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SUMMARY  

Biological pest control in apple orchards is essential and depends on effective and sustainable 
agricultural management strategies at local and landscape scales. Local measures such as hedgerows, 
flowering strips, organic management as well as landscapes with a high diversity of cover types and 
low land-use intensity are assumed to support biological control specifically and ecosystem services in 
general. However, the influence of local measures, landscape characteristics and their interactions has 
rarely been studied in perennial crop systems across large latitudinal gradients. Studying ecosystem 
services across climatic regions is especially important in the face of climate change and induced 
shifts in species distribution. The present study assesses the effects of local and landscape factors on 
predatory arthropods and their prey, and on trade-offs between ecosystem services and fruit production 
in the intensive fruit production systems of three European countries. Local factors included quality of 
the adjacent habitat (e.g. cover of woody habitat and plant species richness) and two types of orchard 
management: integrated production (IP; based on the reduced and targeted application of synthetic 
agrochemicals) and organic management practices. Landscape factors included the amount of orchard 
cover in the surrounding landscape as a proxy for land-use intensity and landscape diversity. For three 
years I studied arthropod communities in 30 apple orchards in Germany, with a special focus on 
natural enemies and herbivores and their impact on tree health and fruit production. I analyzed data 
from these orchards and from 28 orchards in Spain and 28 orchards in Sweden, provided by 
collaborators working on the same European BiodivERsA project. As a member of a 17-scientist team, 
I investigated how agri-environmental schemes, management practices, and landscape composition 
can be enhanced to support (I) ecosystem services and biodiversity in general, (II) communities of 
predatory arthropods, and (III) specific predatory arthropod taxa.  

The first publication (Chapter 2) offers an insight into the complex interactions of functional 
groups of arthropods (pollinators, predators, and pests) and their influence on fruit production in 
different environments. It presents natural enemies and their prey in the context of ecosystem service 
trade-offs. In cooperation with the project partners, I studied the effects of local and landscape factors 
on functional groups and their services and disservices in 86 European apple orchards in Germany, 
Sweden, and Spain, during one growing season (from March to October 2015) under a common study 
design and sampling protocol. Key functions of ecosystem service providers are biological pest control 
and pollination. Disservices are defined as fruit damage at harvest, and aphid infestation of target 
trees. Final yield (fruit production and seed set) is assessed as the ultimate measure for ecosystem 
service provisioning. Using structural equation models, we tested for trade-offs between ecosystem 
services and for effects of local and landscape variables. Across Europe organic management 
benefited natural enemies. Higher abundance of natural enemies in organic orchards partly 
compensated for higher fruit damage and lower yield in these systems. There was no general positive 
influence of agri-environmental schemes such as hedgerows or flower strips on natural enemies. 
However, a high flower cover in the understory indirectly increased final fruit yield by improving 
living conditions for wild bees. Diversity of beneficial arthropods was lower in landscapes with high 
land-use intensity. 

The second publication (Chapter 3) focuses on natural enemy communities in apple orchards 
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across all three countries and differences in their responses to local and landscape factors. Together 
with partners in Spain, Sweden, and Germany, I give a closer look on each of seven groups of 
predatory arthropods: spiders (Araneae), beetles (Coleoptera), earwigs (Dermaptera), flies (Diptera), 
bugs (Heteroptera), lacewings (Neuroptera) and harvestmen (Opiliones). In 2015, we took beating 
samples in all 86 apple orchards to assess the abundance of predatory arthropods. Additionally, we 
calculated community energy use as a proxy for the communities’ predation potential based on 
biomass and metabolic rates of predatory arthropods. In both IP and organic orchards, we detected 
contradicting influences of local and landscape factors on the studied predator groups. Organic 
management enhanced abundances of five out of seven predatory arthropod groups. It benefited 
spiders, beetles, earwigs, flies, and bugs, but the response was not consistent across countries. High 
local woody habitat cover enhanced earwig abundance in Sweden but not in Germany. Plant species 
richness negatively influenced bug abundance depending on country and management. Predation 
potential (energy use by the predator community) was higher in organic orchards in Spain but 
remained largely unaffected by local and landscape factors across Europe. 

The third publication (Chapter 4) is a case study on a single predatory arthropod group, 
earwigs, and one of their main prey organisms, woolly apple aphids. Earwigs are expected to be 
important generalist predators in apple orchards, with woolly apple aphids being a common apple pest. 
I studied whether local factors such as the presence of woody habitats and organic management and 
landscapes with low land-use intensity enhance living conditions for earwigs in intensive fruit 
production systems. Earwigs were sampled using shelters in 30 apple orchards in Germany (2015-
2016), and 28 orchards in Spain (2015), subjected to IP or organic management. At the same time, we 
assessed tree infestation by woolly apple aphids. Correlation analyses served to detect possible 
interactions between the abundance of earwigs and the availability of potential prey organisms. The 
results indicate that there is only a weak correlation between abundance of earwigs and tree infestation 
by woolly apple aphids. Earwigs of the species Forficula auricularia seem to respond indifferently to 
orchard management. Presence of adjacent woody elements reduced earwig abundance in IP orchards 
in Germany. In Spain we found two earwig species, Forficula auricularia and F. pubescens, but only 
F. pubescens, which did not occur in German orchards, profited from organic management.  

The three different perspectives on predatory arthropods (Chapter 2-4) highlight the importance 
of local and landscape factors for ecosystem services in general and predatory arthropods in particular. 
Responses were not consistent between predator groups and countries, stressing the need to develop 
tailored and country-specific management schemes at the local and landscape scale beyond the 
promotion of organic management. 
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ZUSAMMENFASSUNG 

Biologische Schädlingsregulierung ist für eine umwelt- und ressourcenschonende Apfelproduktion 
unabdingbar. Ihr Erfolg ist davon abhängig, dass auf lokaler Ebene und auf Landschaftsebene 
Bewirtschaftungsstrategien gefunden werden, die natürliche Gegenspieler fördern, ohne dabei den 
Schädlingsdruck zu erhöhen. Sowohl lokale Agrarumweltmaßnahmen, wie Hecken, Blühstreifen und 
biologische Bewirtschaftung, als auch Landschaften mit einer hohen Diversität an Landnutzungstypen 
und geringer Nutzungsintensität können Ökosystemdienstleistungen wie biologische 
Schädlingsregulierung fördern. Der Einfluss von lokalen Maßnahmen, von einer nützlingsfreundlichen 
Landschaft und von Interaktionen zwischen lokalen und Landschaftsfaktoren auf 
Ökosystemdienstleistungen wurde bisher nicht länderübergreifend in intensiv bewirtschafteten, 
mehrjährigen Anbausystemen überprüft. Vor dem Hintergrund des Klimawandels und damit 
einhergehenden Veränderungen in der Verbreitung von Arten muss die Wirkung von 
Agrarumweltmaßnahmen (hier einschließlich biologischer Bewirtschaftung) auf 
Ökosystemdienstleistungen über klimatische Regionen hinweg untersucht werden. Die vorliegende 
Arbeit erforscht den Einfluss lokaler Maßnahmen und Landschaftsfaktoren auf räuberische 
Arthropoden (hier Insekten und Spinnen) und ihre Beute sowie auf Zielkonflikte zwischen der 
Förderung von Biodiversität, Ökosystemdienstleistungen und Fruchtproduktion im Obstbau in drei 
Ländern Europas. Maßnahmen, die auf lokaler Ebene erfasst wurden, waren zum einen die Qualität 
angrenzender Habitate (z. B. das Vorhandensein von Gehölzstrukturen und eine hohe 
Pflanzendiversität) und zum anderen die Bewirtschaftung: integrierte Produktion (IP; basierend unter 
anderem auf der verringerten und gezielten Anwendung von chemisch-synthetischen 
Pflanzenschutzmitteln) und biologische Bewirtschaftung. Als Landschaftsfaktoren wurden die 
Landnutzungsintensität und die Diversität der Landschaft im Umkreis eines Kilometers berücksichtigt. 
Der Anteil an Obstanlagen diente dabei als Annäherungsmaß für eine erhöhte Nutzungsintensität. 
Über einen Zeitraum von drei Jahren habe ich im Rahmen der vorliegenden Dissertation Arthropoden-
Gemeinschaften in 30 Apfelanlagen in Deutschland untersucht. Ein besonderer Fokus lag auf 
natürlichen Gegenspielern von Schädlingen sowie auf Herbivoren und ihrer Wirkung auf die 
Gesundheit der Obstbäume und die Fruchtproduktion. Meine Analysen bezogen sich sowohl auf die in 
Deutschland erhobenen Daten als auch auf Daten, die von meinen Biodiversa EcoFruit Projektpartnern 
in je 28 Apfelanlagen in Spanien und Schweden erhoben wurden. In einem Team von 17 
Wissenschaftlern habe ich untersucht, wie Agrarumweltmaßnahmen, Anlagenbewirtschaftung und die 
umgebende Landschaft gestaltet werden können, um Ökosystemdienstleistungen und Biodiversität in 
Apfelanlagen zu fördern. Von dieser allgemeinen Betrachtung (Publikation I) ausgehend, habe ich 
mich damit beschäftigt, wie die Lebensräume für Gemeinschaften von räuberischen Arthropoden 
(Publikation II) sowie  für einzelne Gruppen räuberischer Arthropoden in Apfelanlagen (Publikation 
III) verbessert werden können.  

Die erste Publikation (Kapitel 2) ermöglicht einen Einblick in die komplexen Interaktionen 
funktionaler Arthropodengruppen (Bestäuber, Prädatoren und Schädlinge) und ihre Wirkung auf die 
Fruchtproduktion unter variierenden Umweltbedingungen. Die Studie analysiert Zielkonflikte bei der 
Förderung von Ökosystemdienstleistungen – unter anderem im Hinblick auf Ertrag, natürliche 
Gegenspieler und ihre Beute. In Kooperation mit unseren Projektpartnern habe ich dabei die 
Auswirkungen von lokalen und Landschaftsfaktoren auf die funktionalen Gruppen und auf von ihnen 
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erbrachte Ökosystemdienstleistungen sowie verursachte Schäden in 86 europäischen Apfelanlagen in 
Deutschland, Schweden und Spanien untersucht. Die Datenerfassung fand während einer Saison, 
zwischen März und Oktober 2015, unter Verwendung eines einheitlichen Versuchsdesigns statt. 
Schlüsselfunktionen von „Ökosystemdienstleistern“ sind hier biologische Schädlingsregulierung und 
Bestäubung, während Fruchtschäden zum Zeitpunkt der Ernte und Blattlausbefall als Schäden 
definiert wurden. Der Ertrag (erfasst als Fruchtproduktion und Samenansatz) diente in dieser Studie 
als Zielvariable für die Wirkung der Bereitstellung von Ökosystemdienstleistungen. Unter 
Verwendung von Strukturgleichungsmodellen wurden Zielkonflikte zwischen 
Ökosystemdienstleistungen, Biodiversitätsförderung und Fruchtproduktion untersucht. Die biologische 
Bewirtschaftung hatte über die drei Länder hinweg einen positiven Einfluss auf natürliche 
Gegenspieler. Die höhere Abundanz natürlicher Gegenspieler in Anlagen mit biologischer 
Bewirtschaftung kompensierte – zumindest teilweise – den erhöhten Fruchtschaden und den 
geringeren Ertrag in diesen Anlagen. Es konnte kein generell positiver Einfluss von 
Umweltmaßnahmen wie Hecken und blütenreichen Randstrukturen auf natürliche Gegenspieler 
festgestellt werden. Allerdings förderte eine hohe Blütendeckung im Unterwuchs und am Rand der 
Anlage indirekt den Fruchtertrag, indem sie sich positiv auf die Anzahl der Apfelblütenbesuche von 
Wildbienen auswirkte, von der wiederum die Bestäubungsleistung profitierte. Die Diversität von 
Nützlingen (räuberischen Arthropoden und Bestäubern) war in Landschaften mit hoher 
Nutzungsintensität geringer als in weniger intensiv genutzten Landschaften. 

Die zweite Publikation (Kapitel 3) beschäftigt sich mit Gemeinschaften von räuberischen 
Arthropoden in Apfelanlagen in allen drei Ländern und untersucht den Einfluss von lokalen und 
Landschaftsfaktoren auf diese Gemeinschaften. Zusammen mit den Projektpartnern in Deutschland, 
Spanien und Schweden habe ich folgende sieben räuberische Arthropodengruppen näher betrachtet: 
Spinnen (Araneae), Käfer (Coleoptera), Ohrwürmer (Dermaptera), Fliegen (Diptera), Wanzen 
(Heteroptera), Netzflügler (Neuroptera) und Weberknechte (Opiliones). 2015 nahmen wir in allen 86 
Apfelanlagen Klopfproben, um die Abundanz der Arthropoden zu erfassen. Zusätzlich wurde anhand 
der Biomasse und Metabolismusrate (Energieumsatz eines Organismus pro Zeiteinheit) der 
Arthropoden der Energieumsatz der Arthropodengemeinschaft berechnet. Er diente als 
Annäherungsmaß für das Prädationspotential der Gemeinschaften. Biologische Bewirtschaftung 
erhöhte die Abundanz in fünf der sieben Gruppen: Es profitierten Spinnen, Käfer, Ohrwürmer, Fliegen 
und Wanzen von biologischer Bewirtschaftung. Dabei war die Reaktion der Prädatorengruppen nicht 
kongruent in allen drei Ländern: Gruppen, die in einem Land von biologischer Bewirtschaftung 
profitierten, blieben in den anderen zwei Ländern davon teils unberührt. Wir fanden in IP- und Bio-
Anlagen gegensätzliche Wirkungen von lokalen und Landschaftsfaktoren auf die untersuchten 
Prädatorengruppen: Ein größerer Anteil von angrenzenden Gehölzstrukturen in der direkten 
Umgebung der Apfelanlage erhöhte die Abundanz von Ohrwürmern in Schweden, verringerte sie 
jedoch in Deutschland. Eine hohe Pflanzendiversität hatte, abhängig von Land und Bewirtschaftung, 
einen negativen Einfluss auf die Abundanz von Wanzen. Das Prädationspotential (Energieumsatz der 
Prädatorengemeinschaft) war in Spanien in Bioanlagen höher als in IP-Anlagen, blieb aber in den 
übrigen Ländern unbeeinflusst von lokalen und Landschaftsfaktoren. 

Die dritte Publikation (Kapitel 4) thematisiert den Einfluss von lokalen und 
Landschaftseinflüssen auf eine einzelne Arthropodengruppe (die Ohrwürmer) und einen für diese 
Gruppe wichtigen Beuteorganismus (die Apfelblutlaus). Ohrwürmer gelten als bedeutende 
generalistische Prädatoren in Apfelanlagen, Blutläuse als weit verbreitete Apfelschädlinge. Ich habe 
im Rahmen dieser Fallstudie untersucht, ob lokale Einflüsse wie das Vorhandensein von angrenzenden 
Gehölzstrukturen, eine biologische Bewirtschaftung der Anlage sowie Landschaften mit einer 
geringen Landnutzungsintensität die Lebensbedingung für Ohrwürmer in intensiven Anbausystemen 
verbessern. Dazu wurde in 30 Apfelanlagen in Deutschland (2015-2016) und 28 Apfelanlagen in 
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Spanien (2015) die Ohrwurmabundanz mittels Nisthilfen erfasst. In beiden Ländern wurden sowohl 
IP-Anlagen als auch biologisch bewirtschaftete Anlagen beprobt. Gleichzeitig wurde der Befall der 
Bäume durch Blutläuse erfasst. Um mögliche Zusammenhänge zwischen Ohrwurmabundanz und der 
Verfügbarkeit potentieller Beuteorganismen aufzuzeigen, wurden Korrelationsanalysen verwendet. 
Die Ergebnisse zeigten nur eine schwache Korrelation der Ohrwurmabundanz mit dem Blutlausbefall. 
Die Ohrwurmart Forficula auricularia blieb von der Bewirtschaftung der Anlage unbeeinflusst. Die 
Ohrwurmabundanz war in deutschen IP-Anlagen mit angrenzenden Gehölzstrukturen geringer als in 
IP-Anlagen ohne solche Strukturen. In Spanien waren die zwei Ohrwurmarten Forficula auricularia 
und F. pubescens in den Anlagen anzutreffen. Hier profitierte nur die in Deutschland nicht 
vorkommende Art F. pubescens von einer biologischen Bewirtschaftung der Apfelanlagen. 

Die drei unterschiedlichen Perspektiven auf räuberische Arthropoden (Kapitel 2-4) zeigen, wie 
wichtig die Einflüsse von lokalen und Landschaftsfaktoren für Ökosystemdienstleistungen im 
Allgemeinen und räuberische Arthropoden im Besonderen sind. Dabei wird jedoch deutlich, dass 
Prädatoren je nach Land und Arthropodengruppe unterschiedlich auf solche Einflüsse reagieren. 
Agrarumweltmaßnahmen im Apfelanbau, dem wichtigsten mehrjährigen landwirtschaftlichen 
Produktionssystem in Europa, müssen über die Förderung von biologischer Bewirtschaftung hinaus an 
die Bedürfnisse einzelner Prädatorengruppen angepasst werden. Bei ihrer Auswahl müssen 
Zielkonflikte - beispielsweise zu der Förderung anderer Ökosystemdienstleistungen und der 
Ertragssicherung - abgewogen und vermieden werden. Vor dem Hintergrund möglicher, durch den 
Klimawandel induzierter Änderungen in der Artenverteilung innerhalb von Europa, sollten 
länderspezifische Gegebenheiten (wie Hauptschädlinge, ihr Voltinismus und ihre wichtigsten 
Gegenspieler) bei der Anpassung von Agrarumweltmaßnahmen und der Gestaltung der 
Agrarlandschaft berücksichtigt werden. 
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1.  GENERAL INTRODUCTION 

If you ask an apple grower what he needs for a good yield, his first answer will probably be, ‘Good 

soil, good weather, and healthy trees’. To improve productivity and health of apple trees, growers can 

choose from a broad range of management options and technologies. For chemical pest control, for 

instance, growers in Europe currently select from a set of 30 different insecticides and acaricides 

(Happe et al., 2019). Average costs of plant protection were estimated to make up about 40% of apple 

production costs (Yilmaz et al., 2015). At least part of these expenses can be effectively substituted by 

ecosystem services (Bale et al., 2008; Cross et al., 2015). In the toolbox of ecosystem services, two 

ecological processes are of vital importance for apple growers to enhance yield: biological control to 

reduce pest pressure, and pollination to enhance fruit production (Garibaldi et al., 2014; Mallinger and 

Gratton, 2015; Peisley et al., 2015). Supporting the two processes comes with one major asset: given 

their high impact both pollination and biological control are common goods and have low immediate 

and hidden costs (Bale et al., 2008). On the contrary, the high socio-economic and ecological value of 

nature’s contributions to people has so far largely been underestimated (Costanza et al., 2014; de 

Groot et al., 2012; TEEB, 2010). If apple growers and future generations want to count on them, it is 

necessary to enhance public awareness of their importance and to understand the habitat and resource 

requirements of biological control agents and pollinators in agricultural production systems.  

Ecosystem services in fruit crops 

In Europe, 75% of the land cover is utilized for agriculture (Robinson and Sutherland, 2002). Fruit 

production is one of its key sectors, covering 6.8% of EU agricultural output (Eurostat, 2017a). Apple 

(Malus domestica Borkh.) is the most important fruit crop in Europe in terms of harvest volume (12.6 

million tonnes) (Eurostat, 2017a), and in 2015, 538,500 ha of European cropland was cultivated with 

apple orchards with 31,740 ha total planted area in Germany, 30,720 ha in Spain and 1,330 ha in 

Sweden (Eurostat, 2017b). Malus domestica, also known as Malus pumila Mill., is a cultivated 

representative of pome fruits (family Rosaceae) with Asian origin. In contrast to its native European 

relative, the wild crab apple Malus sylvestris (L.) Mill., it is commercially grown throughout the world 

for production of desert, culinary and cider apples (Alford, 2014).  

Arthropods in apple orchards 

Embedded in an agricultural matrix with high land-use intensity, orchards are important habitats for 

agrobiodiversity (Altieri, 1999). Habitat stability for arthropods in these perennial crop systems is 

considered higher than in annual crop systems since the host plant is available for years or even 

decades, and the system is unaffected by crop rotation or annual crop succession (Simon et al., 2010). 

Additionally, complex branching structure and availability of different strata such as crown and 

understory adds to the high habitat value of these systems for diverse communities of arthropods 

(Simon et al., 2010). Values for species richness of insects in apple orchards from the US and Europe 
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reported by Szentkirályi & Kozár (1991) vary widely, ranging from 30 to 940 species; the authors 

suggest that a total of 400-800 insect species can be collected in orchards with low management 

intensity. Apart from length of collection period and the age of apple trees, quality of the adjacent 

habitat and disturbances, such as management intensity, and local plant diversity are major drivers of 

the observed high variability (Szentkirályi and Kozár, 1991).  

 Important apple pests 

Apple trees in temperate regions can harbor up to 242 

species of herbivorous insects (Brändle and Brandl, 

2001) and a study from Hungary reported 

approximately 60 phytophagous arthropod species 

which are considered as apple pests (Jenser et al., 

1999). The main pests with high economic impact in 

temperate apple orchards are phloem-feeders such as 

the rosy apple aphid Dysaphis plantaginea Passerini, 

the woolly apple aphid Eriosoma lanigerum 

Hausmann, and the green apple aphid Aphis pomi De 

Geer (Hemiptera: Aphididae) (Carroll and Hoyt, 

1984), frugivores such as the codling moth Cydia 

pomonella L. (Fig. 1.1) and other herbivores including 

lepidopterans (Solomon et al., 2000; Unruh et al., 

2016), the red spider mite, Panonychus ulmi Koch and other phytophagous mites (Simon et al., 2010), 

scale insects (Logan et al., 2017), and psyllids (Sauphanor et al., 1993). In accordance with the 

resource concentration hypothesis, the herbivores’ fitness and survival may be enhanced in crops 

grown in monocultures and in landscapes with a high proportion of the host crop (O’Rourke and 

Petersen, 2017; Root, 1973). Given the high density of apple orchards in major production regions and 

the economic value of apple, one of the major production challenges is pest control, referring to the 

level of pest density, at which no economic injury or loss is caused by the pest (Kogan, 1998). Future 

challenges of pest suppression are expected to increase in two ways. First, as a consequence of ever-

stricter regulations of chemical pesticides (Damalas and Eleftherohorinos, 2011; Karabelas et al., 

2009); second, as a consequence of shifts in the geographic distribution of arthropods that are 

triggered by climate change (Peterson et al., 2010). Driven by global temperature rise, it is likely that 

pests that have so far been restricted to a specific area will move northwards, or risks of additional pest 

generations will increase due to shifts in phenology and voltinism (Logan et al., 2007; Olesen et al., 

2011; Stoeckli et al., 2012). 

Biological pest control in apple orchards 

Pests in apple orchards are naturally regulated by a combination of top-down processes, including 

predation, parasitization, and infection by entomopathogenic fungi and nematodes, and bottom-up 

 

Figure 1.1. Larva of codling moth Cydia 
pomonella feeding on apple in one of the German 
study orchards. © A.-K. Happe, 2017.	
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processes such as host-plant quality and resistance (Hunter and Price, 1992; Rousselin et al., 2017; 

Stoeckli et al., 2008a). 

Here, I focus on a specific process of top-down 

regulation: biological control by predatory arthropods. 

Predatory arthropods and birds are the main 

contributors to biological control in apple orchards 

(Cross et al., 1999; García et al., 2018). Solomon et 

al. (2000) reviewed important predators of apple pests 

in northern and central Europe, including spiders, 

insects and mites: Araneae, Coleoptera (e.g. 

Coccinellidae (Fig. 1.2), Cantharidae and 

Staphylinidae), Diptera (e.g. Syrphidae and 

Cecidomyiidae), Dermaptera, Heteroptera (e.g. 

Anthocoridae, Miridae and Nabidae), Neuroptera (e.g. 

Chrysopidae), and Phytoseiidae. A high predation 

potential depends on more than abundance and 

species richness of these predators; it depends on 

evenness of predator communities, i.e., the relative 

abundance of different taxa (Crowder et al., 2010; Gurr et al., 2017). The analysis of community 

composition is therefore an important aspect of this study.  

There are distinct economic and ecological benefits of biological control (Cross et al., 2015), for 

example, in the case of phytoseiid mites and earwigs. Pesticide-resistant phytoseiid mites feeding on 

red spider mites help to prevent acaricide resistance and significantly reduce the need for acaricide 

sprays, and pest control by earwigs reduces insecticide application (Cross et al., 2015). In addition to 

providing economic benefits by pest control, biological control may indirectly decrease hidden and 

neglected costs to environment and health systems caused by pesticide applications (Bourguet and 

Guillemaud, 2016).  

According to a definition by Eilenberg et al. (2001), biological control is often based on the 

intentional introduction of natural enemies (‘release strategies’): for example, a biological control 

agent can be released with the expectation that it multiplies and reduces the target pest population 

during the growing season (‘inoculation biological control’).  Another common release strategy, 

inundation biological control, usually depends on the mass release of biological control agents to 

sufficiently reduce the pest pressure before the control agents’ dispersal or inactivation (Eilenberg et 

al., 2001). Conservation biological control, the strategy on which this thesis focuses, does not depend 

on the release of natural enemies. Rather, it includes practices to protect and support existing control 

agents (here: predators) by habitat enhancement and by reducing the risk of mortality from pesticides 

(Begg et al., 2017; Gurr et al., 2017). It forgoes the introduction of natural enemies and is therefore 

 

Figure 1.2. Larva of coccinellid beetle Harmonia 
axyridis feeding on woolly apple aphid Eriosoma 
lanigerum in one of the German study orchards. 
© A.-K. Happe, 2017.	
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considered a preventive and permanent form of biological control. Habitat enhancement secures the 

provision of shelter, nectar, alternative prey or hosts, and pollen for natural enemies (Holland et al., 

2016; Landis et al., 2000; Rusch et al., 2016). However, in some cases, natural habitat fails to enhance 

biological pest control (Tscharntke et al., 2016): (1) factors other than top-down regulation may be 

more relevant for a pest population in the region, (2) natural habitat may be a source habitat of pests 

rather than natural enemies, (3) resource provision in the crop may outcompete resource availability 

for natural enemies in the natural habitat, (4) the quality and/or amount of the habitat is insufficient, or 

(5) superimposed by adverse management practices. The reduction of pesticide side-effects can be 

accomplished by adopting integrated pest management (Boller et al., 2004) or by omitting broad 

spectrum insecticides (Geiger et al., 2010; Gurr et al., 2017; Pretty and Bharucha, 2014). In addition to 

supporting pest control, conservation biological control contributes to the ecological intensification of 

agriculture by influencing several ecosystem services and sometimes disservices, for example, 

pollinators, detritivores, and weeds (Gurr et al., 2017). A consistent positive effect of conservation 

biological control on pest suppression has, however, been questioned: intraguild predation, niche 

complementarity, and functional redundancy between biological control agents may weaken its 

success in reducing pest problems (Finke and Denno, 2004; Straub et al., 2008).  

Bale et al. (2008) consider it a limitation of biological control that it is more time consuming 

than pesticide application: predator populations need to build up for a successful regulation of pests 

and parasitized organisms will only die slowly. Conservation biological control tackles this problem; if 

successful, it will ensure that natural enemy populations have already built up in the orchard or in the 

neighboring habitat, facilitating spillover effects of predators to the crop, when herbivore populations 

peak (Macfadyen et al., 2015; Rousselin et al., 2017; Tscharntke et al., 2007). 

Local- and landscape effects on biodiversity and biological control 

Agricultural intensification and attempts to counteract it affect biodiversity and biological control at 

various scales (Geiger et al., 2010; Jonsson et al., 2012; Rundlöf et al., 2007). At the local scale, semi-

natural habitats and organic management have been proposed as potential solutions to mitigate the loss 

of biodiversity and associated ecosystem services; at the landscape scale, landscape complexity and a 

reduced land-use intensity is of special relevance to counteract the loss of biodiversity and the 

deterioration of ecosystem services (Batáry et al., 2015; Chaplin-Kramer et al., 2011; Rusch et al., 

2016).  

The local scale - enhancing local habitats  

Since the 1980’s, agri-environmental schemes (AES) are part of European Union's Common 

Agricultural Policy to reduce the environmental impact of intensive agricultural practices (Primdahl et 

al., 2003). The EU co-funds about 50% to 75% of the costs of approved AES, including organic 

management and semi-natural habitat structures (Kleijn and Sutherland, 2003). In 2012 the EU spent 

€3.23 billion on AES; but despite this high financial effort, their effectiveness as a conservation tool 



 1. General introduction 

 13 

for biodiversity and biological control has been questioned (Batáry et al., 2015; Birkhofer et al., 2018). 

Birkhofer et al (2018) evaluated the effectiveness of two EU-funded greening measures (fallows and 

permanent grasslands) on ground-dwelling natural enemies and associated aphid control in cereal 

fields. The authors observed spillover of some spiders from natural habitat into the crop but the effects 

of the measures were mixed and depended on the specific predator group. Neither fallows nor 

permanent grassland did generally relate to enhanced biological control in the adjacent crop. Despite 

concerns about their effectiveness as conservation tools, there is evidence that AES-habitats provide 

essential resources for biological control agents and pollinators (Albrecht et al., 2012; Holland et al., 

2016; Mestre et al., 2018; Sutter et al., 2018; Tschumi et al., 2016). Resources provided for natural 

enemies by AES habitats (Table 1.1) comprise alternative prey, floral resources and shelter (Holland et 

al., 2016). For biological control agents in apple orchards, effective AES include, for instance, 

adjacent woody habitats and flower strips and local flower richness (Albert et al., 2017; Lefebvre et 

al., 2016; Saunders and Luck, 2018). In addition to immediate effects on resource provision for 

beneficial arthropods, AES can counteract the sublethal effect of pesticides on beneficial insects 

including natural enemies by reducing pesticide applications (Desneux et al., 2007).  

 

The local scale - orchard management 

The two most common management strategies in European apple orchards are integrated production 

(IP) and organic management. IP is a production system that uses natural resources and regulation 

mechanisms to replace polluting inputs and minimizes external costs by balancing biological, 

technical and chemical methods (Boller et al., 2004). It considers all relevant factors of farming 

including for example nutrient cycles, pest and disease management, soil fertility, and cultivar 

selection. Integrated pest management (IPM) includes methods to replace, reduce or complement the 

Table 1.1. Resources provided for natural enemies by crop habitats and agri-environmental habitats (Holland et 
al., 2016) and chapters of this thesis in which they are covered. 

Habitat Resources for natural enemies1 Publication 

 Alternative prey Floral resources Shelter  

Linear woody +++ ++* ++ I, II, III 

Woody areal2 ++ ++* +++ I, II, III 

Grassy linear +++ + +++ I 

Herbaceous ungrazed2, 3 +++ +++ ++ I, II, III 

Low input headlands2 +++ + N I, II, III 

Undersowing and cover crops3 + + + I, II, III 

Other AES habitats ++ +* +*  
1Scoring based upon a review by Holland et al. and expert opinion (Holland et al., 2016): High benefit (+++), moderate benefit (++) some 
benefit (+), no benefit (N) and reported scores based on expert opinion but no published evidence (*); 2in the present study indirectly 
included as proportion of land cover of forests, grassland and total area of non-crop vs. orchard crop cover in 1 km; 3in the present study 
estimated as plant species richness or flower cover in the adjacent habitat. 



 

  14 

application of synthetic pesticides in pest control (Pretty and Bharucha, 2015), and can be considered 

as part of the concept of IP in apple orchard (Malavolta and Cross, 2009). Compared to former 

conventional management, which is uncommon in the apple growing regions covered by this study, IP 

includes a broad range of management options such as applications of pheromones and the targeted 

applications of synthetic chemicals as selective pesticides. The second common management type is 

organic management, which is defined as a sustainable cultivation method with a greater emphasis on 

environmental protection; if external inputs such as fertilizers or insecticides are used, they have to be 

based on mineral or organic substances and a special permission has to be granted for the application 

of synthetic products if there are no suitable alternatives (EU, 2012, 2008; Seufert et al., 2017). In 

consequence, organic management practices are usually more expensive and labor-intensive and result 

in lower yield, which can, however, be compensated by better marketing prices (Batáry et al., 2017; 

Seufert et al., 2012; Seufert and Ramankutty, 2017). Organic management practices differ from IP 

mostly in terms of soil management and the omission of herbicides, for example, soil tillage is applied 

in organic orchards, opposed to herbicide use in IP orchards (Zehnder et al., 2007). Further 

distinctions can be found in the application of organic or mineral (vs. synthetic) agro-chemicals, 

including insecticides, fungicides, fertilizers and growth-regulators (Batáry et al., 2017; Malone et al., 

2017; Seufert et al., 2017).  

Organic management supports biodiversity and ecosystem services across large latitudinal 

scales (Muneret et al., 2018; Seufert and Ramankutty, 2017; Winqvist et al., 2012). Based on a study 

conducted in twelve European and African regions dominated by arable land, grassland and / or 

permanent land-use types, species richness is on average 10.5% higher in organic compared to 

conventional fields. Higher abundances of plants and bees partly explain these gains in species 

richness whereas the response of other organism groups to organic management was less clear 

(Schneider et al., 2014). Other authors estimated the positive effect of organic management on 

biodiversity to be even higher with a reported increase of 30%, and a higher effectiveness in 

intensively farmed regions depending on taxonomic identity, functional group and crop type (Tuck et 

al., 2014). There is evidence that organic management enhances biological control across different 

production systems and across climatic regions (Lichtenberg et al., 2017; Muneret et al., 2018). It can 

outcompete conventional management in control of pathogens and animal pests (but not weeds) 

without augmenting pest infestation (Muneret et al., 2018). 

The landscape scale 

Across different latitudes and crop types, landscapes with a high proportion of natural habitat enhance 

the abundance and diversity of natural enemies, for example by enhancing habitat-connectivity and 

facilitating colonisation of the crop habitat (Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Chaplin-

Kramer and Kremen, 2012). Focusing on different natural enemy groups, Dainese et al. (2016) showed 

that landscape context rather than local factors affect the delivery of natural pest control in crop fields. 

Natural enemies respond positively to amount of perennial habitat in the landscape (Pfiffner and Luka, 
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2000; Schmidt et al., 2008), and a high proportion of semi-natural habitats in the landscape enhances 

pest suppression (Veres et al., 2013). 

Landscape effects often interact with local factors. For instance, landscape composition alters 

the effects of management and local habitat on predators and on the effectiveness of conservation 

biological control (Jonsson et al., 2015; Rusch et al., 2013). Additionally, at an intermediate level of 

landscape complexity (1-20% non-crop habitat), organic management is more effective in enhancing 

biodiversity than in very simple or complex landscapes with more than 20% non-crop habitat (Batáry 

et al., 2011; Concepción et al., 2012; Tscharntke et al., 2012, 2005). 

Research objective and outline 

Large-scale studies on biological control have so far focused on annual cropping systems (e.g. Bianchi 

et al., 2006; Dainese et al., 2016; Tschumi et al., 2016) and little is known about the interacting effects 

of landscape composition, local habitat features and local management on generalist predators in 

perennial crop systems such as apple orchards (Lefebvre et al., 2016; Malagnoux et al., 2015b; 

Marliac et al., 2016). In face of accelerating agricultural intensification there is urgent need to 

understand how local and landscape characteristics as well as their interactions shape communities of 

arthropods (predators, herbivores and pollinators) and ecosystem services in apple orchards (Fig. 1.3).  

I studied the effectiveness of local and landscape factors and their interactions to enhance 

ecosystem services and natural enemies at three different scales of interest: The first publication 

targets management trade-offs on ecosystem services in apple orchards across Europe, the second 

predatory arthropod communities, and the third a specific predator taxon, the earwig, and its prey. The 

overall aim was to improve our understanding for important and relevant habitat conditions for natural 

 

Figure 1.3. Impacts of local and landscape factors on ecosystem services and disservices in apple orchards. 
Specified for apple orchards (Samnegård et al., 2018) on the basis of a more general diagram on ecosystem 
services in agroecosystems by Power (2010). 
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enemies but not herbivores and enhance ecosystem services in intensive fruit production systems 

across Europe. I adressed the following research questions: 

(Q1) What landscape elements, local habitat features and management practices support 

beneficial arthropods (natural enemies and pollinators) across Europe?  

a) What factors enhance ecosystem services (pollination and pest control)?  

b) How does diversity of beneficial arthropods translate to seed set, fruit damage and final 

fruit yield?  

c) Are there trade-offs between ecosystem services and final fruit yield? 

(Q2) What local and landscape factors influence abundance patterns in communities of 

predatory arthropods in apple orchards?  

a) Do predator communities differ between management types and countries? 

b) How do individual predator taxa differ in their response to local and landscape factors? 

(Q3) How do earwigs and their prey react to local and landscape factors? 

Study orchards  

We selected a total of 86 orchards in three countries representing major apple production regions in 

Europe. In South Germany, I studied 30 apple orchards, 15 IP and 15 organic, in the north of Lake 

Constance, a region with more than 2,800 ha of orchards. In North Spain and in South Sweden, my 

project partners selected 28 apple orchards, 14 IP and 14 organic in each country. These apple 

orchards were situated in the provinces of Lleida and Girona, accounting for 41% of the Spanish apple 

production, and in the province of Skåne, covering for 86% of the Swedish apple production 

(Jordbruksverket, 2014). The minimum distance between orchards of different management types was 

1 km in Spain, 2 km in Germany, and 0.3 km in Sweden. The proportion of non-crop habitats within 1 

km ranged from under 10% to over 30% to cover different landscape compositions and land use-

intensities within each country (Chapter 3, Table S3.1, p. 53). 

Methods 

We used a combination of different well established sampling methods to assess predators and pests, 

and pest damage: (1) beating sampling of branches was used to survey free-ranging, canopy-dwelling 

predators (Mody and Linsenmair, 2004) including spiders, beetles, predatory flies, predatory bugs, 

earwigs, lacewings and harvestmen, (2) shelters to collect earwigs from hide-outs during the day 

(Sauphanor et al., 1993), (3) visual pest control recording shoots damaged by aphids (Miñarro et al., 

2005) and recording percentage of damaged fruits at harvest (Mols and Visser, 2007). Surveys were 

conducted along 40-m-long row transects, starting at the edge of the orchard (beating sampling, pest 

and damage surveys) and on five randomly selected focal trees 20 m away from the edge, in the center 

of the transect (sampling of earwigs and pollinators). Transect rows were at least two rows away from 

rows of pollinizer cultivars and orchard edges to avoid dilution effects.  
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Local and landscape factors were assessed in 2015 in all countries based on (1) semi-structured 

interviews with growers (Motzke et al., 2013) on general management (IP vs. organic) and individual 

management practices such as agro-chemical applications (herbicides, pesticides, fertilizers, 

pheromone traps and AES availability adjacent to the orchard), (2) field surveys of adjacent AES such 

as hedgerows, (3) vegetation surveys during apple bloom 2015 within and adjacent to the orchard (20-

m-radius from the edge) to record the number of plant species and flower cover using 1-m2-quadrates 

prioritizing AES if available, (4) analysis of aerial photographs to measure the surface and distance of 

herbal and woody AES within 20 m distance and (5) land cover data (1-km-radius from the orchard 

center). Details on orchard and landscape characteristics are listed in Table S3.1, p. 53. 

 

The bigger picture: Management trade-offs between ecosystem services across Europe 
Local orchard conditions and landscape factors influence diversity and abundance of beneficial 

arthropods and pests, and their impact on final fruit yield. In this study, we developed a structural 

equation model based on predators, herbivores, pollinators, fruit damage and yield, with fruit 

production and seed set as endpoint variables, to disentangle direct and indirect effects of 

management, local and landscape variables.  

Focusing on natural enemies: Communities of predatory arthropods across Europe 
Organic management and agri-environmental schemes such as hedgerows and flowering strips are 

assumed to enhance beneficial arthropods and their contribution to biological pest control in fruit 

crops. Arthropods were surveyed in apple orchards in Germany, Sweden and Spain with beating 

samples taken shortly after flowering. We identified seven relevant groups of predatory arthropods: 

spiders, beetles, bugs, flies, earwigs, lacewings and harvestmen, and studied how local management, 

woody elements and landscape characteristics influenced their abundance patterns. By estimating 

energy use of the communities, I assessed the effects of landscape characteristics and orchard 

management on the predation potential. I show how effects of management intensity on predator 

community composition in the two studied management types differ between regions, and I investigate 

how effects at the local and landscape-scale differ for each predator group.  

Focusing on a specific taxon and its prey: The case of earwigs and woolly apple aphids 
During two study years, we sampled earwigs and woolly apple aphids in Germany and Spain using 

shelters. Earwigs are expected to be important generalist predators in apple orchards. Local and 

landscape effects were evaluated by considering extra-orchard habitats (e.g. hedgerows and forest 

edges) and percentage cover of fruit orchard in the landscape. The presence of woolly apple aphids, an 

important target prey of earwigs, was assessed in tree surveys, when earwig traps were emptied. I 

show the effects of organic management and the presence of semi-natural woody habitats on earwig 

abundance and the influence of landscape composition on woolly apple aphids. 
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Apple bloom at lake Constance. © A.-K. Happe, 2016.  
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ABSTRACT 

1. Apple is the most important fruit crop in temperate areas, and profitable production 

depends on multiple ecosystem services including the reduction of pest damage and the provision of 

sufficient pollination levels. There is an inherent trade-off in the choice of management, as it affects 

species differently.  

2. In this study, we quantified the direct and indirect effects of management (organic 

versus integrated pest management (IPM)) on species richness, ecosystem services and fruit 

production in 85 apple orchards in three European countries. We quantified how these effects were 

influenced by habitat composition at three spatial scales: within orchards, adjacent to orchards and in 

the surrounding landscape.  

3. The results show that organic management resulted in 48% lower yield than IPM, but 

also that the variation between orchards was large with some organic orchards having a higher yield 

than the average yield of IPM orchards. The lower yield in organic orchards resulted directly from 

management practices, and from higher pest damage in organic orchards. These negative yield effects 

were partly offset by indirect positive effects from more natural enemies and higher flower visitation 

rates in organic orchards.  

4. Two factors other than management affected species richness and ecosystem services. 

Higher cover of flowering plants within and adjacent to the apple trees increased flower visitation 

rates by pollinating insects and a higher cover of apple orchards in the landscape decreased species 

richness of beneficial arthropods. 

5. The species richness of beneficial arthropods in the orchards was uncorrelated with 

fruit production, suggesting that diversity can be increased without large yield loss. At the same time, 

organic orchards had 38% higher species richness than IPM orchards, an effect that is likely due to 

differences in pest management. 

6. Synthesis and applications. Our results indicated that organic management is more 

efficient than IPM in developing environmentally friendly apple orchards with higher species richness, 

but also that there is no inherent trade-off between species richness and yield. A main task for the 

development of sustainable production of apples is the development of more environmentally friendly 

means for pest control that do not negatively affect pollination services. 

 

Keywords: IPM, natural enemies, pollination services, organic management, biological control, 

Structural Equation Model 
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INTRODUCTION 

Fruit consumption is an important part of human nutrition, and the second most important fruit crop 

globally is apple (FAO statistics 2014, www.fao.org/statistics). Therefore, the sustainable production 

of apples is an important goal for human food provisioning. In temperate regions, the by far largest 

area of fruit production is apple orchards and, similar to other crops, agricultural intensification of 

these orchards during the last century has increased production through high input of inorganic 

fertilizers, pesticides and herbicides (Reganold et al., 2001). For instance, chemical pest control is 

essential for profitable apple production, as more than 50% of the crop may be lost in orchards with no 

control (Cross et al., 2015). Intensification in apple orchards, however, leads to increased production 

costs as well as to environmental detriments both within the orchard and in surrounding areas 

(Reganold et al., 2001). These detrimental effects have increased the interest in developing more 

environmentally friendly production, through either integrated production or organic management, in 

which the enhancement of ecosystem services from natural enemies can partly replace the use of 

chemical pesticides in suppressing pest populations (Dib et al., 2016; Simon et al., 2010). 

The intensification of agriculture also threatens the delivery of pollination services from the 

wild pollinator community (Klein et al., 2018; Potts et al., 2010). For pollinator dependent crops such 

as apple, decreased pollination services result in lower seed and fruit set and in a lower profitability 

for the farmer (Garratt et al., 2016; Klein et al., 2018; Mallinger and Gratton, 2015). To obtain better 

pollination, orchard owners often use managed pollinators such as honeybees, and in some cases 

bumblebees. However, the efficiency of these managed pollinators is debated, and is often found to be 

lower than that of wild pollinators (Garratt et al., 2016; Mallinger and Gratton, 2015). The availability 

of managed pollinators may also vary between years leading to a vulnerable system if managed bees 

are relied upon to provide the majority of the pollination services (Breeze et al., 2011). 

Agricultural intensification affects beneficial arthropods, and their delivery of ecosystem 

services, not only due to local management but also through simplification of the surrounding 

landscape (Lichtenberg et al., 2017). The abundance of both natural enemies and pollinators is often 

lower in simplified landscapes, due to lower amounts of alternative resources or fewer overwintering 

sites (Shackelford et al., 2013), but there is also often an interaction between the local management 

and structure of surrounding habitats. For instance, it seems that the negative effects of intensive field 

management on pollinating insects are mainly observed in relatively homogeneous landscapes 

(Rundlöf et al., 2008; Williams and Kremen, 2007). 

In the European Union, subsidies have been available since the late 1980s to promote 

environmentally friendly farming systems, at both local and landscape scales (Primdahl et al., 2003). 

These agri-environmental schemes, which are mainly implemented on a voluntary basis, include 

“environmentally favorable extensification of farming”, “integrated farm management and organic 

agriculture” and “preservation of landscape and historical features such as hedgerows, ditches and 
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woods”. Even though subsidies have been in place for some time, their efficiency to promote 

biodiversity, and how they affect ecosystem services and yield in apple production systems is less 

clear (but see Albert et al., 2017). A problem with implementing efficient management strategies is 

that ecosystem services are often differently affected by the same management action (Shackelford et 

al., 2013). Different responses for diversity-related ecosystem services to the same management action 

may be expected because species vary in their life history, but maximizing the total output of 

ecosystem services on apple production necessitates that potential trade-offs arising from management 

are identified and accounted for (Power, 2010). 

One basic trade-off between ecosystem services and agriculture emerges when management that 

aims to increase crop yield by stimulating plant growth (e.g. by adding nutrients and water, or by 

removing competing weeds) also indirectly reduce production by affecting the ecosystem services of 

pest control and pollination (Power, 2010). Trade-offs also occur in management aimed to affect 

diversity-related services or disservices (positive and negative effects from biodiversity, respectively), 

when actions to promote beneficial arthropods also benefit pest species, or when actions to reduce pest 

species also negatively affect beneficial species (Saunders et al., 2016; Tscharntke et al., 2016). For 

instance, several studies suggest that flower strips, which are commonly planted to benefit pollinators 

and natural enemies (Lichtenberg et al., 2017; Wratten et al., 2012), may not only affect the potential 

for pest control but also pest densities and crop damage (Tscharntke et al., 2016). Other studies 

suggest that flower strips to enhance natural enemies are most efficient when placed inside orchards 

(Saunders and Luck, 2018), but these strips may then compete with apple trees for nutrients and water 

(Granatstein and Sanchez, 2009). Similarly, pesticides may negatively affect natural enemies and 

pollinators, leading to reduced biocontrol (Dib et al., 2016; Fountain and Harris, 2015) and pollination 

services (Pisa et al., 2015; Stanley et al., 2015). Because apple production is often limited by pest 

damage and pollination, alternative pest control measures without negative effects on natural enemies 

and pollinators are preferable. Natural enemies and pollinators are generally promoted by retaining 

sheltering habitats within or next to the production areas or by providing nectar and pollen resources 

in the form of planted or conserved flowering plants present in alleyways, margins and hedgerows 

(Campbell et al., 2017; Miñarro and Prida, 2013).  

In this study, we examined trade-offs between production and ecosystem services, and between 

ecosystem services and disservices, by comparing integrated pest management (IPM)1 and organic 

apple production, as a broad classification of management systems. We evaluated the role of 

management (organic vs. IPM) in a study design accounting for agri-environmental structures and 

landscape composition affecting diversity at three spatial scales: within orchards, adjacent to orchards 

and in the surrounding landscape. The variables include both floral resources for pollinators and 

overwintering sites for all arthropods, estimated through the cover of flowering plants and the area of 

                                                        
1 In this publication, ‘IPM’ is used interchangebly with ‘IP’. The studied ‘IPM’-orchards followed the broader IP guidelines by  
  Malavolta & Cross (2009), which go beyond pest management (see ‘General introduction’). 
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agri-environmental structures within and close to the orchard, and the amounts of bee-friendly habitats 

in a larger area around the orchard, which may increase the species pool for the local orchard. We also 

included the cover of orchard area around each focal orchard, as a measure of the homogenization of 

the landscape. The study was performed in 85 apple orchards in three European countries (Spain, 

Germany and Sweden), to cover regional variation in apple production. We collected data on flower 

visitation rates, pollination deficits, natural enemies, pests and fruit production, and used a structural 

equation model to disentangle the direct and indirect effects of management and environmental 

variables on seed set and fruit production. 

MATERIALS & METHODS 

Study regions 

The study included three important apple-growing regions; northeastern Spain (SP), southern 

Germany (GE), and southernmost Sweden (SW) (Fig. 2.1). In Spain, we selected apple orchards 

located in the provinces of Lleida and Girona, Catalonia. In Germany, we selected apple orchards in 

the lake Constance region, Baden-Württemberg. In Sweden, we selected apple orchards on the east 

and west coasts of the county Skåne. The target apple varieties in the study orchards were common for 

each region: Gala and Golden Delicious in Spain, Braeburn in Germany, and Aroma and the sub-

variety Amorosa (but included some Ingrid Marie and Rubinola) in Sweden.  

Within each region, we selected 

28 (SP and SW) or 30 (GE) orchards, 

half of which were managed organically 

and the other half were managed 

according to IPM guidelines (Malavolta 

and Cross, 2009). One Swedish orchard 

was excluded before analysis because it 

had been abandoned. The orchards were 

selected along a land-use gradient, using 

forest cover as a proxy, with 

approximately half the orchards 

harbouring agri-environmental structures 

(e.g. hedgerows, flower strips, margins 

with ruderal vegetation) in their close 

surroundings (up to 20m from the edge 

of the trees). IPM orchards were 

managed with a similar crop protection 

strategy and with foliar and mineral fertilizers at multiple times along the season. Crop protection in 

 
Figure 2.1. Map showing the study areas in Sweden (SW), 
Germany (GE) and Spain (SP). 
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these orchards involved a range of chemicals for pest, weed and disease control, but the specific active 

ingredients differed somewhat between countries and orchards. Among the organic orchards, the 

majority was certified in accordance with European or National legislation (Council Regulation (EC) 

No 834/2007), which involves more restrictive crop protection strategies and organic fertilizers. In 

these orchards, pest control mainly occurred through use of natural extracts (neem, pyrethrum), 

microorganisms (Bacillus thuringiensis), viruses (e.g. granulosis virus vs. codling moth), and through 

mating disruption of specific insect pests, while fungal control strategies involve compounds such as 

sulphur and lime sulphur. Thus, the contrast of IPM vs. organic management involves differences not 

only in the intensity and type of chemicals for pest control, but also in the input and availability of 

nutrients for crop plants (expectedly higher in IPM than in organic), due to the use of chemical 

fertilizers and chemical weed control (de Ponti et al., 2012). A few uncertified orchards in Sweden and 

Spain were managed as under organic guidelines with no chemical inputs, and these orchards were 

considered organic in this study. 

Field sampling 

Within orchards, we quantified natural enemies, pollinators, pollination success, pests/pest damage 

and fruit production. Field work was performed during 2015, and data collection was adjusted to the 

annual cycle of apple production in each region. Pollination was studied during flowering and pest 

incidence and damage were surveyed at relevant pest phenological stages. Due to climate differences, 

the timing of data collection varied between the three countries. We estimated natural enemy 

abundance by beating one apple branch of a representative size on 24 trees per orchard once within 

two weeks after apple flowering, and all collected natural enemies were identified to species or 

morphospecies. Trees used for beating samples were randomly selected in one 40 m transect per 

orchard, along a single row perpendicular to the orchard border (SP and SW) or two rows (GE). 

Natural enemy abundance was calculated as the total number of natural enemy individuals collected 

per transect, and the richness as the total number of natural enemy species per transect. In natural 

enemies, we included spiders, predatory coleopterans (mainly Cantharidae and Coccinellidae), 

earwigs, predatory heteropterans (mainly Anthocoridae), predatory dipterans (mainly Hybotidae, 

Empididae and Dolichopodidae), lacewings and harvestmen.  

The visitation rate and richness of apple flower-visiting wild pollinators was estimated once per 

orchard from transect walks during apple flowering, in one transect close to the orchard border (0-20 

m) and one transect in the orchard interior (20-40 m from border). Each walk lasted five minutes and 

was repeated three times throughout the day (total 30 min sampling per orchard). Visitation rates were 

calculated as the number of observed pollinator visits per 1000 flowers per 5 min. We recorded all 

pollinators visiting apple flowers, and collected species for identification in the lab. We only included 

wild bee and syrphid fly species in the estimate of flower visitation rates as other groups (e.g., beetles) 

are unlikely pollinators of apple (Kendall, 1973; Ramírez and Davenport, 2013). We pooled the 

species number of flower visitors and natural enemies to obtain an estimate of the total number of 
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beneficial arthropod species per orchard (hereafter, beneficial species richness). To estimate 

pollination services, we performed a hand-pollination experiment on three trees per orchard, where 

each tree had one branch dedicated to open and and one to supplementary pollination treatments. For 

hand pollination, we used pollen from pollinizer trees growing within or adjacent to the orchard. Using 

this data, we estimated the pollination deficit as (seed set of supplementary pollinated flowers) – (seed 

set of open-pollinated flowers) for fruitlets in May-June. A positive value implies a pollination deficit, 

indicating insufficient pollination services. As an estimate of apple production, we calculated an index 

based on the fruit set, proportion damaged fruits and mean apple weight calculated for apples collected 

on three marked branches on five trees per orchard. The production index equals the weight of 

undamaged fruit per 100 flowers, and was calculated as (the proportion of undamaged apples at 

harvest) x (mean weight of harvested apples) x (fruit set). Fruit set is the percent flowers that produced 

fruits at harvest from 18 branches per orchard, the proportion of undamaged fruits equals one minus 

damage (see next paragraph), and mean weight was calculated from up to 18 apples per orchard. 

We estimated pest densities and damage in two ways representing the main pest problems for 

orchard owners. First, we estimated aphid abundance by counting the proportion of branches infested 

by aphid colonies, for each aphid species separately on 13-60 trees per orchard. The main aphid pests 

in all study orchards and in apple orchard across Europe are rosy apple aphid (Dysaphis plantaginea 

(Passerini), hereafter RAA) and woolly apple aphid (Eriosoma lanigerum (Hausmann)) (Blommers, 

1994). RAA was by far the most abundant species, particularly in Sweden and Spain, and is often 

considered as the most damaging aphid, so we only considered this species. Second, we estimated fruit 

damage from other pest species for 24 apples on 37 trees per orchard (888 fruits per orchard), in the 

same transects as the pollination study, at the time of harvest, and used these data to calculate the 

proportion of damaged apples. This measure reflects the damage of codling moth (Cydia pomonella 

L.), sawflies, geometrids and leaf rollers. The specific pests inflicting the damage differed between 

countries, with leaf rollers and winter moth (Operophtera brumata L.) doing most damage in the 

Swedish orchards, leaf rollers (Tortricidae) and sawflies (Hoplocampa testudinea Klug) in German 

orchards and codling moth in Spanish orchards. These estimates do not cover damage that cause fruit 

drop before harvest, but such loss would be reflected in the fruit set and thus in the apple production 

variable. 

Estimating environmental variables 

To understand the effect of local conditions, we estimated flowering plant cover and the area covered 

by agri-environmental structures (AES) within and in the close surroundings of each orchard. First, we 

estimated the cover of flowering plants once per orchard as the percent cover of plants attractive to 

pollinators (hereafter flower cover) near the time of apple flowering. Flowering plants include those 

species flowering at any time during the year and not only at the time of the survey, to assess the total 

amount of resources available for pollinators. To identify plant species attractive to pollinators, we 

used the BiolFlor Database (Kühn et al., 2004). Flower cover was estimated for each species from six 
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1x1 m2 plots between apple rows and from six plots outside the apple rows and summed across 

species. Second, we estimated the total surface cover of AES in m2 within 20 m of the transects. AES 

include hedgerows (including edges with old trees and tree rows), forest edges, forests (river forests, 

tree plantations), fallow lands (including abandoned fields), semi-natural grasslands (terraced field 

margins, embankments) and orchard meadows.  

To understand landscape effects, we estimated the proportion of bee-friendly habitat for each 

orchard within 1 km from the transect center. We defined bee-friendly habitats for each country based 

on expert knowledge, including shrubland, dry land orchards and abandoned orchards in Spain, 

orchard meadows in Germany, and semi-natural grasslands in Sweden. We estimated the cover of 

apple orchards as the proportion of surface area covered by this crop within 1 km from the transect, as 

a proxy for homogeneous landscape composition and land-use intensity in our apple production 

regions. To quantify landscape characteristics, we used official digital maps for Spain and Germany 

(Carreras and Diego, 2009; LGL, 2016; SIOSE, 2015), spatially explicit data on land use from the 

Swedish Board of Agriculture (Integrated Administrative Control System, IACS) and Geographic 

Information Systems and Remote Sensing software ArcView 10.3.1 and MiraMon. 

Statistical analyses 

To assess the direct and indirect effects of management, local orchard conditions, adjacent site 

conditions and landscape composition across orchards, we developed a structural equation model 

(SEM) with fruit production as the endpoint variable. As intermediary variables, we used the total 

species richness of beneficial arthropods (flower visitors and natural enemies), natural enemy 

abundance, flower-visitation rate by wild pollinators, RAA abundance, pest damage at harvest and 

pollination deficit. To build the SEM, we combined seven mixed effects models (lme in the R package 

nlme) in a piecewise SEM (Lefcheck, 2016), with country as random effect. To reduce the number of 

variables, we first evaluated each individual lme and removed non-significant variables describing 

agri-environmental or landscape composition. Following this, we evaluated each lme by plotting 

standardized residual against fitted values and predictor variables. For pest damage, residual plots 

indicated heteroscedasticity between management and between countries. We therefore modelled 

variance in this submodel using the VarIdent-option. For apple production and flower visitation rate, 

residual plots indicated a log-linear relationship to predictive variables and these variables were log10-

transformed before inclusion in the final model.  

We assessed the initial SEM (Fig. 2.2a) by the D separation test to detect missing paths and 

tested the overall model with Fisher’s C statistics. We added significant missing paths and removed 

non-significant paths until the AIC was no longer reduced. We accounted for two correlated errors; 

between species richness and natural enemy abundance, and between RAA abundance and total 

damage at harvest. When presenting the final SEM, we compared the relative importance of pathways 

using standardized path coefficients. To assess the generality of the model across countries, we ran the 
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final SEM for each country separately as a post-hoc comparison. This step should be viewed 

cautiously as the model is applied on smaller data sets, but it serves the purpose of indicating if 

patterns in the SEM are mainly caused by patterns in one country. In this comparison, we present 

unstandardized parameter values because these provide a better comparison between countries. To 

assess the relationship between apple production and species richness, we related these variables 

following the removal of partial effects from other variables in the lme-models using the remef 

command (Hohenstein and Kliegl, 2015). 

RESULTS 

When analyzing the combined direct and indirect effects of management on fruit production, we found 

that organic orchards on average had a 48% lower fruit production compared to IPM orchards 

(F1,76=20.9, P < 0.0001) and this effect size did not vary between countries (F2,76=2.1, P > 0.13). 

However, the variation for each category was large and the production of the most productive organic 

orchards exceeded the mean of IPM orchards (Fig. 2.3). The initial SEM showed a good fit (Fisher’s C 

= 69.4, df = 60, P = 0.18), but the D-separation test indicated a missing direct path from the natural 

enemy abundance to apple production (see SI table for data used in SEM). Adding this path increased 

the fit of the SEM (Fisher’s C = 47.9, df = 56, P = 0.54), and did not change the model otherwise (Fig. 

2.2b). In the final SEM, management had a strong direct effect, and several indirect effects, on apple 

production with lower production for organic orchards. Both natural enemy abundance and flower-

visitation rates were higher in organic orchards, creating indirect positive effects from organic 

management on apple production (Fig. 2.2b). Fruit damage at harvest was higher in organic orchards, 

creating an indirect negative effect from organic management on apple production (Fig. 2.2b). It is 

also notable that effects from the area of AES and bee-friendly habitats were non-significant and were 

excluded already in the initial model. The only effects from the agri-environmental or landscape 

structures that were retained in the final SEM were positive effects of flower cover on wild pollinator 

visitation rates and negative effects of orchard cover on species richness of beneficial arthropods (Fig. 

2.2b).  

When comparing parameter values between countries and with the final SEM (Table 2.1), 

differences were relatively small. In three cases, parameter values for the three countries deviated 

based on the difference of parameter values and the magnitude of the standard error. First, estimated 

parameter values for the relationship between natural enemy abundance and fruit production was 

lower for Sweden and did not overlap with the estimates for other countries. Second, estimated values 

for the relationship between management and fruit damage were higher for Sweden and Spain 

compared to Germany. Finally, estimated parameter values for the relationship between management 

and aphid abundance (mainly RAA) were lower for Germany than for other countries. 
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Figure 2. a) Initial and b) final structural equation model (SEM) showing significant direct 631 

and indirect paths from management, orchard landscape cover and flower cover. The 632 

landscape variables tested in the initial SEM were flower cover, AES cover, orchard cover 633 

and cover of bee-friendly habitats. Arrow thickness in the final SEM is proportional to the 634 

Figure 2.2. a) Initial and b) final structural equation model (SEM) showing significant direct and indirect paths 
from management, orchard landscape cover and flower cover. The landscape variables tested in the initial SEM 
were flower cover, AES cover, orchard cover and cover of bee-friendly habitats. Arrow thickness in the final 
SEM is proportional to the standardized path coefficients (figures next to the paths). The color of the path 
indicates the sign of the effect (red = negative, black = positive). The sign connected to management type refer 
to organic management relative to IPM. The model includes correlated errors between natural enemy 
abundance and richness of beneficial insects (P < 0.0001), and between RAA (rosy apple aphid) abundance and 
total damage at harvest (P < 0.0001) but these arrows are omitted in the figure 
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When assessing the relationship between fruit production and beneficial arthropod species 

richness, while partialling out the effect of orchard cover in the surrounding landscape, we found no 

relationship between fruit production and species richness (Fig. 2.4). This pattern was true for both 

organic and IPM orchards, but there was an effect of management where organic orchards had on 

average 38% more species for the same production of apples (13.0 vs. 9.4 species). 

DISCUSSION 

Management differences between organic and integrated pest management (IPM) in apple orchards 

evidently had strong effects on fruit production, pest damage, beneficial arthropod species richness 

and diversity-related ecosystem services. On average, fruit production was 48% lower in organic 

orchards, which is a larger difference than between organic and conventional management in other  

Table 2.1. Unstandardized path coefficients (mean ±SE) of the final model using the whole data set, 
with country as random effect, and the three data sets separately. For management, coefficients indicate 
differences of organic management to IPM 

Response Predictor Total SP GE SW 

Fruit 
production 

Management -0.19±0.07 (P 
< 0.005) 

-0.064±0.11 -0.23±0.14  -0.12±0.15 

-- Fruit damage -1.72±0.40 (P 
< 0.004) 

-1.83±0.51  -1.84±3.12 -2.87±0.95  

-- NE abundance 0.0062±0.0022 
(P < 0.007) 

0.0082±0.0050  0.0064±0.0059  0.0009±0.0036  

-- Flower 
visitation 

0.057±0.028 
(P < 0.05) 

0.046±0.063 0.004±0.078  0.096±0.075  

Pollination 
deficit 

Flower 
visitation 

-0.77±0.31 (P 
< 0.03) 

-1.49±0.45  -0.33±0.65 -0.07±0.51 

Flower 
visitation 

Flower cover 0.0075±0.0034 
(P < 0.03) 

0.013±0.005  0.0057±0.0058  -0.0028±0.009  

-- Management 0.33±0.17 (P < 
0.05) 

0.32±0.25 0.048±0.33 0.69±0.26 

Fruit damage Management 0.034±0.009 
(P < 0.0003) 

0.11±0.04 0.025±0.008 0.12±0.02 

RAA 
abundance 

Management 0.26±0.05 (P < 
0.0001) 

0.36±0.11 -0.011±0.009 0.46±0.10 

Richness of 
beneficials 

Management 4.10±0.78 (P < 
0.0001) 

5.36±1.32 3.51±0.97 3.18±1.73 

-- Orchard cover -0.046±0.019 
(P < 0.02) 

-0.023±0.021 -0.12±0.03 -0.037±0.070 

NE 
abundance 

Management 6.49±2.46 (P < 
0.02) 

8.86±3.64 7.00±4.67 3.48±4.35 
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crops (Seufert et al., 2012). 

Importantly, the overall effect on fruit 

production was due to a combination of direct 

management effects and indirect effects due to 

higher pest damage in organic orchards. 

Pest control strategies in organic orchards are 

typically less effective than in orchards that 

use synthetic pesticides, and the commercial 

output of apple production is sensitive to 

damage, as damaged fruits cannot be sold as 

high quality apples for direct consumption on 

the market. The unidentified direct effects may 

be related to differences in fertilizer and 

water/irrigation use (Berry et al., 2006; Klein 

et al., 2015), as well as fungal disease control 

and weed management, which were not 

accounted for in our study. While pest damages were lower in IPM orchards, organic orchards were 

more strongly benefitting from diversity-related ecosystem services, as these orchards had both a 

higher abundance of natural enemies and a higher flower visitation rate from wild pollinators, 

increasing fruit production. While these indirect positive effects were not strong enough to overcome 

the negative effects of organic management on fruit production, the pattern suggests that methods to 

increase natural enemy abundance and wild pollinator visitation have the potential to reduce the yield 

gap between organic and IPM orchards. This conclusion is supported by the fact that some organic 

orchards had a fruit production that was well above the mean production of IPM orchards (Fig. 2.3). 

A concern for agricultural systems in 

general has been that increased production 

often causes a reduction in biodiversity, and 

that efforts to reduce these negative effects 

entail a cost in terms of reduced production 

(Clough et al., 2011; Gabriel et al., 2013). 

Our study does not support this concern for 

apple orchards. Species richness of 

beneficial arthropods and apple production 

in our study were largely uncorrelated (Fig. 

2.4), and this pattern was similar in both 

organic and IPM orchards. If anything, there 

was a close to significant positive 

Figure 2.3. Distribution of the fruit production index for 
organic orchards and IPM orchards. For illustrative 
purposes, the index is corrected for differences between 
countries by multiplying the value of each orchard by 
the ratio of the overall and country means. 

Figure 2.4. Partial residuals, prediction lines and confidence 
bands between species richness of beneficial arthropods and 
the fruit production index (log10-transformed), for organic 
(l) and IPM (¡) orchards. 
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relationship between apple production and species richness for IPM orchards. Clough et al. (2011) 

similarly found no trade-off between crop yield and biodiversity in smallholder cacao production 

systems, suggesting that productivity costs related to the maintenance of a high biodiversity may be 

small for some systems. On the other hand, organic orchards in our study had on average 38% more 

beneficial species for similar levels of apple production, confirming the previous conclusion that 

organic management supports a higher local species richness of arthropods (Rusch et al., 2014). We 

can only speculate on the main causes of this difference, but it seems plausible that it is mainly due to 

differences in pest control methods that affect survival of non-target organisms (Lefebvre et al., 2017; 

cf., Park et al., 2015) or to differences in weed management effects on species diversity within the 

orchards (Gurr et al., 2003). 

The effect of orchard management on arthropod richness often interacts with habitat 

composition at the local and landscape levels, where intensification and homogenization at the 

landscape level result in decreased arthropod richness in otherwise species-rich habitats (Landis, 

2017). The use of various AES for conservation has long been promoted in the European Union 

(Primdahl et al., 2003), but the effectiveness of these measures has been questioned (Batáry et al., 

2015; Tscharntke et al., 2016). In our study, we found that a higher cover of apple orchards in the 

surrounding landscape reduced species richness of beneficial arthropods within the orchard. A 

relatively uniform landscape with apple orchards may be less favourable for biodiversity than a more 

heterogeneous landscape, because most apple orchards in any landscape are managed according to 

IPM (Joshi et al., 2016; see also Marini et al., 2012). On the other hand, we did not find a direct effect 

of AES surface on either species richness of beneficial arthropods, natural enemy abundance and fruit 

production. However, it is premature to argue that AES are not useful in apple orchards since only a 

few orchards in our study had actively established these structures. Our measures mainly reflect the 

natural occurrence of these habitat types in the surroundings of the orchards, and a more targeted 

establishment of AES may result in greater benefits to biodiversity and related ecosystem services. 

Nevertheless, we found a clear positive direct effect of flower cover on pollinator visitation rates of 

apple flowers (supporting Campbell et al., 2017), which resulted in reduced pollination deficit 

(measured through seed set) and increased fruit production, suggesting that targeted establishment of 

flower strips may have positive effects on apple pollination.  

When examining the role of natural enemies, we found that higher natural enemy abundance 

was related to higher fruit production, but this effect was not due to a negative relationship between 

natural enemy abundance and either aphid abundance or apple pest damage at harvest. This finding 

suggests that the natural enemies provide some biocontrol that was not captured by our pest sampling. 

The community of apple pests shows large differences between the different countries, and we 

therefore had to use relatively coarse measures of damage. It is possible that the natural enemies found 

in this study mainly regulated earlier pest insects and that this effect is not reflected in our measure of 

fruit damage. It is also evident that the group of natural enemies is heterogeneous, including spiders, 
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coleopterans, dipterans, neuropterans, heteropterans, earwigs and harvestmen. Different natural 

enemies have different diets. Some groups are known to feed on and reduce apple pests (Cross et al., 

2015) while the feeding habitats and effects on pest species are less understood for other groups. In 

addition to pest species, also natural enemies varied in abundance between countries, with a higher 

abundance of dipterans in Sweden and a higher abundance of heteropterans and earwigs in Germany 

(Happe et al. unpubl.)2. It is also evident that our focus on arthropod natural enemies ignore birds, 

which are known to reduce both caterpillar and aphid damage in apple (García et al., 2018; Mols and 

Visser, 2007).  

Regional differences in management, landscape context and in the biota on apple trees may 

affect the effect of organic management vs. IPM. For instance, Kehinde et al. (2018) found that the 

bee abundance in vineyards was positively affected by organic management in Italy but not in South 

Africa, with potential effects on pollination. In our study, we found surprisingly strong regional 

similarities when comparing organic management and IPM. The SEM coefficients were mostly on the 

same order with a few exceptions. First, there was a weaker connection between the natural enemy 

density and fruit damage in Sweden, which may be due to differences in the pest community where 

winter moth was a dominant pest only in Sweden. It is possible that the present natural enemies are 

less able to affect the winter moth outbreak. Second, there was a weaker connection between 

management and pest damage and aphid abundance in Germany, where aphid control was equally 

strong in both organic and IPM. Aphid densities during the sampling year may have been low in 

Germany for other reasons, reducing the effect of management. 

Conclusion 

In conclusion, our study shows differences in the delivery of ecosystem services between organic and 

IPM apple orchards, where both natural enemy abundance (measuring biocontrol services) and flower 

visitation rate (measuring pollination services) were higher in organic orchards. Moreover, pollination 

services were positively affected by the flower cover surrounding the orchard. Nevertheless, the 

average IPM orchard reached a higher final apple production even though the variation between 

orchards was high and the organic orchard with the highest production was producing well above the 

average IPM orchard. The main reason for the differences in production does not seem to be related to 

the observed differences in ecosystem services as there was a strong direct (and unexplained) effect of 

management on apple production. Yet our study also suggests that there is scope for increasing the 

diversity of beneficial arthropods without reducing production. If differences in species richness 

between organic and IPM are due mainly to pest control strategies then this pattern would support a 

continued focus on developing targeted pest control methods that are also environmentally friendly.  

                                                        
2See next chapter, published as Happe et al., 2019. 
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Data availability 

All data for the SEM analysis and the statistical code is included as supplemental information. 
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ABSTRACT 

Local agri-environmental schemes, including hedgerows, flowering strips, organic management, and a 

landscape rich in semi-natural habitat patches, are assumed to enhance the presence of beneficial 

arthropods and their contribution to biological control in fruit crops. We studied the influence of local 

factors (orchard management and adjacent habitats) and of landscape composition on the abundance 

and community composition of predatory arthropods in apple orchards in three European countries. To 

elucidate how local and landscape factors influence natural enemy effectiveness in apple production 

systems, we calculated community energy use as a proxy for the communities’ predation potential 

based on biomass and metabolic rates of predatory arthropods. Predator communities were assessed by 

standardised beating samples taken from apple trees in 86 orchards in Germany, Spain and Sweden. 

Orchard management included integrated production (IP; i.e. the reduced and targeted application of 

synthetic agrochemicals), and organic management practices in all three countries. Predator 

communities differed between management types and countries. Several groups, including beetles 

(Coleoptera), predatory bugs (Heteroptera), flies (Diptera) and spiders (Araneae) benefited from 

organic management depending on country. Woody habitat and IP supported harvestmen (Opiliones). 

In both IP and organic orchards we detected aversive influences of a high-quality surrounding 

landscape on some predator groups: for example, high covers of woody habitat reduced earwig 

abundances in German orchards but enhanced their abundance in Sweden, and high natural plant 

species richness tended to reduce predatory bug abundance in Sweden and IP orchards in Spain. We 

conclude that predatory arthropod communities and influences of local and landscape factors are 

strongly shaped by orchard management, and that the influence of management differs between 

countries. Our results indicate that organic management improves the living conditions for effective 

predator communities. 

 

Keywords: Agri-environmental scheme; Biological control; Integrated pest management; Natural 

enemy; Organic management; Woody habitat. 
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INTRODUCTION 

Sustainable agricultural practices and enhanced habitat conservation at local and landscape scales are 

considered key solutions to stop the accelerating degradation of ecosystem services (IPBES, 2018). 

Biological control of agricultural pests is a prominent example of nature’s contribution to human 

welfare. Favourable local and landscape factors can enhance predator communities and biological 

control (Bengtsson et al., 2005; Bianchi et al., 2006; Tschumi et al., 2016). In taking responsibility for 

sustainable land use and ecosystem services, we need to identify the effects of factors that explain the 

variability in arthropod communities and their potential services at different spatial scales, from 

climatic region, to landscape, to the orchard itself and its immediate local surroundings. 

The country scale comprises several factors beyond macroclimate and biogeographic species 

pools. These include national policies on pesticides, differences in landscape habitat loss, identity of 

common crops, and availability of public advisory services. At the landscape scale, natural enemies 

benefit from a high proportion of semi-natural habitats (Chaplin-Kramer and Kremen, 2012; but see 

Hawro et al., 2015; Tscharntke et al., 2005). However, landscape effects on natural enemies also 

depend on taxon-specific mobility and dispersal capacity (Gallé et al., 2019; Schweiger et al., 2005). 

For spiders, habitat diversity and landscape composition are major determinants of occurrence at the 

landscape scale (Schweiger et al., 2005). In contrast, less mobile predatory arthropods such as earwigs 

remain mostly unaffected by the proportion of crop vs. non-crop cover in the landscape (Happe et al., 

2018a). Landscape simplification as reflected by a high proportion of intensive agricultural cover 

reduces biological pest control (Rusch et al., 2016; Tscharntke et al., 2016). Consequently, a reduced 

proportion of intensive agricultural land and a high landscape complexity are often regarded as of 

special relevance to enhance biological control (Jonsson et al., 2015). For example, in landscapes 

dominated by cultivated land, biological control of aphids in different annual crop systems can be 

reduced by 46% when compared with more heterogeneous landscapes (Rusch et al., 2016). 

Besides country and landscape effects, local factors such as adjacent habitat and orchard 

management influence natural enemies. At both landscape and local scales, the European Union 

subsidises agri-environmental schemes to enhance the ecological value of agro-ecosystems (Batáry et 

al., 2015). These schemes differ between countries and can, for example, protect diverse types of agro-

ecosystems and cultural landscapes, support organic farmers, and enhance local habitat quality for 

natural enemies (e.g. in case of beetle banks and flower strips) (Batáry et al., 2015; Ekroos et al., 

2014). Semi-natural woody habitats such as hedgerows or traditional orchards may shelter 

overwintering predatory arthropods such as coccinellid beetles and spiders (Elliott et al., 2002; Mestre 

et al., 2018). Improvement of local habitat quality in the orchard surroundings, for example by 

hedgerow restoration, can promote beneficial insects and natural pest control (Miñarro and Prida, 

2013; Morandin et al., 2016). These habitats are more beneficial for predators than for pests and 
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support predatory arthropods in fruit crops by enhancing habitat connectivity (Bailey et al., 2010). In 

addition to woody habitats, herbaceous plants may improve living conditions for natural enemies and 

the delivery of ecosystem services (Lichtenberg et al., 2017; Norris and Kogan, 2005). Flower-rich 

boundaries of crop orchards are particularly important for natural enemies that depend on pollen or 

nectar, which provide sugars and amino acids, for at least one part of their life cycle. These floral 

resources are essential for hoverflies, lacewings, hymenopteran parasitoids and omnivorous bugs such 

as anthocorids (Gurr et al., 2017; Wäckers and van Rijn, 2012). Herbal boundaries can also enhance 

the trait diversity of spiders, which may increase the biological control potential of spider communities 

(Gallé et al., 2019). 

Another factor acting at the local scale is organic management. It increases the abundance, 

diversity, and service of natural enemies in various perennial and annual crop systems (Lichtenberg et 

al., 2017; Muneret et al., 2018; Todd et al., 2011). However, its positive effect on the abundance of 

predatory arthropods, e.g. of spiders, differs between landscapes (Bengtsson et al., 2005). The 

interaction of landscape and local management is well predicted by the intermediate landscape 

complexity hypothesis, which states that organic management is more beneficial at low and 

intermediate levels of landscape complexity, but less effective in highly-intensified and in natural 

landscapes (Tscharntke et al., 2012). Similarly, the impact of local habitat on the occurrence of natural 

enemies in orchards strongly depends on management (Lefebvre et al., 2016), but studies on 

interactions between management, adjacent habitat, and landscape factors on natural enemy 

communities are still rare (García et al., 2018; Martin et al., 2016). Comprehensive studies including 

these factors and their interactions are needed to develop agricultural practices and policies to promote 

effective and sustainable biological control across Europe. 

In the production of apple, the most important European fruit crop (Eurostat, 2017a), 

maintaining biological control is particularly important. Biological control by predatory arthropods in 

apple orchards has a high economic value as it may substantially reduce insecticide applications 

(Cross et al., 2015). Predators such as birds, earwigs, lacewings, bugs, coccinellids, syrphids and 

spiders have been identified as important biocontrol agents in apple orchards (Porcel et al., 2018; 

Simon et al., 2010; Solomon et al., 2000). They contribute crucially to the regulation of severe apple 

pests such as the rosy apple aphid Dysaphis plantaginea Passerini, the woolly apple aphid Eriosoma 

lanigerum Hausmann, and tortricid moths including the codling moth Cydia pomonella L. (Solomon et 

al., 2000). Hence, enhancement of these natural enemies can lower the level of pest pressure and 

decrease fruit damage (Cahenzli et al., 2017; Letourneau and Bothwell, 2008). Indirect positive effects 

from increased natural enemy abundance can even partly compensate for lower yield in organic apple 

orchards compared to integrated production (IP) orchards (Samnegård et al., 2018). 

Here, we assess the effects of orchard management and features of adjacent habitats (local 

factors) as well as the effects of landscape composition (proportion of fruit orchard cover) and 

diversity (landscape factors) on predatory arthropods in the major apple production regions of three 
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European countries (Spain, Germany, Sweden). Our aim is to identify favourable local and landscape 

factors to support predatory arthropods and to enhance their predation potential. We assess abundance 

of predatory arthropods in the study orchards and calculate their energy use by integrating predator 

body mass as a trait-based measure for predation potential (Perović et al., 2018). Energy use has been 

suggested as a proxy for prey consumption by predators and may serve as a currency for assessing 

ecosystem functioning (Brose et al., 2008; Hines et al., 2015). We test the following hypotheses: 

(1) The composition of predatory arthropod communities differs between countries and management 

types (organic vs. IP). (2) Responses to agricultural management and to local and landscape factors are 

taxon-specific: (a) most predatory arthropods (except earwigs) benefit from reduced orchard cover at 

the landscape scale and from enhanced landscape diversity; (b) a high cover of local, orchard-adjacent 

woody habitats as well as organic management support predatory arthropods but organic management 

may be more effective at intermediate levels of orchard cover; (c) abundance of flower-visiting 

predatory arthropods (e.g. bugs, lacewings and hoverflies) is higher in orchards with high local plant 

species richness. (3) Effects of local agri-environmental schemes and landscape factors differ between 

management types; they are more effective in supporting predatory arthropods in IP than in organic 

orchards. (4) Organic management, high quality local habitats, a reduced orchard cover at the 

landscape scale and increased landscape diversity enhance the overall biological control potential of 

predator communities, measured as community energy use. 

MATERIALS & METHODS 

Predator communities 

Predator communities were surveyed in 2015 in 86 apple orchards in Spain, Germany and Sweden. 

Orchard management included integrated production (IP) and organic management (ORG). Survey 

orchards were located in northeast Spain (Catalonia, hereafter ‘SP’; 14 IP and 14 ORG), southwest 

Germany (lake Constance region, Baden-Württemberg, hereafter ‘GE’; 15 IP and 15 ORG), and south 

Sweden (Skåne, hereafter ‘SW’; 14 IP and 14 ORG) (Fig. 3.1; see Table S3.1 for orchard 

characteristics). The minimum distance between orchards of different management types was 1 km in 

SP, 2 km in GE, and 0.3 km in SW. We conducted beating sampling on one branch of each of 24 

randomly selected trees per orchard along one (SP and SW) or two (GE) transects. Branches were 

selected to occur at a standardized height of 1.2 – 1.5 m, and sampling targeted a branch section 

conforming to the diagonal width of the beating tray (0.60 m). Transects measured 40 m and started at 

the edge of the orchard. To cover different exposures, we sampled branches on both sides of each 

transect. We took samples when fruitlets were starting to grow (10 - 40% of final fruit size; SP: May 

19 - June 2; GE: June 15 - 22; SW: June 3 - 9) between 9 am and 5 pm. Arthropods were sorted from 

vegetation material and stored in 70% ethanol for quantification and identification under the stereo 

microscope. Predator abundance was calculated as the total number of predatory arthropods collected 
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per orchard.  

Landscape composition and diversity 

We assessed landscape categories (Fig. 3.1) based on official digital maps for SP and GE (Carreras 

and Diego, 2009; LGL, 2016; SIOSE, 2015), and spatial land-use data from the Swedish Board of 

Agriculture (Integrated Administrative Control System, IACS) for SW. The Geographic Information 

Systems and Remote Sensing software used were ArcView 10.3.1 and MiraMon. Landscape analysis 

targeted cover (%) of orchards (excluding orchard meadows), grassland, arable land and forest (Table 

S3.1) within a 1 km radius around the centre of each transect. To avoid collinearity, we used % 

orchard cover as a measure of landscape composition. A high proportion of fruit orchard cover can be 

seen as a measure for homogeneous landscape composition and as a proxy for high land-use intensity 

in the studied apple production regions (Samnegård et al., 2018). Additionally, to quantify landscape 

diversity, we calculated the Shannon diversity index, !"#$ = −  !!!
!!! ln !! where pi is the 

proportion of landscape patches belonging to the ith type of land cover (Shannon, 1948). The SHDI is 

recommended for landscape analyses in an ecological context (Nagendra, 2002). Landscape categories 

used to calculate SHDI were % cover of orchards, grassland, arable land, forest, semi-natural habitat 

(e.g. orchard meadows, woody habitats), sealed land, water bodies and ‘other cover types’ within a 1 

km radius.  

 

Figure 3.1. Scales considered in this study: (A) country: Spain (SP), Germany (GE) and Sweden (SW); (B) 
landscape: composition and diversity within a 1km radius around the orchard; (C) local scale: includes (C1) local 
habitat quality, i.e. (a) semi-natural woody habitat cover and (b) plant species richness, and (C2) orchard 
management (integrated production vs. organic management). 

 

Local habitat quality  

Hedgerows, forest edges and other woody elements, including orchard meadows, were considered 

relevant semi-natural woody habitats at the local scale (Fig. 3.1). We calculated the cover (m2) of these 

woody structures within a radius of 20 m from the first tree (orchard edge) of the survey transects 

(Table S3.1). Local habitat quality and availability of floral resources was estimated by plant species 
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richness in habitats adjacent to orchards (Fig. 3.1). We conducted vegetation surveys within a radius of 

20 m from the first tree of the survey transects (orchard edge), during apple bloom. We assessed 

overall species richness of plants in the herb- and shrub-layer using six quadrats of 1 m2 per orchard in 

GE and SW. In SP, plant species richness was assessed in three quadrats of 1 m2 per habitat type (e.g. 

abandoned field, embankment, forest edge, grassy pathway, and hedgerow) and orchard. To account 

for differences in the number of quadrats per orchard in SP, we used sample-based rarefaction (Gotelli 

and Colwell, 2001). 

Orchard management  

All apple growers conducted standard pesticide treatments using air-assisted sprayers, following label 

recommendations and advice from local plant protection consultants. IP growers applied synthetic 

insecticides, fungicides and fertilizers following IOBC guidelines (Malavolta and Cross, 2009). ORG 

orchards were certified under European and national legislation (Council Regulation (EC) No 

834/2007). ORG growers used natural plant extracts, microorganisms, viruses, mating disruption, and 

fungicides based on sulphur, copper and lime sulphur for pest and disease control (Table S3.2). ORG 

growers tilled tree rows instead of applying herbicides and used only organic fertilizers. Management 

intensity within categories IP and ORG differed between countries because national regulations 

restrict the use of some active compounds, e.g. Azadirachtin, Pyrethrine, Pirimor or Phosmet (Table 

S3.2). Growers can adjust management intensity within the range of national regulations but we did 

not get access to data on treatments for all orchards. Some extensive orchards in SW and two orchards 

in SP were uncertified but were considered organic because they were managed as under organic 

guidelines, with no chemical inputs. 

Energy use of the predator community  

Metabolic rate, i.e. the amount of energy expended by an organism at rest, has been identified as a key 

trait of arthropods in responding to the environment, affecting biological control services at local and 

landscape scales (Moretti et al., 2017; Perović et al., 2018). The energy use of the local predator 

community integrates each species abundance and body mass and can, to some extent, be used as a 

proxy of predation potential because individual metabolic rates determine consumption rates 

according to the metabolic theory of ecology (Brown et al., 2004). The community energy use of the 

local predator community is frequently used in the context of food webs (Brose et al., 2008; 

Thompson et al., 2012). Here, we apply it as an indicator for predation potential. It was calculated for 

each orchard based on dry body mass and abundance of collected specimens of each predator species 

(Table S3.3) using a metabolic model (Ehnes et al., 2011):  

ln! = ln !! + !! ln!! − !! 
!
!" × !!!

!!!                             (3.1.)   

where C = predator community energy use (J h-1), Ms = dry mass (g) of species s, k = Boltzmann’s 

constant (8.62 × 10-5 eV K-1), T = average local summer temperature in Kelvin and As = total 
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abundance of species s. Intercepts !!, allometric exponents !! and activation energies !! (eV) are 

taxon-specific and differ for arachnids and insects (see Table 2 in Ehnes et al., 2011). The community 

energy use is thus summed across all S species and multiplied by their respective abundance. 

To parameterize the model, we measured dry mass (mg) of one adult female (if available and 

sex could be identified; otherwise dry mass of an adult male, or an unidentified adult was used) of 

each species. The individual was dried until mass constancy was reached (at least 48 hours at 45 °C). 

Juvenile stages and morphospecies (species that could not be identified to species level but were 

morphologically distinct) were assigned a taxon-specific average dry mass (and metabolic rate) value 

(for example, unidentified coccinellid larvae would be assigned the average coccinellid dry mass; 

Table S3.3). To calculate the average of summer temperature in each region, we used the minimum 

and maximum average of the June mean daily temperature, based on data from the last 30 years 

(WMO, 2018) for WMO-listed cities closest to the study area: Lleida (SP; 22.3 °C), Girona (SP; 20.5 

°C), Freiburg (GE; 18.0 °C) and Malmö (SW; 15.5 °C). 

Statistical analysis 

All statistical analyses were conducted using R version 3.3.2 (R Core Team, 2016). We first checked 

for effects of country (SP, GE and SW) and management (IP vs. ORG) on the predator community 

composition using the ‘vegan’ package (Oksanen et al., 2016). We applied the ‘adonis’ function to 

conduct a permutational multivariate analysis of variance (Anderson, 2001; Oksanen et al., 2016) 

based on Bray-Curtis dissimilarities, which were calculated from the relative abundance (proportion at 

orchard level) of each taxon. To test for homogeneity of multivariate dispersion (variance), we applied 

the ‘betadisper’ function (Anderson, 2006). Subsequently, we calculated indicator values of taxa 

(IndVal; the product of the relative frequency and relative average abundance in clusters) for each 

management type in each country separately (Dufrêne and Legendre, 1997) using the ‘indval’ function 

of the ‘labdsv’ package (Roberts, 2016). 

  Nonmetric multidimensional scaling (NMDS) ordination plots visualised differences in 

community composition across management types and countries. For SP, we excluded one IP orchard 

from multivariate analysis because no predatory arthropods were found. We added arrows to indicate 

the grouping of predator taxa (predictors) using the ‘vegan’ function ‘envfit’ at P ≤ 0.001 with 10,000 

permutations. Some orchards had the same proportion value and overlapped in the ordination and 

therefore not all included orchards are displayed. 

 To assess management effects on the abundance of each predator group (spiders, beetles, 

earwigs, predatory flies, predatory bugs, lacewings, and harvestmen) between countries, we used 

generalised linear models (GLM) with Poisson distribution; accounting for overdispersion by using a 

quasi-GLM or negative binomial distribution when necessary. We included ‘country’ and 

‘management’ as categorical predictors, allowing for first order interactions. Variability accounted for 

(% deviance explained = null deviance - residual deviance / null deviance) is presented to show the 
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goodness of fit of the model. Whenever a variable with multiple levels was significant in the GLM, we 

applied post-hoc tests (Table S3.4) using the ‘glht’ function for multiple comparisons of means 

(simultaneous tests for general linear hypotheses) with Tukey contrasts. 

 We used GLMs to analyse the effects of local and landscape factors on predator abundance for 

each predator group in each country separately. We included management (IP vs. ORG), and the 

continuous variables local woody habitat cover, local plant species richness, % cover of fruit orchards 

and landscape diversity (SHDI). We allowed first level interactions among management and other 

predictors. Given the expected quadratic response of management effect to landscape cover predicted 

by the intermediate landscape complexity hypothesis (Tscharntke et al., 2012), we additionally 

allowed for an interaction of management with the second order term of the two landscape variables, 

% cover of fruit orchards and SHDI. Subsequently, we excluded terms that were non-significant (P > 

0.05) based on a stepwise backwards procedure to avoid model over-parameterisation. 

 We applied GLMs with Poisson distribution. In cases of overdispersion or heteroscedasticity 

of residuals between predictor levels, we either fitted GLMs with a negative binomial error 

distribution or generalised linear mixed-effects models (GLMM) (lme4 package; Bates et al., 2015) 

with Poisson distribution including orchard identity as an observation-level random effect (Harrison, 

2014). In case of zero inflation, we used the AD model builder of the ‘glmmADMB’ package (Skaug 

et al., 2016). 

To test the effect of local and landscape factors on community energy use (J h-1), we applied 

linear models. Energy use was log-transformed, adding a value corresponding to half the value of the 

smallest amount of energy use in the case of zero energy use. We calculated rarefied plant species 

richness for SP using the function ‘rarefy’ in the ‘vegan’ package (Oksanen et al., 2016). We tested for 

collinearity between predictors by calculating variance inflation factors (VIF; Naimi et al., 2014). 

When we detected collinearity (VIF > 3) after scaling, strongly correlated variables or their 

interactions were dropped (Zuur et al., 2010). We checked distributions and Spearman rank 

correlations between all relevant response variables as well as local and landscape variables (Figs. 

S3.4-6). Normality and homoscedasticity of residuals were checked by visual inspection using the 

‘DHARMa’ package (Hartig, 2017) for all but zero-inflated models (not implemented in the 

‘DHARMa’ package). Finally, we used the car package (Fox and Weisberg, 2011) to conduct 

likelihood ratio tests to establish the significance of the main factors in all GLMs, GLMMs and linear 

models. Figure 2 and figures in the appendix were visualized using the ‘ggplot2’ package (Wickham, 

2016). 

RESULTS 

We sampled 1,509 predatory arthropods in 86 orchards. The arthropods were identified as belonging 

to 91 species in 77 genera. Additional 17 morphospecies belonged to unidentified genera (resulting in 
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108 species in total; Fig. S3.1, Table S3.3). The predators belonged to seven arthropod groups: spiders 

(Araneae, 40 spp.), beetles (Coleoptera, 24 spp.), earwigs (Dermaptera, 2 spp.), predatory flies 

(Diptera, 28 spp.), predatory bugs (Heteroptera, 9 spp.), lacewings (Neuroptera, 3 spp.), and 

harvestmen (Opiliones, 2 spp.). Overall, predator abundance was higher in ORG than in IP orchards 

(Table S3.3). Orchards in GE showed higher predator abundances than in SP and SW (Table 3.1, Fig. 

3.2). Specifically, in SP, we found less than half as many predatory arthropods than in GE or SW 

(Table 3.1, Fig. 3.2). Spiders were abundant in all countries, with Araniella opisthographa Kulczyński 

being the most abundant species and Philodromus Walckenaer being the most abundant genus. Other 

frequent taxa were bugs, mainly anthocorids and mirids, beetles, mainly cantharids, adult and larval 

coccinellids, and predatory dipterans, mainly dolichopodids, empidids, hybotids and larval syrphids.  

 

 

Figure 3.2. Abundance (number of individuals per 24 trees per orchard) of seven predator taxa in apple 
orchards in Spain (SP), Germany (GE) and Sweden (SW). Effects of country (C) and management (M; 
integrated production ‘IP’ vs. organic ‘ORG’) on the abundance of each taxon are indicated within each plot 
(see Table S3.4 for summary statistics and post-hoc tests). Empty circles indicate outliers. 
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Table 3.1. Effects of local and landscape factors1 on (A) abundance of seven predatory arthropod groups and 
on (B) energy use of the predator community in apple orchards in Spain (SP), Germany (GE) and Sweden 
(SW); for each predator group, total abundance across sites for each country (number of individuals in all 
orchards) and the number of orchards in which the predator group was recorded (in parentheses) are indicated 
in bold. Effects on (B) total energy use by the predator community in bold as well. Orchard cover (%) was 
assessed at landscape scale (within 1 km), orchard management (IP vs. organic), plant species richness and 
woody habitat cover (m2) at local scale (within 20 m). χ2 - and P-values2 are given for reduced models 
(stepwise-backward selection) with estimates ± S.E. in parentheses. ‘NA’ indicates that no analysis was 
possible, ‘n.s.’ that no significant effect was found. 

 SP (N=28) 
 

GE (N=30)  SW (N=28) 
      (A) Abundance      
All predatory arthropods 224 (27)a 

 
755 (30)b  530 (28)a 

Management 
χ2 = 16.07 

(1.25±0.31) 
P < 0.001 ***  

χ2 = 3.27 
(0.37±0.20) 
P = 0.070  n.s. 

Orchard cover (%)1 
χ2 = 3.17 

(0.43±0.23) 
P = 0.075  n.s.  n.s. 

Management × orchard cover 
(%)1 

χ2 = 7.08 
(-0.84±0.31) 
P = 0.008 **  n.s.  n.s. 

      Araneae 89 (23)a 
 

201 (30)a  261 (28)a 

Management 
χ2 = 10.69 

(1.11±0.35) 
P = 0.001 **  n.s.  n.s. 

      Coleoptera 58 (14)c, d 
 

13 (7)c  55 (21)a 

Management n.s.  n.s.  

χ2 = 9.52 
(1.17±0.39) 
P = 0.002 ** 

      Dermaptera 21 (8)a 
 

290 (26)a  36 (14)c 

Management 
χ2 = 11.72 

(3.00±1.12) 
P < 0.001 *** 

 

n.s.  

χ2 = 6.89 
(-2.08±0.79) 
P = 0.009 ** 

Woody habitat cover1 n.s.  

χ2 = 9.73 
(-0.003±0.001) 
P = 0.002 **  

χ2 = 4.87 
(1.00±0.45) 
P = 0.027 * 

      Diptera 6 (2)c 
 

15 (13)c  136 (23)b 

Management n.s. 

 

χ2 = 3.00 
(-1.01±0.58) 

P = 0.083  

χ2 = 3.93 
(0.92±0.46) 
P = 0.047 * 

      Heteroptera 43 (15)b 
 

213 (22)a  9 (7)c 

Management 
χ2 = 7.54 

(2.83±0.87) 
P = 0.006 ** 

 

χ2 = 11.8 
(1.63±0.46) 

P < 0.001 ***  n.s. 

Plant species richness1 
χ2 = 13.20 

(-2.18±0.60) 
P < 0.001 *** 

 

n.s.  

χ2 = 3.27 
(-0.90±0.50) 

P = 0.070 

Management × plant species 
richness1 

χ2 = 6.66 
(1.76±0.68) 
P = 0.010 ** 

 

n.s.  n.s. 

      Neuroptera 6 (4)c  9 (7)c  15(10)c 
      Opiliones 1 (1) 

 
14 (9)c  18 (9)c 

Management NA  n.s.  

χ2 = 6.05 
(-2.76±1.12) 
P = 0.014 * 

Woody habitat cover1 NA  

χ2 = 3.94 
(0.78±0.39) 
P = 0.047 *  n.s. 

      (B) Energy use 9.83 J h-1 
 

55.1 J h-1  17.9 J h-1 

Management 
F1,26 = 23.95 
(1.59±0.33) 

P = <0.001*** 
 

n.s.  n.s. 

Woody habitat cover1 n.s. 

 

F1,28 = 3.08 
(-0.002±0) 
P = 0.09  n.s. 

1continuous variables were scaled to decrease VIF below 3; 2ANOVA type III; aGLM: negative binomial with log-link; bGLMM: poisson 
with log-link and observation level random effect in case of overdispersion; czero-inflation models glmmADMB with observation level 
random effect in case of overdispersion; dpositive effect of plant species richness on Coleoptera in Spain (χ 2 = 24.99 (+), P < 0.001) if 
outlier is included (orchard E7: 33 years old) 
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In SP, we found more Forficula pubescens Gené earwigs than F. auricularia L., but earwigs were 

generally rare in the samples. In GE and SW all earwigs were F. auricularia (Table S3.3). In GE, 

earwigs and predatory bugs comprised a large proportion of the predator community (Fig. 3.2). 

Dipterans were more abundant in SW than in the other countries (Table 3.1). Lacewings and 

harvestmen had low abundances in most orchards (Fig. 3.2, Table 3.1). As expected, there were strong 

positive correlations between abundance and predator community energy use in each country (SP: ρ = 

0.86, P < 0.001; GE: ρ = 0.54, P = 0.002; SW: ρ = 0.71, P < 0.01). 

Predator responses to management in different countries  

The interaction between country and management was significant for all predators (summed up over 

all groups) and for four out of seven predator groups (Fig. 3.2, Table S3.4). Depending on the country, 

the predator community composition differed between ORG and IP orchards (ADONIS: pseudo-F5,79 

= 2.51, P = 0.018, R2 = 0.32, Fig. 3.3). Dispersion among groups (multivariate spread) was 

homogeneous (betadispersion: pseudo-F5,79 = 1.78, P = 0.126). The analysis of indicator values for 

orchard management in each country revealed only one indicator taxon for IP orchards in SW: 

Opiliones: 0.5 (9), Padj = 0.027; IndVal with frequency in parentheses. For ORG orchards, several 

indicator taxa were observed: three in SP (Coleoptera: 0.7 (14), Padj = 0.018; Araneae: 0.6 (23), Padj = 

0.047, Dermaptera: 0.5 (8), Padj = 0.026), one in GE (Heteroptera: 0.7 (22), Padj = 0.015), two in SW 

(Coleoptera: 0.7 (21), Padj = 0.060; Diptera: 0.7 (23), Padj = 0.060)). 

 

 

Figure 3.3. Ordination of predatory arthropod communities in apple orchards in Spain (SP), Germany (GE) and 
Sweden (SW) for two management types: integrated production (IP) and organic management (ORG). Grouping 
of taxa (arrows) along the two first axes of the NMDS (stress = 16.8%, 20 procrustes). Arrow length indicates 
the strength of predictors (taxa) fitted onto the ordination for P ≤ 0.001. 
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Country-specific responses to local and landscape factors 

Effects of local and landscape factors differed between countries and predatory arthropod groups 

(Table 3.1). We observed no consistent response of predatory arthropod groups to either of the tested 

local and landscape factors or to interactions between management and other factors across all three 

countries. In SP, high orchard cover at the landscape scale was associated with predator abundance in 

IP but not in ORG orchards, where predator abundance was constantly high (Fig. S3.2). Landscape 

diversity did not explain variability in predator abundance in any of the countries. We did not find a 

management-dependent peak in predator abundances at intermediate levels of orchard cover or 

intermediate landscape diversity. Local woody habitat cover influenced only two predator groups, 

earwigs and harvestmen. It enhanced harvestmen abundances in GE but showed contrasting effects on 

earwig abundances in different countries. It was associated with high earwig abundance in SW but 

with reduced abundance in GE (Table 3.1). In SP, woody habitat cover was very low (Table S3.1) and 

did not influence predator abundances. Local plant species richness (Table S3.5) in adjacent habitats 

reduced the abundance of predatory bugs in Spanish IP orchards (SP: P = 0.010, Table 3.1; Fig. S3.2). 

The effect of plant species richness was similar but not statistically significant for Heteroptera in 

Swedish IP and ORG orchards (P = 0.070; Table 3.1). The analysis of local and landscape factors 

confirmed the sensitivity of predatory arthropods to orchard management (as already suggested by 

indicator values) for all predator groups except for beetles in SP (Table 3.1). However, most predator 

groups were influenced in only one or two countries, and the effects of management were not 

consistent (Table 3.1). In SP, the positive influence of ORG management on predator groups was 

reflected in predator community energy use. However, effects of management on energy use were not 

always similar to effects on abundance. Energy use was generally less sensitive than abundance (Table 

3.1). 

DISCUSSION 

Predator responses to management in different countries 

We expected the responses of the predator communities to apple management to be consistent across 

Europe. Instead, predator communities showed country-specific differences in their sensitivity to 

management. Total predator abundance differed between management types only in Spain (SP) 

(significantly) and Germany (GE) (marginally significant), with higher abundances in ORG. This 

finding can be partly explained by country-specific differences in management intensity in both 

management types (IP and ORG), such as the restricted use of several insecticides in Sweden (SW) for 

both management types. However, lack of pesticide data at the orchard level in SW limits our 

understanding of management intensity in this region (Table S3.2). Alternatively, some of the different 

responses of the regional predator communities to management may be explained by latitudinal 

differences. These differences may for example influence predator and prey faunas, tree cultivar, and 
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predominant land-cover types and local habitats (Mody et al., 2017; Nyffeler and Sunderland, 2003). 

However, predator community responses to management at the country scale can be better 

understood when considering specific taxonomic groups (Fig. 3.2). It has been proven that predators 

such as lacewings, coleopterans, earwigs, and bugs are sensitive to insecticides applied in apple 

orchards (Fountain and Harris, 2015; Mills et al., 2016). Sub-lethal effects of both organic and 

synthetic pesticides on predatory bugs and other predatory arthropods are well known (Biondi et al., 

2012; Desneux et al., 2007; Müller, 2018). Porcel et al. (2018) reported enhanced natural enemy 

abundance (and increased biological control of aphids) in organic apple orchards compared to 

conventional apple orchards; predatory bugs, which played a key role in regulating the growth of 

aphid colonies, were the group that benefited most from organic management. Our results support 

these findings and point to at least three differences in insecticide application between countries (Table 

S3.2). (1) ORG management reduced abundances of earwigs and harvestmen in SW and had 

marginally significant negative effects on predatory flies in GE. The only commonly applied ORG-

insecticide in SW known for side effects on earwigs was Pyrethrine (Peusens and Gobin, 2008). 

Products based on this active ingredient were not permitted in SP and only rarely applied in GE. The 

application of neem (Azadirachta indica) products as ORG insecticides in GE and SP but not in SW 

may partly explain patterns of dipteran abundance. Azadirachtin, a component of neem oil that repels 

feeding and inhibits moulting, can harm dipterans, especially those in their larval stages (Schmutterer, 

1997; Spollen and Isman, 1996). (2) Focusing on IP orchards, we found lower predator abundances for 

spiders and earwigs in SP that can be explained as side effects of synthetic insecticides. IP growers in 

SP (exclusively) applied several insecticides containing the active compounds Chlorpyrifos or 

Deltamethrin, both known for their harmful side effects on spiders (Markó et al., 2009; Pekár and 

Beneš, 2008), and Phosmet, which belongs to the group of organophosphates, known for their harmful 

side effects on earwigs (Malagnoux et al., 2015a; Peusens and Gobin, 2008). (3) Regular application 

of Pirimicarb and Thiacloprid in IP may explain a positive effect of ORG on bugs in GE (van de Veire 

et al., 2002; van de Veire and Tirry, 2003). 

However, the absence of spray information at the orchard level limits our capacity to link 

agrochemical applications to predator abundance. In addition, soil management in the tree row 

(herbicide application in IP; mulching and mechanical weed control or tillage in ORG) can affect 

epigeic predators and earwigs (Miñarro et al., 2009; Moerkens et al., 2012). The non-consistent 

response of earwigs to management in SW and SP may have been triggered by differences in regional 

management and in species composition. In SP, we found two earwig species, whereas only one 

species was present in SW (and GE). The two species found in SP markedly differed in their 

sensitivity to management: Forficula auricularia was common in both IP and ORG orchards, whereas 

F. pubescens was much less abundant in IP orchards (Happe et al., 2018a). On the other hand, 

earwigs’ sensitivity to tillage during hibernation and below-ground brood care may explain lower F. 

auricularia abundances in ORG orchards in SW (Moerkens et al., 2012). When interpreting 
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abundance patterns of predatory arthropods, it should be considered that species richness and regional 

species composition differed not only for earwigs but also for other focal groups such as predatory 

flies and spiders (Fig. S3.1, Table S3.3). In addition to the toxic effects of pesticides, differences 

between ORG and IP may be partly explained by the higher pest densities in ORG orchards, which 

may support larger predator populations (Samnegård et al., 2018). 

Country-specific responses to local and landscape factors 

Intensive orchard management may alter or even counteract other local factors as well as landscape 

factors (Tscharntke et al., 2016), and landscape features may alter the effectiveness of local habitat and 

organic management in supporting biological control (Jonsson et al., 2015; Tscharntke et al., 2012). In 

this study, orchard management directly influenced the abundance of six out of seven predatory 

arthropod groups (sometimes in opposite directions, Table 3.1). Yet, interactions between 

management and local or landscape factors were only evident in two cases. Firstly, plant species 

richness was associated with low predatory bug abundance in IP but not in ORG, indicating that 

effects of local habitat are management-dependent. Secondly, ORG management enhanced predator 

abundance only at low levels of orchard cover in Spanish landscapes. The intermediate landscape 

complexity hypothesis highlights the effectiveness of ORG management to support biodiversity at 

intermediate cover levels of semi-natural habitats and non-crop areas, which provide arthropod 

biodiversity to crops through spillover effects (Batáry et al., 2010; Tscharntke et al., 2012). High 

levels of orchard cover at landscape scale reduced the availability and accessibility of semi-natural 

habitats. This may be of special relevance in IP orchards, where predatory arthropods are subjected to 

greater hazards. A peak in predator abundance in ORG orchards at intermediate levels of landscape 

diversity or orchard cover was not evident. 

At the local scale, woody habitat had mixed effects on predator abundances. High local woody 

habitat coverage enhanced earwig abundance in SW (but reduced it in GE), and harvestmen 

abundance in GE. In the context of augmenting biological control, woody habitat quality has often 

been characterised in terms of woody plant species richness, cover and connectivity (Dainese et al., 

2016; Malagnoux et al., 2015b). For example, linyphid spiders have been reported to use continuous 

unbroken hedgerows with a high diversity of woody species as source habitats, spilling over to 

neighbouring crops (Garratt et al., 2017). Differences in quality of woody structures may have driven 

the contrasting responses of earwigs and harvestmen to woody elements in the three countries. On the 

other hand, plant species richness did not alter earwig or harvestmen abundances in either country 

(Table 3.1). It may be that regional differences in the response of the two groups were triggered by 

spillover constrained by the density of prey in the woody habitat. Results for harvestmen (and 

lacewings) should be interpreted cautiously because the number of individuals was low (Table 3.1). 

Other studies have provided evidence that enhancing local plant diversity by establishing flower 

strips improves living conditions for beneficial arthropods (Batáry et al., 2015; Letourneau et al., 
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2011; Lichtenberg et al., 2017). A high local flower richness is especially important for natural 

enemies in orchards that lack woody habitats in the vicinity (Saunders and Luck, 2018). Contrary to 

these findings, we observed negative influences of plant species richness on predatory bugs in SW 

(marginally significant), and no effects on the other groups. Some particularly prominent bugs in apple 

orchards (e.g. anthocorids, Table S3.3) use floral nectar and pollen as a food resource (Wäckers and 

van Rijn, 2012). However, plant species richness did reduce rather than enhance bug abundance and 

the response of bugs to plant species richness was inconsistent among countries. The presence and 

flower cover of a few favoured plant species may be more relevant than total plant species richness 

(Wäckers and van Rijn, 2012). On the other hand, bugs could be more attracted by flower-rich 

adjacent habitats than by intensively managed IP orchards. Results for orchards in SP could support 

this explanation: In SP high plant species richness was associated with low bug abundance in IP but 

not in ORG orchards (Fig. S3.2). Management intensity may reduce the attractiveness of the orchard 

as a habitat, especially if food resources for beneficial arthropods are affected. For instance, 

insecticide applications can diminish prey insects, and weed control may reduce plant species richness 

and flower cover (Cross et al., 2015; Miñarro, 2012; Simon et al., 2010). In this case, high-quality 

adjacent habitats, such as sown flower strips, can potentially provide a suitable if not a better 

environment for a wide range of herbivores. As a result, natural enemies may not disperse from the 

adjacent habitat into the crop (Holland et al., 2016; Tscharntke et al., 2016). This could also explain 

the lower earwig abundance in orchards with enhanced woody habitat cover in GE (Happe et al., 

2018a). 

Effects of local and landscape factors on overall predation potential (measured as energy use) 

mainly resembled the response of the largest and most abundant taxon in each country. Such large, 

abundant predatory arthropods (e.g. spiders in SP and earwigs in GE) are likely to contribute strongly 

to biological control of their specific prey taxa. In general, community energy use was less sensitive 

than abundance to local and landscape factors, reflecting body mass distribution (Fig. S3.3). The 

effectiveness of predators is well predicted by mean predator body size with larger predators showing 

higher per capita consumption rates (Emmerson and Raffaelli, 2004; Rusch et al., 2016). Positive 

influence of higher abundance and biomass on biological control is necessarily constrained in cold 

climates by energetic demand (Londoño et al., 2015; Schneider et al., 2012). Energy use may therefore 

be more relevant than abundance and biomass to describe the biological control potential of predator 

communities along a geographical gradient with large climatic differences. 

Conclusion 

Our results suggest that management plays an important role in shaping communities of predatory 

arthropods in orchards across Europe. ORG management enhanced abundance of some predator 

groups depending on country but only a few generalist predator groups benefited from high quality 

local habitat. Landscape composition and interactions of orchard management with local and 

landscape factors seemed to be less relevant for predators than local management and habitat quality. 
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Predation potential (energy use by the predator community) can be enhanced by ORG management 

but it remains largely unaffected by local and landscape factors. We conclude that conservation 

measures and agri-environmental schemes to foster effective predator communities in apple orchards 

need to be well adapted to the target region. They should take the taxonomic identity of predatory 

arthropods and region-specific management intensity into account. The local knowledge of growers 

and their advisers on specific site conditions and requirements from ecosystem services may be the 

key to more targeted and dynamic management strategies. 

 

Data available at https://doi.org/10.1016/j.agee.2018.12.012 (see supplementary tables S3.3–5).  
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Table S3.1.  Orchard and landscape characteristics in integrated production (IP) and organic (ORG) orchards 
in Spain, Germany and Sweden. NA indicates that data were not available. Significant differences between 
management types within each country are shown in bold (t-tests/Mann-Whitney U; P < 0.05). 

 

Table S3.2.  Differences in use of agrochemical products between integrated production (IP) and organic 
(ORG) apple orchards in Spain, Germany and Sweden. Active substances, product examples are given. 
Products were ‘NP’ not permitted in apple orchards during study time; ‘-’ not applied; ‘+’ applied rarely (1-2 
orchards); ‘++’ applied regularly (>2 orchards).  

 

 
    Spain      Germany   Sweden 

  IP (N=14)  ORG (N=14)   IP (N=15)  ORG (N=15)  IP (N=14)  ORG (N=14) 
              
Location   

41°37'N, 0°38'E (Lleida); 
41°59'N, 2°49'E (Girona)   Constance, 47°43'N, 9°23'E  Skåne, 55° 59'N, 13°26'E 

Temperature  
(°C, mean of 2015)  14.4 (Lleida); 14.9 (Girona)   11.1  9.5 

Annual precipitation (mm, 2015)  199.7; 541   736  724 

Cultivars  Golden, Golden Delicious   Braeburn  
Aroma, Amorosa, 

Ingrid Marie, Rubinola 
Rootstock  M9   M9  M9 
Tree height (m)  2.0 - 3.5   2.2 - 3.7  2.5 - 4.0  
Spacing (m)  min 3 × 1, max 4 × 5   min 3 × 1, max 4 × 5  min 3.5 × 0.9, max 5 × 4  
Pruning  spindle   spindle  spindle (most), open vase (some) 
Size (ha)a,b  1.7±1.1   2.4±2.8   1.0±0.6  0.9±0.6  15.8±11.1  3.7±3.7 
Tree age (years)a  11.4±7.3  13.3±8.3   9.7±3.7  9.9±3.0  15.5 ± 3.7  21.1±19.9 
Land-use cover (%)a 

Orchard  
 

41.6±30.5  
 

32.5±31.1   
 

34.1±16.4  
 

27.0±11.1  
 

15.4±12.2  
 

11.2±12.8 
Forest  1.0±2.0  2.6±3.3   19.3±17.3  19.5±15.6  14.3±14.1  19.7±14.2 
Arable land  51.8±29.2  51.0±34.0   20.9±12.8  27.2±15.8  40.9±32.7  29.6±19.3 
Grassland  0.62±0.93  1.26±2.71   11.9±5.6  14.0±6.2  4.97±5.89  8.65±9.79 

Landscape diversitya  1.09±0.28  1.15±0.35   1.33±0.07  1.46±0.11  1.77±0.49  1.89±0.16 
Woody habitat (m2)a  33.2±124.3  50.0±100.7   129.0±176.8  152.7±189.4  182.1±188.5  308.0±276.9 
Plant species richnessa  8.3±3.1  11.7±4.3   13.3±5.1  16.5±10.5  11.9±4.5  13.1±6.6 
Farming  fresh consumption   fresh consumption  fresh consumption, cider 
Hail nets  some   yes  no 
amean ± SD for orchard size, tree age, major land use categories (% cover in 1 km radius), landscape diversity (Shannon diversity index), local woody habitat cover (in a 20-m zone adjacent to 
orchard) and local plant species richness; bsize of target cultivar for SP and GE; size of orchard based on aerial photographs including other cultivars and parcels for SW.  
Sources: DWD, 2017. Climate data for Germany. Deutscher Wetterdienst, http://www.dwd.de, accessed 2017-07-05; IDESCAT, 2017. Climatologia. Instituto de Estadística de Cataluña, 
https://www.idescat.cat, accessed 2017-07-15; SMHI 2018. Climate data for Lund. Swedish Meteorological and Hydrological Institute, https://www.smhi.se, accessed 2018-09-13. 
  

 

 Active substance  Commercial product name (examples) 
Spain Germany  Sweden  

IP ORG IP ORG IP ORG 

Insecticides       
Azadirachtin NeemAzal-T/S® (Trifolio-M GmbH) + ++ - ++ NP NP 

Bacillus thuringiensis XenTari® (Biofa) / Dipel® ES (Cheminova) / Turex 50 WP + + - ++ + + 

Chlorantraniliprole  Coragen® (Dupond)  ++ NP + NP NP NP 

Chlorpyrifos Inaclor 25 PM (Sipcam Inagra) / DurasbanTM 75 WG (Dow 
AgroScience) / Reldan® E (Dow AgroScience)  ++ NP - NP NP NP 

Deltamethrin Proteus® O-TEQ (Bayer) ++ NP - NP NP NP 

Flonicamid Teppeki® (ISK Biosciences Europe) ++ NP ++ NP ++ NP 

Granulosis virus Capex® 2 Adoxophyes orana gv (Andermatt Biocontrol AG) / 
Madex® MAX Cydia pomonella gv (Agrinova) + ++ ++ ++ ++ ++ 

Heterorhabditis bacteriophora Nemasys G (BASF Agro) - - - - + + 

Imidacloprid Confidor® 20 LS (Bayer), Shardox 20 (Sharda CropChem) + NP - NP NP NP 

Indoxacarb Steward® (Stähler)  + NP + NP ++ NP 

Kaolin Surround® WP (Stähler) + + + ++ NP NP 

Methoxyfenozide Gladiator® (Dow AgroSciences) / Runner® (Bayer)  + NP ++ NP NP NP 

Phosmet Imidian® WP (BASF Agro) ++ NP NP NP NP NP 

Pirimicarb Pirimor®, Aphox® (Syngenta) + NP ++ NP NP NP 

Piriproxyphen  Expedient® 10 EC (Sapec Agro) ++ NP NP NP NP NP 

Plant oil Micula® (Biofa) NP NP + + NP NP 

Pyrethrine + oil Spruzit® Neu (Progema GmbH) NP NP - + - ++ 

Quassin Quassia amara extract NP NP - ++ NP NP 

Spirotetramat Movento SC® (Bayer) ++ NP ++ NP + NP 

Steinernema sp. Capsanem® (Koppert), Nemasys / Nemasys L (BASF Agro) - - - - + + 

Tebufenozid Mimic® (Spiess-Urania)  + NP - NP NP NP 

Thiacloprid Calypso® (Bayer) / Proteus O-TEQ (Bayer) + NP ++ NP + NP 

  17 4 10 7 8 5 
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 Active substance  Commercial product name (examples) 
Spain Germany  Sweden  

IP ORG IP ORG IP ORG 

Acaricides        
Abamectine Vertimec® (Syngenta) ++ NP NP NP + NP 

Acequinocyl Kanemite® SC (Cheminova)  NP NP ++ NP NP NP 

Acetamiprid Mospilan® SG (Cheminova)  + NP - NP + NP 

Fenpyroximat Kiron® (Cheminova)  + NP + NP + NP 

Hexithiazox Diabolo SC® (Afrasa) + NP NP NP + NP 

Milbemectin  Milbeknock® (Spiess-Urania)  + NP ++ NP NP NP 

Paraffin oil Oviphyt (CCL) / Para Sommer (Cheminova)  ++ ++ ++ ++ ++ + 

Spirodiclofen Envidor® (Bayer) + NP + NP NP NP 

  7 1 5 1 5 1 
Fungicides        

Aureobasidium pullulans Blossom ProtectTM Aureobasidium pullulans (Biofa) + + + + NP NP 

Captan Merpan® 80 WDG (Adama) / Malvin® WG (Stähler) ++ NP ++ NP NP NP 

Copper(II) hydroxide e.g. Cuprozin® / Funguran® progress (Spiess-Urania) ++ ++ ++ ++ NP NP 

Dithianon Delan® WG (BASF)  ++ NP ++ NP ++ NP 

Lime sulphur Curatio® (Biofa) + ++ ++ ++ - + 

Potassium bicarbonate  e.g. VitiSan® (Biofa)   + + - ++ NP NP 

Sulphur e.g. Stulln® 80% WG (agrostulln GmbH) / Kumulus® WG 
(BASF) ++ ++ ++ ++ ++ ++ 

Trifloxystrobin  Flint® (Bayer)  ++ NP ++ NP NP NP 

Prohexadione calcium Regalis® Plus (BASF) ++ NP ++ NP NP NP 

  9 5 8 5 2 2 

Herbicides        

Flumioxazin  Vorox® F (Spiess-Urania)  NP NP + NP NP NP 

Glyphosate Roundup® (Monsanto) / Touchdown® (Syngenta) ++ NP ++ NP ++ NP 

Glufosinate-ammonium Basta® (Bayer) / Finale® (Bayer) ++ NP ++ NP NP NP 

  2 0 3 0 1 0 

Total no. of pesticide products  35 10 26 13 16 8 
Sources: Farmer and expert interviews, national regulations, spraying reports (SP: 3 IP and 4 ORG; GE: 5 IP and 5 ORG); WOG 2017. Rundschreiben Nr. 02/2017, 2017-
01-24 der Württemberg. Obstgenossenschaft Raiffeisen eG, LTZ 2017. Integrierter Pflanzenschutz im Erwerbsobstbau (p. 42); FÖKO & BÖLN 2016. Gesunderhaltung der 
Kulturpflanzen im ökol. Apfelanbau (p. 40); Jordbruksverket 2017. Växtskyddsmedel 2017 – frukt. Jönköping, Sweden, www.jordbruksverket.se, accessed 2018-06-13. 
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Table S3.3. Species list for predator taxa in integrated production (IP) and organic (ORG) apple orchards 
including abundance by country (Spain (SP), Germany (GE), Sweden (SW)) and management type, dry mass 
(mg) and energy use (J h-1) based on average summer temperature (mean for SP, GE and SW). Dry mass and 
energy use were averaged at the taxon level, if species had not been identified (‘unid’).  
 

ORDER / Family  Genus / species Author 
SP  GE  SW   Dry 

weight 
(mg) 

Energ
y use 
(J h-1) 

IP 
(n=14) 

ORG 
(n=14)  

IP 
(n=15) 

ORG 
(n=15)  

IP 
(n=14) 

ORG 
(n=14) Total  

ARANEAE              
Agelenidae unid Agelenidae C. L. Koch, 1837 0 0  0 2  0 0 2  2.61 0.048 
Anyphaenidae Anyphaena accentuata Walckenaer, 1802 0 0  0 0  1 2 3  5.87 0.076 
Anyphaenidae unid Anyphaenidae Bertkau, 1878 0 0  7 3  0 0 10  5.87 0.076 

Araneidae Araniella 
opisthographa Kulczyński, 1905  0 0  8 15  19 20 62  8.86 0.096 

Araneidae Mangora acalypha Walckenaer, 1802  0 2  0 0  0 0 2  0.74 0.024 
Araneidae unid Araneidae Clerck, 1757 0 2  10 14  0 0 26  2.91 0.051 
Clubionidae Clubiona Latreille, 1804 0 2  0 0  2 2 6  4.74 0.067 
Clubionidae unid Clubionidae Wagner, 1887 0 0  2 6  0 0 8  4.74 0.067 
Dictynidae Dictyna arundinacea Linnaeus, 1758  0 0  0 0  3 0 3  0.26 0.013 
Dictynidae Dictyna uncinata Thorell, 1856  0 0  3 4  4 1 12  0.42 0.017 
Dictynidae Lathys humilis Blackwall, 1855  0 0  0 0  0 2 2  0.22 0.012 

Dictynidae unid Dictynidae O. Pickard-
Cambridge, 1871 0 4  1 0  0 0 5  0.30 0.014 

Linyphiidae Araeoncus humilis Blackwall, 1841  0 0  0 0  1 0 1  0.18 0.011 
Linyphiidae Diplostyla concolor Wider, 1834  0 0  0 1  0 0 1  0.34 0.015 
Linyphiidae Dismodicus bifrons Blackwall, 1841  0 0  0 0  0 1 1  0.46 0.018 
Linyphiidae Entelecara acuminata Wider, 1834  0 0  0 0  7 8 15  0.21 0.012 
Linyphiidae Gongylidium rufipes Linnaeus, 1758  0 0  0 0  1 0 1  0.34 0.015 

Linyphiidae Hylyphantes 
graminicola Sundevall, 1830  0 0  0 0  0 1 1  0.29 0.014 

Linyphiidae Hypomma cornutum Blackwall, 1833  0 0  0 0  1 0 1  0.48 0.018 
Linyphiidae Lepthyphantes Menge, 1866  3 4  0 0  0 0 7  0.51 0.019 
Linyphiidae Tenuiphantes tenuis Blackwall, 1852  0 0  1 1  0 1 3  0.24 0.012 
Linyphiidae unid Linyphiidae Blackwall, 1859 8 2  2 4  2 4 22  0.34 0.015 
Mimetidae Ero aphana Simon, 1881 0 0  1 0  0 0 1  1.55 0.036 
Miturgidae Zora sp. C. L. Koch, 1847 1 0  0 0  0 0 1  1.55 0.036 
Philodromidae Philodromus Walckenaer, 1826  3 23  0 0  27 28 81  3.69 0.058 
Philodromidae Philodromus albidus Kulczyński, 1911  0 0  0 0  0 1 1  3.69 0.058 
Philodromidae Philodromus aureolus Clerck, 1757  0 0  0 1  2 6 9  3.69 0.058 
Philodromidae Philodromus cespitum Walckenaer, 1802  0 0  0 3  1 2 6  2.13 0.043 

Philodromidae Philodromus praedatus O. Pickard-
Cambridge, 1871  0 0  0 2  0 0 2  3.69 0.058 

Philodromidae unid Philodromidae Thorell, 1870 0 0  12 8  0 0 20  3.69 0.058 
Salticidae Euophrys sp. C. L. Koch, 1834  0 0  0 0  1 0 1  0.33 0.015 
Salticidae Marpissa C. L. Koch, 1846 0 0  0 0  1 0 1  1.90 0.040 
Salticidae Marpissa muscosa Clerck, 1757 0 0  0 4  0 0 4  5.09 0.070 
Salticidae Salticus zebraneus C. L. Koch, 1837  0 0  0 0  0 2 2  0.35 0.015 
Salticidae unid Salticidae Blackwall, 1841 0 2  3 3  0 0 8  1.92 0.040 
Tetragnathidae Tetragnatha Latreille, 1804 0 1  0 0  0 5 6  5.52 0.073 
Tetragnathidae Tetragnatha dearmata Thorell, 1873  0 0  1 0  0 0 1  4.29 0.063 
Theridiidae Anelosimus Simon, 1891  0 5  0 0  0 0 5  0.20 0.011 
Theridiidae Anelosimus vittatus C. L. Koch, 1836  0 0  0 0  2 5 7  1.27 0.032 
Theridiidae Dipoena Thorell, 1869  1 1  0 0  0 0 2  0.11 0.008 
Theridiidae Enoplognatha ovata Clerck, 1757  0 1  0 0  18 6 25  0.66 0.022 
Theridiidae Neottiura bimaculata Linnaeus, 1767  0 0  0 0  0 1 1  0.64 0.022 
Theridiidae Paidiscura pallens Blackwall, 1834  0 0  0 0  3 10 13  0.13 0.009 
Theridiidae Phylloneta Archer, 1950  0 0  0 0  3 6 9  0.41 0.017 
Theridiidae Phylloneta impressa L. Koch, 1881  0 0  2 4  0 0 6  1.65 0.037 
Theridiidae Platnickina tincta Walckenaer, 1802  0 0  1 0  0 2 3  0.64 0.022 

Theridiidae Robertus O. Pickard-
Cambridge, 1879  2 6  0 0  0 0 8  0.64 0.022 

Theridiidae Robertus sp. O. Pickard-
Cambridge, 1879  0 0  0 0  1 0 1  0.64 0.022 

Theridiidae Theridion varians Hahn, 1833  0 0  2 2  7 0 11  0.73 0.023 
Theridiidae unid Theridiidae Sundevall, 1833 1 2  20 8  12 17 60  0.64 0.022 
Thomisidae Diaea dorsata Fabricius, 1777  0 0  0 0  1 0 1  3.76 0.059 
Thomisidae Ozyptila praticola C. L. Koch, 1837  0 0  0 0  1 0 1  4.86 0.068 
Thomisidae Runcinia Simon, 1875  1 3  0 0  0 0 4  1.75 0.038 
Thomisidae unid Thomisidae Sundevall, 1833 0 0  5 6  0 0 11  3.76 0.059 
Thomisidae Xysticus C. L. Koch, 1835  2 4  0 0  2 3 11  4.65 0.066 
Thomisidae Xysticus audax Schrank, 1803  0 0  0 0  0 1 1  4.65 0.066 

 unid Araneae  0 3  12 17  0 1 33  0.33 0.015 
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ORDER / Family  Genus / species Author 
SP  GE  SW   Dry 

weight 
(mg) 

Energ
y use 
(J h-1) 

IP 
(n=14) 

ORG 
(n=14)  

IP 
(n=15) 

ORG 
(n=15)  

IP 
(n=14) 

ORG 
(n=14) Total  

COLEOPTERA              
Cantharidae Cantharis decipiens Baudi, 1871  0 0  0 0  0 2 2  15.21 0.127 
Cantharidae Cantharis fusca Linnaeus, 1758  0 0  0 0  4 7 11  18.76 0.149 
Cantharidae Cantharis livida Linnaeus, 1758  0 0  0 0  3 2 5  16.65 0.136 
Cantharidae Cantharis nigricans Muller, 1766  0 0  0 0  0 2 2  15.21 0.127 
Cantharidae Cantharis pellucida Fabricius, 1792  0 0  0 0  0 1 1  15.21 0.127 
Cantharidae Cantharis rufa Linnaeus, 1758  0 0  0 0  1 0 1  15.21 0.127 
Cantharidae Cantharis sp. Linnaeus, 1758  0 0  0 0  0 1 1  10.21 0.094 
Cantharidae Malthodes marginatus Latreille, 1806  0 0  0 0  0 8 8  11.71 0.104 
Cantharidae Rhagonycha fulva Scopoli, 1763  0 1  0 0  0 0 1  3.56 0.042 
Cantharidae Rhagonycha lignosa Muller, 1764  0 0  0 0  1 1 2  3.56 0.042 

Cantharidae Rhagonycha 
nigriventris 

Motschulsky, 
1860  0 0  0 0  0 4 4  3.56 0.042 

Cantharidae unid Cantharidae  0 0  0 1  0 0 1  11.71 0.104 
Coccinellidae Adalia bipunctata Linnaeus, 1758  0 0  0 0  0 2 2  6.57 0.067 

Coccinellidae Coccinella 
septempunctata Linnaeus, 1758  0 4  0 0  0 7 11  9.97 0.092 

Coccinellidae Cryptolaemus Mulsant, 1853  0 5  0 0  0 0 5  0.45 0.009 

Coccinellidae Exochomus 
quadripustulatus Linnaeus, 1758  0 0  2 1  0 0 3  2.27 0.030 

Coccinellidae Harmonia axyridis Pallas, 1773  0 0  1 3  0 0 4  9.40 0.088 
Coccinellidae Propylea 14 punctata Linnaeus, 1758  0 9  0 0  3 3 15  2.69 0.034 
Coccinellidae Stethorus Weise, 1885  2 0  0 0  0 0 2  0.13 0.003 

Coccinellidae unid Coccinellidae 
larvae  0 28  2 1  0 1 32  4.80 0.053 

Malachiidae Colotes maculatus Laporte de 
Castelnau, 1838  0 1  0 0  0 0 1  0.01 0.001 

Melyridae Dasytes aeratus Stephens, 1829  0 0  0 0  0 1 1  3.50 0.042 
Salpingidae Salpingus planirostris Fabricius, 1787  0 0  0 0  1 0 1  3.50 0.042 
Staphylinidae unid Staphylinidae  3 5  1 1  0 0 10  0.42 0.008 
DERMAPTERA              
Forficulidae Forficula auricularia Linnaeus, 1758  0 7  168 122  22 14 333  22.09 0.169 
Forficulidae Forficula pubescens Gené, 1837  1 13  0 0  0 0 14  3.25 0.039 
DIPTERA              
Athericidae unid Athericidae  0 0  3 1  0 0 4  0.62 0.011 
Dolichopodidae Microphor anomalus Meigen, 1824  0 0  0 0  2 17 19  0.17 0.004 
Dolichopodidae unid Dolichopodidae  0 1  2 1  3 1 8  0.35 0.007 
Dolichopodidae unid Microphorinae  0 0  4 2  0 0 6  0.53 0.010 
Empididae Empis caudatula Loew, 1867  0 0  0 0  7 11 18  0.24 0.005 
Empididae Empis nigripes Fabricius, 1794  0 0  0 0  0 1 1  0.29 0.006 
Empididae Empis nuntia Meigen, 1838  0 0  0 0  5 2 7  0.48 0.009 
Empididae Empis sp. Linnaeus, 1758  0 0  0 0  3 1 4  0.34 0.007 
Empididae Hilara albipennis von Roser, 1840  0 0  0 0  0 2 2  0.20 0.005 
Empididae Hilara fuscipes Fabricius, 1794  0 0  0 0  0 2 2  0.62 0.011 
Empididae Hilara longivittata Zetterstedt, 1842  0 0  0 0  0 3 3  0.26 0.006 
Empididae Hilara maura Fabricius, 1776  0 0  0 0  0 2 2  0.63 0.011 
Empididae Hilara quadrula Chvala, 2002  0 0  0 0  1 0 1  0.43 0.008 

Empididae Rhamphomyia 
umbripennis Meigen, 1822  0 0  0 0  0 3 3  0.39 0.008 

Empididae unid Empididae  0 4  0 0  0 0 4  0.71 0.012 
Hybotidae Bicellaria spuria Fallen, 1816  0 0  0 0  0 2 2  0.10 0.003 
Hybotidae Drapetis incompleta Collin, 1926  0 0  0 0  0 1 1  0.03 0.001 
Hybotidae Euthyneura myrtilli Macquart, 1836  0 0  0 0  0 2 2  0.09 0.003 
Hybotidae Platypalpus Macquart, 1827  0 0  0 0  1 16 17  0.27 0.006 
Hybotidae Platypalpus agilis Meigen, 1822  0 0  0 0  2 10 12  0.32 0.007 
Hybotidae Platypalpus annulipes Meigen, 1822  0 0  0 0  2 0 2  0.26 0.006 
Hybotidae Platypalpus cursitans Fabricius, 1775  0 0  0 0  0 4 4  0.65 0.012 

Hybotidae Platypalpus 
interstinctus Collin, 1926  0 0  0 0  1 0 1  0.13 0.003 

Hybotidae Platypalpus 
leucocephalus von Roser, 1840  0 0  0 0  1 2 3  0.27 0.006 

Hybotidae Platypalpus longicornis Meigen, 1822  0 0  0 0  1 1 2  0.21 0.005 
Hybotidae Platypalpus longiseta Zetterstedt, 1842  0 0  0 0  4 2 6  0.17 0.004 
Hybotidae Platypalpus minutus Meigen, 1804  0 0  0 0  3 1 4  0.22 0.005 

Hybotidae Platypalpus 
pallidiventris Meigen, 1822  0 0  0 0  6 2 8  0.19 0.005 

Hybotidae Platypalpus verralli Collin, 1926  0 0  0 0  2 1 3  0.29 0.006 
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ORDER / Family  Genus / species Author 
SP  GE  SW   Dry 

weight 
(mg) 

Energ
y use 
(J h-1) 

IP 
(n=14) 

ORG 
(n=14)  

IP 
(n=15) 

ORG 
(n=15)  

IP 
(n=14) 

ORG 
(n=14) Total  

Hybotidae unid Hybotidae  0 0  0 0  0 2 2  0.22 0.005 
Micropezidae unid Micropezidae  0 0  0 0  1 0 1  0.32 0.007 
Rhagionidae unid Rhagionidae  0 0  2 0  0 0 2  0.24 0.005 
Syrphidae unid Syrphidae larvae  0 1  0 0  0 0 1  6.91 0.070 
 
HETEROPTERA              
Anthocoridae Anthocoris Fallen, 1814  0 1  0 0  1 0 2  0.53 0.010 
Anthocoridae Anthocoris nemoralis Fabricius, 1794  0 0  1 0  0 0 1  0.53 0.010 
Anthocoridae Anthocoris nemorum Linnaeus, 1761  0 0  0 0  2 3 5  0.53 0.010 
Anthocoridae Orius Wolff, 1811  0 2  13 104  0 0 119  0.16 0.004 
Anthocoridae Orius minutus Linnaeus, 1758  0 0  4 8  1 1 14  0.05 0.002 
Anthocoridae unid Anthocoridae  0 0  0 10  0 0 10  0.16 0.004 
Miridae Campylomma Reuter, 1878  20 19  0 0  0 0 39  0.16 0.004 
Miridae Campylomma verbasci Meyer-Dür, 1843  0 0  0 2  0 0 2  0.16 0.004 
Miridae Deraeocoris Kirschbaum, 1856  0 0  0 4  0 0 4  0.63 0.011 
Miridae Heterotoma planicornis Pallas, 1772  0 0  15 47  0 0 62  0.10 0.003 

Miridae Plagiognathus 
arbustorum Fabricius, 1794  0 0  0 3  0 0 3  1.22 0.019 

Nabidae Himacerus apterus Fabricius, 1798  0 0  2 0  0 0 2  1.41 0.021 
Nabidae Nabis sp. Latreille, 1802  0 0  0 0  1 0 1  4.24 0.048 
Nabidae unid Nabidae  0 1  0 0  0 0 1  2.95 0.037 
NEUROPTERA               
Chrysopidae Chrysoperla carnea Stephens, 1836  0 0  0 0  5 7 12  3.88 0.045 
Chrysopidae unid Chrysopidae  1 2  0 1  0 0 4  3.88 0.045 
Coniopterygidae Coniopteryx tineiformis Curtis, 1834  0 0  0 0  0 1 1  3.88 0.045 
Hemerobiidae Micromus variegatus Fabricius, 1793  0 0  0 0  0 1 1  3.88 0.045 

 unid Neuroptera  1 2  5 3  0 1 12  3.88 0.045 
OPILIONES              
 unid Opiliones  0 0  6 7  17 1 31  1.37 0.020 
Phalangiidae unid Phalangiidae   0 1  1 0  0 0 2  3.47 0.041 
      50 174  325 430  230 300 1509  360.56 4.564 
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Table S3.4. Effects of country (Spain (SP), Germany (GE) and Sweden (SW)) and management type (integrated 
production (IP); organic management (ORG)) on abundance of predator taxa to supplement Figure 3.2. 
Statistical results derived from GLM (F-values for quasi-Poisson, χ2 for Poisson and negative binomial; 
ANOVA type III) and post-hoc tests with Tukey contrasts indicating direction of differences between countries. 
Significant results (P < 0.05) in bold.  

 
 

Taxon Explanatory variable Statistics (F/ χ2, df, P value, post-hoc) Deviance 
(anova.glm) 

Deviance 
explained 
by model 
(%) 

All  Country χ2
2,80 = 48.6, P < 0.001 (SP < GE, SW) 45.9 43.4 

 Management χ2
1,80 = 18.4, P < 0.001 (IP < ORG) 14.8  

 Country × Management χ2
2,80 = 9.8, P = 0.008  9.8  

     
Araneae Country χ2

2,80 = 33.0, P < 0.001 (SP < GE, SW) 31.3 32.4 

 Management χ2
1,80 = 8.4, P = 0.004 (IP < ORG) 5.6  

 Country × Management χ2
2,80 = 7.3, P = 0.026  7.3  

     
Coleoptera Country χ2

2,80 = 4.7, P = 0.092 40.8 29.52 

 Management χ2
1,80 = 22.3, P < 0.001 (IP < ORG) 52  

 Country × Management χ2
2,80 = 10.5, P = 0.005 10.5  

     
Dermaptera Country F2,80 = 28.6, P < 0.001 (GE > SP, SW) 353.73 53.25 

 Management F1,80 = 1.5, P = 0.225 3.5  

 Country × Management F2,80 = 3.0, P = 0.057 26.7  
     
Diptera Country χ2

2,80 = 36.7, P < 0.001 (GE < SW) 80.8 58.5 

 Management χ2
1,80 = 4.1, P = 0.041 1.9  

 Country × Management χ2
2,80 = 10.7, P = 0.005 10.7  

     
Heteroptera Country χ2

2,80 = 8.6, P = 0.014 54.1 44.9 

 Management χ2
1,80 = 1.9, P = 0.165 4.8  

 Country × Management χ2
2,80 = 5.8, P = 0.056 5.8  

     
Neuroptera Country χ2

2,80 = 1.6, P = 0.565 4.3 7.5 

 Management χ2
1,80 = 0.9, P = 0.336 1.2  

 Country × Management χ2
2,80 = 1.3, P = 0.527 1.3  

     
Opiliones Country χ2

2,80 = 23.9, P < 0.001 (SP < GE) 19.3 33.1 

 Management χ2
1,80 = 0.1, P = 0.740 7.1  

 Country × Management χ2
2,80 = 11.5, P = 0.003 11.5  
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Table S5. Species list of plants including presence by country 

No. Species Author Family Spain Germany Sweden 

1 Abies alba Mill.. Pinaceae 0 1 0 

2 Acer campestre L. Aceraceae  0 1 0 

3 Acer platanoides L. Aceraceae  0 0 1 

4 Acer pseudoplatanus L. Aceraceae  0 1 0 

5 Achillea millefolium L. Asteraceae 0 1 1 

6 Aegopodium podagraria L. Apiaceae 0 1 1 

7 Alliaria petiolata 
(M. Bieb.) 
Cavara & 
Grande  

Brassicaceae  0 0 1 

8 Alnus glutinosa (L.) J. Gaertn Betulaceae 0 1 0 

9 Alnus incana (L.) Moench  Betulaceae 0 0 1 

10 Alnus sp. Mill. Betulaceae 0 0 1 

11 Amelanchier lamarckii cf. 
canadensis F. G. Schroed. Rosaceae 0 1 0 

12 Anagallis arvensis L. Primulaceae 1 1 0 

13 Anchusa hybrida Ten. Boraginaceae  1 0 0 

14 Anthemis sp. L. Asteraceae 1 0 0 

15 Anthriscus sylvestris (L.) Hoffm.  Apiaceae  0 0 1 

16 Arabidopsis thaliana (L.) Heynh. Brassicaceae 0 1 1 

17 Arabis glabra L. Brassicaceae  0 0 1 

18 Arenaria serpyllifolia L. Caryophyllaceae 0 1 0 

19 Artemisia vulgaris L. Asteraceae  0 0 1 

21 Athyrium filix-femina (L.) Roth Dryopteridaceae 0 1 0 

22 Atriplex hortensis L. Chenopodiaceae  0 1 0 

23 Barbarea intermedia Boreau  Brassicaceae  0 1 0 

24 Bellis perennis L. Asteraceae 0 1 1 

25 Beta vulgaris L. Chenopodiaceae  1 0 0 

26 Betula pendula Roth Betulaceae 0 1 1 

27 Borago officinalis L. Boraginaceae  1 0 0 

28 Brassica napus L. Brassicaceae 0 1 0 

29 Bryonia dioica Jacq. Cucurbitaceae 1 0 0 

30 Calendula officinalis L. Asteraceae  1 0 0 

31 Capsella bursa-pastoris (L.) Med. Brassicaceae 1 1 1 

32 Cardamine pratensis L. Brassicaceae 0 1 0 

33 Cardaria draba L. Brassicaceae  1 0 0 

34 Carpinus betulus L. Betulaceae 0 1 1 

35 Centaurea scabiosa L. Asteraceae  0 0 1 

36 Cerastium fontanum Baumg. Caryophyllaceae 0 1 1 

37 Cerastium glomeratum Thuill. Caryophyllaceae 1 1 0 

38 Cerastium holosteoides Fr. Caryophyllaceae 0 1 0 

39 Cerastium sp. L. Caryophyllaceae 0 1 1 

40 Cerastium sp.2   0 0 1 

41 Chelidonium majus L. Papaveraceae  1 0 0 

42 Chenopodium sp. L. Amaranthaceae 1 0 0 

43 Circaea intermedia Ehrh. Onagraceae 0 1 0 

44 Cirsium arvense (L.) Scop. Asteraceae 0 1 1 
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45 Clematis vitalba L. Ranunculaceae 0 1 0 

46 Convolvulus arvensis L. Convolvulaceae 1 1 0 

47 Convolvulus sp. L. Convolvulaceae 1 0 0 

48 Conyza sp. L. Asteraceae 1 0 0 

49 Cornus sanguinea L. Cornaceae 0 1 0 

50 Corylus avellana L. Betulaceae 0 1 1 

51 Crepis capillaris (L.) Wallr. Asteraceae 0 1 0 

52 Crepis sp. L. Asteraceae 1 1 1 

53 Crepis sp.2 L. Asteraceae 1 0 0 

54 Daucus carota L. Apiaceae 0 1 0 

55 Daucus sp. L. Apiaceae 1 0 0 

56 Diplotaxis erucoides (L.) DC. Brassicaceae  1 0 0 

57 Diplotaxis tenuifolia (L.) DC. Brassicaceae 0 1 0 

58 Epilobium montanum L. Onagraceae  0 0 1 

60 Equisetum arvense L. Equisetaceae 0 1 1 

61 Equisetum pratense Ehrh. Equisetaceae 0 0 1 

62 Erigeron canadensis L. Asteraceae 0 1 0 

63 Erophila verna L. Brassicaceae  0 0 1 

64 Eruca vesicaria (L.) Cav. Brassicaceae  1 0 0 

65 Erucastrum 
nastrutiifolium 

(Poir.) O. E. 
Schulz  Brassicaceae  1 0 0 

66 Erucastrum sp. C. Presl Brassicaceae  1 0 0 

67 Euonymus europaeus L. Celastraceae 0 1 0 

68 Euphorbia cyparissias L. Euphorbiaceae 0 1 0 

69 Euphorbia falcata L. n. cons. Euphorbiaceae 1 0 0 

70 Euphorbia helioscopia L. Euphorbiaceae 0 1 0 

71 Euphorbia sp. L. Euphorbiaceae 1 0 0 

72 Fagopyrum esculentum Moench Polygonaceae 0 1 0 

73 Fagus sylvatica L. Fagaceae 0 1 1 

74 Fallopia japonica (Houtt.) Ronse 
Decr. Polygonaceae 0 1 0 

75 Ficaria verna Huds. Ranunculaceae  0 1 0 

76 Filipendula ulmaria (L.) Maxim. Rosaceae 0 1 1 

77 Foeniculum vulgare Mill. Apiaceae 1 0 0 

78 Forsythia × intermedia  Zabel Oleaceae 0 1 0 

79 Fragaria vesca L. Rosaceae 0 0 1 

80 Fraxinus excelsior L. Oleaceae 0 1 1 

81 Fumaria officinalis L. Papaveraceae  1 0 0 

82 Galeopsis tetrahit L. Lamiaceae 0 1 0 

83 Galinsoga quadriradiata Ruiz & Pav. Asteraceae 0 1 0 

84 Galium album Mill. Rubiaceae 0 1 0 

85 Galium aparine L. Rubiaceae 1 1 1 

86 Galium mollugo L. Rubiaceae 0 1 0 

87 Galium palustre L. Rubiaceae 0 1 0 

88 Galium sp. L. Rubiaceae 1 1 1 

89 Galium sylvaticum L. Rubiaceae 0 1 0 

90 Galium verum L. Rubiaceae 0 0 1 

91 Geranium columbinum L. Geraniaceae 0 1 0 
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92 Geranium dissectum L. Geraniaceae 0 1 0 

93 Geranium molle L. Geraniaceae 1 0 1 

94 Geranium pyrenaicum Burm.  n. cons. 
prop.  Geraniaceae 0 1 1 

95 Geranium robertianum L. Geraniaceae 0 1 1 

96 Geranium sp. L. Geraniaceae 1 1 0 

97 Geranium sp.2 L. Geraniaceae 1 0 0 

98 Geum rivale L. Rosaceae 0 0 1 

99 Geum sp. L. Rosaceae 0 0 1 

100 Geum urbanum L. Rosaceae 0 1 1 

101 Glechoma hederacea L. Lamiaceae 0 1 1 

102 Glechoma hederacea 
subsp. hirsuta Waldst. & Kit.  Lamiaceae 0 1 0 

103 Hedera helix L. Araliaceae  0 1 0 

104 Hedera sp. L. Araliaceae  1 0 0 

105 Heracleum 
mantegazzianum 

Sommier & 
Levier  Apiaceae  0 0 1 

106 Heracleum sphondylium L. Apiaceae  0 0 1 

107 Hieracium sp. L. Asteraceae 0 1 0 

108 Hypericum maculatum Crantz Clusiaceae  0 0 1 

109 Hypericum perforatum L. Clusiaceae  0 0 1 

110 Impatiens glanulifera Royle Balsaminaceae  0 1 0 

111 Impatiens noli-tangere L. n. cons. Balsaminaceae  0 1 0 

113 Juglans regia L. Juglandaceae  0 1 0 

114 Lactuca serriola L. Asteraceae  1 0 0 

116 Lamium album L. Lamiaceae  0 1 1 

117 Lamium amplexicaule L. Lamiaceae  1 0 1 

118 Lamium galeobdolon Huds. Lamiaceae  0 1 1 

119 Lamium hybridum Vill. Lamiaceae  1 0 0 

120 Lamium purpureum L. Lamiaceae  0 0 1 

121 Lamium sp. L. Lamiaceae  1 0 1 

122 Lapsana communis L. Asteraceae  0 0 1 

123 Larix decidua Mill. Pinaceae  0 1 0 

124 Lathyrus pratensis L. Fabaceae  0 1 0 

125 Leucanthemum sp. Mill. Asteraceae  0 1 0 

126 Leucanthemum vulgare Lam. Asteraceae  0 1 0 

127 Ligustrum vulgare L. Oleaceae  0 1 0 

128 Lobullaria maritima (L.) Desv. Brassicaceae  1 0 0 

129 Lonicera periclymenum L. Caprifoliaceae  0 0 1 

130 Lonicera sp. L. Caprifoliaceae  0 0 1 

131 Lonicera xylosteum L. Caprifoliaceae  0 1 0 

132 Lotus corniculatus L. Fabaceae  0 1 0 

133 Lupinus sp. L. Fabaceae  0 1 0 

134 Maianthemum bifolium (L.) 
F.W.Schmidt Asparagaceae 0 0 1 

135 Malus domestica Mill. Rosaceae  0 1 1 

136 Malva sylvestris L. Malvaceae 1 0 0 

137 Mantisalca salmantica (L.) Briq. & 
Cavill. Asteraceae 1 0 0 

138 Marrubium vulgare L. Lamiaceae  1 0 0 
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139 Matricaria chamomilla L. Asteraceae  1 1 0 

140 Medicago falcata L. Fabaceae  1 1 0 

141 Medicago lupulina L. Fabaceae  0 1 1 

142 Medicago sativa L. Fabaceae  1 1 1 

143 Medicago sp. L. Fabaceae  1 0 1 

144 Mentha arvensis L. Lamiaceae  0 1 0 

145 Mercurialis perennis L. Euphorbiaceae  0 1 0 

146 Moehringia trinervia (L.) Clairv. Caryophyllaceae  0 0 1 

147 Myosotis arvensis (L.) Hill Boraginaceae  0 1 1 

148 Myosotis sp. L. Boraginaceae  0 1 0 

149 Olea europaea L. Oleaceae  1 0 0 

150 Onobrychis viciifolia Scop. Fabaceae 0 1 0 

151 Papaver argemone L. Papaveraceae  0 0 1 

152 Papaver rhoeas L. Papaveraceae  1 1 0 

153 Persicaria maculosa Gray n. cons. Polygonaceae  0 1 0 

154 Petasites hybridus (L.) G. Gaertn. 
et al  Asteraceae  0 0 1 

155 Phacelia tanacetifolia Benth. Boraginaceae  0 1 0 

156 Picea abies (L.) H.Karst. Pinaceae  0 1 0 

157 Picris sp. L. Asteraceae  1 0 0 

158 Pilosella officinarum L. Asteraceae  0 0 1 

159 Plantago conoronopus L. Plantaginaceae  1 0 0 

160 Plantago lanceolata L. Plantaginaceae  1 1 1 

161 Plantago major L. Plantaginaceae  0 1 1 

162 Plantago media L. Plantaginaceae  1 1 0 

163 Plantago sp. L. Plantaginaceae  1 0 0 

164 Polygonatum multiflorum (L.) All. Asparagaceae 0 0 1 

165 Polygonum aviculare L. Polygonaceae  1 1 1 

166 Polygonum sp. L. n. cons. Polygonaceae  1 0 0 

167 Potentilla anserina L. Rosaceae  0 1 0 

168 Potentilla reptans L. Rosaceae  1 1 1 

169 Potentilla sp. L. Rosaceae  0 0 1 

170 Primula veris L. Primulaceae  0 0 1 

171 Prunus avium L. Rosaceae  0 1 1 

172 Prunus domestica subsp. 
syriaca 

(Borkh.) 
Janch. ex 
Mansf. 

Rosaceae  0 1 0 

173 Prunus sp. L. Rosaceae  1 0 0 

174 Prunus spinosa L. Rosaceae  0 1 0 

175 Pteridium sp.  Dennstaedtiaceae 0 0 1 

176 Pyrus communis L. Rosaceae  0 1 0 

177 Quercus petraea (Mattuschka) 
Liebl. Fagaceae  0 1 0 

178 Quercus robur L. Fagaceae  0 1 1 

179 Ranunculus arcris L. Ranunculaceae  0 1 0 

180 Ranunculus bulbosus L. Ranunculaceae  0 0 1 

182 Ranunculus repens L. Ranunculaceae  0 1 1 

183 Ranunculus sp. L. Ranunculaceae  1 0 1 

184 Fallopia japonica (Houtt.) Ronse 
Decr. Polygonaceae  0 1 0 
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185 Ribes alpinum L. Grossulariaceae  0 0 1 

186 Rosa sp. L. n. cons. Rosaceae  0 1 1 

187 Rubia peregrina L. Rubiaceae 1 0 0 

188 Rubus caesius L. Rosaceae  0 0 1 

189 Rubus fruticosus L. n. cons. Rosaceae  0 1 0 

190 Rubus idaeus L. Rosaceae  0 0 1 

191 Rubus sp. L. Rosaceae  0 1 1 

192 Rubus ulmifolius Schott Rosaceae  1 0 0 

193 Rumex acetosa L. n. cons. Polygonaceae  0 0 1 

194 Rumex crispus L. Polygonaceae  0 1 1 

195 Rumex obtusifolius L. Polygonaceae  0 1 1 

196 Rumex sanguineus L. Polygonaceae  0 1 0 

197 Rumex sp. L. Polygonaceae  1 0 0 

198 Salix caprea L. Salicaceae  0 1 0 

199 Salix matsudana 
‘Tortuosa’ L. Salicaceae  0 1 0 

200 Salix sp. L. n. cons. Salicaceae  0 0 1 

201 Salix viminalis L. Salicaceae  0 1 0 

202 Sambucus nigra L. Adoxaceae 0 1 1 

203 Saponaria officinalis L. Caryophyllaceae  0 0 1 

204 Scabiosa columbaria L. Caprifoliaceae  0 1 0 

205 Senecio sp. L. Asteraceae  0 0 1 

206 Senecio vulgaris L. Asteraceae  1 1 1 

207 Sherardia arvensis L. Rubiaceae  1 1 0 

208 Silene sp. L. n. cons. Caryophyllaceae 0 1 0 

209 Silybum marianum (L.) Gaertn. Asteraceae  1 0 0 

210 Solanum dulcamara L. Solanaceae  0 1 0 

211 Solanum nigrum L. Solanaceae  1 0 0 

212 Solidago canadensis L. Asteraceae 0 1 0 

213 Sonchus oleraceus L. Asteraceae  0 1 0 

214 Sonchus sp. L. Asteraceae 1 0 0 

215 Sorbus aucuparia L. Rosaceae  0 0 1 

216 Stachys sylvatica L. Lamiaceae  0 1 0 

217 Stellaria holostea L. Caryophyllaceae 0 0 1 

218 Stellaria longifolia Muhl. ex 
Willd.  Caryophyllaceae 0 0 1 

219 Stellaria media (L.) Vill. Caryophyllaceae 0 1 1 

220 Stellaria sp. L. Caryophyllaceae 0 1 0 

221 Symphoricarpus albus (L.) S.F.Blake Caprifoliaceae  0 1 0 

222 Taraxacum officinale agg.  Asteraceae  1 1 0 

223 Taraxacum sp. F.H.Wigg. n. 
cons. Asteraceae  0 0 1 

224 Trientalis europaea L. n. cons. Primulaceae  0 0 1 

225 Trifolium campestre Schreb. Fabaceae  0 1 1 

226 Trifolium dubium Sibth. Fabaceae  0 1 1 

227 Trifolium medium L. Fabaceae  0 0 1 

228 Trifolium pratense L. Fabaceae  0 1 0 

229 Trifolium repens L. Fabaceae  0 1 1 

230 Trifolium sp. L. Fabaceae  1 1 1 
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231 Trifolium sp.2 L. Fabaceae  1 0 0 

232 Trifolium sp.3 L. Fabaceae  1 0 0 

233 
Tripleurospermum 
maritimum subsp. 
inodorum 

(Merat) 
M.Lainz Asteraceae  0 1 0 

234 Ulmus glabra Huds. Ulmaceae  0 1 1 

235 Urtica dioica L. Urticaceae  1 1 1 

236 Valerianella locusta (L.) Laterr. Caprifoliaceae 0 1 0 

237 Veronica anagallis 
aquatica L. Plantaginaceae  0 1 0 

238 Veronica arvensis L. Plantaginaceae  1 1 0 

239 Veronica chamaedrys L. Plantaginaceae  0 1 1 

240 Veronica filiformis Sm. Plantaginaceae  0 1 0 

241 Veronica hederifolia L. Plantaginaceae  0 1 1 

242 Veronica persica Poir. Plantaginaceae  0 1 1 

243 Veronica polita Fr. Plantaginaceae  0 1 0 

244 Veronica serpyllifolia L. Plantaginaceae  0 0 1 

245 Veronica sp. L. Plantaginaceae  1 1 1 

246 Veronica sp.2 L. Plantaginaceae  1 0 0 

248 Veronica verna L. Plantaginaceae  0 0 1 

249 Viburnum opulus L. Adoxaceae 0 1 0 

250 Vicia cracca L. Fabaceae  0 1 1 

251 Vicia hirsuta (L.) Gray Fabaceae  0 0 1 

252 Vicia sativa L. Fabaceae  0 0 1 

253 Vicia sepium L. Fabaceae  0 1 1 

254 Vicia sp. L. Fabaceae  1 1 1 

255 Viola arvensis Murray Violaceae  0 0 1 

256 Viola sp. L. Violaceae  0 1 0 

257 Weigelia sp. Thunb. Caprifoliaceae  0 1 0 
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Figure S3.1.  Species richness of predatory arthropods in integrated production (IP) and organic (ORG)  
apple orchards in Spain (SP), Germany (GE) and Sweden (SW) 
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Figure S3.2.  Response (A) of Heteroptera to % orchard cover in a 1-km-radius, (B) of Heteroptera to local 
plant species richness, and (C) of all predators to % orchard cover in integrated production (IP) and organic 
management (ORG) in Spain. Graphs are shown for significant local and landscape effects (glm, Table 3.1) 
but linear models are fit using the function ‘rlm’ from the ‘MASS’ package (robust regression using an M 
estimator with 95% confidence region). Note: plant species richness in SP differed significantly between 
ORG and IP (Table S3.1). 
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Figure S3.3. Predator biomass distribution in integrated production (IP) and organic (ORG) apple orchards in 
Spain (SP), Germany (GE) and Sweden (SW). 
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Figure S3.4. Correlation chart of variables included in the predator analysis for Spanish orchards. Scatterplot 
of total abundance (number of individuals per 24 trees) of Araneae, Coleoptera, Dermaptera, Diptera, 
Heteroptera, Neuroptera, Opiliones, total dry body mass (BodyMass, mg) and total energy use (EnergyUse,       
J h-1), cover of woody habitats (WoodyHab, m2) in a 20 m radius from the orchard edge, cover (%) of different 
land use types (see Table S3.1) in the surrounding of the orchard (1 km radius), landscape heterogeneity 
(Shannon’s Diversity Index, SHDI) and total plant species richness (TotPlant). Lower panels show scatterplots 
with a smoother added to visualize the patterns, panels in the middle show a histogram of each variable and 
upper panels contain Spearman’s correlation coefficients (r) with P-values (red for P < 0.05).  
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Figure S3.5. Correlation chart of variables included in the predator analysis for German orchards. See caption 
of Figure S3.4 for details. 

 

Figure S3.6. Correlation chart of variables included in the predator analysis for Swedish orchards. See caption 
of Figure S3.4 for details. 
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ABSTRACT 

Organic management, connective woody habitats, and landscape complexity are supposed to enhance 

beneficial arthropods and biological pest control in agro-ecosystems.  

We studied earwigs (Dermaptera: Forficulidae) as generalist predators and aphids (Hemiptera: 

Aphididae) as key pests serving as earwig prey in a total of 58 commercial apple orchards differing in 

management (integrated production (IP) versus organic) in Germany and Spain. We focused on the 

effects of local agri-environmental structures, orchard management, and composition of the 

surrounding landscape on earwig populations and on tree infestation by the woolly apple aphid 

(WAA), Eriosoma lanigerum.  

Surprisingly, the common earwig, Forficula auricularia, did not benefit from organic 

management in either country, and we found even slightly higher earwig abundances in IP than in 

organic orchards in Germany. In Spain, we found a negative impact of IP compared to organic 

management on abundance of the earwig Forficula pubescens, whereas orchard management did not 

affect the abundance of F. auricularia. The presence of woody habitats adjacent to the orchard 

reduced the abundance of F. auricularia in IP but not in organic orchards in Germany. We did not 

study the effects of woody habitats in Spain, where these structures were very scarce. There was no 

effect of high plant species richness at the orchard boundary or compositional landscape heterogeneity 

on earwig abundance in either country. In Germany, WAA infestation was very low and driven by 

landscape characteristics rather than orchard management. In Spain, WAA infestation differed 

strongly between management types (higher in organic orchards). There were no strong, consistent 

correlations between earwig abundance and WAA infestation in either country.  

Our study shows that adjacent woody structures and orchard management may affect earwigs in 

perennial cropping systems. The consequences of orchard management, however, seem to strongly 

depend on earwig species. Our study suggests that woody elements may serve as sink habitats - 

potentially attracting earwigs by providing alternative prey and shelter - in IP (but not in organic) 

orchards. 

 

Keywords: Agri-environmental structure; Biological pest control; Eriosoma lanigerum; Forficula 

auricularia; Integrated production; Organic farming. 
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INTRODUCTION 

Agricultural intensification affects biodiversity and biological pest control at various scales (Geiger et 

al., 2010; Jonsson et al., 2012; Rundlöf et al., 2007). Increased landscape complexity, local agri-

environmental structures and organic management have been promoted as potential ways to mitigate 

biodiversity loss and associated ecosystem services in agricultural areas (Batáry et al., 2015; Chaplin-

Kramer et al., 2011; Rusch et al., 2016). Increased landscape complexity (low proportion of crop 

cover; Jonsson et al., 2012) affects species in agricultural landscapes differently, and its effectiveness 

in promoting specific taxa depends on farmland type (Concepción et al., 2012). Large-scale studies of 

local and landscape effects on biodiversity and biological pest control have so far focused on annual 

cropping systems (Bianchi et al., 2006; Dainese et al., 2016; Tschumi et al., 2016). In contrast, little is 

known about how the interacting effects of landscape complexity, agri-environmental structures and 

management in perennial cropping systems, including orchards, affect generalist predators (Lefebvre 

et al., 2016; Malagnoux et al., 2015b; Marliac et al., 2016) such as chrysopids, coccinellids, 

anthocorids and earwigs. 

Earwigs as generalist predators in apple orchards 

The common European earwig, Forficula auricularia L. (Dermaptera: Forficulidae), is an omnivorous 

predator. Although it is sometimes considered a pest of stone and soft fruits (Saladini et al., 2016), 

farmers, consultants and scientists generally agree that the common earwig contributes to biological 

pest control by maintaining populations of several fruit tree herbivores below economic threshold 

levels (Cross et al., 2015; Dib et al., 2017; Logan et al., 2017). In apple cultivation, in particular, 

negative effects such as fruit damage and frass accumulation at harvest (Alford, 2014) seem to be 

negligible compared to the biological control benefits (Solomon et al., 2000).  

Aphids (Hemiptera: Aphididae) are major pests in apple orchards (Blommers 1994; Rousselin et 

al., 2017; Solomon et al., 2000). Different aphid species, including the rosy apple aphid, Dysaphis 

plantaginea Passerini (Dib et al., 2011; Miñarro et al., 2005), the green apple aphid, Aphis pomi De 

Geer (Carroll and Hoyt, 1984; Stoeckli et al., 2008b), and the woolly apple aphid, Eriosoma lanigerum 

Hausmann (Lordan et al., 2015a; Mueller et al., 1988; Nicholas et al., 2005), are amongst the main 

prey of earwigs in orchard environments (Dib et al., 2017). Other pests of fruit trees, including scale 

insects (Logan et al., 2017), psyllids (Sauphanor et al., 1993) and lepidopteran larvae and eggs (Unruh 

et al., 2016), may serve as supplementary food sources. Common earwigs mate in late autumn and 

overwinter as adults in underground shelters. In these shelters, females lay a first batch of eggs in late 

winter and a second one in May or June and nymphs hatch in early spring and late June. The highest 

numbers of adult earwigs can be found in mid-July and September (Alford, 2014; Solomon et al., 

2000). An earlier peak of earwig numbers between May and July has been reported from 
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Mediterranean orchards (Lordan et al., 2015b). Earwigs release a volatile aggregation pheromone, 

which enables conspecifics to detect and colonize previously occupied hideouts (Lordan et al., 2014). 

Thus, their populations can easily be surveyed and augmented using artificial shelters, which serve as 

daytime refuges (Burnip et al., 2002; Dib et al., 2017; Suckling et al., 2006). Their nocturnal activity 

leads to a higher effectiveness in regulating fruit pests at night than during the day (Logan et al., 

2017). Earwigs’ overall contribution to biological pest control in orchards has been estimated to 

reduce insecticide sprayings in orchards by up to three applications per year (Cross et al., 2015). 

Earwigs are especially important in the control of woolly apple aphids (Stap et al., 1987). In 

combination with the parasitoid Aphelinus mali Haldeman (Hymenoptera: Aphelinidae), earwigs can 

keep infestations of this pest below the economic threshold level (Nicholas et al., 2005).  

Local management and surrounding landscape  

High quality local habitats, including woodland edges and permanent grasslands, as well as agri-

environmental structures, including field margins, flower strips and hedgerows, provide increased 

plant richness, alternative prey, overwintering sites and refuge for natural enemies (Rusch et al., 2016; 

Simon et al., 2010; Tscharntke et al., 2007). At the landscape level, semi-natural habitats and a high 

proportion of uncultivated land-cover (Bianchi et al., 2006) are usually assumed to enhance predator 

communities and biological control. However, in some instances, forest cover has also been associated 

with reduced numbers of natural enemies (Sarthou et al., 2014). As far as earwigs are concerned, the 

presence of woody habitats and hedgerows in the orchard surroundings has been reported to enhance 

their abundance (Debras et al., 2007), but the amount (cover) of woody elements appears to be less 

important (Stutz and Entling, 2011). Earwigs’ sensitivity to habitat isolation can be explained by their 

dispersal mode and habitat preference. Earwigs are mostly walking dispersers inhabiting semi-open 

habitats and forests (Bucher et al., 2010). The benefits of woody structures and hedgerows on earwigs 

may be overridden by intensive orchard management and associated pesticide applications 

(Malagnoux et al., 2015b). 

Commercial apple orchards in Europe are usually managed either under integrated production 

(IP) or under organic management. The differences between these two types of management are 

mainly based on pesticide and fertilizer use as well as weed control (mostly soil tillage in organic 

orchards as opposed to herbicide use in IP orchards; see European Council Regulation (EC) No 

834/2007). Malagnoux et al. (2015b) reported higher insecticide (but not fungicide) application 

frequency in IP compared to organic orchards. Some insecticides have been shown to have non-target 

effects on earwigs (Beers et al., 2016, 2007; Gontijo et al., 2015; Sauphanor et al., 1993). Various 

laboratory and field tests revealed that non-target effects strongly depend on pesticide concentration 

and timing of application in relation to the earwigs’ life cycle (Fountain and Harris, 2015; Gobin et al., 

2008a; Moerkens et al., 2009).  



4. Earwigs and woolly apple aphids 

 75 

Landscape composition may constrain the effectiveness of agri-environmental structures and 

organic farming (Concepción et al., 2012; Holzschuh et al., 2008). Landscape effects on population 

dynamics of natural enemies and crop pests have often been analyzed within a 1 km radius, which 

proved to be a relevant scale to understand trophic interactions of different organisms and biological 

control agents (Rusch et al., 2016; Thies and Tscharntke, 1999). Compared to annual cropping 

systems, orchards are considered more stable habitats for natural enemies because perennial 

cultivation reduces disturbances such as crop rotation and plowing (Stutz and Entling, 2011). 

Although natural enemies in tree crops are assumed to be less dependent on landscape effects, non-

crop habitat cover in the surrounding landscape has been shown to enhance biological control in these 

perennial systems (Eilers and Klein, 2009). 

In this study, we test for the first time how local factors (plant species richness and woody 

habitats) and landscape composition (proportion of orchard cover within a 1-km-radius) interact with 

management (IP vs. organic) to affect earwig populations and their aphid prey in commercial apple 

orchards in two European countries. We expected higher earwig abundance in organic orchards due to 

lower management intensity and higher prey availability. We also expected increased earwig 

abundance in complex landscapes with a reduced proportion of crop cover and additional connective 

woody elements providing quality habitats. 

MATERIAL AND METHODS 

Study sites and study design 

Our study was conducted in 58 commercial apple orchards in SW Germany (lake Constance region, 

Baden-Württemberg; 47°43'N, 9°23'E; 15 IP and 15 organic) and NE Spain (Lleida province, 

41°37'N, 0°38'E; 8 IP and 9 organic; Girona province, 41°59'N, 2°49'E; 6 IP and 5 organic). Surveys 

were conducted in 2015 (both countries) and in 2016 (Germany only; the same orchards as in 2015 

with the exception of one IP orchard). Annual mean temperature and annual precipitation in the study 

areas were 11.1 °C and 736 mm (Constance 2015), 10.7 °C and 977.8 mm (Constance 2016) (DWD, 

2017); 14.4 ºC and 199.7 mm (Lleida 2015) and 14.9 ºC and 541 mm (Girona 2015) (IDESCAT, 

2017). 

Orchards were planted with trees grafted on dwarfing rootstocks (M9; 2.0-3.5 m height; 6-18 

years old, Table 4.1). Trees were grown in rows at different spacing (minimum 3 × 1 m, maximum 4 × 

5 m). Orchard size ranged from 0.7 to 4 ha. Surveys were conducted along a 40-m-long row transect 

per orchard. To avoid dilution effects, transect rows were at least two rows away from rows of 

pollinizer cultivars and orchard edges. 

In Germany, all orchards were covered with hail nets from the time of flowering (May) until 
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harvest (September-October). The studied cultivar was Braeburn. Minimum distance between orchards 

of different management type was 2 km. In Spain, only three orchards had hail nets. The main 

cultivars in Spain were Golden and Gala. Minimum distance between orchards of different 

management type was 1 km. 

Earwig surveys 

In Germany, one earwig shelter consisting of two bamboo sections was set up at a height of 120 cm on 

the trunk of each of five trees in the middle of each transect (about 20 m away from the orchard edge). 

Shelters were placed vertically with the blind end (internode) facing up as a protection against rain. 

Bamboo sections had a diameter of 1.7±0.7 cm (mean±SD) and a length of 28.1±7.3 cm. Shelters were 

installed in the first week of June 2015 and left in place for two years. They were emptied and dry-

cleaned with brushes after each sampling. In 2015, sampling took place on July 27-31 after shelters 

had been exposed for seven weeks (40-60 % final fruit size; BBCH 74-77; Meier, 2001). In 2016, 

earwigs were sampled three times: May 23 - June 3 (i.e. after exposure during winter), July 25 - 

August 8 (after 9 weeks of exposure), and September 12-16 (after 6 weeks of exposure) (BBCH 71-74, 

75-78, 79-84). In both years, earwigs were extracted from the shelters by strong beating. 

In Spain, bands of corrugated cardboard (100 × 400 × 35 mm) were used as shelters. These 

shelters were stapled to the trunks (approx. 40 cm above ground) of uniformly distributed trees along 

the 40 m survey transects (n = 25-51 trees per orchard, one shelter per tree). Shelters were installed on 

June 1-5, 2015 and sampled once two weeks later (BBCH 73-75). Table S4.1 provides an overview of 

the sampling methods used in each country. 

Woolly apple aphid surveys 

In Germany, we checked for presence/absence of woolly apple aphids (WAA) on 30-32 randomly 

chosen trees along each survey transect to estimate the proportion of infested trees per orchard. We 

excluded trees with earwig shelters to obtain representative values of WAA infestation for each 

orchard and to avoid bias by experimental shelters. WAA surveys were carried out on July 15-31, 

2015 (BBCH 74-77), July 26 – August 2, 2016 (BBCH 75-78) and September 12-16, 2016 (BBCH 79-

84).  

In Spain, we checked for presence/absence of WAA on trees of the survey transects (n=13-44 

trees per orchard; mean = 33) to estimate the proportion of infested trees per orchard. The surveys 

were conducted on May 21-29, 2015 (BBCH 73-74), before earwig shelters were installed.  

Orchard management  

In both management types (IP and organic), apple growers conducted standard pesticide treatments 

using air-assisted sprayers, following label recommendations and advice from local plant protection 

consultants. We validated standard pesticide lists for each country and management type with spraying 
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data provided by farmers or their consultants. As access to data on treatments was limited, we could 

only analyze the spraying data from 5 IP and 5 organic orchards in Germany, and 3 IP and 4 organic 

orchards in Spain (Table S4.2). We focused on substances with reported effects on earwigs and aphids. 

In IP orchards in both countries, several synthetic insecticides were applied against aphids and other 

pests. Some active compounds of these pesticides are known for harmful side effects on earwigs 

(Table S4.2), including organophosphates and neonicotinoids (Fountain and Harris, 2015; Malagnoux 

et al., 2015a). Organic growers in both countries applied only insecticides for which no or minor side 

effects on earwigs have been reported (Table S4.2). There was no management of WAA in organic 

orchards in either country but several IP farmers in Germany applied aphicides such as Pirimor® to 

control this pest. 

Adjacent agri-environmental structures and landscape composition 

Hedgerows, forest edges and other woody elements, including orchard meadows (traditional 

unmanaged orchards with extensive pruning strategy), were considered relevant agri-environmental 

structures (AES). We recorded the presence and cover (m2) of woody structures within a radius of 20 

m from the first transect-trees (those located at the orchard edge) (see Table 4.1 for orchard and 

landscape characteristics). 

We conducted vegetation surveys within a radius of 20 m from the first transect tree in both 

countries during apple bloom in 2015. We surveyed entomophilous plants in 1 × 1 m quadrates in the 

adjacent habitat, considering plant species richness as a proxy for extra-orchard habitat quality. In 

Germany, overall species richness of plants was assessed in six quadrates (equally distributed in case 

more than one habitat type adjoined the orchard). In Spain, plant species richness was assessed in three 

quadrates per habitat type (e.g. fallow field, embankment, grassy pathway, hedgerow). For this reason, 

the total number of survey quadrates differed between orchards in Spain, and we used sample-based 

rarefaction to obtain a comparable number of plant species for three quadrates per orchard (Gotelli and 

Colwell, 2001). 

We used official digital maps (Carreras and Diego, 2009; LGL, 2016; SIOSE, 2015) and 

Geographic Information Systems and Remote Sensing software ArcView 10.3.1 (ESRI) and MiraMon 

(CREAF) to quantify landscape characteristics. Landscape analysis targeted % orchard cover 

(excluding orchard meadows, i.e. orchards without visible row structure on aerial photographs), 

grassland, cropland and forest (Table 4.1) within a 1 km radius around the center of each transect. 

The distinction between crop-habitats and non-crop habitats has proved as a suitable measure of 

effects of landscape composition on natural pest control (Bianchi et al., 2006). Amongst arable 

cropland in Spain, and forest cover and cropland in Germany, fruit orchards are a dominant cover type 

in both study regions (Table 4.1; see ‘Results’ for correlations between landscape variables). We thus 

focused on orchard cover (the proportion of intensively managed fruit orchards) as a simple and robust 
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proxy of dominant crop-habitats in both countries, to analyze effects of landscape composition and to 

avoid collinearity between different cover types (Rusch et al., 2016). We additionally computed 

correlations between orchard cover and landscape complexity metrics (Shannon index; e.g. Chaplin-

Kramer et al., 2011).  

Statistical analyses 

All statistical analyses were conducted using R version 3.3.2 (R Core Team, 2016). For German 

earwig and aphid data, we run separate models (LM and GLM) for each sampling period. We applied 

a binomial distribution (accounting for overdispersion by correcting the standard errors using a quasi-

GLM) for WAA presence/absence. The response variables were mean number of earwigs per tree 

(‘earwig abundance’) and proportion of trees infested by aphids. We used the factors management (IP 

vs. organic) and adjacent local woody elements (‘woody AES’: presence vs. absence) and the 

continuous variables ‘plant species richness’ and ‘orchard cover’ (%) in the surrounding landscape as 

predictors. In the full model, we allowed first level interactions among management and all other 

predictors. 

We applied linear models (LM) for Spanish earwig data to assess effects of orchard cover, plant 

species richness and management on mean number of earwigs per shelter. We conducted separate 

analyses for each of the two earwig species that we found in Spain. Nymphs could not be 

unambiguously assigned to either species and were excluded from the analyses. We did not assess the 

effects of woody AES in Spain because they were only present in four (one IP, three organic) of the 28 

orchards. To analyze Spanish aphid data, we used GLMs with binomial distribution (accounting for 

overdispersion by using a quasi-GLM). 

We applied visual methods (quantile-quantile plots and residuals vs. fitted values) and Shapiro-

Wilk-tests to check the distribution of the residuals. To meet the criterion of normality, we log-

transformed the response variable in the earwig analyses of both countries. To prevent problems with 

zero values, we added a value corresponding to half the amount of the smallest mean abundance per 

tree (0.1 for Germany, 0.03 for Spain) to each earwig abundance value. 

We used Akaike’s information criterion corrected for small sample size (AICc) and F-tests to 

select the models with the best fit in a manual model simplification process (Pinheiro and Bates, 2000; 

Zuur et al., 2009). We calculated adjusted R2 values (for LMs) and the explained deviance, comparing 

the difference of null deviance and residual deviance to null deviance, to assess the goodness-of-fit of 

GLMs (Dormann, 2013) and conducted outlier exclusion (Cook et al., 1982; Dormann, 2013) to check 

for influential measures. We refer to probability levels as significant for P < 0.05. 

To test the relationship between the mean number of earwigs and the proportion of trees 

infested by aphids, we calculated Spearman’s rank correlation coefficient (ρ). We also used 

Spearman’s rank correlations (Figs. S4.1-2) and GLMs to check for independence of the explanatory 
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variables included for Germany and Spain (Table S4.3). See Table S4.1 for an overview on differences 

in model specification and relevant factors in the two countries. 

RESULTS 

Agri-environmental structures and landscape composition 

In Germany, plant species richness in the surroundings of the orchard ranged from 3 to 42 and did not 

differ between management types (Table 4.1). In Spain, plant species richness ranged from 2 to 21.1 

plant species (rarefied values). It was higher in organic than in IP orchards (t23.5 = 2.42, P = 0.02; Table 

4.1). In Germany, woody AES were present in 9 organic and 8 IP orchards in 2015, and in 9 organic 

and 7 IP orchards in 2016. Plant species richness was independent of presence of woody AES (Table 

S4.3). Woody AES were scarce in Spain (Table 4.1). Orchard cover was, by far, the most relevant 

agricultural land use type in both countries. Percentage of orchard cover in the surrounding landscape 

(radius 1 km) ranged from 3.4 - 63.7% in Germany and 0 - 97.1% in Spain. It did not differ between 

management types (Table S4.3). In Germany, orchard cover was negatively correlated to forest cover 

(ρ = -0.60, P < 0.001; Fig. S4.1) and arable cropland (ρ = -0.48, P = 0.008; Fig. S4.1). Landscape 

heterogeneity (Shannon index) was lower in landscapes with a high proportion of orchard cover (ρ = -

0.38, P = 0.041; Fig. S4.1). In Spain, landscapes with a high cover (%) of orchards had a lower cover 

of arable cropland (ρ = -0.87, P < 0.001; Fig. S4.2) but were not characterized by a lower Shannon 

index (ρ = 0.04, P = 0.851; Fig. S4.2). Plant species richness in this country decreased with increasing 

orchard cover under IP but not under organic production (GLM: F1,24 = 4.84, P = 0.038, Table S4.3). 

Table 4.1. Orchard characteristics (age and size), land use types (% cover in 1 km radius), plant species 
richness and local woody habitat (woody AES) cover in a 20-m radius from the edge of the orchard, in apple 
orchards in Germany (cultivar Braeburn) and Spain (Golden and Gala) for two management types (integrated 
production ‘IP’ vs. organic) in 2015 (mean±SD). Significant differences between management types within 
each country are shown in bold (t-tests; P < 0.05). 

 Germany (n=30)   Spain (n=28) 
 IP  Organic  IP  Organic 

Age (years) 9.7±3.7  9.9±3.0   11.4±7.3  13.3±8.3 
Size (ha) 1.0±0.6  0.9±0.6  1.7±1.1  2.4±2.8 
Cropland (%) 20.9±12.8  27.2±15.8  51.8±29.2  51.0±34.0 
Forest (%) 19.3±17.3  19.5±15.6  1.0±2.0  2.6±3.3 
Grassland (%) 11.9±5.6  14.0±6.2  0.6±0.9  1.3±2.7 
Orchard (%) 34.1±16.4  27.0±11.1  41.6±30.5  32.5±31.1 
Plant species richness 13.3±5.1  16.5±10.5  8.3±3.1  11.7±4.3 
Woody AES present 8  9  1  3 
Woody AES (m2) 129.0±176.8  152.7±189.4  33.2±124.3  50.0±100.7 
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Earwig surveys 

 In Germany we collected 5104 specimens of Forficula auricularia. Earwigs occurred in all orchards 

of both management types (IP: 2612 specimens; organic: 2492 (Table S4.4)). The survey in May 2016 

yielded very low numbers (only 43 individuals, 20 of which in a single organic orchard), and was not 

included in the analysis. Earwig abundance differed significantly between sampling periods and 

between orchards with and without woody AES, depending on management (LM: Management: F1,81 

= 1.93, P = 0.169; Woody AES: F1,8 = 8.86, P = 0.004; Sampling period: F2,81 = 7.97, P < 0.001; 

Management × woody AES: F1,81 = 9.27, P = 0.003; Table S4.4). Earwig abundance peaked in July 

and decreased in September (Table S4.4). There was no direct effect of management on earwig 

abundance in any of the three analyzed sampling periods. The presence of woody AES reduced the 

number of earwigs in IP orchards in July (Fig. 4.1, Table 4.2). Neither local plant species richness nor 

orchard cover in the surrounding landscape influenced earwig abundance. There was a significant 

interaction between management and presence of woody AES on earwig abundance in both years in 

July but not in September (Table 4.2). 

In Spain, we collected 5056 earwigs belonging to two species: F. auricularia (82.2%; 1991 

specimens in IP and 2165 in organic orchards) and F. pubescens Gené (9.6%; 2 specimens in IP and 

484 in organic orchards). The remaining specimens were nymphs and could not be identified to 

species (Table S4.5). F. auricularia was present in 13 out of 14 organic orchards and in 12 out of 13 

IP orchards, whereas F. pubescens was present in 9 organic and in 1 IP orchard. For abundance of F. 

auricularia, we did not find any effect of management, orchard cover or plant species richness, and 

Figure 4.1. Mean number of earwigs (Forficula auricularia) per tree in German orchards. We tested for effects 
of two management types (IP vs. organic) and the presence or absence of woody agri-environmental structures 
(woody AES) in a 20-m radius in three sampling periods (July 2015 and 2016, and September 2016). Level of 
significance: * < 0.05, ** < 0.01; cf. Table 4.2. 
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the null-model performed best (F = 0.34, P = 0.882; comparison with the full-model, Table 4.2). On 

the other hand, organic management significantly increased the abundance of F. pubescens (Fig. 4.2, 

Table 4.2).  

 

Table 4.2. Effects of management, and local and landscape factors on earwig (Forficula auricularia and F. 
pubescens) abundance (mean number of earwigs per tree). Predictors are management (IP vs. organic), woody 
agri-environmental structures (Germany only; woody AES were scarce in Spain), plant species richness, and % 
orchard cover in the landscape. Effects on mean earwig abundance per tree (log-transformed) were assessed 
fitting linear regressions; in Germany for each sampling period. R2 is given as a goodness-of-fit measure. For 
Spain, results of the linear regression for mean earwig abundance (log-transformed) per tree are provided. 
Significant effects are shown in bold. 
 

  df F P   Estimate±SE 
GERMANY (F. auricularia)      
July 2015: R2

adj = 0.24      
Intercept 1 106.22 <0.001  2.40±0.23 
Management 1 1.03 0.320  0.33±0.33 
Woody AES	 1 4.65 0.040  -0.71±0.33 
Management × woody AES	 1 5.84 0.023  1.12 ±0.47 
Residuals 26     

July 2016: R2
adj = 0.19     

Intercept 1 36.6 <0.001  1.61±0.27 
Management 1 2.29 0.143  -0.57±0.38 
Woody AES 1 3.63  0.068  -0.71±0.38 
Management × woody AES	 1 4.63 0.041  1.14±0.53 
Residuals 25     

Sept 2016: R2
adj = 0.09      

Intercept 1 17.30 <0.001  1.00±0.24 
Management 1 3.67 0.066  -0.65±0.34 
Residuals 26     

 
SPAIN 

     

F. auricularia: R2
adj = -0.15    

Intercept 1 0.49 0.490  1.21±1.72 
Management 1 0.43 0.520  -1.60±2.44 
Plant species richness 1 0.12 0.732  -0.05±0.15 
Orchard cover 1 0.90 0.354  -0.02±0.02 
Management × plant species richness 1 0.55 0.467  0.15±0.20 
Management × orchard cover 1 0.05 0.047  -0.01±0.02 
Residuals 21     

F. pubescens: R2
adj = 0.28    

Intercept 1 86.23 <0.001  -1.26± 0.28 
Management	 1 9.38 0.005  1.20 ±0.39 
Residuals 25     
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Woolly apple aphid surveys 

In Germany, tree infestation by WAA differed between 

survey periods and management types (GLM: 

Management: F1,80 = 2.77, P = 0.100; Survey period: 

F2,80 = 0.75, P = 0.475; Woody AES: F1,80 = 4.47, P = 

0.038; Management × woody AES: F1,80 = 3.41, P = 

0.038; Table S4.4). It was highest in July in 2016 and 

lowest in July in 2015 (Fig. 4.3a). In separate analyses 

for each survey period, neither management type nor the 

presence of woody AES affected the proportion of 

infested trees. However, higher orchard cover in the 

surrounding landscape resulted in higher infestation 

levels (Table 4.3). We found a significant negative 

correlation between earwig abundance and aphid 

infestation in July 2016, when WAA infestation was 

high (ρ = -0.43, P = 0.019). The correlation between 

earwigs and WAA in other months was negative but not significant (July-2015: ρ = -0.26, P = 0.171, 

September-2016: ρ = -0.23, P = 0.229).  

In Spanish orchards, tree infestation by WAA was higher in organic orchards and was not 

affected by any other of the examined predictors (Fig. 4.3b, Table 4.3, Table S4.5). There was no 

significant correlation between abundance of F. auricularia or F. pubescens and WAA infestation 

(Fig. S4.2; F. auricularia – WAA: ρ = -0.19, P = 0.320; F. pubescens – WAA: ρ = 0.30, P = 0.125). 

Figure 4.3. Proportion of trees (Germany: 30-32 per orchard; Spain: 13-44 trees per orchard) infested by 
woolly apple aphids in apple orchards with different management types (IP vs. organic) for (a) three sampling 
periods (July 2015 and 2016, and September 2016) in Germany and (b) one sampling period (May 2015) in 
Spain. 

Figure 4.2. Mean number of earwigs 
(Forficula auricularia and F. pubescens) per 
tree in Spanish orchards for two management 
types (IP vs. organic). Level of significance: 
** < 0.01; cf. Table 4.2. 
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DISCUSSION 

Orchard management 

We expected higher earwig abundance in organic orchards due to the reduced application of 

agrochemicals with non-target effects on earwigs. Malagnoux et al. (2015b) showed that intensive 

orchard management and frequent pesticide use can have a strong negative impact on earwig 

populations in apple orchards, but they faced difficulties to disentangle direct (pesticide toxicity) from 

indirect (food reduction) effects. Like Moerkens et al. (2009), we did not detect a direct effect of 

management on abundance of the common earwig F. auricularia. This species was well established in 

both organic and IP orchards, suggesting that it can do well under both management types in both 

countries. On the other hand, the higher sensitivity of the Mediterranean earwig species F. pubescens 

to integrated pest management is in accordance with findings by Malagnoux et al. (2015b) who found 

Table 4.3. Effects of management, and local and landscape factors on woolly apple aphid (WAA) infestation 
(proportion of infested trees per orchard). Predictors are management (IP vs. organic), woody agri-
environmental structures (Germany only; woody AES were scarce in Spain), plant species richness and % 
orchard cover. For both countries, effects on woolly apple aphid infestation were assessed fitting GLMs with 
quasi-binomial distribution (logit-link) for each sampling period. The explained deviance (dev. expl.) is given 
as a goodness-of-fit measure. Significant effects are shown in bold. 
  df F P   Estimate±SE 
GERMANY      
July 2015: 8 out of 30 orchards with WAA presence; 22.8 % dev. expl. 

Intercept     -5.63±1.10 
Orchard cover	 1 7.10 0.013  0.06±0.03 
Residuals 28     

July 2016: 9/29; 18.1 % dev. expl.    
Intercept     -3.35±1.29 
Management 1 1.03 0.321  0.64±0.66 
Plant species richness 1 0.43 0.517  0.03±0.04 
Orchard cover 1 0.33 0.574  -0.02±0.03 
Woody AES 1 1.28 0.268  1.04±0.99 
Residuals 24     

Sept 2016: 8/29; 35.4 % dev. expl.  
Intercept     -3.39±1.15 
Management 1 1.22 0.280  0.70±0.68 
Plant species richness 1 2.53 0.125  0.05±0.03 
Orchard cover 1 2.71 0.113  -0.06±0.04 
Woody AES 1 1.28 0.270  1.03±0.97 
Residuals 23     

      
SPAIN: 17/28; 20.5 % dev. expl.   

Intercept     -2.47±0.70 
Management	 1 7.04 0.013  1.89±0.80 
Residuals 26     
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lower abundances of F. pubescens in IP compared to organic orchards in France. Although earwigs are 

nocturnal and therefore their activity does not directly coincide with the timing of pesticide 

application, intensive management can be expected to alter living conditions for earwigs, and 

apparently does so for F. pubescens. Despite strong application regulations, several active compounds, 

such as chlorpyrifos and flonicamid (Table S4.2) used in commercial apple orchards in Germany and 

Spain, are known to have non-target effects on earwigs depending on dose and application time 

(Fountain and Harris, 2015; Malagnoux et al., 2015b). Organic management, on the other hand, can 

deteriorate living conditions of earwigs through tillage (Moerkens et al., 2012). Earwigs depend on 

undisturbed nesting sites in the soil during winter and spring, and there is evidence that optimized 

timing of tillage, i.e. before nesting starts in autumn and after nymphs hatch in spring, may reduce 

negative impacts of tillage on earwigs (Moerkens et al., 2012; Sharley et al., 2008). The negative 

effects of tillage in organic orchards could have counteracted the positive effects of reduced 

agrochemical inputs in our study. However, some studies indicate that F. auricularia does not 

overwinter within the orchards, thus, limiting the effects of tillage in organic orchards (Romeu-

Dalmau et al., 2016). In Spain, F. pubescens may have benefited from increased prey availability due 

to higher WAA infestation in organic orchards, or it may have directly suffered from agrochemicals 

that were only applied in IP orchards (Table S4.2).  

Given the absence of strong management effects on WAA infestation in Germany, our data 

provides no indication that higher prey abundance in organic orchards could directly enhance earwig 

populations in organic compared to IP orchards. However, because earwigs are generalist predators, 

other groups of prey should also be considered to elucidate whether prey availability regulates earwig 

populations in apple orchards. WAA showed similar (and low) abundance in German orchards of both 

management types. The observed higher proportion of WAA at an increased cover of fruit orchards 

(%) in the landscape indicates a higher infestation pressure by WAA in landscapes dominated by a 

single crop (mostly apple). This finding is in accordance with the ‘resource concentration hypothesis’ 

(O’Rourke and Petersen, 2017) and congruent with the low mobility of WAA (dispersal of first instar 

nymphs between trees) combined with a strong dependence on apple as a host plant (Lordan et al., 

2015a).  

Woody agri-environmental structures 

We were surprised to find lower earwig abundances in IP orchards with adjacent woody AES. Dib et 

al. (2017) found larger earwig populations at the orchard edge adjacent to a hedgerow compared to the 

center. They argued that hedgerows can be considered source habitats for earwigs and other natural 

enemies (Debras et al., 2007). Similarly, abundance of earwigs in experimental cherry orchards was 

reported to be lower in isolated habitats with no direct connection to woody elements (Bucher et al., 

2010). Trees adjacent to the forest had earwig densities more than four times higher and lower aphid 
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infestations than trees isolated from woody habitats (Stutz and Entling, 2011). Our results suggest a 

different response of earwigs. An explanation could be that our orchards were more mature (5-17 

years old) than the newly established orchards studied by Bucher et al. (2010) and Stutz & Entling 

(2011), where initial colonization of the new habitat and absence of intensive management practices 

may have caused higher earwig abundances in orchards with adjacent woody habitats. In organic 

orchards we found no differences in earwig abundance between orchards with and without woody 

AES, suggesting that earwig populations in these orchards are well established and find suitable refuge 

sites within the orchard. By contrast, earwig abundance declined in IP orchards when woody AES 

were present. A possible explanation for this finding is that earwig populations may survive in these 

orchards but tend to use adjacent woody structures when they are available. 

Despite their limited flight activity, earwigs were found to move 8-29 m per month (Crumb et 

al., 1941; Moerkens et al., 2010). Earwigs collected in a recapture experiment in French orchards 

showed even larger foraging ranges. Individuals were detected 150 m away from the orchard, in 

adjacent apricot orchards (Debras et al., 2007). If earwigs in IP orchards are attracted to high quality 

surrounding habitats that provide alternative foraging opportunities at high population densities they 

might have easily moved to the woody boundaries. Competition as a trigger for migration is 

nevertheless questioned by Moerkens et al. (2009), who found very few adult earwigs when 

monitoring remigration to the ground. Limitations in dispersal ability on a landscape scale may help to 

explain that we did not detect any effects of orchard cover. 

Another explanation for lower earwig abundances in IP orchards with adjacent woody habitats 

could be differing top-down regulation by insectivorous birds (Gunnarsson et al., 2009; Piñol et al., 

2010), which strongly depend on woody habitats in the surroundings of orchards (García et al., 2018). 

Nevertheless, the regular use of anti-hail nets in commercial orchards in Germany might have impeded 

predation by insectivorous birds, which can be negatively affected by the nets (Brambilla et al., 2015). 

Conclusion 

Our study demonstrates that - despite intensive management practices - the common earwig F. 

auricularia is well established in commercial orchards in Germany and Spain. Other earwig species, 

such as F. pubescens in Spain, appear to be more sensitive to local management as they were more 

abundant in organic than in IP orchards. Contrary to previous reports, the presence of adjacent woody 

elements decreased earwig abundance in IP orchards, but not in organic ones. We suggest that, 

depending on the environmental conditions in the orchard, earwigs may use these semi-natural 

structures as temporary habitats. 
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Table S4.1. Summary of study design in Germany and Spain and analyses conducted for earwigs and woolly 
apple aphids (WAA); AES: agri-environmental structure. We allowed for first level interactions between 
management and all other variables, including the term (Orchard cover)2 in the initial model. In Germany, we 
analyzed data subsets for each sampling period but also report the effects of sampling period (full dataset). 
Factors and interactions with a significant effect are shown in bold.  

 

 

Table S4.2. Applied pesticides and their side effects on earwigs (IOBC toxicity class* for active compound 
indicated if available). The permission and application status is indicated for both countries and management 
types (IP vs. organic (ORG)). Sources: spraying reports, farmer/expert interviews, official spraying 
recommendations (FÖKO, 2017, 2016; LTZ, 2017). 

 

 

 

 Country 
Target 
group 

Sampling  
period 

Exposition  
time 

Sampling 
method 

Number  
of orchards 

Sampled 
trees  
per orchard 

Response  
variable 

Predictors 
Model  
type 

Germany Earwigs 

 
Jul 27-31, 2015  
Jul 25 - Aug 8, 2016  
Sep 12-16, 2016  
 

7 weeks 
9 weeks 
6 weeks  

Shelters 
15 IP, 15 ORG 

15 IP, 14 ORGa 
14 IP, 14 ORGb 

5 

Mean 
number  
of earwigs  
per tree 

(Sampling period) 
Management x woody AES 
Management  
Woody AES  
Orchard cover  
Plant species richness 

LM 

          

 
WAA 

Jul 15-31, 2015  
Jul 26 – Aug 2, 2016  
Sep 12-16, 2016 

 
Visual  
survey 

 
15 IP, 15 ORG 
15 IP, 14 ORGa 
15 IP, 14 ORGa 
 

30 in 2015 
32 in 2016 
 

Proportion  
of infested  
trees 

(Sampling period) 
Management  
Woody AES  
Orchard cover 
Plant species richness 

GLM 
(binomial) 

          

Spain Earwigs Jun 14-19, 2015  2 weeks Shelters 
13 IPb  
14 ORG 

25-51  

Mean 
number  
of earwigs  
per tree 

Species x management  
Species 
Management 
Orchard cover 
Plant species richness  

LM 

  WAA May 21-29, 2015   
Visual  
survey 

14 IP 
14 ORG 

13-44 
Proportion  
of infested  
trees 

Management 
Orchard cover 
Plant species richness  

GLM 
(binomial) 

a2016: one IP orchard less due to change in management, bearwig traps lost in one IP orchard  
  

 

 
 
 
 

    Spain Germany Non-target effect on earwigs 

Active substance Commercial product name (examples) IP ORG† IP ORG† IOBC* IOBC-reference Other references 

Acetamiprid Mospilan® SG (Cheminova)  (+) - (-) - 
  

Harmful to adults (Malagnoux et al., 
2015) 

Azadirachtin NeemAzal-T/S® (Trifolio-M GmbH)   (+) + (-) + 3, 4 (Sauphanor et al., 
1995)  

Bacillus 
thuringiensis 

XenTari® (Biofa) / Dipel® ES 
(Cheminova) 

(+) (+) (-) + 1 (Sterk et al., 1999) 
Safe (Colvin and Cranshaw, 2009; 
Fountain and Harris, 2015)  

Chlorpyrifos 
Inaclor 25 PM (Sipcam Inagra) / 
DurasbanTM 75 WG (Dow 
AgroScience) / Reldan® E (Dow 
AgroScience)  

+ - (-) - 
  

Harmful (Fountain and Harris, 2015; 
Malagnoux et al., 2015) 

Deltamethrin Proteus® O-TEQ (Bayer) + - (-) -   
Safe (Malagnoux et al., 2015), slightly 
harmful (Colvin and Cranshaw, 2009) 

Flonicamid Teppeki® (ISK Biosciences Europe) + - + - 
  

Harmful for nymphs (Fountain and 
Harris, 2015) 

Indoxacarb Steward® (Stähler)  (+) - (+) - 
  

Harmful to males (Fountain and 
Harris, 2015), harmful (Shaw and 
Wallis, 2010); harmful (Jones and 
Bryant, 2012) Kaolin Surround® WP (Stähler) (+) (+) (+) + 

  
Harmful (Markó et al., 2008) 

Methoxyfenozide 
Gladiator® (Dow AgroSciences) / 
Runner® (Bayer)  

(+) - + - 
  

Harmful to nymphs (Fountain and 
Harris, 2015); safe to adults (Shaw 
and Wallis, 2010)  

Phosmet Imidian® WP (BASF Agro) + - - - 4 (Sterk et al., 1999) 
Organophosphates harmful 
(Malagnoux et al., 2015), slightly 
harmful to adults (Peusens and Gobin, 
2008) Pirimicarb‡ Pirimor® (Syngenta) (+) - + - 

   

Pyrethrine + oil Spruzit® Neu (Progema GmbH) - - (-) (+)   
Slightly harmful to adults (Peusens 
and Gobin, 2008)  

Spirodiclofen Envidor® (Bayer) (+) - (+) - 
  

Harmful to nymphs (Fountain and 
Harris, 2015) 

Thiacloprid Calypso® (Bayer) / Proteus O-TEQ 
(Bayer) 

(+) - + - 
  

Harmful (Fountain and Harris, 2015; 
Shaw and Wallis, 2010) 

- not permitted in apple orchards during study time; (-) not applied; (+) applied rarely (1-2 orchards); + applied regularly (>5 orchards) 

*1 (harmless), 2 (slightly harmful), 3 (moderately harmful), 4 (harmful); †depending on certification organisation, there can be some restrictions in pesticide use (e.g. for 
mineral oil in Demeter orchards); ‡targets woolly apple aphids 
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Table S4.3. Tests for independence of explanatory variables in earwig and aphid analyses based on linear 
models and GLM. Response variables are orchard cover in the surrounding landscape (1 km) and plant 
species richness; AES: agri-environmental structure. Significant effects are shown in bold. 

 
Germany  

(n=30, 2015)  
Spain (n=28) 

 
df F P 

 
df F P 

Orchard cover* 
      

Management 1 0.41 0.530 
 

1 2.04 0.166 
Woody AES  1 0.44 0.514 

  
Plant species richness 1 0.71 0.410 

 
1 0.16 0.695 

Management x woody AES 1 0.92 0.347 
  

Management x plant species richness 1 0.54 0.471 
 

1 2.03 0.167 
Woody AES x plant species richness 1 0.47 0.500 

  
Residuals 23 

   
24 

  
        
Plant species richness† 

     
Management 1 1.15 0.296 

 
1 0.15 0.699 

Woody AES  1 1.30 0.266 
    

Orchard cover 1 1.18 0.288 
 

1 0.46 0.506 
Management x woody AES 1 0.20 0.657 

    
Management x orchard cover 1 1.74 0.201  1 4.84 0.038 
Woody AES x orchard cover 1 0.70 0.413 

    
Residuals 23 

   
24 

  
*log(y+1.7) transformed, Gaussian error distribution 
†Germany: total plant species richness, negative binomial errors; Spain: log-transformed rarefied plant species 
richness, Gaussian error distribution 

Table S4.4. Mean number of earwigs (FA, Forficula auricularia) per tree, total number of earwigs (in brackets), 
and mean proportion of trees infested by woolly apple aphids (WAA) in German orchards (mean±SD) with two 
management types (IP vs. organic) and with (+) and without (-) woody agri-environmental structures (AES). 

 
IP  Organic 

 
woody AES 

- 
 woody AES 

+ 
 woody AES 

-  
woody AES 

+ 
July 2015 n=7  n=8  n=6 

 
n=9 

FA 27.1±11.9 
(949) 

 5.2±3.8 
(209) 

 24.7±19.1 
(742)  

21.6±16.5 
(970) 

WAA 0.05±0.10  0.07±0.10  0 
 

0.02±0.06 
July 2016 n=6  n=8  n=6 

 
n=9 

FA 23.2±8.4 
(695) 

 5.7±7.5 
(265) 

 5.6±3.8 
(169)  

7.6±10.2 
(341) 

WAA 0  0.06±0.10  0.06±0.11 
 

0.12±0.21 
Sept 2016 n=6  n=7  n=6  n=9 

FA 
13.0±14.4 

(388) 
 

3.0±1.7 
(106) 

 4.2±4.4 
(127)  

3.2±4.0 
(143) 

WAA 0  0.03±0.08  0.04±0.05  0.10±0.16 
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Table S4.5. Mean number of earwigs (Forficula auricularia and F. pubescens) per tree, total number 
of earwigs per management type (in brackets), and mean proportion of trees infested by woolly apple 
aphid (WAA) in 2015 in Spanish apple orchards with two management types (IP vs. organic). 

 IP  Organic 
Earwigs    

F. auricularia adults 4.89±10.64 (1991) 
 

4.72±10.64 (2165) 
F. pubescens adults 0.01±0.10 (2) 

 
1.06±3.56 (484) 

Nymphs 0.13±0.49 (52)  0.79±1.58 (362) 
WAA  0.08±0.17  0.33±0.38 

 

Figure S4.1. Correlation chart of variables included in the earwig analysis for German orchards in July 2015 
(n=30). Scatterplot of mean abundance of earwigs per tree, Forficula auricularia (FA mean), proportion of 
trees infested by woolly apple aphids (WAA), cover (m2) of woody habitats in a 20 m radius from the orchard 
edge (woodyAES cov), cover (%) of different land use types in the surrounding of the orchard (1 km radius), 
landscape heterogeneity (Shannon’s Diversity Index, SHDI) and plant species richness (Plant SpR). Lower 
panels show scatterplots with a smoother added to visualize the patterns, panels in the middle show a 
histogram of each variable and upper panels contain Spearman’s correlation coefficients (r) with P-values (red 
for P < 0.05).  
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Figure S4.2. Correlation chart of variables included in the earwig analysis for Spain. Scatterplot of mean 
earwig abundance per tree for Forficula auricularia (FA mean) and F. pubescens (FP mean), proportion of 
trees infested by woolly apple aphids (WAA), cover (%) of different land-use types in the surrounding of the 
orchard (1 km radius), landscape heterogeneity (Shannon’s Diversity Index, SHDI) and plant species richness 
(Plant SpR). Lower panels show scatterplots with a smoother, panels in the middle show a histogram of each 
variable and upper panels contain Spearman’s correlation coefficients with P-values (red for P < 0.05). 
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5.  GENERAL DISCUSSION 

In this chapter I discuss the main findings of the three publications, following a short summary of the 

main results that answer the initial research questions: 

 

(Q1) What landscape elements, local habitat features and management practices support 

beneficial arthropods (natural enemies and pollinators) across Europe? (a) What factors enhance 

ecosystem services (pollination and pest control)? Organic management had a positive influence on 

natural enemy abundance, and on species richness of beneficial arthropods. Focusing on ecosystem 

services, positive effects of AES were restricted to pollinators. They benefit from enhanced local 

flower cover and reduced land-use intensity (lower orchard cover in the landscape). (b) How does 

diversity of beneficial arthropods translate into seed set, fruit damage, and final fruit yield? Higher 

natural enemy abundance in organic orchards translated into higher fruit production. Higher flower 

cover enhanced flower visitation and pollination by wild pollinators. (c) Are there trade-offs between 

ecosystem services and final fruit yield? Yes – organic management enhanced pest pressure, which led 

to lower yield in organic orchards; however, the lower yield was partly compensated by enhanced 

natural enemy abundance and a higher flower visitation rate of wild pollinators in organic orchards.  

(Q2) What local and landscape factors influence abundance patterns in communities of 

predatory arthropods in apple orchards? (a) Do predator communities differ between management 

types and countries? Effects of management intensity on predator community composition in the two 

studied management types differ between regions. (b) How do individual predator taxa differ in their 

response to local and landscape factors? Organic management benefited spiders, beetles, earwigs, flies 

and bugs, but not in all countries. The effects of local habitat and landscape composition were 

inconsistent among predatory arthropod groups and countries. Depending on the region and/or the 

management type, woody habitat enhanced earwig abundance and plant species richness reduced bug 

abundance. Predation potential (energy use) was higher in organic orchards but only in one country. 

(Q3) How do earwigs and their prey react to local and landscape factors?  

Organic management enhanced earwig abundance of Forficula pubescens in Spain. The presence of 

semi-natural woody habitats reduced abundance of F. auricularia in IP (but not in organic) orchards 

in Germany. A high proportion of fruit orchards in the landscape enhanced tree infestation by woolly 

apple aphids. 
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Synthesis 

Only very few studies have so far tested trade-offs between a large-set of different factors such as 

biological control, pollination, biodiversity, crop yield, organic management and local floral resources. 

According to the Oxford English Dictionary, a ‘trade-off’ describes ‘a balance achieved between two 

desirable but incompatible features; a compromise’ (OED, 2019). Theoretically, trade-offs in apple 

orchards can be manifold: for example, enhanced biodiversity and abundance of arthropods may come 

at the cost of higher pest pressure leading to lower crop yield but could also increase biological control 

by enhancing species richness and abundance of predatory arthropods or by attracting natural enemies 

by providing alternative food resources. Herbs in the understorey of orchards may compete with the 

crop for nutrients and water, reducing productivity and final yield and enhancing susceptibility of crop 

plants to fungal diseases or pests. Meanwhile, a higher abundance of flowering plants may enhance 

pollination of the crop by supporting pollinators with floral resources throughout the growing season. 

Sutter et al. (2018) showed that local agricultural management is the most important predictor of 

arable crop yield in high-input conventional production systems whereas pollination and biological 

pest control have a much lower relevance for final yield. They found that sown perennial flower strips 

and hedgerows enhance pollinators and natural enemies but their study also suggests that minimising 

trade-offs is a key to environmentally friendly food production (Sutter et al., 2018). A recent study on 

interactions and trade-offs between local and landscape factors, their effects on ecosystem services and 

crop yields in IPM apple orchards in Australia suggests that local plant species richness in orchard 

understories supports natural enemies and pollinators as well as their services if orchards are isolated 

from woody habitats. Positive effects flower strips were, however, stronger in crop interiors, rather 

than at edges (Saunders et al., 2013). Our study proves that agricultural management, which was not 

included in the mentioned studies, is more import to explain trade-offs between ecosystem services, 

disservices and final yield than specific local and landscape factors. Tschumi et al. (2018) raised 

concerns that agricultural management practices to support beneficial arthropods in annual crop 

systems lead to a parallel increase in disservices. I share this concern based on higher pest pressure of 

rosy apple aphids (publication I) and higher tree infestation by woolly apple aphids (publication III) in 

organic apple orchards. In annual crop systems, reduced yield in organic vs. conventional production 

systems has been identified as a major driver for higher diversity of bumblebees, lepidopterans, 

syrphids and epigeal arthropods in organic systems (Gabriel et al., 2013). In apple production, 

disservices and lower yield associated with organic management (publication I and III) were partly 

compensated by enhanced natural enemy abundance (publication I and II) and higher rates of flower 

visitation by pollinators (publication I), and species richness of beneficial arthropods was uncorrelated 

with fruit production (publication I).  

Despite lower yields and the importance of diversity in farming practices within each type of 

management (Puech et al., 2014), the implementation of organic management can enhance sustainable 
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food systems by enhancing natural enemies, reducing pesticide use, N-surplus, and greenhouse gas 

emissions (Inclán et al., 2015; Muller et al., 2017; Seufert et al., 2012). Studies in apple orchards show 

that it can moreover enhance biodiversity and abundance of beneficial arthropods, pollination services 

and (depending on country) the predation potential of predator communities in apple orchards (Dib et 

al., 2016; Happe et al., 2019; Samnegård et al., 2018). In an international comparison, Seufert et al.  

(2017) found a high degree of consistency in the regulation of organic practices at national and 

international level. My research results suggest that predatory arthropods may be sensitive to country-

specific differences in management intensity in both management types (publication II) and that a 

more fine-tuned analysis of management effects may be essential to explain variation in arthropod 

communities between management types in different countries (publication II and III).  

The application of agrochemicals, a key factor of agricultural management, often incorporates a 

strong negative impact on biodiversity, pollinators and biological control (Geiger et al., 2010). The 

concentration of the applied substance as well as the timing of application in relation to arthropod life 

cycle is highly relevant in order to reliably assess side effects of specific pesticides on natural enemies 

(Fountain and Harris, 2015; Gobin et al., 2008b; Müller, 2018). Several authors refer to site-specific 

treatment frequency levels in order to explain variability in arthropod abundance (Lefebvre et al., 

2016; Malagnoux et al., 2015b; Mickaël et al., 2015). However, I shared the experience of Saunders et 

al. (2018) that most growers refused to provide spray records (including details on number and timing 

of insecticide sprays and the concentrations of active compounds). To better understand the two 

management categories and to characterize management intensity in each country, I compiled a 

standard list of pesticide applications for each country and management type (see appendices of 

publication II and III), validated by farmer interviews and spraying reports. In the analyses, pesticide 

applications are included in the management factor and they cannot be separated from other 

agricultural practices inherent to each management type. For some predator groups in apple orchards, 

specific management practices such as tree row management (straw mulching, tillage and herbicide 

application) and the diversity of management practices within management types can be more relevant 

than the mere distinction in wider management categories (Marliac et al., 2016; Miñarro et al., 2009). 

For instance, tilling, fertilization, growth regulators and weed control may influence predator 

communities (Malone et al., 2017; Puech et al., 2014). 

Two highly relevant other results are apparent from the trade-off analysis (publication I): a 

positive effect of high flower cover on flower visitation by wild pollinators, and the importance of low 

land-use intensity for diversity of beneficial insects. The relevance of flower provision for pollinators 

is well known (Goulson et al., 2015; Nayak et al., 2015; Wratten et al., 2012). Given the importance of 

low land-use intensity for beneficial arthropods (publication I), its low impact on natural enemies 

(publication I-III) comes at a surprise. The inclusion of wild pollinators in the group of beneficial 

arthropods (publication I) could partly explain the effect of reduced land-use intensity at the landscape 

scale. For example, Holzschuh et al. (2008) showed that wild bees are sensitive to the amount of 
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organic crop in the surrounding landscape. The cover of apple orchards in our study regions is mainly 

composed by IP orchards (Samnegård et al., 2018), which may have led to a reduced habitat quality 

for wild pollinators at the landscape scale. However, other authors show that not only wild bees but 

also bugs, beetles and spiders profit from a low land-use intensity (Hendrickx et al., 2007; Martins et 

al., 2015).  

Potential drivers for inconsistency in the arthropods’ response to local and landscape factors 

A closer look on the results of publication I (Table 2.1) reveals the need to study local and landscape 

effects on predators and their prey in each country separately: responses of arthropods, their services 

and disservices to local and landscape factors were highly variable and partly opposed between 

countries. For example, aphid infestation by rosy apple aphids in Germany was higher in IP than in 

organic orchards, contrary to the other countries. Similar patterns in aphid abundance were reported by 

Martin et al. (2015) who found higher aphid abundances in conventional than in organic winter wheat 

fields early in the season. They concluded that fertilization (soil nitrogen availability) is a major factor 

in driving higher initial aphid population build-up (Butler et al., 2012). Apart from regional 

differences in management, the taxonomic identity of predators and their trophic interactions have to 

be considered as potential drivers for inconsistency in responses to local and landscape factors. In a 

recent review on conservation biological control, Begg et al. (2017) point out that the response of 

natural enemy populations to conservation measures is inconsistent because various ecological and 

behavioural processes influence it at multiple scales. Biological control agents form part of local food 

webs and trophic cascades (Gagic et al., 2011; Gurr et al., 2017). Additionally, the same 

environmental or management factor has often diverging effects on ecosystem services and 

biodiversity due to species-specific variations in life history (Liere et al., 2017; Shackelford et al., 

2013).  

Seasonal and diurnal variation in predator communities 

For all studies, we conducted sampling at standardised tree phenology in all three regions. However, 

communities of predatory arthropods (publication II) may have changed during the two months of 

sampling, relating to region-specific predator and prey voltinism (Stoeckli et al., 2012; Tobin et al., 

2008). In Publication III, a significant difference in management effects between sampling periods 

becomes evident when sampling date is included in the analysis but these differences are expected 

from earwigs’ seasonal abundance patterns in temperate (Alford, 2014; Solomon et al., 2000) and in 

Mediterranean orchards (Lordan et al., 2015b) and were not in the focus of our study.  

Apart from seasonal differences, there is also diurnal variation in abundance patterns of some 

predator groups. Earwigs, for instance, are nocturnal foragers (Logan et al., 2017) and woody habitats 

may serve as earwig refuges during the day leading to lower acceptance of artificial shelters within the 

orchard. In publication III, a negative effect of the presence of woody habitats on earwig abundance 

was only evident in IP but not in organic orchards. Therefore, I assume that woody habitats are not 
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generally more attractive for earwigs as daytime shelters than artificial shelters. In consequence, I thus 

consider nycthemeral variation a negligible factor to explain the observed differences in earwig 

abundance. 

Research transfer & outreach 

Growers are often well aware of the importance of biological control and pollination for their 

production (Page and Bellotti, 2015). To support biodiversity and ecosystem services, some apple 

growers in this study added privately funded semi-natural hedgerows or patches of flowering plants as 

conservation measure. However, apart from organic management, the acceptance of EU-funded AES 

in the study regions was low: in Spain, woody habitats were only present alongside four out of 28 

orchards, and in all three countries we had difficulties to find orchards with sown flower strips or 

planted hedgerows that had been funded by EU subsidies. The low acceptance is surprising, 

considering that AES targeted at areas out of production (e.g. field margins, flower strips and 

hedgerows) have proved to be effective tools for conservation of biodiversity (Batáry et al., 2015). 

Kreiser (2018) identified deficits in EU financing as the main cause for the reluctance of growers to 

implement costly or labour-intensive AES such as those aimed at areas out of production. The author 

highlights the importance of enhanced funding in the EU’s Common Agriculture Policy, which is 

currently negotiated for the period 2021-2027. Stronger financial support beyond compensation for 

production losses would encourage the implementation of more targeted AES such as sown flower 

strips providing specific food plants and valuable resources for pollinators and natural enemies 

(Begum et al., 2006; Wäckers and van Rijn, 2012; Wratten et al., 2012). In addition, the set of 

acknowledged AES needs to improve constantly; for instance, the high value of small-scale agriculture 

for wild bees and pollination (Happe et al., 2018b; Hass et al., 2018) and the vital contribution of 

organic management to enhancing biological control (Muneret et al., 2018) need a stronger 

recognition in policy and practice. 

The results of this study support the importance of organic management across climatic regions 

and across taxonomic groups of predatory arthropods. However, it remains challenging to derive 

generalised recommendations to improve AES-habitats for apple production in Europe. A closer look 

at the local set of predator groups and available management options (restricted by national 

regulations) will help to identify suitable management measures for predatory arthropods in apple 

orchards in each context.   
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