Conducting Polymer Structures Housed in Thin-Layer Microfluidic Channels for **Electroanalysis Aoife Morrin** Blanaid White, Brian Gorey, Aoife Power, Patrick **Floris**

64th Annual Meeting of the ISE Queretaro, Mexico, 8-13 September 2013

Outline

- Development of a microfluidic-based thin-layer electrochemical cell
 - Electropolymerisation of conducting polymer materials in microfluidic channels
 - Micro-structuring of materials on-chip
- Conducting polymers as coatings on capillary monoliths
- Towards stimuli-responsive chromatography

Integrating an electrochemical cell into microfluidics

Characterisation of thin layer microfluidic format

Conducting polymer films on-chip

Potential

Self-limiting nature of thin-layer cell electropolymerisation

Self-limiting nature of thin layer cell electropolymerisation

Channel depth (µm)	Average PANI thickness (µm)
	after 50 polymerisation cycles
35	7.53 ± 0.24
60	27.70 ± 6.58
110	49.93 ± 1.53
180	80.53 ± 6.84

Can we create order in these materials on chip?

- By creating inverse opal conducting polymer monolithic materials through sacrificial CC templates within channel (open channel format)
- Interesting structure for electrochemically responsive chromatography, drug delivery, flow through sensors on chip
- In terms of chromatography, it could enable high internal surface areas of electroactive materials with periodic flow-through pores
 - Allow for precise electrochemical tuning of stationary phase before & during a separation to influence retention factors without need for gradient elution of mobile phase
 - Gain electrochemical control over hydrophobicity, pore size, ionic capacity

Colloidal crystal formation in the microchannel

- 1) Capillary flow of PS suspension into channel
- 2) Pinning of PS suspension to walls of the channel evaporation flux, j_e
- 3) Receding of meniscus line with continuous colloidal crystal growth particle flux, j_p and water flux, j_w

Optimised CC structures in microchannels

Gorey et al. (2013) Fabrication of a 3-dimensionally ordered binary colloidal crystal within a confined channel. Submitted to Chem. Mater.

Conducting polymer monolithic structures

B. Gorey, J. Galineau, B. White, M.R. Smyth, A. Morrin, *Electroanalysis* **2012**, 24, 1318 - 1323

Dry & wetted states of CP monoliths - AFM

*Electrochemically grown Ppy doped with DBS

DCU

Overcoming current density gradient using chemical polymerisation

Closed channel – flow through polymerisation

PS

Core-shell flow-through bed comprised electroactive PANI

2.00un

Fused silica capillary microfluidic channel

In-situ polymerisation of styrene in the presence of a thermal initiator, a cross-linker, DVB and porogen, dodecanol

Flush capillary with aniline, acid and oxidant

Characterisation of PANI-coated polymer monoliths

Switchable PANI-coated PS-co-DVB monolith

Current challenge is to integrate an electrochemical cell into this capillary format – control conducting polymer oxidation state by application of a potential

To Conclude....

What do we have?

- Microfluidic thin layer electrochemical cell for conducting polymer bulk films and inverse opal structures
 - Suitable format for exploiting EOF-driven flow?
- Coatings of PANI on polymer monoliths in capillary format
 - V. high surface areas, structurally supported films

Where to next?

 Applications in LoC sensors, drug delivery, electrochemically-responsive chromatography

Thanks!

- Dr. Blánaid White
- Dr. Damian Connolly
- Prof. Gordon Wallace
- Dr. Michael Higgins
- Brian Gorey
- Dr. Aoife Power
- Dr. Patrick Floris

Characterisation of PANI-coated polymer monoliths

