figure 2.2.

The problem with this vanilla RNN architectures is that although they are theoret-
ically capable of handling long-term dependencies, in practice, they usually perform
poorly on data where information from many previous steps is needed. As the hidden
state gets multiplied withW(ℎℎ) at every time step, the gradient either explodes or van-
ishes during training. To alleviate this issue, two improvedRNNarchitectures havebeen
proposed: long short-term memory (LSTM) and gated recurrent units (GRU). Both
feature more complicated recurrent steps which we describe in the following sections.

Long Short-Term Memory (LSTM) Similarly to vanillaRNN’s hidden state that runs
through all stages of thenetwork, LSTM[18] introduces one additional state, called a cell
state. The cell state serves as a memory, to which LSTM can add or remove information

18 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 2.2
The schema of an RNN.
We denote the input
word embeddings by
𝑥𝑖 , the hidden states
by ℎ𝑖 , weights between
input and hidden states
byW(ℎ𝑥), weights
between two consec-
utive hidden states by
W(ℎℎ), weights for
the output byW(𝑠),
and the output of the
network by 𝑦̂.

h0

h1

W(hx) W(hh)

h2

W(hx)

x1

x2

...

hn

W(hx) W(hh)xn

W(s)

y

...

W(hh)

through themechanism of gates. Cell state at time 𝑡 is denoted as 𝑐𝑡 , the outputs of gates
as 𝑖𝑡 for input gates, 𝑓𝑡 for forget gates, 𝑜𝑡 for output gates, and the candidate for cell
state update as 𝑐𝑡 . As before, the dense layer weights are marked withW(𝑖),W(𝑓),W(𝑜),
W(𝑐),U(𝑖),U(𝑓),U(𝑜), andU(𝑐). The point-wise (Hadamard) product is denoted with
∘. At each recurrent stage of LSTM, the cell state and new hidden state are calculated as:

𝑓𝑡 = σ (W(𝑓)𝑥𝑡 + U(𝑓)ℎ𝑡−1) (2.4)

𝑖𝑡 = σ (W(𝑖)𝑥𝑡 + U(𝑖)ℎ𝑡−1) (2.5)

𝑜𝑡 = σ (W(𝑜)𝑥𝑡 + U(𝑜)ℎ𝑡−1) (2.6)

𝑐𝑡 = 𝑡𝑎𝑛ℎ (W(𝑐)𝑥𝑡 + U(𝑐)ℎ𝑡−1) (2.7)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐𝑡 (2.8)

ℎ𝑡 = 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ (𝑐𝑡) (2.9)

We show the schema of LSTM cells in Figure 2.3.

Background 19

ct-1

ht-1

º +

tanh

ºσ σ

º

tanh σ

ft it ot
ct
∫

ct

ht

xt

Figure 2.3
LSTM cell. Circles
and ovals represent
point-wise opera-
tions: ∘ for Hadamard
product, + for the
sum, and 𝑡𝑎𝑛ℎ for the
hyperbolic tangent.
Rectangles represent
neural network layers
with different activa-
tions: σ for the sigmoid
and 𝑡𝑎𝑛ℎ for the hyper-
bolic tangent. Notice
that as all network
layers have both ℎ𝑡−1
and 𝑥𝑡 on input, we
only show one line for
brevity.

Forget gate (equation 2.4) : a sigmoid layer that decides what information to re-
move from the cell state 𝑐𝑡−1.

Input gate (equation 2.5) : a sigmoid layer that decides what information from the
cell update candidate 𝑐𝑡 to store into the new cell state 𝑐𝑡 .

Output gate (equation 2.6) : a sigmoid layer that decides what information from
the newly updated cell state 𝑐𝑡 to send out as the new hidden state ℎ𝑡 .

Cell update candidate (equation 2.7) : a tanh layer that creates a candidate 𝑐𝑡 for
updating the cell considering previous hidden state ℎ𝑡−1 and current input 𝑥𝑡 .

New cell state (equation 2.8) : combines the previous cell state 𝑐𝑡−1 multiplied by
the output of forget gate 𝑓𝑡 with the cell update candidate 𝑐𝑡 multiplied by input
gate 𝑖𝑡 . This stage removes the old information from the cell state and introduces
new information according to input and forget gates.

New hidden state (equation 2.9) : considers the output gate 𝑜𝑡 and the newly up-
dated cell state 𝑐𝑡 to produce the filtered cell state that will serve as a new hidden
state.

As gates can block new information from coming into the cell state, it is very easy for
information to pass through many time steps almost unchanged, which makes LSTM

20 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 2.4
GRU cell. Circles rep-
resent point-wise oper-
ations: ∘ for Hadamard
product and + for the
sum. Rectangles rep-
resent neural network
layers with different
activations: σ for the
sigmoid and 𝑡𝑎𝑛ℎ for
the hyperbolic tangent.

ht-1

σσ º

tanh

ztrt

ht
∫

ht

xt

º

º +

1-zt

much better at modelling long-term dependencies.

Gated Recurrent Units (GRU) GRU [19] is a simplification of LSTM that is also
based on the mechanism of gates but does not have a separate cell state. Instead, the
gating mechanism is implemented directly on the hidden state. It contains two types of
gates: update gate 𝑧𝑡 and reset gate 𝑟𝑡 . At each recurrent stage of GRU, the new hidden
state is calculated as:

𝑧𝑡 = σ (W(𝑧)𝑥𝑡 + U(𝑧)ℎ𝑡−1) (2.10)

𝑟𝑡 = σ (W(𝑟)𝑥𝑡 + U(𝑟)ℎ𝑡−1) (2.11)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ (W(ℎ)𝑥𝑡 + U(ℎ) (𝑟𝑡 ∘ ℎ𝑡−1)) (2.12)

ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + (1 − 𝑧𝑡) ∘ ℎ̃𝑡 (2.13)

We show the schema of GRU cells in Figure 2.4.

Update gate (equation 2.10) : a sigmoid layer that sets the balance between old hid-
den state ℎ𝑡−1 and hidden state update candidate ℎ̃𝑡 that will go into new hidden
state ℎ𝑡 .

Reset gate (equation 2.11) : a sigmoid layer that decides how important the previ-
ous hidden state ℎ𝑡−1 is for generating hidden state update candidate ℎ̃𝑡 .

Hidden state update candidate (equation 2.12) : a tanh layer that combines the
current input 𝑥𝑡 with the previous hidden state ℎ𝑡−1 updated by the output of
reset gate 𝑟𝑡 to produce the hidden state update candidate.

Background 21

New hidden state (equation 2.13) : combines the previous hidden state ℎ𝑡−1 and
the hidden state update candidate ℎ̃𝑡 weighted by the output of update gate 𝑧𝑡 .

After the whole input has been incorporated into the final hidden state ℎ𝑡 of either
LSTM or GRU networks, the output of the network is obtained with Equations 2.2
and 2.3 as it was for vanilla RNNs. Despite the simplified structure of GRU compared
to LSTM, they usually show comparable performance [20].

2.3.3 Convolutional Neural Networks for Text Classification

Although convolutional neural networks (CNN) were designed for computer vision,
they were recently shown to be very effective for NLP tasks as well [21–23]. Similarly
to the convolution operation applied on small image patches to identify patterns in the
image, convolution can be applied to a few consecutive words to extract patterns from
written text. On images, convolution usually works across two dimensions, length and
height, in a text it is usually applied through one — time. One of the most popular
architectures, presented in [21], is shown inFigure 2.5 andwill be the topic of this section.

The input to the CNN are word vectors (see Section 2.3.1) stacked horizontally one
after the other. Then a set of convolution filters — also known as feature maps — is
applied on top of them. In a neural networks context, convolution is a mathematical
operation that is given an input matrix 𝑥 and a set of corresponding weights 𝑤, both of
shape 𝑛 × 𝑚, and produces a real number activation as defined by Equation 2.14, where
∘ stands for point-wise multiplication.

𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑥, 𝑤) =
𝑛
∑
𝑖=0

𝑚
∑
𝑗=0

(𝑥 ∘ 𝑤) (2.14)

As each filter is only able to spot one pattern in a given text, we trainmultiple of them.
The required number of feature maps depends on the complexity of the task, with the
optimim typically in the range 100-600 [24]. Each feature map has the height equal
to the dimensionality of a word embedding and has a variable length or window size.
Typically, lengths between 1-10 were shown to be adequate [24]. The size of the window
determines the context a feature map can observe at each point. For example, a feature
map with a window size of two would scan through the whole input and apply a con-
volution operation on all pairs of words. Since on each step the convolution window
is only shifted for one word, applying a feature map with window size of two on a se-
quence of 10wordswould yield a vector of activations of length 9. For every featuremap

22 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 2.5
The schema of Kim’s
[21] CNN architecture
for text classification.
We denote the input
word embeddings
by 𝑥𝑖 , weights for
the output byW(𝑠),
and the output of the
network by 𝑦̂.

x1

W(s)

...

x2 x3 xn-1 xnx4 x5

Word
embeddings

1D convolution

Max pooling
over time

y

Dense layer

in the network, we get one such vector of activations. These activation vectors are then
subjected to a max-over-time pooling as defined by Equation 2.15.

𝑚𝑎𝑥_𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑥) = max
0≤𝑡≤𝑛

𝑥𝑡 (2.15)

After max-pooling, we have one number for each feature map in the network. It cor-
responds to the maximal activation of a given feature map anywhere in the text, but
without the information about where it occurred. Finally, a dense layer with weights
W(𝑠) connects these activations to the output. Again, the output 𝑦̂ is obtained with the
Equation 2.2 or Equation 2.3 for multiclass or multilabel task respectively.

Notice that the above architecture performs convolution on top of words vectors,
while some other approaches first decide to quantise texts into images and then treat the
problemas an image classification task. Zhang et al. [22] first encoded each character into
one-hot representation, then stacked those into amatrix, and treated ones as black pixels
and zeros as white to obtain a pictorial representation the input text. Consequently,
such approaches call for somehow different architectures, which resemble those used

Background 23

for classifying images more than the one we describe above for text.

2.3.4 Training of Neural Networks

Training of a neural network is a process that finds such set of parameters with which
the neural network performs well for the task at hand. Hence, we first need to define
a metric, usually referred to as a cost function, that assesses the quality of a given set
of parameters. Let our data consist of training examples denoted by 𝑥 and their corre-
sponding labels denoted by 𝑦. As before, for a given set of parameters𝑤 and input 𝑥, let
the predictions of a neural network be denoted with 𝑦̂. We define two cost functions,
one for multiclass and one for multilabel tasks.

In the multiclass setting, we are training a classifier to predict a probability distribu-
tion across a set of mutually-exclusive labels. As each example only belongs to one cat-
egory, we want a cost function to give a low penalty when the probability of the correct
class is high, and a high penalty when the probability of correct class is low. A popular
example of such a cost function is categorical cross-entropy shown in Equation 2.16.

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑦̂) = −∑
𝑖
𝑦𝑖 log (𝑦̂𝑖) (2.16)

In multilabel setting, where examples can belong to multiple categories, we want the
classifier to give high probability to all categories to which a given example belongs and
a low probability to all others. A popular example of such a cost function is binary
cross-entropy shown in Equation 2.17.

𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑦̂) = −∑
𝑖
(𝑦𝑖 log (𝑦̂𝑖) + (1 − 𝑦𝑖) log (1 − 𝑦̂𝑖)) (2.17)

Recall that the output of a neural network 𝑦̂ is some function 𝑓 — defined by the
architecture of the neural network — of the input 𝑥 and all neural network parameters
𝑤 as illustrated in Equation 2.18.

𝑦̂ = 𝑓 (𝑥, 𝑤) (2.18)

Our goal is to find such a set of parameters 𝑤 that the cost function J will have the
minimal possible value. As the function J is differentiable, we can use gradient descent
methods to update the set of parameters. We calculate the gradient of a function Jwith

24 N Colnerič Emotion Recognition on Twitter Using Neural Networks

respect to all parameters 𝑤 and update them in the direction where the cost function
has the lowest value. In its simplest form, the gradient descent algorithm for training a
neural network is shown in Algorithm 1.

Algorithm 1 Neural network training by gradient descent.
Input: 𝑥, 𝑦 ▷ data sets

J ▷ a cost function
η > 0 ▷ learning rate
ϵ > 0 ▷ stopping criterion

Output: 𝑤 ▷ a set of neural network weights
1: /* Initialise weights w */
2: while J(𝑥, 𝑦, 𝑤𝑡−1) − J(𝑥, 𝑦, 𝑤𝑡) > ϵ do
3: 𝑤𝑡 = 𝑤𝑡−1 − η ∂J

∂𝑤𝑡−1

4: return 𝑤𝑡

In the above algorithm, gradients are calculated by considering all examples from our
data set. As this gets slow for large data sets, it ismore common to calculate the gradients
using only a small batch of examples. The algorithm then loops through batches of ex-
amples from the data set and uses them to update the weights. We refer to a full training
cycle that exhausts all examples from the training set as an epoch and several epochs are
usually required to train the neural network.

Finally, let us briefly mention that there is a multitude of issues with the above basic
gradient descent approach. As the optimisation space of a cost function with regard
to neural network weights is highly non-convex, the optimisation might get stuck in
local optimum. Also, setting the learning rate η correctly is critical. If it is too large, the
training might never converge, and if it is too small, the optimisation will take too long.

There is a myriad of advanced training algorithms that use tricks such as momentum
to get through local optimums, and that adapt learning rates throughout the training or
with regard to each parameter separately. Some of the most widely-used ones are RM-
Sprop [25], Adagrad [26], Adadelta [27], and Adam [28]. Also, as momentum might
cause the cost function J to increase, different stopping mechanisms are employed to
stop the training. For example, early stopping monitors the performance of the neural
network on another set of examples, validation set, and stops the training when the ac-

Background 25

curacy starts dropping.

2.3.5 Unison Learning

So far we focused on training a single neural network to perform a single classification
task. Now we investigate the ability of neural networks to perform multiple tasks at
the same time. More specifically, given a set of various related tasks, each with its own
training data set, how to train a single neural network to perform all given tasks?

Themotivation for this comes fromthebenefits that areusually observed inmulti-task
settings [29]. First, addingmore tasks introduces additional training signals that can im-
prove the performance across tasks in comparison to the performance of models when
each task is trained separately. Intuitively, since multiple tasks share a common repre-
sentation, features constructed for one task might help another. Second, forcing the
network to perform various tasks at the same time can steer the training process to prefer
more general features that can be useful across tasks. This could lead to less over-fitting
and better generalisation of trained models.

Such multi-task learning architectures have one input and multiple outputs — one
per task — and rely on parameter sharing. All neural network parameters are divided
into two groups: common and task-specific ones. Common parameters are those that
are shared across tasks, while task-specific ones differ for each task. An example of such
architecture that was used by Collobert & Weston [30] is presented in Figure 2.6. After
shared word embedding, two task-specific CNN architectures similar to those described
in Section 2.3.3 follow.

There are two approaches to train networks that differ in the training data and corre-
sponding labels. In the regular multi-task learning, when training examples are labelled
for all tasks, we first calculate the derivatives with respect to all network parameters for
each of the tasks separately. Derivatives corresponding to shared network parameters
are summed across all tasks, while task-specific derivatives can be used directly. Doing
so, we obtain the derivatives for all network parameters and can hence train the network
with the optimiser of our choice as described in the previous section.

In the second case, training data is not labelled for all tasks, but each training example
is only labelled for one of the tasks. To distinguish this case from the first one, we refer
to it as unison learning. We define unison learning as an approach to train a multi-task
neural network when each training example is only labelled for one of the tasks. Train-
ing such a unison network is a bit trickier. As we do not possess the labels for all tasks,

26 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 2.6
An architecture
used by Collobert
& Weston [30] for
multi-task learning
with parameter sharing.
The word embedding
is shared between two
tasks, while other NN
layers are task specific.

input

embedding

convolution

max_pooling

dense

so�max

convolution

max_pooling

dense

so�max

Task 1 Task 2

Parameters shared
across all tasks

Task specific
parameters

gradients corresponding to missing labels cannot be computed and consequently, we
cannot use the gradient summing trick. To train a network in such a setting, Collobert
& Weston [30] proposed the following approach that can be summarised as:

1. Select the next task.

2. Select a random training example for this task.

3. Update theNN for this task by taking a gradient stepwith respect to this example.

4. Go to 1.

Note that in the third stepwe only update the shared parameters and the task-specific
parameters for a current task. Task-specific parameters of the network corresponding to
other tasks are left untouched. By iterating through tasks and alternatively updating
task-specific parameters, we train a neural network for multiple tasks, without having
all training examples labelled for all tasks.

2.4 Related Work
We split the section into multiple paragraphs, each covering a particular research field.
First we present recent work on emotion recognition, then we cover sentiment analysis

Background 27

with a focus on the use of neural networks, and finally we discuss the state of transfer
learning.

Emotion Recognition The first recognitionmodels for Ekman’s six basic emotions date
back at least a decade. Alm et al. [31] annotated each sentence of 185 children’s fairy tales
but limited their experiments to distinguishing between emotional and non-emotional
sentences and classifying sentences into no, positive, or negative emotion class, without
any fine-grained emotion classification. Similarly, Aman & Szpakowicz [32] annotated
a corpus of blog posts but again distinguished only between emotion and no emotion
categories. In 2007, SemEval held a competition in emotion recognition from news
headlines [33]. However, the main focus was to encourage the study of emotion lexical
semantics and consequently no training data was provided. Three out of five competing
systems tackled emotion labelling, while others only worked on the polarity classifica-
tion. The emotion labelling ones were a rule-based system using lexicons [33], a system
exploiting Point-wise Mutual Information (PMI) scores gathered through three differ-
ent search engines [33], and a supervised system using unigrams [33]. Their averaged
F1-scores over emotion categories were around 10 %. Performance on this data was later
improved to 18 % F1-Score with Latent Semantic Analysis [34]. Chaffar & Inkpen [35]
collected a heterogeneous data set of blogs, fairy tales, and news headlines and showed
that on this data sequential minimal optimisation SVM yields the greatest improve-
ment over simple baselines. The closest to our approach is the work of Mohammad &
Kiritchenko [36] who exploited hashtags corresponding to Ekman’s emotion categories
to obtain a labelled data sets of 21,051 tweets. With cross-validating SVM on n-grams,
they obtained a micro-averaged F1-score of 49.9 %.

The works on Plutchik’s emotions include Mohammad & Turney, who created an
emotion lexiconusingAmazon’sMechanicalTurk [37]. LaterMohammad et al. [38] col-
lected a set of about 2,000 tweets concerning the 2012 US presidential election. Besides
for emotions, the tweets were also annotated for sentiment, purpose, and style. Using a
multitude of custom engineered features like those concerning emoticons, punctuation,
elongated words, and negation along with unigrams, bigrams, and emotion lexicons fea-
tures, the SVM classifier achieved an accuracy of 56.8 %. Tromp & Pechenizkiy [39] de-
veloped a rule-based classification techniqueRBEM-Emo. They trained it on 235 English
tweets and achieved 47 % accuracy on a held-out set of 113 tweets.

Theworks onPOMSare rather rare. JohanBollen ledmost existing studies. Common

28 N Colnerič Emotion Recognition on Twitter Using Neural Networks

to all is the idea of tracking adjectives defined in the POMS’s questionnaire and using
its structure to obtain six-dimensional mood representation. Bollen investigated how
Twitter mood predicts the stock market changes [6, 40]. In a similar study [41], he cor-
related emotion time series with records of popular events and showed that such events
may have a significant effect on various dimensions of the public mood. By analysing
emails submitted to futureme.org, Pepe & Bollen revealed the long-term optimism of its
users, but medium-term confusion [42]. Those studies used the POMS’s questionnaire
as a tool for obtaining mood representations but did not study the problem of recog-
nising POMS’s categories from the text.

Several studies use other categorisations of emotions. Neviarouskaya and colleagues
developed two rule-based systems for recognising nine Izard emotions; the first one
works on blogs [43], the second one on personal stories from experience project2 web-
site [44]. Mishne [45] experimented with detecting 40 different mood states on blog
posts from the LiveJournal community. He used features related to n-grams, length, the
semantic orientation of words, PMI, emphasised words, and special symbols to train an
SVM classifier. Mihalcea & Liu [46] used a subset of these blog posts to train a Naïve
Bayes classifier for distinguishing between happy and sad posts. Yerva et al. [47] fused
weather-dependent mood representations from Twitter with real-time meteorological
data to provide travel recommendations based on the expectedmood of people in a par-
ticular city.

Although we approached the problem by essentially predicting hashtags, our study
differs from the usual hashtag recommendation [48–50] in that those studies usually
choose among tens of thousands of different hashtags with potentially similarmeanings,
while we target a small set of hashtags corresponding to distinct emotions.

Previous studies showed some promising results for emotion recognition, but none
has yet tested the utility of neural networks. Also, we worked with three emotion classi-
fications at the same time to develop a common model able to recognise multiple emo-
tion classifications.

Sentiment Analysis While the use of neural networks for emotion recognition has
been limited, they have been widely applied for sentiment analysis. Maas et al. [51] com-
bined the use of supervised and unsupervised techniques to train word embedding that

2 http://www.experienceproject.com

http://www.experienceproject.com

Background 29

captures both semantic information and sentiment, and applied it for document-level
sentiment polarity task on movie reviews. There have been several studies that applied
recursive neural networks to sentiment tasks. Dong et al. [52] used adaptive recursive
neural networks to work on target dependant sentiment task; for example, what senti-
ment is expressed in the tweet towards Google. Socher et al. [53] developed a recursive
neural tensor network to compute the sentiment of each node in the parse tree of a sen-
tence. It works in a bottom-up approach and computes the representation of a node
by composing those of its children. Doing so, they can capture different scopes of neg-
ation, which was illustrated on the newly annotated Sentiment Treebank data set [53].
The data contains sentences along with the corresponding parse trees, which have also
been annotated for sentiment at each node of the tree. Tai et al. [54] extended LSTMs
to work on parse trees to combine words to phrases by exploiting syntactic properties
of natural language. Notice that recursive neural networks require the input data to be
of sufficient quality so that parse trees can be produced. Hence, we suspect that such
approaches are not the best fit for Twitter, where the used language is often informal
and of lower syntactic quality.

Convolutional neural network approaches differmostly by input representations and
consequently architectures. Santos et al. [55] developed a deep CNN that combined
character-level as well as word-level embeddings to predict sentiments of tweets, while
Severyn et al. [56] described an approach that initialises the weights for deep convolu-
tional networks. Zhang et al. [22] first quantised text to binary images byusing a one-hot
representation of input characters. As this translated the text classification task to an im-
age recognition one, a standard multi-layer CNN was applied to predict sentiment on
multiple reviews data sets. Contrary, Kim [21] applied convolution directly on word
embeddings and consequently only one convolutional layer followed by max-pooling
sufficed. Kalchbrenner et al. [23] introduced dynamic CNNs and worked directly on
sequences of words.

Ghiassi et al. [57] showed that dynamic artificial NNoutperforms SVM in the task of
determining the consumer sentiment towards a brand. Arkhipenko et al. [58] compared
GRU, CNN and SVM for Twitter sentiment detection task at SentiRuEval-2016 and
showed that GRU network performed best. Nejat et al. [59] trained NN jointly for
both discourse parsing and sentiment analysis using recursive neural network models
and showed that such training leads to improvements in both tasks.

The hybrid approach ofWang et al. [60] joined convolutional with a recurrent neural

30 N Colnerič Emotion Recognition on Twitter Using Neural Networks

network to benefit from the long-range features of recurrent as well as coarse-grained
local features from convolutional ones. Interestingly, a study by Radford et al. [61] il-
lustrated that sentiment can also be discovered as a side product of training networks
for other tasks. While training a recurrent neural network for language modelling, they
discovered a neuron whose value directly represents the sentiment of the text on the in-
put. Using the representations learned with their model they achieved excellent results
on the binary subset of the Stanford Sentiment Treebank dataset [53]. Furthermore,
they showed that by fixing the value of this neuron they could directly influence the
sentiment of the generated samples to be either positive or negative.

Transfer Learning Transfer learning is a technique where the knowledge obtained
when training the model on one task is re-purposed for another task. It builds on the
idea that learning should not start from scratch for each task, but we should instead
build on top of the previous knowledge. Lately, transfer learning has become a popular
approach for neural networks in multiple fields. For image recognition tasks, it has be-
comea standardpractice to employpre-trainedmodels [62],manyofwhichwere trained
on ImageNet [63] — an enormous collection of images collected for an object classific-
ation competition. Among the most known ones are AlexNet [64] and Inception [65].
It has been shown that first layers of deep CNN tend to discover general features sim-
ilar to Gabor filters [66] while the higher layers encode more and more specific features.
Hence, it is natural to exploit the knowledge from these pre-trained model rather than
starting the training from scratch for each of the tasks.

Similar trends have also been observed in natural language processing. We already de-
scribed one such case in the previous section, where Radford et al. [61] used the neuron
trained on language modelling task for predicting sentiment. Otherwise, the most ev-
ident example of transfer learning is the use of pre-trained word embeddings. These
word embeddings, which are usually trained on a large corpus in an unsupervised man-
ner, contain a semantic representation of words, which we might not be able to learn
from scratch on a smaller target data set. Some of the most popular word embeddings
are word2vec [15], GloVe [16], and ELMo [17]. See Section 2.3.1 for a more detailed dis-
cussion of word embeddings.

3

Data

32 N Colnerič Emotion Recognition on Twitter Using Neural Networks

The data set that we used in this study contains tweets that have been continuously col-
lected through the Twitter API from August 2008 till May 2015. Spanning over seven
years, the collection contains roughly 73 billion tweets that occupy about 17 TB of disk
space in uncompressed text files. All tweets were imported into a Hadoop cluster run-
ning on 40 nodes using 160 hard drives. To allow for quick scans through the data set,
we developed a custommap-reduce search application that can scan through the data in
approximately one hour and a half.

Since we tackled emotion recognition as a supervised machine learning task, we first
needed to construct a data set labelledwith emotions onwhich the classifierswere trained.
A commonapproach to this is to employ a set of human annotators that read the content
and pick themost suitable category. For the scale of our data, such amanual approach is
too time- and resource-consuming. Also, as the examples from Chapter 1 demonstrate,
labelling short texts for emotions is non trivial and ambiguous. Hence we opted for an
automated process. Luckily, Twitter provides a mechanism for self-annotation of the
content that is quite popular — hashtags. A hashtag is a concatenation of a # sign with
an arbitrary word or multi-word phrase, and its primary purpose is to enable efficient
search for tweets. As such, the users frequently add hashtags that sum up the content
of the tweet. These can be considered as the author’s annotation of their content and
hence can be exploited for creating labelled data sets. Such an approach, where labels
are not assigned by human annotators but come from the data itself, is referred to as
distant supervision.

We are aware of the danger that such data might be of a lower quality than humanly
annotated data sets. We still chose to use this approach because it enables us to use a
much larger data set. Deep neural networks require a lot of data and it is a common
practice to trade the quality of the data for its quantity. Moreover, in this particular
case we suspect that the agreement between human annotators would often be low and
hence the use of distant supervision should not significantly decease the quality of the
data.

The idea of using hashtags for creating labelled data sets was already proven success-
ful in many recent studies. It has been used in sentiment classification [1, 67, 68], sar-
casm detection [69, 70], and personality traits studies [71]. Similarly to our approach,
Mohammad et al. [36] created an emotion labelled data set by extracting hashtags.

Data 33

3.1 Labelling by Distant Supervision
To label the data with emotion categories, we searched among English tweets for exact
matches of hashtags corresponding to emotions. For Ekman’s set of basic emotions, we
searched for #anger, #disgust, #fear, #joy, #sadness, and #surprise. For Plutchik’s set of
eight emotions, we searched for #anger, #disgust, #fear, #joy, #sadness, #surprise, #trust,
and #anticipation. Although Plutchik defined a more detailed representation, we de-
cided to use only eight main categories and discarded different intensity levels. Also,
notice that Ekman’s categories are a subset of Plutchik’s, which was taken into account
when making comparisons. For POMS we discarded the seventh category friendliness
as it is considered to too weak for valid scoring [13] and only used adjectives for the first
six. Among them, we removed the ones that have a negative contribution to their cor-
responding category (i.e. relaxed and efficient) and we removed the adjective blue as it
is mostly used to describe colour, not emotion. We truncated multi-word phrases to a
single word without spaces. The final set of hashtags we searched for is the following:
#angry, #peeved, #grouchy, #spiteful, #annoyed, #resentful, #bitter, #readytofight, #de-
ceived, #furious, #badtempered, #rebellious, #sorryforthingsdone, #unworthy, #worthless,
#guilty, #desperate, #hopeless, #helpless, #lonely, #terrified, #discouraged, #gloomy, #sad,
#miserable, #unhappy, #fatigued, #exhausted, #bushed, #sluggish, #wornout, #weary, #list-
less, #active, #energetic, #fullofpep, #lively, #vigorous, #cheerful, #carefree, #alert, #tense,
#panicky, #anxious, #shaky, #onedge, #uneasy, #restless, #nervous, #forgetful, #unableto-
concentrate, #muddled, #confused, #bewildered, and #uncertainaboutthings.

For Ekman and Plutchik we used the hashtag itself as the target category, i.e. a tweet
containing hashtag #anger is considered as a training example for anger category. For
POMS, the hashtags were only considered as proxies to the corresponding category as
defined by the POMS structure. That is, a tweet containing #angry was considered as
a training example for anger category and so were tweets containing #furious or any of
the other 10 adjectives that belong to anger category.

Although the vast majority of tweets contain only one emotion hashtag, there are
some that contain multiple of them. For Ekman there are 0.62 % of such tweets, for
Plutchik 0.61 % and for POMS 1.16 %. To account for them properly, we conducted
our experiments in two settings: multiclass andmultilabel. In the multiclass setting, we
limited each tweet to express only a single emotion. We took the first emotion hashtag
thatwas found in the tweet, set it as a target category, and discarded any other thatmight

34 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Table 3.1
Examples of tweets along with the correct target values our classifiers are trained to recognise. In the multiclass
mode, the first emotional hashtag is set as the target. In the multilabel mode, for each emotion category, classi-
fiers have to state whether it is expressed (3) or not (×).

Tweet content Multiclass Multilabel

an
ge

r

di
sg
us

t

fe
ar

jo
y sa
dn

es
s

su
rp

ris
e

I’m so happy to be part of this
family. Love to you all! #home
#joy #love

joy × × × 3 × ×

Seeing my twin cycle ... hurts a
lot ... #anger #sadness

anger 3 × × × 3 ×

The mix of emotions running
through my body right now are
ridiculous.. #disgust #Sadness
#fear

disgust × 3 3 × 3 ×

come later in the content. This decision is based on the assumption that the user first
wrote themost important emotions and that the ones he used later are less relevant. The
classifiers in this mode know that exactly one of the target category is correct for each
tweet and only have to pick the most suitable one.

In the multilabel setting, each tweet can belong to multiple categories, potentially
even to all. We used all emotion hashtags found in the tweet and set them as true cate-
gories. The classifiers in this setting have to decide for each emotion category whether
it is expressed in the tweet or not, regardless of the decisions for other categories. Not
only that multilabel setting accounts for all emotional hashtags that the user provided,
but it is also closer to a real-life scenario in which tweets can be non-emotional as it sup-
ports a scenario in which all classifiers return a negative prediction. Some examples of
tweets, along with their target categories in multiclass or multilabel settings are shown
in Table 3.1.

This resulted in a collection of tweets as well as their emotional categories. However,
some of them are not suitable for learning as hashtags are not always used for annotating

Data 35

the content of the tweet. In some cases, the hashtag is used as a crucial part of the content,
as people might prepend a # character to any word inside a sentence. Other tweets con-
tain only hashtags, @mentions, links, emoticons, and other non-content bearing words.
Some examples of such tweets are shown in Figure 3.1. Since our goal is to develop a
model that can recognise emotions from the textual content — and not merely find cor-
relations between certain @mentions or links and emotions or recommend one hashtag
from the presence of the other — such tweets are undesirable in the training data. We
removed them from our training set using two filtering approaches described below.

Melissa Burnham
@mmburnham

#Fear is not a good reason to oppose #AB230.
Education should involve educating humans
about being human. That includes sex.

 Follow

Sarah Idha Fatmala
@sifsarah

#birthday #sweet #seventeen #cake #tart
#ballon #candle #night #asia #surprise #love
#happy thnks… instagram.com/p/Y1F20ZALIr/

 Follow

Figure 3.1
Example of tweets not
suitable for learning.
In the first tweet hash-
tag #Fear is used as a
crucial part of the con-
tent and not as a label
of the content. The
second example con-
tains too few content
words for recognising
emotions. Such tweets
were removed from the
training set.

To detect tweets without content, we defined the concept of a content word. We took
the tweet andpassed it through apart-of-speech tagger thatwasdesigned forTwitter [72].
Wedefined the contentword as any token inside the tweet thatwasnot tagged asTwitter-
or online-specific (e.g. hashtag, @mention, URL) orMiscellaneous (e.g. number, punc-
tuation). Next, we calculated the content fraction 𝑐 as shown in Equation 3.1.

𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑤𝑜𝑟𝑑𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑠 (3.1)

After observing the distributions of content fraction across all three data sets, shown
in Figure 3.3, and checking some examples, we set the threshold to 0.5. That is, all tweets
with 𝑐 less than 0.5 were removed from our data sets.

To remove tweets where hashtags are used as a crucial part of the content and not
as an annotation, we considered the position of the hashtag. We built on a simple idea

36 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 3.2
Examples of tweets
that passed all filtering
requirements. Note
that emotional hastags
are used as targets and
were removed from the
contents of the tweets.

John Auwaerter
@JohnAuwaerter

Why am i suddenly feeling the urge to Scream at
the top of my lungs?? #anger #monday
#apushsucks

 Follow

Apwil
@CaptainCha_Chi

4 months gone and thinking of u still brings tears
to my eyes
#sadness

 Follow

Ryan Honeycutt
@ryanhoney1534

Watching the sopranos again from start to finish!
#joy

 Follow

that hashtags that appear towards the end of the tweet aremost likely annotations, while
ones that appear before might be a part of a sentence. We formalised the concept of a
hashtag depth 𝑑 as proposed in Equation 3.2.

𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑤𝑜𝑟𝑑𝑠 𝑏𝑒𝑓 𝑜𝑟𝑒 ℎ𝑎𝑠ℎ𝑡𝑎𝑔
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑤𝑜𝑟𝑑𝑠 (3.2)

The distribution of hashtag depths across all data sets is shown in Figure 3.4. Again,
after inspecting the data and distributions, we set the threshold to 0.9; i.e. all tweetswith
𝑑 less than 0.9 were filtered out since the hashtagsmight be a crucial part of the sentence
andnot a label. Gonzales-Ibanez et al. [69] applied a similar procedure but required that
the hashtag appeared at the very end of the tweet, which seems too strict. For example,
we allow another hashtag or emoticon after the emotional hashtag.

Finally, re-tweets and duplicates were removed from the data set to prevent any train-
ing example from leaking into the test set. Also, emotional hashtags, that were used for
setting the target categories were removed from the content, lest the models would only
learn to spot keywords in the text. Examples of tweets meeting all above requirements
are shown in Figure 3.2.

Data 37

3.2 Data Set Statistics
For each emotion classification, all tweetsmeeting the requirementswere randomly split
into three sets: train (60 % of tweets), validation (20 % of tweets), and test set (20 % of
tweets). The train set was used for training classifiers while the validation set served for
parameter selection. Once all models’ parameters were set, we used them for training
a classifier on the combination of the train and validation set and assessed their perfor-
mance only once on the test set.

As the Ekman’s categories are a subset of Plutchik’s, the splitwas done simultaneously:
the Ekman’s train, validation, and test sets are subsets of Plutchik’s rather than being
sampled independently. This assures that no tweet from the Ekman’s train set can be
present in thePlutchik’s test set andvice-versa. This requirement ensures a fair evaluation
of our models’ transfer capabilities (see Section 4.3).

Thenumbers of tweets in each set alongwith the statistics on the number of discarded
tweets are shown in Table 3.2 while the distributions of emotion categories are shown
in Figure 3.5.

Table 3.2
Data set sizes. All corresponds to all English tweets containing any emotional hashtag, and filtered shows the
remaining number of tweets after depth, content, and duplicates filtering. These sets were further split into three
subsets: train, validation, and test.

Ekman Plutchik POMS

All 1,175,847 1,740,750 9,592,460
Filtered 535,788 798,389 6,536,280

Train 321,461 479,033 3,921,768
Validation 107,183 159,678 1,307,256
Test 107,144 159,678 1,307,256

We observed that class distributions are quite imbalanced. One reason for this, apart
from the people’s tendencies to express particular kinds of emotions on Twitter, may
be the restriction to exact matches of hashtags. While #disgust is not a popular hash-
tag, its variations (e.g. #disgusted or #revulsion) might be more popular. However, we
decided for the exact matches to directly follow emotions as defined by psychologists,
which already yielded sufficiently large data sets. By not including word derivatives the

38 N Colnerič Emotion Recognition on Twitter Using Neural Networks

resulting data sets might be more coherent and we did not need to subjectively decide
how far to expand the set of hashtags. For example, are #delight, #pleasure, #euphoria,
and #ecstasy, while being the synonyms of joy, semantically close enough so we could
have used those as well when searching examples for the joy category? We leave the idea
of expanding these with synonyms for future work.

In comparison with previous studies, our data sets have been collected over a longer
period of time; hence they are less influenced by temporal variations like popular or tra-
gic events. They are also orders of magnitude larger than what has been used in previous
studies [36] of emotion recognition on Twitter data.

Data 39

0.0 0.2 0.4 0.6 0.8 1.0
Content fraction c

0%

2%

5%

7%

10%

12%

Pr
op

or
tio

n
of

 tw
ee

ts

Ekman

0.0 0.2 0.4 0.6 0.8 1.0
Content fraction c

0%

2%

5%

7%

10%

12%

Pr
op

or
tio

n
of

 tw
ee

ts

Plutchik

0.0 0.2 0.4 0.6 0.8 1.0
Content fraction c

0%

2%

5%

7%

10%

12%

Pr
op

or
tio

n
of

 tw
ee

ts

POMS

Figure 3.3
The distribution of
content fraction 𝑐
before filtering tweets.
Notice that a vast
majority of tweets has a
content fraction larger
than 0.5.

40 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 3.4
The cumulative dis-
tribution of hashtag
depth 𝑑 before filtering
tweets. Notice that a
vast majority of hash-
tags has a depth of one
— i.e. they appear at
the very end.

0.0 0.2 0.4 0.6 0.8 1.0
Hashtag depth d

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 tw
ee

ts

Ekman

0.0 0.2 0.4 0.6 0.8 1.0
Hashtag depth d

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 tw
ee

ts

Plutchik

0.0 0.2 0.4 0.6 0.8 1.0
Hashtag depth d

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 tw
ee

ts

POMS

Data 41

0% 5% 10% 15% 20% 25% 30% 35% 40%
Proportion of tweets

Em
ot

io
ns

anger

disgust

fear

joy

sadness

surprise

Ekman

0% 5% 10% 15% 20% 25% 30% 35%
Proportion of tweets

Em
ot

io
ns

anger

disgust

fear

joy

sadness

surprise

trust

anticipation

Plutchik

0% 10% 20% 30% 40% 50%
Proportion of tweets

Em
ot

io
ns

anger

depression

fatigue

vigour

tension

confusion

POMS

Figure 3.5
Class distributions for
the whole data sets.The
distributions of train,
dev, and test subsets
show only negligible
differences.

4

Methods

44 N Colnerič Emotion Recognition on Twitter Using Neural Networks

This chapter presents the methodology used in our experimental setup. To tackle our
first question, whether neural networks can improve the accuracy of emotion recogni-
tion systems,we first describe the set of experiments that set the baselines for comparison
with neural networks. Section 4.1 describes the transformations applied to raw text into
bag-of-words and the latent semantic indexingmodels on top of which simple classifiers
were applied. With the baselines set, we turn our attention to neural networks. Besides
a more popular approach of using words as an input to the neural network, we also ex-
perimented with an end-to-end learning approach and tested how networks perform
directly on a stream of unprocessed characters. Hence, in Section 4.2 we first describe
the word and character embeddings that served as the input and then continue with a
description of recurrent and convolutional network architectures.

To test the generality of the trained neural networkmodels, we designed a set of trans-
fer learning experiments, which are the focus of Section4.3. We investigatedwhether our
neural networks had discovered features that are useful for recognising other emotion
classifications as well, not just the one they have been trained for.

Finally, the Section 4.4 describes experiments regarding our second guiding question:
whether we can train one neural network capable of predicting all three emotion classi-
fications. We start with the training strategy presented by Collobert &Weston [30] and
propose two novel training heuristics that we used to train our unison models.

All experiments were conducted in the Python programming language and we cite
the major dependencies used in each of the following sections.

4.1 Traditional Text Classification
4.1.1 Bag of Words

We split the raw text of the tweet into tokens by using the Tweet POS tagger [72], which
was designed to handle Twitter’s messy language and its specifics such as @mentions,
and hashtags. To filter out very infrequent words, which usually have too little predic-
tive power, we removed all tokens that occurred in less than five tweets. As the language
on Twitter is very informal and contains many invalid or elongated words, references to
other users and URLs, we experimented with two token normalisation techniques be-
fore we constructed the bag-of-words representation. Vanilla BoW is a model without
any normalisation of tokens. Normalised BoW grouped some tokens into the same

Methods 45

token by applying these transformations:

all @mentions were truncated to a single token <user>,

all URLs were truncated to a single token <url>,

all numbers were truncated to a single token <number>,

three ormore same consecutive characterswere truncated to a single character (e.g.
loooooove→ love),

all tokens were lower-cased.

The idea behind these normalisations is that some tokens are too specific and that
grouping them into the same token might help the performance of classifiers. For ex-
ample, instead of having a bunch of separate tokens for looove, loooove, looooove etc.
the normalised BoW truncated them into a single token love. These transformations
drastically shrunk thedimensionality of the feature spacewhich alsohelped to reduce the
over-fitting problems. We compared the performances of both approaches to determine
whether these normalisations removed noise from the data and helped the classifiers, or
whether they removed meaningful signal and consequently hurt them.

To give the classifiers a bit more context than just single words, we also experimented
with the combination of unigrams and bigrams. For each of the two token normali-
sation techniques, we created two bag-of-words representations: one containing only
unigrams and one containing both unigrams and bigrams. From here on, we refer to
the combination of unigrams and bigrams simply as bigrams. For each of the four dif-
ferent bag-of-words transformations we left out all tokens that occur inside the corpus
less than five times. The dimensionality of feature spaces for all bag-of-words models is
shown in Table 4.1.

4.1.2 Latent Semantic Indexing

As the dimensionality of bag-of-words is extremely high, we also experimented with di-
mensionality reduction technique that is commonly used for text: latent semantic index-
ing (LSI). We started with four bag-of-words representations presented in the previous
section and applied LSI to each of them. We determined the number of dimensions
needed to retain 70% of the variance in the data. While the threshold comes from [73],

46 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Table 4.1
The number of features of BoW and LSI models for combined train and validation sets using different token
normalisations. The name bigrams stands for a model consisting of a combination of unigrams and bigrams.

Ekman Plutchik POMS

BoW LSI BoW LSI BoW

Unigrams Vanilla 45,484 523 58,146 500 183,727
Unigrams Normalised 35,555 316 44,009 299 129,841
Bigrams Vanilla 204,453 5,433 284,467 6,183 1,248,037
Bigrams Normalised 187,533 3,955 256,889 4,390 1,081,598

the number of retained dimensions, which is reported in Table 4.1, is in the range that
empirical studies showed as appropriate [14]. LSI experiments were only performed
for Ekman and Plutchik, since calculating the SVD decomposition for POMS showed
infeasible with the computation resources at our disposal. Both bag-of-word and LSI
transformations were performed with Gensim [74].

4.1.3 Classifiers

We selected four classifiers whose performance was tested on bag-of-word and latent se-
mantic indexing representations: support vector machines with linear kernel (SVM),
naïve Bayes (NB), logistic regression (LogReg), and random forests (RF). For each of
them, these are the parameters we optimised:

SVM: the regularisation parameter C from 0.001 – 3.0

NB: no parameters,

LogReg: the regularisation parameter C from 0.001 – 3.0

RF: the number of trees from 50–5000; the number of features from 1–600.

Notice that we performed a reduced parameter search for RF on POMS, because
training was extremely slow. For example, training 200 trees using bigram vanilla rep-
resentation took about three days on 40 parallel cores. Hence, for POMS we only ex-
perimented with up to 200 trees and left the number of features at its default value (i.e.
√𝑛, where 𝑛 is the number of features). We used the classifiers from the scikit-learn [75]

Methods 47

library and left all other parameters1 at their default values. For a detailed description
refer to the documentation at http://scikit-learn.org/stable/documentation.html.

4.2 Neural Network Models
All neural network experiments were conducted at two input granularity levels. First,
similarly to traditional approaches, we tokenised the tweet and used words as input.
Here the task of the neural network is to read words one by one and learn how to com-
bine them into a suitable representation for recognising emotions. Second, in an end-
to-end learning fashion, we trained neural networks directly on the raw text content —
the input to the neural networkwas an unprocessed stream of characters from the tweet.
The neural networks in this setting have a more challenging task; they have to learn to
combine characters into a meaningful representation for emotion recognition. If in the
first setting the concept of words was already encapsulated in the neural network input,
the networks in the second task have to first learn words themselves — since space char-
acter was not treated any differently than any other character — and then use them to
obtain suitable representations.

There are several advantages to the character-based approach. First, we do not need
a tokeniser as there is no need to split the raw text into tokens. Secondly, word nor-
malisation is not required. In the word-based approach, we need to decide which mor-
phological variations of words are similar enough that the same token can be used for
their representation. For example, should the neural network distinguish between play
and playing? If it does, we need to have different input representations (i.e. embed-
dings) and if not we can have only one for both of them. All those decisions were left to
the neural network to figure out during the learning process. Since our character-based
approach does not need any language-dependent tools or any human intervention, we
consider it a true end-to-end learning approach. As such, it can easily be tested on other
data set and languages.

1 Loss, penalty, tol, and max_iter for SVM; alpha for NB; max_iter, solver, and tol for LogReg; criterion,
max_depth, min_samples_split, min_samples_split, min_samples_leaf, min_weight_fraction_leaf,
max_leaf_nodes, min_impurity_split, bootstrap, and oob_score for RF.

http://scikit-learn.org/stable/documentation.html

48 N Colnerič Emotion Recognition on Twitter Using Neural Networks

4.2.1 Embeddings

For our word-based experiments, we usedGloVe [16] embedding as it is the only one we
knowof thatwas trained onTwitter data. Hence, our tokenisation and tokennormalisa-
tion followed their approach so the percentage of tokens contained in the dictionarywas
as high as possible. We used the same normalisation as for normalised bag-of-words (see
Section 4.1.1) with one addition. All hashtags (e.g. #happy) were split into two tokens:
one token for the hashtags sign (i.e. #) and the other token for the word (i.e. happy).
Hence, the same embedding was used regardless if the word is a part of the sentence or
whether it is inside a hashtag. Any potential difference inmeaning is encapsulated in the
embedding for # character that comes just before the word itself.

Since we have a lot of data and since our task differs from the unsupervised task used
to train GloVe word embedding, we also tested whether the fine-tuning of word embed-
ding during the training of our networks would improve the performance. This, along
with the four different dimensionalities of embeddings provided by GloVe, were con-
sidered as the parameters we tuned:

GloVe embedding dimensions: 25, 50, 100, 200;

fine-tune GloVe embedding: no, yes;

For our character-based approach,we trained character embedding fromscratch, start-
ing from a random initialisation, since we were not aware of any publicly available em-
bedding. Our dictionary contained a set of all characters that appeared at least 25 times
across all our data sets. That yielded a set of 410 different characters, including emoticons
and symbols, forwhichwe trained the embedding. We searched among these dimension-
alities:

character embedding dimensions: 10, 15, 25, 35;

In our character-based approach, we left the tweet’s content almost untouched. We only
removed the hashtags used to set the target category and URLs due to the anomaly of
our crawler. If the URLs onTwitter aremostly shortened (e.g. pic.twitter.com/<hash>),
our crawler has already expanded themwhich made some tweets drastically longer than
140 characters. Hence, we decided to remove all URLs from tweet contents’ for our
character-based experiments.

Methods 49

4.2.2 Recurrent Neural Networks

The architecture of our recurrent neural networks was the following. The sequence of
either words or characters was first passed through the dropout layer to combat over-
fitting. Next, one or more recurrent layers followed with a dropout layer in between
any two pairs of consecutive recurrent layers. We experimented with LSTM and GRU
types of recurrent cells, different dimensionalities of hidden states, bidirectional layers,
and different dropout rates. After the final hidden state of the recurrent layer and the
final dropout layer, a dense layer was used with either softmax (for multiclass setting) or
sigmoid activation (for multilabel setting). The architecture of our recurrent networks
is depicted in Figure 4.1 left.

We searched for an optimal parameter set among the following configurations:

layer kind: LSTM, GRU;

hidden layers: 1, 2, 3;

neurons per hidden layer: 200, 500, 1000, 2000;

bidirectional layers: no, yes;

dropout for word or character embedding: 0.0, 0.2;

dropout between multiple layers: 0.0, 0.2;

dropout for softmax (sigmoid): 0.0, 0.5.

The dropout rates for softmax come from Srivastava et al. [76] and for embedding
from Zaremba et al. [77]. We used RMSProp optimiser [25] for RNNs, a batch size of
128, and an early stopping with the patience of five. All RNN experiments were con-
ducted in Python using Keras [78] library and Theano [79] backend.

4.2.3 Convolutional Neural Networks

For convolutional neural network experiments, we followedKim’s architecture [21] that
is presented in Section 2.3.3. That is, after embedding the input, one convolution and
max-pooling over time layers followed before the final dense layer. The architecture of
our convolutional networks is presented in Figure 4.1 right.

We searched for an optimal parameter set among the following configurations:

50 N Colnerič Emotion Recognition on Twitter Using Neural Networks

feature maps: 100 – 6000 (with step 100)

feature maps activation: relu, tanh

kernel size: 1 – 20

dropout for word or character embedding: 0.0, 0.2;

dropout for softmax: 0.0, 0.5.

We started the parameter search in the ranges suggested by Zhang & Byron [24],
which turned out to be appropriate for word-based experiments. For character ones,
however, the kernel sizes had to be enlarged to capture the large enough context of the
tweet to support recognisingwords. Also, due to themore complex task character-based
networks have to tackle, more feature maps were required.

We used Adam optimiser [28] for CNNs, a batch size of 128, and an early stopping
with the patience of five. Similarly to RNNs, all experiments were conducted using
Keras [78] library and Theano [79] backend.

4.3 Transfer Learning
After the best neural network models were selected along with their parameters, we in-
vestigated the generality and transferability of learned representations. More specifically,
we are interested whether the final hidden state representations — which can be con-
sidered as a projection of the whole tweet’s content into a low-dimensional space — are
informative enough to support the recognition of other emotion categorisations, not
just the one they were trained for. To explore this, we designed a set of experiments that
copy some neural network parameters from one task to the other. We took all parame-
ters that influence the values at the final hidden state trained on a first data set, copied,
and froze them in a new neural network that was then trained for another task. Doing
so, we forced the neural network corresponding to the second task to use the projection
into the final hidden state learned during the first task. During the training of the second
task, only the weights of the final dense layer weremodified. Hence, the neural network
for the second task can only work on top of features learned by the first one. Notice that
since we were copying parameters from one network to another, both networks needed
to have the same architecture; i.e. the number of neurons, number of layers, type of

Methods 51

input

embedding

dropout_we

CNN

max_pooling

dropout_sm

dense

activation

input

embedding

dropout_we

RNN

dropout_bl

RNN

dropout_sm

dense

activation

Figure 4.1
The architecture of
our RNN (left) and
CNN (right) models.
Dashed boxes are only
present in multi-layer
architectures. The
RNN figure corre-
sponds to a two-layer
architecture, while the
three-layer architecture
includes another pair
of dropout_bl and RNN
layers.

layers, number of feature maps, kernel size, etc. The graphical representation of these
experiments is depicted in Figure 4.2.

The performance of the neural network on the second task was then compared with
the performance for that task when the neural network was trained from scratch while
allowing the updates of all parameters. There are two possible outcomes of these exper-
iments. If the performance is comparable, this indicates that features discovered during
the training of the first task are general enough to support the prediction of the second
task as well. Hence, this would demonstrate that the projection of the tweet into lower
dimensional representation is suitable for recognising other emotion classifications. We
could consider the projection as a universal lower-dimensional emotional representation
of the tweet. Contrary, if the performance drops drastically, this would demonstrate
that features trained during the first task are not directly useful for the second task.

These transfer experiments results shed light on the generality of featureswhen neural
networks were trained for each task separately, which is an essential prerequisite before
developing a unisonmodel. If the features discovered during the training on one task are

52 N Colnerič Emotion Recognition on Twitter Using Neural Networks

general enough to support others, then unison model is unnecessary. We can just take
the projection into the final hidden state and train simple classifiers on top, to make
predictions for other tasks as well. Contrary, if the results of transfer experiments were
poor, that would make a unisonmodel a candidate for improving the generality of final
hidden state representations.

Figure 4.2
The schema of transfer
experiments for RNNs.
We first trained the
architecture for the
first task and then
copied the weights
to the second task, as
indicated by horizontal
arrows. The greyed out
layers in the second
task indicate the layers
which were fixed after
initialisation. Hence,
when training the
second task, the model
was forced to use the
weights as they were
learned during the first
task.

input

embedding

RNN

dense

activation

First task

input

embedding

RNN

dense

activation

Second task

4.4 Unison Learning
Our final set of experiments focusedon the development of a unisonmodel—one single
model for recognising all three emotion classifications. The architecture of our unison
model was the following. We started with a shared word or character embeddings that
were followed by shared RNN or CNN layers. In the case of multilayer architectures
for RNNs, all recurrent layers were shared among tasks. After the final hidden state,
multiple task-specific shallow layers followed. For each emotion classification task, we
had one dense (fully connected) layer connecting the shared representation to the out-
put neurons. On them, we applied either softmax or sigmoid activation to obtain the
model output for the specific task. The architecture of our unison models is presented
in Figure 4.3. Note that we built on the ideas presented by Collobert & Weston [30].
However, their tasks were not as closely related as ours and hence they only shared word

Methods 53

embedding, while all other neural networks layers were task specific. As all our tasks
tackle emotion recognition, we restricted our unisonmodels evenmore by forcing them
to share other neural network layers as well. The only task-specific layers were the final
outputs, which cannot be shared between different tasks.

input

embedding

dropout_we

RNN

dropout_bl

RNN

dropout_sm

dense

activation

Plutchik

dense

activation

POMS

dense

activation

Ekman

input

embedding

dropout_we

CNN

max_pooling

dropout_sm

dense

activation

Plutchik

dense

activation

POMS

dense

activation

Ekman

Figure 4.3
The architecture of
RNN (left) and CNN
(right) unison models.
Everything above the
red line was shared for
three emotion classi-
fications; i.e. models
used the same word or
character embedding as
well as the whole RNN
or CNN layer. On top
of the common rep-
resentation, one final
dense layer followed
with either softmax
(or sigmoid) activa-
tion for each emotion
classification.

This parameter sharing architecture forced the unison model to discover final hid-
den state representations that can support recognising multiple emotion classifications.
Hence, if the model in such a setting can performwell, then the final hidden state repre-
sentation can be considered a general emotion representation of the input content. As
such, it could be a great starting point for investigating the interdependence or corre-
lation between different emotional classifications. Also, similarly to pre-trained word
embedding for our models, this general representation could be a great starting point
when training models for other emotion classifications not considered in our study.

As we possess three separate data sets with emotion labelled tweets, we could not
adopt the gradient summation during the training of our models. Hence, we trained

54 N Colnerič Emotion Recognition on Twitter Using Neural Networks

ourmodels with the approach presented by Collobert&Weston [30], whichwe refer to
as alternating batches strategy. Initial experiments with the alternating batches strategy
showed that it is not suitable for our settingwithdrastically different data set sizes. Recall
that our largest data set is more than ten times larger than our smallest one. Hence, we
proposed two novel training heuristics that were designed to better handle training of
unison models with different data set sizes or complexities: weighted sampling batches
andweighted sampling batches by data set size. These three training heuristics, the known
alternating batches and the two newly proposed ones, are presented in the following
three subsections.

4.4.1 Alternating Batches

The alternating batches strategy (AB), presented by Collobert & Weston [30], trains the
unisonmodel by iterating over the training sets and each time picking a randomexample
from the currently selected training set. The neural networkweights are updated accord-
ing to gradients with respect to this example. Note that only shared parameters and the
parameters corresponding to the current task are updated. The parameters correspond-
ing to other tasks are left unchanged. After the parameters update, the training heuristic
proceeds by picking the next task.

Instead of working with only one example at a time, we used batches of multiple
examples at each step. Also, we introduced early stopping into the training iteration
to finish the training before the network started to overfit. As we were working with
multiple data sets, the early stopping monitored the average validation accuracy across
all three data sets. The alternating batches strategy is presented in Algorithm 2.

Note that all data sets on input have already been split into training and validation
part. The function next_train_batch(x) returns the next training batch for data set x and
the function train_on_batch(b, m) performs one gradient-based parameters update of
the model m with respect to the training examples from batch b.

At the end of each epoch, the early stopping validation criterion is checked and the
training is aborted when the criterion is met.

4.4.2 Weighted Sampling Batches

Weproposed a novelweighted sampling batches (WSB) training heuristic to improve the
alternating batches strategy for cases where data sets differ by size or complexity. Instead
of devoting the same amount of attention during the training process to all data sets,

Methods 55

Algorithm 2 Alternating Batches strategy by Collobert & Weston [30].
Input: DS = {𝑑1, 𝑑2, … , 𝑑𝑛} ▷ data sets

MODEL ▷ initialised NN model
EPOCHS ▷max number of epochs
UPDATES ▷ number of updates in epoch

Output: MODEL ▷ trained NN model
1: for 𝑒𝑝𝑜𝑐ℎ = 1 → EPOCHS do
2: for 𝑢𝑝𝑑𝑎𝑡𝑒 = 1 → UPDATES/|DS| do
3: for 𝑑𝑠 ∈ DS do
4: 𝑏 ← 𝑛𝑒𝑥𝑡_𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ(𝑑𝑠)
5: 𝑡𝑟𝑎𝑖𝑛_𝑜𝑛_𝑏𝑎𝑡𝑐ℎ(𝑏,MODEL)
6: for 𝑑𝑠 ∈ DS do
7: /* evaluate model on train and validation set */
8: if early stopping criterion met then
9: 𝑏𝑟𝑒𝑎𝑘

WSB monitors the progress of each data set separately. It then adapts the training to
take more examples from data sets where the progress is slower. Doing so, it allows the
network to focus more on the examples coming from harder data sets.

We estimate the progress with a technique that is commonly adopted by researches
when training neural networks — i.e. observing the accuracy of the model through the
training iterations. At the end of each epoch, we first calculate the train and validation
accuracy of the unison model for each of the data sets. When the model starts to over-
fit a certain data set, the difference between the train and validation accuracy starts to
grow as the model becomes better and better on the train part while on validation part
its performance stagnates or drops. Hence, we believe that the difference between the
train and validation accuracy, which is small at first and becomes larger the closer we
are to the point of overfitting, is indicative of the training progress for a given data set.
We treat the differences between the train and validation accuracies as our progress esti-
mates, and use them to steer the sampling process of the next training batch. Instead of
sampling the training batches uniformly from each data set (as in the alternating batches
strategy)we sample the next training batchwithweights based onour progress estimates.

56 N Colnerič Emotion Recognition on Twitter Using Neural Networks

By sampling more batches from the data sets where the progress is slower, we boost the
fitting to those data sets. The sampling probabilities are inversely proportional to the
progress estimates2. Hence, the higher the difference between the train and validation
accuracy for a given data set, the fewer batches will be sampled from it. As progress es-
timates are only available after the first epoch, we initialise the sampling probabilities to
be equal for all data sets. Doing so, the algorithm devotes an equal amount of attention
to all data sets in the first epoch. Then after each epoch, the sampling probabilities are
recalculated according to the current progress estimates. Notice that if the heuristic es-
timates the progress on all data sets to be equal, the sampling probabilities would also
be equal, and the WSB strategy would degenerate into the AB strategy. The complete
WSB strategy is presented in Algorithm 3.

Note that the function random_choice(DS, weights) samples a random data set out
of DS weighted by sampling probabilities given as weights. Functions train_acc(ds) and
val_acc(ds) calculate the accuracy on a train and validation part of the data set ds respec-
tively.

Finally, notice that the WSB heuristic requires a labelled validation set. In the para-
meter selection phase, we run it on the train set and used the validation set to establish
sampling probabilities. Once all other model parameters were set (e.g. number and
dimensionality of the layers) we needed to select the sampling probabilities to be used
when the classifier was trained for the final evaluation on the test set. Then, we are not
allowed to observe the accuracy after each epoch to set sampling probabilities as we did
in the parameter selection phase. If we would, the final evaluation would not be fair.
Hence we needed to provide the sampling probabilities throughout all epochs on in-
put3. We decided to calculate average sampling probability through all epochs, discard-
ing the initial weight which was set to 1/𝑛 at the beginning of the algorithm, and used
that average as the sampling probability through all epochs when themodel was trained
in the test mode. We emphasise that in the test mode, when the model was trained on
the combination of train and validation sets, the algorithmdid not evaluate the progress
after each epoch as presented inAlgorithm 3 and the class labels corresponding to testing

2 Notice that by making the sampling probabilities inversely proportional to the progress estimates, it
could happen that some data sets would not get chosen at all. If this becomes problematic, we could
change the algorithm slightly to enforce lower bounds on sampling probabilities for each data set and
treat this as another parameter of the algorithm.

3 Similarly as the number of epochs determined by early stopping is provided for final evaluation.

Methods 57

Algorithm 3 Proposed Weighted Sampling Batches strategy.
Input: DS = {𝑑1, 𝑑2, … , 𝑑𝑛} ▷ data sets

MODEL ▷ initialised NN model
EPOCHS ▷max number of epochs
UPDATES ▷ number of updates in epoch

Output: MODEL ▷ trained NN model
1: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← [1/𝑛, 1/𝑛, … , 1/𝑛]
2: for 𝑒𝑝𝑜𝑐ℎ = 1 → EPOCHS do
3: for 𝑢𝑝𝑑𝑎𝑡𝑒 = 1 → UPDATES do
4: 𝑑𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑜𝑖𝑐𝑒(DS, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
5: 𝑏 ← 𝑛𝑒𝑥𝑡_𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ(𝑑𝑠)
6: 𝑡𝑟𝑎𝑖𝑛_𝑜𝑛_𝑏𝑎𝑡𝑐ℎ(𝑏,MODEL)
7: for 𝑑𝑠 ∈ DS do
8: /* evaluate model on train and validation set */
9: 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 ← 𝑡𝑟𝑎𝑖𝑛_𝑎𝑐𝑐(𝑑𝑠) − 𝑣𝑎𝑙_𝑎𝑐𝑐(𝑑𝑠)

10: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑑𝑠] ← 1/𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠
11: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠/𝑠𝑢𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
12: if early stopping criterion met then
13: 𝑏𝑟𝑒𝑎𝑘

examples were not revealed to the algorithm. We consider the sampling probabilities as
another parameter of themodel that needs to be set before evaluating it in the testmode.

The reason for using the fixed samplingprobabilities through all iterationswhen train-
ing the model in the test run is that our sampling probabilities nicely converged (see
Figure 5.2 in Section 5.4). If the sampling probabilities plot in the parameter selection
phase were not so flat, we could skip the averaging and directly use the corresponding
sampling probabilities as set in each epoch by the algorithm in the parameter selection
phase.

4.4.3 Weighted Sampling Batches by Data Set Sizes

To test the utility of the progress estimation as defined in WSB heuristic, we defined
another simpler heuristic to compare it with. Instead of using progress estimates to steer

58 N Colnerič Emotion Recognition on Twitter Using Neural Networks

the sampling of batches, we sample with fixed sampling probabilities throughout all
epochs of the training algorithm. The samplingprobabilities are set according to the data
set sizes, by which we achieve that each training example will be used approximately the
same number of times for updating network parameters. Consequently, the estimation
of the model performance on train and validation set after each epoch is not needed any
more. The weighted sampling batches by data set sizes (WSBDS) heuristic is presented
in Algorithm 4.

Algorithm 4 Proposed Weighted Sampling Batches by Data Set Sizes strategy.
Input: DS = {𝑑1, 𝑑2, … , 𝑑𝑛} ▷ data sets

MODEL ▷ initialised NN model
EPOCHS ▷max number of epochs
UPDATES ▷ number of updates in epoch

Output: MODEL ▷ trained NN model
1: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← [|𝑑1|, |𝑑2|, … , |𝑑𝑛|]/𝑠𝑢𝑚([|𝑑1|, |𝑑2|, … , |𝑑𝑛|])
2: for 𝑒𝑝𝑜𝑐ℎ = 1 → EPOCHS do
3: for 𝑢𝑝𝑑𝑎𝑡𝑒 = 1 → UPDATES do
4: 𝑑𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐ℎ𝑜𝑖𝑐𝑒(DS, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
5: 𝑏 ← 𝑛𝑒𝑥𝑡_𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ(𝑑𝑠)
6: 𝑡𝑟𝑎𝑖𝑛_𝑜𝑛_𝑏𝑎𝑡𝑐ℎ(𝑏,MODEL)
7: if early stopping criterion met then
8: 𝑏𝑟𝑒𝑎𝑘

5

Results and Discussion

60 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Our experimental results are split into seven sections. We first present the results of ex-
periments with traditional text classification approaches on single data sets in Section 5.1.
These set the baseline for comparisonwith neural networks, whose performance is repor-
ted in Section 5.2. Next, we investigate the transfer capabilities of our neural networks’
final hidden state representations in Section 5.3, which gives intuition on the generality
of the learned representations. The results of our unison models, along with the com-
parison of alternating batches heuristics with the newly proposed weighted sampling
batches and weighted sampling batches by data set sizes heuristics, are presented in Sec-
tion 5.4. As our thesis focuses on emotion recognition, we evaluated the proposed train-
ing heuristics only in this context and did not focus on how they performon other, unre-
lated tasks to which they may be applicable. In Section 5.5 we demonstrate the utility of
applying the trained embedding to other data sets, while in Section 5.6 we compare dif-
ferent emotion classifications used in this study. We conclude the chapter by discussing
ideas for future work along with the study’s limitations in Section 5.7.

Before discussing the results, we emphasise that allmodel parameters, like those corre-
sponding to the architecture of neural networks (e.g. number of layers, dimensionality
of the layers) as well as those corresponding to their training (e.g. number of epochs
to train, sampling probabilities for training unison models with our heuristics) were
selected according to the model performance on validation set when the models were
trained on the train set. With all the parameters set, we trained the models on the com-
bination of train and validation sets. Thesemodels were then finally evaluated only once
on the test set. Notice that the test set true labels were never revealed to any of the al-
gorithms during the parameter selection phase and that duplicate detection and re-tweet
removal, as described in Chapter 3, assured that none of the tweets in the test set was
present in the train or validation set.

We report the performance on the test set usingmacro- andmicro-averages of F1-score,
which are defined as follows. For a tweet and an emotion category, there are four distinct
outcomes, as illustrated in Table 5.1, that differ based on the fact whether the emotion
is expressed in the tweet or not, and whether the classifier recognised it or not. Given
the numbers of tweets belonging to each of the above cases, we calculate the precision in
Equation 5.1, recall in Equation 5.2, and F1-score in Equation 5.3.

P𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TP
TP + FP (5.1)

Results and Discussion 61
Table 5.1
The confusion matrix for a given emotion and the corresponding classifier’s output. The emotion can either be
expressed in the tweet or not, and the classifier can either recognise it or not.

Emotion expressed in text?
Yes No

Emotion recognised?
Yes True Positive (TP) False Positive (FP)
No False Negative (FN) True Negative (TN)

R𝑒𝑐𝑎𝑙𝑙 = TP
TP + FN (5.2)

F1–𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (5.3)

The distinction between a micro-averaged and macro-averaged F1-score is where in
the above equations do we aggregate across multiple categories. For a macro-averaged
F1-score we first calculate the F1-scores for each emotion category separately and then
average those to obtain an overall score. Doing so, the macro-averaged F1-score treats all
classes equally.

Contrary, a micro-averaged F1-score first sums TP, FP, FN, and TN cases across all
categories and uses those to calculate the overall F1-score. Hence, each training example
makes an equal contribution to the overall score.

5.1 Traditional Text Classification
Results of traditional text classification experiments on bag-of-words models are pre-
sented in Table 5.2 for the multiclass mode and in Table 5.3 for the multilabel mode.

We observed that normalisation of unigrams did not improve the performance for
SVM, NB, and LogReg, but it brought noticeable improvements for RF on unigrams.
When training models on the combination of unigrams and bigrams, the token nor-
malisation shows as more beneficial. The performance on bigrams is almost always bet-
ter when using normalisation for all classifiers in both multiclass and multilabel mode.
Comparing the performance of classifiers when trained on only unigrams with the per-
formance when trained on a combination of unigrams and bigrams, the addition of bi-

62 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Table 5.2
F1-scores (macro/micro) of different classifiers on different bag-of-words models in the multiclass mode as mea-
sured on the test set. For each of the averaging techniques, the best performance for each data set is underlined.

Multiclass

Unigrams Bigrams

Vanilla Normalised Vanilla Normalised

Ekman

SVM 58.5 / 69.4 58.1 / 69.5 59.5 / 70.6 60.2 / 71.2
NB 56.0 / 67.3 56.4 / 67.1 55.6 / 68.1 56.2 / 68.4
LogReg 58.7 / 69.5 58.7 / 69.7 59.2 / 70.8 60.1 / 71.5
RF 46.8 / 64.6 47.5 / 65.6 47.5 / 65.1 47.7 / 65.8

Plutchik

SVM 54.4 / 66.8 54.1 / 66.7 56.3 / 68.2 57.1 / 69.0
NB 51.8 / 64.5 52.2 / 64.3 52.5 / 65.6 53.0 / 66.0
LogReg 54.7 / 67.0 54.8 / 66.9 56.0 / 68.5 57.0 / 69.3
RF 41.7 / 61.8 42.8 / 62.7 43.0 / 62.4 43.5 / 63.3

POMS

SVM 63.8 / 66.8 63.5 / 66.8 67.5 / 71.0 68.2 / 71.5
NB 61.0 / 64.4 60.9 / 64.4 63.9 / 66.9 64.2 / 67.3
LogReg 64.2 / 67.0 64.0 / 67.0 68.1 / 71.2 68.8 / 71.7
RF 57.6 / 64.0 59.1 / 65.2 57.2 / 63.9 59.1 / 65.3

grams brings more contextual information, which is beneficial in all cases; except for RF
on Ekman and Plutchik in multilabel mode. This is understandable, as the latter is the
superset of features of the former. Interestingly, the advantage of bigrams over just uni-
grams gets larger on larger data sets. For LogReg on Ekman, the absolute improvement
is up to 2 % while for POMS it is up to 5 % in absolute.

When comparingdifferent classifiers, the one that consistently showsdrasticallyworse
performance than all others in all settings is RF while it also requires substantially more
time to train. We believe the primary reason for this is the enormous feature space di-
mensionality of the bag-of-words models along with its sparseness. Notice that despite
the reduced parameter search for POMS, the results seem comparable to the other two
data sets. We observed only slight improvements on Ekman and Plutchik when going
from 200 trees to up to 5000 and tuning the number of features. Hence, we have not

Results and Discussion 63
Table 5.3
F1-scores (macro/micro) of different classifiers on different bag-of-words models in the multilabel mode as mea-
sured on the test set. For each of the averaging techniques, the best performance for each data set is underlined.

Multilabel

Unigrams Bigrams

Vanilla Normalised Vanilla Normalised

Ekman

SVM 55.5 / 66.8 54.8 / 66.7 56.4 / 68.2 56.4 / 69.2
NB 55.1 / 65.8 55.4 / 65.7 55.2 / 66.7 55.8 / 66.8
LogReg 55.5 / 67.1 55.7 / 67.3 56.3 / 68.5 57.4 / 69.3
RF 39.2 / 56.3 39.8 / 57.3 37.0 / 56.1 37.2 / 57.0

Plutchik

SVM 50.3 / 63.2 49.9 / 62.9 52.5 / 65.3 53.4 / 66.3
NB 50.4 / 62.6 51.0 / 62.5 50.8 / 63.1 51.4 / 63.3
LogReg 51.3 / 63.9 51.0 / 63.8 52.7 / 65.5 53.3 / 66.6
RF 32.4 / 50.7 33.6 / 52.6 29.7 / 49.2 30.2 / 50.7

POMS

SVM 59.0 / 61.4 58.4 / 61.1 65.1 / 67.9 65.9 / 68.5
NB 58.3 / 62.7 58.3 / 62.6 60.3 / 65.5 60.5 / 65.8
LogReg 60.3 / 62.6 60.0 / 62.4 65.3 / 68.3 66.3 / 69.0
RF 44.4 / 51.5 46.0 / 53.0 47.3 / 56.5 49.1 / 57.7

attempted a full parameter search and, in particular, a larger number of trees on POMS
because it would take too long. Although the performance of the remaining three classi-
fiers is almost comparable, LogReg seems slightly better than SVM,which in turn seems
slightly better thanNB.Thebest overall results were always achievedwith LogRegwhen
trained on normalised bigrams. This indicates that the addition of bigrams and our
token normalisation strategy were beneficial to the classifier. Classifiers in multilabel
mode achieved a slightly worse performance than classifiers in multiclass mode, which
is understandable as the multilabel approach tackles a harder problem.

Comparing macro- and micro-averaged scores reveals the importance of adequately
large training data set. For Ekman andPlutchik, the differences are in the range of 10-15%
in absolute with the micro-averaged score always being higher than the macro-averaged
one. For POMS these difference are usually below 7% also in favour ofmicro-averaging.

64 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Recall that in the macro-average each class contributes equally to the overall score, re-
gardless of the number of training examples inside it. Contrary, in the micro-average all
training examples contribute equally to the final score disregarding of the class they be-
long to. Hence, we believe that for Ekman and Plutchik our classifiers handle the large
categories well but perform poorly for categories with few examples. For POMS, as the
difference between macro- and micro-averages is smaller, we believe the performance of
classifiers is better even for classes with few training examples. As class distributions are
imbalanced for all three data sets, we are attributing the better handling of examples
from minority classes to the drastically larger data set size for POMS.

Results of experimentswith latent semantic indexingmodels are reported inTable 5.4
for themulticlassmode and inTable 5.5 for themultilabelmode. Recall that experiments
were only performed for Ekman and Plutchik as calculating SVD for POMS was infea-
sible.

Table 5.4
F1-scores (macro/micro) of different classifiers on different latent semantic indexing models in the multiclass
mode as measured on the test set. For each of the averaging techniques, the best performance for each data set is
underlined.

Multiclass

Unigrams Bigrams

Vanilla Normalised Vanilla Normalised

Ekman

SVM 40.5 / 57.9 39.2 / 57.0 53.4 / 66.9 53.2 / 67.0
NB 31.8 / 41.0 32.7 / 42.2 22.5 / 37.0 24.7 / 38.1
LogReg 42.2 / 58.5 40.8 / 57.5 54.5 / 67.0 54.5 / 67.2
RF 36.9 / 55.6 38.1 / 56.7 32.5 / 53.3 36.1 / 55.3

Plutchik

SVM 34.0 / 53.8 32.7 / 52.7 49.5 / 63.9 49.1 / 64.0
NB 25.9 / 35.4 26.6 / 36.3 16.7 / 30.4 18.5 / 31.3
LogReg 36.4 / 54.4 34.5 / 53.3 50.8 / 64.2 50.9 / 64.3
RF 31.8 / 52.7 32.2 / 53.1 28.7 / 50.7 31.4 / 52.7

The trends we observed are similar to those on bag-of-words models. Normalisation
on bigrams seems to helpmost of the time, while on unigrams it is only beneficial forRF
andNB.The addition of bigrams only improved the performance when using the SVM

Results and Discussion 65
Table 5.5
F1-scores (macro/micro) of different classifiers on different latent semantic indexing models in the multilabel
mode as measured on the test set. For each of the averaging techniques, the best performance for each data set is
underlined.

Multilabel

Unigrams Bigrams

Vanilla Normalised Vanilla Normalised

Ekman

SVM 33.3 / 49.5 31.5 / 47.8 48.2 / 63.2 47.8 / 63.2
NB 33.4 / 39.6 34.4 / 41.4 27.9 / 33.2 29.0 / 34.5
LogReg 35.7 / 51.6 33.9 / 49.9 51.2 / 64.3 51.1 / 64.5
RF 26.5 / 37.8 27.9 / 40.1 18.8 / 29.2 23.8 / 34.5

Plutchik

SVM 25.1 / 42.8 23.1 / 40.6 42.5 / 58.8 41.8 / 58.7
NB 26.8 / 30.1 27.3 / 31.4 23.7 / 26.7 24.6 / 27.8
LogReg 29.0 / 45.7 26.6 / 43.5 46.5 / 60.5 46.1 / 60.6
RF 21.1 / 34.5 21.4 / 35.9 15.8 / 27.0 18.7 / 31.7

or LogReg classifier, while it hurts the performance for NB and RF. The performance
of RF is again inferior to SVM, NB, and LogReg which again show comparable perfor-
mance. The best overall results were once again achieved using LogReg on normalised
bigrams, confirming the usefulness of adding bigrams and normalising tokens.

The differences between macro- and micro-averages— although the scores are still in
favour of micro-averaging — grew larger, even up to 20 % in absolute, indicating that
LSI performance for small classes is worse than that of bag-of-words models. As the
performance of LSI models is considerably worse than those of bag-of-words models—
across classifiers, n-grams, and token normalisation techniques — we use the LogReg
trained on the bag-of-wordsmodel with normalised bigrams as our baseline for compar-
ison with neural networks.

Finally, comparing all three emotion classifications, the accuracyofpredictingPOMS’s
and Ekman’s categories is comparable. With our approach of labelling tweets, the higher
complexity of POMS is counterbalanced by the much larger number of training tweets.
The accuracy of predicting Plutchik’s categories is a bit lower, which is expected as it con-
tains two more categories than Ekman or POMS.

66 N Colnerič Emotion Recognition on Twitter Using Neural Networks

5.2 Neural Networks
Before presenting the results, we discuss some general observations. When investigating
the GloVe embedding and comparing it with the fine-tuned version, we observed that
GloVe embedding is too-focused onword co-occurrences to be directly suitable for emo-
tion recognition task. For example in GloVe, the most similar word, in terms of cosine
similarity, toword sadness is happiness; and toword angry is birds. After our fine-tuning,
the closest word to sadness is depression; and to angry it is annoyed. Considering these
examples, we believe that although the GloVe embedding initially was not able to dis-
tinguish between detailed differences in word meaning crucial for emotion recognition,
the process of fine-tuningmade it muchmore suitable for the task. This suspicion is also
confirmedby the fact that the performance of ourmodelswas always better ifwe allowed
themodel to fine-tune theword embedding. Hence, we conclude that the fine-tuning of
word embedding is beneficial. Regarding the embedding size, larger is better. In seven
out of eight cases the 200-dimensional embedding yielded the best results, while in the
eighth case the difference between 100- and 200-dimensional embedding was negligible.

Character embedding dimensionality can indubitably bemuch smaller, as it only rep-
resents a set of 410 different characters and not the meaning of 1.2M words. Although
we selected 25-dimensional representation, using only 10-dimensional one did not seem
to harm the performancemuch; in some cases, the decrease in performancewas less than
1% in absolute.

Regarding the network architecture of RNNs, we observed that LSTM and GRU
layers performed comparable, while initial experiments with the simple recurrent layers
showed inferior performance and hence we did not include it as an option in the para-
meter search phase. Adding more recurrent layers only occasionally yielded minor im-
provements; similarly using bidirectional layers did not bring any improvements when
working with words on input. However, when working with character input, the bidi-
rectional layers almost always helped to improve the performance.

For CNNs on words, the best kernel sizes are between 2–3 and the number of feature
maps in the range from 1500–2000, which is a bit larger than suggested for CNN text
classification architectures [24]. When working with character input, such kernel sizes
and number of feature maps were insufficient. Intuitively, as the words on input have
been replaced with characters, one needs to enlarge the window size to capture large
enough context to support recognition of words. As experiments showed, the larger

Results and Discussion 67
Table 5.6
F1-scores (macro/micro) for RNNs and CNNs in the multiclass mode as measured on the test set. For easier com-
parison, we also show the best BoW performance. The best micro or macro score for each data set is underlined.

Multiclass

Input RNN CNN Best BoW

Ekman
Word 60.7 / 71.4 59.9 / 69.2

60.1 / 71.5
Char 60.4 / 71.2 60.1 / 71.8

Plutchik
Word 52.8 / 65.5 55.1 / 66.8

57.0 / 69.3
Char 57.5 / 70.0 57.0 / 69.2

POMS
Word 67.9 / 70.4 67.1 / 69.9

68.8 / 71.7
Char 70.5 / 73.2 68.1 / 70.9

kernel size by itself is not sufficient, but thenumberof featuresmapsneeds tobe enlarged
as well. In our character-based CNN experiments we used kernel sizes of 9–11 and the
number of feature maps between 5000–6000.

Results of experiments with neural networks along with the best bag-of-words mod-
els to ease the comparison are summarized in Tables 5.6 for multiclass and Table 5.7 for
the multilabel mode.

The success of character approach seems dependent on the training data set size. For
POMS, which is the largest of our data sets, networks always achieved better perfor-
mance on characters than on words. For Plutchik, the second largest, this happened in
most cases and for Ekman in some. Predicting directly from characters is more challeng-
ing as the network needs to discover the concept of words by itself. Hence, we believe
that when sufficient training data is available, it is best to opt for character-basedNN ap-
proach. Contrary, when the training data is scarce, we suggest towork onwords and rely
on the pre-trained embedding with some fine-tuning. However, this comparison is not
entirely fair. For word approaches, we used GloVe as our initialisation, which already
defined meaningful representations of words which we just fine-tuned further to incor-
porate sentiment. For characters, we started learning their representations from random
initialisations, which contain no background knowledge. We suspect that if pre-trained

68 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Table 5.7
F1-scores (macro/micro) for RNNs and CNNs in the multilabel mode as measured on the test set. For easier com-
parison, we also show the best BoW performance. The best micro or macro score for each data set is underlined.

Multilabel

Input RNN CNN Best BoW

Ekman
Word 57.3 / 70.0 60.2 / 69.8

57.4 / 69.3
Char 56.4 / 70.3 54.9 / 68.9

Plutchik
Word 55.5 / 67.7 56.9 / 67.0

53.3 / 66.6
Char 52.6 / 68.6 53.9 / 66.8

POMS
Word 67.0 / 70.4 65.7 / 68.8

66.3 / 69.0
Char 67.5 / 70.7 66.7 / 69.0

character embedding would exist when we designed our experiments1, using it instead
of random initialisation might work in favour of the character approach.

When comparing RNNs with CNNs we observed that in the vast majority of cases
RNNs outperformedCNNs, though not by a considerablemargin. Further, when com-
paring the best NN approach with the best BoW approach, we saw that NN always
gave slightly better results that BoW. Similarly, as for bag-of-words, Ekman and POMS
showed comparable performancewhile the performance of Plutchikwas a bit worse due
to more categories. Discrepancies between macro- and micro-averaged scores were the
same as for BoW — larger for Ekman and Plutchik and smaller for POMS.

To explicitly answer our first guiding question of the study: neural networks achieve
slightly better performance than traditional text classification approaches; although, the
differences are not nearly as high as we hoped for. However, there are also other be-
nefits of using neural networks, as in the character setting they do not require any hu-
man intervention and language-specific prerequisites. Recall that the best BoW scores
were achieved with the bigrams on normalised words and that performance was worse
without token normalisation and bigrams. Contrary, character-based NNs do not re-
quire any tokenisation, preprocessing, token normalisation, stemming or filtering as

1 When finalising the thesis, after all experiments were already completed, a character embedding
BERT [80] became available.

Results and Discussion 69

networks work directly on the stream of unprocessed text characters. Hence, since no
language-specific prerequisites and no feature engineering is required, character-based
neural networks are more appropriate even for low-resource languages.

These improvements, however, come at the expense of higher computational costs.
While training of LogReg on POMS took up to 13 hours, word-based RNNs took up
to 5 days and character-based ones up to 8 days on a single GPU. CNNs, due to much
simpler architecture, took from a few hours up to one day.

5.3 Transfer Learning
Results of the transfer experiments are reported in Table 5.8 for multiclass and Table 5.9
for the multilabel setting. Notice that transfer experiments require a common architec-
ture across all data sets to support copying of parameters from one network to the other.
Hence, when comparing the transfer results performance metrics, they cannot be com-
paredwith results fromSection 5.2. Instead, they shouldbe comparedwith the results on
this common architecture, which we report along the diagonals of the Tables 5.8 and 5.9.

We observed that the only setting in which transfer experiments gave comparable per-
formance to training a single model is when the initial model was trained on Plutchik
and applied to Ekman. In some cases, this yielded even better performance than train-
ing on Ekman itself. Recall that Ekman’s categories are a subset of Plutchik’s and so are
all train, validation, and test sets (see Section 3.2). Hence, when training the model on
Plutchik and then transferring those weights to Ekman, the only thing that differed, in
comparison to training on Ekman directly, is the presence of two additional categories
trust and anticipation. It is known formulti-task learning [29] that additional categories
during training can introduce more training signal and lead to better generalisation.

Transfer result in the other direction, i.e. training the initial model on Ekman and
transferring the weights to Plutchik, was noticeably worse. We suspect that the absence
of trust and anticipation categories during the time of initial model training prevented
the discovery of required features for their recognition, which consequently led to in-
ferior performance on these two categories. Observing the confusion matrices reveals
the following. First, the transfer model rarely predicts the anticipation category and fre-
quently confuses it with themost commonEkman’s category surprise. Second, the trans-
fer model confuses all categories with the largest Plutchik’s category (trust) much more
frequently than the single model.

70 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Table 5.8
Transfer experiments F1-scores (macro/micro) for word and character approach in the multiclass settings on
the test set. The table consists of four 3x3 matrices each corresponding to a set of transfer experiments in one
setting. The values on the diagonals correspond to the results obtained when training the data set on a common
architecture. All the off-diagonal values, showing the transfer results, should be compared with the corresponding
diagonal one. The best micro or macro score for each data set is underlined.

Softmax Tuning and Testing
Multiclass

Ekman Plutchik POMS

Initial
Weight
Learning

RNN

Word
Ekman 57.9 / 68.9 44.9 / 59.6 37.1 / 49.1
Plutchik 57.7 / 69.1 54.1 / 66.0 37.3 / 49.3
POMS 51.5 / 63.0 48.0 / 59.7 68.5 / 71.3

Char
Ekman 60.3 / 71.8 46.5 / 60.5 36.5 / 49.2
Plutchik 61.1 / 72.4 58.5 / 69.9 39.5 / 50.9
POMS 37.6 / 51.1 31.9 / 45.5 69.9 / 72.8

CNN

Word
Ekman 59.9 / 70.1 51.7 / 62.7 52.9 / 57.8
Plutchik 59.3 / 69.4 56.0 / 66.9 53.6 / 57.9
POMS 45.6 / 56.3 39.1 / 51.2 66.7 / 69.8

Char
Ekman 57.4 / 69.6 50.0 / 64.0 48.7 / 58.0
Plutchik 60.0 / 71.5 54.3 / 68.0 50.5 / 59.2
POMS 49.3 / 62.7 44.8 / 58.2 65.8 / 69.5

Due to the similarity betweenEkman andPlutchik, the transfer between themcannot
be considered a real transfer experiment as someof the categorieswere present during the
time of initial model training. As this is not true when transferring from either Ekman
or Plutchik to POMS, or the other way around, investigating these results gives more
insight into the real transfer capabilities of our models. When training the initial RNN
model onEkman and transferring it to POMS,we observed that the bestmicro-averaged
F1-score was around 58 %while the worst one was around 20%. Comparing these to the
70 % score when training POMS on common architecture revealed that restricting the
POMS’s model to work on Ekman’s hidden state representation resulted in a significant
performance drop. Similar trends hold for other RNN transfers as well: from Plutchik

Results and Discussion 71
Table 5.9
Transfer experiments F1-scores (macro/micro) for word and character approach in the multilabel settings on
the test set. The table consists of four 3x3 matrices each corresponding to a set of transfer experiments in one
setting. The values on the diagonals correspond to the results obtained when training the data set on a common
architecture. All the off-diagonal values, showing the transfer results, should be compared with the corresponding
diagonal one. The best micro or macro score for each data set is underlined.

Softmax Tuning and Testing
Multilabel

Ekman Plutchik POMS

Initial
Weight
Learning

RNN

Word
Ekman 56.9 / 69.6 37.0 / 47.3 9.8 / 22.1
Plutchik 52.8 / 67.6 51.0 / 66.5 11.5 / 20.3
POMS 6.1 / 9.4 3.1 / 4.1 67.0 / 70.4

Char
Ekman 55.0 / 70.7 40.3 / 54.0 20.3 / 30.4
Plutchik 55.7 / 70.5 52.8 / 68.3 23.4 / 33.2
POMS 21.5 / 32.7 12.0 / 16.6 67.5 / 70.5

CNN

Word
Ekman 57.8 / 69.2 51.0 / 63.6 51.9 / 55.5
Plutchik 59.3 / 69.5 55.5 / 67.3 50.9 / 55.8
POMS 44.4 / 57.1 39.6 / 51.6 65.9 / 68.3

Char
Ekman 59.1 / 70.1 51.5 / 64.2 51.8 / 56.1
Plutchik 56.4 / 69.7 55.5 / 67.0 51.7 / 56.9
POMS 49.2 / 61.5 43.4 / 55.9 64.4 / 66.7

to POMS and from POMS to either Ekman or Plutchik. Further, the performance of
multilabelmodels ismuchworse than that ofmulticlassmodels. Asmodels inmultilabel
mode need to provide a decision for each of the categories, it is reasonable that working
on insufficient representation hurts them more than in multiclass mode.

Results for CNNs are a bit more optimistic. In the multiclass mode on characters,
the transfer from Ekman to POMS gave the 57.8 % micro-averaged F1-score, while the
singlemodel yielded69.8%. Comparing toRNNs, theperformance loss ismuch smaller,
which we attribute to a simpler architecture of CNNs which is consequently less prone
to over-fitting.

Although the performance drops are smaller for CNNs than for RNNs, we conclude

72 N Colnerič Emotion Recognition on Twitter Using Neural Networks

that the final hidden state representations trained on one data set are insufficient for
recognising other classifications without significant performance drops.

5.4 Unison Learning
Before presenting the unison results, we turn our attention to accuracy plots of different
training heuristics through iterations presented in Figure 5.1. Although we only show
plots for character-based RNN, the same trends were observed for other settings as well.

For the alternating batches (AB) strategy we observed the following. The accuracy on
the validation set for Ekman and Plutchik was almost flat and stopped increasing in the
last 15 epochs. The accuracy on the train set, however, was still rising, making the differ-
ence between the train and validation accuracies larger and larger. This indicates that the
validation accuracy has probably peaked and that the model would start to overfit if the
training continued. Contrary, the validation accuracy for POMSwas still rising through
all epochs— it had the largest value in the very last epoch of the plot. Almost in parallel
with it, the train accuracy was also rising. As the difference between train and validation
accuracy was drastically smaller for POMS than for Ekman and Plutchik, and as both
train and validation accuracy were still rising for POMS, we concluded that POMS was
still in the process of training and did not yet start to overfit. Hence, we believe that vali-
dation accuracy for POMSwould still increase if the training continued. The reason that
training was stopped, despite POMS not yet being trained to its fullest potential, is that
the early stopping criterion was met. As we monitored the average validation accuracy
across all three data sets, and as it has not improved in the last five epochs, the training
was stopped. To sum up our observation about the alternating batches strategy, we be-
lieve that the model had enough time to sufficiency train for Ekman and Plutchik, but
did not saw enough examples to sufficiently train for POMS. This discrepancy between
the number of examples a neural network must observe during training to extract suf-
ficient information from a specific data set was the primary motivation for the develop-
ment of our novel training heuristic. When observing the plot for weighted sampling
batches (WSB), we noticed that the total number of epochs got larger for all eight ex-
perimental settings. Observing the differences between train and validation data sets,
we noticed that they became smaller for Ekman and Plucthik and larger for POMS —
making themmuchmore similar than with AB strategy. This indicates that the network
overfit less for Ekman and Plutchik and trained better for POMS.

Results and Discussion 73

0 5 10 15 20 25 30

Number of updates in 3 104

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Alternating Batches Strategy

Ekman train
Ekman validation
Plutchik train
Plutchik validation

POMS train
POMS validation
Average train
Average validation

0 10 20 30 40 50

Number of updates in 3 104

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Weighted Sampling Batches Strategy

Ekman train
Ekman validation
Plutchik train
Plutchik validation

POMS train
POMS validation
Average train
Average validation

Figure 5.1
Comparison of ac-
curacies through it-
erations of a unison
model training with
alternating batches
(top) and weighted
sampling batches
strategies (bottom)
in train-validation
setting. Cross marks
indicate on the max-
imum of each curve.
Sampling probabilities
corresponding to the
weighted sampling
batches strategy are
shown in Figure 5.2.
We are showing a
comparison on charac-
ters in the multiclass
setting using RNNs
while the same trends
are present in other
settings as well.

74 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Sampling probabilities of each data set through all epochs are presented in Figure 5.2.
After some oscillation, sampling probabilities converged to approximate proportions of
0.14, 0.16, 0.70 for Ekman, Plutchik, and POMS correspondingly. The WSB strategy
did indeed devote much more attention to POMS; the number of examples coming
from POMS was larger than that of Ekman and Plutchik combined. For reference, the
weighted sampling batches by data set sizes (WSBDS) used the proportions 0.07, 0.10,
0.83, which would halve the number of training examples for Ekman.

Figure 5.2
Sampling probabilities
of weighted sampling
batches strategy cor-
responding to the
accuracy plot shown
in Figure 5.1. These
probabilities were esti-
mated in the multiclass
setting using charac-
ters as input to RNNs
while plots for other
settings exhibit the
same trends.

0 10 20 30 40 50
Number of updates in 3 104

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
in

g
pr

ob
ab

ilit
y

Weighted Sampling Batches Sampling Probabilities

Ekman
Plutchik
POMS

In spite of accuracy plots indicating that WSB boosted the performance for POMS,
the real assessment of the heuristic is the performance on the test set. For all three train-
ing heuristics, it is presented in Table 5.10 for multiclass and in Table 5.11 for the multila-
bel mode.

First, we observed that for the AB strategy, the performance of Ekman and Plutchik
is comparable to the performance of singlemodels fromSection 5.2 and is usuallywithin
1 % deviation in absolute. Contrary, the performance for POMS is degraded by up to
5% in absolute comparing to the singlemodel from Section 5.2. This confirms our obser-

Results and Discussion 75
Table 5.10
F1-scores (macro/micro) of multiclass unison model on the test set when trained with all three strategies. In each setting, the higher
score between alternating batches (AB), weighted sampling batches (WSB) and weighted sampling batches according to data set sizes
(WSBDS) strategy is underlined.

NN Input Strategy
Multiclass

Ekman Plutchik POMS Harmonic

RNN

Word
AB 61.1 / 71.5 56.7 / 68.5 64.3 / 67.7 60.5 / 69.2

WSBDS 59.6 / 71.3 56.6 / 68.2 69.1 / 71.7 61.3 / 70.4
WSB 60.3 / 71.0 57.5 / 68.6 68.2 / 71.1 61.7 / 70.2

Char
AB 60.4 / 71.9 56.7 / 68.6 63.8 / 68.0 60.2 / 69.5

WSBDS 58.7 / 71.0 54.6 / 67.8 69.4 / 72.3 60.3 / 70.3
WSB 61.8 / 73.0 57.8 / 69.5 69.5 / 72.2 62.7 / 71.5

CNN

Word
AB 59.2 / 69.7 54.7 / 66.7 62.9 / 66.2 58.7 / 67.5

WSBDS 57.6 / 68.2 53.6 / 65.0 66.2 / 69.2 58.7 / 67.4
WSB 57.8 / 69.1 54.4 / 65.8 65.6 / 68.3 58.9 / 67.7

Char
AB 60.3 / 71.7 55.2 / 68.1 61.8 / 66.5 59.0 / 68.7

WSBDS 56.6 / 69.1 52.3 / 65.5 65.3 / 69.0 57.6 / 67.8
WSB 57.8 / 69.7 52.5 / 66.0 64.8 / 68.5 57.9 / 68.1

vations of accuracy plots: while AB sufficiently trained the unison networks for Ekman
and Plutchik, it did not train enough on POMS. Consequently, the performance of uni-
son model for POMS was inferior to that of a single model.

The results for WSB reveal that it was able to bring the performance of POMS up
and made it comparable to that of a single model. For example, with RNN working
on characters in multiclass mode, the micro-averaged F1-score with AB is 68.0 % while
with WSB it is 72.2 %. At the same time, the accuracy for Ekman and Plutchik was not
harmed noticeably. Hence, WSB brings us closer to the average performance of three
single models while using a single model with shared final hidden state representation
instead.

WSBoutperformedABstrategy in termsofharmonicmean across all three data sets in
themajority of the cases. Ifwe countmicro- andmacro-averaged scores as separate,WSB
outperformedAB in 12 out of 16 cases. Further,WSB outperformedWSBDS in all cases,

76 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Table 5.11
F1-scores (macro/micro) of multilabel unison model on the test set when trained with all three strategies. In each setting, the higher
score between alternating batches (AB), weighted sampling batches (WSB) and weighted sampling batches according to data set sizes
(WSBDS) strategy is underlined.

NN Input Strategy
Multilabel

Ekman Plutchik POMS Harmonic

RNN

Word
AB 58.2 / 71.5 54.0 / 68.0 62.2 / 65.9 57.9 / 68.4

WSBDS 52.8 / 68.5 49.4 / 65.1 67.2 / 69.9 55.5 / 67.8
WSB 55.1 / 70.1 51.2 / 66.8 65.8 / 69.0 56.7 / 68.6

Char
AB 56.3 / 71.0 52.7 / 67.3 60.2 / 65.0 56.2 / 67.7

WSBDS 54.3 / 69.6 49.4 / 65.9 67.8 / 70.9 56.2 / 68.8
WSB 55.1 / 70.4 52.3 / 67.3 66.2 / 69.7 57.3 / 69.1

CNN

Word
AB 57.2 / 69.2 53.6 / 66.4 62.1 / 65.4 57.4 / 67.0

WSBDS 53.1 / 66.8 48.0 / 64.0 65.3 / 67.7 54.6 / 66.2
WSB 56.6 / 68.2 53.3 / 65.0 64.8 / 67.0 57.9 / 66.7

Char
AB 59.9 / 69.3 53.4 / 66.9 61.6 / 63.4 58.1 / 66.5

WSBDS 57.5 / 68.7 52.8 / 65.1 65.9 / 67.9 58.2 / 67.2
WSB 60.4 / 70.1 54.0 / 67.1 65.8 / 67.6 59.7 / 68.3

except for RNN in a multiclass mode with words on input. We must emphasise that in
terms of the harmonic mean, the best performing unison model in either multiclass or
multilabel setting was achieved by training with WSB method.

This validates that neither simply alternating batches nor sampling according to data
set sizes are sufficient for data sets that differ in size or complexity, but an adaptive heuris-
tic able of estimating the progress of training is required. Also, this empirically validates
our intuition that the difference between train and validation accuracies can be used as a
proxy for estimating the stage of overfitting. Consequently, this difference can be used
to guide the sampling heuristic to train a model whose performance across all data sets
is more balanced.

Results and Discussion 77

5.5 Unison Transfer Learning
In this section, we test the generality of our unison model embedding (i.e. the final
hidden states of the neural network) by applying it to other related classification tasks.
Recall that in Section 5.3 we showed that embeddings trained on a single models did not
reveal to be directly useful for other tasks, at least not without great performance drops.
Then in Section 5.4 we trained a unison model and showed that it is sufficient for all of
the three data sets used in our study. Hence in this section, we investigate whether the
unison model embedding is general enough to be useful for other related classification
tasks. In the experiments we use these four data sets:

Sentiment 140 [1]: a data set for analysing sentiment of tweets (positive or neg-
ative) containing 1.600.000 training and 359 testing examples. Training data was
collected with distant supervision (emoticons) while testing data was manually
annotated. We split the training data into two sets: one for training (1.200.000)
and one for validation (400.000), and used the already provided testing set for
final evaluation.

SemEval 2017, Task 4 [81]: a data set for analysing sentiment of tweets (positive,
neutral, or negative) containing 53.570 training and 12.284 testing examples. Both
training and testing examplesweremanually annotated. We split the trainingdata
into two sets: one for training (40.177) and one for validation (13.393), and used
the already provided testing set for final evaluation.

Twitter Emotion Corpus (TEC) [82]: a data set for recognising Ekman’s emotions
containing 21.051 labelled tweets. The data was collected between November 2011
and December 2011 and the classes were assigned using distant supervision from
hashtags as we did in our research. As it was not yet split, we randomly split it
into training (12.630), validation (4.210), and testing (4.211) sets.

Political Tweets [83]: a data set for recognising Plutchik’s emotions containing
4.056 labelled tweets from the 2012US presidential elections. The data wasmanu-
ally annotated using Amazon’s Mechanical Turk. As it was not yet split, we ran-
domly split it into training (2.433), validation (811), and testing (812) sets.

Although the tweets for the last two data sets were collected in the same time span as

78 N Colnerič Emotion Recognition on Twitter Using Neural Networks

we collected ours, we checked and found no overlap between TEC or Political Tweets
and our data sets.

For eachof the abovedata sets, we trained threeneural networks. First onewas trained
from scratch by randomly initialising all neural network weights. Doing so, we esti-
mated the performance of the neural network on a given data set without any external
help. The second neural network was initialised to our unison model embedding while
the weights corresponding to this embedding were fixed. Hence, only the final softmax
layer was trained, similarly as we did in Section 5.3. This forced the neural network to use
the same final hidden state representations as trainedwith the unisonmodel. This tested
whether the unisonmodel embedding can be directly applied to other tasks. Finally, the
third neural networkwas initialised as the second one, but all weights were updated dur-
ing training (i.e. the weights corresponding to the initialised embedding as well as the
final softmax weights). This tested how beneficial is the unisonmodel embedding when
used as an initialiser which can be further tuned. Notice that all three neural networks
were trained under the same conditions (i.e. the architecture, optimisers, etc.) while
the only difference is whether we initialised the weights to our embedding or not and
whether we allowed the initialised embedding to be further tuned or not.

Table 5.12
Performance on test sets when applying our embedding to other data sets. The best performance among the three
neural networks is underlined. We report the same metrics as the original paper along with the best score from
that paper in the last column for comparison.

Data Set Metric
Weight Initialisation Best score

from the
paper

None
Initialised

fixed
Initialised
fine-tuned

Sentiment 140 CA 81.3 74.9 84.4 83.0
SemEval 2017 Macro Recall 51.6 54.0 47.6 68.1
TEC Micro F1 45.3 64.3 62.1 49.9
Political Tweets CA 40.4 45.6 49.8 56.8

Performance of the three such networks on all testing sets is presented in Table 5.12.
For comparison, we also report the best performance achieved by the paper that intro-
duced the data set and used the same evaluation metric. We observed that for all four
data sets by using either fixed embedding or allowing it to be further fine-tuned, we im-

Results and Discussion 79

proved the performance in comparison with the neural network trained from scratch.
This indicates that our unison model embedding contains some knowledge, which can-
not necessarily be obtained solely from the other task (given its corresponding data) and
which can help to improve the performance. For Sentiment 140 data set we surpass the
performance reported in the paper with the help of fine-tuning. Contrary, for SemEval
2017 our performance is quite lower in comparison with the best performance achieved
in the competition. A potential reason for this is that we did not focus on neutral tweets
while they were present in the testing set. For both emotion data sets, the performance
of either fixed or fine-tuned neural network is better than the one trained from scratch.
We observed the most significant improvement for TEC data set, both comparing to no
initialisation as well as to the best performance of the original paper, which is expected
as TEC contains the data of the same type as our classifiers were trained on, but we used
orders of magnitude larger training data set.

We believe that unison model embedding is a viable candidate for improving the per-
formance on other tasks. Whether it should be used and fixed or whether it should be
fine-tuned is the parameter that should be tested as it depends on how closely related the
target task is to the task of emotion recognition for which our classifiers were trained.

5.6 Comparison of Emotion Classifications
In this section, we investigate the correlations between classes of different emotion clas-
sifications used in this study. We are mainly interested in the mappings between differ-
ent emotion classifications; i.e. if we know an emotion from the first classification is
expressed in the text, can we guess what emotions from the second classification might
also be applicable? To investigate this, we designed the following experiment. We took
a test data set of one of the emotion classifications (e.g. Ekman) and applied a classi-
fier that recognises emotions from another emotion classification (e.g. POMS). Then
we present the mapping of actual labels from the first classification to predicted labels
in the second classification in a confusion matrix. In all experiments, we used the best
performing classifiers trained with the unison model approach (see Section 5.4).

We considered making these comparisons by applying two different classifiers on the
same data set but decided to instead compare actual labels from one classification with
the predictions for the others as labelsmight bemore accurate than the classifier’s predic-
tions. However, we observed that comparing predictions of two classifiers yielded very

80 N Colnerič Emotion Recognition on Twitter Using Neural Networks

similar results to the ones we present.

Figure 5.3
Predictions of Ekman’s
classifier when applied
to POMS’s data set in
multiclass mode. Each
cell shows the percent-
age of corresponding
examples; percent signs
are omitted due to
brevity.

Ang
er

Disg
ust Fea

r Joy

Sa
dn

ess

Su
rpr

ise

Ekman (Predicted Label)

Anger

Confusion

Depression

Fatigue

Tension

Vigour

PO
M

S
(T

ru
e

La
be

l)

37.4 1.0 5.6 20.1 16.8 19.1

8.5 0.9 12.7 12.5 26.5 38.8

4.2 1.3 11.0 21.0 41.9 20.6

3.1 0.0 3.0 67.1 12.9 13.9

1.8 0.0 16.0 35.8 8.3 38.1

2.0 0.2 7.6 54.0 5.5 30.6

0

20

40

60

80

100

Theconfusionmatrix presenting thepredictions of Ekman’s classifier onPOMS’s data
is shown in Figure 5.3. We observed that some categories map nicely. Anger in most
cases maps to anger, which is expected as this is essentially the same category in both
classifications. Most depression examples map to sadness, vigour to joy, and confusion
to surprise, all of which seem related. Tension is split between surprise and joy, while the
greatermajority of examples expressing fatiguemap to category joy. We suspect the latter
is the consequence of not handling sarcastic tweets while we know that there are many
sarcastic uses of hashtag #joy inside the Ekman’s data set. Hence, the classifier learned to
put both genuinely joyful as well as sarcastic tweets into the joy category. We believe that
for themajority of the tweets from the fatigue category Ekman’s classifier suspected they
might be sarcastic and hence used the joy category.

Results of applying POMS’s classifier on tweets from Plutchik’s data set are shown in

Results and Discussion 81

Ang
er

Con
fus

ion

Dep
res

sio
n

Fat
igu

e

Te
nsi

on
Vigo

ur

POMS (Predicted Label)

Anger

Anticipation

Disgust

Fear

Joy

Sadness

Surprise

Trust

Pl
ut

ch
ik

 (T
ru

e
La

be
l)

37.2 7.6 49.8 1.9 2.5 0.9

3.3 6.2 27.4 5.0 56.8 1.3

17.5 12.1 66.8 1.6 1.7 0.3

3.3 6.7 76.0 1.8 10.3 1.9

4.5 4.0 57.3 10.3 9.7 14.1

5.4 7.1 81.2 2.9 3.1 0.3

4.7 13.9 51.5 6.7 21.1 2.1

7.5 7.4 72.5 1.7 7.0 4.0

0

20

40

60

80

100

Figure 5.4
Predictions of POMS’s
classifier when applied
to Plutchik’s data set in
multiclass mode. Each
cell shows the percent-
age of corresponding
examples; percent signs
are omitted due to
brevity.

Figure 5.4. We observe that the trends are less obvious than in the previous case. A lot of
anger examples again map to anger category, while most tweets expressing anticipation
map to tension category. For other categories from Plutchik’s classification we notice a
significant bias towards the depression category in POMSwith somemostly negative cat-
egories (i.e. sadness, fear, and disgust) mapping more often to depression than to some
mostly positives ones (i.e. joy and surprise). We believe this happened due to a combina-
tion of two reasons. First, the depression is the most common category in POMS’s data
set; hence the classifier is biased towards it. Second, performing these experiments in
multiclass setting forced the classifier to map all of the Plutchik’s categories to POMS’s,

82 N Colnerič Emotion Recognition on Twitter Using Neural Networks

although for some Plutchik’s categories there might not be a suitable candidate in the
POMS’s classification.

Figure 5.5
Predictions of POMS’s
classifier when applied
to Plutchik’s data set in
multilabel mode. Cases
when the classifier
did not recognise any
of the emotions are
shown in NoPrediction
column. Each cell
shows the percentage
of corresponding
examples; percent signs
are omitted due to
brevity.

Ang
er

Con
fus

ion

Dep
res

sio
n

Fat
igu

e

Te
nsi

on
Vigo

ur

NoP
red

ict
ion

POMS (Predicted Label)

Anger

Anticipation

Disgust

Fear

Joy

Sadness

Surprise

Trust

Pl
ut

ch
ik

 (T
ru

e
La

be
l)

35.8 3.0 37.2 1.0 0.9 0.4 21.7

2.2 2.5 22.1 3.5 37.3 0.5 31.8

13.7 5.8 58.6 0.4 0.3 0.1 21.1

2.2 2.8 63.6 0.8 5.0 0.7 24.8

2.5 1.1 43.2 6.7 4.2 5.7 36.6

3.7 3.5 75.3 2.1 1.2 0.1 14.0

2.3 5.3 37.3 2.8 11.0 0.5 40.8

4.6 2.5 60.4 0.6 2.3 1.8 27.7

0

20

40

60

80

100

To allow the classifier not to provide a mapping from the source to the target cat-
egory we repeated the same experiments in multilabel setting and show the results in
Figure 5.5. In comparison to the multiclass mode, we observed that for many examples
that were previously mapped to depression category the classifier did now not recognise
any of POMS’s emotions. In Figure 5.5 wemark such cases as the NoPrediction category.
Especially for mostly positive categories joy and surprise there are now around 40 %
tweets for which the classifier did not assign POMS’s category, while in the multiclass

Results and Discussion 83

mode it was forced to make a decision.

5.7 Limitations and Future Work
Most of study’s limitations stem from the data set creation process. First, we restricted
ourselves to exact matches of emotional hashtags. Expanding these sets to include mor-
phological variations of the emotional words as well as their synonyms, could drastically
enlarge the number of matching tweets and consequently our data set sizes, while also
expanding the variation of tweets inside each category.

The class distributions are quite imbalanced, as we show in Section 3.2. Consequently,
some of our classifiers perform quite poorly for categories containing a few examples.
The confusion matrix in Figure 5.6 shows that classifiers are biased towards categories
with the large number of examples (e.g. joy), while they perform quite poorly for cat-
egories with very few examples (e.g. disgust). This is also confirmed by the Table 5.13,
which shows the performance for each of the categories separately. We observed that
the performance is directly correlated with the number of examples inside the category.
The more examples there are for a given category, the better the model performs on it.
For the disgust category, with only 1,419 examples, we achieved the F1-score of 23.6 %,
while for joy, with 36,958 examples, we achieved the F1-score of 78.0 %. Although we
only report the numbers for Ekman here, the same trends are present for Plutchik and
POMS as well. We could devote more effort to make data sets more balanced either
in the data set creation process, by including synonyms as mentioned above, or later
by under- or oversampling. An interesting idea for balancing our sets would be to try
generating new training examples, like in visual recognition competitions by applying
transformations to images. We could replace somewords in the tweet’s contentwith syn-
onyms to obtain a new training example corresponding to the same category. Repeating
these substitutions for the categories with few training examples could help us balance
the class distributions, but whether this would improve the performance for categories
with few examples is unknown.

Our data sets only contain tweets corresponding to the emotional categories but no
neutral tweets, mainly as finding them with distant supervision approach is not easy.
Although the multilabel setting supports the neutral class (i.e. when the classifier re-
turns negative prediction for all categories), we neither trained them on such examples
nor tested their performance on neutral tweets. Hence, we know that our models can

84 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 5.6
Confusion matrix
on the Ekman’s test
data for unison model
trained using weighted
sampling batches
strategy. Each cell
shows the percentage
of corresponding
examples; percent signs
are omitted due to
brevity.

Ang
er

Disg
ust Fea

r Joy

Sa
dn

ess

Su
rpr

ise

Predicted Label

Anger

Disgust

Fear

Joy

Sadness

Surprise

Tr
ue

 L
ab

el

53.1 0.9 9.9 14.6 13.2 8.3

14.0 16.1 13.0 14.0 21.3 21.7

2.7 0.5 64.5 15.5 6.7 10.1

0.8 0.1 2.6 82.1 3.7 10.7

2.9 0.5 4.5 16.6 62.8 12.7

0.9 0.2 2.6 14.2 4.5 77.6

0

20

40

60

80

100

distinguish between fine-grained emotional states, but how they perform on a stream of
tweets containing neutral examples is an interesting question for future work.

When creating the data sets bydistant supervision instead of usinghuman annotators,
some tweets can be mislabelled. We observed that category joy contains some sarcastic
tweets such as, for example, ”I feel like crap! An elephant is sitting on my chest and my
stomach is churning! #joy #exhausted #wornout”. Such sarcastic tweets, as well as other
mislabelled examples, are introducing erroneous training instances, which confuses the
classifiers while training or misleads them into recognising incorrect patterns. While
they might not be problematic from a performance evaluation perspective, as the classi-
fiers can learn to put both joyful as well as sarcastic tweets into the same category, they
are very problematic in terms of results interpretation. Recall that we spotted this in the
previous section where the Ekman’s classifier predicted the category joy for tweets actu-
ally expressing fatigue. As sarcasm is a hard problem even in texts longer than tweets and

Results and Discussion 85
Table 5.13
Performances on single categories evaluated on Ekman’s test data for the unison model trained using weighted
sampling batches strategy. For each emotion, we report the precision, recall, F1-score, and support (i.e. the num-
ber of tweets belonging to that category).

Precision Recall F1-Score Support
Anger 66.6 53.1 59.1 6,134
Disgust 44.6 16.1 23.6 1,419
Fear 74.8 64.6 69.3 14,970
Joy 74.2 82.2 78.0 36,958
Sadness 66.9 62.9 64.8 15,820
Surprise 74.9 77.7 76.3 31,843

is sometimes impossible to deduct from the content itself without modelling authors,
we did not tackle it in our study.

Further, while we showed that the proposed WSB heuristic works in the domain of
emotion recognition, it would be interesting to test it on different domains inside and
outside of the field of NLP.

Finally, before putting out classifiers into thewild, their performance should be tested
on a set of unfiltered, preferably human-annotated set of tweets. Even if the training
data remains labelled by distant supervision, evaluation on a data set labelled by human
annotators would give valuable information regarding the performance we can expect
in the wild.

6
Showcases

88 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Wemade our best performingmodels, i.e. RNNmodels on characters in bothmulticlass
and multilabel mode, publicly available. First, they are accessible through the Python
programming language, which we present in Section 6.1. Secondly, they are available in
Orange [84], an open sourcemachine learning and data visualisation toolbox, whichwe
present in Section 6.2. As Orange is based on visual programming and does not require
the knowledge of coding, this makes our models accessible also to people unskilled in
programming. Further, this supports future research to compare with our work on new
data sets easily.

6.1 Python
The package twitter-emotion-recognition for Python 3 is freely available on GitHub at
https://github.com/nikicc/twitter-emotion-recognition. To install it, clone the repos-
itory and install its dependencies defined in requirements.txt file. We illustrate its func-
tionality on a simple example. First, import the EmotionPredictor class, which serves as
the interface to our models.

>>> from emotion_predictor import EmotionPredictor
>>> model = EmotionPredictor(classification=’ekman’, setting=’mc’)

To select the emotion classification, set the classification argument to ekman, plutchik,
or poms. To switch from multiclass to multilabel mode, set the setting parameter to
ml. With the model initialised, we define a list of tweets that we use to illustrate the
functionalities of the model.

>>> tweets = [
”Watching the sopranos again from start to finish!”,
”Finding out i have to go to the dentist tomorrow”,
”I want to go outside and chalk but I have no chalk”,
”I HATE PAPERS AH #AH #HATE”,
”My mom wasn’t mad”,
”Do people have no Respect for themselves or others peoples homes”,

]

To recognise emotions, we use the predict_classes method. It returns a Pandas [85] data
frame with two columns. The Tweet column contains the tweet content, while the
Emotion column contains the emotion our model recognised in that tweet.

https://github.com/nikicc/twitter-emotion-recognition

Showcases 89

>>> model.predict_classes(tweets)
Tweet Emotion

0 ”Watching the sopranos again from start to finish!” Joy
1 ”Finding out i have to go to the dentist tomorrow” Fear
2 ”I want to go outside and chalk but I have no chalk” Sadness
3 ”I HATE PAPERS AH #AH #HATE” Anger
4 ”My mom wasn’t mad” Surprise
5 ”Do people have no Respect for themselves or others peoples...” Disgust

Toobtain probabilities for each of the emotions, weuse themethod predict_probabilities.
Classifiers in themulticlassmode return the probability distribution across all categories,
while in the multilabel mode, they return independent probabilities for each of the cat-
egories.

>>> model.predict_probabilities(tweets)
Tweet Anger Disgust Fear Joy Sadness Surprise

0 ”Watching the ...” 0.00072 0.00024 0.00383 0.94654 0.00561 0.04306
1 ”Finding out i...” 0.00770 0.00004 0.78389 0.19863 0.00895 0.00079
2 ”I want to go ...” 0.00277 0.00010 0.00414 0.02503 0.96371 0.00425
3 ”I HATE PAPERS...” 0.95634 0.00637 0.03139 0.00035 0.00437 0.00118
4 ”My mom wasn’t...” 0.06397 0.00499 0.01397 0.07988 0.21871 0.61848
5 ”Do people hav...” 0.09899 0.79255 0.05698 0.00290 0.03184 0.01675

Finally, besides emotion recognition, we also support embedding the content of tweets
into fixed length vectors that can be used for any further analysis, such as training cus-
tom classifiers or performing unsupervisedmachine learning (e.g. clustering). This fixed
length vector representation corresponds to the final hidden state of the recurrent uni-
son model. To embed the tweets, use the embed method. It returns the representation
of the tweets as vectors of length that is equal to the dimensionality of the final hidden
state representation of the model (i.e. 800 in the below case).

>>> model.embed(tweets)
Tweet Dim1 Dim2 ... Dim798 Dim799 Dim800

0 ”Watching the ...” -0.12876 -0.00000 ... -0.26090 -0.00906 -0.11021
1 ”Finding out i...” -0.52560 0.40785 ... -0.00009 -0.00149 0.14287
2 ”I want to go ...” -0.05785 0.56642 ... -0.09134 -0.00391 -0.03748
3 ”I HATE PAPERS...” 0.01967 -0.28851 ... 0.10023 0.01335 -0.01430
4 ”My mom wasn’t...” -0.00414 0.65758 ... -0.02932 -0.00746 -0.06621
5 ”Do people hav...” -0.20141 0.08131 ... 0.03366 0.01274 -0.00501

90 N Colnerič Emotion Recognition on Twitter Using Neural Networks

6.2 Orange
After installing Orange (https://orange.biolab.si/) we install the Orange3-Text add-on,
which includes components for textual analysis as well as the Tweet Profiler widget with
our models. In Orange’s menu select Options -> Add-ons to open the add-on window
and make sure Text add-on is installed, as shown in Figure 6.1.

Figure 6.1
Installing
Orange3-Text add-on
which contains the
Tweet Profiler widget
with our models. The
add-on dialog is under
Options -> Add-ons.

With the Text addon installed, we can start using the emotion-recognition models.
First, let us load some data. For this showcase, we use the data set of tweets by Hillary
Clinton and Donald Trump in the time before the 2016 elections, which comes along
with the addon. To open the data set, place theCorpuswidget on the canvas and open it.
Then click on theBrowse documentation corpora button and pick election-tweets-2016.tab
as shown in Figure 6.2. We see that the corpus contains 6444 tweets and has a discrete
class with two values stating whether Donald or Hillary was the author of the tweet.

https://orange.biolab.si/

Showcases 91

Figure 6.2
Loading the
election-tweets-2016
data set with the
Corpus widget.

With the data loaded, we now pass it to Tweet Profiler widget, which serves as the
interface to our models. The widget sends the data to a remote server where the models
are run and then the results are sent back to Orange for further processing. The Tweet
Profiles widget, as shown in Figure 6.3, has several options. First, in the Attribute set-
ting we define what should be the input to the emotion recognition models. In this
example, we use the Content feature, as this is where the content of the tweet is stored.
Next, we select the emotion classification and the classifier output mode (i.e. multiclass
or multilabel) in the Emotions option. Finally, the Output option defines the output
we want from the model. Selecting Classes returns the emotion classes as predicted by
the model, selecting Probabilities returns the probabilities for the emotion classes, while
Embeddings embeds the tweets and returns their final hidden state representations.

The output of the Tweet Profiler widget now contains the data enhanced with six
additional features. For each of the Ekman’s emotional categories— anger, disgust, fear,
joy, sadness, and surprise— themodel added the probability for it to be expressed in the
tweet. The probabilities can be observed by passing the output of Tweet Profiler widget

92 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 6.3
Tweet Profiler widget
sends the data to a re-
mote server where our
models are run. The re-
sults, the probabilities
for Ekman’s emotions
in this case, are then
sent back to Orange
and are available on the
widget’s output chan-
nel. Passing the output
to Data Table widget
shows the six new emo-
tion features that the
model appended to the
data set.

to the Data Table widget.
Although observing the probabilities directly is interesting by itself, we can also use

them to search for the tweets that strongly express certain emotions. To do so, pass the
data to the Select Rows widget, as shown in Figure 6.4. In the Conditions area, select
the Sadness feature, set the second dropdown to is greater than and the last field to 0.95.
Doing so, the widget finds tweets for which the classifier set the probability for express-
ing sadness to greater than 95 %. The matching tweets are present on the output of the
Select Rows widget.

Finally, we pass the output of the Select Rows widget into the Corpus Viewer wid-
get, which is more appropriate for presenting textual data than Data Table. In Corpus
Viewer, under the Display features we select only Sadness and Content, which hides all

Showcases 93

Figure 6.4
Select Rows widget is
used to select tweets
with the probability
of expressing sadness
greater than 95 %.

other features. Selectingmultiple documents shows themonebelow the other, as seen in
Figure 6.5. The content of the tweets along with the probabilities of expressing sadness
as predicted by the classifier are now shown in the area on the right.

94 N Colnerič Emotion Recognition on Twitter Using Neural Networks

Figure 6.5
We use Corpus Viewer
widget to show the
tweets to which clas-
sifier assigned high
probability for express-
ing sadness.

7Conclusion

96 N Colnerič Emotion Recognition on Twitter Using Neural Networks

The thesis focuses on emotion recognition on Twitter and is structured to answer two
main research questions. First, can we improve the accuracy of emotion-recognition al-
gorithmswith the use of neural networks? Deep learning has recently shown impressive
improvements in many other areas but has not yet been tested for emotion recognition.
And second, can we develop a single model able to recognise multiple emotion catego-
risations from a shared representation?

To that aim, we first created labelled data sets for Ekman’s, Plutchik’s, and POMS’s
emotions by exploiting emotional hashtags as our labels. We then designed a set of ex-
periments that set the baseline performance on these three data sets using traditional
approaches to emotion recognition used in the recent literature. When comparing the
results of the neural networkswith those of the baselinemodels, we observed that neural
networks always show slightly better results than baseline approaches. We discovered
that both recurrent and convolution neural networks can perform well; recurrent net-
works seem a bit more accurate. As the recurrent networks were much more complex
than the convolutional ones, we believe the latter to be a valid alternative when less
training data is available. All our networks were trained with either words or charac-
ters on input. We observed that characters yield better performance if enough training
data is available, and that character approach works using both types of networks: re-
current and convolutional. Whenever sufficient data is available, we encourage the use
of character approach instead of working with words. There are several benefits to the
character approach. It does not require a tokeniser, any token normalisation (like stem-
ming or lemmatisation) or any other language preprocessing tools. It truly is a com-
pletely end-to-end learning approach, and as such, it is very easily transferable to other
languages, which is another benefit of using character-based neural networks in compar-
isonwith traditionalmethods. As a first studywhichwas recognising POMS’s categories
from the textual content, we believe they are as predictable as Ekman’s and Plutchik’s.
Also, grouping its adjectives into a smaller set of categories yields a coherent data set
suitable for training emotion-recognition classifiers.

Experiments with our neural networks revealed that the transfer capabilities of our
models trained on single data sets are poor. This indicates that the discovered final hid-
den state representations were too specific to be useful for recognising other emotion
categorisations. To improve the generality of these hidden state representations, we
designed a single model for recognising all three emotion classifications. When such
a model was trained with the existing approach, we observed a drastic drop in perfor-

Conclusion 97

mance for one of our data sets — POMS. As this data set is about ten times larger than
the other two, the networks trained sufficiently for the first two data sets but under-
trained for POMS. To train a more balanced unison model, we proposed a novel train-
ing heuristic for training unison models. Its central idea is that the differences in data
set sizes or complexities should be considered when training a model. Hence, instead of
sampling training instances uniformly from all data sets, it samples examples based on
progress estimates for each of the data sets. We proposed a progress estimation metric
based on observing the difference between train and validation accuracy and confirmed
its usefulness for guiding the training process. We showed that the newly proposed train-
ing heuristic outperformed the existing approach with respect to the harmonic mean of
performance across all data sets andhence trained amuchmore balancedmodel. Theper-
formance of so-trained unisonmodel on each data set is comparable to the performance
of single models, while the unisonmodel was restricted to use the shared representation.
Hence, we believe, this representation is more general than those of individual models,
which was confirmed by testing the utility of the embedding when applied to sentiment
analysis, and can be considered as a general emotion representation of the input tweet.

Comparing to previous research, weworked on probably the largest emotion labelled
data sets spanning just under seven years and did not restrict ourselves to a particular do-
main (e.g. finance) but rather tested the usefulness of our models across all available
tweets. We conducted all experiments in both multiclass as well as multilabel modes,
while we compared word- and character-based inputs for both convolutional and recur-
rent neural networks. Also, we worked with three emotion classifications at the same
time, whichnot only enabled their comparison on the same type of data but also allowed
us to exploit the benefits of multi-task learning when developing the unison model.
Since the data was annotated automatically and as the best performing model was an
end-to-end character basedmodel, our approach is language independent and could eas-
ily be adapted to other languages. All our best performing models are publicly available
in Python and Orange, which supports easy comparison of future research with our
models. Among possible thesis improvements, the most promising ones are handling
of sarcastic and neutral tweets, resolving class imbalance issues, and evaluating models
in the wild.

We showed that neural networks should be preferred over traditional text classifica-
tion approaches for emotion recognition and that, with the newly proposed training
heuristic, we can train a single model able of recognising multiple emotion categorisa-

98 N Colnerič Emotion Recognition on Twitter Using Neural Networks

tions from a shared representation.

BIBLIOGRAPHY

[1] Go A, Bhayani R & Huang L (2009) Twitter
Sentiment Classification using Distant Supervi-
sion. CS224N Project Report, Stanford.

[2] Gruhl D, Guha R, Kumar R, Novak J &
Tomkins A (2005) The Predictive Power of
Online Chatter. In Proc. of the 11th ACM
SIGKDD Int. Conf. on Knowledge Discovery in
Data Mining. pp. 78–87.

[3] Liu Y, Huang X, An A & Yu X (2007) ARSA: A
Sentiment-Aware Model for Predicting Sales
Performance Using Blogs. In Proc. of the 30th
Int. ACM SIGIR Conf. on Research and Devel-
opment in Information Retrieval. pp. 607–614.

[4] Mishne G & Glance N (2005) Predicting Movie
Sales from Blogger Sentiment. In AAAI Spring
Symposium: Computational Approaches to
Analyzing Weblogs. pp. 155–158.

[5] Asur S & Huberman BA (2010) Predicting the
Future with Social Media. In Proc. of the Int.
Conf. on Web Intelligence and Intelligent Agent
Technology. pp. 492–499.

[6] Bollen J, Mao H & Zeng XJ (2011) Twitter mood
predicts the stock market. J of Computational
Science 2: 1–8.

[7] Dergiades T (2012) Do investors’ sentiment dy-
namics affect stock returns? Evidence from the
US economy. Economics Letters 116: 404–407.

[8] Smailović J, Grčar M, Lavrač N & Žnidaršič M
(2013) Predictive Sentiment Analysis of Tweets:
A Stock Market Application. In Proc. of the Int.
Workshop on Human-Computer Interaction and
Knowledge Discovery in Complex, Unstructured,
Big Data. pp. 77–88.

[9] Collobert R et al. (2011) Natural Language Pro-
cessing (almost) from Scratch. J of Machine
Learning Research 12: 2493–2537.

[10] Ekman P (1992) An Argument for Basic Emo-
tions. Cognition and Emotion 6: 169–200.

[11] Plutchik R (1980) A General Psychoevolution-
ary Theory of Emotion. In Theories of Emotion
(Academic Press), pp. 3–33.

[12] McNair DM (1971) Manual Profile of Mood
States (Educational & Industrial testing service).

[13] Norcross JC, Guadagnoli E & Prochaska JO
(1984) Factor Structure of the Profile of Mood
States (POMS): Two Partial Replications. J of
Clinical Psychology 40: 1270–1277.

[14] Bradford RB (2008) An Empirical Study of Re-
quired Dimensionality for Large-scale Latent
Semantic Indexing Applications. In Proc. of the
17th ACM Conf. on Information and Knowledge
Management. pp. 153–162.

[15] Mikolov T, Corrado G, Chen K & Dean J (2013)
Efficient Estimation of Word Representations
in Vector Space. In Proc. of the Int. Conf. on
Learning Representations. pp. 1–12.

[16] Pennington J, Socher R & Manning CD (2014)
GloVe: Global Vectors for Word Representation.
In Proc. of the Conf. on Empirical Methods in
Natural Language Processing. pp. 1532–1543.

[17] Peters ME et al. (2018) Deep contextualized
word representations. In Proc. of the Conf. of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. pp. 2227–2237.

99

100 N Colnerič Emotion Recognition on Twitter Using Neural Networks

[18] Hochreiter S & Schmidhuber J (1997) Long
Short-Term Memory. Neural Computation 9:
1735–1780.

[19] Cho K et al. (2014) Learning Phrase Repre-
sentations using RNN Encoder–Decoder for
Statistical Machine Translation. arXiv preprint
arXiv: 1406.1078.

[20] Chung J, Gulcehre C, Cho K & Bengio Y
(2014) Empirical Evaluation of Gated Recur-
rent Neural Networks on Sequence Modeling.
arXiv preprint arXiv: 1412.3555.

[21] Kim Y (2014) Convolutional Neural Networks
for Sentence Classification. In Proc. of the Conf.
on Empirical Methods in Natural Language
Processing. pp. 1746–1751.

[22] Zhang X, Zhao J & LeCun Y (2015) Character-
level Convolutional Networks for Text Classi-
fication. In Advances in Neural Information
Processing Systems. pp. 649–657.

[23] Kalchbrenner N, Grefenstette E & Blunsom
P (2014) A Convolutional Neural Network
for Modelling Sentences. In Proc. of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics. pp. 655–665.

[24] Zhang Y & Wallace BC (2016) A Sensitivity
Analysis of (and Practitioners’ Guide to) Con-
volutional Neural Networks for Sentence Clas-
sification. In Proc. of the 8th Int. Joint Conf. on
Natural Language Processing. pp. 253–263.

[25] Tieleman T & Hinton G (2012) Lecture 6.5 —
RmsProp: Divide the Gradient by a Running
Average of its Recent Magnitude. Coursera:
Neural Networks for Machine Learning.

[26] Duchi J, Hazan E & Singer Y (2011) Adaptive
Subgradient Methods for Online Learning
and Stochastic Optimization. J of Machine
Learning Research 12: 2121–2159.

[27] Zeiler MD (2012) ADADELTA: An Adapt-
ive Learning Rate Method. arXiv preprint
arXiv: 1212.5701.

[28] Kingma DP & Ba J (2014) Adam: A Method
for Stochastic Optimization. arXiv preprint
arXiv: 1412.6980.

[29] Caruana R (1997) Multitask Learning. Machine
Learning 28: 41–75.

[30] Collobert R & Weston J (2008) A Unified Ar-
chitecture for Natural Language Processing:
Deep Neural Networks with Multitask Learn-
ing. In Proc. of the 25th Int. Conf. on Machine
Learning. pp. 160–167.

[31] Alm CO, Roth D & Sproat R (2005) Emotions
from text: machine learning for text-based
emotion prediction. In Proc. of the Conf. on
Human Language Technology and Empirical
Methods in Natural Language Processing. pp.
579–586.

[32] Aman S & Szpakowicz S (2007) Identifying Ex-
pressions of Emotion in Text. In Proc. of the Int.
Conf. on Text, Speech and Dialogue. pp. 196–205.

[33] Strapparava C & Mihalcea R (2007) SemEval-
2007 Task 14: Affective Text. In Proc. of the
4th Int. Workshop on Semantic Evaluations. pp.
70–74.

[34] Strapparava C & Mihalcea R (2008) Learning
to Identify Emotions in Text. In Proc. of the
ACM Symposium on Applied Computing. pp.
1556–1560.

[35] Chaffar S & Inkpen D (2011) Using a Heterogen-
eous Dataset for Emotion Analysis in Text. In
Canadian Conf. on Artificial Intelligence. pp.
62–67.

[36] Mohammad SM & Kiritchenko S (2015) Using
Hashtags to Capture Fine Emotion Categories
from Tweets. Computational Intelligence 31:
301–326.

[37] Mohammad SM & Turney PD (2010) Emotions
Evoked by Common Words and Phrases: Using
Mechanical Turk to Create an Emotion Lex-
icon. In Proc. of the NAACL HLT Workshop
on Computational Approaches to Analysis and
Generation of Emotion in Text. pp. 26–34.

[38] Mohammad SM, Zhu X, Kiritchenko S & Mar-
tin J (2015) Sentiment, emotion, purpose, and
style in electoral tweets. Information Processing
and Management 51: 480–499.

[39] Tromp E & Pechenizkiy M (2014) Rule-based
Emotion Detection on Social Media: Putting
Tweets on Plutchik’s Wheel. arXiv preprint
arXiv: 1412.4682.

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.4682

Bibliography 101

[40] Bollen J & Mao H (2011) Twitter Mood as a
Stock Market Predictor. Computer 44: 91–94.

[41] Bollen J, Mao H & Pepe A (2011) Modeling Pub-
lic Mood and Emotion: Twitter Sentiment and
Socio-Economic Phenomena. In Proc. of the 5th
Int. AAAI Conf. on Weblogs and Social Media
Modeling. pp. 450–453.

[42] Pepe A & Bollen J (2008) Between Conjecture
and Memento: Shaping a Collective Emotional
Perception of the Future. In AAAI Spring
Symposium: Emotion, Personality, and Social
Behavior. pp. 111–116.

[43] Neviarouskaya A, Prendinger H & Ishizuka M
(2009) Compositionality Principle in Recogni-
tion of Fine-Grained Emotions from Text. In
Proc. of the 3rd Int. AAAI Conf. on Web and
Social Media. pp. 278–281.

[44] Neviarouskaya A, Prendinger H & Ishizuka M
(2010) @AM: Textual Attitude Analysis Model.
In Proc. of the NAACL HLT Workshop on
Computational Approaches to Analysis and
Generation of Emotion in Text. pp. 80–88.

[45] Mishne G (2005) Experiments with Mood Clas-
sification in Blog Posts. In Proc. of the ACM
SIGIR Workshop on Stylistic Analysis of Text for
Information Access. pp. 321–327.

[46] Mihalcea R & Liu H (2006) A Corpus-based
Approach to Finding Happiness. In AAAI
Spring Symposium: Computational Approaches
to Analyzing Weblogs. pp. 139–144.

[47] Yerva SR, Hoyoung J & Aberer K (2012) Cloud
based Social and Sensor Data Fusion. In Proc.
of the 15th Int. Conf. on Information Fusion. pp.
2494–2501.

[48] Weston J, Chopra S & Adams K (2014) #Tag-
Space: Semantic Embeddings from Hashtags.
In Proc. of the Conf. on Empirical Methods in
Natural Language Processing. pp. 1822–1827.

[49] Kywe SM, Hoang TA, Lim EP & Zhu F (2012)
On Recommending Hashtags in Twitter Net-
works. In Proc. of the Int. Conf. on Social
Informatics. pp. 337–350.

[50] Godin F, Slavkovikj V, De Neve W, Schrauwen
B & Van De Walle R (2013) Using Topic Models
for Twitter Hashtag Recommendation. In Proc.
of the 22nd Int. Conf. on World Wide Web. pp.
593–596.

[51] Maas AL et al. (2011) Learning Word Vectors for
Sentiment Analysis. In Proc. of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies. pp.
142–150.

[52] Dong L et al. (2014) Adaptive Recursive Neural
Network for Target-dependent Twitter Sen-
timent Classification. In Proc. of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistic. pp. 49–54.

[53] Socher R et al. (2013) Recursive Deep Models for
Semantic Compositionality Over a Sentiment
Treebank. In Proc. of the Conf. on Empirical
Methods in Natural Language Processing. pp.
1631–1642.

[54] Tai KS, Socher R & Manning CD (2015) Im-
proved Semantic Representations From Tree-
Structured Long Short-Term Memory Net-
works. arXiv preprint arXiv: 1503.00075.

[55] Santos CND & Gatti M (2014) Deep Convolu-
tional Neural Networks for Sentiment Analysis
of Short Texts. In Proc. of the 25th Int. Conf. on
Computational Linguistics. pp. 69–78.

[56] Severyn A & Moschitti A (2015) Twitter Sen-
timent Analysis with Deep Neural Networks.
In Proc. of the 38th Int. ACM SIGIR Conf.
on Research and Development in Information
Retrieval. pp. 959–962.

[57] Ghiassi M, Skinner J & Zimbra D (2013) Twit-
ter brand sentiment analysis: A hybrid system
using n-gram analysis and dynamic artificial
neural network. Expert Systems With Applica-
tions 40: 6266–6282.

[58] Arkhipenko K et al. (2016) Comparison of
Neural Network Architectures for Sentiment
Analysis of Russian Tweets. In Proc. of the Int.
Conf. Dialogue. pp. 68–76.

[59] Nejat B, Carenini G & Ng R (2017) Exploring
Joint Neural Model for Sentence Level Dis-
course Parsing and Sentiment Analysis. In
Proc. of the 18th Annual SIGDIAL Meeting on
Discourse and Dialogue. pp. 289–298.

https://arxiv.org/abs/1503.00075

102 N Colnerič Emotion Recognition on Twitter Using Neural Networks

[60] Wang X, Jiang W & Luo Z (2016) Combination
of Convolutional and Recurrent Neural Net-
work for Sentiment Analysis of Short Texts. In
Proc. of the 26th Int. Conf. on Computational
Linguistics. pp. 2428–2437.

[61] Radford A, Jozefowicz R & Sutskever I (2017)
Learning to Generate Reviews and Discovering
Sentiment. arXiv preprint arXiv: 1704.01444.

[62] Razavian AS, Azizpour H, Sullivan J & Carls-
son S (2014) CNN Features off-the-shelf: an
Astounding Baseline for Recognition. In Proc.
of the IEEE Conf. on Computer Vision and
Pattern Recognition Workshops. pp. 806–813.

[63] Russakovsky O et al. (2015) ImageNet Large
Scale Visual Recognition Challenge. Int J of
Computer Vision 115: 211–252.

[64] Krizhevsky A & Hinton GE (2012) ImageNet
Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information
Processing Systems. pp. 1097–1105.

[65] Szegedy C et al. (2014) Going Deeper with
Convolutions. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. pp.
1–9.

[66] Yosinski J, Clune J, Bengio Y & Lipson H (2014)
How transferable are features in deep neural
networks? In Advances in Neural Information
Processing Systems. pp. 3320–3328.

[67] Nodarakis N, Sioutas S, Tsakalidis A & Tzimas
G (2016) Using Hadoop for Large Scale Analysis
on Twitter: A Technical Report. arXiv preprint
arXiv: 1602.01248.

[68] Kouloumpis E, Wilson T & Moore J (2011) Twit-
ter Sentiment Analysis: The Good the Bad and
the OMG! In Proc. of the 5th Int. AAAI Conf.
on Weblogs and Social Media. pp. 538–541.

[69] González-Ibáñez R, Muresan S & Wacholder N
(2011) Identifying Sarcasm in Twitter: A Closer
Look. In Proc. of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies. pp. 581–586.

[70] Bamman D & Smith NA (2015) Contextualized
Sarcasm Detection on Twitter. In Proc. of the
9th Int. AAAI Conf. on Web and Social Media.
pp. 574–577.

[71] Plank B & Hovy D (2015) Personality Traits on
Twitter —or— How to Get 1,500 Personality
Tests in a Week. In Proc. of the 6th Workshop
on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis. pp. 92–98.

[72] Gimpel K et al. (2011) Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experi-
ments. In Proc. of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies. pp. 42–47.

[73] Jolliffe IT (2002) Principal Component Analysis
(Springer).

[74] Rehurek R & Sojka P (2010) Software frame-
work for topic modelling with large corpora. In
Proc. of the LREC Workshop on New Challenges
for NLP Frameworks. pp. 45–50.

[75] Pedregosa F et al. (2012) Scikit-learn: Machine
Learning in Python. J of Machine Learning
Research 12: 2825–2830.

[76] Srivastava N, Hinton G, Krizhevsky A, Sut-
skever I & Salakhutdinov R (2014) Dropout: A
Simple Way to Prevent Neural Networks from
Overfitting. J of Machine Learning Research 15:
1929–1958.

[77] Zaremba W, Sutskever I & Vinyals O (2014) Re-
current Neural Network Regularization. arXiv
preprint arXiv: 1409.2329.

[78] Chollet F (2015) Keras. url: https://keras.io.

[79] Al-Rfou R et al. (2016) Theano: A Python
framework for fast computation of math-
ematical expressions. arXiv preprint
arXiv: 1605.02688.

[80] Devlin J, Chang MW, Lee K & Toutanova K
(2018) BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.
arXiv preprint arXiv: 1810.04805.

[81] Rosenthal S, Farra N & Nakov P (2017) SemEval-
2017 Task 4: Sentiment Analysis in Twitter.
In Proc. of the 11th Int. Workshop on Semantic
Evaluation. pp. 502–518.

[82] Mohammad SM (2012) #Emotional Tweets.
In Proc. of the 6th Int. Workshop on Semantic
Evaluation. pp. 246–255.

https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1602.01248
https://arxiv.org/abs/1409.2329
https://keras.io
https://arxiv.org/abs/1605.02688
https://arxiv.org/abs/1810.04805

Bibliography 103

[83] Mohammad SM, Zhu X & Martin J (2014) Se-
mantic Role Labeling of Emotions in Tweets.
In Proc. of the 5th Workshop on Computational
Approaches to Subjectivity, Sentiment and
Social Media Analysis. pp. 32–41.

[84] Demšar J et al. (2013) Orange: Data Mining

Toolbox in Python. J of Machine Learning
Research 14: 2349–2353.

[85] McKinney W (2010) Data Structures for Statist-
ical Computing in Python. In Proc. of the 9th
Python in Science Conf. pp. 51–56.

Prepoznavanje čustev na Twitterju
z uporabo nevronskih mrež

Niko Colnerič

doktorska disertacija
predana

Fakulteti za računalništvo in informatiko
kot del izpolnjevanja pogojev za pridobitev naziva

doktor znanosti
s področja

računalništva in informatike

razširjeni povzetek

Ljubljana, 2019

106 N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

Uvod Čeprav so splet še pred kratkim sestavljale predvsem statične vsebine, se fokus
dandanes usmerja k spletiščem, kjer večino vsebine ustvarjajo uporabniki. Med takšna
štejemo vsa družbena omrežja, platforme za mikrobloge, spletne enciklopedije in druge,
ki prispevajo k drastičnemu povečanju količine prosto dostopnih vsebin v spletu. Posle-
dično postajajo orodja za razumevanje naravnega jezika ključni del analize teh besedil, saj
je njihov obseg pogosto prevelik za ročno analiziranje.

Problem avtomatskega prepoznavanja čustev v naravnem jeziku definiramo takole.
Za poljubno vhodno besedilo naj algoritem prepozna, katera čustva je avtor izrazil v
njem. Kot je značilno za probleme s področja kategorizacije besedil, je naloga takšnega al-
goritma, da iz nabora možnih čustev izbere tisto, ki je najbolj izraženo v danem besedilu.
Poglejmo nekaj primerov:

Nekdo mi je včeraj spet ukradel kolo. Upam, da mu poči guma!

Če samo pomislim na šolo po koncu poletja, me kar zmrazi.

Sonce, morje, ležalnik in knjiga. Kaj drugega si lahko želiš?

Že sedaj rabim en prost dan, pa je šele torek.

Moja služba sploh ni stresna!

Čeprav večina ljudi precej hitro razbere, kakšna čustva so avtorji zgornjih besedil želeli
izraziti, je takšen problem težji za avtomatske algoritme, predvsem zaradi pomanjkanja
kopice predznanja, ki ga ljudje implicitno upoštevamo pri takšnih odločitvah. Obstajajo
pa seveda primeri, ki so nekoliko bolj nedorečeni. Na primer, zadnja poved je lahko
resnična trditev ali sarkastična, sámo besedilo pa ne vsebuje dovolj konteksta, da bi med
čustvoma lahko ločili.

Uporaba algoritmov za prepoznavanje čustev v besedilih se je izkazala koristna za ocen-
jevanje javnih mnenj [1], za napovedovanje uspešnosti prodaje knjig [2] in drugih pro-
duktov [3]. Raziskovalci opažajo tudi korelacijo med finančno uspešnostjo filmov in
čustvi, ki jih spletni uporabniki izražajo, ko govorijo o filmu [4]. Z analizo tvitov napo-
vedujejo prihodke od prodaje vstopnic za kino [5], nekateri raziskovalci pa celo izrabljajo
spletne vsebine za napovedovanje cen delnic [6–8].

Dosedanji pristopi k avtomatskemu prepoznavanju čustev besedila najprej pretvori-
jo v vektorske predstavitve s postopkom vreče besed in tem značilkam večkrat dodajajo

Razširjeni povzetek 107

druge, ročno generirane značilke. Tako vektorsko predstavljena besedila so nato vhod
v preproste algoritme strojnega učenja, kot sta na primer logistična regresija in metoda
podpornih vektorjev, ki nam vrnejo klasifikatorje, sposobne prepoznavanja čustev v be-
sedilih. Zadnje čase takšne preproste pristope prehitevajo pristopi z uporabo nevronskih
mrež. Ker te za prepoznavanje čustev v besedilih še niso bile uporabljene, je prvo vodilno
vprašanje našega raziskovanja, ali lahko nevronskemreže izboljšajo natančnost prepozna-
vanja čustev. V ta namen bomo najprej pridelali učne podatke, potem na njih uporabili
obstoječe metode, ki jih bomo nato primerjali z rezultati modelov nevronskih mrež.

Poleg tega večina dosedanjih raziskav napoveduje čustva neke določene klasifikacije,
čeprav splošnega konsenza glede univerzalnega nabora čustev ni in posledično obstaja
več klasifikacij čustev. Naša raziskava se osredotoča na prepoznavanje čustev treh naj-
popularnejših klasifikacij. Obravnavanje več klasifikacij hkrati najprej podpira njihovo
primerjanje, hkrati pa omogoči, da delamo z vsemi hkrati. Zanima nas tudi, ali lahko
razvijemo model, ki bo iz skupne vektorske predstavitve besedila lahko prepoznaval ču-
stva različnih kategorizacij.

Klasifikacije čustev Med najpopularnejše kategorizacije čustev, ki se uporablja-
jo na področju procesiranja naravnega jezika, štejemo Ekmanov nabor osnovnih čustev,
Plutchikovo kolo čustev in profil razpoloženjskih stanj (angl. Profile of Mood States
(POMS)).

Paul Ekman je z opazovanjem obraznih mimik definiral nabor šestih osnovnih ču-
stev [10], za katera trdi, da se pojavljajo pri ljudeh vseh kultur in socio-ekonomskih sta-
tusov. To so jeza, gnus, strah, veselje, žalost in presenečenje.

Robert Plutchik je predstavil kolo čustev [11], ki definira osem paroma nasprotnih
čustev: veselje – žalost, zaupanje – gnus, strah – jeza, presenečenje – pričakovanje. Za
vsako izmed njih navede tudi tri različne inačice, ki se razlikujejo po intenziteti. Če je bes
ekstremna manifestacija jeze, je neprijetnost njena mila oblika.

POMS [12] je anketni vprašalnik, sestavljen iz 65 pridevnikov, ki opisujejo različna
čustvena stanja, s pomočjo katerih oceni anketirančevo razpoloženjsko stanje. Anke-
tiranec za vsakega izmed pridevnikov na petstopenjski lestvici označi, kako pogosto je
takšno čustvo občutil v zadnjem tednu. Odgovori za vse pridevnike se nato združijo v
skupine, kjer vsak pridevnik prispeva natančno k eni skupini, in tako dobimo končni se-
demdimenzionalni opis anketirančevega razpoloženjskega stanja. Na primer, če smo se
počutili ekstremno pozabljivi, bo to pozitivno prispevalo k rezultatu dimenzije zmede-

108 N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

nost. POMS torej vrne oceno za teh sedemdimenzij: jeza, depresija, izčrpanost, vitalnost,
napetost, zmedenost in prijaznost1.

Učni podatki Ker pristopamo k prepoznavanju čustev zmetodami nadzorovanega
strojnega učenja, moramo za svoje eksperimente pridobiti označene učne primere. Na-
ši podatki vsebujejo tvite, ki so bili neprekinjeno zbirani preko Twitterjevega vmesnika
med avgustom 2008 in majem 2015. Množica obsega približno 73 milijard tvitov in v
nekompresiranih tekstovnih datotekah zasede 17 TB prostora na disku. Tvite smo uvo-
zili v gručo 40 strežnikov, na katerih je nameščen distribuiran datotečni sistem, in razvili
aplikacijo za iskanje, ki lahko preišče celotno množico podatkov v uri in pol.

Upoštevajoč velikost naše množice podatkov, je ročno označevanje vsebine vsekakor
prezahtevno in zato potrebujemo vsaj delno avtomatski postopek. K sreči ima takmeha-
nizem Twitter že vgrajen, saj podpira avtorjevo samooznačevanje vsebine v obliki tako
imenovanih tematskih oznak (angl. hashtags), te pa so med uporabniki zelo priljublje-
ne. Za izgradnjo naše učne množice bomo tako iskali tvite, ki vsebujejo tematske ozna-
ke, ki pripadajo čustvenim besedam, nato pa bomo te besede odstranili iz vsebine in
jih uporabili kot ciljne spremenljivke. Naši klasifikatorji se bodo tako učili, kako na-
povedati čustvene oznake iz preostanka vsebine posameznega tvita. Za Ekmanovo in
Plutchikovo klasifikacijo iščemo tvite, ki vsebujejo tematsko oznako, pripadajočo šestim
oziroma osmimosnovnim čustvom, ki jih kategorizaciji definirata. Za POMSnajprej po-
iščemo vse tvite, ki vsebujejo tematsko oznako, pripadajočo kateremu izmed 65 pridev-
nikov, tvite pa nato združimo v skupine, tako kot to definira POMS. Naši klasifikatorji
bodo tako napovedovali šest kategorij razpoloženjskega stanja in ne neposredno 65 pri-
devnikov. Tako pridelamo tri podatkovne množice tvitov skupaj z njihovimi oznakami
čustev.

Žal pa vsi tako pridobljeni tviti niso primerni za učenje. Na primer, med njimi najde-
mo tudi primere, kot sta:

#Strah ne sme biti razlog za nasprotovanje novemu zakoniku!

#praznovanje #torta #baloni #sveče #presenečenje instagram.com/p/Y1F20

V prvem primeru tematska oznaka #Strah dejansko ni uporabljena kot oznaka vsebi-
ne, ampak kot ključni del povedi. Drugi primer pa vsebuje samo tematske oznake, ki

1 V eksperimentih bomo upoštevali samo prvih šest dimenzij, saj se dimenzija prijaznost šteje za prešibko
za zanesljivo ocenjevanje [13].

Razširjeni povzetek 109

označujejo sliko na Instagramu in ne tekstovne vsebine tvita. Da odstranimo takšne tvi-
te iz naše učne množice, uporabimo naslednji hevristični metodi. Najprej izračunamo
globino tematske oznake kot razmerje med številom besed, ki se pojavijo pred oznako,
in številom vseh besed. Tviti, ki imajo to globino precej nizko, zelo verjetno uporabljajo
oznako kot del stavka in so zato odstranjeni. Da odstranimo tvite drugega tipa, definira-
mo koncept pomenske besede kot besede, ki ni specifična za Twitter (tematske oznake,
imena uporabnikov, URL-ji) ter ni številka ali ločilo. Nato izračunamodelež pomenskih
besed kot kvocient med številom pomenskih besed in številom vseh besed v tvitu ter od-
stranimo tvite z nizkimdeležempomenskih besed. Nazadnje odstranimo tudi vse retvite
in duplikate. Tako prečiščenamnožice vsebuje približno 535.000 primerov poEkmanovi
klasifikaciji, 800.000 primerov po Plutchikovi in 6,5milijona primerov za POMS. Za ko-
nec poglejmo še nekaj primerov, ki jih uporabljamo za učenje:

Najraje bi kričal na ves glas #jeza

Tudi po štirih mesecih mi misel nate orosi oči #žalost

Ponovno gledam Sopranove od začetka do konca #veselje

Vsako izmed treh podatkovnihmnožic razbijemo na tri podmnožice: učno (60 % pri-
merov), validacijsko (20 % primerov) in testno (20 % primerov). Učna in validacijska
bosta uporabljeni za nastavljanje parametrov naših modelov. Vsi parametri so izbrani
glede na natančnost na validacijski množici, ko je model naučen na učni množici. Ko na-
stavimo vse parametre modelov, te uporabimo, da naučimomodel na kombinaciji učne
in validacijske množice. Ta model nato samo enkrat testiramo na testni množici, katere
oznake niso bile nikoli razkrite nobenemu učnemu algoritmu.

Klasične metode Najprej bomo uporabili obstoječe metode, da ugotovimo, kak-
šna je njihova natančnost na naših podatkih. Ker je jezik na Twitterju precej neformalen,
uporabimo dva načina normalizacije. Prvi bo vseboval vse besede v vseh oblikah, kot
se pojavijo v besedilih. Drugi nekatere besede združi v eno: vse omembe uporabnikov
zamenjamo z besedo <uporabnik>, vse URL-je z <url>, vse številke z <številka>, vse
tri ali več zaporednih znakov znotraj besede zamenjamo z enim znakom (torej gooool
zamenjamo z gol) in vse velike črke zamenjamo z malimi. Za vsak način normalizacije
eksperimentiramo z modelom, ki uporablja samo besede, ter modelom, ki poleg besed
uporablja tudi pare besed. Poleg modelov vreče besed testiramo tudi modele latentnega

110 N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

semantičnega indeksiranja. Vsakega izmed zgornjih štirih modelov vreče besed transfor-
miramo v semantični prostor in ohranimo toliko dimenzij, da pojasnimo 70 % variance
v podatkih.

Na tako transformiranih besedilih primerjamo štiri algoritme strojnega učenja: naivni
Bayes, logistična regresija, naključni gozdovi in metoda podpornih vektorjev. Rezultate
algoritma, ki se bo izkazal za najnatančnejšega, bomo uporabili za primerjavo z nevron-
skimi mrežami.

Nevronskemreže Eksperimentirali bomo z dvema tipoma nevronskihmrež, reku-
renčnimi in konvolucijskimi, ter z dvema granularnostma na vhodu: besedami ali znaki.
Kadar bodo na vhodu v nevronsko mrežo besede, uporabimo obstoječe vpetje besed
GloVe [16], ki je bilo naučeno na podatkih s Twitterja. Tekom treniranja nevronskih
mrež to vpetje ali nadalje treniramo ali ne; to smatramo kot dodaten parameter, ki ga
izberemo s pomočjo validacijske množice. Kadar bodo na vhodu znaki, učimo njiho-
vo vpetje od začetka, začenši z naključno inicializacijo, saj ne poznamo nobenega prosto
dostopnega vpetja znakov. Glavna prednost učenja neposredno na znakih je, da ne po-
trebuje nikakršnega procesiranja besedil. Vhodno besedilo neposredno znak za znakom
podajamo nevronski mreži, ki mora med drugim sama ugotoviti, kako znaki tvorijo be-
sede, da lahko iz njih prepoznava čustva.

Arhitektura rekurenčnih nevronskih mrež je naslednja. Vpetju besed ali znakov sledi
rekurenčna plast in za njo po potrebi še ena do dve rekurenčni plasti. Vse rekurenčne
plasti skupaj tvorijo zadnji skriti nivo nevronskemreže, ki je preko polno povezane plasti
povezan z izhodomnevronskemreže. Pri rekurenčnih plasteh smo testirali dva tipa celic:
LSTM [18] in GRU [19].

Arhitektura konvolucijskihmrež za nameneklasifikacije besedil, kot je bila predstavlje-
na nedavno [21], je nekoliko preprostejša. Vhodni plasti sledi plast eno-dimenzionalne
konvolucije. Za njo poiščemo maksimalne vrednosti skozi čas (angl. max pooling over
time) in te preko polno povezane plasti povežemo z izhodom nevronske mreže.

Tako v rekurenčnih kot konvolucijskih nevronskih mrežah uporabljamo več plasti za
preprečevanje čezmernega prilagajanja učnim podatkom (angl. dropout layers). Nevron-
ske mreže treniramo s postopkom gradientnega spusta. Za rekurenčne mreže uporablja-
mo metodo RMSprop [25], za konvolucijske pa Adam [28]. Za določitev potrebnega
števila dob učenja (angl. epochs) uporabimo metodo predčasne ustavitve (angl. early
stopping), ki ustavi učenje, kadar se natančnost na validacijski množici ne poveča v petih

Razširjeni povzetek 111

zaporednih dobah.

Prenosljivost rezultatov učenja Tako pri rekurenčnih kot konvolucijskih
mrežah lahko zadnji skriti nivo, tik pred izhodom mreže, smatramo kot vpetje besedila
v vektor fiksne dolžine. Zanima nas, kako splošne so takšne predstavitve besedil. Natan-
čneje, ali je takšna predstavitev, kot smo jo naučili tekom učenja modela za napovedo-
vanje ene klasifikacije čustev, primerna tudi za napovedovanje čustev druge klasifikacije?
Odgovorna to vprašanje nampojasni, do kakšnemere sopredstavitve besedil na zadnjem
skritem nivoju splošne in potencialno uporabne pri drugih problemih.

V ta namen zasnujemo naslednji eksperiment. Najprej nevronsko mrežno naučimo
na klasifikaciji A. Nato bomo te parametre nevronske mreže uporabili za napovedova-
nje klasifikacije B. Vzamemo vse parametre, ki vodijo do zadnjega skritega nivoja, in jih iz
mreže A prekopiramo vmrežo B ter fiksiramo. Natomrežo B učimo, vendar pri tem do-
volimo spreminjanje samoparametrov zadnjega polno povezanega nivoja. Tako jemreža
B prisiljena uporabiti isti način preslikave vhoda v zadnji skriti nivo, kot ga je uporablja-
la mreža A. Nato natančnost tako trenirane mreže B primerjamo z natančnostjo mreže
B, če bi jo trenirali od začetka z naključno inicializacijo in pustili spreminjanje vseh pa-
rametrov. Če opazimo, da je uporaba vpetja mreže A drastično škodovala natančnosti
mreže B, lahko iz tega sklepamo, da je vpetje mreže A specifično za kategorizacijo A in
ni primerno za napovedovanje kategorizacije B. Nasprotno, če se natančnost skoraj ne
bi zmanjšala, potem je vpetje A dovolj splošno, da lahko iz njega napovedujemo tudi
kategorizacijo B.

Skupnoučenje Zadnja skupina eksperimentov se ukvarja z razvojem skupnegamo-
dela, torej modela, ki zna iz skupne predstavitve zadnjega skritega nivoja nevronske mre-
že napovedovati vse tri klasifikacije čustev. Arhitektura takšnega modela je enaka kot
arhitekture nevronskih mrež v prejšnjih poglavjih, le da imamo za zadnjim skritim sta-
njem tri polno povezane nivoje do treh izhodov nevronskemreže – za vsako klasifikacijo
imamo svoj izhod. Take arhitekture, ki učijo več nalog hkrati, večkrat vodijo do boljše
generalizacije, manj čezmernega prilagajanja učnim podatkom in natančnejših modelov.

Takšni skupni modeli pa potrebujejo poseben način učenja. Ker so naši učni podat-
ki sestavljeni iz treh podatkovnih množic, kar posledično pomeni, da imamo določen
učni primer označen samo za eno klasifikacijo in ne za vse tri, takšnega modela ne more-
mo neposredno učiti s standardnimi pristopi, saj za izhode, za katere ne poznamo ano-
tacij, ne moremo izračunati gradienta. Zato takšne modele učimo drugače, na primer

112 N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

Algoritem 5 Metoda izmenjujočih se paketov avtorjev Colloberta in Westona [30].
Vhod: M = {𝑚1, 𝑚2, … ,𝑚𝑛} ▷ podatkovne množice

MODEL ▷model nevronske mreže
ST_EPOHOV ▷maksimalno število epohov
ST_POSODOBITEV ▷ število posodobitev znotraj enega epoha

Izhod: MODEL ▷ naučen model nevronske mreže
1: for 𝑖 = 1 → ST_EPOHOV do
2: for 𝑗 = 1 → ST_POSODOBITEV/|M| do
3: for𝑚 ∈ M do
4: 𝑝 ← 𝑛𝑎𝑠𝑙𝑒𝑑𝑛𝑗𝑖_𝑢𝑐𝑛𝑖_𝑝𝑎𝑘𝑒𝑡(𝑚)
5: 𝑝𝑜𝑠𝑜𝑑𝑜𝑏𝑖_𝑔𝑙𝑒𝑑𝑒_𝑛𝑎_𝑝𝑎𝑘𝑒𝑡(𝑝,MODEL)
6: for𝑚 ∈ M do
7: /* oceni natančnost na učni in validacijski množici */

8: if kriterij za predčasno ustavitev izpolnjen then
9: 𝑝𝑟𝑒𝑘𝑖𝑛𝑖

tako, kot sta predstavila Collobert in Weston [30]. Njun pristop iterira čez podatkovne
množice in iz njih izbira pakete učnih primerov. Za nek paket potem posodobi para-
metre nevronske mreže tako, da posodobi vse skupne parametre in vse parametre, ki
pripadajo izhodu za trenutno klasifikacijo. Parametre, ki pripadajo izhodom drugih kla-
sifikacij, pusti nedotaknjene. Intuitivno izmenjuje podatkovne množice in tako nauči
vse parametre nevronske mreže, zato ta način mi imenujemo metoda izmenjujočih se
paketov. Psevdokoda je predstavljena v algoritmu 5, kjer uporabljamo naslednji meto-
di: naslednji_ucni_paket(m) za dano podatkovno množico m vrne naslednji učni pa-
ket, posodobi_glede_na_paket(p, MODEL) pa posodobi parametre modela MODEL
z enim korakom gradientnega spusta glede na učne primere v paketu p.

Metoda izmenjujočih se paketov tako tekom učenja uporabi enako število učnih pri-
merov iz vsake podatkovne množice. V našem primeru, kjer se učne množice drastično
razlikujejo po velikosti, se tak način učenja izkaže za pomanjkljivega predvsem za naj-
večjo podatkovno množico. V času, ko model osvoji manjši dve množici, še ne obvla-
da največje, kar posledično pomeni slabšo natančnost na največji množici. Da odpra-
vimo to pomanjkljivost, predlagamo nov način učenja skupnih modelov. Glavna ideja

Razširjeni povzetek 113

našega pristopa je, da mora biti algoritem učenja sposoben dinamično prilagajati, koli-
ko primerov iz posamezne podatkovne množice uporabi glede na napredek učenja. Iz
podatkovnih množic, kjer je napredek učenja boljši, mora jemati manj učnih primerov
kot iz podatkovnih množic, kjer je napredek slabši. Tako bomo med učenjem posveti-
li več pozornosti podatkovnim množicam, kjer je napredek slabši. Ideja za ocenjevanje
napredka učenja izvira iz tehnike, ki jo raziskovalci večkrat uporabljamo ročno. To je opa-
zovanje razlike med natančnostjo modela na učni in validacijski množici. Kadar model
prehaja v fazo čezmernega prilagajanja podatkom, bo točnost na učnimnožici rasla, med-
tem ko bo točnost na validacijski nespremenjena oziroma bo začela padati. Posledično,
večja ko je razlika, bolj je model čezmerno prilagojen učnim podatkom. Naš algoritem
uporablja to intuicijo za usmerjanje vzorčenja učnih paketov. Raje kot da iteriramo čez
učne množice, bomo te vzorčili uteženo glede na njihov napredek učenja. Psevdokoda
našega pristopa, ki ga imenujemo uteženo vzorčenje paketov, je predstavljena v algorit-
mu 6. Metoda nakljucno_izberi(M, utezi) bo iz množice podatkovnih množic M, upo-
števajoč utezi, uteženo izbrala eno podatkovnomnožico. Metodi natancnost_ucni(m) in
natancnost_validacijski(m) pa izračunata natančnost modela na učnem oziroma valida-
cijskem delu množice m.

Naš algoritem skozi iteracije spreminja uteži vzorčenja podatkovnih množic. Ker so
te uteži lepo konvergirale, smo za učenje modela v testnem načinu za vsako množico
uporabili kar njeno povprečje vzorčnih verjetnosti skozi vse dobe učenja.

Rezultati Izmed klasičnih pristopov se je kot najnatančnejšimodel izkazala logistič-
na regresija nanormaliziranih frazahbesed. Topotrjuje takokoristnost normalizacije kot
dodajanja besednih fraz v prostor značilk. Pri nevronskih mrežah se pristopi z znaki na
vhodu izkažejo kot najboljši, če le imamo dovolj podatkov. Prednost takih pristopov je
predvsem v tem, da ne potrebujejo nobenih jezikovno odvisnih orodij, kot je na primer
lematizator, ter so kot taki preprosto prenosljivi na druge jezike. Na podatkovni mno-
žici POMS, ki je največja, ti vedno premagajo pristope na podlagi besed, med tem ko se
na ostalih, manjših dveh to zgodi v nekaterih primerih. Oba tipa celic pri rekurenčnih
mrežah, LSTM in GRU, se izkažeta kot primerljiva. Pri primerjavi rekurenčne arhitek-
ture s konvolucijsko opazimo, da je rekurenčna večinoma nekoliko boljša, vendar razlike
niso velike. Primerjava rezultatov klasičnih pristopov in nevronskihmrež razkrije, da ne-
vronskemreže vedno dajejo nekoliko boljše rezultate kot klasični pristopi, vendar razlike
žal niso tako velike, kot smo pričakovali. Vendar pa prinašajo tudi druge prednosti, saj

114 N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

Algoritem 6 Predlagana metoda uteženega vzorčenja paketov.
Vhod: M = {𝑚1, 𝑚2, … ,𝑚𝑛} ▷ podatkovne množice

MODEL ▷model nevronske mreže
ST_EPOHOV ▷maksimalno število epohov
ST_POSODOBITEV ▷ število posodobitev znotraj enega epoha

Izhod: MODEL ▷ naučen model nevronske mreže
1: 𝑢𝑡𝑒𝑧𝑖 ← [1/𝑛, 1/𝑛, … , 1/𝑛]
2: for 𝑖 = 1 → ST_EPOHOV do
3: for 𝑗 = 1 → ST_POSODOBITEV do
4: 𝑖𝑚 ← 𝑛𝑎𝑘𝑙𝑗𝑢𝑐𝑛𝑜_𝑖𝑧𝑏𝑒𝑟𝑖(M, 𝑢𝑡𝑒𝑧𝑖)
5: 𝑝 ← 𝑛𝑎𝑠𝑙𝑒𝑑𝑛𝑗𝑖_𝑢𝑐𝑛𝑖_𝑝𝑎𝑘𝑒𝑡(𝑖𝑚)
6: 𝑝𝑜𝑠𝑜𝑑𝑜𝑏𝑖_𝑔𝑙𝑒𝑑𝑒_𝑛𝑎_𝑝𝑎𝑘𝑒𝑡(𝑝,MODEL)
7: for𝑚 ∈ M do
8: /* oceni natančnost na učni in validacijski množici */
9: 𝑛𝑎𝑝𝑟𝑒𝑑𝑒𝑘 ← 𝑛𝑎𝑡𝑎𝑛𝑐𝑛𝑜𝑠𝑡_𝑢𝑐𝑛𝑖(𝑚) − 𝑛𝑎𝑡𝑎𝑛𝑐𝑛𝑜𝑠𝑡_𝑣𝑎𝑙𝑖𝑑𝑎𝑐𝑖𝑗𝑠𝑘𝑖(𝑚)

10: 𝑢𝑡𝑒𝑧𝑖[𝑚] ← 1/𝑛𝑎𝑝𝑟𝑒𝑑𝑒𝑘
11: 𝑢𝑡𝑒𝑧𝑖 ← 𝑢𝑡𝑒𝑧𝑖/𝑣𝑠𝑜𝑡𝑎(𝑢𝑡𝑒𝑧𝑖)
12: if kriterij za predčasno ustavitev izpolnjen then
13: 𝑝𝑟𝑒𝑘𝑖𝑛𝑖

nevronske mreže z znaki na vhodu ne zahtevajo razčlenjevanja besedila, normalizacije
besed in generiranja značilk. Spomnimo, da za najboljše rezultate klasičnih pristopov
potrebujemo normalizacijo besed in vključevanje besednih fraz. Upoštevajoč nekoliko
višjo natančnost in predvsem manjšo vključenost človeka, zaključimo, da so nevronske
mreže primernejše za prepoznavanje čustev.

Prenosljivost predstavitev zadnjega skritega stanja nevronskihmrež, kadar so te učene
na eni podatkovni množici, se izkaže za neobetavno. Edini primer, kadar je natančnost
mreže, ki uporablja isti način preslikave vhoda v zadnji skriti nivo, kot je bil naučen na
drugi mreži, primerljiva z natančnostjo učenja celotne mreže, je, kadar prenesemo uteži
iz modela za napovedovanje Plutchikovih kategorij na model, ki napoveduje Ekmanove.
Vendar ta eksperiment ni smiseln, saj so Ekmanove kategorije podmnožica Plutchikovih.
Rezultati prenosljivosti ostalih eksperimentov, torej kadar prvo mrežo učimo na klasifi-

Razširjeni povzetek 115

kaciji POMS in jo prenesemo na Ekmanovo ali Plutchikovo klasifikacijo ter prav tako
eksperimentov v drugo smer, pokažejo, da so predstavitve zadnjih skritih stanj modelov
učenih na eni podatkovni množici precej prilagojene trenutni klasifikaciji, saj opažamo
velike izgube pri natančnosti.

Kadar skupni model učimo z znano metodo izmenjujočih se paketov, opazimo, da je
natančnost modela pri Ekmanovi in Plutchikovi klasifikaciji primerljiva z natančnostjo
posameznih modelov. Natančnost na klasifikaciji POMS pa je približno 10 % slabša od
natančnosti posameznega modela. To potrjuje sum, da obstoječa metoda ne upošteva
različnih velikosti oziroma kompleksnosti podatkovnihmnožic, kar vodi v slabšo natan-
čnost večjih oziroma težjih podatkovnihmnožic. Z uporabo novo predstavljenemetode
uteženega vzorčenja paketov se natančnost na klasifikaciji POMS dvigne in postane pri-
merljiva z natančnostjo posameznega modela, pri tem pa se natančnost na ostalih dveh
množicah ne poslabša. Opazimo, da je verjetnost vzorčenja za POMS večja od vsote
verjetnosti ostalih dveh množic. Algoritem je tako več kot polovico učnih primerov čr-
pal iz množice POMS. Primerjava harmoničnih sredin natančnosti čez vse podatkovne
množice razkrije, da nova metoda uteženega vzorčenja paketov v veliki večini primerov
premaga obstoječo metodo izmenjujočih se paketov. Tudi najnatančnejši skupni mo-
del je bil naučen z novo metodo učenja. To potrdi tako smiselnost uteženega vzorčenja
kot metodo ocenjevanja napredka učenja. Z novo metodo tako uspemo naučiti model,
katerega natančnost je uravnotežena čez vse tri podatkovne množice in je primerljiva z
natančnostjo posameznih modelov. Ker skupni model to doseže s prepoznavanjem iz
skupne predstavitve zadnjega skritega stanja, verjamemo, da je ta bolj splošna kot skrita
stanja posameznih modelov. Splošnost predstavitev zadnjega skritega stanja skupnega
modela smo testirali tudi na drugih podatkovnih množicah za prepoznavanje čustev in
sentimenta. Opazimo, da smo z uporabo vpetja skupnega modela, ki smo ga nato fiksi-
rali ali dovolili, da se nadalje spreminja tekom učenja, vedno uspeli preseči natančnost
nevronske mreže, ki ne uporablja našega vpetja. Preslikava vhodnega besedila v zadnji
skriti nivo skupnegamodela tako predstavlja univerzalno vpetje, primerno za napovedo-
vanje več klasifikacij čustev hkrati. Ima pa tudi potencial, da izboljša rezultate podobnih
napovednih nalog, kot je na primer napovedovanje sentimenta.

Zaključek Ta disertacija obravnava problem avtomatskega prepoznavanja čustev
na Twitterju. V ta namen pridelamo verjetno največjo množico podatkovnih primerov,
ki izvirajo iz obdobja sedmih let. Naši učni primeri niso omejeni samo na neko tematsko

116 N Colnerič Prepoznavanje čustev na Twitterju z uporabo nevronskih mrež

skupino, na primer finance, ampak raje preizkusimo algoritme v splošnem.
Eksperimentalno pokažemo, da lahko z nevronskimimrežami izboljšamo natančnost

algoritmov prepoznavanja čustev, hkrati pa je potrebna manjša vključenost človeka kot
pri klasičnih pristopih. Z uporabo nove metode učenja uspemo naučiti skupni model,
sposoben napovedovanja vseh treh klasifikacij iz skupne predstavitve, z natančnostjo, ki
je primerljiva z natančnostjo najboljših posameznih modelov.

Ideje za nadaljnje delo vključujejo prepoznavanje in odstranjevanje sarkastičnih tvitov
iz podatkovnemnožice, saj ti zavajajo algoritme. Dodajanje nevtralnih primerov v podat-
kovno množico bi algoritme prepoznavanja učilo tudi prepoznavanja nevtralnih tvitov,
ki predstavljajo zajeten del resničnih podatkov. Čeprav se algoritmi izkažejo kot natan-
čni na avtomatsko označenih podatkih, bi bilo zanimivo njihove napovedi preveriti na
novih podatkovnih množicah.

Prispevka k znanosti

Nov postopek učenja skupnih nevronskih mrež

Predstavimo nov postopek učenja nevronskih mrež, ki napovedujejo več nalog
hkrati. Postopek je posebej primeren, kadar se podatkovne množice razlikujejo v
velikosti ali kompleksnosti. Motivacija prihaja iz načina, kako raziskovalci ocenju-
jejo stopnjo čezmernega prileganja učnim podatkom. Razliko med natančnostjo
na učni in validacijski množici smatramo kot oceno napredka učenja ter jo upo-
rabimo kot vodilo za usmerjanje postopka vzorčenja učnih primerov. Pokažemo,
da s takšnim postopkom učenja vidno izboljšamo natančnost skupnega modela,
predvsemnanaši največji podatkovnimnožici (POMS), ki je z uporaboobstoječih
metod kazala slabše rezultate.

Univerzalno vpetje besedil, primerno za napovedovanje čustev

Z razvojem skupnega modela, ki prepoznava tri kategorizacije iz skupne predsta-
vitve, pridobimo univerzalno vpetje besedil, ki je primerno za napovedovanje več
kategorizacij čustev.

Razširjeni povzetek 117

Tehnični prispevek

Javno dostopni modeli za prepoznavanje čustev

Najnatančnejše izmed naših modelov smo naredili prosto dostopne v program-
skem jeziku Python in programuOrange (glej poglavje 6), kar poenostavi primer-
javo prihodnjih raziskav z našimi modeli.

	Povzetek
	Abstract
	Acknowledgements
	Introduction
	 Thesis Overview
	 Scientific Contributions
	 Technical Contribution

	Background
	 Emotion Classifications
	 Ekman's Set of Basic Emotions
	 Plutchik's Wheel of Emotions
	 Profile of Mood States

	 Traditional Text Classification
	 Neural Networks
	 Word Embeddings
	 Recurrent Neural Networks
	 Convolutional Neural Networks for Text Classification
	 Training of Neural Networks
	 Unison Learning

	 Related Work

	Data
	 Labelling by Distant Supervision
	 Data Set Statistics

	Methods
	 Traditional Text Classification
	 Bag of Words
	 Latent Semantic Indexing
	 Classifiers

	 Neural Network Models
	 Embeddings
	 Recurrent Neural Networks
	 Convolutional Neural Networks

	 Transfer Learning
	 Unison Learning
	 Alternating Batches
	 Weighted Sampling Batches
	 Weighted Sampling Batches by Data Set Sizes

	Results and Discussion
	 Traditional Text Classification
	 Neural Networks
	 Transfer Learning
	 Unison Learning
	 Unison Transfer Learning
	 Comparison of Emotion Classifications
	 Limitations and Future Work

	Showcases
	 Python
	 Orange

	Conclusion
	Bibliography
	Razširjeni povzetek

