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Outline
� Conducting polymers in electroanalytical

applications

� Conducting polymers applied in separation 
science

� EMµ concept

� Development of a microfluidic-based thin-
layer electrochemical cell

� Microstructure 3D monoliths of conducting 
polymers on-chip

� Look towards applications 22



CPs as separation phases in 
particulate-based packings

Fresh Reduced Oxidised

Caffeine

Theophiline Chriswanto & Wallace, J. Liq. Chrom. & Rel
Technol., 19:2457 (1996) 33



From particulates to monoliths in 
chromatography

Passive, inert structures comprised of 
rigid polymer rods

UV or thermally curable monomers, e.g., 
methacrylates, styrenes etc.
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Do functional materials offer a 
viable alternative???



Electro-responsive 

Monolith µµµµChip (EMµ)

Electroactive Separation Monolith UV Detector
On-Chip 
Detection

Flow out

Flow in

Electroactive Separation Monolith

Electroactive polymer, e.g., Polyaniline

UV DetectorDetection
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EMµµµµ for separations
� Electrochemical growth of uniformly templated polyaniline

monolithic materials on-chip

� Precise control over monolithic stationary phase fabrication 
enabling high levels of reproducibility

� Micro-structuring of the monolithic stationary phase enabling: 
– Further decrease of the A-term in Van Deemter

– Large flow through pores

– Small skeleton size

� Precise electrochemical tuning of stationary phase before & 
during separation to influence retention factors without need 
for gradient mobile mobile phases
– Hydrophobicity

– Pore size

– Ionic capacity
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Electrochemical thin-layer 
cell on-chip

µChannel: 110 x 35 micron

Cell Volume: 154 nL

77

WE: 5 mm x 110 micron
External ref & aux 
electrodes

Fully integrated system

Compensate for non-
uniform potential 

distribution



Characterisation using Fe2+/Fe3+
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Characterisation of PANI 
growth in µµµµchannel

110 µm

Increasing number of voltammetric cycles
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0.2 µl min-1 100 mV s-1
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Characterisation of PANI 
growth in µµµµchannel
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Channel Width: 110 µm



Electro-responsive 

Monolith µµµµChip (EMµ)

Electroactive Separation Monolith UV Detector
On-Chip 
Detection

Flow out

Flow in

Electroactive Separation Monolith

Electroactive polymer, e.g., Polyaniline

UV DetectorDetection
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EMµµµµ

Template
Deposition

Dissolution of 
Template

Working 
Electrode 
Integration

Electrochemical 
Polymer 
Growth

1212Channel Dimensions: 110 micron x 20 micron x 40 mm



PS template
PS bead synthesis

2 critical factors: 
Appropriate [cross-linker]

to give uniformity and

permit dissolution
PS crystal

in µµµµchannel

Surfactant content of dispersions

1313

vs.



Templated conducting polymer 
monolith

PS template
PANI inverse opal
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Templated CPs - unimodal

Polyaniline

Order in 3-D           
A new way for 

producing monolithic 
phases on-chip

Polypyrrole



Surfactant levels in PS dispersions –
resulting PANI structures 

Increasing %w/v surfactant in dispersions -

Order in resulting structures changes
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Deionised Water 0.01 % w/v SDS 0.1 % w/v SDS 1 % w/v SDS



Growth times for templated PANI on-chip

Polymerisation time too short: 
fragile film collapsesx

z

Excessive polymerisation times: Loss of order and pore 
interconnectivity

Optimised polymerisation time
Reproducible structured film with 
interconnecting poresx

z



Dry & wetted states of templated
CPs - AFM

Dry* In Electrolyte* 
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*Electrochemically grown Ppy doped with DBS



Templated CPs - bimodal

Bimodal PS template Ppy bimodal monolith
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Elephant in the room…..

� Conducting polymers will not 
withstand high pressures for 
chromatographic and other sensing 
applications that require a pressure-applications that require a pressure-
driven flow

� …..Need to look at improving the 
mechanical properties
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Compositing CPs with other 
polymers

Epoxy-PANI composite: blending Araldite Rapid®, with emeraldine base powder

Diffusion Coefficient Trend Cycling Stability



Coating CPs onto existing polymer 
monoliths

Bare lauryl methacrylate monolith Ppy-coated monolith

2222
2222



To Conclude
� What do we have?

– Microfluidic thin layer electrochemical cell

– Well-behaved, templated, high surface area conducting 

polymer materials

– Good spatial control over polymerisation

– Nano/micro structuring on-chip– Nano/micro structuring on-chip

– Suitable format for exploiting EOF-driven flow

– Early investigations into improved rigidity/mechanical 

stability of CP materials for pressure-driven flows

� Where to next?
– Applications in LOC sensors, drug delivery, 

electrochromatography, electrocatalysis

2323



Thanks!
� Dr. Blánaid White 

� Prof. Malcolm Smyth

� Prof. Gordon Wallace

� Prof. Tony Killard

� Dr. Damian Connolly

� Dr. Jeremy Galineau� Dr. Jeremy Galineau

� Brian Gorey

� Dr. Courtney Collins

� Orla Gaffney

� Dr. Fuqiang Nie

� Dr. Aoife Power

� Nicky McKenna

2424


