
Data Cube Computational Model with Hadoop MapReduce

Bo Wang1, Hao Gui1, Mark Roantree2, Martin F. O’Connor2

1International School of Software, Wuhan University, China
2Insight: Centre for Data Analytics, Dublin City University, Ireland

{bobwang,hgui}@whu.edu.cn, {mark.roantree,moconnor}@computing.dcu.ie

Keywords: XML, Hadoop, Data Warehouse, MapReduce.

Abstract: XML has become a widely used and well structured data format for digital document handling and message
transmission. To find useful knowledge in XML data, data warehouse and OLAP applications aimed at pro-
viding supports for decision making should be developed. Apache Hadoop is an open source cloud computing
framework that provides a distributed file system for large scale data processing. In this paper, we discuss an
XML data cube model which offers us the complete views to observe XML data, and present a basic algorithm
to implement its building process on Hadoop. To improve the efficiency, an optimized algorithm more suitable
for this kind of XML data is also proposed. The experimental results given in the paper prove the effectiveness
of our optimization strategies.

1 INTRODUCTION

XML is a widely used and well structured data format
especially in web-based information systems. Its flex-
ible nature makes it possible to represent many kinds
of data. The Web constantly offers new services and
generates large volumes of new data in XML. How-
ever, it is difficult to satisfy the additional process-
ing requirements necessary to facilitate OLAP appli-
cations or data mining with XML data. The underly-
ing differences between the relational and XML data
models present many challenges. It is difficult to
provide a logical and direct mapping from one data
model to the other due to the impedance mismatch
between them (Rusu et al., 2009). In our previous
works (Gui and Roantree, 2012) (Gui and Roantree,
2013), we have proposed a pipeline design based on
an OLAP data cube construction framework designed
for real time web generated sensor data. We trans-
formed sensor data into an XML stream conforming
to the data warehouse logical model and built a corre-
sponding data cube tree and serialized it into an XML
data cube representation.

In this paper, our research focuses on how to pro-
cess large scale XML data efficiently. The concept
of ”cloud computing” has received considerable at-
tention recently because it facilitates a solution to the
increasing data demands through a shared and dis-
tributed computing infrastructure (Dutta et al., 2011).
Apache Hadoop provides a powerful tool for tack-

ling large-scale data problems in the area of machine
learning, text processing, bioinformatics, etc. Hadoop
implements a computational paradigm called MapRe-
duce. The application is divided into many small frag-
ments of work, each of which may be executed or re-
executed on any node in the cluster. In addition, it
provides a distributed file system to store data and per-
mits a very high throughput for aggregate operations
across the node cluster. MapReduce has emerged
as an attractive alternative: its functional abstraction
provides an easy-to-understand model for designing
scalable and distributed algorithms (Lin and Schatz,
2010). Recently there has been some research into
the provision of a parallel processing computational
model for XML documents over distributed systems
(Dede et al., 2011). In (Khatchadourian et al., 2011),
the authors present a language called ChuQL to ex-
press XML oriented data processing tasks on the
cloud. XML is a semi-structured data format, and due
to its distributed paradigm, Hadoop is well positioned
to provide a reliable and scalable platform for pro-
cessing semi-structured data. By transforming large-
scale XML data into the data cube presented in this
paper, it will be easier to process the data on Hadoop
and significantly reduce the risk of data loss.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/20025085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 BACKGROUND

2.1 CityBike Project

The deployment of sensors in the physical world is
constantly increasing and may now be regarded as
widespread. The number of applications relying on
sensor data is also growing. Examples include: ur-
ban traffic watch, weather monitoring, tracking of
goods, etc. We now describe a project that serves as
a use case for our work. The city of Dublin (along
with many other European cities) has deployed a bike
sharing scheme whereby people may rent (and re-
turn) bikes from stations located throughout the city
center. The stations are equipped with sensors to
monitor the availability of bikes, and the stations
publish this information to the DublinBikes website
(www.dublinbikes.ie). Consumers can connect to the
website (either through a desktop PC or mobile appli-
cation) to view this information, including the loca-
tion of stations, the number of bikes currently avail-
able for renting, the number of spaces available to
return bikes, and so on. For both consumers and
providers of the service, the data is of great interest.
Consumers can check where to rent or return a bike
while providers can understand at which station it is
best to pick up or return bikes for maintenance in or-
der to minimize service disruption.

The bicycle rental application, available in many
cities and towns across Europe, collects data at reg-
ular intervals from each location. For each station
this information is made available through the service
provider’s web site which provides the station ID, the
total number of bike stands, the number of bikes avail-
able, the number of free bike stands available, and
so on. The bicycle rental statistics may also be con-
nected with other related factors, such as weather con-
ditions, bus routes in the city, and the location of local
train stations.

2.2 XML data cube construction

The Data Warehouse (DW) definition is different
from the schema of the underlying native XML
database. The DW definition includes a high level de-
scription of all the dimensions and the fact data and
the relationships between them (as shown in Fig.1).
In contrast, the schema of the XML database focuses
on the low-level logical and physical structure of the
XML data. The initial web generated raw sensor data
must be transformed and mapped to the structure de-
scribed by our DW definition illustrated in Fig.1 It is
not necessary to permanently materialize the identi-
fier information in order to build up the XML DW

Figure 1: An example of logical model for the data ware-
house in CityBikes Project (Gui and Roantree, 2013)

galaxy model and to specify the relationships between
the different parts. (Gui and Roantree, 2013) The
cube definition details the key components of the cube
construction process: selected dimensions, selected
concept hierarchy within dimensions, measurements
of fact data and aggregating functions. This informa-
tion can be used to determine both the construction
process and the production of the data cube. In our
project, we have developed several XML Schemata
to model the data cube structure, which we name the
XML Data Cube Model (XDCM). The data cube can
be serialized into XML data and an associated index
may be generated to facilitate OLAP operations on
the data cube. Both the serialized XML data cube
and the corresponding index (not discussed in this pa-
per) may be stored into the underlying native XML
database and be made available to related data analy-
sis applications.

c1 c2

p2

s2s1

p1 p1 p2

s1 s2

p1 p1 p2 p1 p2

p1 p2

all

p1 p2 p1 p2

p1

p1 p2

p2

p1 p2 p1 p1 p2

... ...

0-D

1-D

2-D

3-D

c1

s1 s2

c2

s1 s2

s1 s2

Figure 2: XDCM cube tree construction demonstration

In Fig.2, the forest on the left side is a simple illus-
tration of the input XML data concerning bikes usage,
which contains source information to be aggregated.
To simplify the example, we only selected three di-
mensions and each dimension has no more than two
different values. In the input forest, every node at each

level may be repeated an arbitrary number of times.
In the CityBike project, the system generates the data
regularly, and in some dimensions, the domains are
quite limited regarding the number of stations and the
weather details. This will result in a large quantity
of mergers in subsequent operations. The height of
input tree is equivalent to the dimension in the DW.
Assuming the dimension of input data is D, then we
will get 2D views to observe the data, including di-
mension 0 . Our XDCM must be robust enough to
describe all the views directly without any join or re-
lated operations. In the case of the forest on the left
side in Fig.2, using the capital letters to represent the
dimensions, we could get C− S− P, C− P, C− S,
S−P, C, S, P and Φ. In fact, C−S−P includes C−S
and C, S−P includes S. From a tree’s point of view,
you must visit the nodes from top to bottom along the
paths. If you have reached P, it follows that you have
already reached C and S. To reduce the redundancy,
some views that are included by others will not be
generated directly in the XDCM. In other words, all
the branches of XDCM cube tree should end with the
nodes in P in this demonstration. The Φ view is the
“all” in the XDCM cube tree at level 0.

The tree on the right side is the XDCM tree be be
constructed. There are three kinds of nodes that will
be used to finalise the construction.

• Data Node. The gray nodes in Fig.2 represent
the Data Nodes. After several processes such as
filtration or combination (if required), the initial
data can be generated on the Data Nodes directly.
The Data Nodes contain basic information such as
paths and values, and they describe the view with
the longest path such as C− S−P highlighted in
the previous example.

• Additional Node. The Additional Node (indi-
cated by a dashed-circle in Fig.2) which is pro-
duced by the Data Node is a form of intermedi-
ate data not shown in Fig.2. Each Data Node will
produce all possible Additional Nodes through the
removal of any constraints in the different dimen-
sions in its path.

• Link Node. The white nodes represent the Link
Nodes which describe other additions paths of ob-
servation. Link Nodes are produced by combin-
ing Additional Nodes that share the same paths.
Nodes in different paths should be unique in the
XDCM.

During the cube construction, for example, Data
Node all − c1 − s1 − p1 will produce Additional
Nodes all − c1− p1, all − s1− p1, all − p1, and
Data Node all − c1− s2− p1 will produce Addi-
tional Nodes all− c1− p1, all− s2− p1, all− p1.

Thus, there are two pairs of nodes that share the same
paths. They are all − s1− p1 and all − p1. Upon
combination of these nodes, we obtain Link Nodes
all−c1− p1, all−s1− p1, all−s2− p1 and all− p1.
Both Data Nodes and Link Nodes are the nodes in P.
Other nodes describe other views can be calculated in
following processes.

2.3 Map-Reduce

MapReduce is a programming framework for pro-
cessing large data sets with a parallel, distributed al-
gorithm on clusters. The most important functions
in this model are Map and Reduce. Mappers receive
a collection of Key-Value pairs and produce zero or
more output Key-Value pairs. Pairs sharing the same
key are collected and delivered to the same Reducer.
Reducers can iterate through the values that are asso-
ciated with that key and produce zero or more outputs.
Hadoop has implemented this programming model
and offers a well-defined set of APIs to control the
entire process.

In Hadoop, a complete Map-Reduce task can be
regarded as a job. To finish an entire task, it may be
necessary to perform more than one job. Input data is
split into many parts and transformed into Key-Value
pairs. In this context, the concept of split is about
a logical rather than a physical operation. Conse-
quently, the data uploaded to the Hadoop Distributed
File System (HDFS) will be cut into several blocks,
usually in 64MB chunks, according to the require-
ments of the system. Hadoop is quite adept at deal-
ing with unstructured data, such as text, because it is
easy to split and suitable for the physical structure.
Hadoop does not offer any functionality to process
XML documents directly. Mahout, an open-source
program based on Hadoop, provides a class to handle
the XML input format, and the underlying strategy
is simple. An XML document is well organized, the
content of every element is enclosed by a pair of tags.
Therefore, it is sufficient to simply read the XML doc-
ument as a text file and select the content between the
certain pair of tags.

3 CUBE CONSTRUCTION WITH
MAP-REDUCE

In order to describe the algorithm, consider an ex-
ercise to build an OLAP data cube for the bicycle
rental scenario under certain weather conditions and
in various locations and dates. In this case, only three
dimensions have been chosen as shown in Fig.2. The
Input data are nodes in the dimension named P with

some additional information, such as their path con-
straints. On the left side, the nodes indicated with a
dashed-circle illustrate the paths of the nodes circled
by solid lines, and they do not need to be instantiated.
Our goal is to build the tree on the right side and to
calculate the values of the dashed nodes.

For our implementation, the entire task can be di-
vided into two phases. Phase one is to generate the
Data Nodes and Link Nodes, and then organize them
into the XDCM as described earlier. The second
phase is to calculate the values of the dashed nodes
on the right side which represent observation views
other than Data Nodes and Link Nodes. The calcu-
lation task itself can be divided into two further sub-
tasks. One subtask is used for the calculation of Data
Nodes and the other subtask is used for the calculation
of Link Nodes.

a1 a2

......
 b1

leaf1 leaf2 leaf3 leaf4 ······

 b2 b3 b4

n

n-1
.
.
.

1

Figure 3: Processing Order of Data Nodes

all

A

B

B

C

C

C

C

D

D

D

D
D

D

D

D

1

1
2

3

Figure 4: Processing Order of Link Nodes

Fig.3 illustrates the node processing order of the
algorithm. The integer values on the right side rep-
resent the round indexes of Map-Reduce jobs. Data
Nodes are the leaf nodes shown at the bottom, and
they will be processed by the first job to generate Ad-
ditional Nodes. The Additional Nodes will subse-
quently be merged into Link Nodes. Thus, the sub-
sequent rounds only concentrate on the calculation
tasks. For a N-dimensional XML data, we need at

least N rounds to complete the entire construction,
in other words, N jobs are needed to complete the
whole task in Hadoop. The output generated from
each job will be used as the input data for the next job.
The computation receives a set of Key-Value pairs as
input, and then produces a set of output Key-Value
pairs:

Map (k1,v1) → list(k2,v2)
Reduce (k2, list(v2)) → (k3,v3)
In the generation phase (phase one), the initial

data is transformed into Key-Value pairs that actu-
ally represent Data Nodes. So k1 is the path of a
given Data Node, and v1 is the value of that node.
Data Nodes will produce large amounts of Additional
Nodes. k2 is the path of an Additional Node, and v2 is
its value. The Reduce function accepts the intermedi-
ate key k2 and a set of values for that key, and merges
these values to form a Link Node. So k3 is the path of
Link Node, and v3 is the actual value.

In the calculation phase (phase two), the process
starts with either the Data Nodes or the Link Nodes.
All nodes in the same level will be processed in one
job. The entire process proceeds in a bottom-up man-
ner from one layer to the next. However, unlike the
generation phase, the Key value of the Mapper’s out-
put is the path of the node without self-containment.
For example, given the input node γ and the path
α− β− γ. Then k2 will be α− β , and v2 will be
γ. The Reduce function accepts the intermediate key
α− β and calculates the value of β. The k3 is the
complete path of β which is α−β, and v3 is β. This
(k3,v3) pair will be the (k1,v1) in the next calculation
round, which is going to calculate the value of α.

Given that all Link Nodes are derived from Data
Nodes and all nodes in the XDCM are unique, some
ancestor nodes may be calculated using different de-
scendants in different paths. For example, in Fig.4,
the node B in all−B−C−D may be calculated by
all−B−D also. To avoid repeated calculations, we
employ a ”BreakPoint” to indicate the point at which
to stop the calculation. The procedure for selecting a
BreakPoint in the basic implementation is as follows:
1. The BreakPoint represents a node in a path. If the

BreakPoint is going to be calculated in the next
round, the calculation should be stopped.

2. Only Link Nodes and their ancestor nodes need
to keep a record of BreakPoints. All nodes in the
path of Data Nodes will be calculated. So it is un-
necessary to keep records of BreakPoints for Data
Nodes and their ancestor nodes.

3. BreakPoints are identified in the generation phase
and won’t change in the following calculations.
The ancestor nodes of each Link Node should in-
herit its BreakPoint.

4. It should be noted that BreakPoints are the places
where new branches are added while building the
XDCM cube tree. For instance, in Fig.4, all the
branches except all−A−B−C−D are branches
that were added. As for all − A−C −D, the
BreakPoints are the nodes at A, because −C−D
is the branch we added.

Fig.4 shows the abstract structure of XDCM in
four dimensions. As described in section 2.2, the
paths of all nodes start from all and end at D. Thus,
the total number of Link Nodes is the combinations
from A to C minus one (because we already have the
longest path, A−B−C). For the N-dimensional data,
the number of Additional Nodes for each Data Node
is CN−2

N−1 +CN−3
N−1 + ...+C0

N−1(N ≥ 2).
In our implementation, we use binary numbers to

describe the status of those combinations. In Fig.4,
the number of Additional Nodes for each Data Node
is C2

3 +C1
3 +C0

3 = 7. So using three bits (2(3−1)) can
describe all cases. Each bit stands for a dimension
between all to D. If a certain bit is set to 1, it indicates
having the constraint on that dimension. To identify
a BreakPoint for each Link Node, we need to check
whether the prefix of the Link Node’s path has already
existed in the tree that we have currently built. we
may enumerate all of the cases by reducing the binary
number from the maximum to zero. We determine the
BreakPoint by comparing the prefix of two adjacent
cases. The maximum of the binary number should
compare with the binary number that stands for the
Data Node. In the previous example, the 110 should
compare with 111, so the BreakPoint for 110 is at the
second bit which represents the B dimension. If there
is no common substring in the prefix (as with 100 and
011), the BreakPoint for 011 is the node all.

4 OPTIMIZATION AND
PERFORMANCE

4.1 Configuration Optimization

We performed the experiments in a cluster with 35
slave nodes each containing a 3.10GHz processor, 1
GB of RAM, and 40 GB of local disk allocated to the
HDFS. Each node is running Hadoop version 1.1.2
on Red Hat 9.0 and connected by Fast Ethernet to a
commodity router.

An XML document contains more information
than an unstructured document with equivalent con-
tent. In order to handle XML documents in a dis-
tributed system without loss of information we need
to restructure the data and divide it into small units.

Thus, the amount of data through the system is larger
than the input data. The table in Fig.5 shows the size
of the data and the number of records through the sys-
tem in the first round.

Dimension Map input bytes Map output bytes
Map output
records

Reduce input
records

Reduce input
records(after
combining)

1 3 1,023,266,669 4,973,220,180 126,360,000 126,360,000 35,101,440

2 3 5,386,519,202 24,703,200,180 622,080,000 622,080,000 180,001,136

3 6 1,104,659,389 44,683,382,133 1,075,164,192 1,075,164,192 51,916,510

4 6 5,514,648,663 130,268,589,390 2,686,965,696 2,686,965,696 250,036,747

Figure 5: comparing the data through the system in the first
round

Each record in Hadoop represents a unit we made
which is described as a node in section two and
three. In the experiments, we use two types of XML
files for the experiments, of three-dimensions and six-
dimension respectively. The arity of each dimension
is nine. For 1 GB XML file in three dimensions, us-
ing the basic algorithm, the Map output in the first job
is about 4.6 GB. In other words, to build the XDCM
directly, the size of data we actually need is approxi-
mately 4.6 GB. For 1 GB XML file in six dimensions,
using the basic algorithm, the Map output in the first
job reaches 41 GB. Since Mappers and Reducers are
separated, these outputs are transferred through the
network. The I/O operations may have a negative im-
pact on the whole task.

Hadoop offers several ways to optimize the I/O.
In the experiments, we mainly used compression and
combination, and their effects were clear. Hadoop
supports several compression formats like gzip and
snappy. The compression method should be selected
according to the type of the task to be performed. If
the task’s CPU occupancy rate is high, it is better to
choose a simple compression algorithm. If a signifi-
cant portion of the task is spent at I/O, it is better to
select an algorithm with a high compression ratio. in
our experiment, using the default compression algo-
rithm offered by Hadoop to process 1 GB of XML
data in three dimensions provides approximately an
8% improvement.

In our experiments, the combination process pro-
vided a demonstrable improvement. The task of a
Combiner is similar to that of a Reducer. If the Com-
biner is used then the outputs from the Mapper are
not immediately delivered to the Reducer. The Key-
Value pairs are collected in lists, one list per Key. The
Combiner will process each list like a Reducer and
emit a new Key-Value pair which has already been
merged. Then the new Key-Value pair will be deliv-
ered to the Reducer as if they were created by the orig-
inal Map operation. Fig.6 shows the performance us-
ing these two strategies when dealing with the three-
dimensional XML files.

3

6

12

15

.

.

.

21'12"

17'36''

12'1''

4'36''
4'12''

2'48''

compress
compress&&combine

original

u1uGBuXML u5uGBuXML

minute

18

21

Figure 6: Performance of Optimization for 3-D XML.

4.2 Algorithm Optimization

For the 1 GB and three-dimensional XML file in
our experiment, using the basic algorithm discussed
in section 3, the number of Map output records is
about 126,360,000 in the first round but the number of
Reduce output records is approximately 35,101,440.
About 72% records are merged in Reducers. For the
1 GB and six-dimensional XML file, the number of
Map output records is approximately 1,075,164,192
but the number of Reduce output records is only
51,9156,510. The gap in the 5 GB file sizes is even
more pronounced. As the dimension increases, the
output of Map increases more rapidly. For a D-
dimensional XML file, assuming n is the number of
initial Data Nodes, the direct output records of Map
is 2D×n . In the basic algorithm, the workload is too
large when the dimension becomes higher in the first
round. Too much data is transferred from the Mapper
to the Reducer. In a cloud environment with limited
capacity, it may increase the risk of the jobs failing.

In the basic algorithm, all Additional Nodes come
from Data Nodes. However, some nodes can be gen-
erated by Link Nodes also. The Link Nodes with
longer paths can produce the Additional Nodes with
shorter paths. In Fig.4, Nodes in all−D can not only
be generated by all −A−B−C−D (Data Nodes),
but also can be generated by other six types of Link
Nodes like all−A−B−D, all−B−D, etc. Although
the information in all−A−B−D or all−B−D is
not as complete as the Data Nodes, it is enough for
all−D. The significant advantage of using shorter-
path nodes to generate Link Nodes is the decrease in
the I/O between Mapper and Reducer. For example,
there are only two Data Nodes, the paths of which are
all− a1− b1− c1− d1 and all− a2− b1− c1− d1.

Thus, the Link Node in all−B−D will be all−b1−
d1. It is more efficient to generate the Link Node in
all−D by using Link Node all− b1− d1 instead of
using the Data Nodes because only one output record
is produced by the Mapper, whereas the Data Nodes
would produce two.

A B C

A B D

A C D

B C D

A C

B C

A B

A D

B D

C D

B

C

D

A

 2 1 3 4

Figure 7: Using Link Nodes for Generation

Fig.7 is an example of generating Link Nodes
by using an optimized algorithm for five-dimensional
data. As discussed in section 3, all of the pos-
sible Link Nodes for five-dimensional Data Nodes
(all − A− B−C−D− E) depend on combinations
of the path between all and E exclusively, which is
A−B−C−D. In the first round, by removing one
constraint in the path A−B−C−D, we get C1

4 kinds
of Link Nodes shown in column 1 in Fig.7. The arrow
above the node is the indicator of a BreakPoint. The
arrow pointing to empty means the BreakPoint is at
all. Any Link Node whose BreakPoint does not point
to all can be used to generate new Link Nodes in the
next round. In the next round, another constraint of
the Link Nodes is to be removed, and this constraint
should be the nodes before the BreakPoint. As shown
in Fig.7, the A−B−C in column 1 stands for the Link
Nodes whose path is all−A−B−C−E. The Break-
Point is at C, so in next round shown in column 2,
successively removing the nodes before C (including
C), which are C, B, A, we obtain A−B, A−C, B−C.
The BreakPoint changes to the point at the node be-
fore the node has been removed. If the BreakPoint
points at all like B−C, it would not participate in the
generation work of future rounds, but the calculation
phase would continue. In this way, we obtain all of
the combinations after the removal of two constraints
from the path, which is C2

4 in total. The Link Nodes
are generated according to the rules described above,

until all BreakPoints point to all. The total number is
C1

4 +C2
4 +C3

4 +C4
4 = 15, which is the same number

produced by the basic algorithm.
Assuming the dimension is D, in the Nth round,

the number of Additional nodes for each Link Node
is CN

D−1. It would appear that the I/O should increase
when N is close to D−1

2 . However, it does not because
the Additional Nodes are produced by Link Nodes in-
stead of Data Nodes, and after several rounds of merg-
ers, the number of Link Nodes decrease significantly.
The total outputs from the Mapper after N rounds are
still less than the first round in our experiment.

Fig.8 shows the different efficiencies obtained
by employing these two algorithms to construct the
XDCM using the six-dimensional XML data. The
improvement in the performance is significant. For
the 1 GB and 6-dimensional XML file, the total im-
provement is approximately 64%. For the 5 GB and
6-dimensional XML file, the improvement is approx-
imately 27%. Fig.9 shows the the performance of the
two algorithms using the 5GB XML data from City-
Bikes.

basic

optimized

0

10

min
round

20

30

40

1 GB XML in 6 dimensions

basic

optimized

0

20

min
round

40

60

80

5 GB XML in 6 dimensions
Figure 8: Basic Algorithm vs. Optimized Algorithm

basic

optimized

0

5

min
round

10

15

20

Figure 9: Performance in CityBike

5 CONCLUSIONS

In this paper, we illustrated a data cube model for
XML documents to meet the increasing demand for
analyzing massive XML data in OLAP. Hadoop is a
popular framework aiming at tackling large-scale data
problems. We proposed a basic algorithm to construct
the XDCM on Hadoop. To improve efficiency, we of-
fered some strategies and described an optimized al-
gorithm. The result proves the optimized algorithm is
suitable for this type of data and further enhance the
efficiency.

REFERENCES

Dede, E., Fadika, Z., Gupta, C., and Govindaraju, M.
(2011). Scalable and distributed processing of scien-
tific xml data. In Proceedings of the 2011 IEEE/ACM
12th International Conference on Grid Computing,
pages 121–128. IEEE Computer Society.

Dutta, H., Kamil, A., Pooleery, M., Sethumadhavan, S.,
and Demme, J. (2011). Distributed storage of large-
scale multidimensional electroencephalogram data us-
ing hadoop and hbase. In Grid and Cloud Database
Management, pages 331–347. Springer.

Gui, H. and Roantree, M. (2012). A data cube model for
analysis of high volumes of ambient data. Procedia
Computer Science, 10:94–101.

Gui, H. and Roantree, M. (2013). Using a pipeline approach
to build data cube for large xml data streams. In
Database Systems for Advanced Applications, pages
59–73. Springer.

Khatchadourian, S., Consens, M. P., and Siméon, J. (2011).
Having a chuql at xml on the cloud. In AMW.

Lin, J. and Schatz, M. (2010). Design patterns for effi-
cient graph algorithms in mapreduce. In Proceedings
of the Eighth Workshop on Mining and Learning with
Graphs, pages 78–85. ACM.

Rusu, L. I., Rahayu, W., and Taniar, D. (2009). Partition-
ing methods for multi-version xml data warehouses.
Distributed and Parallel Databases, 25(1-2):47–69.

