
On the Application of Formal Techniques for Dependable
Concurrent Systems

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades
eines Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Habib Saissi, Msc

aus Safi, Marokko

Referenten:
Prof. Neeraj Suri, Ph.D.

Prof. Dr. Johannes Kinder

Datum der Einreichung: 15. Februar 2019

Datum der mündlichen Prüfung: 29. März 2019

Darmstadt 2019

D17

Habib Saissi: On the Application of Formal Techniques for Dependable
Concurrent Systems
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 29.03.2019

Jahr der Veröffentlichung der Dissertation auf TUprints: 2019

URN: urn:nbn:de:tuda-tuprints-86009

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

c© 2019

https://creativecommons.org/licenses/

On the Application of Formal Techniques
for Dependable Concurrent Systems

By Habib Saissi

In memory of my grand-fathers, Thami Saissi
and Haddou Bakzaza

E R K L Ä R U N G

Hiermit versichere ich, die vorliegende Dissertation selbstständig und
nur unter Verwendnung der angegebenen Quellen und Hilfsmittel
verfasst zu haben. Alle Stellen, die aus Quellen entnommen wurden,
sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, 15. Februar 2019

Habib Saissi

vii

A B S T R A C T

The pervasiveness of computer systems in virtually every aspect of
daily life entails a growing dependence on them. These systems have
become integral parts of our societies as we continue to use and rely
on them on a daily basis. This trend of digitalization is set to carry
on, bringing forth the question of how dependable these systems are.
Our dependence on these systems is in acute need for a justification
based on rigorous and systematic methods as recommended by inter-
nationally recognized safety standards. Ensuring that the systems we
depend on meet these recommendations is further complicated by the
increasingly widespread use of concurrent systems, which are noto-
riously hard to analyze due to the substantial increase in complexity
that the interactions between different processing entities engenders.

In this thesis, we introduce improvements on existing formal ana-
lysis techniques to aid in the development of dependable concurrent
systems. Applying formal analysis techniques can help us avoid inci-
dents with catastrophic consequences by uncovering their triggering
causes well in advance. This work focuses on three types of analyses:
data-flow analysis, model checking and error propagation analysis.
Data-flow analysis is a general static analysis technique aimed at
predicting the values that variables can take at various points in a
program. Model checking is a well-established formal analysis tech-
nique that verifies whether a program satisfies its specification. Error
propagation analysis (EPA) is a dynamic analysis whose purpose is
to assess a program’s ability to withstand unexpected behaviors of
external components. We leverage data-flow analysis to assist in the
design of highly available distributed applications. Given an applicati-
on, our analysis infers rules to distribute its workload across multiple
machines, improving the availability of the overall system. Further-
more, we propose improvements to both explicit and bounded model
checking techniques by exploiting the structure of the specification
under consideration. The core idea behind these improvements lies in
the ability to abstract away aspects of the program that are not relevant
to the specification, effectively shortening the verification time. Finally,
we present a novel approach to EPA based on symbolic modeling
of execution traces. The symbolic scheme uses a dynamic sanitizing
algorithm to eliminate effects of non-determinism in the execution
traces of multi-threaded programs. The proposed approach is the first
to achieve a 0 % rate of false positives for multi-threaded programs.

The work in this thesis constitutes an improvement over existing
formal analysis techniques that can aid in the development of depen-
dable concurrent systems, particularly with respect to availability and
safety.

ix

K U R Z FA S S U N G

Der Einzug von Computersystemen in nahezu allen Bereichen des täg-
lichen Lebens führt zu einer zunehmenden Abhängigkeit von ihnen.
Diese Systeme sind zu einem festen Bestandteil unserer Gesellschaft
geworden, da wir sie täglich nutzen und uns auf sie verlassen. Die-
ser Digitalisierungstrend wird sich fortsetzen, so dass sich die Frage
stellt, wie zuverlässig diese Systeme sind. Unsere Abhängigkeit von
diesen Systemen erfordert dringend Rechtfertigung aufgrund stren-
ger und systematischer Methoden, die von international anerkannten
Sicherheitsstandards empfohlen werden. Die Sicherstellung, dass die
Systeme, auf die wir angewiesen sind, die Empfehlungen der Sicher-
heitsstandards erfüllen, wird durch den zunehmend verbreiteten Ein-
satz von nebenläufigen Systemen zusätzlich erschwert. Nebenläufige
Systeme sind bekanntermaßen schwer zu analysieren, da die Inter-
aktionen zwischen verschiedenen Verarbeitungseinheiten erheblich
komplexer werden. In dieser Arbeit stellen wir Verbesserungen an
bestehenden formalen Analysetechniken vor, um die Entwicklung
zuverlässiger nebenläufiger Systeme zu unterstützen. Die Anwendung
formaler Analysetechniken kann dazu beitragen, Vorfälle mit kata-
strophalen Folgen zu vermeiden, indem ihre auslösenden Ursachen
frühzeitig aufgedeckt werden.

Diese Arbeit konzentriert sich auf drei Arten von Analysen: Daten-
flussanalyse, Model Checking und Error-Propagation-Analyse. Die
Datenflussanalyse ist eine allgemeine statische Analysetechnik, die
darauf abzielt, die Werte vorherzusagen, die Variablen an verschie-
denen Stellen eines Programms annehmen können. Model Checking
ist eine etablierte formale Analysetechnik, mit der überprüft wird, ob
ein Programm seinen Spezifikationen erfüllt. Die Error-Propagation-
Analyse (EPA) ist eine dynamische Analyse, deren Zweck es ist, zu
bewerten ob ein Programm unerwartetem Verhalten externer Kom-
ponenten standhalten kann. Wir nutzen Datenflussanalysen, um das
Design hochverfügbarer verteilter Anwendungen zu unterstützen. Bei
einer Anwendung werden in unserer Analyse Regeln festgelegt, um
die Arbeitslast auf mehrere Maschinen zu verteilen und die Verfügbar-
keit des Gesamtsystems zu verbessern. Darüber hinaus schlagen wir
Verbesserungen sowohl für explizites Model Checking als auch für
Bounded Model Checking vor, indem die Struktur der betrachteten
Spezifikation genutzt wird. Die Kernidee hinter unseren Verbesse-
rungen liegt in der Fähigkeit, Aspekte des Programms, die für die
Spezifikation nicht relevant sind, zu abstrahieren. Schließlich stellen
wir einen neuen Ansatz für die EPA vor, der auf der symbolischen
Modellierung von Ausführungen basiert. Der symbolische Ansatz

xi

xii

verwendet einen dynamischen Sanitizing-Algorithmus, um die Aus-
wirkungen von Nicht-Determinismus in Ausführungen von Multi-
Threaded-Programmen zu beseitigen. Der vorgeschlagene Ansatz ist
der erste, der bei Multi-Threaded-Programmen eine False-Positives
Rate von 0 % erzielt.

Die vorliegende Arbeit stellt eine Verbesserung gegenüber bestehen-
den formalen Analysetechniken dar, die zur Entwicklung zuverlässiger
nebenläufiger Systeme beitragen können, insbesondere hinsichtlich
der Verfügbarkeit und Sicherheit.

A C K N O W L E D G M E N T S

As passionate as I was about video games back in the 1990’s and early
2000’s, I aspired to become a video game developer for a long period
of my childhood. I had witnessed the progress being made in graphics
rendering first hand, transitioning from 2D to 3D models. Joining
the computer science program at the university, however, made me
discover a new passion: the theoretical aspect of computation. There
have been ups and downs since then but I’m glad I’ve made the
choices that I’ve made.

My father has always been my role model. He taught me to be
curious about things and see the value in not restricting myself to
one subject of knowledge. My mother has been always there for me,
being my refuge when things were not easy. My sister’s warmth and
cheerfulness provided me with the necessary energy to push forward
no matter what. The new additions to the family, Illy and Yanis, have
brought me joy with their smiles and liveliness. I’m very grateful for
my whole family’s unconditional love and support during my journey
so far. None of this would have been possible if it weren’t for all of
you.

I would like to thank my advisor, Neeraj Suri, for the trust he put
in me, giving me the freedom to pursue my own research interests
while watching over me not to stray away from my objectives. His
constructive critique and guidance helped shaping my ideas and
allowed me to grow as a researcher. I’m deeply appreciative for his
support to make this happen.

I would also like to thank Johannes Kinder for accepting to be my
external reviewer, and Thomas Schneider, Kay Hamacher and Stefan
Katzenbeisser for being on my committee.

Hatem, I consider myself very lucky that I met you at DEEDS and
that we could forge such a close friendship. We’ve been through quite
a lot together and I hope that our friendship won’t stop at this. Thank
you my friend for the soothing park walks, the discussions about all
and nothing, and for being such a good listener. Our trips abroad
were a lot of fun and we definitely should plan for more.

Olli, my office buddy, thanks for the late philosophical discussions
and reintroducing the theoretician that I am to the more practical
aspects of computer science. I’ve rarely met someone with such
readiness to help a friend. Thank you for that!

Monsieur Nicolas, thank you for introducing me to the world of
PC gaming again and engineering the best LATEX table ever. I really
enjoyed our discussions about politics, history and football although
we still have to reach a consensus on the “mustard conundrum”.

xiii

xiv

Thanks Tsveti (Schatzmaus) for the fun conversations and consis-
tently sabotaging my diet plans with tasteless french fries. Unlike you,
I hope that you keep going to the Power-Fit training and yes, I’m still
planning to visit Bulgaria!

Thank you Sabine for your help with various paper work and
bringing Haley into our office life. I really enjoyed our morning
coffees and baking discussions!

Thank you Ute for your admin and hardware support. I really hope
we get to try out your famous mousse au chocolat soon again.

Thanks Patrick for being part of the formal methods subgroup and
for your critical but valuable insights regarding my ideas. Our trips to
Japan and Hungary were a lot of fun!

Salman, I was a bit disappointed when you shaved your mustache
but I’m at least glad that you joined the black coffee drinker fraction.
Our Biryani lunch was such a feast. It goes without a saying that I
hope you invite me soon again!

Thank you Stefan for introducing me to the world of craft beer and
for the nice discussions on the Japanese culture.

Thanks Heng for your lectures on the stock exchange market and
the differences between Japanese and Chinese logographs.

Thanks, Yiqun for making me try the most smell-intensive liquor
I’ve had in my life. That was indeed a once in a lifetime experience!

Thank you Marco for being such a good help throughout my PhD
endeavor. Your work ethic and humility immensely inspired me and
motivated me to improve myself as a person and researcher.

Peter, I’m very grateful that our paths crossed and glad that we
became such good friends. Thank you for introducing me to the
world of formal methods and helping me out throughout my PhD.
Discussing papers and new ideas with you was such a delight. Thanks
to you I’ve learned to see the beauty and elegance of rigorous proofs
and formalisms. Our trips to China, Japan and Morocco as well as my
frequent visits to Berlin are important highlights of my PhD journey.
Vive le Tour de France!

Thanks Lion for the enlightening discussions on linguistics and the
peculiarities of the German language. Thank you for consistently cor-
recting my mistakes and never failing to provide the right explanation
for the not so intuitive rules of the language. Our trips to Morocco
and Hungary were great!

Many thanks to the rest of my DEEDS contemporaries: Ahmed,
Daniel, Giancarlo, Hamza, Jesus, Kubi, Ruben, Tasuku, Thorsten, and
Zhazira. Thank you all for making DEEDS a great place for exchanging
ideas and fruitful collaboration.

Last but not least, I would like to thank Marta for being part of my
life. Thank you for your patience and relentless support throughout
my PhD years.

Habib Saissi
Darmstadt, March 13, 2019

C O N T E N T S

i introduction

1 introduction 3

1.1 Formal Program Analysis 5

1.2 The Role of Program Analysis in Building Dependable
Systems 9

1.3 Contributions 11

1.4 Publications 14

1.5 Thesis Organization 15

ii dependability of distributed systems

2 scaling out acid applications with operation

partitioning 19

2.1 The Partitioning Dilemma 19

2.2 Overview 22

2.3 Operation Partitioning 22

2.3.1 Automatic Partitioning 23

2.3.2 Classes of Operations 27

2.4 The Conveyor Belt Protocol 29

2.5 Correctness Proof 32

2.5.1 Token-Passing Scheme 32

2.5.2 Serializability Proof 33

2.6 The Gyro System 36

2.7 Case Studies 39

2.8 Experiments and Evaluation 40

2.8.1 RQ 1: Data Partitioning Comparison 42

2.8.2 RQ 2: Scaling Out in WANs 43

2.8.3 RQ 3: Micro-Benchmarks 45

2.9 Related Work 46

2.10 Conclusion 48

3 efficient stateful model checking for distributed

protocols 49

3.1 Overview 49

3.2 Motivating Example 51

3.3 General Reduction Framework 53

3.3.1 System Model 53

3.3.2 Decomposition-based Stateful MC 54

3.3.3 Correctness of DBSS 56

3.4 Implementing DBSS in JPF/MP-Basset 60

3.4.1 Decomposition 60

3.4.2 Selective Hashing 61

3.4.3 Selective Push-on-Stack 64

xv

xvi contents

3.5 Evaluation with Fault-Tolerant Protocols 65

3.6 Related Work 69

3.7 Conclusion 70

iii dependability of multi-threaded programs

4 pbmc : symbolic program slicing on concurrent

programs 73

4.1 Overview 73

4.2 Motivating Example 75

4.3 Related Work 76

4.4 Property Preservation with Projections 78

4.4.1 System Model 78

4.4.2 Projections 79

4.5 PBMC: A Symbolic Implementation 82

4.5.1 Process-Based Concurrent Programs. 82

4.5.2 Projection Encoding 82

4.6 Experiments and Evaluation 86

4.7 Conclusion 89

5 eliminating effects of non-determinism on exe-
cution traces 91

5.1 Overview 91

5.2 Related Work 94

5.3 Trace Equivalence and Execution Non-determinism Ef-
fects 95

5.4 Sanitizing Algorithms 98

5.4.1 Workflow of Trace Sanitizer 98

5.4.2 System Model 99

5.4.3 Algorithms 100

5.5 Evaluation 109

5.5.1 Target Programs and Execution Environment 110

5.5.2 RQ 1: False Positives from Memory Addresses 110

5.5.3 RQ 2: False Positives from CPU Scheduling 111

5.5.4 RQ 3: False Negatives Introduced by Trace Sani-
tizer 112

5.5.5 RQ 4: Trace Sanitizer Overhead 113

5.6 Conclusion 115

iv conclusion

6 conclusion 119

Part I

I N T R O D U C T I O N

1

I N T R O D U C T I O N

The pervasive use of digital technologies in virtually all aspects of
daily life entails our growing dependence on their reliable delivery of
services. For instance, our road infrastructures are largely governed
by computerized systems that deal with congestion using smart traffic
lights. Our cars consist of more electronic units than ever before. It
has become unthinkable, and illegal in many countries, to drive a
car without safety mechanisms, such as the anti-lock braking system
(ABS), which are only enabled by dedicated software on board. This
trend is estimated to carry on as reported by the visual networking
index [Cis18]. According to the report, the number of connected de-
vices is expected to reach 28.5 billion (3.6 devices per capita) by 2022
as opposed to approximately 20 billions in 2018. Machine-to-machine
(M2M) units, which currently account for 6 % of the number of con-
nected devices and are particularly relevant for safety, are expected
to grow at an even higher rate, making up 51 % of the total number
of devices by 2022. This continuous and ever expanding automation
of processes in various domains, especially the ones where safety is
a major concern, raises the question of how dependable these systems
are. While the benefit of using these systems is undeniable, it is im-
portant to be able to justify our reliance on them based on methodical
means. The more complex these systems grow, the higher the need
for rigorous and systematic methods. This thesis advocates the use of
formal techniques to provide this much needed justification.

Many existing safety standards recommend the usage of formal
methods in different stages of software development of safety criti-
cal systems. A safety critical system is a system whose failure may
lead to severe consequences such as injuries, fatalities, damage to
the environment, unauthorized disclosure of information or financial
loss [Som+15]. Figure 1 shows a simplified overview of the current
international safety standards for such systems. The IEC61508 stan-
dard [IEC10] is of particular interest as it forms a basis for many other
domain specific standards such as ISO 26262 [ISO11] for the automo-
tive industry or EN 50126 [EN517] for railway systems. The IEC61508

standard defines four safety integrity levels (SIL) that evaluate the risk
involved in each functionality of safety critical systems, with SIL 1

being the lowest level and SIL 4 the highest. Intuitively, the higher
the SIL for a specific functionality, the more rigorously it has to be

3

4 introduction

Safety Standards

IEC 61508
Basic Safety

DO178B/C
Aeronautics

IEC 62304
Medical Devices

IEC 62061
Machine Safety

EN 50126/8/9
Railways

ISO 26262
Automotive

…

…

Figure 1: Overview of the different safety standards recommending formal
methods for safety critical systems.

developed and assessed. All of the standards based on the IEC61508

standard “highly recommend” the usage of formal methods for SIL
4 functionalities, with EN 50126 recommending them even for SIL 1

and 2 and highly recommending them for SIL 3 and 4 functionalities.
Ensuring that safety critical systems meets the recommendations

of the safety standards is further complicated by the increasingly
widespread use of parallelization. Over the last three decades, we
have witnessed a paradigm shift towards more parallelization of com-
puter systems due the physical limitations on CPU power [PH13]. In
Figure 2, we show an overview of the main approaches to achieve that.
The figure shows two different granularity levels for parallelization.
First, a system can be parallelized on the level of a single machine/de-
vice by exploiting multiple CPU architectures and operating systems
(OS) scheduling to allow for better hardware utilization, thus boosting
the performance. In this case, different programs run multiple threads
or processes to handle different functionalities simultaneously. For
instance in Figure 2, device 1 is running multiple programs which
are running multiple threads in parallel (represented by the edges
connecting the program to the operating system). One of these threads
could be handling user input, another thread could draw the user
interface or handle communication with a database (represented by
the other program on the same machine). Second, parallelization can
be achieved by having different system services run on different ma-
chines and communicate through message passing. These machines
can either be locally distributed such as electronic control units (ECU)
within a vehicle or a distributed database in a financial data center,
or geographically distributed in a large scale system. In Figure 2, all
the devices are running in parallel and are communicating through
message passing. Although they belong to the same system, these
devices can be spread across the globe and not necessarily under the
hood of the same vehicle. We refer to the first type of parallelized
systems as a multi-threaded program and the second as a distributed

1.1 formal program analysis 5

Device
2

OS

CPUCPUCPU

Program Program

Device 1

Device
3

Figure 2: The different levels of parallelization. Programs run simultaneously
on a single machine thanks to multi-core architectures and OS
scheduling. On a higher level, devices are running in parallel and
communicate through message passing.

system. Note that both paradigms can coexist in a single system as
visualized in Figure 2.

While apparently different, these two scenarios share two com-
monalities. In both cases different processing entities are running
concurrently and cooperate to deliver the expected services. In order
to cooperate, these processing entities influence each other through
direct modifications to a common global shared state or through
message-passing so that the timing of these modifications and how
they relate to each other on the execution timeline becomes important.
Concurrency, however, allows these entities to operate simultaneously
making it hard to predict the order of these modifications. Analyzing
systems with such non-determinism is a daunting task due to the
additional complexity arising from interactions between the process-
ing entities. The inherent non-determinism in concurrent systems
can be detrimental to the proper functioning of safety critical systems
and might result in hazardous consequences [LT93]. The need for a
rigorous justification is, therefore, even higher for such concurrent
systems.

1.1 formal program analysis

Formal analysis techniques can be used to strengthen our trust in
safety critical systems. In this thesis, we explore how these techniques
can be used and improved to ensure the dependability of safety critical
concurrent systems. In the following, we briefly discuss a subset of

6 introduction

existing formal analysis techniques covered in the thesis. We start by
covering different aspects common to all of these techniques.

Static Vs. Dynamic Analysis

Formal analysis techniques can be used to predict a program’s be-
havior and assert its operational properties. The ability to predict the
program’s behavior before deployment plays a major role in justifying
our trust in systems we depend on. These techniques can be either
static or dynamic. Static analysis is an umbrella term for a panoply of
analysis techniques that examine a static representation of programs,
e.g., source or machine code. Such techniques include, but are not
limited to, data flow analysis, control flow analysis or abstract inter-
pretation [NNH15] among others. Given a program, the static analysis
techniques attempt to predict its behavior when executed.

The dynamic counterparts of static analysis techniques examine
program executions rather than the full program. Given a set of
program executions, dynamic analyses attempt to infer the general
behavior of the program. Since dynamic approaches analyze concrete
executions, they can be more precise compared to static analysis.
However, as only a subset of the executions are analyzed, the analysis
is limited to what can be inferred from them. For instance, if a specific
control flow branch is taken by none of the examined executions,
dynamic analysis techniques can not take that branch into account.

Approximation

An ideal analysis technique should be precise and cover all possible
behaviors of the program. Such an ideal analysis can, however, not
exist in general as it has been shown in [Lan92]. Furthermore, analysis
techniques often face efficiency limitations that hamper their applica-
bility to real systems. To overcome these limitations, a widely used
approach is approximation. Over-approximating techniques include
more program behaviors than are allowed [CC77] by abstracting its
actual behavior, attempting to prove the non-existence of undesir-
able executions. On the other hand, under-approximating techniques
limit the possible behavior of the program to less than what is pos-
sible [BCC+99], and attempt to prove the existence of undesirable
behavior.

The soundness of an analysis technique reflects its ability to provide
correct positive answers while completeness refers to its ability to
provide correct negative answers. Approximating techniques can be
either sound or complete depending on how they abstract or limit the
behavior of a program. For instance, over-approximations techniques
are sound if they only prove the absence of undesirable behavior
for correct programs (no false positives), and are complete if only

1.1 formal program analysis 7

incorrect programs are proven to not contain undesirable behavior (no
false negatives).

Data Flow Analysis

Data flow analysis is a static analysis technique whose purpose is to
infer the set of possible values program variables can take at various
program locations [NNH15]. For this purpose, the control flow graph
is harnessed to examine the possible execution paths of the program
and reason about the values of the variables. The analysis can be
simplified by ignoring the control flow graph, effectively combining
all control flow paths together. While the resulting information is an
over-approximation, and therefore is inaccurate, this simplification
can considerably speed up the analysis and can be sufficient for many
application cases.

Model Checking

Formal verification techniques such as model checking [CJGK+18]
have made major strides toward more efficiency and practicality in
the course of the last 30 years. Roughly speaking, a model checking
tool (model checker) takes as input the program and a specification
to verify whether it is satisfied. The program under examination can
either be a simplified model described in a modeling language such
as the Promela language [Spi] or the actual implementation with all
the details (e.g., [CKL04]). There are benefits and drawbacks to both
approaches. Model checking a simplified model of the program is
significantly less complicated, and therefore less costly, than model
checking the implementation. This, however, comes at the cost of the
reported results being only directly applicable to the model and not
to the implementation. Nevertheless, both approaches have merit and
can be used in tandem. Model-based model checking can be used to
fix reasoning flaws in the underlying algorithms in the early stages
of development while the implementation can be model checked
in later stages to ensure that no bugs have been introduced in the
implementation phase.

The specification of a program can be expressed differently depend-
ing on the required expressiveness. For instance, a safety property
could be expressed solely using a predicates about the allowed states.
A liveness property [Lam77], which requires that a system makes
progress in the form of regular occurrence of certain events, requires
a more sophisticated logic such as linear-time-logic (LTL) [CJGK+18].
The main goal of a model checker is to systematically explore every
possible behavior of the program and check whether it is allowed.
Alternatively, a model checker can also be employed to check the exis-
tence of desirable behaviors among all possible executions. Concretely,

8 introduction

to verify whether a program satisfies the specification, a model checker
systematically explores every possible state (e.g., safety property) and
every possible execution sequence (e.g., liveness property).

Model checking techniques can be static or dynamic. The explored
program can be given concrete inputs, and in that case we speak of
explicit model checking, or symbolic inputs (e.g., symbolic execution,
BMC). Explicit model checking requires the exploration of every possi-
ble interleaving of instructions in the program given concrete input. It
is, therefore, only meaningful for concurrent programs since otherwise
it is equivalent to testing. Explicit model checking is considered to
be a dynamic approach since it examines concrete executions of the
program, potentially missing program behavior that is never triggered
by the given input. Symbolic approaches, on the other hand, are
static with some of them being a combination of dynamic and static
analysis (e.g., concolic execution [Sen07]). A well-established symbolic
approach is bounded model checking (BMC) [BCC+99]. A bounded
model checker encodes the behavior of a program in a formula such
that its satisfying assignments can be directly mapped to concrete
executions. The generated formula is then extended by the negation
of the property, i.e., the specification, that the program has to satisfy.
Every assignment to such a formula represents an execution of the
program that violates the specified property. The length of program
executions that is covered by the formula is bound by a finite number
so that only a subset of all possible executions is encoded. In other
words, BMC considers an under-approximation of the program’s full
possible behavior.

Error Propagation Analysis (EPA)

A prominent dynamic program analysis technique is EPA. EPA ana-
lyzes how software bugs affect program control and data flow at run
time, which is useful for error detector placement [HJS02; CSW+17]
and robustness testing [NWC+18]. For this purpose, programs are mu-
tated similarly to mutation testing to simulate realistic software bugs
as well as hardware defects [NWC+18]. Such modifications include,
for instance, the introduction of NULL pointer accesses, randomly gen-
erated bit flips in the value of a variable or deliberate race conditions.
To determine the effects of the introduced bugs on program execution,
EPA compares bug-affected (faulty run) against bug-free (golden run)
execution. Any deviation between the faulty run and golden run is
then reported to analyze the program’s ability to deal with unexpected
behavior.

Given this context, this thesis

1. proposes a novel approach to designing distributed systems that
leverages a specially tailored static data-flow analysis,

1.2 the role of program analysis in building dependable systems 9

fault error failure
activation propagation

Figure 3: The fundamental chain of threats to dependability [ALR+04].

2. develops and presents two approaches to improve model check-
ing of concurrent systems, and

3. presents an approach based on symbolic modeling of program
executions to assist in error propagation analysis of multi-threaded
programs.

The rest of this chapter is organized as follows. First, we provide a
precise definition for dependability and present the different threats to
it in Section 1.2. We then discuss the role of formal analysis techniques
in enabling the dependability of concurrent systems. In Sections 1.3
and 1.4, we summarize the contributions presented in this thesis and
the resulting publications. Finally, Section 1.5 provides an outline for
the content of the thesis.

1.2 the role of program analysis in building dependable

systems

Our reliance on safety critical systems is based on the premise that
they are dependable. We start by precisely defining what is meant by
dependability. We then describe the different factors that can threaten
it and the usual means to achieve it.

Dependability is the ability of a system to function correctly that
can be justifiably trusted [ALR+04]. In other words, dependability
expects the trust we put in systems to deliver their intended service
to be justifiable. Concretely, dependability is an attribute of a sys-
tem that aggregates its reliability, availability, safety, integrity and
maintainability where:

• reliability describes the continuity of correct service of the system,

• availability ensures that the system is ready for correct service
when needed,

• safety follows from the absence of catastrophic consequences on
the user(s) and the environment,

• integrity is assured with the absence of improper alterations, and

• maintainability reflects the system’s ability to undergo modifica-
tions and repairs.

In Figure 3, we depict the classical chain of dependability threats [ALR+04].
The figure shows how a typical chain of events can lead to the failure
of a system, compromising its dependability. A fault is a flaw in the

10 introduction

program design or implementation that when activated leads to an
error. That is, the execution of a fault is the cause for the occurrence of
errors. If a fault is not activated, it is said to be dormant. A fault can
remain dormant until enabling conditions are satisfied leading to its
activation (e.g., specific program inputs or interleaving of events in a
concurrent program). A failure is the deviation of a system from its
correct behavior that is observable by other components in the system
and which violates any of the dependability attributes. The failure
of a system is caused by the propagation of an error to the boundaries
which in turn is the activation of a fault in the system. For instance,
a system is said to have failed in case an existing flawed logic in the
program (fault) has been executed (error) affecting the correctness of
the systems output (failure).

Building dependable systems involves developing systems that cope
with the threats of faults, errors and failures. To this aim, a plethora
of means have been developed to prevent (1) errors by reducing the
number of faults and therefore the potential for their activation and
(2) failure by containing the propagation of errors.

These means can be categorized into four classes:

• Fault Prevention: preventing the occurrence of faults. This cate-
gory encompasses software design and best practices in devel-
opment that are targeted towards producing program code with
a minimal number of faults.

• Fault Removal: reducing the number of faults before deployment.
Fault removal measures consists of techniques whose aim is
to examine the produced program code for the existence of
faults so that they can be removed. Typical examples for these
techniques are software testing, EPA or model checking. For
instance, EPA’s aim is to identify deviations between faulty and
golden executions with the same input. A reported deviations
signals that the injected fault has been activated and that the
resulting error indeed propagated if the output of the program
also deviates. In this case, the identified fault is the missing logic
that handles such unexpected external behavior (i.e., the injected
fault).

• Fault Tolerance: avoiding system failure even in the presence of
faults/errors.

• Fault Forecasting: estimating the present number of, the future
incidence, and the likely consequences of faults.

Thus, formal program analysis techniques can be applied for fault
prevention and removal. The contributions presented in this thesis are
focused on improving and leveraging formal analysis techniques to
improve the dependability of concurrent systems in terms of safety
and availability specifically.

1.3 contributions 11

1.3 contributions

In this section we summarize, the four contributions covered by this
thesis. We formulate three research questions and present the corre-
sponding contributions. The first contribution deals with fault pre-
vention using a novel approach to design highly available distributed
systems based on static analysis. The second and third contributions
improve existing model checking techniques. Finally, in the fourth
contribution we present a novel approach for EPA of concurrent sys-
tems.

Research Question (RQ1): Can static analysis techniques assist in design-
ing highly available distributed systems?

Availability, an attribute of dependability, is one of the major chal-
lenges of distributed systems. For these systems, the ability to scale
out in order to serve a large number of clients is a highly desirable
property. Typically this is achieved by replicating services across
multiple servers and dynamically dispatching client requests. Full
replication of the services is expensive due to the amount of synchro-
nization necessary to keep the servers’ state consistent. Moreover, the
cost of synchronization grows dramatically for large-scale systems
because of the distance between the servers. A major line of work
exist to achieve higher availability by relaxing the level of consistency
needed by the servers [SDM+10; DHJ+07]. Trading the consistency
of the servers’ state for high availability is, however, unacceptable for
dependable systems. To this aim we present our first contribution, a
static analysis based approach that high availability without sacrificing
state consistency.

Contribution (C1): Operation partitioning: A Technique to Scale out Single-
Server Systems [SSS19]

OLTP1 applications with high workloads that cannot be served by a
single server need to scale out to multiple servers. Typically, scaling
out entails assigning a different partition of the application state to
each server. But data partitioning is at odds with preserving the strong
consistency guarantees of ACID2 transactions, a fundamental building
block of many OLTP applications. The more we scale out and spread
data across multiple servers, the more frequent distributed transac-
tions accessing data at different servers will be. With a large number
of servers, the high cost of distributed transactions makes scaling out
ineffective or even detrimental. Our first contribution introduces Oper-
ation Partitioning, a novel paradigm to scale out OLTP applications that

1 OLTP: Online transaction processing.
2 ACID: Atomicity, consistency, isolation and durability.

12 introduction

require ACID guarantees. Operation Partitioning indirectly partitions
data across servers by partitioning the application’s operations through
static analysis. This partitioning of operations yields to a lock-free
Conveyor Belt protocol for distributed coordination, which can scale
out unmodified applications running on top of unmodified database
management systems. We implement the protocol in a system called
Gyro and use it to scale out two applications, TPC-W and RUBiS. Our
experiments show that Gyro can increase maximum throughput and
reduce latency compared to MySQL Cluster while at the same time
providing a stronger isolation guarantee (serializability instead of read
committed).

Research Question (RQ2): Can the structure of a specification property be
leveraged to improve the efficiency of model checking?

Model checking approaches have been widely used to minimize the
number of software bugs by systematically exploring the state space
of a program. This comes, however, at the cost of scalability and
applicability. The cost of systematic exploration is worsened in the
case of concurrent programs as the state space of a program grows
exponentially with the number of processes/threads. This problem is
traditionally referred to as the state explosion problem [Val98]. Many
approaches have been proposed to circumvent the state explosion prob-
lem [AAB+17; AAJ+18; BKS+11; AKT13]. Most prominent approaches
are based on the partial-order reduction (POR) theory [Maz87]. The
next two contributions present two orthogonal approaches that can be
used to improve the efficiency of model checking.

Contribution (C2): Decomposition-based Explicit Model Checking for Message-
Passing Protocols [SBM+13]

Our second contribution is an efficient model checking approach for
distributed message-passing protocols. Key to the achieved efficiency
is a novel stateful model checking strategy that is based on the decom-
position of states into a relevant and an auxiliary part according to the
specification property. We formally show this strategy to be sound,
complete, and terminating for general finite-state systems. As a case
study, we implement the proposed strategy within Basset/MP-Basset,
a model checker for message-passing Java programs. Our evaluation
with fault-tolerant message-passing protocols shows that the proposed
stateful optimization is able to reduce model checking time and mem-
ory by up to 69 % compared to the naive stateful search, and 39 %
compared to partial-order reduction.

1.3 contributions 13

Contribution (C3): Bounded Model Checking of Concurrent Programs
based on Symbolic Projections [SBS15]

In our third contribution, we propose a novel optimization of bounded
model checking (BMC) for better run-time efficiency. Specifically, we
define projections, an adaptation of dynamic program slices, and in-
struct the bounded model checker to check projections only. Given
state properties over a subset of the program’s variables, we prove the
soundness of the proposed optimization. Furthermore, we propose
a symbolic encoding of projections and implement it for a prototype
language of concurrent programs. We have developed a tool called
PBMC to evaluate the efficiency of the proposed approach. Our evalu-
ation with various concurrent programs demonstrates the potential of
projections to enable efficient verification.

Our focus in this thesis is on enhancing model checking of con-
current systems based on techniques that are orthogonal to POR.
Additionally, we have developed two novel approaches based on the
POR theory and applied them to multi-threaded programs. The results
of this joint work have been published in [MSB+16; MSB+17].

Research Question (RQ3): Can the interaction patterns between threads
be harnessed to achieve a sound error propagation analysis for multi-threaded
programs?

Error propagation analysis assumes the ability to compare golden
runs against faulty runs. The argument that there can only be a de-
viation between a golden run and a faulty run if a fault has been
activated and propagated only holds for deterministic programs. Re-
peated execution of a non-deterministic program with identical inputs
can deviate even when fault is not activated. For this reason, non-
deterministic programs such as multi-threaded programs constitute
a major challenge for EPA. Previous approaches work around this
by ignoring certain aspects of the program, for example considering
only control flow deviations [TP13], or using unsound methods such
as likely invariants [EPG+07] as in [CWS+17]. We present next our
final contribution, the first EPA approach to support multi-threaded
programs.

Contribution (C4): Nullifying Scheduling Non-determinism of Concurrent
Execution Traces in Error Propagation Analysis [SWS+19]

Modern computing systems improve application performance by re-
laxing execution determinism, for instance by allowing the CPU sched-
uler to interleave the execution of several threads. While beneficial
for performance, such execution non-determinism affects programs’
execution traces and hampers the comparability of repeated execu-

14 introduction

tions. Our final contribution proposes Trace Sanitizer, a novel approach
for execution trace comparison in error propagation analyses (EPA)
of multi-threaded programs. Trace Sanitizer can identify and com-
pensate for non-determinism sources that are either due to dynamic
memory allocation or non-deterministic scheduling. We formulate a
condition under which Trace Sanitizer is guaranteed to achieve a 0 %
false positive rate and automate its verification using SMT solving
techniques. The key idea behind the formulated condition is that non-
deterministic scheduling can be eliminated if the interaction pattern
between the threads is deterministic. We perform a comprehensive
evaluation of Trace Sanitizer on execution traces from the PARSEC
and Phoenix benchmarks. We find that, unlike existing approaches,
Trace Sanitizer can fully eliminate false positives without increasing
the false negative rate for a specific class of programs.

1.4 publications

The following published material has been, partly verbatim, included
in this thesis:

• Habib Saissi, Marco Serafini, and Neeraj Suri. “Gyro: A Modular
Scale-out Layer for Single-Server DBMSs”. In: USENIX Annual
Technical Conference (ATC’19), (under submission) (2019)

• Habib Saissi, Péter Bokor, Can Arda Muftuoglu, Neeraj Suri, and
Marco Serafini. “Efficient Verification of Distributed Protocols
Using Stateful Model Checking”. In: IEEE 32nd International
Symposium on Reliable Distributed Systems (SRDS). IEEE. 2013,
pp. 133–142

• Habib Saissi, Péter Bokor, and Neeraj Suri. “PBMC: Symbolic
Slicing for the Verification of Concurrent Programs”. In: Inter-
national Symposium on Automated Technology for Verification and
Analysis (ATVA). Springer. 2015, pp. 344–360

• Habib Saissi, Stefan Winter, Oliver Schwahn, Karthik Pattabira-
man, and Neeraj Suri. “Trace Sanitizer: Eliminating Effects of
Non-Determinism on Execution Traces”. In: International Sympo-
sium on Software Testing and Analysis (ISSTA’19), (under submission)
(2019)

The following previous publications, while related to different as-
pects covered in this thesis, have not been included:

• Tasuku Ishigooka, Fumio Narisawa, Kohei Sakurai, Neeraj Suri,
Habib Saissi, Thorsten Piper, and Stefan Winter. Method and
System for Testing Control Software of a Controlled System. US
Patent 9575877. 2017

1.5 thesis organization 15

• Habib Saissi, Péter Bokor, Marco Serafini, and Neeraj Suri. “To
Crash or Not To Crash: Efficient Modeling of Fail-Stop Faults”.
In: Invited paper, International Workshop on Logical Aspects of Fault-
Tolerance (LAFT in assoc. with LICS). Springer. 2011

• Can Arda Muftuoglu, Habib Saissi, Péter Bokor, and Neeraj Suri.
“Scalable verification of distributed systems implementations via
messaging abstraction”. In: ACM 23rd Symposium on Operating
Systems Principles (SOSP) WiP section. ACM. 2011

• Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan Winter,
and Neeraj Suri. “Practical Use of Formal Verification for Safety
Critical Cyber-Physical Systems: A Case Study”. In: IEEE In-
ternational Conference on Cyber-Physical Systems, Networks, and
Applications (CPSNA). IEEE. 2014, pp. 7–12

• Patrick Metzler, Habib Saissi, Péter Bokor, Robin Hesse, and
Neeraj Suri. “Efficient Verification of Program Fragments: Eager
POR”. in: International Symposium on Automated Technology for
Verification and Analysis (ATVA). Springer. 2016, pp. 375–391

• Patrick Metzler, Habib Saissi, Péter Bokor, and Neeraj Suri.
“Quick Verification of Concurrent Programs by Iteratively Re-
laxed Scheduling”. In: IEEE/ACM 32nd International Conference on
Automated Software Engineering (ASE). IEEE Press. 2017, pp. 776–
781

• Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan Winter,
and Neeraj Suri. “Practical Formal Verification for Model-Based
Development of Cyber-Physical Systems”. In: IEEE International
Conference on Embedded and Ubiquitous Computing (EUC). IEEE.
2016, pp. 1–8

• Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan Winter,
and Neeraj Suri. “Safety Verification Utilizing Model-Based
Development for Safety Critical Cyber-Physical Systems”. In:
Journal of Information Processing 25 (2017), pp. 797–810

• Abraham Chan, Stefan Winter, Habib Saissi, Karthik Pattabi-
raman, and Neeraj Suri. “IPA: Error Propagation Analysis of
Multi-Threaded Programs Using Likely Invariants”. In: IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST). IEEE. 2017, pp. 184–195

1.5 thesis organization

We structure the thesis based on the two parallelization levels intro-
duced in Figure 2. In Part ii, we cover contributions dealing with dis-
tributed systems and we consider multi-threaded programs in Part iii.

16 introduction

In Chapter 3, we present our operation partitioning scheme to scale out
distributed systems (C1). Chapter 3 covers our decomposition-based
approach to explicit model checking of distributed message-passing
protocols (C2). Subsequently, Chapter 4 introduces our projections
based bounded model checking approach (C3) and Chapter 5 out-
lines our novel trace sanitizing technique for sound EPA (C4). We
summarize the overall contributions in Chapter 6.

Part II

D E P E N D A B I L I T Y O F D I S T R I B U T E D S Y S T E M S

2
S C A L I N G O U T A C I D A P P L I C AT I O N S W I T H
O P E R AT I O N PA RT I T I O N I N G

This chapter presents operation partitioning, our first contribution.
Operation partitioning employs a specially tailored static analysis on
applications to infer how their workload can be distributed and uses
Conveyor Belt, a novel distributed protocol, to achieve high availability
with strong consistency guarantees. The content of this chapter is
based on material from [SSS19].

We start by discussing the trade-off involved in partitioning the
workload of distributed systems in Section 2.1. We then give an
overview of the system built around operation partitioning in Sec-
tion 2.2. Sections 2.3 and 2.4 describe the static analysis used by
operation partitioning and the Conveyor Belt protocol. We prove the
correctness of the protocol in Section 2.5 and describe our implementa-
tion Gyro in Section 2.6. Next, we describe two application uses cases
and our evaluation in Sections 2.7 and 2.8, respectively. Finally, we
discuss the related work (Section 2.9) before concluding the chapter.

2.1 the partitioning dilemma

Online transaction processing (OLTP) applications, such as online
shopping services, bidding services, or social networking systems,
need to scale in order to handle demanding workloads. One common
way to increase capacity is to run the application on top of multiple
servers, a process that is called scale out. These applications often use
ACID transactions with strong consistency guarantees, which give the
impression of being executed in some sequential order even if they
are executed concurrently.

It is well known that strong consistency guarantees substantially
simplify the design of applications, but make scaling out challenging.
A common approach to scale out is data partitioning, which partitions
the persistent state of the application across multiple servers. If
a transaction needs to access data across multiple partitions, it is
executed as a distributed transaction, which requires coordination across
multiple servers. Distributed transactions are costly and represent
the main bottleneck hindering scale out. The more servers we use,
the more frequent distributed transactions become. As such, there is
a bound on the degree of scale out that can be achieved with ACID

19

20 scaling out acid applications with operation partitioning

applications. For example, our evaluation shows that the TPC-W
benchmark on MySQL Cluster reaches its peak performance with four
servers, after which adding more servers is not beneficial anymore.

Scaling out efficiently entails solving two problems: finding a good
way to partition data, and finding an efficient algorithm to keep servers
consistent. In this chapter we introduce the concept of Operation
Partitioning, a novel approach to address these two problems in an
integrated manner.

Operation Partitioning takes an indirect approach to data partition-
ing. It maps each client operation to a specific server responsible for
executing it, trying to associate conflicting operations to the same
server whenever possible. This partitioning of the operations yields,
indirectly, a (partial) partitioning of the data. By focusing on parti-
tioning operations rather than data, Operation Partitioning makes it
possible to perform partitioning based only on static analysis of the
application code. This analysis is entirely automated, unlike existing
data partitioning approaches that require human expertise and/or run-
ning samples of a workload in order to come up with good partitions
(e.g. [CJZ+10; PCZ12]). In addition, the analysis can be applied to
unmodified application code, without the need for the user to provide
additional information about the semantics of the application.

Operation Partitioning not only makes partitioning easier, it also
enables designing a more efficient coordination algorithm, called
Conveyor Belt protocol, that guarantees serializability across multiple
servers [Pap79]. The protocol obviates one of the main sources of inef-
ficiency of distributed transactions: holding locks at multiple servers
until a transaction is completed. Conveyor Belt is a lock-free protocol,
which critically relies on the operation classification produced by the
static analysis of the application code. Servers use a token passing
scheme to execute “global" operations that, according to the classifica-
tion, require coordination with other servers. When a server receives
a global operation, it simply puts it on hold until it receives the token,
without impairing the progress of other “local" operations that require
no coordination. Once a server gets the token, global operations are
executed efficiently in a batch. Our evaluation shows that the perfor-
mance of Operation Partitioning is superior to data partitioning with
distributed transactions, both in terms of performance with a given
number of servers and in terms of maximum number of servers that
can be effectively utilized.

Compared to recent techniques to speed up distributed transac-
tions, such as Calvin [TDW+12], Lynx [ZPZ+13], Rococo [MCZ+14],
Callas [XSL+15], and others [FA15; SLS+95; SCD+17], the Conveyor
Belt protocol has two main advantages. First, existing techniques
require additional information about the semantics of the application,
which must be provided by the user and might not be trivially avail-
able, or might not be available at all in some application. In addition,

2.1 the partitioning dilemma 21

they require extending the application to provide this information
and/or modifying the application code (e.g. to chop transactions).
The Conveyor Belt protocol does not require any knowledge about
the semantics of the application, as it only relies on the automatic
Operation Partitioning process. This means that the Conveyor Belt
protocol can be used to scale out unmodified applications. Second,
these techniques must be implemented by designing a new database
management or key-value store system. The Conveyor Belt protocol,
by contrast, operates on top of unmodified single-server database man-
agement systems (DBMSs) providing ACID transactions. Using an
unmodified DBMS, without requiring any specific low-level support
for distributed transactions, makes it easier to run Conveyor Belt on
top of a wide range of technologies as a middleware.

To show the practical viability of our approach, we present Gyro,
a new middleware to scale out Java applications (Web applications
running on Apache Tomcat in our use cases) and unmodified JDBC-
compatible databases (MySQL in our use cases). We used Gyro to
scale out two common OLTP benchmarks, TPC-W and RUBiS. In a
LAN setup, where all servers are running within one datacenter, Gyro
increases maximum throughput by 4.2x and decreases minimal latency
by 58.6x compared to MySQL Cluster, a prototypical system based
on data partitioning. This is particularly remarkable if we consider
that Gyro is not only faster but also provides a significantly stronger
consistency guarantee (serializability instead of read committed iso-
lation, which is the only isolation level offered by MySQL Cluster).
In a WAN (i.e., geographically distributed) setup, scaling out using
Gyro reduces latency by up to 47.9x and increases throughput by up
to 2.91x compared to a centralized setting.

Overall, this chapter makes the following contributions:

• We introduce Operation Partitioning, a scale out solution for
OLTP applications that requires ACID transactions. Operation
Partitioning is the first approach to use automated static analysis
to indirectly partition data;
• present the Conveyor Belt protocol, an efficient lock-free co-

ordination algorithm that relies on the operation classification
produced by Operation Partitioning;
• implement Gyro, a middleware that uses Operation Partitioning

to scale out unmodified DBMSs with ACID transactions;
• use Gyro to scale out TPC-W and RUBiS. In a LAN setting, Gyro

outperforms MySQL Cluster by 4.2x in terms of throughput and
58.6x in terms of latency. In a WAN setting, Gyro improves
throughput and latency by up to 2.9x and 47.9x respectively.

22 scaling out acid applications with operation partitioning

2.2 overview

Operation Partitioning considers the problem of improving the through-
put and latency of an ACID application running on top of a DBMS
by scaling out, i.e., running instances of the DBMS on top of multiple
servers. These DBMS instances are kept consistent by running the
Conveyor Belt protocol on top of them. The protocol coordinates the
execution of operations and guarantees serializability. We now give
an overview of the steps required by Operation Partitioning.
Offline Static Analysis. The Operation Partitioning process consists
of three main steps, which are separate but intertwined. First, an
automated partitioning step is performed to determine how to parti-
tion operations. Operation Partitioning requires that the code of the
application is known a priori. This is a sound assumption for many
Web and enterprise OLTP applications, since they typically run a
fixed set of transactions. The partitioning algorithm statically analyzes
read-write conflicts between operations to minimize cross partition
conflicts. Partitioning avoids coordination by routing conflicting oper-
ations to the same server as much as possible. Operations that have no
conflicts with operations at other servers can be executed locally and
immediately, without coordination with other servers. In particular,
partitioning tries to minimize the type of conflicts that require coor-
dination in the Conveyor Belt protocol. We describe the automated
partitioning algorithm in Section 2.3.1.

Next, the operation classification step uses the partitioning obtained
in the previous step to classify operations as local or global, based on
the amount of coordination they require. Unlike global operations,
local operations can be executed immediately without distributed
coordination. Operations classification, which is also an automated
process, is described in Section 2.3.2.
Online Scale-Out Algorithm. The previous two steps of offline anal-
ysis produce a partitioning criteria and an operation classification.
These are taken as input by the Conveyor Belt protocol, which runs the
application on multiple servers and ensures consistency. The protocol
is described in Section 2.4.

The protocol is implemented by Gyro, a scale out middleware that in-
tegrates with unmodified applications and interfaces with unmodified
external DBMSs. We describe the technical details of this integration
in Section 2.6.

2.3 operation partitioning

We start by describing the first two steps in our approach: automated
partitioning algorithm and operations classification.
Application Code: Transactions vs. Operations. We consider appli-
cations keeping all their persistent state in a DBMS. The application

2.3 operation partitioning 23

code consists of a set of transactions that modify the state of the
DBMS. Transactions are expressed as procedures having a certain
number of input parameters. For example, a transaction could be the
procedure createCart(sid), which creates a shopping cart with id
sid. An operation corresponds to a request to execute the transaction
with a set of concrete values for its input parameters. For example, a
client operations can invoke the operation createCart(5) to create a
cart with id 5.
Operation Conflicts. The application state is stored by the DBMS, and
logically consists of a set of variables (i.e., tuples). A state assignment
(or simply state) S assigns a value to each variable accessed by the
application. Let O be the set of all possible operations that can be
executed by the application. The read set R(o) of an operation o ∈ O
consists of all variables that o may read when it executes on any state
S. Similarly, the write set W(o) of o is the set of all variables that o may
write to if it executes on any state S. Two operation o1 and o2 have a
write conflict if their write sets intersect, i.e., W(o1) ∩W(o2) 6= ∅. We
say that o1 reads from o2 if R(o1) ∩W(o2) 6= ∅. In either cases, we say
that o1 and o2 conflict with each other.

2.3.1 Automatic Partitioning

The automatic partitioning step generates a partitioning of operations
that minimizes conflicts. We now describe how we automate this
process.

To identify operation conflicts we need to specify read and write
sets of the operations. First, we show how to extract and express read
and write sets from the source code. Next, we describe the automated
partitioning algorithm, which takes read and write sets as input and
determines an operation partitioning array P. The operation partition
array associates every transaction t to one of its input parameters. This
partitioning parameter is used by the Conveyor Belt protocol to route
every operation o of type t to a server. After an operation partitioning
array P is determined, classifying operations is straightforward and
automatic as we will see.
Extracting Rread/Write Sets. An OLTP application usually has a rela-
tively small number of transaction, which can correspond to a huge
number of possible operations. Therefore, the operation Partitioning
algorithm operates at the level of granularity of transactions, and for
each transaction determines a read and a write set. These sets are de-
termined in a static and pessimistic way: they include all variables that
could be accessed in any execution performed against any database
state. An entry e in either sets is a pair e = 〈A, C〉, where A is a set of
accessed attributes and C is a condition.

The accessed attributes set in the read set contains all table attributes
(i.e., columns) that are read and returned as output of the transaction.

24 scaling out acid applications with operation partitioning

In the write set, it contains all table attributes that are updated by
the transaction. The condition of a read or write set is the predicate
used to select the specific rows in the table for which the attributes are
modified.

Read and write sets are generic concepts, but we now give a concrete
example based on the type of applications we targeted in this work.
These applications consist of a set of transactions that access a database
through SQL queries. Consider for example the doCart transaction in
the TPC-W benchmark, which updates a shopping cart with id sid by
adding, removing or updating item with id iid in a quantity q. The
pseudocode of the transaction is the following:

doCart(sid, iid, q){

...

exec("UPDATE SHOPPING_CARTS

SET QTY = q WHERE ID = sid

AND I_ID = iid");

...

}

Operation Partitioning extract reads and write sets by looking at
all SQL statements contained in the transaction, regardless of the
execution path. While conservative, this approach has proven good
enough for our purpose. We used Java parser [Jpa] to extract SQL
queries and to map input parameters to the used query parameters.

With this information at hand, we can define read and write sets.
Each SQL statement corresponds to an entry in one of the sets. Con-
sider for example the SQL statement highlighted in the pseudocode
and rename the table SHOPPING_CARTS as SC for brevity. This state-
ment corresponds to a write set entry e. The accessed attribute for e
is specified in the UPDATE clause, so e.A =SC.QTY. Insert SQL query
also correspond to entries in the write set and their accessed attribute
is specified in the INSERT statement, while for read set entries the
accessed attribute corresponds to the SELECT query. The condition of
the entry corresponds to the content of the WHERE clause of the query,
so in this case e.C = (SC.ID = sid ∧ SC.I_ID = iid). The condition
binds the value of the input parameters of the transaction, which are
sid and iid in this case, with the values of the table attributes of
the specific rows for which the attributes in e.A are accessed by the
transaction, SC.ID and SC.I_ID = iid in our example.
Conflict Detection Phase. The partitioning algorithm is illustrated
in Algorithm 1. The first phase of the algorithm is conflict detection,
which looks at all pairs of transactions that have a conflict on some
table attribute. A conflict between transactions occurs if some of the
operations relative to these transaction can conflict, according to the
definition of Section 2.3.2. For each pair of transactions (t, t′), it builds
a condition predicate Ct,t′ , in disjunctive normal form, that expresses
the condition that the values of the input parameters of t and t′ must

2.3 operation partitioning 25

Algorithm 1: Partitioning algorithm.
input : Set T of transactions
input : Read set Rt and write set Wt for each transaction t
output : Array P of partitioning parameters P[t] for each transaction t

// Conflict detection
1 foreach pair t, t′ ∈ T do
2 Ct,t′ ← false;
3 if ∃r ∈ Rt, w ∈Wt′ : r.A ∩ w.A 6= ∅ then
4 Ct,t′ ← Ct,t′ ∨ (r.C ∧ w.C);
5 if ∃w ∈Wt, r ∈ Rt′ : w.A ∩ r.A 6= ∅ then
6 Ct,t′ ← Ct,t′ ∨ (w.C ∧ r.C);
7 if ∃w ∈Wt, w′ ∈Wt′ : w.A ∩ w′.A 6= ∅ then
8 Ct,t′ ← Ct,t′ ∨ (w.C ∧ w′.C);
9 if Ct,t′ is satisfiable then
10 Conflicts← Conflicts∪ Ct,t′ ;

// Partitioning optimization
11 return minP cost(P, Conflicts);

// Estimate the volume of conflicts
12 function cost(P, Conflicts)
13 foreach Ct,t′ ∈ Conflicts do
14 k← P[t];
15 k′ ← P[t′];
16 foreach table attribute A do
17 remove all clauses (k = A ∧ k′ = A ∧ . . .) from Ct,t′ ;
18 if Ct,t′ not satisfiable then
19 remove Ct,t′ from Conflicts;
20 return ∑Ct,t′∈Conflicts weight(t) + weight(t′);

take so that a conflict occurs on the same row(s) of the same table(s).
In other words, the condition characterizes the set operations of the
two transactions that are conflicting. If a conflict between the two
transactions is possible, Ct,t′ is added to a set called Conflicts. Note that
we also consider self-conflicts, that is, conflicts between two operations
of the same transactions where t = t′.

Let us consider again the TPC-W example. The createCart transac-
tion creates a new row in the SHOPPING_CARTS table (again renamed SC

for brevity) such that SC.ID = sid, where sid is the id of the shopping
cart and is an input parameter of createCart:

createCart(sid){

...

exec("INSERT INTO SHOPPING_CARTS

(ID) VALUES (sid)");

...

}

The write set of createCart contains entry e = 〈 SC.ID,SC.ID = sid

〉. Given the write set of doCart, we derive that there is a write-write
conflict between the two transactions with condition Ct,t′ :

(SC.ID = sid) ∧ (SC.ID = sid’) ∧ (SC.I_ID = iid’)

26 scaling out acid applications with operation partitioning

where sid is a parameter of createCart and sid’ and iid’ are pa-
rameters of doCart.
Partitioning Optimization Phase. The next phase is called partition-
ing optimization and it finds the operation partitioning array P that
minimizes global operations, as defined in Section 2.3.2. The parti-
tioning can reduce the cost of conflicts by mapping two conflicting
operation to the same partition, and thus server, such that the conflict
becomes local.

The cost function finds out the potential an operation partitioning
has to eliminate conflicts. Consider two transactions t and t′ that
conflict, and let k and k′ be the parameters used for their partitioning.
Operation Partitioning uses the same deterministic routing function
for all operations, so two operations with the same value of their
partitioning parameters k and k′ will be sent to the same server. There-
fore, all conflicts that arise because of a necessary condition k = k′

will be local to one server, and they will not require global coordi-
nation. The most common case when this condition arises is when
k and k′ are used to identify a row based on the value of the same
attribute A, so there is a clause in the conflict condition of the form:
(k = A ∧ k′ = A ∧ . . .)

Let us revisit again our running TPC-W example and let P be an
operation partitioning array such that sid is the partitioning parameter
for both doCart and createCart transactions. The conflict condition
in the previous equation is of the form (k = A ∧ k′ = A ∧ . . .), where
k =sid, k′ =sid’, and A =SC.ID. This condition is equivalent to
saying that the conflict among the two transactions arises only if
sid=sid’. As the same deterministic routing function is used for both
transactions, conflicting operations will always be sent to the same
server. This means that we can remove this conflict from the Conflicts
set.

After removing all conflicts that become local thanks to an operation
partitioning array P, we can estimate the cost of the remaining global
conflicts by summing up the weight of the conflicting transactions in
Conflicts. If we assign to each transaction a weight of 1, the algorithm
will minimize the number of conflicting transactions. If an estimate of
the relative frequency of the transaction is known, it can be used as a
weight to improve cost estimation.

The algorithm searches for the operation partitioning array that
minimizes the cost. In the workloads we considered, and in most
practical transactional workloads, the number of transaction types
and their parameters is not very large, so an exhaustive search of all
possible partitionings to find the best one is feasible. However, the
algorithm can also use of more sophisticated search strategies.
Multiple Partitioning Parameters. The full algorithm also considers
multiple partitioning attributes by looking at each parameter indepen-
dently to find a partition. If in all cases the resulting partition is the

2.3 operation partitioning 27

same, we consider the operation local and send it to that partition.
Otherwise, it is not possible to map the operation to one partition and
it is marked as global.
Applicability of The Algorithm. Although our static analysis tool
targets transactional applications using SQL statements, Algorithm 1

is generic and can be applied to other types of applications. For
example, a key-value store can be seen as a single table with two
attributes. In our implementation, however, we target application code
using basic SQL queries. For partitioning, we require that potential
partitioning parameters are involved in WHERE clauses only in atomic
conditions in an equality form. The rest of the clause can contain
arbitrary conditions. Parameters used in atomic conditions that are
not in equality form are ignored for partitioning, and other alternatives
are tried out. We also do not consider complex SQL constructs such
as nested queries and triggers.

2.3.2 Classes of Operations

With a partitioning of operations at hand, we can now describe the
operation classification logic.

Operation Partitioning identifies two classes of operations: local and
global. Local operations are partitioned, so they need to be executed
by a specific server, but they do not require prior coordination or
to be replicated. Even though a local operation l can have conflicts,
no operation executed at a different server than the one assigned to
l depends on the effect of executing it. On the other hand, global
operations require coordination before they are executed and are
replicated.
Local and Global Operations. Consider now the set O of operations
that have some conflict with some other operations. We classify these
operations as local or global by first partitioning them and by assigning
each partition to a different server in the system. We then classify each
operation as follows. An operation o is a local operation if: (i) o does not
have a write conflict with any other operation in a different partition,
and (ii) no other operation from a different partition reads from o. We
denote with Lp the set of local operations in the partition assigned to
a server p. A local operation l associated to a specific server can be
executed immediately at that server without any prior coordination.
In fact, it follows from conditions (i) and (ii) that no other operation
associated with another server depends on the effects of l.

The rest of operations that are not local are called global operations.
We denote with Gp the set of global operations in the partition assigned
to server p. Since executing global operations entails coordination
among servers in Conveyor Belt, it is important to find an operation
partitioning that minimizes them. Note that global operations are also
assigned to partitions, and are therefore only executed by a dedicated

28 scaling out acid applications with operation partitioning

create cart 1 create cart 2

add item to cart 1 add item to cart 2

order cart 1 order cart 2

Replica p Replica q

G

o1 o2 o1 reads from o2

o1 o2 other conflicts

L

KEY:

Figure 4: A classification of operations in the online store example. The order
operation is global, the other operations are local.

server, because they may read from other local operations which are
only seen by that server. Allowing global operations to execute on
arbitrary servers might results in them attempting to read unavailable
data.
Example. Consider the example of an online store application whose
operations must be classified. The application has transactions that
allow clients to create a cart, add and remove items, and eventually
proceed to checkout. Each cart is assigned a unique id. For each
cart id c we have the following three operations: create a cart c, add
a quantity a of items of type t to c provided that there are sufficient
items on stock, and finally order all items currently present in the cart
c.

Assume that operations are partitioned based on the value of the
cart id c. The conflicts among operations in two sample partitions
are illustrated in Figure 4. For example, operations that add an item
to a cart do that only if the item is available in the stock. The stock
level of an item can be modified by order operations, which remove
elements from it. Therefore, add operations on cart c read from order
operations for the same cart, and order operations have write conflicts
with other order operations on different carts.

Operation Partitioning classifies operations according to the par-
titioning and their conflicts as follows. Order operations are global
because they have write conflicts with operations in other partitions,
and because add operations read from them. All other operations are
local because they either have no conflicts with operations at other
servers (e.g., create cart operations) or they only read from remote
operations (e.g., add to cart operations).
Comparison With Data Partitioning. Operation Partitioning can be
seen as a mechanism to generate partial data partitions. The union
of write sets of every local operation in a partition corresponds to
a data partition. The subset of the write set of a global operation
that is part of cross partition conflicts constitute the set of items that

2.4 the conveyor belt protocol 29

have to be replicated. For instance, in Figure 4, there are two data
partitions each containing a cart. Every cart is assigned to the partition
of the operations manipulating it. Since the order operation, a global
operation, writes to an item that is also written to by order operations
from other partitions, the item has to be replicated.

Conversely, it is possible to get an Operation Partitioning from
a data partitioning scheme. Given a data partitioning function f
that maps every data entry to a partition, we generate an operation
partitioning by ensuring that every local operation has no entries in
its conflict set belonging to two distinct partitions. More formally,
an operation o is local if for every conflicting operation o′, for every
variables x, y ∈ W(o) ∩W(o′) or W(o) ∩ R(o′), we have f (x) = f (y).
In that case, the server responsible for o also maintains the partition
f (x).

2.4 the conveyor belt protocol

We now describe Conveyor Belt, a lock-free scale-out coordination
algorithm that runs applications on multiple servers to increase their
performance compared to a single-server configuration. The proto-
col considers applications where Operation Partitioning has already
been applied to classify the application’s operations. The classification
allows a server to immediately execute and reply to as many local op-
erations as possible without coordinating with other servers. Conveyor
Belt implements serializability [Pap79], i.e, all clients observe the same
sequential execution order of operations. We provide a correctness
proof of the protocol in the Section 2.5.
Preliminaries. We start by clarifying the functioning of the application
running with Conveyor Belt. The application is ran by an event-driven
multi-threaded server. Whenever a event, such as the receiving of
a client request, is triggered, the server dispatches its handling to a
thread. When a server receives requests (REQ message) from clients,
the assigned thread executes the request and sends a (REPLY message)
back or a redirect message (MAP message) if the client contacted the
wrong server.

Conveyor Belt orchestrates the execution of the application by in-
voking its request execution logic. In the pseudocode, we abstract
this logic as an execute(o) function, which executes an operation o
and produces a reply r, along with a state update u that we describe
shortly. We consider applications that store their state on a database
management system (DBMS). Each server runs a local stand-alone
DBMS instance, i.e., instances of the DBMS at different servers do
not communicate with each other. When an application executes an
operation, it accesses its local state by invoking a sequence of database
queries on the local DBMS instance. All queries invoked by the same
operation are enclosed within a single database transaction. We as-

30 scaling out acid applications with operation partitioning

Algorithm 2: The Conveyor Belt algorithm for server p.
1 upon receive 〈REQ, o, c〉 msg from client c where
2 if o ∈ Lp then
3 r, ∗ ← execute(o);
4 send 〈REPLY, r〉 msg to c;
5 else if o ∈ Gp then
6 append 〈o, c〉 to Q;
7 else
8 q← replica such that o ∈ Lq ∪ Gq;
9 send 〈MAP, q〉 msg to c;

10 upon event receiveToken(T)
11 foreach 〈u, q〉 ∈ T do
12 if p = q then
13 remove 〈u, q〉 from T;
14 else
15 apply(u);
16 Q′ ← atomic-snapshot(Q);
17 foreach 〈o, c〉 ∈ Q′ do
18 r, u← execute(o);
19 append 〈u, p〉 to T;
20 send 〈REPLY, r〉 msg to c;
21 remove 〈o, c〉 from Q;
22 passToken(T);

sume that the DBMS can execute transactions in parallel and guarantee
serializability.

The state update u returned by execute(o) is the update-only query
that includes all updates to the database generated during the execu-
tion of o. Extracting u is one of the features of the Gyro system, which
we detail in Section 2.6. When value of the state update is irrelevant,
we it this with a star.

Conveyor Belt executes each operation only once, at a single server.
It replicates the effects of operations executed at other servers simply
by directly applying the corresponding state update onto the local
DBMS instance. This is denoted in the pseudocode by the function
apply(u).

The algorithm requires executing operation partitioning and classi-
fication as preliminary steps before it is started. These steps partition
operations among the sets {L1, . . . , LN , G1, . . . , GN}, where N is the
number of servers in the system and Lp and Gp contain the local and
global operations, respectively, assigned to server p.
Handling Local Operations. The pseudocode of the Conveyor Belt
algorithm for a server p is shown in Algorithm 2. The algorithm
handles operations differently based on their classifications. Local
operations are executed locally and a reply is immediately sent back
to the client without coordination (Lines 2-4).

We now explain why local operations do no require coordination.
As discussed in Section 2.3.2, the updates made by local operations
are not directly read by any other operation running at other servers.
However, these updates might indirectly impact remote operations

2.4 the conveyor belt protocol 31

transitively, my means of a global operation. Consider again the cart
example of Section 2.3.2. If a (local) add operation adds an item i to
a cart and a subsequent (global) order operation places an order for
that cart, the result is that the stock of item i is reduced, and this
impacts operations at all servers. The Conveyor Belt protocol in this
case only propagates the state update of the order operation, which
includes the reduction in the stock of item i. This is sufficient to
ensure serializability, and there is no need to propagate the fact that
the item was previously added to the cart. The protocol can thus avoid
propagating local operation thanks to its use of state updates, or in
other words, of passive instead of active replication [JS13]: propagating
and executing operations at all servers would require Conveyor Belt to
propagate the add operation as well in order to guarantee a consistent
execution of the order operation at all servers. we refer the reader to
the proof of correctness Section 2.5.

Handling Global Operations. Global operations require coordination
among servers to agree on a total order of execution. Conveyor Belt
uses a token based scheme. The token is passed around in a predefined
order to ensure that global operations are totally ordered. At any time,
only the server holding the token, also called the primary, is allowed
to execute global operations. Otherwise, the server appends the
operations to a queue Q for execution at a later time. Note that the
queue Q must be thread-safe since Algorithm 2 is multi-threaded.

Handling the Token. Upon receiving the token T, server p invokes
one receiveToken(T) event at p, becoming the primary server. Like
any other event, a specific receiveToken(T) event is handled in iso-
lation by a single thread, while multiple other threads might be con-
currently handling client requests. The token contains a sequence
of tuples 〈u, q〉 where u is the update of a global operation that has
previously been executed at some server q. As soon as a server be-
comes primary, it applies all the updates in the token that are from
other servers and removes its own updates as they have been already
applied at all other servers (Lines 11-15). Next, the primary needs to
execute the global operations that have been enqueued locally into Q.
In order to ensure liveness, the primary copies an atomic snapshot Q′

of the Q queue containing global operations submitted to p that have
been waiting for execution (Line 16). This is because Q is concurrently
modified by multiple threads. Without copying an atomic snapshot,
p might stay stuck executing incoming global operations in Q that
are constantly being appended by other threads, and never give up
the token. Then, p iterates over all global operations that have been
pending up to that point in the Q′ queue (Lines 17-21). The server
executes each operation o in the queue, sends a reply r to the client c
and appends the resulting update u to the token before removing the
operations that have been appended.

32 scaling out acid applications with operation partitioning

For efficiency reasons, our actual implementation of the Conveyor
Belt protocol executes the operations in Q′ in parallel. Consequently,
the DBMS executes multiple concurrent transactions generated by
these operations. Gyro must be able to extract the logical serial order
in which the DBMS executes these concurrent transactions, since this
serial order must be the same as the order in which the corresponding
state updates are added to the token and thus applied at other servers.
Section 2.6 describes how Gyro achieves this.

Finally, the server gives up the primary role by calling passToken(T)
to pass the token to the next server (Line 22).
Redirections. If clients know how the operations are partitioned, they
send their operations directly to the server responsible for it. This
should be the common case as it is for our example applications.
However, if clients send an operation to the wrong server, the server
will reply with the identity of the server responsible for the operation
(Lines 8-9).
Fault Tolerance. The Conveyor Belt protocol considers replication
for fault tolerance as a complementary and orthogonal issue. More
precisely, the protocol assumes that each of the servers can tolerate
faults and there is no message loss. Making a server fault tolerant is
an orthogonal issue: for example, a Paxos group could implement the
abstraction of a logical fault tolerant server. For message loss, the token
can simply be passed using a reliable channel among fault-tolerant
servers.

2.5 correctness proof

In this section, we prove that the Conveyor Belt protocol (Algorithm 2)
correctly implements serializability.

2.5.1 Token-Passing Scheme

The protocol uses a primary-backup scheme to execute global op-
erations, based on a token passing scheme that acts as a broadcast
algorithm. We now show the properties of the token passing algo-
rithm.

Lemma 1. The token passing scheme used by the Conveyor Belt protocol to
broadcast state updates of global operations satisfies Primary Order atomic
broadcast [JRS11; JS13].

Proof. A Primary Order atomic broadcast protocol satisfies the stan-
dard properties of atomic broadcast, namely:
• integrity: if some server delivers an update u then some server

has appended u to the token;
• total order: if some server delivers update u before u′ then any

server that delivers u′ must deliver u before u′;

2.5 correctness proof 33

• agreement: if some server p deliver u and some other server q
delivers u′, then either p delivers u′ or q delivers u.

These properties holds for the token scheme since the order of the
updates appended to the token is never altered and updates are only
removed from the token once all servers has received them (Line 13).

There are two additional properties that Primary Order atomic
broadcast satisfies. The first additional property is primary order:
servers must apply updates in the order in which they were broadcast
by the primaries that produced them. This is necessary because
otherwise older state updates might overwrite values written by newer
state updates. In particular, local primary order requires that the
delivery order is consistent with the local broadcast order of a primary
during each primary epoch, while global primary order requires that
the delivery order is consistent with the total order of the primary
epochs in which the message was broadcasted.

The second property, called primary integrity, guarantees that the
primary role can transition safely from one server p to another server
q. Primary integrity requires the following: if a new primary epoch
e starts at server p, a state update u is broadcasted during a prior
primary epoch, and u is eventually delivered by some server, then p
must deliver u before it starts e. This property guarantees that the
new primary p obtains the full final state resulting from previous
epoch before it starts producing new state updates. State updates are
incremental and they should only be applied on the state from which
they were produced. Interleaving state updates from different epochs
can result in incorrect executions.

It is easy to see that the token passing scheme satisfies these proper-
ties. Primary order is guaranteed because the updates are appended
to the token in the same order of their execution by the primary (Lines
18-19) and because of the total order preservation of the token. This is
true because the used queue is atomic updates appended to the token
are applied by all the other servers in that same order (Lines 11-15).
The token scheme satisfies primary integrity by ensuring that every
primary applies all the updates in the token from previous epochs
before executing pending global operations (Lines 11-15).

2.5.2 Serializability Proof

We now show that Conveyor Belt guarantees serializability, that is,
the relative order of global operation is consistent across all servers.
Before the proof, we need to introduce some notation and definitions.
Definitions. In the Conveyor Belt protocol, operations are executed
concurrent by multiple threads. However, they are executed by an
underlying DBMS which, by assumption, serializes their execution.
Therefore, we consider in the proof that each server executes opera-
tions in a sequential total order. A DBMS running at a server only

34 scaling out acid applications with operation partitioning

executes state updates of global operation of other servers. In the
proof, we will not distinguish between the two cases of executing
a global operation or its state update, that is, we say that a server
executes a global operation g also when it executes the corresponding
state update.

We call an execution of the system the sequence of operations invoked
on the distributed system up to a given time, and pair each operation
with the reply that the service produced for it. In order to show that
the Conveyor Belt protocol satisfies serializability [Pap79], we need to
show that, for each possible execution e, there exists a total order T of
the operation-reply pairs of e such that executing of the operations in
the specified order on a single instance of the service will produce the
same replies as in e.

It is important to stress that this total execution order T is a logical
order. It describes how clients observe the behavior of an application
scaled out by a coordination protocol like the Conveyor Belt protocol.
The actual implementation of the coordination protocol simply has to
exhibit a behavior that is equivalent to this total order. The implemen-
tation of this property is protocol-dependent. In the Conveyor Belt
protocol, for example, local operations are not executed by all servers.
Nonetheless, local operations are still totally ordered in T, and the
system behaves as if these operations were executed by all servers.

We now introduce additional notation. Let T′p be the execution order
of all global operations executed in e relative to server p. T′p is defined
as follows. Let g be a global operation that appears in e. If g ∈ Gp,
then T′p orders g according to the order in which g is executed at p.
Else, T′p orders g according to the order in which the state update
generated from g is applied at p. Since in each server the token thread
executes and applies global operations sequentially, T′p is a total order,
and it reflects the order in which global operations modify the state of
p. Note that the total order for two servers might contain a different
set of operations. For simplicity, we treat sometimes T′p as a set and
use the notation g ∈ T′p to say that operation g appears in the total
order T′p.
Serializability Proof. The proof is in three steps. First, we show that
each server orders pairs of global operations consistently. Next, we
show that the relative execution order of local and global operations
is consistent across all servers. Finally, we show that pairs of local
operations are executed consistently.

Lemma 2. Given two servers p and q, their total orders T′p and T′q have a
common prefix which includes every operation in T′p ∩ T′q.

Proof. This lemma directly follows from the fact that the state updates
of global operations are broadcasted and delivered using the token
scheme. The token scheme guarantees that the delivery order of state
updates is consistent across all servers. , so the pairwise order of global

2.5 correctness proof 35

operations in T′p ∩ T′q that are neither in Gp nor in Gq is consistent in
T′p and T′q, and we are done.

Consider now the ordering of two global operations g and g′ such
that g ∈ Gp or g ∈ Gq (remember that global operations are parti-
tioned). We consider only the case g ∈ Gp without loss of generality,
and we have two sub-cases:

Case I: If g′ ∈ Gp, then the primary order property of the token
scheme guarantees that the delivery order of the state updates of g
and g′ at q is consistent with the order in which the operations were
executed by p, and we are done.

Case II: If g′ 6∈ Gp, we consider two sub-cases:
Case II.a: g′ precedes g in T′p. The primary integrity property guar-

antees that, before p becomes a primary and starts executing new
operations, p also delivers all operations sent by previous primaries
that are ever delivered by q. Therefore, g′ is delivered at p before g is
executed, so the same order will appear in T′q.

Case II.b: g′ follows g in T′p. There exists some server r such that
g′ ∈ Gr. If r sends g′ in a primary epoch after p sends g, then r delivers
g before it executes and sends g′ by primary integrity. Therefore, server
r delivers g before g′. Because of the total order guaranteed by the
token scheme, every server must deliver g before g′, including p. This
implies that g must precede g′ in T′p, which is a contradiction.

If r sends g′ in a primary epoch before p sends g, then g′ precedes
g in T′p by primary integrity. It follows that g′ precedes g in T′q too.
Assume by contradiction that this does not hold and g precedes g′ in
T′q. This would imply that q delivers the state update for g before the
one for g′. Because of the total order property of the token scheme,
also p should deliver the state updates in the same order, so p should
deliver the state update for g before producing it, a contradiction.

Since all servers order global operations consistently, we define the
order of global operations in the total order T according to the order
T′p of any server p.

Next, we can show how pairs of operations, one local and one
global, are ordered among each other. Let l ∈ Lp be a local operation
executed by server p. Let Bl

p (resp. Al
p) be the set of global operations

whose state updates have been delivered at p before (resp. after) p
executes l. The total order T orders l after all global operations in Bl

p

and before the global operations in Al
p.

For this order to be sound, we need to show that l the state updates
of all global operations in Bl

p are reflected in the state upon which l is
executed, and that the state update of l is reflected in the state upon
which all global operations in Al

p are executed. The first claim directly
follows from the fact that l is executed by p after the operations in Bl

p.
We now show the second claim.

36 scaling out acid applications with operation partitioning

Lemma 3. The state update generated by executing l at server p is applied
to the state upon which each global operation g ∈ Al

p is executed.

Proof. We consider two cases. Case I: If g ∈ Gp, then g is executed at
p and after l, by definition, so the state updated of l is reflected in
the local state of p upon which g is executed, and we are done. Case
II: If g ∈ Gq with q 6= p, then g does not directly read any variable
from l by definition (see Section 2.3.2). However, assume that, if
operations were executed in the total order T, the state update of l
would determine the state upon which g is executed through one (or
more) operation o that reads a value v written by l and, because of
reading v, writes some value read by g. We need to show that these
operations are actually executed before g. We consider the case where
there is only one operation o propagating the changes of l to g. If o
reads from l then o is an operation assigned to server p. If g, which
is assigned to server q, reads from an operation o at another server
p, then o is a global operation. As shown in Lemma 2 that global
operations are consistently ordered by all servers. We have also shown
that this order reflects the execution order of global operations, so if o
precedes g in the total order T, then the state update of o takes effect
before g is executed. The case where l influences a global operation
in Al

p through a chain of operations o1, . . . , on follows by induction
using a similar argument for each pair of subsequent operations in
the chain.

The last case to consider is the ordering of pairs of local operations
l1, l2. If l1, l2 ∈ Lp are executed by same server p, their correct order
follows the local execution order at p. The ordering between two local
operations at different sites can be arbitrary, since neither observes the
other by definition (see Section 2.3).

After showing that the pairwise order of all operations form a
consistent total order, and that this total order is consistent with the
execution order of the operations, we can conclude that:

Theorem 1. The Conveyor Belt protocol (Algorithm 2) satisfies serializabil-
ity.

2.6 the gyro system

We have developed Gyro, a middleware that uses the Conveyor Belt
protocol at its core to ensure coordination-freedom of local operations.
Gyro supports multi-threaded applications, where concurrent threads
execute operations on a shared application state. Each server stores
the application state in a local DBMS offering serializable transactions.
We implemented Gyro in Java and it consists of about 2k lines of code.
Overview. In our implementation the mutli-threaded application is
a web application with a pool of threads to handle incoming HTTP

2.6 the gyro system 37

Application Gyro Gyro Application

Conveyor belt
Execute
query

Apply
updates

Apply
updates

Execute
query

 (Coordination)

Intercept
operation

Intercept
operation

DBMS DBMS

1
Client
Req.

Client
Req.

Instance 1 Instance 2

3 2

4

Figure 5: Gyro system overview in a deployment with two servers. The
numbered arrows indicate the execution flow of operations that
are mapped to the server. Global operations are held after step 2

until the server acquires the token. The Conveyor Belt protocol
propagates state updates for global operations executed at other
servers. Gyro directly applies these state updates onto the DBMS.

requests. Gyro works by intercepting the interaction between the
application threads and the DBMS.

A key design choice in Gyro was that we wanted to scale out
unmodified applications running on top of an unmodified external
DBMSs. In particular, the DBMS is seen as a black box by Gyro. Our
current implementation of Gyro intercepts JDBC interactions between
application threads and the DBMS, so we can support any data store
offering a JDBC interface interacting with a serializable DBMS. For
example, in our evaluation we use (unmodified) MySQL as underlying
data store. This makes Gyro easier to adopt and allows dealing with
fault tolerance at the data store level. Furthermore, the application
does not have to be manually modified to work together with Gyro
but is instead automatically instrumented.

In Figure 5, we show an overview of a multi-threaded server appli-
cation running with Gyro. Gyro interacts directly with the application,
and the other servers. Before an application starts executing an opera-
tion, it invokes Gyro and waits until it is allowed to proceed according
to the Conveyor Belt protocol. When it is time to execute the oper-
ation, Gyro gives back control to the application to resume. Next,
the application executes an instrumented version of the operation
that allows the recording of the resulting updates. The application
interacts directly with the DBMS and delivers the operation updates
in the same order of their execution back to Gyro. Additionally, Gyro
runs a separate module that deals with token passing and applies
received updates directly to the database.

In the description of the Conveyor Belt in Section 2.4, we left out a
few implementation details about the interaction between Gyro, the
application server, and the underlying DBMS, namely: how to extract
state updates, how to manage and parallelize the execution of global
operations, and how to trace the sequential execution order of global
operations. We describe these details in the following.

38 scaling out acid applications with operation partitioning

Extracting State Updates. First, we describe how Gyro extracts a
state update from the execution of an operation. Gyro does this by
intercepting the execution flow of operations in the application. We
do this by automatically instrumenting the application code to enable
the interaction with Gyro. An operation can execute multiple accesses
to the underlying DBMS. Before the first access, the operation starts a
transaction, which is terminated when the operation terminates. This
ensures that the local execution of concurrent operations is equivalent
to a sequential execution on the DBMS. The interaction between the
application and Gyro is completely transparent. In order to obtain the
state updates produced by global operations, Gyro records changes to
the DBMS state by intercepting interactions between the application
and the DBMS, which occur through JDBC. Every time the application
begins executing a global operation, our instrumentation generates an
operation object that is used to store the state updates. Gyro then uses
the operation object as a wrapper to JDBC: every time the application
invokes a statement s mutating the state (e.g., UPDATE), it does so
through the operations object instead of JDBC. The operation object
appends s to the sequence of SQL query statements invoked within
the operation and then passes s to JDBC. At the end of the transaction,
the sequence of SQL statements in the operation object represents the
sequence of state mutations that can be executed by other servers to
reproduce the operation, that is the update that has to be passed to
the other servers.

Parallelizing The Execution of Global Operations. We now describe
how our implementation of the Conveyor Belt protocol in Gyro han-
dles global operations. The handling of local operations is identical
to the description in Algorithm 2, but Gyro optimizes the handling
of global operations by executing them in parallel. As discussed in
Section 2.4, there is a single thread that handles the event of receiving
a token. We call this thread the token thread. We call the other threads
that handle global operations, and are waiting for the permission of
executing them, the handling threads. In Algorithm 2 the handling
thread appends a global operation to Q and returns, leaving the actual
execution of the operation to the token thread. This would require the
handling thread to store a copy of the HTTP request handling context
necessary to reply to the client and make it available to the token
thread. As this would induce a substantial overhead, we opted for
having the handling thread wait for the server to receive the token be-
fore executing the operation with the necessary HTTP request context.
Concretely, we extend the queue Q to contain an initially locked lock
for every pending operations that the handling thread attempts to ac-
quire and goes to sleep until it is unlocked by the token thread. When
the token thread executes, it iterates over the pending operations and
notifies the sleeping threads to proceed and execute the operation.
The token thread then blocks until all pending operations finished

2.7 case studies 39

execution using a semaphore initialized with the number of pending
operations. Once an operation finishes execution, it adds its update
the token queue and decreases the counter of the semaphore. When
the token thread is awakened again it releases the token and returns.
This implementation has the additional benefit of speeding up the
execution of global operations as they are handled concurrently by
multiple threads. Since global operations are executed concurrently, it
is important that the order in which the transaction updates are added
to the token correspond to the order in which they were executed by
the database.
Tracing The Sequential Order of Global Operations. Next, we show
how we ensure that the execution order of global operations matches
their order in the token sequence of updates. Gyro assumes that the
DBMS provides serializability, so it executes transactions in a total
order. Gyro must record the serial execution order of the database
to make sure that the state updates are broadcast consistently with
this order. To this end, the wrapper operation objects uses a reference
queue U to the token to capture the order of state updates.

In our implementation we assume that transactions ensure serializ-
ability using pessimistic locking: before a transaction accesses a data
item i, the transaction acquires a lock and releases it only after the
transaction is committed or aborted. When the application requires
a transaction t for operation o to commit, Gyro intercepts this call,
appends to U the state update uo produced by o, and then invokes
the commit. Since the DBMS uses pessimistic locking, Gyro knows
that t has already taken locks on all the data items it accesses before it
invokes the commit. Therefore, any concurrent transaction t′ for an
operation o′ that has a conflict with t will not be able to invoke commit
until t has committed and released its locks. The thread executing
t′ will thus append o′ to U only after t has finished appending o, so
the order of the operations in U is consistent with the execution order
of t and t′. Updates that do not conflict can be added to U in any
order: Gyro uses a concurrent queue implementation to allow safe
concurrent updates from multiple threads.

2.7 case studies

We present two widely used benchmarks as case studies: TPC-W, an
online store system [Tpc], and RUBiS, an auction website [Rub]. Both
benchmarks are implemented in the Java programming language as
Java servlets running inside an Apache Tomcat container.
TPC-W. TPC-W [Tpc] is an online bookstore. It handles 14 different
client requests such as browsing through books, creating users, adding
books to shopping carts or ordering book. The application keeps a
persistent state in a database of 10 tables. A SHOPPING_CARTS table
to store the shopping carts for every user or a ITEMS table for the

40 scaling out acid applications with operation partitioning

Application Transaction classification Total
L G L/G Read-only

TPC-W 15 5 – 13 20
RUBiS 14 4 8 17 26

Table 1: Request classification for the case studies.

available books, among others. On average a client request invokes
between 2 and 3 operations. In total, there are 20 transactions of which
13 are read-only. The rest of the operations either update, delete or
insert records in, possibly multiple, tables. In TPC-W, operation Par-
titioning could identify 15 local and 5 global (see Table 1). The local
transactions mainly involve updating customer data, and are parti-
tioned by customer id, or manipulations of the shopping carts, and are
partitioned by cart id. Gyro allows generating server-specific unique
ids, which guarantee that clients requests partitioned by a given id
can be served by the that generated that id. This is important in WAN
settings. Global transactions involve ordering books or administrative
operations such as updating the books list.
RUBiS. RUBiS [Rub] is an online auction web application modeled
after eBay [Eba]. RUBiS defines 20 client requests, such as putting
items for sale, viewing personal profiles, bidding or browsing items.
The persistent state of the application is stored in 8 tables database.
For example, the BIDS table stores the currents bids and the USERS the
registered bidders. Similar to TPC-W , the requests handlers are not
atomic and consist of invocations of multiple operations. There are 26
transactions in total of which 17 are read-only. In RUBiS, operation
Partitioning uses a double-key scheme, whereby many operations are
partitioned by both user id and item id. If both parameters route
to the same server, the operation is considered local, otherwise it is
considered global. Such partitioning scheme yields 14 local, 4 global,
and 8 local/global transactions. The local transactions involve the
user browsing through his personal profile. Global operations include
a global search for items based on some criteria or browsing through
a user’s own bought items. Local/global operations involve bidding,
buying and selling.

2.8 experiments and evaluation

To evaluate our approach we design three set of experiments to answer
the following research questions:

RQ 1 How does Conveyor Belt (Gyro) compare to a traditional database
that scales out using data partitioning and distributed transac-
tions?

RQ 2 How does Gyro scale out in a geographically distributed setting?

2.8 experiments and evaluation 41

Locations G J US B A

Germany (G) X 253 92 193 314
Japan (J) X 153 282 188

United States (US) X 145 229
Brazil (B) X 322

Table 2: Inter-site latencies among servers in the WAN setting (ms).

2 4 6 8 10 12 14 16

Number of replicas

200

400

600

800

1000

1200

1400

1600

Pe
a
k

th
ro

u
g
h

p
u
t

(o
p
s/

se
c)

MySQL cluster

Gyro

(a) TPC-W.

7 8 9 10 11 12 13 14 15

Number of replicas

500

600

700

800

900

1000

1100

Pe
a
k

th
ro

u
g
h

p
u
t

(o
p
s/

se
c)

MySQL cluster

Gyro

(b) RUBiS.

Figure 6: Scalability of Gyro and MySQL Cluster in a LAN setup.

RQ 3 What is the minimum fraction of local operations that is suffi-
cient to see performance improvements with Gyro?

Experimental Setup. We run our experiments on Amazon EC2 T2

Medium instances (nodes). Each node has 4 GBGB of RAM, two
virtual cores and is equipped with an Amazon EBS standard SSD
with a maximal bandwidth 10 000 IOPS. The nodes run Ubuntu Server
14.04 LTS 64, MySQL 5.5.49-0 and Apache Tomcat 7.0.52.

In the LAN experiments, all servers are located in the same site
(datacenter) in Germany. For the WAN (geographically distributed)
experiments, we place servers in five different sites to simulate a
geographically distributed system. The sites are in Germany (G),
Japan (J), US east (US), Brazil (B), and Australia (A). We add these
locations in the aforementioned order. For example, a configuration
with three locations consists of servers in G, J, and US. Table 2 reports
the inter-site latencies among servers.

We used separate client nodes, which have identical configuration
as the servers and are located in the same sites. In the WAN setting,
we use five client nodes in every configuration, one for each location,
and direct requests to the closest server. We equally distribute client
threads across client nodes.
Benchmarks. We use TPC-W and RUBiS to evaluate Gyro. Both come
with multiple workload mixes. We use a bidding mix with 15 % write
operations for RUBiS and the shopping mix with 30 % write operations
for TPC-W. Both workloads exhibit a considerable number of local
operations that can be leveraged by Gyro.

42 scaling out acid applications with operation partitioning

0 50 100 150 200 250

Throughput (ops/sec)

0

1000

2000

3000

4000

5000

La
te

n
cy

 (
m

s)

Centralized

Read-Only - 2

Read-Only - 3

Read-Only - 5

Gyro - 2

Gyro - 3

Gyro - 5

(a) TPC-W.

0 100 200 300 400 500 600

Throughput (ops/sec)

0

1000

2000

3000

4000

5000

La
te

n
cy

 (
m

s)

Centralized

Read-Only - 2

Read-Only - 3

Read-Only - 5

Gyro - 2

Gyro - 3

Gyro - 5

(b) RUBiS.

Figure 7: Gyro vs. baselines in a WAN (geographically distributed) setup.

2.8.1 RQ 1: Data Partitioning Comparison

In this experiment we compare the performance of Gyro, against
an approach based on data partitioning and distributed transac-
tions. MySQL Cluster is a version of the popular MySQL DBMS
extended with data partitioning capabilities. It horizontally partitions
the database and assigns a partition to each server. It uses distributed
transactions, with pessimistic locking and two-phase commit, for op-
erations that span multiple partitions. We choose MySQL Cluster as
a baseline because it is a prototypical system combining data parti-
tioning and distributed transactions, and because it is often used as
reference for comparison by other state of the art work on distributed
transactions like Callas [XSL+15].

It is important to note that MySQL Cluster can only provide the read
committed isolation level, whereas Gyro provides serializability, which
is significantly stronger and more expensive to achieve. Nonetheless,
Gyro is still able to achieve a large speedup over MySQL Cluster.

For both benchmarks, we carefully partitioned the database manu-
ally using MySQL Cluster. After running the Operation Partitioning
algorithm, we extracted the resulting data partitioning scheme and ap-
plied it to MySQL Cluster. That is, we use the same data partitioning
that result from the operation Partitioning we apply to the benchmarks.
For instance, in TPC-W we partition according to customer and cart
ids.

We setup each node to serve as MySQL Cluster server and a data
node that stores exactly one data partition. We additionally designate
one node as the manager for the initial setup. We use a LAN setting,
which is more favorable for MySQL Cluster as distributed transactions
are known to perform much better over LANs than over WANs.

We examine the scalability of both approaches. In this local setting,
we intensify the workload by increasing the number of clients. In
Figure 6 we show how the peak throughput develops while varying
the number of servers in the system for TPC-W and RUBiS. Peak

2.8 experiments and evaluation 43

throughput is defined as the maximum throughput a system can
sustain while ensuring an average latency of less than 2000 ms.

Figures 6a and 6b show the same trend for both TPC-W and Rubis:
as the number of servers grows, the increased cost of distributed co-
ordination eventually outweighs the gain of additional resources to
run transactions that require no coordination. This upper bound in
scalabilty represents the inherent cost of achieving strong consistency
in the workloads we consider, which are not perfectly partitionable.
Having said that, both figures 6a and 6b show that Gyro scales much
better than MySQL Cluster. In the case of TPC-W we can see that
while the performance of MySQL Cluster starts to degrade with con-
figurations of more than 4 nodes, Gyro continues to deliver at a much
higher throughput until it reaches a configuration of 13 servers. On the
other hand, with the RUBiS workload, Gyro and MySQL Cluster reach
a point of saturation at the same configuration, namely 12 servers,
but still consistently achieves higher throughput. Overall, Gyro out-
performs MySQL Cluster both in terms of maximal throughput and
latency by up to 58.6x for latency and about 4.2x for throughput in the
case of TPC-W. For RUBiS, Gyro achieves a 1.4 maximal throughput
speedup and reduces the latency up to 35.7x.

Gyro performs significantly better than MySQL Cluster due to the
distributed transactions used by the latter to lock rows. The necessary
coordination with remote machines in MySQL Cluster prevents the
progress of concurrent conflicting transactions that access the same
rows. In contrast, Gyro does not lock rows. When a server receives
global operations that require remote coordination, Gyro merely en-
queues the operations until the server gets the token. This allows
other concurrent local operations to make progress.

TPC-W and RUBiS show different results due to different read-only
operation ratios. In TPC-W many of the local operations are write
operations that, in MySQL Cluster, involve distributed transactions.
Therefore, TPC-W benefits tremendously from operation partitioning.
The RUBiS’s workload contains more local operations, but a much
larger fraction is read-only. RUBiS thus profits from the read-only
transaction optimizations implemented by MySQL Cluster. These
results highlight that existing DBMSs already require minimal co-
ordination for read-dominated workloads. The more a workload is
write-heavy, and thus hard to scale out, the more using Gyro pays off.

2.8.2 RQ 2: Scaling Out in WANs

The previous experiments showed the scale-out capabilities of Gyro in
a LAN setting. We now evaluate Gyro in a WAN (i.e., geographically
distributed) setting, where coordination is even more expensive and
scalability is more challenging. We use two baselines: (1) a standard
MySQL (without Gyro) a single server (centralized), and (2) an im-

44 scaling out acid applications with operation partitioning

Configuration TPC-W RUBiS

Centralized 1390 416
Gyro– 2 671 (2.1x) 182 (3.3x)
Gyro– 3 436 (3.2x) 155 (2.7x)
Gyro– 5 29 (47.9x) 35 (11.9x)

Read-Only – 2 902 (1.5x) 145 (2.9x)
Read-Only – 3 521 (2.7x) 131 (3.2x)
Read-Only – 5 129 (10.8x) 96 (4.3x)

Table 3: Request latency in milliseconds with light load in a WAN setting.
The reported improvements in brackets are relative to the centralized
case.

plementation where read-only operations are executed by one server
without coordination, like local operations. This is a common op-
timization offered by many systems (read-only). All these variants
guarantee serializability, so the applications have the impression of
interacting with a single server and don’t need to be modified to
account for inconsistencies.

0 1000 2000 3000 4000 5000 6000
Throughput (ops/sec)

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
s)

0% Local ops
30% Local ops
50% Local ops
70% Local ops
80% Local ops
90% Local ops

Figure 8: Gyro with different local operation ratios.

First, we compare the latency of Gyro in different configurations
when the system is not overloaded. In Table 3, we report the latency
improvement over the centralized setting of each configuration, from
two to five with TPC-W and RUBiS.

Gyro achieves significant latency reduction, of more than one or-
der of magnitude, because it reduces the need for coordination. For
instance, RUBiS with 3 servers the latency is 3.2x less that of a cen-
tralized server and 2.7 for the read-only baseline. The performance
is best when a server datacenter is available in every geographical
location of the clients. In fact, for the 5 server configuration the latency
is 47.9x less for TPC-W and 11.9x for RUBiS. In contrast, the latency
when using the read-only optimizations is only 10.8x less for TPC-W
and 4.3x for RUBiS. This is because the majority of operations can be

2.8 experiments and evaluation 45

0% 30% 50% 70% 80% 90%
Configurations (L%)

0

200

400

600

800

1000

1200

1400

1600

La
te

nc
y

(m
s)

Global and local ops
Local ops
Global ops

(a) Light load.

0% 30% 50% 70% 80% 90%
Configurations (L%)

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
s)

Global and local ops
Local ops
Global ops

(b) Heavy load.

Figure 9: Latency comparison of Gyro with different local operation ratios
using micro-benchmarks.

served by the local server where clients are located. This is especially
the case for the five servers case where the latency is at its lowest:
29 ms for RUBiS and 35 ms for TPC-W.

Next, we shift our attention to both throughput and latency with
more intense workloads (Figure 7). We stress the system by increasing
the number of clients until the latency reaches 5 seconds. The single
server in the centralized case start to saturate quickly, at few tens of
operations per second. Read-only optimization significantly reduces
latency and increases throughput for both workloads and especially
for RUBiS which is more read-dominated. Gyro, however, has a much
larger impact as it allows the local execution of many more operations,
both read-only and not. The effect in terms of throughput over both
the centralized and read-only baselines is substantial. Gyro enables
multiple sites to execute operations in parallel and results in much
higher maximum throughput.

Overall, Gyro improves the maximum throughput compared to the
read-only setting. For instance, in the five servers configuration there
is an increase of the maximal throughput by 291 % for TPC-W and
181 % for RUBiS. In terms of scalability, Figures 7a and 7b show that
Gyro scales very well until at least five geo-locations, which is a fairly
high number in many practical settings. By contrast, the read-only
baseline maxes out already with three servers, especially with TPC-W
where the gain from using additional servers in terms of throughput
is marginal. Like in the LAN case, if we keep adding locations, we
expect scalability to asymptotically stop because of the increasing
coordination cost induced by executing global operations.

2.8.3 RQ 3: Micro-Benchmarks

We now examine the performance of Gyro more in detail. We analyze
the effect of different local operations ratios on Gyro’s performance
using a synthetic workload where we can precisely specify these ratios.

46 scaling out acid applications with operation partitioning

The execution time of operations (global or local) is fixed to 5 ms. We
use a WAN setup with three servers and vary the percentage of local
operations in the workload from 0 % to 90 %.

Figure 8 confirms that the performance of Gyro is highly sensitive
to the fraction of local operations in the workload. For instance, with
a workload of 30 % of local operations the system starts to saturate
already around 600 ops/s while in a workload of 90 % local operations
the saturation starts only around the 5477 ops/s. This can be explained
by the additional coordination overhead of global operations unlike
local operations which can be served by the nearest server.

Figure 9a shows mean latencies for local and global operations with
a light load (far from saturation). The average latency of all operations
decreases as we add more local operations to the mix and he have
less global operations queuing up. As expected, in all configurations
the latency of local operations is much lower and is between 2.23x
and 3.75x less compared to that of global operations. For instance,
in a configuration with 70 % of local operations, the mean latency is
195 ms for local operations and 70 ms for global operations (2.78x less).
The overall latency stabilizes with 70 % local operations or more. By
contrast, in a configuration with a higher load (Figure 9b), the overall
latency continues to fall even after the 70 % threshold observed in
Figure 9a. The reason is that the saturation of the system does not
only occur because of the large fraction of global operations queuing
up but also because of the overall volume of requests.

2.9 related work

Scaling out client-server applications is an important topic and it has
been the subject of a large volume of work. We now review it and posi-
tion the Operation Partitioning approach in this landscape. For space
reasons, we do not review the literature on fault-tolerant replication
algorithms since fault tolerance can be treated as an orthogonal issue
to distributed transactions. We leave combining the two problems,
along the lines of work like [ZSS+15], as future work.
Data Partitioning. The problem of finding an optimal database design
is NP-hard [MBS88]. Nonetheless, a large number of heuristics for data
partitioning have been proposed, such as [CJZ+10; PCZ12; QKD13;
TNS+14]. These techniques require substantial offline effort, including
running a representative workload, collecting samples, defining an
accurate cost model of the system performance, and sometimes user
guidance in identifying the best solution. Operation Partitioning
indirectly obtains a partial data partitioning scheme, much like existing
work, but it is entirely automated and based on static analysis.
Distributed Transactions. The typical approach to implement dis-
tributed transactions, which is used in many practical database man-
agement systems, is to lock the rows accessed by the transaction

2.9 related work 47

and to use two phase commit to conclude the transaction. Since this
approach is expensive, there has been much work on speeding up
distributed transactions. Spanner speeds up read-only transactions
through the use of synchronized clocks [CDE+13]. H-Store speeds up
ACID transactions that access only a single partition. It supports multi-
partition transactions using standard locking and two-phase commit
protocols. Our evaluation shows that the Conveyor Belt is superior to
a standard two phase commit transnational system with locks. Elas-
TraS [DEAA09], G-Store [DAEA10], and MegaStore [BBC+11] only
support ACID transactions within the boundary of a single partition
or key group, and do not offer full transactional support like Gyro.

Several approaches like Calvin [TDW+12], Lynx [ZPZ+13], Ro-
coco [MCZ+14], Callas [XSL+15] and others [FA15; SLS+95; SCD+17],
have been proposed to improve the performance of distributed trans-
actions, but they typically require implementing a novel database
management or data store system, unlike the Conveyor Belt protocol
which is a middleware running on top of an unmodified black-box,
single-server DBMS offering a JDBC interface. In addition, they re-
quire additional knowledge about the semantics of the application
that must be provided by the user, sometimes by restructuring the
code. Modifying and extending the application code in this sense can
be complex and cumbersome, and sometimes unfeasible. The Con-
veyor Belt protocol does not have this requirement, since Operation
Partitioning applies to unmodified application code. Yet, Conveyor
Belt provides competitive performance speedups. While the Callas
algorithm supports serializability, the actual Callas prototype system
only provides the read committed isolation level, just like the MySQL
Cluster system it is based upon. Gyro provides serializability instead,
which is significantly more expensive than read committed isolation.
Nonetheless, Gyro achieves similar speedups over MySQL Cluster as
the Callas results reported in [XSL+15].

SDD-1 [BRG+78] is related to our approach in that it uses transaction
classes, but still differs in several aspects. First, a key pre-step to achieve
good performance in SDD-1 is that the user provides a good grouping
of transaction into classes, but SDD-1 offers no support for it. In our
approach, we automatically generate operation partitions that can be
leveraged by our protocol based on static analysis. Second, SDD-1
replicas executing global operations need blocking coordination based
on timestamps. This algorithm was pioneering work on distributed
transactions, but is less efficient than algorithms based on distributed
locks [Ber17], which we compare against.

Weakly Consistent Scale-Out Approaches. Most algorithms using
replication to scale out offer only weak consistency guarantees: even-
tual consistency [PST+96; DHJ+07] session consistency [TDP+94],
causal consistency [LFK+11], timeline consistency [CRS+08], and Par-
allel Snapshot Isolation [SPA+11].

48 scaling out acid applications with operation partitioning

Recent work proposes strengthening weak consistency with invari-
ants, like in the Red/Blue model [LPC+12], the Explicit Consistency
model [BDF+15], and Invariance Confluence [BFF+14]. Requiring
developers to define good invariants is challenging. Also, even with
invariants, the system will still show a weakly-consistent behavior that
would not occur in a sequential execution. Unlike these approaches,
Operation Partitioning support serializability [Pap79], as required by
ACID applications.
Treaties. Prior work on treaties combines scale-out replication and
strong consistency for subset of operations. Informally, treaties allow
replicas to agree to split the value of a certain field and to share the
splits. For example, in a ticket sale application, replicas can agree
on a treaty where each take a share of the available tickets, so that
they do not need to coordinate every time they sell a ticket unless
they sell out their share. Treaties make specific assumptions on the
applications they target: concurrent transactions must make small
commutative modifications to a shared global quantity at different
replicas, and their outcome must not be sensitive to such small mod-
ifications. Examples of treaties are the escrow protocol [O’N86], the
demarcation protocol [BGM92], Homeostasis [RKB+15], and time-
limited warranties [LMA+14]. Work related to the idea of treaties
has also investigated relaxed notions of consistency such as bounded
inconsistency [YV00] or consistency rationing [KHA+09]. Operation
Partitioning is more generic as it does not make assumptions on the
application, as treaties do. Operation Partitioning can be applied
to any application, whereas treaties require either user knowledge
about the application semantics or the use of special languages, like
in Homeostasis.

2.10 conclusion

We introduced Operation Partitioning, a technique that allows scaling
out applications while preserving serializability. We implement our
technique in a middleware, called Gyro that can be used with an
unmodified DBMS. Our experiments with two user application TPC-
W and RUBiS show that Gyro is very effective in both LAN and WAN
settings.

3

E F F I C I E N T V E R I F I C AT I O N O F D I S T R I B U T E D
P R O T O C O L S U S I N G S TAT E F U L M O D E L C H E C K I N G

The previous chapter treated the availability aspect of dependabilty.
In the rest of the thesis, we will focus on the safety aspect employing
either model checking techniques or error propagation analaysis as
measures for fault removal. The results in this chapter have been
published in [SBM+13].

A major hurdle for applying model checking techniques directly
to program implementations is the resulting complexity and large
size of their state space. In this chapter, we propose decomposition-
based explicit model checking as a means to handle this complexity by
pruning portions of the state space that are irrelevant to the checked
specification. The chapter is organized as follow: In Section 3.1 we
provide an overview of contributions made in this chapter. We then
provide a motivating example in Section 3.2 to show the potential
of decomposition-based model checking. Section 3.3 decribes the
theoretical contribution of the chapter and provides a correctness
proof of the proposed algorithm. In Sections 3.4 and 3.5 we describe
our implementation and evaluate it using distributed message-passing
protocols. We provide a discussion on related work in Section 3.6 and
conclude the chapter in Section 3.7.

3.1 overview

Software model checking (MC) [God97; GKS05] is a practical branch
of verification for checking the actual implementation of the system.
The wide usability comes at the price of low scalability as the model
checking of even simple single-process programs can take several
hours (or go off-scale) using state-of-the-art techniques [KKB+12].

Verification complexity gets even worse for concurrent programs
that run on loosely coupled processes. Our focus is on distributed pro-
tocols for various mission-critical (fault-tolerant) applications where
rigorous verification is desired. Example applications include atomic
broadcast [JRS11], storage [GGL03], diagnosis [SBS+11b], etc. Al-
though the verification of fault-tolerant distributed systems is known
to be a hard problem due to concurrency and faults, MC has proven
to be useful for debugging and verifying small instances of deployed

49

50 efficient stateful model checking for distributed protocols

protocols; recent approaches include MaceMC [KAJ+07], CrystalBall
[YKK+09], Modist [YCW+09; GWZ+11], Basset [LDM+09] and its
extensions/optimizations [BKS+11; BSS+09; MSB+11].

In MC, the possible executions of a system are modeled in terms of
a state graph, where states (i.e., nodes) can be thought of as snapshots
of the entire system (e.g., state of the servers, clients, communication
channels) and transitions (i.e., edges) model any event that may alter
the system’s state (e.g., lines of code, function blocks). For MC to be
scalable, the size of the graph must be feasible to manage, a challenge
that is often referred to as the state explosion problem. An efficient
and simple approach is stateful depth-first search [CJGK+18], where the
state graph is abstracted by 1) a sequence of states (called stack) that
corresponds to the last run of the system, and 2) a set of states that
have been explored during the model checking (called visited states).

In this chapter, we propose a general and sound approach to re-
duce the size of both the stack and the visited states for improved
scalability of MC. Key to the proposed reduction is the concept of
decomposition that we observe to be present in the implementation of
real systems. For example, implementations of distributed systems
are typically decomposed into different aspects or execution modes
(i.e., runnable configurations of the system under verification) of the
system such as synchronization, GUI, automatic execution, or logging.
Despite the richness of implementations, the specifications subject to
model checking very often consider only a subset of all these aspects.
Roughly speaking, our reduction approach consists in utilizing de-
composition so that only selected aspects are model checked against
the specification without having to modify the implementation.

Our Theoretical Contributions. We propose a formal framework
that characterizes decomposition by distinguishing between relevant
and auxiliary state information. The decomposition is always with
respect to a subset of all transitions of the system corresponding to the
execution mode of interest. We show a use of this characterization for
more scalable stateful depth-search, called decomposition-based stateful
search, and prove the soundness of the proposed approach. The input
of the framework (beside the specification of the system) is a sound
decomposition. Although showing the soundness of a decomposition
can be as hard as model checking itself, we argue that this can be done
using suitable static analysis and we justify this claim by showing an
implementation for general distributed systems implemented in Java.

Our Prototype Implementation. We implement decomposition-based
stateful model checking within Basset [LDM+09; BKS+11], an explicit-
state model checker for general message-passing Java programs. We
then apply our decomposition framework to optimize the verification
of distributed message-passing algorithm. In this decomposition, the
auxiliary part of the state stores the latest messages delivered by a
process. This is utilized only for debugging, that is, to analyze runs

3.2 motivating example 51

(b)

s1

s4

s2

s3

s5

s

p1 sends
m1 , m2 to p 2

Switch context
from p 1 to p 2

p2 consumes m1

p2 consumes m2

p2 consumes
m1 ,m 2

p2 sends
ACK to p1

Stack operations

Push s1

Push s3

Push s4

Push s5

Push s
Pop s
Pop s5

Pop s4

Pop s3

Pop s1

Figure 10: Naive depth-first search (DFS) example.

where the desired properties of the system are violated This execution
mode is irrelevant, say, for the fault-tolerance aspects of the system
and the corresponding state information can be safely decomposed as
auxiliary.
Our Evaluation. We use our prototype implementation to evalu-
ate the proposed decomposition-based stateful search with various
fault-tolerant message-passing protocols such as Paxos consensus
[Lam98], Zookeeper atomic broadcast [JRS11], and distributed storage
[ABND95]. The decomposition-based stateful optimization improves
on the naive stateful search both in terms of search time and memory
by up to 69 %. We also compare decomposition-based stateful search
with partial-order reduction [GVLH+96], an optimization known to be
efficient for fault-tolerant message-passing protocols [BKS+11; BSS+09].
Our experiments show that the two optimizations, when used together,
result in enhanced reductions achieving an improvement of 39 % com-
pared to settings with partial-order reduction only.

3.2 motivating example

We give the intuition of the proposed reduction approach through
a simple message-passing example with two processes, p1 and p2.
Process p1 sends two messages m1 and m2 to process p2. Process p2

52 efficient stateful model checking for distributed protocols

s1

s4

s2

s3

s5 s6

Stack operations

Push s1

→Push s2

Push s3

Push s4

Push s5

Push s
Pop s
Pop s5

Pop s4

Push s6

Pop s6

Pop s3

→ Pop s2

Pop s1

(a)

s

p1 sends
m1 , m2 to p 2

Switch context
from p 1 to p 2

p2 consumes m1

p2 consumes m2

p2 consumes
m1 ,m 2

s 5 stores:
last message
delivered: m2

s6 stores:
last messages
delivered: m1 ,m 2

p2 sends
ACK to p1

Figure 11: Decomposition-based stateful search (DBSS) example.

stores in its local state the messages it receives. It is possible for m2 to
arrive later than m1 at p2 due to network delays and p2 can process
available messages (m1 and m2) in one atomic step. After receiving m1

and m2, p2 sends an acknowledgment message to p1.

Figure 10 shows the state graph of the this example system as
explored by a naive DFS and the corresponding operations of the
search stack. Note that s5 and s6 are different states because they store
different messages histories.

Decomposition. Suppose that the message history information is not
subject to the verification. As a result, this part of the state is labeled as
auxiliary. This decomposition is sound with respect to the transitions
shown in Figure 10 because these transitions only depend on the
non-auxiliary (i.e., relevant) part of the state. Note that although the
system may contain additional transitions, in Figure 10 only those
transitions are depicted that are relevant in target execution mode.

Selective Hashing. We propose a reduction framework for more
scalable stateful depth-first search by making use of the decomposition
of a system. Firstly, we introduce selective hashing, which modifies
the naive search in that it only stores the relevant state in the set of
visited states. In our example, the state graph resulting from selective
hashing is shown in Figure 11. Note that states s5 and s6 collapse into
the same state because they only differ with respect to their message
histories. The gain of selective hashing is that it directly reduces the
size of the state graph that is explored by the model checker.

3.3 general reduction framework 53

Selective Push-on-Stack. Secondly, we introduce selective push-on-
stack, which is based on the observation that the transition system
may have single enabled transitions, i.e., transitions that are exclusively
enabled in a state. Since single enabled transitions are non-concurrent
with any other transitions, states where these transitions are executed
do not have to be used for backtracking, although they have to be
remembered as visited states. Therefore, states with single enabled
transitions do not have to be pushed onto the search stack. Consider,
for instance, the single enabled transition t from s2 to s3 in Figure 11.
Since t is the only transition that can be executed in s2, no state remains
unvisited if s2 is not backtracked by the search. The application of
selective push-on-stack to our example single-enabled transition leads
us to the search stack in Figure 11, where s2 is not involved in any
stack operation. The information of visiting s2 is stored in a different
stack, which is returned when a counterexample is found. Note that
selective push-on-stack visits the same states as the naive search but
in shorter time with fewer stack operations.

3.3 general reduction framework

Our general model for decomposition is presented in Section 3.3.1.
The proposed verification approach and its properties are explained
in Section 3.3.2 and Section 3.3.3, respectively.

3.3.1 System Model

We adopt a general and abstract model of programs [AW04; BSS10].
The program maintains a global state and can execute transitions (e.g.,
line of codes) to reach other states. Formally, a program is represented
as a transition system TS = (S, S0, T) where:

• S is a finite set of possible states of the program.

• S0 ⊆ S is a set of initial states. For simplicity, we assume that
there is a single initial state sI ∈ S0.

• T = {t | t ⊆ S× S} is a finite set of transitions.

A transition t ∈ T is enabled in state s ∈ S and we write t ∈
enabled(s), if there is s′ ∈ S such that (s, s′) ∈ t. Consequently, we
define enabled(s) as a set of transitions enabled in s. To simplify the
discussion, we assume that transitions are deterministic, i.e given
a state s ∈ S and a transition t ∈ T enabled in s, there is a single
state s′ ∈ S such that (s, s′) ∈ t. A path of the model is defined

as a finite sequence s1
t1−→ s2

t2−→ s3 . . .
tn−1−−→ sn, where s1, . . . , sn ∈ S,

t1, . . . , tn−1 ∈ T and for all 1 ≤ i < n it holds that (si, si+1) ∈ ti. For

convenience, we write s1
t1...tn−1−−−−→ sn . A state s is called reachable if

there exists a path sI
t1 ...tn−−−→ s.

54 efficient stateful model checking for distributed protocols

Decomposition. Let TS = (S, S0, T) be a transition system, where T
may be a subset of all transitions of the system Srel and an “auxiliary"
part saux ∈ Saux such that s = (srel , saux). Whether a state fragment can
be marked as relevant depends on the system and the property being
checked. This should be done by a domain expert.

To formalize our approach, we introduce the function h : S→ Srel , to
extract the relevant part of states such that for a state s = (srel , saux) ∈ S
we have h(s) = srel . Given two states s, s′ ∈ S, a transition t ∈ T with
(s, s′) ∈ t is said to be single enabled in s iff t is the only transition
enabled in s. Intuitively, a single enabled transition is non-concurrent
with any other transition.

Intuitively, we require that, given two states s and s′ ∈ S with the
same relevant part, a transition t is enabled in s only if it is enabled
in s′. Moreover, the execution of t in s and s′ results in two states s1

and s′1 with the same relevant part. Formally, we characterize a sound
decomposition as:

Definition 1 (Decomposition). Given a transition system TS = (S, S0, T)
and a set Srel of states, we say that TS can be decomposed along Srel if:

• (State decomposition) S ⊆ Srel × Saux.

• (Transition decomposition (1)) ∀s, s′ ∈ S, t ∈ T : h(s) = h(s′)⇒
(t ∈ enabled(s)⇔ t ∈ enabled(s′)).

• (Transition decomposition (2)) ∀s, s′, s1 ∈ S, t ∈ T : (h(s) = h(s′)
∧ s t−→ s1)⇒ (∀s′1 ∈ S : s′ t−→ s′1 ⇒ h(s1) = h(s′1)).

3.3.2 Decomposition-based Stateful MC

Preserved Specifications. We assume that the specification of the
system is given in form of state properties. As state properties refer
to the “global" state of the system, they constitute a key class of
properties of various distributed systems [YKK+09; YCW+09; MSB+11;
GWZ+11]. Formally, given a transition system TS = (S, S0, T), we
define a state property f as S→ {true, f alse}. The state property holds
for a transition system if it returns true for every reachable state. Let
TS = (S, S0, T) be a transition system that can be decomposed along
a set of states Srel and f : S ∪ Srel → {true, f alse} a state property.
We say that f is decomposed if for all reachable s ∈ S it holds that
f (s) = f (h(s)). Intuitively, f depends solely on the relevant part of a
state.
The Algorithm. Algorithm 3 shows the pseudo-code of the proposed
decomposition-based stateful search (DBSS). The call next(enabled(s))
non-deterministically returns one transition from enabled(s). The calls
pop and push respectively correspond to the usual stack operations of
removing and adding an element to the stack. Calling peek returns the
top-most element of the stack without removing it. In principle, the

3.3 general reduction framework 55

Algorithm 3: Decomposition-based stateful search (DBSS) algo-
rithm for transition system TS and state property f .
1function DBSS(TS, f)

33 Stack stack← ∅
55 Set reached← ∅
77 Stack CE-stack ← ∅
99 State s← sI

1111 stack.push(s)
1313 CE-stack.push(h(s))
1515 while stack 6= ∅ do
1717 while enabled(s) 6= ∅ do
1919 Transition t← next(enabled(s))
2121 enabled(s)← enabled(s) \ {t}
2323 State s′ t←− s

2525 //selective hashing
26C1 if h(s′) 6∈ reached then
27C2 reached← reached ∪ {h(s′)}
2929 CE-stack.push(h(s′))
3131 //selective push-on-stack
32C3 if next(enabled(s′)) is not single enabled s′ then
3434 stack.push(s′)
3636 s← s′

3838 if ¬ f (s) then
4040 return s, CE-stack
4242 s← stack.pop()
4444 while h(s) 6= CE-stack.peek() do
4646 CE-stack.pop()
4848 return true

DBSS algorithm modifies the naive depth-first search (DFS) algorithm.
The algorithm uses a stack to remember the explored paths. The
stack is also used for backtracking in case of branching. To avoid
redundancy by visiting a state more than once, the set reached stores
the visited states. The use of reached constitutes the fundamental
optimization of the stateful search. The outer loop at line 15 assures
that every visited state is checked for branching. The loop at line 17

guarantees that every enabled transition is explored.

The first modification to DFS is selective hashing in lines 26 and 27.
Instead of remembering in reached a new visited state s, the algo-
rithm remembers only the relevant state part (27). Two states with
the same relevant parts are considered to be equivalent (26). Note
that, in contrast to the reached set, the entire state is pushed on the
stack. This corresponds to allowing the verification of unmodified
implementations, where transitions can be meaningfully executed only
in full-fledged states containing both the relevant and auxiliary parts.
The second modification is selective push-on-stack in line 32. Instead of
pushing every newly visited state s′ onto the search stack, s′ is only
pushed if the transition enabled in s′ is not a single enabled transition.
Since the single enabled transition is the only enabled transition in

56 efficient stateful model checking for distributed protocols

s′, no branches that possibly lead to new reachable states are missed.
We add another stack to the algorithm, CE-stack, to keep track of the
relevant part of the states that compose the explored path. CE-stack
also serves the purpose of keeping track of all executed transitions
including those skipped from backtracking because of selective push-
on-stack. If a bug is found, that is the condition in line 38 holds, we
return the reached state s and CE-stack as a counterexample path lead-
ing to the state violating the property. Otherwise, the state property
holds and true is returned.
Liveness Model Checking. Using the notations from the definition
above, as DBSS explores a subset of TS′ which behaves like TS, the al-
gorithm can be modified to generate TS. Doing so, standard algorithms
can be used to check liveness properties (e.g. written in temporal
logics [CJGK+18]) that cannot otherwise be expressed through state
properties.
Analysis. By exploiting decomposition, the DBSS algorithm explores
only a “relevant state graph”. In other words, given a transition
system TS′ that can be decomposed along S, the transition system
explored by DBSS simulates another transition system TS = (S, S0, T)
which is subsumed by TS′. Intuitively, given some state property
f , DBSS(TS′, f) explores a transition system that behaves like TS.
As TS is subsumed by TS′ (and is thus a smaller transition system),
DBSS improves time and memory efficiency over DFS of TS′. This
analytic claim will be substantiated by our experiments in Section
3.5. Formally, we can define a subsumption relation between the two
transition systems TS′ and TS:

Definition 2 (Subsumption). Given two transition systems TS = (S, S0, T)
and TS′ = (S′, S′0, T′), we say that TS′ subsumes TS and write TS ⊆ TS′

if:

• TS′ can be decomposed along S and

• ∀s, s1 ∈ S : (∃t ∈ T : s t−→ s1)⇔ (∃t′ ∈ T′, ∃s′, s′1 ∈ S′ : s′ t′−→ s′1 ∧
h(s′) = s ∧ h(s′1) = s1).

Note that there is no need of proving that the above subsumption
relation indeed applies for TS′ and the transition system explored
by DBSS(TS′, f). The above discussion has been added to better
highlight the source of reduction of DBSS.

3.3.3 Correctness of DBSS

We now show that the DBSS algorithm can be used for the verification
of decomposed state properties without missing bugs and also without
falsely concluding the truth of the property. Formally, we prove that
the algorithm is sound, complete and terminating.

3.3 general reduction framework 57

...

s1

t1

s2

t 2

si

σ

=hash
s '

t i t i

si+ 1

t i+ 1 t i+ 1

......
si+ j1

=hash s j1

t i+ j1

=hash
t i+ j1

s1
j1

...

si+ j1+ 1

t i+ j1+ 1 t i+ j1+ 1

σ
j 1

...

t n−1

sn

t n−1

s j k

j k−1

...

σ
j k

=hash

=hash

s '1

s ' j1

=hash

Figure 12: Illustration of proof of Lemma 5.

For convenience, given a transition system TS and a decomposed
property f , we may refer to DBSS(TS, f) by writing DBSS(TS). We
introduce the following terminology to ease the following discussion.
A state s is said to be explored and transition is fired if there is a state s′

such that line 23 of DBSS is executed.
First, we show that assuming that a state s is not yet explored, all

transitions in enabled(s) are fired by DBSS.

Lemma 4. Given a transition system TS = (S, S0, T), if a state s′ ∈ S
is explored in DBSS(TS) and the condition of line 26 holds, then every
t ∈ enabled(s′) is fired in s′.

Proof. Let t be a transition in enabled(s′). If t is next(enabled(s′)), then
t is fired in the next iteration of the while loop in line 17. Otherwise,
if enabled(s′) > 1 (cf. condition of line C3), s′ is pushed onto the stack
and every transition t′ 6= t ∈ enabled(s′) is fired when s′ is backtracked
in the depth-first search. Note that s′ is guaranteed to be backtracked
after each transition fired in s′ because the state graph is finite.

We prove that if a state is reachable in TS, there is at least a state
explored by DBSS(TS) with the same relevant information. We will

use the following notation for convenience: Given a path σ =s1
t1...tn−1−−−−→

sn and sn
tn...tl−1−−−−→ sl , the path s1

t1...tl−1−−−→ sl can be written as σ
tn...tl−1−−−−→

sl .

58 efficient stateful model checking for distributed protocols

Lemma 5. Given a transition system TS = (S, S0, T), ∀s ∈ S, if s is
reachable in TS, then there exists a state s′ ∈ S such that h(s) = h(s′) and
s′ is explored by DBSS(TS).

Proof. The proof is indirect and is illustrated in Figure 12 using the
following notation: Given two states s, s′ ∈ S, we write s =h s′ if
and only if h(s) = h(s′). Indirectly, we assume the following: Let
sn ∈ S be a reachable state in TS so that there is no other state s′′

explored by DBSS(TS) with h(sn) = h(s′′). Let σ′ =s1
t1...tn−1−−−−→ sn be

a path leading to sn in TS. We know that n > 1 because the initial
state sI = s1 is explored by the algorithm. Consequently, there must
be 2 ≤ i < n such that ti is not fired in si. Lemma 4 implies that
the condition of line 26 does not hold when si is explored. This
means that there is a state s′ reachable via a path σ explored by
DBSS(TS) such that h(s′) = h(si) and h(s′) 6∈ reached when explored.
i < n since otherwise sn would be explored. From Definition 1

(transition decomposition (1)), we also know that ti ∈ enabled(si)

and ti ∈ enabled(s′). Furthermore, ti is fired in s′ (Lemma 4) and it

holds that h(si+1) = h(s′1) where s′
ti−→ h(s′1) (transition decomposition

(2)). Let 0 < j1 ≤ n − i be the highest natural number such that

σ
ti−→ s′1

ti+1...tj1−1−−−−−→ s′j1 is explored by DBSS(TS). Because of transition
decomposition, we know that h(s′j1) = h(si+j1). Therefore, j1 = n− i
would imply a contradiction, as this would mean that there is a state
s′′ such that h(sn) = h(s′′) which is explored. Since j1 is the highest
such index, Lemma 4 implies that the condition of line 26 does not
hold when s′j1 is explored. So there must be a state sj1 reachable
via a path σj1 explored by DBSS(TS) such that h(sj1) = h(s′j1) and
h(sj1) 6∈ reached when explored. Because of transitivity, we know that
h(sj1) = h(si+j1). Let 0 < j2 ≤ n− i− j1 be the highest natural number

such that σj1
ti+j1−−→ sj1

1

ti+j1+1...tj2−1−−−−−−→ sj1
j2

is a path explored by DBSS(TS).
We know from Lemma 4 and the decomposition definition that such
a path exists and that h(sj1

j2
) = h(si+j1+j2). Since j2 is the highest

such index, Lemma 4 implies that the condition of line 26 does not
hold when sj1

j2
is explored. So there must be a state sj2 reachable

via a path σj2 explored by DBSS(TS) such that h(sj2) = h(sj1
j2
) and

h(sj2) 6∈ reached when explored. We know that h(sj2) = h(si+j1+j2).
Continue the construction. Let 0 < j1, j2, . . . , jk be natural numbers
such that i + j1 + j2 + . . . + jk = n. The construction ends because
1 ≤ k ≤ n− i. Inductively, we have that h(sn) = h(sjk−1

jk
). Since sjk−1

jk
is

explored by DBSS(TS), we have a contradiction.

Theorem 2 (Soundness). Given a transition system TS and a decomposed
property f , if DBSS(TS, f) returns true, then f holds for TS.

The algorithm returning true is a guarantee that the verified pro-
gram satisfies the property f .

3.3 general reduction framework 59

Proof. Assume that DBSS(TS, f) returns true. This means that for
every state s explored by DBSS(TS, f), we have f (s). Now we suppose
that there exists a reachable state s′ ∈ S such that ¬ f (s′). From Lemma
5 we know that there exists a state s′′ ∈ S′ explored by DBSS(TS, f)
such that h(s′′) = h(s′). Since f is decomposed, we have ¬ f (s′′) which
is a contradiction.

Theorem 3 (Completeness). Given two transition systems TS′ and TS
such that TS ⊆ TS′ and a decomposed property f , if DBSS(TS′, f) returns
s and CE-stack, then:

• ¬ f (s) and s is reachable in TS′ and

• CE-stack contains a path from h(sI) to h(s) in TS where sI is the
initial state of TS′.

In case a bug violating a property f is found, DBSS returns a state
where f does not hold, and a path in the subsumed transition system
leading to it. In practice, such a path is sufficient for debugging as the
subsumed system contains all relevant state information.

Proof. DBSS(TS′, f) returns a state s and CE-stack when the condition
in line 38 is satisfied. This means that we have ¬ f (s). Since s is
explored by DBSS it is trivially reachable in TS′.

Now we prove that CE-stack contains a path leading to h(s) in TS.
Since DBSS is a DFS, the sequence of states in the CE-stack when
exploring s is a path σ from h(sI) to h(s). The path exists in TS
because of Definition 2.

Theorem 4 (Termination). DBSS(TS, f) terminates for any transition
system TS and state property f .

The termination of the program follows directly the assumption
that the transition system is finite-state and the algorithm is based on
DFS.

Proof. Assuming that the calls in the algorithm terminate, we have to
check whether the two loops at line 17 and 15 terminates. The loop at
17 terminate because in each iteration one element is removed from
enabled(s) (line 21) and the number of enabled transitions is finite. In
line 15, no more states are pushed to the stack once every state has
been explored and therefore included in reached. Since the number of
states is finite and after each iteration one element is removed from the
stack (line 42), the loop terminates after a finite number of iterations.
Note that the loop at line 44 is guaranteed to terminate since the set
of relevant parts of states in stack is included in CE-stack.

60 efficient stateful model checking for distributed protocols

3.4 implementing dbss in jpf/mp-basset

In this section, we present a general application and implementa-
tion of the conceptual reduction framework described in Section
3.3. The following application instantiates, implements, and evaluate
the decomposition-based reduction framework for general message-
passing systems written in Java. A direct implication of our results
is the enhanced scalability of model checking Java-based implemen-
tations of message-passing systems. We also discuss how our imple-
mentation can be used for symmetry reduction of replication-based
(fault-tolerant) message-passing protocols.

We implement the proposed decomposition-based stateful search
(DBSS) within the MP-Basset model checker for message-passing
systems [BKS+11]. 1 The source of our implementation of DBSS/MP-
Basset can be downloaded under [Mpb]. In the core of MP-Basset,
the model checker Java Pathfinder [Jpf] (JPF) implements depth- and
breadth first search of multi-threaded Java programs. MP-Basset
builds upon JPF’s architecture to enable writing and model checking
message-passing Java programs. In essence, JPF consists of the core
search engine and a model. Intuitively, the core is responsible for the
search, whereas the model constitutes the Java program under verifi-
cation. The model, in this case MP-Basset, runs in a separate Virtual
Machine implemented by JPF. JPF itself is implemented in Java and
it runs within the Java Virtual Machine of the host system. Our de-
composition based approach extends JPF’s core with selective hashing
and push-on-stack. As the reduction is based on the decomposition of
the system, this information is obtained from the JPF Virtual Machine,
which contains all system-specific information. Communication be-
tween core and model is done via JPF’s Model Java Interface (MJI).
First in Section 3.4.1 we will discuss how our decomposition model
applies to the MPBasset case study. Section 3.4.2 (respectively, in
Section 3.4.3) explains how the hash function (and auxiliary predicate)
is implemented within the architecture of Basset/MP-Basset and JPF.

3.4.1 Decomposition

From Definition 2, TS = (S, S0, T) corresponds to the message-passing
program as defined in Basset/MP-Basset’s input language (a Java
library for message-passing), whereas TS′ = (S× Saux, S′0, T′) is de-
termined by the program executed by the JPF virtual machine. The
argument that it is a sound decomposition implicitly follows from the
(sound) implementation of the model checkers Basset [LDM+09] and
MP-Basset [BKS+11].

1 Our instrumentation would analogously apply for Basset [LDM+09], the precursor of
MP-Basset.

3.4 implementing dbss in jpf/mp-basset 61

Every Java method specified by the message-passing program can
always be executed if the method’s guard (a concept implemented by
Basset/MP-Basset) is enabled. In Basset/MP-Basset, Saux contains the
set of messages processed by the last transition, as explained in the
example in Section 3.2. Note that Saux might contain any data as long
as the decomposition property can be shown. We (manually) verify
that state properties are decomposed by checking if the property (Java
assertion) only involves variables of the message-passing program
and other variables for context switching required to satisfy transition
decomposition.

3.4.2 Selective Hashing

The JPF’s stateful optimization is implemented by serializing the state
of the JPF Virtual Machine; the outcome of serialization is stored as a
reached state. We explain this mechanism using code excerpts of JPF
core (Listing 1). The serialization uses two data structures, a (reference)
queue (Line 20) and a buffer (Line 21). The queue is an array containing
references of objects in the JPF Virtual Machine. The buffer is an
array of integers where each element holds the value of a primitive
type. Initially, the queue contains references of the topmost classes of
program. The serialization of the system state is done by calling the
process method (Line 3). The references in the queue are processed
one-by-one (Line 5) where the reference itself (Line 27) and the content
of the referenced object is added to the buffer (Lines 35-50). Every
object is a composition of primitive (e.g., int) and non-primitive types
(e.g., HashMap). If it is a primitive type, its value is added to the buffer
(Line 48), otherwise the reference is added to the end of the queue for
further processing (Line 45). The serialization of the state terminates
if every reference in the queue has been processed (Line 4). Finally,
JPF uses a hashing function (not depicted) to compute the hash value
of the buffer.
Serialization Example. Consider the simple actor program in Listing
2 written in Basset’s Java library. Actors correspond to processes in
our general system model. The Driver class is used to create the
initial actors. In this example, two actors of class FooActor are created.
For simplicity, no message is sent in this example. Consider the
state of the system after executing the main function of the Driver

class. In this state, the process method of the serializer is called with
refQueue=[ref a1, ref a2] where ref a1 and ref a2 denote the references of
the two actors. As a result of the serialization (before calling the
hash function), the buffer will contain [1, 2, 11, 12] (whereas refQueue

will contain [ref a1, ref a2, ref f oo1, ref f oo2] where ref f oo1 and ref f oo2 denote
references of FooClass in a1 and a2, respectively).
Our Design of Selective Hashing. The heart of our implementation
of selective hashing is an additional condition (Line 26) applied during

62 efficient stateful model checking for distributed protocols

1 public class ReferenceQueue{
2 //...
3 public void process(ElementInfoProcessor proc){
4 for(Entry e = markHead; e!=null;){
5 proc.processElementInfo(e.refEi);
6 //...
7 }
8 }

9 public void processActorQueue(MPSerializer proc){

10 for(Entry e = markHead; e!= null;){

11 //...

12 processNamedFields(ei, ci, fields);

13 }

14 }

15 }
16

17 public class MPSerializer extends FilteringSerializer {
18 //FilteringSerializer implements ElementinfoProcessor{
19 //...
20 protected ReferenceQueue refQueue;
21 protected IntVector buf = new IntVector(4096);
22 public void processElementInfo(ElementInfo ei){
23 Fields fields = ei.getFields();
24 ClassInfo ci = ei.getClassInfo();

25 //SELECTIVE HASHING

26 if(StringSetMatcher.isMatch(ci.getName(), includeClasses, excludeClasses)){

27 buf.add(ci.getUniqueId());}

28 actorQueue = new ReferenceQueue();

29 actorQueue.add(ei);

30 actorQueue.processActorQueue(this);

31 //...

32 //processNamedFields(ei, ci, fields);

33 }

34 }
35 protected void processNamedFields(ElementInfo ei, ClassInfo ci, Fields fields){
36 FinalBitSet refs = getInstanceRefMask(ci);
37 //...
38 int[] values = fields.asFieldSlots();
39 for(int i = 0; i < values.length; i++){
40 //...
41 int v = values[i];
42 if(refs.get(i)){
43 //...

44 actorQueue.add(ei);

45 //refQueue.add(ei);

46 //...
47 } else
48 buf.add(v);
49 }
50 }
51 //...
52 }

Listing 1: Selective hashing via modified serializer in JPF. Our changes are
highlighted in gray.

serialization. This condition enforces the rule that a reference is only
processed if it is selected for inclusion2. In our current setting (not de-
picted) the set of excluded classes is empty whereas the set of included

2 Our implementation utilizes Basset’s StringSetMatcher method.

3.4 implementing dbss in jpf/mp-basset 63

public class FooActor extends Actor{
int id;
FooClass fooClass;
public FooActor(int id){
this.id = id;
fooClass = new FooClass(id);

}
class FooClass{
int foo;
public FooClass(int id){
foo = id+10;

}
}

}

public class Driver extends TestDriver{
public static void main(String[] args){
//...
ActorName a1, a2;
a1 = PlatformUtil.createActor(FooActor.class, 1);
a2 = PlatformUtil.createActor(FooActor.class, 2);
//...

}
}

Listing 2: Message-passing system with two actors.

classes consists of classes extending Actor and the class (called Cloud)
holding the set of pending messages. A new reference queue is created
for each such class and it is processed recursively (Lines 28-30) similar
to the original serializer. We remark that this mechanism cannot be
implemented using the standard JPF API. Although include/exclude
classes are supported by JPF, they are used to include/exclude every
reference in the queue. Therefore, JPF’s serializer makes no difference
between an object reference within and outside an Actor (or Cloud)
class.

Our Structured Serialization. We now explain another benefit of our
solution which relates to symmetry reduction [MDC06], a promising
optimization of model checking of distributed systems. Intuitively,
most distributed systems are symmetric with respect to replicated
processes, where replication may serve different goals such as fault-
tolerance or enhanced performance. It has been shown that symmetry
reduction can be extremely efficient in various practical applications
of distributed systems [MDC06; BDH02]. Unfortunately, symmetry re-
duction has not yet established itself as an efficient software verification
technique. In fact, to the best of our knowledge, the only attempt to im-
plement general purpose symmetry reduction for software verification
was the SymmSpin extension of the Spin model checker [CDE+08], an
implementation that is no longer maintained [Sym].

Our modified JPF serializer for selective hashing paves the way for
implementing symmetry reduction for message-passing systems à la
Basset/MP-Basset. We aim at process-based symmetries that arise

64 efficient stateful model checking for distributed protocols

from the free permutation of local process states. 3 JPF serializes
the current state irrespective of the structure of the state. Therefore,
we call JPF’s serialization unstructured. The unstructured approach is
in contrast to ours where actors (processes) and pending messages
are serialized in isolation and appended to the final result. We call
this structured serialization, which we apply for selective hashing. We
observe that structured serialization can also be used for implement-
ing symmetry reduction. The idea is that the output of structured
serialization can be used to canonicalize (or normalize [ID96; CDE+08])
the state, which corresponds to mapping each state into a unique state
by permuting the local states of processes. Canonicalization is the
common way to implement symmetry reduction [MDC06] because it
allows that only canonicalized states (and their successor states) need
to be explored. Note that canonicalization is impossible using the
unstructured serializer because the local state of a process is unknown
to the serializer, as shown in the following example.
Symmetry Example. Assume that the system in Listing 2 is symmetric
with respect to the IDs of the actors. This means that another execu-
tion of the system where actor a1 and a2 are given IDs, respectively,
2 and 1 (and not 1 and 2 as in Listing 2) is indistinguishable by the
property of interest (i.e., the property holds or fails in both executions).
The result of unstructured serialization in these two execution exam-
ples would be [1, 2, 11, 12] and [2, 1, 12, 11], respectively. Let the first
state be the canonicalized state. After serialization, it is impossible to
find out that [2, 1, 12, 11] can be canonicalized into [1, 2, 11, 12] because
the information that 〈1, 11〉 and 〈2, 12〉 constitute the local state of
actor a1 and a2, respectively, is dismissed throughout serialization.
The structured serializer, on the other hand, outputs [1, 11, 2, 12] and
[2, 12, 1, 11] for the respective states and it is aware of the informa-
tion of how states are structured along processes, i.e., [〈1, 11〉, 〈2, 12〉]
and [〈2, 12〉, 〈1, 11〉]. Therefore, our structured serializer makes the
canonicalization of the states for process symmetries possible.

3.4.3 Selective Push-on-Stack

Our implementation of selective push-on-stack is based on JPF’s mech-
anism for the systematic exploration of branching execution. Intu-
itively, the execution of the Java program can branch if, given a state
of the program, methods of different threads can be executed concur-
rently. In JPF, choice generators are used to associate such methods with
the state. Depending on the interactions between processes (which
are Java threads), they are obtained automatically by JPF (using a
coarse over-approximation of concurrency) or they are registered by
the user. Every time a new state is visited by JPF, the forward method
is called (see Listing 3) and the state is pushed onto the search stack

3 There are efficient techniques to detect such symmetries [ID96; BDH02].

3.5 evaluation with fault-tolerant protocols 65

1 public class JVM{
2 //...
3 public boolean forward(){
4 //...

5 //SELECTIVE PUSH-ON-STACK

6 if(isBranchState()){

7 backtracker.pushSystemState();
8 updatePath();
9 }

10 }
11

12 private boolean isBranchState(){

13 return getChoiceGenerator() != null &&

14 !(getChoiceGenerator instanceof ThreadChoiceGenerator)

15 }

16 }

Listing 3: Selective push-on-stack with JPF’s choice generators. Our changes
are highlighted in gray.

(Line 8). According to the proposed selective push-on-stack strategy,
this push operation is done conditionally (Line 6). The condition in
our implementation is specific to Basset/MP-Basset where we know
that a choice generator of type ThreadChoiceGenerator corresponds
to single enabled transitions. This choice generator is responsible for
switching context between actors (cf. example in Section 3.2) and it
never specifies branching the execution (i.e., the set of enabled transi-
tion in the current state consists exactly of one transition). Therefore,
selective push-on-stack can be implemented simply by checking if the
current choice generator is a ThreadChoiceGenerator (Lines 13-14).

3.5 evaluation with fault-tolerant protocols

In this section, we evaluate DBSS with representative fault-tolerant
message-passing protocols. We measure the gain of DBSS compared to
the highly optimized model checker MP-Basset [BKS+11; BSS+09]. The
evaluation compares model checking time and memory (the number
of visited states) for MP-Basset and DBSS.
Target Protocols and Properties. Our evaluation is based on the fol-
lowing protocols: Paxos consensus [Lam98], a regular register protocol
in the style of ABD [ABND95] , and Zab atomic broadcast [JRS11].
We argue that these protocols constitute a representative and practical
selection of fault-tolerant large-scale protocols. Firstly, these are all
crash-tolerant protocols. The crash fault-model is widely used, also be-
cause a large and practical class of non-crash faults can be transformed
into crash faults, as shown in [CFJ+12]. Secondly, Paxos, regular regis-
ter, and Zab are conceptual and/or known to be practically relevant.
For example, Paxos algorithm is in the core of commercial replication
services [YCW+09], or the Zab protocol is part of Yahoo’s Zookeeper
open-source library used in different real deployments [Zoo]. As the

66 efficient stateful model checking for distributed protocols

Protocol (# of procs.) Configuration description

Paxos (6) 2 proposers each issuing ≤ 1 proposal, 3 acceptors and 1
learner

Faulty-Paxos (6) Paxos (6) setting + One acceptor accepts all proposals
(instead of those without a prohibiting promise

Faulty-Paxos (7) Paxos (6) setting + 1 acceptor remembers the last accepted
proposal (instead of the highest numbered accepted

proposal)

Register (5) 3 base objects, 1 reader and a single writer

Faulty-Register (5) Register (5) setting + Read finishing after concurrent write
to return written value (instead of the value of the last

preceeding write)

Register (6) Register (5) setting with 4 base objects

Faulty-Register (6) Faulty-Register (5) setting with 4 base objects

Register (7) Register (6) setting with 5 base objects

Zab (6) 3 leaders, 3 followers

Zab (7) 4 leaders, 3 followers

Table 4: Configurations used in our experiments.

implementation of the protocols is not available to us4, we use our
prototype Java implementation in each case. In our evaluation, we
use different settings of the above protocols (see description in Table
4). For the Paxos configurations we checked the agreement property
which should hold [Lam98]. For Register we checked for the regularity
property which should also be satisfied [ABND95]. In the case of the
Zab protocol, we checked for liveness, a property that does not hold in
general [JRS11]. We encoded the liveness property as a state property
as demonstrated in [MSB+11]. In addition to the protocols and their
specified properties, we inject faults in the Paxos (Faulty-Paxos) and
Register (Faulty-Register) protocols and/or their properties to evaluate
the debugging capability of DBSS.
Experimental Setup/Reduction Types. We run our experiments in a
Deterlab testbed [Det] with 2 GHz Dual Xeon processors and 2 GiB
memory, running on Ubuntu v.10.04. We compare the execution times
and total number of visited states of different reduction types for each
protocol. For comparability, DBSS uses the same scheduling of the
transitions as MP-Basset’s naive search.

First, we evaluate stateful against stateless model checking. Note
that the search always terminates for our acyclic examples. We then
evaluate DBSS without selective push-on-stack5. DBSS without selec-
tive push-on-stack experiments show the added benefit of push-on-
stack technique exclusively. We only expect time reduction for these

4 Although Zookeeper is an open-source project, the code of Zab cannot be extracted
as a stand-alone protocol.

5 In this reduction type, a new state s′ is always pushed onto the stack even if the
condition of line 32 in Algorithm 3 does not hold.

3.5 evaluation with fault-tolerant protocols 67

Configuration Reduction Type States Time Time reduction

Paxos (6)

MP-Basset stateful 13 044 613 22 h19 min N/A
DBSS without SPoS 5 606 047 11 h1 min 51 % (SF)

DBSS 5 606 047 10 h22 min 54 % (SF)
POR 191 081 23 min43 s 98 % (SF)

DBSS + POR 117 369 14 min22 s 39 % (POR)

Faulty-Paxos (6)

MP-Basset stateful 96 802 10 min3 s 94 % (SL)
DBSS 70 543 8 min20 s 17 % (SF)
POR 3050 36 s 94 % (SF)

DBSS + POR 2786 31 s 14 % (POR)

Faulty-Paxos (7)

MP-Basset stateful >71 914 839 >192 h N/A
DBSS >66 651 310 >192 h N/A
POR 129 533 21 min18 s N/A

DBSS + POR 124 976 19 min29 s 9 % (POR)

Register (5)

MP-Basset stateful 89 041 7 min31 s 14 % (SL)
DBSS without SPoS 59 306 6 min20 s 16 % (SF)

DBSS 59 306 5 min39 s 25 % (SF)
POR 10 896 1 min5 s 86 % (SF)

DBSS + POR 8590 53 s 18 % (POR)

Faulty-Register (5)

MP-Basset stateful 4965 34 s 66 % (SL)
DBSS 3376 27 s 21 % (SF)
POR 1936 24 s 29 % (SF)

DBSS + POR 1483 20 s 17 % (POR)

Register (6)

MP-Basset stateful 2 269 797 5 h22 min 90 % (SL)
DBSS without SPoS 1 475 845 4 h31 min 16 % (SF)

DBSS 1 475 845 4 h8 min 23 % (SF)
POR 96 641 11 min1 s 97 % (SF)

DBSS + POR 57 187 7 min26 s 33 % (POR)

Faulty-Register (6)

MP-Basset stateful 94 348 10 min49 s 85 % (SL)
DBSS 56 222 8 min14 s 24 % (SF)
POR 4642 51 s 90 % (SF)

DBSS + POR 4642 48 s 6 % (POR)

Register (7)

MP-Basset stateful 51 465 807 >192 h N/A
DBSS 35 692 316 >192 h N/A
POR 2 986 657 8 h21 min N/A

DBSS + POR 1 656 212 6 h3 min 28 % (POR)

Zab (6)
MP-Basset stateful 4580 54 s 86 % (SL)

DBSS 1876 26 s 38 % (SF)
POR N/A N/A N/A

Zab (7)
MP-Basset stateful 8198 2 min4 s 80 % (SL)

DBSS 3132 38 s 69 % (SF)
POR N/A N/A N/A

Table 5: Evaluation results of DBSS with/without selective push-on-stack
(SPoS) compared with MP-Basset with/without stateful and partial-
order reduction (POR) optimizations. Time reduction is computed
with respect to base cases MP-Basset stateless (SL), stateful (SF), and
stateful with partial-order reduction (POR).

experiments, as this reduction type cannot achieve memory reduc-
tion. The third reduction type measures the performance of DBSS,
as explained in Section 3.3.2. Finally, we apply stateful partial-order

68 efficient stateful model checking for distributed protocols

reduction (POR) alone (base case), then in combination with DBSS.6

We use POR wherever it is applicable. For example, MP-Basset’s
implementation of POR does not apply for Zab (see more details later
about the assumptions made by POR and DBSS).
Reduction Results. The results of our experiments are shown in
Table 5. In the table, we report the results of DBSS with/without
selective push-on-stack (SPoS) compared to MP-Basset with/without
stateful and partial-order reduction (POR) optimizations. The results
in the time reduction column are computed with respect to base
cases MP-Basset stateless (SL), Stateful (SF), and stateful with partial-
order reduction (POR). We omit the reductions in term of number of
visited states as it is proportional to time reductions. In fault-injected
instances, the search is stopped after finding the first bug, hence
the search is non-exhaustive. We write N/A (not available) if POR is
not available for the experiments or the reduction percentage is not
available due to timeout (192 hours). For exhaustive searches that end
with timeout, the value in the states column indicates the number of
visited states at the time when the search stops.

Our main observations are as follows:

• Stateful outperforms stateless search. The stateful search fin-
ishes earlier than the stateless one in all exhaustive and fault-
injected experiments – only the reduction of stateful over state-
less search is shown in Table 5. In some cases (e.g. Paxos(6)), the
stateful search terminates where the stateless search is infeasible
(given our timeout). In other cases, stateful model checking
reduces the search time by up to 94 % compared to stateless
model checking.

• DBSS improves efficiency. DBSS is highly efficient as shown
by the exhaustive search results, reducing the total number of
visited states by up to 57 % and model checking time by up to
54 %. It also finds bugs up to 69 % faster than stateful model
checking.

• Selective push-on-stack time efficient. Selective push-on-stack
reduces model checking time by up to 9 % (see Register (5)
experiment). Fault-injected cases with DBSS without selective
push-on-stack are not displayed as they follow the same reduc-
tion trend as the exhaustive experiments.

• DBSS efficient with POR. When DBSS is used with POR, DBSS
reduces model checking time and memory by up to 39 %, com-
pared to the experiments with only POR.

6 MP-Basset implements different POR algorithms; we apply static POR for our experi-
ments as it is more efficient than dynamic POR for the considered class of protocols
[BSS+09].

3.6 related work 69

Assumptions by POR/DBSS. The reduction achieved by POR can be
significantly more than by DBSS. For example, POR reduces model
checking time by 98 % for Paxos (6), whereas DBSS achieves a reduc-
tion of 54 %. This is only true given the assumptions made by POR
that the execution of certain transitions is commutative [GVLH+96].
The soundness of POR can only be guaranteed if this assumption is
verified. DBSS, in contrast to POR, makes no assumptions about the
commutativity of transitions. For example, the simple static analysis
in MP-Basset’s POR implementation [BSS+09] is not applicable for Zab
to verify the assumptions required by POR. DBSS is still applicable in
this case and it achieves a time reduction of up to 69 %.

Scalability. We observe that the reduction achieved by DBSS changes
with the number of processes. In fact, the time reduction of “DBSS +
POR” is 18 %, 33 %, and 28 %, for the register with 5, 6, and 7 processes,
respectively. One reason of this trend can be in the majority voting
mechanism that the register (similarly to Paxos and Zab) uses for
fault-tolerance. The majority of voters contains 2, 3 and 3 processes for
Register (5), (6) and (7), respectively. A larger majority means more
“equivalent” states for selective hashing because the writer has more
choice in contacting different voters to observe the same voting result.
This explains the improved reduction from 18 % to 33 % and also the
more or less constant reduction of 33 % and 28 %. Note that DBSS
experiments (without POR) show a slightly different trend for the
register: 25 % and 23 % for Register (5) and (6) (timeout for Register
(7)). We speculate that there are collisions on the outputs of the hash
function due to the large number of states in these experiments.

3.6 related work

Model Checkers. Mainstream software model checkers include explicit-
state checkers for C programs such as Verisoft [God97] and Spin
[Hol97], for Java programs [Jpf], symbolic execution engines such
as DART for C [GKS05] or KLEE for low-level (byte)code [CEF+96],
and dedicated solutions for message-passing systems such as Modist
[YCW+09] or Mace [KAJ+07]. Selective push-on-stack is inherently
related to depth-first search and, as such, it can be implemented in
any explicit-state model checker (like Verisoft, Spin, Modist, or Mace).
On the other hand, selective hashing is not restricted to explicit-state
model checking and it can also be used to decrease the number of
variables needed for a symbolic encoding of the state.

Some model checkers (such as Mace [KAJ+07]) offer the user an
interface to exclude certain state information from the representation
of the state. As a result, similar to selective hashing, the excluded
state information is not considered by stateful model checking. It is,
however, left to the user to guarantee the correctness of model check-

70 efficient stateful model checking for distributed protocols

ing. Our notion of decomposition formalizes a sufficient condition of
correctness, which can be applied by users of these model checkers.
Reductions. Broadly-studied and intuitive reductions are partial-order
(POR) [GVLH+96] and symmetry reductions (SR) [MDC06]. Figure
11 demonstrates that DBSS is not a special case of these reductions.
Firstly, POR is based on the idea of swapping the order of commutative
transitions but the path (s1 → s2 → s3 → s6 → s) that is excluded in
the reduced state graph in Figure 11 cannot be obtained by re-ordering
the transitions of another path in the graph. Formally, considering
the mainstream POR semantics, Figure 11 is not a stubborn/persisten-
t/ample set reduction on the exploration in Figure 10 because in every
state of the reduced state graph the number of enabled transitions
is the same as in the unreduced one. Secondly, SR is based on the
symmetrical structure of the state graph but there is no such symmetry
in Figure 10. Formally speaking, there is no permutation acting over
the set of states (the formal notion of symmetry [MDC06]) that would
preserve the transition relation: In order to symmetry reduce Figure
10 into Figure 10, a permutation would have to transpose s5 and s6

but these two states are "asymmetric" because of s4.
To the best of our knowledge, all known reduction approaches that

work with depth-first search, such as SR, POR, or dynamic interface
reduction (DIR) [GWZ+11], can be directly combined with DBSS.
Reductions of stateless model checking such as symmetric transitions
[God99] or dynamic partial-order reduction [FG05] would only benefit
from selective push-on-stack. The reduction achieved by DBSS is based
on the assumption of a sound decomposition. Other reductions are
also based on (other) assumptions: POR assumes the commutativity
of executing transitions, SR depends on symmetric execution patterns,
DIR needs to be tailored depending on how the execution of different
processes can interleave.

3.7 conclusion

We have proposed decomposition-based stateful search (DBSS) as an
improvement of explicit-state software model-checking. Given a sound
decomposition we showed the correctness of DBSS. Also, we have built
a proof-of-concept implementation based on the Java Pathfinder search
engine for general message-passing Java programs. Our evaluation of
DBSS with various representative message-passing protocols shows
extensive reduction both in time and state space. We show that DBSS
outperforms partial-order reduction (POR) in most cases but can also
be combined with it to achieve even higher reductions.

Part III

D E P E N D A B I L I T Y O F M U LT I - T H R E A D E D
P R O G R A M S

4

P B M C : S Y M B O L I C P R O G R A M S L I C I N G O N
C O N C U R R E N T P R O G R A M S

In the last chapter we presented an approach that can improve the
efficiency of explicit model checking based on the notion of decompo-
sition of states. We now shift our attention to a symbolic variant of
model checking, bounded model checking (BMC). Performing BMC
on concurrent programs is known to be a hard problem. After build-
ing the BMC formula that encodes the program’s behavior and the
specification, an SMT solver is used to find possible assignments,
i.e., executions violating the specification. While generating the BMC
formula can be done efficiently, the solving time usually dominates
the overall runtime. In this chapter, we leverage the structure of the
specification to enhance the BMC formula to guide the solver towards
assignments (i.e., executions) that are relevant. The contributions
presented in this chapter are based on a previously published work in
[SBS15].

This chapter is organized as follows. We start by providing a
general overview of the contribution in Section 4.1. Sections 4.2 and
4.3 provide a motivating example and discuss the related work. In
Section 4.4, we formalize and prove the correctness of projections.
Section 4.5 describes the symbolic encoding of projections and Section
4.6 shows our evaluation results.

4.1 overview

Automated verification of complex programs is known to be a hard
problem. The complexity of the task grows exponentially when the
considered programs exhibit concurrent behavior [Val98]. Bounded
model checking (BMC) [BCC+99] is a widely used verification tech-
nique, e.g., [CKL04]. In BMC, a formula encoding the behavior of the
program is computed and passed to an SMT/SAT solver along with
the negation of the property. The solver then checks whether there
exists an execution leading to a state violating the property. Thanks
to the recent advances in the field of SAT solving, bounded model
checking is becoming a problem solution for verification of concurrent
programs [AKT13; Esb; Llb]. The efficiency can be greatly improved
by constraining the search space depending on the property of interest.

73

74 pbmc : symbolic program slicing on concurrent programs

Concretely, the encoding of the program is constrained by excluding
behavior that is irrelevant or redundant with respect to the property.
For example, the solver can be instructed to partially order (instead of
totally order) transitions of the program, e.g., [AKT13].

In this chapter, we propose projections to constrain the search space
of a bounded model checker. Conceptually, projections are slices of a
program with respect to a set of variables. They are especially useful
for the analysis of concurrent programs. For example, a projection
with respect to the local state of a process may exclude transitions of
other non-interfering processes. As a result, the interleavings of the
excluded transitions (exponential in the number of transitions) do not
have to be considered by the solver. Intuitively, projections consist
of executions which only contain transitions directly or indirectly
affecting the variables of interest.
Contributions. We introduce projections, an adaptation of program
slices to general transition systems, and show that they preserve the
relevant safety properties of a program. The idea of projections is
a general one and is independent of how the program states are
explored. Our second contribution is that we present a symbolic en-
coding of projections for concurrent programs; we call the encoding
PBMC (projection-based BMC) because it can be used for efficient
bounded model checking. Note that although we concentrate on
concurrent programs our result equally holds for single-threaded pro-
grams. Interestingly, PBMC can be seen as a form of dynamic program
slicing [AH90]. In contrast to existing program analysis approaches
where static program slicing is applied prior to the actual analysis, e.g.
[CKL04; DHH+06; RH07] , PBMC enumerates slices on-the-fly. The
resulting slices are as precise as the dynamic ones because they are
calculated based on feasible executions. To the best of our knowledge,
PBMC is the first application of dynamic program slicing with BMC.
Our final contribution is that we implement a prototype of PBMC and
use it to verify simplified versions of a set of concurrent programs
where program slicing in its traditional form fails to reduce the size
of the program. The experiments show substantial verification time
reductions compared to traditional BMC. In summary this chapter
makes the following contributions:

• We propose a formal work for projections and prove the sound-
ness of our approach,

• we implement PBMC a projection based bounded model checker
for a prototype language of concurrent programs communicating
through shared variables, and

• we evaluate the performance of PBMC and compare it to tradi-
tional BMC.

4.2 motivating example 75

4.2 motivating example

We motivate our approach using a simple example. Consider the
program shown in Figure 13a consisting of three concurrent and
sequential processes sharing different variables and an array B. We
label the instructions on the different program locations l1, l2, l3 and
l4. Assume that we are verifying a property which involves only the
variable y. That is, we are interested in the values that y can take in
any possible run of the program. There are 12 possible interleavings
of the instructions. Assuming that initially a = 0, b = 1, x = 0 and
B[k] = 10 + k for every k-th position in the array, we list in Figure
13b the possible runs which may be relevant. Every transition in
the runs corresponds to a concrete execution of an instruction. For
instance, t5 and t2 are two different transitions, but correspond to the
same instruction l4. When analyzing the program statically1, one can
only reason in terms of instructions. By doing that, it is clear that
the program contains three “dependencies”: The execution of l3 always
depends on that of l1 because l1 always writes to variable a which l3
reads from. For the same reason, the execution of l4 depends on l3.
More interestingly, the execution of l3 depends on l2 only if a = b.
This corresponds in Figure 13b to the sequence σ3, as transition t3

writes in a position in B that t7 reads from. We refer to σ1, σ2 and σ3

as projections of the program on the set of variables {y}. Intuitively, in
order to preserve all the possible values that y can take, it is enough to
consider sequences where every transition t either writes to y, or there
is another transition after it which also writes to y and transitively
depends on t. For example in σ3, transition t3 is included because
it influences t7 which in turn influences t8. Transition t8 is kept in
the projection since it writes to y. In general, projecting a run on a
set of variables F means that we keep every transition that writes to
variables in F or affects another transition after it already included in
the projection.

Given that the safety property of interest involves a subset of vari-
ables, the verification time of such programs can be greatly reduced if
we constrain the exploration to projected executions. We use BMC to
symbolically describe the behavior of the program and add constraints
that characterize projections. By doing so, we constrain the search
space of the model checker but still preserve all possible values that
the variables in the property can take. If a state violating the property
is reachable, a projection is returned. Furthermore, as projections
contain only relevant instructions, they are easier to interpret and
analyze.

Note that static program slicing techniques [Wei81] applied to this
program would not help in the reduction of the search space as it will
return a copy of the whole program. This is due to the conditional

1 Ignoring our assumption about the initial values of the variables.

76 pbmc : symbolic program slicing on concurrent programs

(a) An example concurrent program.

(b) 3 projections on y out of 12 possible runs.

Figure 13: A motivating example

dependencies of instructions accessing arrays and the concurrency,
in which case it’s not clear before execution whether an instruction
affecting a variable of interest v will be actually executed before
another instruction assigning a value to v. For instance, it’s not clear
whether l1 will be executed before l3. Besides, if the values of a and b
depend on some non-deterministic behavior, e.g., concurrency or user
input, it might not be possible to predict whether a = b. In this case,
static program slicing conservatively over-approximates the slices.

4.3 related work

Program Slicing. PBMC is the first approach to combine dynamic
slicing and BMC. Our approach is based on a notion similar to pro-
gram slicing [Wei81]. Static program slicing has been used to reduce
the size of programs under verification, e.g., [CKL04; DHH+06; RH07]
where a slice of the program is computed and passed to the model
checker. However, the returned slice is an over-approximation of the
instructions that are in fact relevant to the slicing criterion. This is
due to the fact that inferring dependencies statically, a prerequisite for
deriving slices, is hard with the presence of concurrency [Kri04; RH07].
In PBMC, formulas describing precisely when dependencies occur
are generated passed to a solver along with the verification formula.
In dynamic slicing [AH90], the program is run with concrete input
and the slicing is done directly on the execution path. Although the
slices returned by dynamic slicing techniques are accurate, they only
concern the considered execution path. To use dynamic slicing with
verification, one would have to enumerate all paths which contradicts
the purpose of using slicing for reducing the number of explored

4.3 related work 77

paths. The slicing in PBMC is dynamic since only reachable, and
therefore feasible, paths are sliced.

Partial-Order Reduction. A common technique against state space ex-
plosion is partial-order reduction (POR) [GVLH+96]. Whereas POR’s
reduction comes from executing commutative transitions in one rep-
resentative order, in PBMC it is based on the notion of conflicting
read/write operations. Existing POR semantics, however, do not
subsume projections. Widely-known POR semantics such as stub-
born sets [Val98; BKS+11], persistent sets [GVLH+96], and ample sets
[CJGK+18] guarantee preserving all deadlocks of the program. In
some cases [GVLH+96], the preservation of deadlocks also entails
that of local states. On the other hand, projections do not necessary
preserve all deadlocks nor all local states. Existing POR techniques
include [GFY+07; FG05; BKS+11; WKO13; KWG09; AAJ+14] among
others.

BMC. An interesting way of combining slicing with BMC is described
in [GG08]. Tunneling and slicing-based reduction makes use of slicing
to decompose a BMC formula into disjoint smaller instances covering
subsets of the program. These formulas are constructed such that
the original formula is satisfiable only if at least one of the smaller
instances can be satisfied. Nevertheless, the used slicing is static and
therefore is imprecise.

Our approach for reduction is similar to MPOR [KWG09], where
constraints are added to the BMC formula to guide the search. The
constraints used in this approach are based on Mazurkiewicz’s traces
[Maz87], the underlying semantics for most POR theories. Our sym-
bolic encoding of the transition system enhances the encoding used in
MPOR. Furthermore, POR and projections are orthogonal techniques
that can be used in combination for better reductions as demonstrated
in [DHH+06]. This is the case because the definition of path projections
alone still allows for two Mazurkiewicz equivalent paths to be consid-
ered in the search. We argue that our encoding can be augmented by
the constraints of MPOR for better performance. To see this, consider
two executions t4, t1, t2, t3 and t2, t1, t4, t3 such that t3 depends on both
t1 and t2. From both executions we can derive projections t1, t2, t3 and
t2, t1, t3, respectively. Since there is no dependency between t2 and
t1, both projected executions are Mazurkiewicz equivalent. It follows
then that it is sufficient to consider one of the projections.

Encodings. We adapted the encoding used in [KWG09] which does
not require unwinding of loops as in [CKL04], [BAM07] or [SW11].
Yet, unwinding loops may be beneficial and allow different encoding,
e.g., using single static assignment form to reduce the number of
variables in the formula. The idea behind projections is independent
of the used encoding and therefore can be adapted for use with other
BMC formulas. For instance, in CBMC [AKT13], transitions are associ-
ated with clock variables that reflect how they are (partially-)ordered.

78 pbmc : symbolic program slicing on concurrent programs

Intuitively, a path corresponds to a partial order over transitions where
only dependent ones are strictly ordered. Thus, constraints are used
to enforce a total order on the dependent transitions. Using such an
encoding, the model checker might still explore some partial orders
which are not relevant to the property. Hence, two dependent transi-
tions will still have to be ordered although they might not have any
influence on the property. Given a subset of variables, we argue that
projection constraints can be added to such an encoding to further
reduce the number of interleavings of dependent transitions. This can
be done by constraining the used read-from relation according to the
definition of projections.
Other Symbolic Approaches. Another possibility is to use slicing
on-demand to refine the search for assertion violations. For instance,
Path slicing [JM05] is a technique that has been implemented within
the Blast model checker [BHJ+07] which makes use of counterexample
guided refinement techniques [CGJ+00]. In Blast, slicing is used to
simplify the counterexample analysis phase that serves the purpose
of refining the search. Our approach is different from path slicing in
the sense that the search for bugs is constrained from the beginning
using projections to guide the solver toward feasible counterexamples.
PBMC, and BMC based approaches in general, are fundamentally dif-
ferent from Blast, and other tools such as [McM06; WKO13; PVB+13;
LQL12], where the verification formulas are generated and refined
incrementally with the help of the solver. In BMC, a single formula
describing the whole program is computed statically and the explo-
ration work is deferred to the SMT solver. A comprehensive discussion
of the advantages and disadvantages of incremental generation and
refinement of the verification formula over BMC approaches is beyond
the scope of this work.

4.4 property preservation with projections

4.4.1 System Model

We abstract programs by general transition systems, where a transition
may read and/or write a set of variables.
General Transition Systems. Formally, the system is defined as a
tuple TS = (S, S0, T) where S, S0 ⊆ S, and T = {t|t : S ⇀ S} are the
set of states, initial states, and the set of transitions, respectively. In the
rest of this chapter, we will always write s0 to refer to an initial state.

A program defines a set of atomic instructions (e.g., lines of code).
In every state a (possibly empty) set of transitions is eligible for
execution. For example, transitions may correspond to instructions of
different processes. If the set of transitions is non-empty, one of them
is executed moving the program to a unique successor state. Formally,
a transition t ∈ T is a partial function such that t(s) = s′ iff t can be

4.4 property preservation with projections 79

executed in s and it leads to state s′.2 In that case, we say that t is
enabled in s. For convenience, we also write s t−→ s′ if t(s) = s′.

A finite path σ in the transition system TS is a sequence s0
t1−→ s2

t2−→
. . . tn−→ sn, also written as s0

t1,t2,...,tn−−−−→ sn, such that ti+1(si) = si+1 for all
0 ≤ i < n. In that case, we write σ ∈ TS.

In addition, we assume that every state s assigns a value s(v) to
every v ∈ V, where V is the set of variables. Given a set F ⊆ V, we
refer to the values assigned by s to variables v ∈ F by s(F). We write
s(F) = s′(F) for two states s and s′, if for all v ∈ F, s(v) = s′(v).
Dependency Relation. The execution of a transition involves reading
from and writing to a subset of variables. We assign to every transition
t a read/write set of variables [GVLH+96; Val98], denoted as r(t)/w(t) ⊆
V respectively. A transition t is said to read from (write to) a variable v
if v ∈ r(t) (v ∈ w(t)). The read set of a transition contains all variables
that may have an influence on whether a transition is enabled and
the outcome of its execution. On the other hand, the write set of a
transition consist of the variables that it might modify.

Formally, w(t) is defined such that for every v ∈ V, v ∈ w(t) iff
there are s, s′ ∈ S such that s t−→ s′ and s(v) 6= s′(v). Note that the
write set of a transition does not include a variable it never modifies.
We define the read set r(t) as the smallest set such that for every
s, s′ ∈ S, if s(v) = s′(v) for every v ∈ r(t), then

• t is enabled in s iff t is enabled in s′, and

• if t is enabled in s, then for every v′ ∈ w(t), t(s)(v′) = t(s′)(v′).

We define a dependency relation D ⊆ T× T to model any interference
between transitions. A transition t depends on a transition t′ if t reads
from a variable that t′ writes to. In that case, we also say that t
influences t′ and write (t, t′) ∈ D.

Definition 3 (Dependency Relation). Given two transitions t and t′ ∈ T,
we say that t′ depends on t and write (t, t′) ∈ D iff r(t′) ∩ w(t) 6= ∅.

Note that two transitions only writing to the same variable are not
considered to be dependent as the execution of one of them before the
other does not influence the behavior of latter.

4.4.2 Projections

In this section, we propose the projection semantics and present a the-
orem that guarantees that preserving projections on a set of variables
is a sufficient condition for preserving properties defined over those
variables.

2 For simplicity we focus on deterministic systems, although our results equally hold
for non-deterministic programs.

80 pbmc : symbolic program slicing on concurrent programs

First, we give a formal definition of path projections on a set of
variables. Intuitively, a projection of a path σ on a set of variables F
is a sequence of transitions containing every transition t that either
writes into a variable in F, or there is a transition t′ after it such that t′

depends on t and t′ is also in the projection.

Definition 4 (Projection). Given a set of variables F ⊆ V and a path

σ = s0
t1,...,tn−−−→ sn, σ|F = tj1 , tj2 , ..., tjk is said to be a projection of σ on F, if

1 ≤ j1 < j2 < ... < jk ≤ n and for all 1 ≤ i ≤ n, i ∈ {j1, j2, ..., jk} iff:

(a) w(ti) ∩ F 6= ∅, or

(b) there exists j ∈ {j2, j3, . . . , jk} such that i < j and (ti, tj) ∈ D.

Property Preservation. Our main result is that projections can be used
to constrain the search space of a model checker. For that purpose
we must guarantee that projections on a set of variables preserve the
properties of those variables. Assume two transition systems TS, TS′

and a set of variables F ⊆ V. If for every path σ = s0
t1,t2,...,tn−−−−→ sn ∈ TS,

there exists a path σ′ = s0
t′1,t′2,...,t′m−−−−−→ s′m ∈ TS′ such that sn(F) = s′m(F),

we say that TS′ preserves the properties of F in TS. Furthermore, we
say that TS′ preserves the projections of F in TS, if for every path

σ = s0
t1,t2,...,tn−−−−→ sn ∈ TS, there exists a path σ′ = s0

t′1,t′2,...,t′m−−−−→ s′m ∈ TS′

such that σ|F = t′1, t′2, ..., t′m.

Theorem 5 (Property Preservation). Let TS and TS′ be two transition
systems and F ⊆ V a set of variables. If TS′ preserves the projections of F in
TS then it also preserves the properties of F in TS.

We prove Theorem 5 via a series of lemmas. First, we intro-
duce the following auxiliary definitions: Let ti, tj be two transitions,
α = t1t2 . . . tn a sequence of transitions, and σ = s0

α−→ sn be the
resulting path. For convenience, we will write ti ∈ σ and ti ∈ α if
i ∈ {1, 2, . . . , n}. Furthermore, if j ∈ {i + 1, . . . , n}, we write ti <σ tj
or tj >σ ti.

First, we show that between two successive transitions in a projection
σ|F, the values assigned to variables in F and the ones read by any
transition in σ|F after the second transition remain unmodified by all
transitions outside the projection.

Lemma 6. Let σ = s0
t1,t2,...,tn−−−−→ sn be a path, F ⊆ V a set of variables and

tk, tk′ two transitions such that tk <σ tk′ and for every tk−1 <σ ti <σ tk′+1
ti /∈ σ|F. For every tk−1 <σ tj <σ tk′+1, tq >σ tk′ such that tq ∈ σ|F and
v ∈ r(tq), sj(F) = sk−1(F) and sj(v) = sk−1(v).

Proof. Let σ be a path, σ|F its projection on a variable set F ⊆ V,
and two transitions tk and tk′ as described above. We know that
for all tk−1 <σ tj <σ tk′+1, w(tj) ∩ F = ∅. Otherwise, tj would

4.4 property preservation with projections 81

be included in σ|F between tk and tk′ (Def. 4). This means that
sj−1(F) = sj(F) = sk−1(F). Given a transition tq ∈ σ|F such that
tq >σ tk′ , we assume that there is a variable v ∈ r(tq) such that for
a j ∈ {k, . . . , k′}, sj(v) 6= sk−1(v). Let j be the first such an index.
This implies that sk−1(v) = sj−1(v) 6= sj(v). We then have v ∈ w(tj)

and therefore r(tq) ∩ w(tj) 6= ∅. From Definition 3 it follows that
(tj, tq) ∈ D. Consequently, tj should also be included in σ|F. This
contradicts our initial assumption.

With the help of Lemma 6 we show that every projection is also a
path and that it reaches a state where the assigned values to variables
in F are the same as in the original path.

Lemma 7. Let σ = s0
t1,t2,...,tn−−−−→ sn be a path and σ|F = tj1 , tj2 , . . . , tjk its

projection on variable set F ⊆ V. Then there exists a path σ′ = s0
tj1 ,tj2 ...,tjk−−−−−→

s′k such that sn(F) = s′k(F).

Proof. We separately consider the case where σ|F is empty, i.e. contains
no transition. In this case, we have for every ti ∈ σ, ti /∈ σ|F. From
Lemma 6, it follows that s0(F) = sn(F) and σ′ exists as an empty path.

Now we assume that σ|F contains at least one transition. We start
by proving, for every 1 ≤ q ≤ k, the existence of the path that consists
of the first q transitions of σ|F, that s′q(F) = sjq(F) and that for every
v ∈ r(tj) such that tj >σ tjq and tj ∈ σ|F, s′q(v) = sjq(v). The proof is
an induction on the number of the first q transitions in the projection.
Consider the case of the first transition tj1 in the projection. Since
∀i ∈ {1, . . . , j1 − 1} ti /∈ σ|F, we know that s0(F) = sj1−1(F), and
that for every v ∈ r(tj1), s0(v) = sj1−1(v) (Lemma 6). Thus, since
tj1 is enabled in sj1−1, it is also enabled in s0, and there is a state s′1

such that s0
tj1−→ s′1 and s′1(v) = sj1(v) for every v ∈ w(tj1) (read set

definition). Since for every v ∈ F such that s0(v) 6= s′1(v) is in w(t)
(write set definition), it follows that s′1(F) = sj1−1(F). We assume now
that the property holds for the first q transitions and prove it after
considering the q + 1-th transition tjq+1 . From Lemma 6 it follows then
that sjq(F) = sjq+1−1(F) and sjq(v) = sjq+1−1(v) for every v ∈ r(tj) such
that tj > tjq and tj ∈ σ|F. Using the induction assumption it follows
then that s′q(F) = sjq+1−1(F) and s′q(v) = sjq+1−1(v). Consequently, tq+1

is enabled in s′q and there exists a state s′q+1 such that s′q
tq+1−−→ s′q+1,

s′q+1(F) = sjq+1(F) and ∀v ∈ w(tjq+1), s′q+1(v) = sjq+1(v) (read/write set
definitions). Let v ∈ r(tj) such that s′q+1(v) 6= sjq+1(v). This means that
there is a variable v′ ∈ w(tjq+1) such that s′q+1(v

′) 6= sjq+1(v
′) which is

a contradiction.
Now that we have proved the property, we know that for q = k we

have s′k(F) = sjk(F) and that the path σ′ exists. We know that for every
i ∈ {jk + 1, . . . , n} we have ti /∈ σ|F and w(ti) ∩ F = ∅ since otherwise
ti would be included in the projection (Def. 4). It implies then that
sn(F) = sjk(F) = s′k(F).

82 pbmc : symbolic program slicing on concurrent programs

Lemma 7 also implies that, given a transition system TS, a projection
preserving transition system TS′ always exists. This is true because
from a path in TS one can always construct a valid projection path
from it. Proving Theorem 5 is now straightforward.

Proof. Let σ = s0
t1,t2,...,tn−−−−→ sn be a path in TS and F a set of variables.

The projection preservation implies that there exists a path σ′ =

s0
t′1,t′2...t′m−−−−→ s′m in TS′ such that σ|F = σ′. From Lemma 7 follows that

sn(F) = s′m(F).

We have just proved that every reachable combination of values that
the variables in F can take, is also reachable through a projection. In
other words, Theorem 5 allows us to safely narrow down the search
space of a model checker to projections, while still preserving all
possible paths of a program.

4.5 pbmc : a symbolic implementation

In this section, we show how we implemented projections semantics
for process-based concurrent programs in PBMC.

4.5.1 Process-Based Concurrent Programs.

First, we informally describe how general concurrent programs can be
expressed as a transition system. We assume a general shared memory
model where a set of processes communicate via shared variables. In
the corresponding transition system, a state consists of variables, and
every transition is associated with a process. Processes are sequential.
This means that two transitions that are enabled in a state must be
from different processes. Hence, for every state s, a process has at
most one enabled transition. Sequential processes can be modeled
using an auxiliary variable for every process, called program counter.
The program counter variable of a process can only be accessed by the
process itself and designates the instruction that can be executed next.

4.5.2 Projection Encoding

Given a concurrent program, a property, and a fixed depth k, bounded
model checking encodes a formula that an SMT/SAT solver can check
for satisfiability. The property is true for some path iff the formula
is satisfiable. More precisely, the formula is of the form Φ = ρ ∧ Ψ
where ρ denotes the property formula and Ψ encodes a path of length
k. The formula Φ is satisfiable iff there exists a path of at most k steps
that satisfies ρ. To check whether the property ρ is valid for every
possible path of a maximal length k, it suffices to replace it with its
negation in Φ and prove the unsatisfiability of the resulting formula.

4.5 pbmc : a symbolic implementation 83

In the following, we explain how we encode Ψ to implement projec-
tions. The basic (unprojected) encoding adapts the structure used in
[KWG09]. Let F be the set of variables which appears in the property
formula. To model the changes affecting the state of the program
throughout the path we create for every v ∈ V and 0 ≤ i ≤ k a
variable vi to represent the content of v in the i-th state of the path.
Core Formula. A path is only valid if it starts from an initial state. We
add a constraint I to encode this fact.

I :=
∧

v∈V

(
v0 = s0(v)

)
Let L be the set of all the instructions in the program. For every
transition t ∈ T, we refer to the instruction it corresponds to, with
inst(t) ∈ L. Given an instruction l ∈ L, let trans(l) be the set of
transitions that are mapped to it. In every step 0 ≤ i ≤ k− 1, we model
the possible selection of an instruction l using a formula denoted as
Ti

l . If no instruction is selected for a step i, for instance because the
length of the returned path is smaller than k, an additional constraint
M makes sure that the variables remain unmodified for that step. To
guide the solver to only consider projections on F, we add a constraint
CF. Setting CF to true results in the solver considering every possible
path. To encode all possible projections on set F, we obtain the
following formula:

Ψ := I ∧M ∧ CF ∧
k−1∧
i=0

∧
l∈L

Ti
l

Transition Encoding. For each instruction l ∈ L, we add an instruction
constraint li that represents the changes that occur when l is executed
at step i. We introduce variables seli that encode the instruction choice
in every step: seli = l iff instruction l was selected for execution in step
i. Not that, due to process sequentiality, the selection of an instruction l
implies the execution of a corresponding unique transition t ∈ trans(l)
given by the variables vi. To describe the selection of instructions at
different steps we make use of the seli variables and the instruction
constraints:

Ti
l := seli = l =⇒ li

If an instruction l is selected for execution at step i, then li should
hold, i.e, the variables should be updated accordingly. Otherwise, if
no instruction is selected at step i, every variable in the system remains
unchanged:

M :=
k−1∧
i=0

(∧
l∈L

seli 6= l =⇒ ∧
v∈V

vi+1 = vi
)

84 pbmc : symbolic program slicing on concurrent programs

If the depth value k is larger than the length of the path satisfying
Ψ, some steps are filled with “dummy” instructions3. In this case, the
solver will spend some time trying to figure out in which position to
place the dummy instructions. We found it more efficient to force the
solver to place those instructions at the beginning of the path such
that there are no gaps, i.e., no dummy instruction is chosen after a
“non-dummy” instruction has been selected. We do this by adding a
formula that further constrains the assignment of the seli variables.
We omit the formula as it is an optimization not necessary for the
correctness of Ψ.
Projection Encoding. We describe how the projection constraint CF

is generated for a set of variables F. The dependency relation D is
encoded using variables dij which are true iff there is a transition t1

which is executed at step i and a transition t2 executed at j such that
(t1, t2) ∈ D. Specifically, we have:

dij :=
∨

t1∈T

(
seli = inst(t1) ∧

∨
t2∈{t|(t1,t)∈D}

sel j = inst(t2)

)

CF directly translates the definition of projections (Definition 4):

CF :=
k−1∧
i=0

(∨
t∈{t′|w(t′)∩F 6=∅}

seli = inst(t) ∨
k−1∨

j=i+1
dij ∨

∧
l∈L

seli 6= l

)

Informally, for every selected transition ti either it writes into a
variable included in F or there is a transition tj in the projection after
it such that (ti, tj) ∈ D. The last clause allows dummy instructions to
be selected without rendering the formula unsatisfiable.
Examples. We show how we encode instructions based on the exam-
ples of simple assignments and if statements in our process-based
concurrent system model. To model process sequentiality, we define
program counter variables pcp ∈ V for every process p.

Let l be an assignment x := e at a process moving the program
counter from loc1 to loc2, then li :=

pci
p = loc1 ∧ pci+1

p = loc2 ∧ xi+1 = ei ∧ ∧
v∈V\{x,pcp}

vi+1 = vi

Considering an if statement i f (c) that moves the program counter
from loc1 to location loc2 if c evaluates to true and to loc3 otherwise,
we have ti :=

pci
p =

loc1 ∧
(
(c ∧ pci+1

p = loc2) ∨ (¬c ∧ pci+1
p = loc3)

)
∧ ∧

v∈V\{pcp}
vi+1 = vi

3 More precisely, the solver will assign a value to seli which does not correspond to
any of the instructions.

4.5 pbmc : a symbolic implementation 85

Dependency Encoding. To illustrate how the dependency relation is
encoded, we consider the motivating example in Section 4.2. Because
of conflicting read/write accesses, we have three potential dependen-
cies: l3 depends on l1, l4 depends on l3 and l3 depends on l2. The
first two dependencies hold for any two transitions associated with
the instructions. For instance, every transition corresponding to l3
depends on every transition associated with l1. On the other hand, the
third dependency holds only if a = b. To encode dij, we must consider
every possible dependency. First, there is a dependency if seli = l1
and sel j = l3 or seli = l3 and sel j = l4. For the dependency between l3
and l2, we must include the condition a = b. Concretely, the following
should hold: seli = l2, bi = aj and sel j = l3. In summary, to have a
dependency between step i and j the following formula should hold:

dij := (seli = l1 ∧ sel j = l3) ∨ (seli = l3 ∧ sel j = l4) ∨ (seli = l2 ∧ (bi =

aj ∧ sel j = l3))

The size of a dependency formula depends on the number of poten-
tially dependent instructions and not on the transitions.
Implementation. We implemented PBMC using the above encoding in
the Python language. The prototype is based on the Z3 SMT solver and
makes use of its Python API [Z3]. We developed a simplified language
that provides basic programming constructs such as assignments, if
statements and while loops. The tool supports arrays in addition to
boolean and integer variables through the efficient implementation
of their respective theories in Z3. Every program contains a header
with declarations of variables, the number of processes in the program,
an optional initial state assignment and a list of properties to be
verified. The body of the program lists the instructions of every
process separately in the style of the example shown in Figure 13a.

We now explain the workflow of PBMC. First, the program is parsed
and per instruction read/write summaries are created. For instruc-
tions accessing an integer or boolean variables the read/write sets are
the same for every matching transition. In the case of instructions
involving arrays, we also take note of the accessed index. The de-
pendencies are then inferred based on the gathered summaries. For
every two instructions l1, l2, we add a dependency for the correspond-
ing transitions if l1 writes to a variable v that l2 reads from. If v is
an array, we add the condition that the indices are equal. Next, the
tool translates the parsed program into a Z3 formula as previously
shown. Subsequently, the found dependencies are used to construct
the projection constraints which are added to the formula along with
the negated property to be checked and the optional initial state for-
mula. Then, the solver is called to check the satisfiability of the whole
formula. Finally, the output of the solver is interpreted and a counter
example path, if existing, is reconstructed. The returned path is a
projection that leads to a state where the property is violated. The

86 pbmc : symbolic program slicing on concurrent programs

tool can be started with parameters to set up the length of paths to be
considered and whether projection should be applied.

4.6 experiments and evaluation

In this section, we present preliminary experiments and an evaluation
of PBMC. We challenge our approach by choosing four benchmarks
where static program slicing would return a mere copy of the program,
and therefore be ineffective, to demonstrate the potential of using
projections in program verification.

Next, we present the used benchmarks:

• Litmus Tests (Litmus): In our first benchmark, we generate
random instructions accessing shared and local variables. The
property we check in this example is whether variables assume
certain values. For this case, we use five configurations ranging
from 4 to 8 processes.

• Indexer: Our second benchmark is the indexer program taken
from [FG05], where a shared hash table is accessed concurrently
by different processes. Every process attempts to insert data
into a location of the hash table. If it is already occupied, the
process calculates a new hash value and retries again. This
operation is repeated until an empty location is found. In the
indexer program, dependencies between variable accesses result
from writing to and reading from the same hash table location.
The property we consider for this example is whether a hash
value collisions can occur, which is known to be false for the
configurations we consider in our setup [GFY+07]. We use two
configurations with 2 and 4 processes.

• File System (FSys): This example was also adapted from
[FG05]. In this benchmark, files are associated with inode data
structures which point to memory locations where information
about files are stored. For every memory location there is a busy
bit indicating whether it has been allocated to an inode. Each
inode and busy bit is guarded by a distinct lock to avoid race
conditions. When a process picks an inode and no memory was
yet allocated for it, it tries to allocate a free memory location.
Here dependencies are hard to detect statically because it is not
clear in advance in which order inodes will be assigned by the
processes. We check for buffer overflow errors in this benchmark
and use one configuration which consist of 5 processes.

• Dining Philosophers (DPhil): We implemented the dining
philosophers algorithm in our prototype language. The version
we use is deadlock and livelock free. While every philosopher

4.6 experiments and evaluation 87

Figure 14: Comparing the total verification time of BMC and PBMC with
different path depths for Litmus 5 and an unsatisfiable property.

(process) maintains a local state, they share an array of chop-
sticks. To check for the availability of chopsticks, philosophers
access the shared array. For simplicity, since collisions can only
occur between neighboring processes, we ignore dependencies
involving non-neighboring processes. A mutex is used to guar-
antee atomicity of operations on the shared array elements. The
property we are interested in is whether two neighbor philoso-
phers can be eating at the same time. To challenge our tool we
inject a bug in the program and evaluate its capacity of finding
counter example paths. The injected bug misuses the shared mu-
tex and thus violates the mutual exclusion property. We set the
unrolling depth large enough such that the counter example can
be found. For this example we use seven different configurations
ranging from 5 to 15 processes.

For every example we use two setups: BMC and PBMC. In general,
we observed a trade-off between the complexity of the generated
constraints and the amount of reduction achieved during the actual
solving. In Figure 14, we show the amount of time spent by PBMC and
BMC to verify an unsatisfiable property for the litmus test example
with 5 processes with different path depths. The fluctuations of the
performance are explained by the fact that SMT solvers make extensive
use of heuristics to explore the search space. For small path depth
values, the overhead of creating the constraints and handling them
by the SMT solver outperforms the reduction that is achieved by
using PBMC. Only after reaching a threshold path depth of 20, we
observed a clear improvement over BMC. Since the creation of the
constraints can be done separately, one can efficiently reduce that
threshold by parallelizing the constraint generation process. Moreover,
after reaching depth 27 BMC runs out of memory (after two hours)
while PBMC finishes the verification within approximately 13 minutes.

88 pbmc : symbolic program slicing on concurrent programs

Configuration CPU Time (s)
time red.

Name Depth BMC PBMC

Solv. Total Solv. Total

Indexer 2 10 19.531 20.116 5.088 5.773 71.30 %
Indexer 4 15 15 979.298 15 981.531 5881.442 5884.755 63.18 %
FSys 5 30 37.058 47.376 1.825 58.139 —
FSys 5 60 206.297 227.427 14.879 227.942 —
FSys 5 70 627.547 651.991 40.469 325.797 50 %
FSys 5 90 949.518 981.573 10.478 467.558 52.37 %

Table 6: Comparison of BMC and PBMC for unsatisfiable configurations.

Configuration CPU Time (s)
time red.

Name Depth BMC PBMC

Solv. Total Solv. Total

DPhil 5 10 5.921 8.830 7.671 12.665 —
DPhil 7 10 14.391 19.162 14.945 22.585 —
DPhil 10 10 51.229 59.460 39.607 52.139 12.31 %
DPhil 12 10 77.121 88.028 66.544 82.618 6.14 %
DPhil 15 10 219.824 235.581 182.689 204.752 13.08 %
Litmus 4 20 10.649 11.348 13.988 15.819 —
Litmus 5 20 605.336 606.475 654.573 657.102 —
Litmus 6 20 3888.401 3889.363 908.573 911.550 76.56 %
Litmus 7 20 2611.024 2612.562 349.708 353.544 86.46 %
Litmus 8 20 >2 h >2 h 59.738 64.031 Inf.

Table 7: Comparison of BMC and PBMC satisfiable configurations.

In Tables 6 and 7, we measure the improvement brought by our
approach over BMC in terms of CPU time in different configurations.
In the name column, we append the number of processes to the name
of the used benchmark. For every experiment we specify the unrolling
depth used. We report configurations where the formula is satisfiable
and unsatisfiable separately in Table 7 and Table 6, respectively. The
solving time column shows the amount of time spent by the solver to
return an answer excluding the initial analysis and formula building
steps. On the other hand, total time includes all the steps. In the
reduction column, we give the reduction percentage, in terms of total
time, of PBMC in comparison with BMC. From comparing the total
and solving times in the table, one can see that as the program com-
plexity increases, the time required for the two initial steps in PBMC’s
workflow becomes insignificant. This means that for small configura-
tions PBMC brings no improvement in the performance, as the total
time is dominated by the time spent on analyzing the program and
constructing the formula. On the other hand, PBMC clearly outper-
forms BMC for larger configurations due to substantial reductions in
solving time which becomes more significant. In summary, the results

4.7 conclusion 89

in the table confirms the global trend that was shown in Figure 14.
The relatively small reduction in the dining philosopher example can
be explained by the extensive use of the globally shared mutex. In
that example, all the transitions depend on the ones manipulating the
mutex. This results in a large number of dependencies involving all
the variables, including those in the property. In general, the larger
the setting is with fewer dependencies involving the variables in the
property of interest, the better is the reduction of PBMC.

4.7 conclusion

We have presented projections, an enhanced dynamic slicing notion
that can be combined with BMC and proved its correctness. Also, we
have implemented PBMC, a bounded model checker that incorporates
projections using a novel BMC encoding. By augmenting the BMC
formula with projections, PBMC restrains the search space of the
model checker and significantly improves on the efficiency over tradi-
tional BMC. Our evaluation with examples of concurrent programs
has shown major reductions in terms of verification time compared to
traditional BMC encoding, even in cases where static slicing proves
ineffective.

5

T R A C E S A N I T I Z E R – E L I M I N AT I N G E F F E C T S O F
N O N - D E T E R M I N I S M O N E X E C U T I O N T R A C E S

In Chapters 3 and 4, we explored how the runtime of model check-
ing, a fault removal mechanism, can be shortened. We now come
to our last contribution dealing with error propagation analysis of
multi-threaded programs. The non-deterministic behavior of a multi-
threaded programs constitutes a major challenge for error propagation
analysis (EPA). For such programs there can be deviations even across
repeated executions with the exact same input. Therefore, observed
deviations between an execution and one where the program has been
injected with a fault can not be invariably attributed to the activation
of the fault. In this chapter, we propose a sound approach to EPA
for a subclass of multi-threaded programs and provide an automated
method to identify such programs. The contributions presented in
this chapter are based on the material in [SWS+19].

In the first section we provide an overview of the contribution. Sec-
tion 5.2 discusses related work and Section 5.3 illustrates the problems
arising from non-determinism in EPA. In Section 5.4 we present our
approach, Trace Sanitizer, before discussing our evaluation results in
Section 5.5.

5.1 overview

To maximize resource utilization and, thereby, system throughput,
modern computer systems relax the determinism of program exe-
cutions. A prominent example are preemptive CPU schedulers that
dynamically assign processors to executable programs or revoke such
assignments at any point of the programs’ executions. Similarly, dy-
namic memory allocators, which assign memory to a program upon
request, have the freedom to decide at which memory address the
requested memory region is located, which enables the operating sys-
tem to avoid collisions, minimize fragmentation, and enhance security
via address space layout randomization [BDS03].

However, relaxing execution determinism has adverse effects on
dynamic program analyses, such as Error propagation analysis (EPA)
[Voa97; HJS01]. EPA analyzes how software bugs affect program
control and data flow at run time, which is useful for error detector

91

92 eliminating effects of non-determinism on execution traces

placement [HJS02; CSW+17] and robustness testing [NWC+18]. For
this purpose, programs are mutated similarly to mutation testing, but
commonly using different mutation operators and mutant selection
criteria. To determine the effects of the introduced bugs on program
execution, EPA compares bug-affected (faulty run) against bug-free
(golden run) execution traces, i.e., records of which program instructions
have been executed in which order. If execution determinism is
relaxed, instructions from different threads can appear in different
orders and referenced memory addresses may differ. For EPA, such
deviations between the bug-free and fault injected trace due to relaxed
execution determinism constitute false positives, because they do not
indicate the effects of faults.

Deterministic replay techniques [CZG+15] can eliminate deviations
due to non-determinism across program executions. However, deter-
ministic replay potentially renders EPA results invalid, as the compar-
ison of executions in EPA is not across identical copies of a program,
but across an original and a mutated version. For example, if CPU
schedules are affected due to time-intensive operations introduced by
the mutation, enforcing the original CPU schedule can lead to false
conclusions on error propagation.

In this chapter, we propose a novel technique to perform EPA in
the presence of execution non-determinism, without resorting to de-
terministic replay-like techniques. By identifying memory objects
and replacing their concrete addresses by symbols in the traces, our
algorithm canonicalizes the memory addresses. Addressing schedul-
ing non-determinism is significantly more difficult to handle in the
general case, because of possible data dependencies1 between threads.
The existence of data-dependent instructions between threads implies
that the non-deterministic scheduling decisions directly impact the
data values and instructions seen by each thread. That is, the order in
which these instructions are observed allows deviations in the values
and instructions in the trace. To deal with such traces, an EPA would
require a potentially exponential number of golden runs, each possi-
bly observing deviating data values and instructions due to different
orders of data-dependent instructions.

We therefore focus on an important class of programs that we term
pseudo-deterministic, i.e., that are (1) supposed to exhibit identical
externally observable behavior across repeated executions and (2) not
affected by non-deterministic external functions.

The first condition excludes both programs with races and pro-
grams that are intentionally non-deterministic. For intentionally non-
deterministic programs, reference executions generally cannot serve as
an oracle. We do not consider this a limitation of our technique, as no
differential testing technique (including EPA) is suited for these types
of programs. Races are a more problematic case, as they can result in

1 Concurrent accesses to a shared memory object, out of which at least one is writing.

5.1 overview 93

non-deterministic behavior of intentionally deterministic programs,
i.e., it is difficult to know upfront if a program meets our postulated
condition. To determine whether a program meets this condition or
not, we introduce an automated test for data races and order violations
based on maximal causality models [HMR14] derived from a reference
execution.

The second condition excludes programs that deliberately make
use of non-deterministic external libraries, such as random number
generators, because these pose a similar problem as intentionally non-
deterministic programs. Due to the first condition, the second con-
dition only puts an additional constraint on externally deterministic
programs, i.e., by the second condition we exclude programs that pro-
cess non-deterministic data, but for which this non-deterministic data
has no effect on the program’s externally observable behavior. While
we have not seen a real-world program with these characteristics, a cor-
responding check could be implemented using a white-/black-listing
mechanism for external libraries and system functions.

Prior work on performing EPA for non-deterministic traces either
skips the non-deterministic parts of the trace [LM12], or uses statistical
properties and likely invariants to capture the non-determinism [LJ09;
CWS+17]. The former techniques may miss error propagation in
important parts of the execution. The latter techniques may classify
deviations from the invariants or statistical measures as errors, though
these are legitimate behaviors, and are hence not sound. To the best
of our knowledge, we are the first technique to perform EPA for (a class
of) non-deterministic programs that is sound, covers error propagation in
non-deterministic parts of the execution, and does not require programmer
support or annotations.
Contributions. We present a novel trace sanitizing approach that
deals with the non-determinism due to dynamic memory allocations
and non-deterministic scheduling in pseudo-deterministic programs.
In summary, we make the following contributions:

• Identify a class of multi-threaded programs, termed pseudo-
deterministic programs, for which EPA can be sound despite re-
laxed execution determinism. To support the decision of whether
a program is pseudo-deterministic and our technique yields
sound results, we develop a novel reversibility check based on
the maximal causality model to reliably identify such programs.

• Introduce a novel trace sanitizing approach for pseudo-deterministic
multi-threaded programs. The presented approach soundly han-
dles non-determinism due to dynamic memory allocation and
non-deterministic scheduling.

• Implement our trace sanitizing algorithm in Trace Sanitizer, a
trace comparison tool for EPA of multi-threaded programs.

94 eliminating effects of non-determinism on execution traces

• Evaluate the effectiveness of Trace Sanitizer in EPA based on a
set of five widely used benchmarks and show that it successfully
reduces the rate of false positives to 0 %, achieves a high fault
coverage and reasonable performance overhead.

5.2 related work

We classify related work into two broad categories.
Deterministic Execution. The effects of non-determinism due to
multi-threading can be mitigated through the use of deterministic
execution. Examples of this approach are Dthreads [LCB11] and De-
terministic Parallel Java (DPJ) [BJVD+09]. These approaches work
by constraining either the set of possible interleavings the OS sched-
uler is allowed to interpose on the program, or the set of possible
programming language constructs that the developer is allowed to
use. The former imposes performance overheads as the scheduler
has less flexibility in ordering the program’s threads to optimize for
performance, while the latter imposes a burden on the programmer as
they need to ensure their program is free of the problematic constructs
(this includes third-party libraries used by the program).
Error Propagation Analysis (EPA). As mentioned earlier, EPA has
been traditionally performed by comparing the faulty execution to a
golden run (i.e., fault-free execution) of the program [CHR98; HJS02].
Most papers in this area assume that the golden run is deterministic
and hence perform a simple line-by-line comparison with the golden
run [LJ09]. Unfortunately, this is not the case for most multi-threaded
programs. There have been three approaches that have attempted to
address the issue of non-deterministic golden traces for EPA. First,
DeLemos et al. [LM12] use biological sequence alignment algorithms
to compare non-deterministic golden traces with faulty executions,
effectively skipping the non-deterministic sections of the trace. An im-
plicit assumption made in this technique is that most parts of the trace
are deterministic, and hence skipping the non-deterministic portions is
acceptable. Unfortunately, this need not be the case for multi-threaded
programs as the OS scheduler has considerable freedom to vary the
thread interleaving and memory ordering from one execution to an-
other. Second, Leeke et. al. [LJ09] have attempted to characterize a
golden run using statistical techniques such as clustering, and perform
a coarse-grained comparison of the faulty run with the golden run
with reference to these statistical characteristics. Only if there is a
significant deviation in the characteristics do they consider it as an
erroneous execution. However, their approach requires significant
manual intervention to annotate the clusters, and also requires that
the system’s outputs conform to well-known statistical distributions.
Further, they may not detect subtle errors that violate the event order-
ings of the program unless the errors result in significant deviations

5.3 trace equivalence and execution non-determinism effects 95

from the characteristics. Finally, in recent work, Chan et. al. [CWS+17]
use dynamic invariants for characterizing a non-deterministic golden
run, and consider any execution that results in a violation of the in-
variants as an erroneous execution. This approach is unsound, as the
invariants are only likely invariants extracted using Daikon [EPG+07].
Further, the approach is also incomplete as it may miss errors that do
not violate the invariants, due to the invariants being incomplete or
too permissive in their constraints.

Unlike the above two approaches highlighting the state of the art
efforts, our goal is to develop an approach for performing EPA in the
presence of non-determinism due to multi-threading in programs that
is sound. Further, we do not attempt to constrain the set of execution
orderings imposed by the OS scheduler, nor do we constrain the
language features used by the programmer. Therefore, our approach
also incurs lower performance overheads and requires no effort on the
programmer’s part.

5.3 trace equivalence and execution non-determinism

effects

While relaxing execution determinism for performance does not affect
the correctness of a program execution, it may affect the execution
trace recorded from that execution. If this is the case, a direct compari-
son of such non-deterministic traces for EPA leads to false positives. To
illustrate the problem, we present a small example of a multi-threaded
program in Listings 4 and 5 to illustrate the effects of memory alloca-
tion and thread scheduling non-determinism on execution traces and
their comparability.

The example program in Listing 4 is a typical example of MapReduce-
like programs, an important class of programs that fulfills our first
definition criterion of pseudo-determinism. It defines a global array
arr (Line 3) to store the data to be processed, initializes the content of
that array (Lines 17 and 18) and then spawns two threads (Lines 20

and 21) that independently operate on different partitions of the data.
The initial thread waits for the two worker threads to return (Lines 22

and 23) before it aggregates the results from their operations by print-
ing the sum of the array elements (Line 24).

Listing 5 shows two shortened execution traces recorded from re-
peated executions of that program. The traces have been recorded
using the EPA framework LLFI [TP13; APB14] and contain one line
for each executed instruction of the program’s LLVM intermediate
representation (IR). The line starts with the index of the instruction
in the trace. The second number is a (simplified) ID of the executing
thread, followed by the instruction’s name, its return value and its
operand values.

96 eliminating effects of non-determinism on execution traces

1 #include<stdio.h>
2 #include <pthread.h>
3 int arr[2];
4 void *inc(void* arg)
5 {
6 arr[0]++;
7 pthread_exit(NULL);
8 }
9 void *dec(void* arg)

10 {
11 arr[1]--;
12 pthread_exit(NULL);
13 }
14 int main(int argc, char **argv)
15 {
16 pthread_t id1, id2;
17 arr[0] = 3;
18 arr[1] = 6;
19

20 pthread_create(&id1, NULL, inc, NULL);
21 pthread_create(&id2, NULL, dec, NULL);
22 pthread_join(id1, 0);
23 pthread_join(id2, 0);
24 printf("Result: %d\n", arr[0]+arr[1]);
25 return 0;
26 }

Listing 4: Example multi-threaded program.

Despite being functionally identical, an EPA on the two traces would
identify them as deviating because of differing memory addresses, i.e.,
any number with more than one digit in Listing 5, and would proceed
to analyze cause-effect chains across these deviations. Moreover, the
different interleaving of instructions from different threads causes
EPA to falsely identify deviations between the two execution traces.
For instance, while the instructions from thread 1 and thread 2 are
interleaved in the first traces, they are executed in groups in the second
trace. Note that while the threads share global memory locations (a
source of dependency), the accesses are never concurrent. For instance
in Listing 4, although the main thread and the first thread access the
first slot in the array arr at Lines 6 and 24, there can be no other
execution of the program where Line 24 is executed before Line 6 due
to the explicit synchronization call pthread_join (Line 22).

The goal of Trace Sanitizer is to transform these traces in a way
that preserves functionally relevant deviations, e.g., deviating variable
values, and eliminates functionally irrelevant deviations, e.g., deviat-
ing addresses of memory objects representing these variables. Fur-
thermore, Trace Sanitizer leverages the explicit synchronization in
multi-threaded programs to simplify the comparison in EPA.

In summary, Trace Sanitizer addresses two sources of execution
non-determinism that cause spurious trace deviations.

1. Non-deterministic memory allocations: To keep code portable,
programs should not make assumptions on memory layout and
leave memory management entirely to the operating system. As

5.3 trace equivalence and execution non-determinism effects 97

0 0 call-main 0 1 7ffcfe3287e8
...
1 0 alloca 7ffcfe3282e8 8
2 0 alloca 7ffcfe3282e0 8
...
3 0 store 3 603d74
4 0 store 6 603d78
5 0 call-pthread_create 0 7ffcfe3282e8 0 400ae0 0
6 0 call-pthread_create 0 7ffcfe3282e0 0 4012c0 0
7 1 call-inc 0
8 1 alloca 7f0ccbc55d58 1
9 0 load 7f0ccbc56700 7ffcfe3282e8
10 1 alloca 7f0ccbc55d50 8
11 1 store 0 7f0ccbc55d50
12 1 load 3 603d74
13 2 call-dec 0
14 2 alloca 7f0ccb454d58 8
15 1 store 4 603d74
16 2 alloca 7f0ccb454d50 1
17 2 store 0 7f0ccb454d50
18 2 load 6 603d78
19 0 call-pthread_join 0 7f0ccbc56700 0
20 0 load 7f0ccb455700 7ffcfe3282e0
21 2 store 5 603d78
22 0 call-pthread_join 0 7f0ccb455700 0
...

(a) Execution trace 1.

0 0 call-main 0 1 7ffda8e0e598
...
1 0 alloca 7ffda8e0e098 8
2 0 alloca 7ffda8e0e090 8
...
3 0 store 3 603d74
4 0 store 6 603d78
5 0 call-pthread_create 0 7ffda8e0e098 0 400ae0 0
6 0 call-pthread_create 0 7ffda8e0e090 0 4012c0 0
7 0 load 7fd5571d9700 7ffda8e0e098
8 1 call-inc 0 0
9 1 alloca 7fd5571d8d58 1
10 1 alloca 7fd5571d8d50 1
11 1 store 0 0 7fd5571d8d50
12 1 load 3 603d74
13 1 store 4 603d74
14 2 call-dec 0
15 2 alloca 7fd5569d7d58 8
16 2 alloca 7fd5569d7d50 8
17 2 store 0 7fd5569d7d50
18 2 load 6 603d78
19 2 store 5 603d78
20 0 call-pthread_join 0 7fd5571d9700 0
21 0 load 7fd5569d8700 7ffda8e0e090
22 0 call-pthread_join 0 7fd5569d8700 0
...

(b) Execution trace 2.

Listing 5: Execution traces from two repeated executions of the program in
Listing 4

a consequence, the addresses of memory objects that programs
operate on should be irrelevant to the program’s functionality and
should not distort execution trace comparisons for EPA or any other
analysis reasoning about the program’s functionality.

98 eliminating effects of non-determinism on execution traces

2. Non-deterministic thread scheduling: To maximize CPU utiliza-
tion and thereby improve throughput, the CPU scheduler may
suspend threads that execute blocking instructions, e.g., when wait-
ing for I/O or lock access. The decision of which thread is executed
after some other thread has been suspended is dynamically made
by the CPU scheduler at run time and may differ across repeated
program executions depending on system load and other factors.
As a result, the sequence of instructions in the execution trace can
deviate across repeated executions. If a program is implemented in
a thread safe manner, these deviations do not affect the program’s
functionality and should not affect trace comparisons. A devia-
tion in the order of instructions in an execution trace does not
necessarily result in non-deterministic values read or written by
the program. This holds especially for programs that implement
the map-reduce paradigm where a workload is distributed over a
set of worker threads that do not interact with each other and only
report back to a master thread after the work is done. In this case,
re-executing the program might result in a different interleaving of
instructions but still lead to the same effects on the program’s data.
We show that for such programs a single execution trace is sufficient
to achieve a 0% rate of false positives in EPA for multi-threaded
programs.

5.4 sanitizing algorithms

In this section we present our novel approach to address non-deterministic
memory allocation and thread scheduling in EPA. The core idea be-
hind our approach is to leverage the structure of a class of programs
to apply two trace sanitizing algorithms each dealing with one of the
mentioned sources of non-determinism. We introduce the notion of
pseudo-deterministic traces and describe a corresponding automated
reversibility check. Finally, we describe Trace Sanitizer, our prototype
implementation, and show how it compares traces for sound EPA. To
the best of our knowledge, Trace Sanitizer is the first EPA approach to
achieve soundness for multi-threaded programs.

5.4.1 Workflow of Trace Sanitizer

Figure 15 gives an overview of how Trace Sanitizer achieves sound
execution trace comparisons for EPA in the presence of memory and
scheduling non-determinism. To obtain execution traces to compare,
we first instrument the program to log the executed instructions (step
1) and generate a trace by running the instrumented program 2 .
These first two steps are fundamental building blocks of EPA and we
can reuse the existing implementation of LLFI EPA tool [TP13], which

5.4 sanitizing algorithms 99

Reversibility
Check

Trace Sanitizing
Trace

Generation

Trace
Instrumentation

Trace Sanitizing
Trace

Generation
Trace

Comparison

Abort

.C

Report

Deviation

1

2 3 4

5

Figure 15: Overview of Trace Sanitizer.

we only slightly modify to deal with multi-threaded programs and
include more data in the traces.

Next, we run our trace sanitizing algorithms on the generated
trace in step 3 . Following that, we run the reversibility check, to
verify whether the generated trace satisfies the pseudo-deterministic
condition. If the condition holds, the comparison of its traces is
guaranteed to be free from false positives induced by scheduling non-
determinism. In case it does not satisfy it, we abort the process. To
perform EPA, we inject a fault into the instrumented program, run
steps 2 - 3 again to generate a faulty execution trace, and compare
that trace against the fault-free trace (step 5) to identify how the
program execution has been affected by the injected fault.

In the rest of this section, we introduce our notation and the pseudo-
deterministic condition in Section 5.4.2. Then, we discuss the details
of the sanitizing algorithms, the reversibility check and describe our
implementation of Trace Sanitizer in Section 5.4.3.

5.4.2 System Model

We adopt a general and simple model to describe execution traces of
a multi-threaded program. An execution trace is a sequence of events
σ = e1, e2, ..., en. Every event can be directly mapped to an executed
instruction such as one spawning a new threads or synchronizing
with other threads. For the sake of simplicity, we focus on read and
write events. We write e ∈ σ for any event that has been executed by
σ. To refer to the total order of events incurred by a trace σ, we write
ei ≺σ ej if i < j and ei, ej ∈ σ. We refer to the thread that executed an
event e as Tid(e) ∈ T where T is the set of threads that are spawned
by the program during execution.

We define a dependency binary relation D between events based
on the memory objects they access. Two events e and e′ are said to
be dependent if they both access the same object o and at least one
of them is a write event. In that case, we write (e, e′) ∈ D. We write

100 eliminating effects of non-determinism on execution traces

Dtr to refer to the transitive closure of D. That is, if (ei, ej) ∈ Dtr and
(ej, ek) ∈ Dtr then (ei, ek) ∈ Dtr, and if (ei, ek) ∈ D then (ei, ek) ∈ Dtr.

For our sanitizing algorithms to be sound and enable a false positive
free EPA, the considered execution traces need to satisfy the pseudo-
deterministic condition.

Definition 5 (pseudo-deterministic traces). A trace σ = e1, e2, ..., en is
said to satisfy the pseudo-deterministic condition if and only if

1. for every event e ∈ σ, the next event executed by Tid(e) and the value
it reads or writes are fully specified by the events e′ ≺σ e such that
(e′, e) ∈ Dtr or Tid(e) = Tid(e′)(local determinism), and

2. for every two dependent events (ei, ej) ∈ D such that ei ≺σ ej, there is
no other feasible permutation of the trace σ′ where ej ≺σ′ ei (reversibil-
ity).

The local determinism condition excludes programs with inherent
non-deterministic behavior. The nature of an event (control flow)
and the value it reads/writes (data flow) is solely determined by the
events it depends on or events executed by the same thread. Threads
in a multi-threaded program acts according to the data they read.
Intuitively, the next instruction to be executed by each thread and
how it modifies the program’s data is fully specified by the values it
has read and its program counter position. For instance, the value
generated by invoking a random number generator is neither fully
specified by the events it depends on nor the events executed by the
same thread. We refer to the subsequence of events that fully specify
an event as its determining events. For a trace σ = e1, e2, . . . , en and
event ei ∈ σ, its determining events subsequence σei contains only
events ej ≺σ ei such that (ej, ei) ∈ Dtr or Tid(ej) = Tid(ei). Thus, given
a feasible permutation σ′ of σ such that σe = σ′e for a common event e,
the value written/read by e is guaranteed to be the same.

A trace satisfies the reversibility condition if there can be no permu-
tation σ′ where two dependent events (ei, ej) ∈ D occur in a reversed
order. This implies that σ′ej

6= σej since ei /∈ σ′ej
and ei ∈ σej . In this

case, it is possible for event ej to read/write a different value (data
deviation). Thus, different data values may be observed over repeated
executions of the program.

5.4.3 Algorithms

In Section 5.4.2 we defined the pseudo-deterministic condition that a
program trace needs to satisfy for a sound EPA. It follows from the
condition that if a trace satisfies the pseudo-deterministic condition,
memory addresses are allocated in the same order by each thread and
threads are spawned in the same order by the same parent threads
for any feasible permutation of the trace. In this section, we present

5.4 sanitizing algorithms 101

Algorithm 4: Memory abstraction algorithm.
input : Execution trace σ
output : Set O of symbolic memory objects

1 O ← ∅;
2 foreach e ∈ σ do
3 g_idx ← e.getGlobalIndex();
4 t ← e.getThread();
5 if e.isAllocation() then
6 size ← e.getSize();
7 bAddr ← e.getBaseAddr();
8 val ← [g_idx, _];
9 l_idx ← e.getLocalIndex();
10 o ← (bAddr, t, l_idx, size, val);
11 append o to 0;
12 if e.isDeAlloaction() then
13 o ← getObject(e.getBaseAddr());
14 o.updateValidity(g_idx);
15 if e.isNewScope() then
16 sp[t] ← g_idx;
17 if e.isExitScope() then
18 foreach o ∈ O s.t. o.getThread()

= t ∧ o.getValidityStart() > sp[t] do
19 o.updateEndValidity(g_idx);
20 sp[t] ← restoreStackPointer();

our two sanitizing algorithms. A memory object abstraction algorithm
that deals with memory allocation non-determinism by tracking the
order in which memory addresses are allocated to achieve a canonical
naming where every object is uniquely identified by its position in
the sequence of allocated objects. We also present a thread identity
abstraction algorithm that handles non-deterministic scheduling by
tracking the order in which threads are spawned relatively to their
spawning thread and naming them accordingly to achieve consistent
IDs across multiple executions. Finally, we describe the reversibility
check, the automated test for the pseudo-deterministic condition and
our implementation.

Memory Object Abstraction

We start by describing the algorithm for the memory object abstrac-
tion. The pseudo-code in Algorithm 4 is a simplified version of that
process as implemented by Trace Sanitizer. Given an execution trace
σ, the program outputs a set of Symbolic memory objects O that can
be used to replace the concrete addresses in the original execution
trace. For every event e ∈ σ the algorithm first stores a global index
(its position in the trace sequence) as well as the executing thread
t (lines 3-4). If e is a memory allocation event, a memory object

102 eliminating effects of non-determinism on execution traces

o = (bAddr, t, l_idx, size, val) is created where bAddr is its concrete
base address, l_idx is a thread local index that is incremented with
every new instruction executed by t, size is the size of the object and
val is its initial validity range starting from g_idx (lines 6-10). The
object o is then added to O (line 11). The initial validity range of every
added object has to be updated according to the scope where it was
defined. If e is a memory de-allocation event, e.g., a call to the free

function, the algorithm updates the validity range of the object o ∈ O
with the same base address (lines 13-14). Note that in this case o
must be a heap object, and if it is never de-allocated the default range
is still sound as the object becomes valid from its creation until the
end of the trace. Memory objects that are defined on the stack are
handled separately. If a new scope event for thread t is encountered,
for example entering a new function, the current global index is stored
in sp[t] for later use (line 16). In case e is an exit scope event, the
algorithm updates the validity of all objects that were added after sp[t]
and restores the previous stack pointer (lines 18-20). Objects that were
added after sp[t] represent the objects that have to be de-allocated
because the program is leaving the scope where they were defined.
The restored stack pointer is assigned the global index of the last new
scope event by thread t so that once that scope is exited, the validity
range of the objects defined within it can be accordingly updated.

Once the set of objects O is generated, Trace Sanitizer replaces
each reference to a concrete memory address by a corresponding
object eliminating trace deviations that are due to memory locations.
Concretely, an address is replaced by an object if it lies within its
allocated space specified by its base address and size. If a memory
address matches more than one memory object, we use the validity
range to identify the correct object.

Thread Identity Abstraction

Next, we discuss our thread identity abstraction process that enables
the matching of threads in different execution traces. We provide a
simplified version in Algorithm 5. The algorithm’s goal is to achieve
canonical thread IDs such that for every two executions of the same
programs with the same input it is guaranteed that the same threads
will receive the same id. Given a sequence of events σ, the algorithm
builds a mapping function M that maps each thread ID to a canonical
ID. The algorithm works by building a thread tree G where the nodes
represent the spawned threads and the edges a spawning relation. If
a thread t1 ∈ T spawns a thread t2, we add a directed edge (t1, t2)

between these two nodes (lines 5-7). The next step consists of travers-
ing the tree G starting from the root node such that for every node
the children are visited in their order of creation (lines 11-17). The
canonical thread IDs are then recursively generated as follows:

5.4 sanitizing algorithms 103

Algorithm 5: Thread abstraction algorithm.
input : Execution trace σ
output : A map M of thread IDs to canonical IDs

1 M ← 〈〉;
2 Q ← ∅;
3 T ← σ.getAllThreads();
4 G ← (T, ∅);
5 foreach t ∈ T do
6 foreach t′ ∈ t.getSpawnedThreads() do
7 append (t, t′) to G;
8 tc ← G.getRootNode();
9 M[tc] ← "T_0";
10 push tc to Q;
11 while Q 6= ∅ do
12 tc ← Q.pop();
13 i ← 0;

// Get the spawned threads in their order of creation.
14 foreach t ∈ tc.getOrderedChildren() do
15 M[t] ← M[tc]"_"i;
16 push t to Q;
17 i ← i + 1;

• The root node is the main thread and is assigned the ID "T_0"

(lines 9-10).

• Every node is assigned an ID that consists of its parent node’s
ID as a prefix and its position in the list of children (lines 15-17).

After running the thread identity abstraction algorithm, we use the
mapping function M to rename the threads by their canonical names,
and replace every reference to a thread ID in the execution trace. If a
program satisfies the pseudo-deterministic condition, it is guaranteed
that the canonical thread IDs match exactly, enabling the matching
of all spawned threads across multiple execution traces in the trace
comparison phase.

Reversibility Check

We developed an automated reversibility check to test whether an
execution trace σ satisfies the pseudo-deterministic condition. The
automated test focuses on the reversibility condition from Definition
5. While we manually checked the local determinism condition, the
process can easily be automated using a black-listing approach where
black listed calls to external libraries or system functions that are
non-deterministic are systematically reported. The reversibility check
is based on the maximal causality technique which has been used for
race detection [HMR14]. A maximal causality formula encodes all
permutations of a given trace that are guaranteed to be feasible, i.e.,

104 eliminating effects of non-determinism on execution traces

that are valid executions of the same program with the same input.
While it is not guaranteed to encompass all the feasible permutations,
it contains the maximal number of permutations that can be inferred
from a single trace of a program [ŞCR12]. Our reversibility check
uses a modified version of the maximal causality formula that omits
the additional constraints that ensure that only valid executions are
encoded. In our technique, we build a reversibility formula Φσ such
that every solution of the set of constraints in the formula encodes an
execution that is not necessary a valid execution. We will discuss later
why this is still sufficient for a sound and complete check. The formula
defines integer variables xi for every event ei ∈ σ. The variables are
then constrained in their order such that only the set of permutations
that are guaranteed to be feasible are allowed. For instance, if ei is an
event spawning a new thread, the formula adds a constraint xi < xj
for the first event ej executed by the spawned thread. To guarantee the
sequentiality of every thread t, a condition xi < xj is added for every
successive event by t. To prevent an overlap of two critical sections
in the trace that are guarded by the same mutex, the formula adds a
constraint xi < x′j ∧ xj < x′i where ei and e′i are two mutex acquiring
events and ej and e′j are the two corresponding mutex release events.
For more details about the formula please refer to [HMR14]. Finally,
we add additional constraints to encode our pseudo-deterministic
condition:

R :=
∨

(ei ,ej)∈D∧ei≺σej

xj ≤ xi

Intuitively, the constraint encodes the fact that any two dependent
events in the trace occur in a reversed order.

In the last step, we check the satisfiability of formula Φσ ∧ R using
an SMT solver. If the solver does not return a solution, we have a proof
that there cannot be any two dependent events that can occur in a re-
versed order and therefore the trace satisfies the pseudo-deterministic
condition. If, however, the formula has been proven satisfiable, the
solver returns a solution that encodes an execution trace where at least
two dependent events are reversed. In this case, the trace does not
satisfy the pseudo-deterministic condition.
Correctness. In our check, we omit the constraints that reduce the set
of allowed permutations to only those that are guaranteed to be feasi-
ble (i.e., the read conditions in [HMR14]). Furthermore, the maximal
causality model, upon which the reversibility formula is based, does
not cover all feasible permutations but only the maximal number of
permutations that can be inferred from a single execution [ŞCR12]
since it does not include executions that take new control flow paths.
These two limitations, however, don’t affect the soundness nor the
completeness of the reversibility check.

The soundness of the check can be inferred from the fact that our
reversibility formula can only contain unfeasible permutations if the

5.4 sanitizing algorithms 105

execution is reversible. Let us assume that the check is unsound,
i.e., for a trace σ that does not satisfy the reversibility condition, the
reversibility formula is wrongly satisfiable. This means that the event
order encoded by the reversibility formula describes an unfeasible
execution σ′ due to the missing read conditions from [HMR14]. Let
e′ be the first event in σ′ that is not feasible and e the last event in
the feasible prefix of σ′ such that Tid(e) = Tid(e′). Because of local
determinism we have σe 6= σ′e since otherwise e′ would be executable
in σ′. This would mean that σ′e, and therefore also the feasible prefix
of σ′, contains at least a set of reversed dependent events. But this con-
tradicts our initial assumption that σ does not satisfy the reversibility
condition since the prefix of σ up to event e′ is feasible.

Similarly, the completeness of the check follows from the fact that
the set of permutations covered by the formula is not complete only if
the considered trace is reversible. Let us assume the check is incom-
plete, i.e., for a trace σ that satisfies the reversibility condition, the
reversibility formula is wrongly unsatisfiable. This means that there is
a feasible interleaving σ′ of execution σ where two dependent events
occur in reversed order and that is not covered by the reversibility
formula. These two events cannot both be included in σ because other-
wise the reversibility formula would be satisfiable. If at least one of the
events, e, is not included in σ, its determining events σ′e must include
two events that occur in reversed order and are in σ, assuming that e is
the first such an event in σ′. This means, however, that the reversibility
formula will be satisfiable, contradicting our initial assumption.

Trace Comparison With an Example

We use the example from Listing 4 to illustrate how the trace compari-
son process is performed by Trace Sanitizer. Given the execution trace
from Listing 6a, the sanitizing algorithms from Algorithms 4 and 5

produce the sanitized trace in Listing 6b, and the memory object set
and thread identity mapping shown in Listing 7.
Memory Object Abstraction. Initially, the set of identified memory
objects is empty. The algorithm starts by iterating over all events in
the execution trace σ. After reaching an allocation instruction (line
1), a new object o4 is created and added to the set of memory objects
O. The object structure contains information about the base address
returned by the LLVM-IR alloca instruction (7ffcfe3287e8), the size
of the allocated object (8), the thread executing the instruction (0), the
local index reflecting the position of the instruction in the sequence
executed by the thread (1) and the initial validity range of the object
([1,33]) where 33 is the total number of instructions in the trace.

At the invocation of the inc function (line 7), a new scope is created
and the stack pointer for thread 1 is updated to the index of the event
where the scope was entered7. This value will be used later to update
the validity range of every new object created within the new scope.

106 eliminating effects of non-determinism on execution traces

0 0 call-main 0 1 7ffcfe3287e8
...
1 0 alloca 7ffcfe3282e8 8
2 0 alloca 7ffcfe3282e0 8
...
3 0 store 3 603d74
4 0 store 6 603d78
5 0 call-pthread_create 0 7ffcfe3282e8 0 400ae0 0
6 0 call-pthread_create 0 7ffcfe3282e0 0 4012c0 0
7 1 call-inc 0
8 1 alloca 7f0ccbc55d58 1
9 0 load 7f0ccbc56700 7ffcfe3282e8
10 1 alloca 7f0ccbc55d50 8
11 1 store 0 7f0ccbc55d50
12 1 load 3 603d74
13 2 call-dec 0
14 2 alloca 7f0ccb454d58 8
15 1 store 4 603d74
16 2 alloca 7f0ccb454d50 1
17 2 store 0 7f0ccb454d50
18 2 load 6 603d78
19 0 call-pthread_join 0 7f0ccbc56700 0
20 0 load 7f0ccb455700 7ffcfe3282e0
21 2 store 5 603d78
22 0 call-pthread_join 0 7f0ccb455700 0
...

(a) Execution trace from Listing 5a

0 T_0 call-main 0 1 o0
...
1 T_0 alloca o4
2 T_0 alloca o5
...
3 T_0 store 3 g0
4 T_0 store 6 g0+4
5 T_0 call-pthread_create-u 0 o4 0 400ae0 0
6 T_0 call-pthread_create-u 0 o5 0 4012c0 0
7 T_0_0 call-inc 0
8 T_0_0 alloca o6 1 8
9 T_0 load T_0_0 o4
10 T_0_0 alloca o7 1 8
11 T_0_0 store 0 o7
12 T_0_0 load 3 g0
13 T_0_1 call-dec 0
14 T_0_1 alloca o8 1 8
15 T_0_0 store 4 g0
16 T_0_1 alloca o9 1 8
17 T_0_1 store 0 o9
18 T_0_1 load 6 g0+4
19 T_0 call-pthread_join 0 T_0_0 0
20 T_0 load T_0_1 o5
21 T_0_1 store 5 g0+4
22 T_0 call-pthread_join 0 T_0_1 0
...

(b) The sanitized trace.

Listing 6: Trace sanitizing example.

Similarly, at the call to dec in line 16, the algorithm updates the stack
pointer for thread 2 to 13. At the end of each of the functions, the
scope for both inc and dec ends and the validity range for the objects
created within that scope has to be updated. Every object that has been

5.4 sanitizing algorithms 107

g0 := {ba=603d74, t=_, l_idx=0, s=8, v=[0,33]}
...
o0 := {ba=7ffcfe3287e8, t=T_0, l_idx=0, s=8, v=[0,33]}
o4 := {ba=7ffcfe3282e8, t=T_0, l_idx=1, s=8, v=[1,33]}
o5 := {ba=7ffcfe3282e0, t=T_0, l_idx=2, s=8, v=[2,33]}
o6 := {ba=7f0ccbc55d58, t=T_0_0, l_idx=0, s=8, v=[8,15]}
o7 := {ba=7f0ccbc55d50, t=T_0_0, l_idx=1, s=8, v=[10,15]}
o8 := {ba=7f0ccb454d58, t=T_0_1, l_idx=0, s=8, v=[14,21]}
o9 := {ba=7f0ccb454d50, t=T_0_1, l_idx=1, s=8, v=[16,21]}

M(0) := T_0
M(1) := T_0_0
M(2) := T_0_1

Listing 7: The memory object set and thread identity mapping generated by
the sanitizing algorithms.

added to O after the value in the stack pointer has to be updated. For
instance, the validity range of object o6, added at line 8 within inc’s
scope, is updated be to [8,15] where 8 is the index of its allocation
instruction in the trace and 15 the end of the scope. The stack pointer
also has to be updated to the start of the previous scope but in this
case it is not necessary since only one scope has been created by this
thread.

Finally, Trace Sanitizer replaces the concrete addresses with the
generated objects in every instruction in the trace. In this example
there are also global variables that are accessed by the program. For the
sake of brevity the Algorithm 4 does not handle global variables. Our
implementation, however, handles these variables separately. Before
iterating over the instructions, we add a memory object with maximal
validity range for each global variable. The object g0 in Listing 6b
represents the global array arr defined in the example. Note that
accesses to g0 are not always at the base address. For instance, the
access at line 18, occurs on the second element in the array, hence
the reference g0+4 with an int type of byte length 4. Encountering
an address that has not been explicitly allocated leads to the creation
of a new object default size. For example, the argument of the main

function results in the creation of object o0 (Listing 7).

T_0

T_0_1T_0_0

Figure 16

Thread Identity Abstraction. The algorithm first
fetches the set of threads in the trace 0, 1, and 2

and adds nodes for these threads to G. We show the
resulting spawning tree in Figure 16 (The nodes are re-
named by their canonical IDs). Since thread 0 spawns
threads 1 and 2, edges (0, 1) and (0, 2) are added to
G. Next, the algorithm traverses the generated tree G
to map concrete thread IDs to deterministically calcu-
lated thread IDs.

The initial thread 0 is mapped to ID T_0. Every time a new node
is reached in the tree, its child nodes are traversed in the order of
the corresponding threads’ creation. For instance, since thread 1 was

108 eliminating effects of non-determinism on execution traces

created before 2, it will be traversed first. Following the renaming pat-
tern presented in Algorithm 5, thread 1 is mapped to an ID consisting
of its parent node ID (T_0) concatenated with an index indicating its
creation order 0: T_0_0. Likewise, thread 2 is mapped to ID T_0_1 as
shown in Listing 7. Finally, Trace Sanitizer replaces every reference to
a thread’s ID in the program using the generated map M.

Reversibility Check. To build the reversibility check formula, a
unique variable is assigned to every instruction in the trace. The
formula consists of two parts. The first part encodes the allowed
permutations of the trace by imposing constraints on the order of
the formula variables. In addition to the constraints encoding the
sequentiality of every thread, we add constraints for inter-thread
synchronization. The call pthread_join at line 19 in Listing 6a, for
instance, forces the invoking thread 0, to wait for the termination of
thread 2 before executing the next instruction. In this case, we add
a constraint x′ < x, where e is the variable mapped to the call to
pthread_join and e′ the last instruction executed by thread 2.

To build the second part, we identify all the dependencies between
load and store instructions that read from or write to the same
memory location. Consider the two instructions e and e′ at lines 4 and
18, respectively. Instruction e′ reads from the same memory object
g0, with the same offset, that e writes to. Therefore, both instructions
are dependent on each other. Since e occurs before e′ in the trace,
we add the constraint x′ ≤ x to the reversibility formula to check
whether the two dependent instructions can occur in the reverse order.
However, the formula does not allow any permutation of the trace
where instruction e occurs after e′ as that would mean that the thread
executing e′ would start executing before it has been spawned. Since
no such pair of instruction can be found for the trace, the generated
reversibility formula cannot be satisfied and the trace will be declared
to satisfy the reversibility condition. Note that our check ignores
dependencies between instruction from the same thread as these can
obviously not be reversed.

Trace Comparison. After running the reversibility check on the sani-
tized fault-free trace, we can safely compare it against sanitized traces
from fault injection experiments with the same program processing
the same input. We start by dividing the sanitized traces into sub-
sequences where each sequence contains only instructions belonging
to a single thread. Next, we match the sub-sequences belonging to
the same thread and compare every instruction. Since the threads
are renamed identically in traces from different executions with the
same input, the set of created IDs in both traces should match in a
comparison of fault-free executions. Furthermore, if the first trace had
passed the reversibility check and the second trace is a re-execution of
the same program with the same input, then every pair of two such
sub-sequences should be identical unless one of the traces is affected

5.5 evaluation 109

by an injected fault. This is guaranteed by the local determinism prop-
erty of every thread induced by the pseudo-deterministic condition
of the first trace. In other words, if dependent instructions cannot
occur in a reversed order, every thread will be created in the same
order by the same parent thread, and memory objects will also be
allocated in the same order and by the same thread. Therefore, a
deviation between both traces implies that the injected fault has been
activated in the experiment and its effects on the execution show in
the comparison.

Concretely, the comparison algorithm checks whether instructions
in both sub-sequences occur in the same order and whether they
access the same objects with the same offsets. Applying the sanitizing
algorithms on both traces from listing 5 results in pairs of identical
sub-sequences for every thread in the trace (T_0, T_0_0 and T_0_1)
since the first trace satisfies the pseudo-deterministic condition and
the second trace is not faulty.

Implementation

We implemented our approach in Trace Sanitizer, a trace comparison
tool for the purpose of EPA. Trace Sanitizer consists of two modules:
(1) an instrumentation and fault injection module that is implemented
as an extension of the LLFI EPA tool [TP13], and (2) a sanitization
and trace comparison module. The first module adds more logging
information in the trace generation process and thread safety to the
LLFI tool in order to deal with concurrency in multi-threaded pro-
grams. The instrumentation and fault injection parts are performed
at the level of LLVM-IR, the intermediate level representation of the
LLVM compiler infrastructure. We implemented the second module
in the Rust programming language and used the Z3 SMT solver [Z3;
DMB08] for the reversibility check. Since the reversibility formula we
generate is in the standard SMT-LIB format [BST+10] Trace Sanitizer
can use a large variety of existing solvers.

5.5 evaluation

The goal of our evaluation is to show that the Trace Sanitizer approach
eliminates all false positives in EPA that are due to benign execution
non-determinism, and to measure the performance overhead this
reduction requires. We structure our discussion along the following
research questions, targeting five C/C++ programs, four of which are
taken from the PARSEC [BKS+08] and Phoenix benchmarks [Pho],
that satisfy the pseudo-deterministic condition.

RQ 1 What are the false positive rates resulting from non-determinism
in dynamic memory allocations with and without Trace Sani-
tizer?

110 eliminating effects of non-determinism on execution traces

Table 8: Overview of the benchmark programs. SLOC2reports the source
lines of code, #Th the sum of spawned threads in one run, #Inst the
number of executed instructions in one run, and Mem-Sound/Sched-
Sound whether false positives occurred due to memory/CPU non-
determinism (7) or not (3).

Program SLOC #Th #Inst
Mem-Sound Sched-Sound

Naïve TSAN Naïve TSAN

quicksort 198 72 45 k 7 3 7 3

pca 301 17 89 k 7 3 7 3

kmeans 425 65 44 k 7 3 7 3

blackscholes 393 3 91 k 7 3 7 3

swaptions 1118 4 1.1 M 7 3 7 3

RQ 2 What are the false positive rates resulting from CPU scheduling
non-determinism with and without Trace Sanitizer?

RQ 3 What is the rate of false negatives with Trace Sanitizer?

RQ 4 What is the performance overhead of Trace Sanitizer?

5.5.1 Target Programs and Execution Environment

Our experiments target the five C/C++ programs listed in Table 8.
The table reports the number of SLOCS of each program along with
the total number of instructions and spawned threads. quicksort is a
parallel implementation of the well-known sorting algorithm. pca and
kmeans are two machine-learning algorithms taken from the Phoenix
benchmark suite [Pho]. kmeans is an implementation of the Kmeans
clustering algorithm and pca implements the principle component
analysis statistical procedure. Additionally, we used the blackscholes

and swaptions programs from the PARSEC benchmark suite [BKS+08].
The blackscholes programs solves the blackscholes partial differen-
tial equation used in pricing a portfolio of European-style stock op-
tions. swaptions uses Monte-Carlo simulations to compute swaptions,
a form of financial derivatives. Each of the five programs satisfies the
pseudo-deterministic condition.

We conducted all of the experiments on machines with an Intel Core
i7-4790 CPU, 16 GiB of RAM, and a 500 GB SSD running Debian 8.11

with a Linux 3.16 kernel.

5.5.2 RQ 1: False Positives from Memory Addresses

Our work is motivated by the observation that non-determinism can
lead to false positives if a naïve execution trace comparison is applied

2 generated using David A. Wheeler’s ’SLOCCount’.

5.5 evaluation 111

for EPA. We separately evaluate the effectiveness of Trace Sanitizer in
eliminating false positives in EPA that are due to dynamic memory
allocation and non-deterministic scheduling. We begin with an evalu-
ation of the impact that dynamic memory allocation non-determinism
has on execution traces and how well Trace Sanitizer can deal with
those.

To evaluate the impact of dynamic memory allocation non-determinism
independently from CPU scheduling effects, we conduct a number
of trace comparisons on single-threaded executions of our target pro-
grams without any fault injections. For this purpose, we use single-
threaded versions of the five programs from Table 8. As we do not
inject any faults, any observed deviation across repeated executions
of the same program must be a false positive. Moreover, since CPU
scheduling cannot cause deviations in single-threaded programs, any
observed false positive is likely due to memory non-determinism.

We generate 10 000 fault-free execution traces from the single-threaded
programs by performing steps 1 and 2 in Figure 15 and perform a
naïve line-by-line comparison, just as conventional EPA approaches
would. We then run Trace Sanitizer’s memory abstraction algorithm
on the same traces and report the results in the Mem-Sound column
of Table 8. The results show that no execution trace is identical to any
other from the 10 000 repetitions and that Trace Sanitizer is able to
eliminate all of these spurious deviations for all of the benchmarks.
Besides demonstrating the effectiveness of our memory abstraction,
this result confirms that the second criterion from our definition of
the pseudo-deterministic condition in Section 5.1 is satisfied for the
chosen program input.

5.5.3 RQ 2: False Positives from CPU Scheduling

To assess the effectiveness of Trace Sanitizer to compensate for the
effects of non-deterministic CPU scheduling, we recompiled the target
programs to use multiple threads. We repeatedly executed these pro-
grams without fault injections, sanitized effects of memory allocation
non-determinism in their execution traces, and compared the resulting
traces of the repeated executions. As no faults are injected in these
executions, any deviations between traces constitute false positives.
Moreover, as the effects of memory allocation non-determinism are
sanitized, any observed deviations must result from CPU scheduling.

We again compare the obtained traces in a line-by-line fashion
without Trace Sanitizer, and observe deviations in each comparison.
We then run Trace Sanitizer’s thread abstraction algorithm on the
traces and perform the comparison again. The results shown in the
Sched-Sound column of Table 8 demonstrate that Trace Sanitizer is
able to fully eliminate false positives resulting from non-deterministic
CPU scheduling for pseudo-deterministic programs.

112 eliminating effects of non-determinism on execution traces

0.91
0.83 0.84

0.91 0.91

0.87 0.85
0.79

0.87 0.85

0.56 0.60 0.61 0.57 0.56

0.89 0.88 0.91 0.89 0.89

0.83
0.89 0.88

0.82 0.82

quicksort swaptions

blackscholes kmeans pca

BitFlip
FileSize

MallSize
CallCorr

InvalPtr
BitFlip

FileSize
MallSize

CallCorr
InvalPtr

BitFlip
FileSize

MallSize
CallCorr

InvalPtr

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fault Type

Fa
ul

t C
ov

er
ag

e
Benign

Crash

SDC

Figure 17: Fault coverage per target and fault type. The reported results are
obtained from 5000 runs for each combination of target and fault
type. The error bars indicate the 95 % confidence interval.

5.5.4 RQ 3: False Negatives Introduced by Trace Sanitizer

As we have shown in the last two subsections, Trace Sanitizer ef-
fectively eliminates false positives resulting from memory allocation
and non-deterministic scheduling for traces that satisfy the pseudo-
deterministic condition. Accurately measuring false negative rates in
EPA experiments is challenging, because there is no oracle to distin-
guish between true and false negatives. If a fault is injected and no
effect is observed, it is unclear whether no effect has occurred (true
negative) or an effect has occurred and it was missed by the detection
mechanism (false negative). Moreover, differential testing using differ-
ent detection mechanisms is difficult to apply in the case of EPA for
multi-threaded programs, because other approaches are not sound,
and their false positives would distort the results. Therefore, we base
our evaluation of false negatives on a conservative estimate. Assuming
that each injected fault leads to error propagation (this may not always
hold, e.g. [MA14]), each succeeding trace comparison between an
injection and a fault-free run constitutes a false negative. We term the
fraction of these succeeding comparisons from all comparisons the
maximal possible false negative rate (MPFNR).

To make sure that Trace Sanitizer does not achieve soundness at
the cost of an increased false negative rate, we executed a number of
fault injection experiments following the steps outlined in Figure 15

and discussed in Section 5.4.1 and assessed the MPFNR. We used the

5.5 evaluation 113

multi-threaded versions of the benchmark programs from Section 5.5.3
and first generated and sanitized execution traces from one fault-free
execution of each program. We then ran our memory and thread
abstraction algorithms on the trace and performed the reversibility
check to make sure that comparisons against this trace will yield sound
results if the same program inputs are used. To obtain traces from
faulty executions, we repeated the execution of the program with the
same inputs and injected one fault per execution using the LLFI fault
injection framework. In total we executed 25 000 such experiments,
5000 fault instances for each of the fault types listed in Table 9 and
sanitized each of the resulting execution traces.

Figure 17 shows the fault coverage of EPA using Trace Sanitizer, i.e.,
the fraction of experiments for which the sanitized fault-injection traces
differed from the fault-free trace and, thus, indicate error propagation.
The MPFNR is the difference between 1 and the reported fault coverage
and ranges between 44 % and 9 % depending on the program and fault
type. While we cannot tell whether any of the succeeded comparisons
was due to the lack of error propagation or due to a false negative
of our approach, we can tell if Trace Sanitizer has any obvious blind
spots by investigating the false negative rates for experiments that
led to program failures (i.e., externally observable deviation from
correct behavior). If the program behavior deviates from correct
behavior as observed in the fault-free execution, an error must have
propagated and missing signs of such propagation in the traces would
be a false negative. To assess this, we have calculated the MPFNR
for different classes of experiment outcomes that are indicated by
different colors in Figure 17. A crash denotes cases where the program
terminated abnormally after a fault was injected, whereas SDC (silent
data corruption) indicates cases where the program terminated without
error indication, but the results of its computations differed from the
fault-free case. For both crashes and SDCs, we found the MPFNR to
be 0 %. This demonstrates that there were no obvious cases of error
propagation that were missed by Trace Sanitizer.

In summary, to the best of our knowledge Trace Sanitizer is the
first to achieve a 0 % false positive rate for EPA on multi-threaded
programs without increasing the false negative rate for known cases
of error propagation (observed crashes and SDCs).

5.5.5 RQ 4: Trace Sanitizer Overhead

Achieving a high fault coverage and fully eliminating false positives
comes at the cost of (a) running the reversibility check on the golden
run to ensure the soundness of the approach, and (b) running the
sanitization algorithms on the traces. It is important to note that the
reversibility check execution time is a one time cost as the check only
needs to be run once on the golden run in EPA. On the other hand,

114 eliminating effects of non-determinism on execution traces

Table 9: Overview of injected fault types

Fault Type Short Description

BitFlip Flips single bits in arbitrary data
values.

FileSize Increases the size parameter in
fread and fwrite function calls for
file I/O.

MallSize Decreases the size parameter in
malloc and calloc function calls
for memory allocation.

CallCorr Corrupts the first parameter of func-
tion calls.

InvalPtr Corrupts the returned pointers
from malloc and calloc function
calls.

Table 10: Performance Results for Trace Sanitizer. Reversibility Check times
are reported in minutes and EPA times in seconds. EPA times are
median values over 5000 runs.

Program
Rev. Check EPA

#Obj. #Dep.
Solver Total San. Cmp.

[m] [m] [s] [s]

quicksort 38 24 650 30.36 30.38 1.57 0.3
pca 64 12 126 150.41 150.43 1.29 0.17
kmeans 31 13 460 81.93 81.94 0.79 0.13
blackscholes 13 2810 0.87 0.99 1.58 0.2
swaptions 16 22 630 116.66 144.61 8.57 2.86

running the sanitization algorithms needs to be done for each fault
that is injected (typically thousands of times for obtaining statistically
significant estimates). We measure the time it takes to run each of
these two steps - the results are shown in Table 10.
Reversibility Check. To assess the run time overhead of the reversibil-
ity check we performed it on a golden run of each of the benchmarks.
We report the total run time along with time taken by the SMT solver,
the number or memory objects accessed in the trace, and the inter-
thread dependencies on these objects in Table 10. For all programs,
the overall time for the reversibility check ranges from approximately
1 min for blackscholes to 150 min for pca and is strongly dominated
by the SMT solver’s execution time. For swaptions, which is the only
program showing a notable difference between these times, building
the formula takes considerably longer than for other benchmarks due
to the much higher number of instructions in the trace that the algo-
rithm has to go through (Table 8). In addition to the solving time,

5.6 conclusion 115

the total overhead consists of the time it takes Trace Sanitizer to build
the formula, including the identification of data-dependencies in the
trace. While the number of dependencies and objects, along with the
total number of instructions hint at the size and complexity of the
formulas generated by Trace Sanitizer, they do not directly correspond
to the measured execution times. quicksort, for example, has a higher
complexity than kmeans in terms of memory objects and dependencies
in the traces with a comparable trace size, but takes significantly less
time for the check. This indicates that it is difficult to predict the actual
solving time and we suspect this to be due to randomness in the SMT
solver’s search space exploration of a formula.
Trace Sanitizing. Once the golden run has passed the reversibility
check, Trace Sanitizer proceeds with the sanitization and comparison
of faulty runs. Table 10 shows a break-down of the median time
across 5000 experiments that Trace Sanitizer requires to perform these
sanitization (column 6) and comparison (column 7) steps. The median
time for trace sanitization ranges between 0.79 s and 8.75 s with a
median absolute deviation (MAD) of 1.9 s for swaptions and less than
0.4 s for the other benchmarks. The trace comparison of a sanitized
golden run and a faulty run takes between 0.17 s and 2.86 s with a
MAD of 0.2 s for swaptions and under 0.02 s for the other benchmarks.

While we cannot directly compare these results to existing ap-
proaches due to the strong impact of machine configurations on perfor-
mance measurements, we can provide an indirect comparison. Because
Trace Sanitizer is the only sound tool for EPA trace comparisons, it
does not require any manual inspection of the obtained comparison
results to check for false positives. Any unsound tool requires these
checks. To beat Trace Sanitizer’s performance for 5000 injections in
the slowest case of swaptions, 4400 trace diffs (5000 · 0.88, the smallest
coverage in Figure 17) would need to be inspected (manually) in less
time than 5000·8.57 s+144.61·60 s

4400 , which is less than 12 seconds for a diff
across traces with more than a million lines (Table 8). An analogous
calculation yields less than 4 seconds for manual inspection of any
other benchmark. Such small times are almost impossible to achieve
for any realistic program trace, including those in our evaluation.
Moreover, the time taken by Trace Sanitizer will become smaller as
computing becomes faster, which is not the case for manual inspection.

5.6 conclusion

In this chapter, we introduced a class of multi-threaded programs that
we termed pseudo-deterministic and for which EPA can be sound
in the presence of non-deterministic memory allocations and CPU
scheduling. We have developed a automated technique to determine
whether a program belongs to this class as well as a novel trace sani-
tizing approach that soundly handles non-determinism. We evaluated

116 eliminating effects of non-determinism on execution traces

our prototype implementation Trace Sanitizer of the approach on five
benchmark programs. We find that Trace Sanitizer is able to fully
eliminate false positives, achieves a high fault coverage in an EPA
study, and provides reasonable performance.

Part IV

C O N C L U S I O N

6
C O N C L U S I O N

Computer systems continue to permeate our lives as we grow more
dependent on them. This dependence and the continuous increase in
their complexity call for more rigorous methods to justify our trust in
them. In fact, many of the existing safety standards recommend the
use of formal methods in the development of safety critical systems.
In the course of the last 30 years there have been clear trends towards
more parallelization and distribution of computer systems. This trend
is mainly motivated by the physical limitation on CPU clock speed as
well as the necessity of bringing forward collaborative systems on large
scales. The aim of this thesis is to improve on existing formal analysis
techniques for dependable concurrent systems. Formal analysis tech-
niques can be leveraged to analyze dependable systems and predict
their behavior before deployment. Applying these techniques can help
us avoid catastrophic accidents such as in the Therac-25 [LT93] or the
Ariane 5 [Lio+96] cases by uncovering their triggering causes well in
advance.

The aim of the thesis is to answer the three research questions for-
mulated below. Answering these questions lead to four contributions
with the common purpose of applying formal analysis techniques
in the development process of dependable and concurrent systems.
In our first contribution, we dealt with the availability aspect of de-
pendability and proposed a prevention mechanism based on static
analysis. Our second and third contributions provided improvements
to existing model checked techniques dealing with the safety aspect of
the dependability. In the last contribution, we presented a novel error
propagation analysis technique EPA for multi-threaded programs to
help with the development of dependable systems.

Research Question (RQ1): Can static analysis techniques assist in design-
ing highly available distributed systems?

To answer this question we have presented our first contribution (C1)
in Chapter 2. We explore how static data-flow analysis can be used to
improve the availability of single server applications. For this purpose,
we propose operation partitioning, a data-flow analysis algorithm that
can infer rules under which the workload of a single server can be dis-

119

120 conclusion

tributed across multiple machines without sacrificing consistency. The
analysis algorithm is combined with a distributed protocol, Conveyor
Belt, that leverages the inferred rules to increase the availability of the
system through minimal synchronization. We implemented operation
partitioning and Conveyor Belt for Java database applications in a tool
that we called Gyro.

Research Question (RQ2): Can the structure of a specification property be
leveraged to improve the efficiency of model checking?

Answering this question resulted in the contributions (C2) and (C3)
discussed in Chapter 3 and Chapter 4, respectively. Our second
contribution is a novel approach to improve explicit stateful model
checking. The proposed approach uses a notion of decomposition that,
given a specification, distinguishes between relevant and irrelevant
portions of the state space. Our decomposition based model checking
algorithm then systematically explores only portions of the state space
that are relevant to the specification, thus reducing the overall runtime.
The decomposition optimization is orthogonal to other approaches
such as partial-order reduction techniques and can be combined with
them to achieve better results. We implemented decomposition-based
model checking in MP-Basset [Mpb], a model checker for message-
passing Java program based on NASA’s JPF model checker [Jpf].

Our third contribution is an improvement to bounded model check-
ing. We introduce the notion of projections to characterize the set
of executions that are relevant to a specification. We enhance the
bounded model checking formula with additional constraints to ex-
press the notion of projections. The additional constraints causes the
SMT solver to focus the search on relevant executions only, effectively
shortening the solving times.

Research Question (RQ3): Can the interaction patterns between threads
be harnessed to achieve a sound error propagation analysis for multi-threaded
programs?

Our last contribution (C4) introduces an enhancement to EPA. In Chap-
ter 5, we have proposed a novel approach that enables sound EPA on
programs with non-deterministic behavior. The focus of the contri-
bution is non-determinism due to dynamic memory allocation and
CPU scheduling. We developed an automated check to verify when a
sound EPA with no false-positives is possible. The automated check is
based on the idea that non-deterministic scheduling can be success-
fully abstracted from if the interaction pattern between the threads is
deterministic. We, then, proposed a canonicalization scheme, that suc-
cessfully nullifies non-deterministic effects on executions of programs
that pass our automated check. We implemented the automated check

conclusion 121

and canonicalization scheme in Trace Sanitizer, a sound EPA tool for
multi-threaded programs.

These contributions constitute improvements over existing formal
analysis techniques that can aid in the development of dependable
concurrent systems, particularly with respect to availability and safety.

L I S T O F C O D E L I S T I N G S

1 Selective hashing via modified serializer in JPF 62

2 Message-passing system with two actors. 63

3 Selective push-on-stack with JPF’s choice generators . 65

4 Example multi-threaded program. 96

5 Execution traces from two repeated executions of the
program in Listing 4 . 97

6 Trace sanitizing example. 106

7 The memory object set and thread identity mapping
generated by the sanitizing algorithms. 107

123

L I S T O F TA B L E S

1 Request classification for the case studies. 40

2 Inter-site latencies among servers in the WAN setting . 41

3 Request latency in milliseconds with light load in a
WAN setting . 44

4 Configurations used in our experiments. 66

5 Evaluation results of DBSS 67

6 Comparison of BMC and PBMC for unsatisfiable con-
figurations. 88

7 Comparison of BMC and PBMC satisfiable configurations. 88

8 Overview of the benchmark programs 110

9 Overview of injected fault types 114

10 Performance results for Trace Sanitizer 114

125

L I S T O F F I G U R E S

1 Safety standards overview 4

2 Levels of parallelization 5

3 The fundamental chain of threats to dependability . . 9

4 A classification of operations 28

5 Gyro system overview 37

6 Scalability of Gyro and MySQL Cluster in a LAN setup. 41

7 Gyro vs. baselines in a WAN (geographically distributed)
setup. 42

8 Gyro with different local operation ratios. 44

9 Latency comparison of Gyro with different local opera-
tion ratios using micro-benchmarks. 45

10 Naive depth-first search (DFS) example 51

11 Decomposition-based stateful search example 52

12 Illustration of proof of Lemma 5. 57

13 A motivating example 76

14 Comparison of the total verification time of BMC and
PBMC with different path depths 87

15 Overview of Trace Sanitizer. 99

16 Spawning tree . 107

17 Fault coverage per target and fault type 112

127

L I S T O F A L G O R I T H M S

1 Partitioning algorithm. 25

2 The Conveyor Belt algorithm 30

3 Decomposition-based stateful search (DBSS) algorithm . 55

4 Memory abstraction algorithm. 101

5 Thread abstraction algorithm. 103

129

B I B L I O G R A P H Y

[AAB+17] Elvira Albert, Puri Arenas, María García de la Banda,
Miguel Gómez-Zamalloa, and Peter J Stuckey. “Context-
sensitive dynamic partial order reduction”. In: Interna-
tional Conference on Computer Aided Verification. Springer.
2017, pp. 526–543.

[AAJ+14] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and
Konstantinos Sagonas. “Optimal dynamic partial or-
der reduction”. In: Principles of Programming Languages
(POPL). ACM Press. 2014, pp. 373–384.

[AAJ+18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jon-
sson, and Tuan Phong Ngo. “Optimal stateless model
checking under the release-acquire semantics”. In: Pro-
ceedings of the ACM on Programming Languages 2.OOP-
SLA (2018), p. 135.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. “Shar-
ing memory robustly in message-passing systems”. In:
Journal of the ACM (JACM) 42.1 (1995), pp. 124–142.

[AH90] Hiralal Agrawal and Joseph R Horgan. “Dynamic pro-
gram slicing”. In: Programming Language Design and Im-
plementation (PLDI). ACM Press. 1990, pp. 246–256.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig.
“Partial orders for efficient bounded model checking
of concurrent software”. In: Computer-Aided Verification
(CAV). Springer Verlag. 2013, pp. 141–157.

[ALR+04] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl
Landwehr. “Basic concepts and taxonomy of depend-
able and secure computing”. In: IEEE transactions on
dependable and secure computing 1.1 (2004), pp. 11–33.

[APB14] M. R. Aliabadi, K. Pattabiraman, and N. Bidokhti. “Soft-
LLFI: A Comprehensive Framework for Software Fault
Injection”. In: 2014 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops. 2014, pp. 1–5.

[AW04] Hagit Attiya and Jennifer Welch. Distributed computing:
fundamentals, simulations, and advanced topics. Vol. 19.
John Wiley & Sons, 2004.

131

132 bibliography

[BAM07] Sebastian Burckhardt, Rajeev Alur, and Milo MK Mar-
tin. “Checkfence: checking consistency of concurrent
data types on relaxed memory models”. In: Program
Language Design and Implementation (PLDI). ACM Press.
2007, pp. 12–21.

[BBC+11] Jason Baker, Chris Bond, James C Corbett, JJ Furman,
Andrey Khorlin, James Larson, Jean-Michel Leon, Yawei
Li, Alexander Lloyd, and Vadim Yushprakh. “Megas-
tore: Providing Scalable, Highly Available Storage for
Interactive Services.” In: CIDR. Vol. 11. 2011, pp. 223–
234.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and
Yunshan Zhu. “Symbolic model checking without BDDs”.
In: Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Springer Verlag. 1999, pp. 193–207.

[BDF+15] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc
Shapiro. “Putting consistency back into eventual consis-
tency”. In: Proceedings of the Tenth European Conference on
Computer Systems. ACM. 2015, p. 6.

[BDH02] Dragan Bošnački, Dennis Dams, and Leszek Holender-
ski. “Symmetric spin”. In: International Journal on Soft-
ware Tools for Technology Transfer 4.1 (2002), pp. 92–106.

[BDS03] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar.
“Address Obfuscation: An Efficient Approach to Combat
a Broad Range of Memory Error Exploits”. In: USENIX
Security Symposium. Vol. 12. 2. 2003, pp. 291–301.

[BFF+14] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi,
Joseph M Hellerstein, and Ion Stoica. “Coordination
avoidance in database systems”. In: Proceedings of the
VLDB Endowment 8.3 (2014), pp. 185–196.

[BGM92] Daniel Barbard and Hector Garcia-Molina. “The De-
marcation Protocol: A technique for maintaining linear
arithmetic constraints in distributed database systems”.
In: Advances in Database Technology - EDBT’92. Springer.
1992, pp. 373–388.

[BHJ+07] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Ru-
pak Majumdar. “The software model checker Blast”.
In: International Journal on Software Tools for Technology
Transfer 9.5-6 (2007), pp. 505–525.

[BJVD+09] Robert L Bocchino Jr, S Adve Vikram, Danny Dig, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick
Simmons, Hyojin Sung, and Mohsen Vakilian. “A type
and effect system for deterministic parallel Java”. In:

bibliography 133

In Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA. ACM. 2009.

[BKS+08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. “The PARSEC benchmark suite: Character-
ization and architectural implications”. In: Proceedings
of the 17th international conference on Parallel architectures
and compilation techniques. ACM. 2008, pp. 72–81.

[BKS+11] Péter Bokor, Johannes Kinder, Marco Serafini, and Neeraj
Suri. “Supporting domain-specific state space reductions
through local partial-order reduction”. In: Proceedings
of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society.
2011, pp. 113–122.

[BRG+78] Philip A. Bernstein, JB Rothnie, Nathan Goodman, and
Christos A Papadimitriou. “The concurrency control
mechanism of SDD-1: A system for distributed databases
(the fully redundant case)”. In: IEEE Transactions on Soft-
ware Engineering 4.3 (1978), p. 154.

[BSS+09] Péter Bokor, Marco Serafini, Neeraj Suri, and Helmut
Veith. “Role-based symmetry reduction of fault-tolerant
distributed protocols with language support”. In: Inter-
national Conference on Formal Engineering Methods. Springer.
2009, pp. 147–166.

[BSS10] Péter Bokor, Marco Serafini, and Neeraj Suri. “On effi-
cient models for model checking message-passing dis-
tributed protocols”. In: Formal Techniques for Distributed
Systems. Springer, 2010, pp. 216–223.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The
smt-lib standard: Version 2.0”. In: Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories
(Edinburgh, England). Vol. 13. 2010, p. 14.

[Ber17] Phil Bernstein. “Timestamp-based Concurrency Control
in SDD-1”. In: Workshop in Failed Aspirations in Database
Systems. 2017.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract interpre-
tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints”.
In: Proceedings of the 4th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages. ACM. 1977,
pp. 238–252.

[CDE+08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et
al. “KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs.”
In: OSDI. Vol. 8. 2008, pp. 209–224.

134 bibliography

[CDE+13] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, Jeffrey John Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, et al. “Spanner: Google’s globally dis-
tributed database”. In: ACM Transactions on Computer
Systems (TOCS) 31.3 (2013), p. 8.

[CEF+96] Edmund M. Clarke, Reinhard Enders, Thomas Filkorn,
and Somesh Jha. “Exploiting symmetry in temporal
logic model checking”. In: Formal methods in system de-
sign 9.1-2 (1996), pp. 77–104.

[CFJ+12] Miguel Correia, Daniel Gómez Ferro, Flavio Paiva Jun-
queira, and Marco Serafini. “Practical Hardening of
Crash-Tolerant Systems.” In: USENIX Annual Technical
Conference. Vol. 12. 2012.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. “Counterexample-guided abstrac-
tion refinement”. In: Computer-Aided Verification (CAV).
Springer Verlag. 2000, pp. 154–169.

[CHR98] J. Christmansson, M. Hiller, and M. Rimen. “An experi-
mental comparison of fault and error injection”. In: Proc.
ISSRE ’98. 1998, pp. 369–378.

[CJGK+18] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening,
Doron Peled, and Helmut Veith. Model checking. MIT
press, 2018.

[CJZ+10] Carlo Curino, Evan Jones, Yang Zhang, and Sam Mad-
den. “Schism: A Workload-driven Approach to Database
Replication and Partitioning”. In: PVLDB 3.1-2 (2010).
issn: 2150-8097.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda.
“A tool for checking ANSI-C programs”. In: Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS). Springer Verlag. 2004, pp. 168–176.

[CRS+08] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivas-
tava, Adam Silberstein, Philip Bohannon, Hans-Arno Ja-
cobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
“PNUTS: Yahoo!’s hosted data serving platform”. In:
Proceedings of the VLDB Endowment 1.2 (2008), pp. 1277–
1288.

[CSW+17] Nicolas Coppik, Oliver Schwahn, Stefan Winter, and
Neeraj Suri. “TrEKer: Tracing Error Propagation in Op-
erating System Kernels”. In: Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE Press, 2017, pp. 377–387.

bibliography 135

[CWS+17] Abraham Chan, Stefan Winter, Habib Saissi, Karthik
Pattabiraman, and Neeraj Suri. “IPA: Error Propagation
Analysis of Multi-Threaded Programs Using Likely In-
variants”. In: IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE. 2017,
pp. 184–195.

[CZG+15] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu,
and Tianshi Chen. “Deterministic Replay: A Survey”. In:
ACM Comput. Surv. 48.2 (2015), 17:1–17:47.

[Cis18] Cisco. “Cisco Visual Networking Index (VNI): Forecast
and Trends, 2017–2022”. In: White Paper (2018).

[DAEA10] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
“G-store: a scalable data store for transactional multi
key access in the cloud”. In: Proceedings of the 1st ACM
symposium on Cloud computing. ACM. 2010, pp. 163–174.

[DEAA09] Sudipto Das, Amr El Abbadi, and Divyakant Agrawal.
“ElasTraS: An Elastic Transactional Data Store in the
Cloud.” In: HotCloud 9 (2009), pp. 131–142.

[DHH+06] Matthew B Dwyer, John Hatcliff, Matthew Hoosier,
Venkatesh Ranganath, Todd Wallentine, et al. “Evalu-
ating the effectiveness of slicing for model reduction
of concurrent object-oriented programs”. In: Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS). Springer Verlag. 2006, pp. 73–89.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. “Dynamo: amazon’s highly available key-value
store”. In: ACM SIGOPS Operating Systems Review. Vol. 41.
6. ACM. 2007, pp. 205–220.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An ef-
ficient SMT solver”. In: International conference on Tools
and Algorithms for the Construction and Analysis of Systems.
Springer. 2008, pp. 337–340.

[Det] DeterLab. https://www.isi.deterlab.net/. 2019.

[EN517] EN50126. “Railway applications - the specification and
demonstration of reliability, availability, maintainability
and safety (RAMS)”. In: European Committee for Elec-
trotechnical Standardization (CENELEC) (2017).

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen
McCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. “The Daikon system for dynamic detection
of likely invariants”. In: Science of Computer Programming
69.1 (2007), pp. 35 –45.

https://www.isi.deterlab.net/

136 bibliography

[Eba] ebay. https://www.ebay.com. 2019.

[Esb] ESBMC. http://www.esbmc.org/. 2019.

[FA15] Jose M Faleiro and Daniel J Abadi. “Rethinking serializ-
able multiversion concurrency control”. In: Proceedings
of the VLDB Endowment 8.11 (2015), pp. 1190–1201.

[FG05] Cormac Flanagan and Patrice Godefroid. “Dynamic
Partial-order Reduction for Model Checking Software”.
In: Proceedings of the 32Nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. ACM,
2005, pp. 110–121.

[GFY+07] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly
Sagiv. “Cartesian partial-order reduction”. In: SPIN Work-
shop. Springer Verlag. 2007.

[GG08] Malay Ganai and Aarti Gupta. “Tunneling and slicing:
towards scalable BMC”. In: Design Automation Conference
(DAC). IEEE Press. 2008, pp. 137–142.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. “The Google File System”. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Princi-
ples (SOSP). ACM, 2003, pp. 29–43.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
“DART: Directed automated random testing”. In: In
Programming Language Design and Implementation (PLDI.
ACM, 2005, pp. 213–223.

[GVLH+96] Patrice Godefroid, J Van Leeuwen, J Hartmanis, G Goos,
and Pierre Wolper. Partial-order methods for the verification
of concurrent systems: an approach to the state-explosion
problem. Vol. 1032. Springer Heidelberg, 1996.

[GWZ+11] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Jun-
feng Yang, and Lintao Zhang. “Practical software model
checking via dynamic interface reduction”. In: Proceed-
ings of the Twenty-Third ACM Symposium on Operating
Systems Principles. ACM. 2011, pp. 265–278.

[God97] Patrice Godefroid. “Model checking for programming
languages using VeriSoft”. In: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. ACM. 1997, pp. 174–186.

[God99] Patrice Godefroid. “Exploiting symmetry when model-
checking software”. In: Formal Methods for Protocol Engi-
neering and Distributed Systems. Springer, 1999, pp. 257–
275.

https://www.ebay.com
http://www.esbmc.org/

bibliography 137

[HJS01] M. Hiller, A. Jhumka, and N. Suri. “An approach for
analysing the propagation of data errors in software”.
In: 2001 International Conference on Dependable Systems
and Networks (DSN). 2001, pp. 161–170.

[HJS02] M. Hiller, A. Jhumka, and N. Suri. “On the placement
of software mechanisms for detection of data errors”. In:
Proceedings International Conference on Dependable Systems
and Networks (DSN). 2002, pp. 135–144.

[HMR14] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu.
“Maximal sound predictive race detection with control
flow abstraction”. In: ACM SIGPLAN Notices 49.6 (2014),
pp. 337–348.

[Hol97] Gerard J. Holzmann. “The model checker SPIN”. In:
IEEE Transactions on software engineering 23.5 (1997), pp. 279–
295.

[ID96] C Norris Ip and David L Dill. “Better verification through
symmetry”. In: Formal methods in system design 9.1-2
(1996), pp. 41–75.

[IEC10] IEC61508. “Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems”. In: IEC
International Standard (2010).

[INS+17] Tasuku Ishigooka, Fumio Narisawa, Kohei Sakurai, Neeraj
Suri, Habib Saissi, Thorsten Piper, and Stefan Winter.
Method and System for Testing Control Software of a Con-
trolled System. US Patent 9575877. 2017.

[ISO11] ISO26262. “Road vehicles-functional safety”. In: Interna-
tional Standard ISO (2011).

[ISP+14] Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan
Winter, and Neeraj Suri. “Practical Use of Formal Verifi-
cation for Safety Critical Cyber-Physical Systems: A Case
Study”. In: IEEE International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA). IEEE. 2014,
pp. 7–12.

[ISP+16] Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan
Winter, and Neeraj Suri. “Practical Formal Verification
for Model-Based Development of Cyber-Physical Sys-
tems”. In: IEEE International Conference on Embedded and
Ubiquitous Computing (EUC). IEEE. 2016, pp. 1–8.

[ISP+17] Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan
Winter, and Neeraj Suri. “Safety Verification Utilizing
Model-Based Development for Safety Critical Cyber-
Physical Systems”. In: Journal of Information Processing
25 (2017), pp. 797–810.

138 bibliography

[JM05] Ranjit Jhala and Rupak Majumdar. “Path slicing”. In: Pro-
gram Language Design and Implementation (PLDI). ACM
Press. 2005, pp. 38–47.

[JRS11] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-
afini. “Zab: High-performance broadcast for primary-
backup systems”. In: Dependable Systems & Networks
(DSN), 2011 IEEE/IFIP 41st International Conference on.
IEEE. 2011, pp. 245–256.

[JS13] Flavio P Junqueira and Marco Serafini. “On barriers
and the gap between active and passive replication”. In:
Distributed Computing. Springer, 2013, pp. 299–313.

[Jpa] https://github.com/javaparser/javaparser. 2015.

[Jpf] Java Path Finder (JPF). https://github.com/javapathfinder/
jpf-core. 2019.

[KAJ+07] Charles Killian, James W Anderson, Ranjit Jhala, and
Amin Vahdat. “Life, death, and the critical transition:
Finding liveness bugs in systems code”. In: NSDI. 2007.

[KHA+09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and
Donald Kossmann. “Consistency rationing in the cloud:
pay only when it matters”. In: Proceedings of the VLDB
Endowment 2.1 (2009), pp. 253–264.

[KKB+12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur,
and George Candea. “Efficient State Merging in Sym-
bolic Execution”. In: Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and
Implementation. ACM, 2012, pp. 193–204.

[KWG09] Vineet Kahlon, Chao Wang, and Aarti Gupta. “Mono-
tonic partial order reduction: An optimal symbolic par-
tial order reduction technique”. In: Computer-Aided Veri-
fication (CAV). Springer Verlag. 2009, pp. 398–413.

[Kri04] Jens Krinke. “Advanced slicing of sequential and concur-
rent programs”. In: International Conference on Software
Maintenance. IEEE Press. 2004, pp. 464–468.

[LCB11] Tongping Liu, Charlie Curtsinger, and Emery D Berger.
“Dthreads: efficient deterministic multithreading”. In:
Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. ACM. 2011, pp. 327–336.

[LDM+09] Steven Lauterburg, Mirco Dotta, Darko Marinov, and
Gul Agha. “A framework for state-space exploration of
Java-based actor programs”. In: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society. 2009, pp. 468–479.

https://github.com/javaparser/javaparser
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core

bibliography 139

[LFK+11] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,
and David G Andersen. “Don’t settle for eventual: scal-
able causal consistency for wide-area storage with COPS”.
In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM. 2011, pp. 401–416.

[LJ09] M. Leeke and A. Jhumka. “Evaluating the Use of Refer-
ence Run Models in Fault Injection Analysis”. In: Proc.
PRDC ’09. 2009, pp. 121–124.

[LM12] G.S. Lemos and E. Martins. “Specification-guided Golden
Run for Analysis of Robustness Testing Results”. In: Proc.
SERE ’12. 2012, pp. 157–166.

[LMA+14] Jed Liu, Tom Magrino, Owen Arden, Michael D George,
and Andrew C Myers. “Warranties for faster strong con-
sistency”. In: 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14). 2014, pp. 503–
517.

[LPC+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguiça, and Rodrigo Rodrigues. “Making geo-
replicated systems fast as possible, consistent when nec-
essary”. In: Presented as part of the 10th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI 12). 2012, pp. 265–278.

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K Lahiri. “A
solver for reachability modulo theories”. In: Computer-
Aided Verification (CAV). Springer Verlag. 2012, pp. 427–
443.

[LT93] Nancy G Leveson and Clark S Turner. “An investigation
of the Therac-25 accidents”. In: IEEE computer 26.7 (1993),
pp. 18–41.

[Lam77] Leslie Lamport. “Proving the correctness of multiprocess
programs”. In: IEEE transactions on software engineering 2

(1977), pp. 125–143.

[Lam98] Leslie Lamport. “The part-time parliament”. In: ACM
Transactions on Computer Systems (TOCS) 16.2 (1998),
pp. 133–169.

[Lan92] William Landi. “Undecidability of static analysis”. In:
ACM Letters on Programming Languages and Systems (LO-
PLAS) 1.4 (1992), pp. 323–337.

[Lio+96] Jacques-Louis Lions et al. Ariane 5 flight 501 failure. 1996.

[Llb] LLBMC. http://llbmc.org/. 2019.

http://llbmc.org/

140 bibliography

[MA14] Wes Masri and Rawad Abou Assi. “Prevalence of Co-
incidental Correctness and Mitigation of Its Impact on
Fault Localization”. In: ACM Trans. Softw. Eng. Methodol.
23.1 (2014), pp. 1–28.

[MBS88] Ravi Mukkamala, Steven C Bruell, and Roger K Shultz.
Design of partially replicated distributed database systems: an
integrated methodology. Vol. 16. 1. ACM, 1988.

[MCZ+14] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. “Extracting more concurrency from distributed
transactions”. In: 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 14). 2014,
pp. 479–494.

[MDC06] Alice Miller, Alastair Donaldson, and Muffy Calder.
“Symmetry in temporal logic model checking”. In: ACM
Computing Surveys (CSUR) 38.3 (2006), p. 8.

[MSB+11] Can Arda Muftuoglu, Habib Saissi, Péter Bokor, and
Neeraj Suri. “Scalable verification of distributed systems
implementations via messaging abstraction”. In: ACM
23rd Symposium on Operating Systems Principles (SOSP)
WiP section. ACM. 2011.

[MSB+16] Patrick Metzler, Habib Saissi, Péter Bokor, Robin Hesse,
and Neeraj Suri. “Efficient Verification of Program Frag-
ments: Eager POR”. In: International Symposium on Au-
tomated Technology for Verification and Analysis (ATVA).
Springer. 2016, pp. 375–391.

[MSB+17] Patrick Metzler, Habib Saissi, Péter Bokor, and Neeraj
Suri. “Quick Verification of Concurrent Programs by
Iteratively Relaxed Scheduling”. In: IEEE/ACM 32nd
International Conference on Automated Software Engineering
(ASE). IEEE Press. 2017, pp. 776–781.

[Maz87] Antoni Mazurkiewicz. “Trace theory”. In: Petri nets: ap-
plications and relationships to other models of concurrency.
Springer Verlag, 1987, pp. 278–324.

[McM06] Kenneth L McMillan. “Lazy abstraction with interpolants”.
In: Computer-Aided Verification (CAV). Springer Verlag.
2006, pp. 123–136.

[Mpb] MP-Basset. https://www.informatik.tu-darmstadt.
de/deeds/research_1/tools_2223/mp_basset2/index.

en.jsp. 2019.

[NNH15] Flemming Nielson, Hanne R Nielson, and Chris Hankin.
Principles of program analysis. Springer, 2015.

[NWC+18] R. Natella, S. Winter, D. Cotroneo, and N. Suri. “Analyz-
ing the Effects of Bugs on Software Interfaces”. In: IEEE
Transactions on Software Engineering (to appear) (2018).

https://www.informatik.tu-darmstadt.de/deeds/research_1/tools_2223/mp_basset2/index.en.jsp
https://www.informatik.tu-darmstadt.de/deeds/research_1/tools_2223/mp_basset2/index.en.jsp
https://www.informatik.tu-darmstadt.de/deeds/research_1/tools_2223/mp_basset2/index.en.jsp

bibliography 141

[O’N86] Patrick E O’Neil. “The escrow transactional method”.
In: ACM Transactions on Database Systems (TODS) 11.4
(1986), pp. 405–430.

[PCZ12] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. “Skew-
aware automatic database partitioning in shared-nothing,
parallel OLTP systems”. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data.
ACM. 2012, pp. 61–72.

[PH13] David A Patterson and John L Hennessy. Computer Orga-
nization and Design MIPS Edition: The Hardware/Software
Interface. Newnes, 2013.

[PST+96] Karin Petersen, Mike Spreitzer, Douglas Terry, and Mar-
vin Theimer. “Bayou: replicated database services for
world-wide applications”. In: Proceedings of the 7th work-
shop on ACM SIGOPS European workshop: Systems support
for worldwide applications. ACM. 1996, pp. 275–280.

[PVB+13] Corina S Păsăreanu, Willem Visser, David Bushnell, Jaco
Geldenhuys, Peter Mehlitz, and Neha Rungta. “Sym-
bolic pathfinder: integrating symbolic execution with
model checking for java bytecode analysis”. In: Auto-
mated Software Engineering (ASE) (2013), pp. 391–425.

[Pap79] Christos H Papadimitriou. “The serializability of concur-
rent database updates”. In: Journal of the ACM (JACM)
26.4 (1979), pp. 631–653.

[Pho] Phoenix benchmark. https://github.com/kozyraki/
phoenix. 2016.

[QKD13] Abdul Quamar, K Ashwin Kumar, and Amol Desh-
pande. “SWORD: scalable workload-aware data place-
ment for transactional workloads”. In: International Con-
ference on Extending Database Technology. 2013, pp. 430–
441.

[RH07] Venkatesh Prasad Ranganath and John Hatcliff. “Slic-
ing concurrent Java programs using Indus and Kaveri”.
In: International Journal on Software Tools for Technology
Transfer 9.5-6 (2007), pp. 489–504.

[RKB+15] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hos-
sein Hojjat, Christoph Koch, Nate Foster, and Johannes
Gehrke. “The homeostasis protocol: Avoiding transac-
tion coordination through program analysis”. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference
on Management of Data. ACM. 2015, pp. 1311–1326.

[Rub] Rubis: Rice university bidding system. http://rubis.ow2.
org/. 2019.

https://github.com/kozyraki/phoenix
https://github.com/kozyraki/phoenix
http://rubis.ow2.org/
http://rubis.ow2.org/

142 bibliography

[SBM+13] Habib Saissi, Péter Bokor, Can Arda Muftuoglu, Neeraj
Suri, and Marco Serafini. “Efficient Verification of Dis-
tributed Protocols Using Stateful Model Checking”. In:
IEEE 32nd International Symposium on Reliable Distributed
Systems (SRDS). IEEE. 2013, pp. 133–142.

[SBS+11a] Habib Saissi, Péter Bokor, Marco Serafini, and Neeraj
Suri. “To Crash or Not To Crash: Efficient Modeling of
Fail-Stop Faults”. In: Invited paper, International Workshop
on Logical Aspects of Fault-Tolerance (LAFT in assoc. with
LICS). Springer. 2011.

[SBS+11b] Marco Serafini, Péter Bokor, Neeraj Suri, Jonny Vinter,
Astrit Ademaj, Wolfgang Brandstatter, Fulvio Tagliabo,
and Jens Koch. “Application-level diagnostic and mem-
bership protocols for generic time-triggered systems”.
In: IEEE Transactions on Dependable and Secure Computing
8.2 (2011), pp. 177–193.

[SBS15] Habib Saissi, Péter Bokor, and Neeraj Suri. “PBMC:
Symbolic Slicing for the Verification of Concurrent Pro-
grams”. In: International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA). Springer. 2015,
pp. 344–360.

[SCD+17] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi,
and Chao Xie. “Bringing Modular Concurrency Control
to the Next Level”. In: Proceedings of the 2017 ACM In-
ternational Conference on Management of Data (SIGMOD).
ACM, 2017, pp. 283–297.

[ŞCR12] Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu.
“Maximal causal models for sequentially consistent sys-
tems”. In: International Conference on Runtime Verification.
Springer. 2012, pp. 136–150.

[SDM+10] Marco Serafini, Dan Dobre, Matthias Majuntke, Péter
Bokor, and Neeraj Suri. “Eventually linearizable shared
objects”. In: Proceedings of the 29th ACM SIGACT-SIGOPS
symposium on Principles of distributed computing. ACM.
2010, pp. 95–104.

[SLS+95] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick
Valduriez. “Transaction chopping: Algorithms and per-
formance studies”. In: ACM Transactions on Database
Systems (TODS) 20.3 (1995), pp. 325–363.

[SPA+11] Yair Sovran, Russell Power, Marcos K Aguilera, and
Jinyang Li. “Transactional storage for geo-replicated
systems”. In: Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles. ACM. 2011, pp. 385–
400.

bibliography 143

[SSS19] Habib Saissi, Marco Serafini, and Neeraj Suri. “Gyro:
A Modular Scale-out Layer for Single-Server DBMSs”.
In: USENIX Annual Technical Conference (ATC’19), (under
submission) (2019).

[SW11] Nishant Sinha and Chao Wang. “On interference abstrac-
tions”. In: Principles of Programming Languages (POPL).
ACM Press, 2011, pp. 423–434.

[SWS+19] Habib Saissi, Stefan Winter, Oliver Schwahn, Karthik
Pattabiraman, and Neeraj Suri. “Trace Sanitizer: Elimi-
nating Effects of Non-Determinism on Execution Traces”.
In: International Symposium on Software Testing and Analy-
sis (ISSTA’19), (under submission) (2019).

[Sen07] Koushik Sen. “Concolic testing”. In: Proceedings of the
twenty-second IEEE/ACM international conference on Auto-
mated software engineering. ACM. 2007, pp. 571–572.

[Som+15] Ian Sommerville et al. Software engineering. Pearson,
2015.

[Spi] Spin. http://spinroot.com/spin/whatispin.html.
2019.

[Sym] SymmSpin. http://www.win.tue.nl/~lhol/SymmSpin/.
2012.

[TDP+94] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J
Spreitzer, Marvin M Theimer, and Brent B Welch. “Ses-
sion guarantees for weakly consistent replicated data”.
In: Parallel and Distributed Information Systems, 1994., Pro-
ceedings of the Third International Conference on. IEEE. 1994,
pp. 140–149.

[TDW+12] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi. “Calvin:
fast distributed transactions for partitioned database
systems”. In: Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data. ACM. 2012,
pp. 1–12.

[TNS+14] Khai Q Tran, Jeffrey F Naughton, Bruhathi Sundar-
murthy, and Dimitris Tsirogiannis. “JECB: A join-extension,
code-based approach to OLTP data partitioning”. In:
ACM SIGMOD International Conference on Management of
Data. 2014, pp. 39–50.

[TP13] Anna Thomas and Karthik Pattabiraman. “LLFI: An
intermediate code level fault injector for soft comput-
ing applications”. In: Workshop on Silicon Errors in Logic
System Effects (SELSE). 2013.

[Tpc] http://www.tpc.org/tpcw/spec/tpcw_v1.8.pdf.

http://spinroot.com/spin/whatispin.html
http://www.win.tue.nl/~lhol/SymmSpin/
http://www.tpc.org/tpcw/spec/tpcw_v1.8.pdf

144 bibliography

[Val98] Antti Valmari. “The state explosion problem”. In: Lec-
tures on Petri nets I: Basic models. Springer Verlag, 1998,
pp. 429–528.

[Voa97] J. Voas. “Error propagation analysis for COTS systems”.
In: Computing Control Engineering Journal 8.6 (1997), pp. 269–
272.

[WKO13] Björn Wachter, Daniel Kroening, and Joël Ouaknine.
“Verifying multi-threaded software with Impact”. In:
Formal Methods in Computer-Aided Design (FMCAD). IEEE
Press. 2013, pp. 210–217.

[Wei81] Mark Weiser. “Program slicing”. In: ICSE. IEEE Press.
1981, pp. 439–449.

[XSL+15] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi,
Manos Kapritsos, and Yang Wang. “High-performance
ACID via modular concurrency control”. In: Proceedings
of the 25th Symposium on Operating Systems Principles.
ACM. 2015, pp. 279–294.

[YCW+09] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang,
and Lidong Zhou. “MODIST: Transparent model check-
ing of unmodified distributed systems”. In: (2009).

[YKK+09] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and
Viktor Kuncak. “CrystalBall: Predicting and preventing
inconsistencies in deployed distributed systems”. In: The
6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2009.

[YV00] Haifeng Yu and Amin Vahdat. “Design and evaluation
of a continuous consistency model for replicated ser-
vices”. In: Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation-Volume 4.
USENIX Association. 2000, pp. 21–21.

[Z3] Z3 SMT Solver. https: //github. com/Z3Prover/ z3.
2019.

[ZPZ+13] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran,
Marcos K Aguilera, and Jinyang Li. “Transaction chains:
achieving serializability with low latency in geo-distributed
storage systems”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM.
2013, pp. 276–291.

[ZSS+15] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. “Building
consistent transactions with inconsistent replication”. In:
Proceedings of the 25th Symposium on Operating Systems
Principles. ACM. 2015, pp. 263–278.

https://github.com/Z3Prover/z3

bibliography 145

[Zoo] ZooKeeper. https://wiki.apache.org/hadoop/ZooKeeper.
2019.

https://wiki.apache.org/hadoop/ZooKeeper

	Introduction
	Introduction
	Formal Program Analysis
	The Role of Program Analysis in Building Dependable Systems
	Contributions
	Publications
	Thesis Organization

	Dependability of Distributed Systems
	Scaling Out ACID Applications with Operation Partitioning
	The Partitioning Dilemma
	Overview
	Operation Partitioning
	Automatic Partitioning
	Classes of Operations

	The Conveyor Belt Protocol
	Correctness Proof
	Token-Passing Scheme
	Serializability Proof

	The Gyro System
	Case Studies
	Experiments and Evaluation
	RQ1: Data Partitioning Comparison
	RQ2: Scaling Out in WANs
	RQ3: Micro-Benchmarks

	Related Work
	Conclusion

	Efficient Stateful Model Checking for Distributed Protocols
	Overview
	Motivating Example
	General Reduction Framework
	System Model
	Decomposition-based Stateful MC
	Correctness of DBSS

	Implementing DBSS in JPF/MP-Basset
	Decomposition
	Selective Hashing
	Selective Push-on-Stack

	Evaluation with Fault-Tolerant Protocols
	Related Work
	Conclusion

	Dependability of Multi-threaded Programs
	PBMC: Symbolic Program Slicing on Concurrent Programs
	Overview
	Motivating Example
	Related Work
	Property Preservation with Projections
	System Model
	Projections

	PBMC: A Symbolic Implementation
	Process-Based Concurrent Programs.
	Projection Encoding

	Experiments and Evaluation
	Conclusion

	Eliminating Effects of Non-determinism on Execution Traces
	Overview
	Related Work
	Trace Equivalence and Execution Non-determinism Effects
	Sanitizing Algorithms
	Workflow of Trace Sanitizer
	System Model
	Algorithms

	Evaluation
	Target Programs and Execution Environment
	RQ1: False Positives from Memory Addresses
	RQ2: False Positives from CPU Scheduling
	RQ3: False Negatives Introduced by Trace Sanitizer
	RQ4: Trace Sanitizer Overhead

	Conclusion

	Conclusion
	Conclusion

