Conducting Polymers In µChannels For Electroanalytical Applications

Dr. Aoife Morrin National Centre for Sensor Research Dublin City University

Outline

- Conducting polymers in electroanalytical applications
- Conducting polymers applied in separation science
- EMµ concept
- Development of a microfluidic-based thinlayer electrochemical cell
- Microstructure 3D monoliths of conducting polymers on-chip
- Look towards applications

CPs as separation phases in particulate-based packings

Fresh	Reduced	Oxidised	
2			$ \begin{array}{c} & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		$ \begin{array}{c} $	Retention of Caffeine and Theophylline on PPCI/Si as a Function of the Treatment of the Column with Redox Reagent* k' Caffeine k' Theophylline Frc 2.6 2.2 red1 2.7 0.1 oxd1 2.3 2.0 red2 2.4 0.1 oxd2 2.1 1.8
0	Caffeine Theophiline	Chriswan	to & Wallace, J. Liq. Chrom. & Rel DCU

From particulates to monoliths in chromatography

Passive, inert structures comprised of rigid polymer rods UV or thermally curable monomers, e.g., methacrylates, styrenes etc.

Do functional materials offer a viable alternative???

EMµ for separations

- Electrochemical growth of uniformly templated polyaniline monolithic materials on-chip
- Precise control over monolithic stationary phase fabrication enabling high levels of reproducibility
- Micro-structuring of the monolithic stationary phase enabling:
 - Further decrease of the A-term in Van Deemter
 - Large flow through pores
 - Small skeleton size
- Precise electrochemical tuning of stationary phase before & during separation to influence retention factors without need for gradient mobile mobile phases
 - Hydrophobicity
 - Pore size
 - Ionic capacity

Electrochemical thin-layer cell on-chip

WE: 5 mm x 110 micron

External ref & aux electrodes

Fully integrated system

 μ Channel: 110 x 35 micron

Cell Volume: 154 nL

Ú

Compensate for nonuniform potential distribution

Characterisation using Fe²⁺/Fe³⁺

 $l << (2Dt)^{1/2}$ $35\mu m < l < 200\mu m$

Theoretically $\Delta Ep = 0$ Typically $\Delta Ep \approx 115 \text{ mV}$ $v = 1 \text{ mVs}^{-1}$

 $i_p = \frac{n^2 F^2 v V C_0^*}{RT}$

1.2e-

1.0e-7

6.0e-8

4.0e-8

υ (mVs⁻¹)

€ 8.0e-8

Characterisation of PANI growth in µchannel

PANI Growth Cycle

1 μl min⁻¹

2 µl min

0.5 µl min⁻¹

0.2 µl min⁻¹

60

50

Characterisation of PANI growth in µchannel

PS template

PS bead synthesis 2 critical factors: Appropriate [cross-linker] to give uniformity and permit dissolution

Surfactant content of dispersions

PS crystal in µchannel

Templated conducting polymer monolith

Templated CPs - unimodal

Polypyrrole

WD15.8mm 3.50kV x10k 5um

Order in 3-D A new way for producing monolithic phases on-chip

Surfactant levels in PS dispersions – resulting PANI structures

Deionised Water

0.01 % w/v SDS

0.1 % w/v SDS

1 % w/v SDS

Increasing %w/v surfactant in dispersions -Order in resulting structures changes

Growth times for templated PANI on-chip

Polymerisation time too short: fragile film collapses

Excessive polymerisation times: Loss of order and pore interconnectivity

DCL

Optimised polymerisation time Reproducible structured film with interconnecting pores

0

*Electrochemically grown Ppy doped with DBS

Templated CPs - bimodal

Bimodal PS template

Ppy bimodal monolith

Elephant in the room.....

Conducting polymers will not withstand high pressures for chromatographic and other sensing applications that require a pressuredriven flow

Image: Market M Market Mark

Compositing CPs with other polymers

Epoxy-PANI composite: blending Araldite Rapid®, with emeraldine base powder

Coating CPs onto existing polymer monoliths

Bare lauryl methacrylate monolith

Ppy-coated monolith

To Conclude

What do we have?

- Microfluidic thin layer electrochemical cell
- Well-behaved, templated, high surface area conducting polymer materials
- Good spatial control over polymerisation
- Nano/micro structuring on-chip
- Suitable format for exploiting EOF-driven flow
- Early investigations into improved rigidity/mechanical stability of CP materials for pressure-driven flows

Where to next?

 Applications in LOC sensors, drug delivery, electrochromatography, electrocatalysis

Thanks!

- Dr. Blánaid White
- Prof. Malcolm Smyth
- Prof. Gordon Wallace
- Prof. Tony Killard
- Dr. Damian Connolly
- Dr. Jeremy Galineau
- Brian Gorey
- Dr. Courtney Collins
- Orla Gaffney
- Dr. Fuqiang Nie
- Dr. Aoife Power
- Nicky McKenna

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

EUROPEAN REGIONAL DEVELOPMENT FUND