INVESTIGATION OF NANOSTRUCTURED MATERIALS FOR NOVEL BIOSENSOR FABRICATION METHODOLOGIES

Dr. Aoife Morrin

National Centre for Sensor Research
School of Chemical Sciences
Dublin City University
Ireland

DCU

The National Centre for Sensor Research

Introduction

Emergence of nanotechnology opening new horizons for electrochemical biosensing

 How can nanostructured conducting polymers contribute to this space?

 Explore transduction interface

Overview

- Electrode Interface
- Synthetic approaches to fabricating polyaniline nanoparticles
- Electrode modification with nanoparticles
- (i) Electrodeposition Excellent control over film thickness
- (ii) Casting Amenable to Mass Production
- Sensing Applications

Sensor Platform

- Screen printing
- Low start up and manufacturing cost
- Mass production
- Disposability
- Flexible design process

Platform for glucose biosensor industry

175 µm

40 mm

The National Centre for Sensor Research

PET Substrate

Electrode Modification by Conducting Polymer

- Highly conductive
- Simple doping/dedoping chemistry
- Good environmental stability
- Electrical properties modified by ox. state of main chain
- Applications:
 - Sensors
 - electrochemical
 - optical
 - > Anti-corrosion protection of metals
 - > Supporting material for catalysts
 - > Electrochromic displays

Bulk Polyaniline

Nanoparticulate polyaniline

Chemical or electrochemical synthesis
Acidic conditions for deposition
Insoluble in common solvents
Carcinogenic monomer

Higher Processibility

Aqueous Dispersions

Higher Conductivity

Amenable to alternate deposition

techniques

Nanoscale Sensor Fabrication DCU

The Na.

Synthesis of Nanoparticles

- Rapid Mixing method*
- Monomer to Oxidant ratio = 4:1

- DBSA added to serve as dopant & surfactant (provide micelle structure to stabilise particles)
- SDS present also acts as surfactant for stabilisation

* Jiaxing Huang, Richard B. Kaner, Angew. Chem. Int. Ed. 2004, 43, 5817-5821

DBSA Micelle

The National Centre for Sensor Research

Polyaniline Nanoparticles

No Stabiliser Present

Stabiliser Present

DCU

(i) Electrodeposition of Nanoparticles

SEM Imaging of Protein on Nanoparticulate Films

* Imaging done using silverenhanced gold labelled protein (Mo anti-HCGβ antibody)

*Morrin, A., Ngamna, O., Moulton, S., Killard, A.J., Smyth, M.R. (2004). Electroanalysis, 17:423.

(ii) Casting

Morrin, A., Wilbeer, F., Ngamna, O., Moulton, S., Killard, A.J., Smyth, M.R. (2004). *Electrochem. Comm.*, 7:317-322

The National Centre for Sensor Research

DCU

(iii) Inkjet Printing

- Method for casting ultra-thin films, (deposits microdroplets of 2-12 pL)
- High precision, resolution of ~ 25 μm.
- Amenable to simultaneous deposition of more than one "ink".
- Non-contact Printing. (substrate and print head don't touch)
- Rapid method, quality of print easily monitored in real time.

Inkjet Printing Technologies

Thermal

Piezoelectric

The National Centre for Sensor Research

Instrumentation Strategy for Ink-Jet Printing

- Epson desktop printer
 (2880 x 720 drops per inch)
- Uses piezo technology
- Drop on demand
- Favoured over other more expensive single head devices due to the four available reservoirs.

Screen-

Printed

electrode

Electrochemistry of Inkjet Printed Polyaniline

Profilometry
Drop-coated (5 μl)

Inkjet printed (50 prints)

X Profile X: 0.981 mm X: 0.020 mm X: 1.001 mm Y: 2.285 um Y: -0.149 um 2.00-

Y Profile X: 2.7 mm 2 20 18 16 14 12 10 8 6 4 2 X: 2.8 mm Y: 2.3 um X: 0.1 mm Y: 0.1 um

The National Centre for Sensor Research

Drop-Coating vs. Inkjet Printing

- > 50 prints comparable to dropcoating 2.5 μl (Equates to ~ 20 nl / mm²)
- ➤ Difference in deposition techniques responsible for comparable CVs.

Water-Soluble Polyaniline

- Poly(2-methoxyaniline-5-sulphonic acid) (*PMAS*) Sulphonated polyaniline
- PMAS must complex with a polycation (poly-L-lyseine (PLL)) to render it insoluble
- Need to co-deposit, i.e., print simultaneously Inkjet has that facility

Water-Soluble Polyaniline

- Demonstrates unique advantages of using inkjet printing
- •The inkjet printed films show improved electrochemistry compared to the evaporative cast films, indicating more efficient electron transfer process
- •This will lead to improvement of biosensor performance

Biosensor Application

Real-Time Multi-Calibration Study

Flow Cell Setup

- ➤ HRP & H₂O₂ passed over together for short periods of time.
- ➤ Concentrations from 5 ppm to 0.1 ppm HRP with 10 mM H₂O₂ used.
- ➤ Decreasing slopes

Ammonia Sensing

> Chemical & Gas Sensing

Environmental, Automotive, Chemical, Medical

> Biosensing

Measurement in biosensors is finding increasing applications as ammonium ions are a metabolic product in many enzymatic reactions.

E.g., Urea and Creatinine can be detected by sensing in this way

Ammonium Ion Sensing

The National Centre for Sensor Research

And To Conclude.....

- Synthesised polyaniline nanoparticles by a 'rapid-mixing' method
- Applied nanoparticles for nanostructuring macroscopic electrodes.
- Casting by Inkjet printing: most promising approach: high quality & amenable to manufacturing
- Demonstrated applications for these modified electrodes, e.g., biosensing – catalytic reduction of H₂O₂ and chemical sensing of ammonium ions.

Acknowledgements

- Prof. Malcolm Smyth
- Dr. Tony Killard
- Dr. Máire O'Connor, Eimer O'Malley & Claire McMorrow and all the Sensors & Separations group
- Henry Barry (NCSR)
- Prof. Gordon Wallace, Dr. Simon Moulton and Dr. Orawan Ngamna (UoW)
- € € € € € € from Enterprise Ireland under the technological development plan TD/03/107

