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Abstract
The topics of this thesis are event detection and social network analysis in social me-

dia. Our work centres on Geo-tagged User Generated Content (UGC) in Twitter, such as

Twitter data generated from the metropolitan area of Dublin Ireland over a one month pe-

riod of time. In this thesis we address the problem of how to detect small scale unexpected

events using UGC both in real-time and retrospectively. We proposed a language-text joint

modeling algorithm to cope with the large volume and unstructured nature of UGC. We

also demonstrate our discovery of interesting correlations between a Twitter user’s social

communities and their mobility patterns. Finally a set of features are proposed for carrying

out Twitter user’s account type classification, for the purpose of irrelevant contents filter-

ing. This thesis includes several experimental evaluations using real data from users and

shows the performance of our algorithms in event detection and provide evidence for our

discoveries.
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Chapter 1

Introduction

If you live in an urban area, then how well do you know the city in which you live? How

do you keep yourself informed of the multiplicity of social, economic, cultural and envi-

ronmental events that happen around your city every day? Many of us may pride ourselves

on being in touch with what is happening in our environments, on having our finger on the

pulse of our “home town”, but many more would perhaps like to be better informed and

there are always things going on that you don’t know of, or things that happen in an unan-

ticipated, unscheduled way. Especially, this kind of information is of huge interest to people

like city managers, who want to collect information from every possible corner of the city

in an automatic and easy way. These requirements from city managements are incorporated

into the Smart City Project.

The Smart City project, introduced by IBM [56], is a city which functions in a sustain-

able and intelligent way, by integrating all its infrastructures and services into a cohesive

whole and using intelligent devices for monitoring and control to ensure sustainability and

efficiency. The solution to realising the smart city goal is to build several smart systems

for specific requirements. Such smart systems are expected to have the functionalities of

being able to automatically detect unexpected events and generate alerts to users in almost

real-time together with analysis of the event contexts. Such systems should also be able to

carry out analysis of past-events. We also expect such systems to be able to help users to

understand city dynamics in a much simpler and effective way.
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Such smart systems in a city may be represented by video surveillance, on the basis of

closed circuit television (CCTV), already in position and of widespread use in our cities.

Video surveillance has been the traditional and comventional approach to capture events in

urban environments. Technological advances in the last decade have led to a large number

of distinct research topics related to video surveillance, including crowd density estimation

[21, 65, 42, 15], crowd behaviour monitoring and face recognition [26], and modeling and

identification of group motion. However, despite substantial progress made in recent years,

numerous challenges still remain, such as physical challenges because CCTV can be hard

and expensive to install, coverage can be less than 100% of the area of the city, data anal-

ysis relies heavily on human involvements, surveillance can be sensitive to environmental

factors such as rain, snow, darkness, even spiders on the camera lens. Most especially, con-

text analysis through video processing remains a challenging task in terms of accuracy and

processing efficiency.

The forces that shape the dynamics of a city are multifarious and complex. Cultural

perceptions, economic factors, municipal borders, demography, geography, and resources

all shape and constrain the texture and character of local urban life. It can be extremely

difficult to convey these intricacies to an outsider; one may call them well-kept secrets,

sometimes only even partially known to the locals. When outsiders, such as researchers,

journalists, or city planners, do want to learn about a city, it often requires hundreds of

hours of observation and interviews. And although such methods offer a way to gather

deep insights about certain aspects of city life, they simply do not scale, and so can only

ever uncover a partial image of the inner workings of a city.

Social media as a new form of sensing technology has been adopted by some of the

above smart systems in recent years and has attracted many researchers into the field who

are interested in analysis of city dynamics. However, social media is different from tradi-

tional media as an information source in many aspects. In order to assure reliability and to

match the performance of traditional media, there are still many challenges to be solved, for

example: how can we correctly interpret these new multimedia contents? Can we efficiently

extract useful information from this immense stream of information without getting over-
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whelmed by non-relevant contents? The current research area of social media analysis is

trying to answer these two questions. Twitter in particular has been the most studied social

media by researchers, because of its popularity and public availability. In this research we

use Twitter as our main social media research target. Although we focus explicitly on Twit-

ter in this thesis, in the future work, we will incorporate other types of social media, such

Facebook and Foursquare for the purpose of event detection and social network analysis.

1.1 Introducing Social Media as a New Way of Sensing

The increasing use of ubiquitous devices by social media users, including publishing their

live status through GPS-embedded smart devices, creates a new sensing paradigm in which

social media users are part of a distributed sensory organism of the city. This opens up

unique opportunities to measure urban dynamics in all of its facets, from social events to

demographics.

The various forms of social media include Twitter, Facebook, Foursquare, Flickr, YouTube,

etc. These new ways of communication have attracted tens of millions of users, who would

like to share what they see and to express their feelings at anytime and from anywhere.

These User Generated Contents (UGC) are information rich, they usually include text de-

scriptions, geo-locations, time and a large amount of meta-data associated with the user

who generates the content. Such characteristics present huge potential for real-time event

detection and population demographic analysis. Each individual who is a social media user

and also a participant in an event can be considered as a sensor, and for these sensors to

be able to generate a live report they only need a network connection which is already in

position in many modern cities. This presents a huge advantage over CCTV systems in

terms of accessibility and resistance to environmental affects.
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Figure 1.1: Traditional Media vs Social Media

For example, during the 2010 snowstorm in Scotland, people were better informed

about blocked traffic, about motorists stuck in snow, about impassible roads, etc. in real-

time through Twitter than through the official agencies (police and other governmental

agency). Such updates were a lifeline for many of the travelers, some of them caught for

almost 20 hours on the M80 motorway. However, many such data sources can be noisy or

contain misinformation, as was the case in the recent riots in London, and the challenge is to

identify the reliability and significance of a piece of information and then inform the stake-

holders appropriately. Others, such as journalists, city planners, essential service providers

(the police force, fire and rescue services) have crucial vested interests in having early sight

of events in a city as well as the ability to track these events as they evolve. For such

agencies it would be very useful to record key characteristics of events after the fact, from

factual details as to their effect on city infrastructural resources to less tangible impacts

such as public response or feeling. It is important to be able to record such factors either

for posterity or in order to be able to better equip our city and its inhabitants to respond ap-

propriately the next time such phenomena occur. The objective of utilizing social networks

is to identify the events as and when they occur, and together with novel visualization tools

we are able to create real-time representation measuring the contents and scale of events,

and also record them for some future analyses to identify the cause-effect patterns of such

events. The analyzed results generated from such a system will form a reference for the city
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management that can be used to improve their current service facilities or to make smarter

decisions for future event planning activities.

Beyond a more comprehensive overview and analysis of events, both in real-time and

retrospectively, for prediction, this holistic approach is vital in potentially uncovering in-

accessible and hidden information about events that might never otherwise come to light.

For example, during a large concert, congestion at a particular traffic light is causing traffic

chaos in a given area and the possibility of easing this congestion by diverting traffic at vari-

ous places can be visualized if the police can visualize the effect of changing traffic patterns

in a real-time manner. It is important to have cause-effect analysis of various actions so that

the traffic controllers can make optimal decision.

Consider another example using the City Bikes schemes available in cities such as Lyon,

Toyama, Santander, Dublin and Luxembourg. Online information provides only the current

status of bicycle or free-slot availability. However, we have no idea how long this informa-

tion is valid for, at what times it is more reliable than others, and for which sites in which

cities this information changes too fast to be reliable. A recent tweet about a bicycle stand

could have helped another user to make the right decision on where to collect, or drop off,

a bicycle. There is added value to the information being generated that is not being ex-

ploited. In strategic terms, city planners may wish to expand bicycle sites or to install new

ones. On what information can they make these decisions? Currently, this must be based on

guesswork but with proper analyses, they can support their decision making with accurate

descriptions of fine-grained usage of these resources.

1.1.1 Potential Application of Social Media as an Event Detection Tool

We believe that a system for detecting and tracking events, based on social media sensors,

can be useful in very different scenarios. In particular, we see the following customer groups

and use cases:

• Police forces, fire departments and governmental organizations will want to increase

their situational awareness picture about the area they are responsible for.
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• Journalists and news agencies will want to be informed instantly about breaking news

events.

• Private customers that have an interest in what is going on in their area. Here, the

particular nature of Twitter and its adoption by a younger, “trendy" crowd suggests

applications along the lines of, e.g., a real-time New York City party finder, to name

just one possibility.

1.2 Introduction to Twitter Community Analysis

Social network community are group of users who are related through direct or indirect

social relationships, such as following in Twitter case. The most important characteristics

of these users are that they would like to share what they see, what they hear, and their point

of view towards certain things. In the context of an event occurrences, such as a house fire,

these users would like to share this piece of information with their friends within his/her

social community, then their friends may spread this piece of information within their own

communities. This information spreading within communities may cause a chain reaction,

such a chain reaction may be another different clue of events detection too. As well as

a way to broadcast messages across communities of users, Twitter is also a new way of

direct communication between people, particularly between friends. Friendship between

Twitter users is defined through the following-follower feature of Twitter. Exchanges of

tweets directly between users can be realised through mentioning another Twitter user’s

name, specified by prefixing a Twitter username with an @ symbol as in @exampleuser.

This means that the message or tweet is either a direct message to another user, or mentions

another Twitter user’s name. By analyzing the topology of follower-following relationships

and conversations between users, we can derive social communities among users.

However what is the reason for one user to consider another user as his/her friend?

In Java et al.’s work [30], they show that having a common topic of interest is one of

the motivations behind the formation of these communities. Their work also shows that

some users who act as a information source and who constantly publish tweets can be
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influential figures inside their communities. But it is reasonable for us to expect that there

might be other factors which may also cause the formation of such communities, such as

a user’s social status or mobility patterns. A smart system created based on the analysis

of community structures in Twitter may have potential for urban dynamic analysis. Such

techniques overcome the traditional costly and time-consuming public survey methods.

1.3 Other type of Sensors

Bluetooth sensing is a different type of sensing technique for smart crowd monitoring. Ev-

ery Bluetooth device is identified by a unique number, called its MAC address. This unique

number can be applied to identify each individual in a crowd based on the unique Bluetooth

device (usually a smartphone), that each user carries with them; this can avoid repeated

counting in cases of crowd number estimation. Also Bluetooth sensing devices are much

cheaper than CCTV devices; such devices are illustrated in figure 1.2.

(a) Dreamplug device (b) Bluetooth antenna

Figure 1.2: Bluetooth sensing devices

Bluetooth communication is through radio signals. With properly installed antenna the

sensing range can be 150 meters, and the signal is not sensitive to weather conditions. A

Bluetooth sensing technique presents great advantages over video surveillance in terms of
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cost and energy consumption. However how to carry out good implementations of this

new techniques is still non-trival. This research will later briefly examine the potential of

Bluetooth as a type of sensor for crowd monitoring.

1.4 Hypothesis and Research Questions:

The correct interpretation of social media information, especially real-time semantic anal-

ysis, imposes challenging problems to social media analysis due to the sheer volume of

data in a short time and its noisy contents, such as being short in length, and with informal

language format. In addition, a large part of the data are irrelevant or meaningless due to

the nature of social media.

Social media data mining is still heavily relying on text retrieval. Text retrieval is a

large branch of information retrieval and traditional text-based searching principles have

been well founded since they started in the early 1960s. The task of text-based retrieval

is to match the user query against a set of free-text records which are organized as docu-

ments like newspaper articles, web pages, video manuscripts and so on. The very successful

technologies in text retrieval like term weighting [5], the Vector Space Model [61], the Lan-

guage Model [57], PageRank for assigning importance based on links [54], to name a few,

are adopted in many applications. Furthermore, text retrieval has been proved to be effi-

cient on a large scale by current Web search engines such as Google 1 , Yahoo! 2 , Baidu 3

, Bing 4 , etc., in which text-based retrieval is the fundamental basis. However in the case

of social media information retrieval, such traditional methods can’t be applied directly be-

cause of the reasons mentioned above. In order to understand such a noisy content, we

are looking for auxiliary ways to help us understand the contents of social media. "Con-

tent without context is meaningless", referenced from Jain et al.’s work [29], shows that

context could be one of the ways which may help us to better interpret contents. In terms

of event occurrances, "where, when and who" will be a good context for us to understand
1http://www.google.com
2http://search.yahoo.com
3http://www.baidu.com
4http://www.bing.com
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any events related to social media content. In this research, we will concentrate on times-

tamped, geolocation-embeded Twitter content, which represent the context of "where and

when", and we will limit our target to Dublin Twitter users. This makes our analysis more

challenging in terms of even more sparseness in data as compare to London or New York.

Previous research has shown that most Twitter users have a certain level of consistency in

their tweeting contents [48]. Through our observations, we found that users in our dataset

have favourite locations where they like to always visit and send tweets, such places can

be presumed to be where they work or live. Prompted by this intuition, we derive our first

research question in this thesis.

(RQ1:) Is there some consistency in user’s tweeting activities in certain areas of the

city over time, such as regular users appearance and topic of interests?

Twitter allows users to follow other users or follow back, users form communities us-

ing this method, several interesting characteristics have been discoverd within these com-

munities and attracted a lot of research attention. One of these features is "Homophily".

Homophily is a phenomenon showing that people’s social networks "are homogeneous with

regard to many sociodemographic, behavioral, and intrapersonal characteristics" [44]. In

the context of Twitter, homophily implies that a twitterer follows a friend because she is

interested in some topics that the friend is publishing about, and the friend follows back

because she finds they share similar topical interests. Several users are grouped together

because of this reason, these groups are called social media online communities, Many

studies have shown that such communities are a major source of information spreading and

etc. But do people form their communities just because their common interests? Are there

any other factors which brings these users together? Are these users connected to each other

also because they have a similar lifestyle? All of these interesting questions lead us to our

second research question which is to be solved in this research:

(RQ2:) Do users within the same community also have similar mobility patterns (be-

cause of homophily phenomenon)?

A single user may have multiple intentions or may even serve different roles in different

communities [29]. When we view the topology of our derived communities, certain users
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appear to be the centre or main connections of different communities. These people should

be our major concerns when we want to understand other users’ behaviours, these peo-

ple may be the information source, and other people’s reactions may be affected by these

people, etc. This leads us to another research question:

(RQ3:) Are users who have the most number of friends connections really more influ-

ential with high Klout4.3 score figure in Twitter?

The popularity and open structure of Twitter has attracted a large number of automated

programs, known as bots, which appear to be a double-edged sword to Twitter. Legitimate

bots generate a large amount of benign tweets delivering news and updating feeds, while

malicious bots spread spam or malicious contents. More interestingly, in the middle be-

tween human and bot, there has emerged the cyborg referring to either bot-assisted human

or human-assisted bot [18]. Information generated from these "users" is not related to what

we are intereted in, in order to avoid being overwhelmed by these irrelavant information,

and to build a more reliable system, we need a way to filter our information, to target the

origin of the information would be an easier solution.

(RQ4:) How can we filter out non related twitter accounts in order to enhance our

system’s performance?

These four research questions help us to formulate an overall hypothesis for our work,

namely that "Social Media as a new way of sensing technology can work as an extension

of traditional media for urban city dynamics interpretation". This hypothesis reflects the

notion that we will use social media analysis technologies in our work for mining live dy-

namics of the urban city, such as live event detection and population demographics analysis.

However, this does not mean we will give up traditional media and completely rely on so-

cial media information to accomplish the above tasks. On the contrary, social media sensing

technology will be assimilated with other technologies in our work, these other technolo-

gies include video and audio surveillance, and Bluetooth sensing technologies. We use the

word "extension" in our hypothesis with the meaning that social web sensing technologies

can be brought into the process of event analysis in urban city dynamics interpretation and

achieve satisfactory performance in event detection and population demographics analysis.
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1.5 Thesis Structure

The above proposed four research questions and overall hypothesis are addressed in the fol-

lowing chapters in the thesis. The thesis expands the research questions with an overview

of current research methodologies on event detection and social community analysis in so-

cial media, together with some interesting phenomena discovered from our observations.

Then the development of new algorithms and the modeling of research problems are de-

scribed in detail as well as the demonstration of our experimental results and application

performances.

Chapter 2 gives a brief background description of state-of-the-art methodologies in so-

cial media event detection research and social media community analysis. The prevailing

social media content language modeling and social media community analysis techniques

are discussed to illustrate the potential benefit of social media applied to smart city man-

agement. In addition, the difference between social media and traditional multimedia are

compared in terms of unexpected event detection and understanding of demographic struc-

ture. We also talk about twitter as our research target and we analyze the corresponding

difficulties induced respectively.

Chapter 3 starts with an explanation of our proposed method for detection of small scale

unusual event, based on geo-social regularities of Twitter user behavior, and gives details

about the experiments we carried out for testing the reliability of our language models built

for each of 25 partitions of Dublin city, We answer RQ1 based on the analysis of our

experimental results. We also briefly explained the future work we are planing to do for the

next stage of this work.

Chapter 4 briefly talks about the work we carried out on Twitter social communities.

First, we demonstrate our discovery of certain levels of the homophily phenomenon in

users’ mobility patterns who are within the same Twitter social community. Then we ana-

lyze the influence of users within our derived Twitter social community. Small scale exper-

iments were carried out to support our discoveries. We answer RQ2 and RQ3 based on the

analysis to our experimental results. At the end of the chapter, we again briefly explain the
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future work we are planning to do in the next stage for identifying the correlations between

a Twitter user’s social relationship and their social economical background.

Chapter 5 demonstrates our observations on our users’ geographical and temporal tweet-

ing behaviours. We find that although Twitter users are more active in their favourite lo-

cations in terms of tweet generation, such as their home, workplace or leisure places, they

do contribute a significant amount of tweets from random locations, and these tweets are

of particular interest to us for event detection tasks. By studying the temporal tweeting

patterns of our users, we can identify groups of users with similar patterns and be able to

roughly estimate their social status. In the end of the chapter, we talk about our discovery of

interesting correlations between Twitter users tweeting activities and population densities

in the Dublin city areas.

Chapter 6 explains our experiments implementing state-of-the-art methodologies for

user account type classification to our dataset, and together with some results and analysis.

Chapter 7 ends this thesis with some conclusions as well as future avenues for other

research.
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Chapter 2

Background and Related Work

2.1 Introduction

In this chapter we present some of the background work to our research and we provide

some pointers to previous work related to our study. Social media sites (e.g., Twitter, Face-

book, and YouTube) have emerged as powerful means of communication for people looking

to share and exchange information on a wide variety of topics. Our interest is in cases where

people use social media sites for reporting real-world events as they are happening and also

forming social communities. In this research we focus on Twitter1 as a social media site

because of its prominence and the easy availability of data through public and open APIs.

Background: Twitter is a popular website with more than 500 million registered users

as of Jun, 2013. Twitter’s core function allows users to post short textual messages, or

tweets, which are up to 140 characters long. Several features play important roles on Twit-

ter. Specifically, Twitter users can use the hashtag annotation format (eg.,#dublinGAA) to

indicate what their 140 character posted messages are about or to capture other aspects or

characteristics related to the message. In addition, Twitter allows several ways for users

to directly converse with each other and to interact with other users by referencing each

other in messages using the @ symbol. A reply is a public message from one user that
1www.twitter.com
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is a response to another user’s message. Replies start with the replied-to user @username

(e.g., "@whitey252 I’m there where are you?"). A mention is a message that includes other

username in the text of the message (e.g., "like the tour @onedirection"). Although the

length of a tweet is limited to 140 characters, Twitter allows url links to be attached to each

tweet, these url links provide linkage to other web contents such as news or advertisements.

This link feature is well adopted by users as an extension to their Twitter contents, such

as "@rtenews Educate Together to run two new schools http://www.dublinbus.ie/en/News-

Centre/General-News/Townsend-Street-Diversions/". Twitter does not have direct support

for pictures, but allows users to use the link feature to attach a url link to a third party image

application, such as Flickr, Instagram etc. This picture link feature plays an important role

in enriching the multimedia contents of Twitter.

Much research work has been carried out and reported in the literature utilizing the charac-

teristics revealed by these Twitter features, including the realtime detection of live events,

which is where our interest lies. Twitter messages can be constructed to reflect useful event

information for a variety of events of different types and scale. In particular they can be used

for unplanned events which is more challenging than planned events. For example, Twitter

users live broadcast the protests in Iran [23] and the Mumbai blasts [2]. Some examples

of these can be seen in Figure 2.1. Some studies on the content of Twitter around these

events, carried out retrospectively can be used to demonstrate the evolution and progression

of events over time [13].
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Figure 2.1: Twitter community tweets about some major events

Twitter users react to live events through tweets so fast that sometimes Twitter spreads

news prior to the traditional news media [33, 60]. Often, Twitter users post messages in

anticipation of an event, which can lead to early identification of interest in these events.

Additionally, Twitter users often post information about local, community-specific events

(e.g., a local flood), where traditional news coverage at a regional or national level is low or

non-existent. It is this type of event with which we are concerned in this research.

The huge potential of utilizing Twitter as a new type of event sensing media has been

adopted by many large projects. These projects incorporate Twitter as an assistant to tra-

ditional event surveillance technologies in urban city areas. These include the IBM Smart

City Project 2 being carried out in Dublin, Ireland, and the SAGACITY project3. One im-

portant objective of the SAGACITY project is to design a generic and modular architectural

framework for harvesting social media data, and mining and linking events and activities

which can be detected from this social media data. This platform will support adding new

modules for integrating new data sources, analysis and event mining tools. Twitter is inte-

grated into the SAGACITY project as one of these seeking event mining tools. In the next

section, we look more closely at how event detection in social media has been carried out
2http://www.ibm.com/smarterplanet/us/en/smarter_cities/overview/
3http://cordis.europa.eu/fp7/ict/
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by other researchers in the field.

2.2 Event Detection in Social Media

Event detection has long been a research topic across many application areas and using

any sources of data or information [71]. The topic detection and tracking (TDT) and news

event detection task carried out as part of the annual TREC benchmarking activity at the

National Institute of Standards and Technology (NIST) [6] was a notable collective effort

to discover and organize news events from a continuous stream of text information (e.g.

newswire, radio broadcast). The TDT track of TREC pre-dated the emergence of Twitter

and so social media wasn’t used as a data source, but the TDT work represents one of the

first coordinated approaches to event detection.

This early work leveraged natural language processing tools, such as named-entity ex-

traction for online news event identification. Such tools work well on well-structured text

like newspaper articles and TV broadcasts, but do not perform well over social media con-

tents due to their heterogeneous and noisy nature. To tackle this problem, other methods

have been proposed by researchers. Twitterstand [62] gathers and disseminates breaking

news from Twitter, and uses an online clustering method to cluster similar Twitter messages,

and a naive Bayesian classifier to deal with the noisy nature of Twitter contents. Sakaki et al.

[60] classify Twitter contents using a Support Vector Machine [19] based on proposed fea-

tures. Event detection in textual news documents has also been studied in depth. Looking

at text stream data from social blogs and email, Zhao et al. [73] detect events using textual,

social, and temporal document characteristics. However compared to Twitter, social blogs

and email have much better quality content in terms of document length, language quality

and overall linguistic coherence. Various methods have been proposed in recent research

which carry out real-time event detection tasks using social media, Twitter in particular,

such as streaming first story detection [55] and breaking news detection [33]. Twitcident

[3, 4] enables filtering, searching, and analyzing Twitter information streams during inci-

dents as they are happening. The system listens to a broadcast network which provides
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information about incidents. Whenever a new message comes in, it searches for related

tweets which are semantically extended in order to allow for effective filtering. Users may

also make use of a faceted search interface to dive deeper into these tweets. Other work

[9, 63, 10] also reports work carried out for real-time event detection from Twitter based on

temporal and textual features of tweets on the Twitter social network.

These previous works successfully developed detection of breaking news or live events

in Twitter streams. Their methods are sensitive to large scale events such as the Presidential

inauguration in the USA. This is because they rely on the fact that the target events are

able to generate significant boosts from among the main stream of Twitter. Our research

concerns events that do not occur in a global setting but in a small city area, Dublin city in

our case, and are thus of a much smaller scale, much more local and focussed, such as local

floods or a local party.

In recent years, along with the popularity of geolocation enabled smart devices, social

media contents have more multimedia information integrated, such as GPS coordinates.

Social media users are able to not only report events in real-time, but also to provide the

locations of where the events occurred. So, event detection techniques should be extended

to incorporate these new features of social media information in addition the functionality

of the detection platform should be expanded with the capability to measure the scale of

the target events in terms of space and temporal duration. Several studies have been done

in geo-tagged social media mining for event detection. For analysis of geo-social charac-

teristics with blogging sites, Moriya et al. [49] developed a system that estimates images,

impressions, or the atmosphere felt by bloggers about a region from texts, in relation to

geographic information provided by blogs, and the resultant analysis displayed the results

on a digital map. This work is similar to our approach in terms of geo-social analysis, but

our targeted media are much noisier in terms of textual contents as mentioned above. Rat-

tenbury et al. [59] use a Scale-structure Identification method to extract place and event

semantics for tags based on GPS metadata of images in Flickr4, however, in our work we

did not attempt to aggregate social media documents.
4http://www.flickr.com/
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In X. Liu et al.’s work [39], they proposed a framework which uses multi-modality fea-

tures such as text, time, visual features and "owner" metadata to correlate Flickr images

with events. Also in their other work [40, 41], they present a method combining semantic

inferencing and visual analysis for finding automatically media (photos and videos) illus-

trating events. This previous work achieved good results in event detection on Flickr, but

the detection is for events which are mainly retrospective, detecting events from past data

whereas the aim of our research is real-time event detection.

Other methodologies used in the literature for event detection involve identification

of bursts in the time and frequency domain. In [24], the authors apply Discriete Fourier

Transformation (DFT), which converts the signals form the time domain into the frequency

domain. A burst in the time domain corresponds to a spike in the frequency domain. In

their later work, they used a Gaussian Mixture model to estimate the time period of which

the event burst happen. Wavelet analysis is used to build signals for individual words, event

detection with clustering of such signals is carried out in Twitter data [69] and Flickr data

[16]. In Weng and Lee’s work [69], they address the challenge of constructing a signal for

each word occurring in Twitter messages using wavelet analysis, thereby making it easy to

detect bursts of word usage. Frequently recurring bursts can then be filtered by evaluating

their auto-correlation. The remaining signals are cross-correlated pairwise and clustered

using a modularity-based graph partitioning of the resulting matrix. Due to the quadratic

complexity of pairwise correlation, they rely on heavy pre-processing and filtering to reduce

their test set to approximately 8,000 words. As a result, they mainly detected large sporting

events, such as soccer world cup games, and elections.

Sakaki et al. [60] present an approach that gathers tweets for target events that can

be defined by a user via keywords. The authors apply classification and particle filtering

methods for detecting events, e.g., earthquakes in Japan. However their targeted events are

too specific, their users have to describe the events with event specific keywords, and this

leads to a bad extensibility to their system. What all this work represents is a considerable

effort in building and using ontologies in the task of event detection in social media. Mostly,

ontologies have been useful assets in the detection task, but their drawbacks are in the large
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effort needed to construct them, and the fact that there isn’t a single best way to use them.

Other interesting work has also been carrried out by researchers in the field related to the

relationships between events and social media. In Liu et al.’s most recent work [38], they

addressed the problem of organizing media data by events. In their work, they reported

the study of both feature selection and handling missing value in the scope of event based

media categorization.

Identifying events in real-time on Twitter remains a challenging problem. Particularly

in our case, our research target location is much smaller compared to larger areas like New

York or London in terms of Twitter volumes, and our target events are also at a small

scale, such as local floods, traffic accidents etc. This makes creating a system for detecting

these patterns and events even more difficult. The methodology proposed in this research is

broadly related to 3 categories: topic modelling, text retrieval and text classification.

(a) Topic Modelling One important part of our event detection method used in this re-

search is identification of geographical topic of interests. We model a location by its social

media users’ topic of interests. Topic modeling is a classic problem in text mining. The

most representative models include PLSA [25] and LDA [12]. Wang et al. [68] use an

LDA-style topic model to capture both the topic structure and the changes over time. In

these studies, they do not consider the location information of the documents, so they do

not focus on geographical topics. In [67], Wang et al. propose a Location Aware Topic

Model to explicitly model the relationships between locations and words, where the loca-

tions are represented by predefined location terms in the documents.

Mei et al. [46] proposed a probabilistic approach to model the subtopic themes and

spatiotemporal theme patterns simultaneously in weblogs, where the locations need to be

predefined. However, in geographical topic discovery, we do not know the locations or

regions of interest beforehand. If we directly use the administrative region partitions, it

would be difficult to discover topics whose corresponding regions are not aligned well with

the pre-segmented regions. In [45], Mei et al. proposed a model called NetPLSA to com-

bine PLSA with a graph-based regularizer, where adjacent nodes in a document similarity
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graph should have similar topic distribution. The techniques proposed in these previous

works will be used for testing the performance against our method.

(b) Text Retrieval Later in this thesis we describe how we build formal mathematical

models using a language modelling approach, to model the distribution of words among

social media data. Once the language models are built from the social media contents, the

next step is event related content retrieval. The retrieval model implemented in this re-

search is an enhanced version of the model described in [47], which combines the language

modeling [58] and inference network [20] approaches to information retrieval.

(c) Text classification Another important task of event detection in social media is text

classification. This classification clusters texts with similarity in semantics and furthermore

identifies the topic of the clustered contents. Existing work on classification of short text

messages integrates messages with meta-information from other information sources such

as Wikipedia and WordNet [8, 27]. In classification of short texts such as Twitter, Sriram et

al. [64] use a small set of domain-specific features extracted from a user’s profile and text.

Their proposed approach effectively classifies the text to a pre-defined set of generic classes

such as news and events. Sakaki et al. [60] carried out semantic analysis using Support

Vector Machines [19] based on proposed features; we proposed a set of 4 features for tweet

type classification: presence of personal pronouns, emphasis on words, presence of slang

words, and presence of non-ASCII keywords. In Hila et al. [11]’s work, they proposed

features to classify whether a tweet is event-related or not. Some of these proposed methods

will be used in our research.

Apart from event detection, researchers are also interested in the social networks which

are generated between social media users. Research has shown strong correlations between

users’ online social media communities and their social status in the real world. This is

another research topic of this research. In the next section, we will provide a review for the

work reported in this literature.
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2.3 Social Network Community Analysis and Population Demo-

graphics

Background Social networks represent the links between a set of entities connected to

each other via different types of relationships. In the case of Twitter, which is a recently-

emerged way of communication between people, users share status between each other,

particularly between friends. Friends in Twitter setup their connections by following each

other, and communicate by mentioning the name of their friends. Twitter messages going

back and forth between people are similar to making phone calls, but for different purposes,

such as friends sharing their feelings through Twitter in their friends circle. In this section

we will review some research work studying the topological and geographical properties of

Twitter’s social networks, this work is closely relate to our study.

A fundamental property of social networks is that people tend to have attributes similar

to those of their friends. There are two underlying reasons for this:

• First, the process of social influence leads people to adopt behaviours exhibited by

those they interact with; this effect is at work in many settings where new ideas

diffuse by word-of-mouth or imitation through a network of people.

• Second, people tend to form relationships with others who are already similar to

them. This phenomenon, which is often termed selection, has a long history of study

in sociology.

@ Aristotle "People love those who are like themselves" @ Plato "Similarity begets

friendship" @ Lazarsfield & Merton "Birds of a feather flock together" [53].

2.3.1 Homophily

Homophily is the principle that a contact between similar people occurs at a higher rate

than among dissimilar people [44]. This phenomenon is mainly studied by sociologists.

Recently, this idea was introduced by researchers to the analytics of social networks in
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social media such as blog posts and Twitter. In a survey of bloggers, Nardi et al. [50] de-

scribe different motivations for "why we blog". Their findings indicate that blogs are used

as a tool to share daily experiences, opinions and commentary. Based on their interviews,

they also describe how bloggers form communities online that may support different social

groups in the real world. Lento et al. [35] examined the importance of social relationship in

determining if users would remain active in a blogging tool called Wallop. A user’s reten-

tion and interest in blogging could be predicted by the comments received and continued

relationship with other active members of the community. Users who are invited by people

with whom they share pre-exiting social relationships tend to stay longer and active in the

network. Moreover, certain communities were found to have a greater retention rate due to

existence of such relationships.

Mutual awareness in a social network has been found effective in discovering commu-

nities [37]. Weng et al.’s work on Twitter user relations reported that two users who follow

reciprocally share topical interests by mining their 50 thousands links [70]. Kwak et al.’s

work found a non-power-law follower distribution [33] in Twitter. In Java et al.’s work [31],

they identified different types of user intentions and studied community structures. Other

research has used the social network derived from exchange of telephone calls made be-

tween users to successfully predict these users’ social economical status. In chapter 4 of

this thesis, we will use the social communities derived from social networks in Twitter to

predict the users’ mobility patterns.

2.4 Summary

In this chapter we presented a high-level knowledge background for event detection from

social media information sources. An overview of aspects for social network community

analysis was also discussed in this chapter together with related work. As a new form of

multimedia, social media has its own characteristics compared to traditional media such as

broadcast TV, in modality, content quality, information diversity, etc. We take Twitter as

our research target and we analyzed the corresponding difficulties induced respectively.
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In the next chapter we will further elaborate on how semantic concepts contribute to

understanding events in social media and in particular how the combinations of irregular-

ity in social media user’s behaviour can be interpreted as events. In the rest of the thesis,

we will provide details of our work in developing our approaches to event detection and

dealing with such issues as semantic inconsistency detection and information filtering, as

well as enhancement of language modeling. We also give details to our analysis on corre-

lations between social networks of Twitter users and Twitter user mobility patterns. During

the description, state-of-the-art technologies will be compared and our further work plans

discussed within details of experiments and evaluation.
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Chapter 3

Event Detection in Social Media

3.1 Introduction

Recent advances in technology have enabled social media services such as Twitter to sup-

port space-time indexed data, and internet users from all over the world have created a large

volume of time-stamped, geo-located data. Such spatio-temporal data has immense value

for increasing situational awareness of local events, providing insights for investigations

and understanding the extent of incidents, their severity, and consequences, as well as their

time-evolving nature.

Event detection using geo-tagged Twitter data has attracted much research interest, such

as Sakaki et al. [60]. In this work, they present an approach that analyzes tweets related

to natural disasters, such events can be defined by Twitter users using specific keywords

in Twitter contents. They apply classification and filtering methods for reporting the sta-

tus of natural disasters, such as predicting the center of an earthquake and predicting the

trajectory of a typhoon. Their method presented convincing results, but their target events

are too specific, therefore their system does not have good scalability. In Lee et al. [34]’s

work, they proposed a geo-social event detection method based on the geographic regular-

ity which reflects a geographic region’s usual status through crowd behaviour observable

on Twitter. The methodology they proposed performs well for detecting large scale events,

such as festivals which happened in Japan. Both of the above event detection methods rely
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Figure 3.1: Bounding box covering research target area

on the fact that the target events are able to attract the attention of a large number of Twitter

users, and are able to cause a significant increase or decrease on the main stream of Twitter.

The type of events we discover in our work are often on a rather small-scale and localized,

they happen at a specific place in a given time period, such as a house fire, traffic jams, or

local flood. We are interested in working on a relatively small data-set, Dublin city in this

case, which is only approximately 1% of the size of New York in terms of the number of

tweets generated per day. Figure 3.1 shows the boundary of our target Dublin city area.

Because of the problems mentioned above, the event detection task is very challenging. In

this work, we present a geo-social event detection method based on geographical regulari-

25



ties of local crowd behaviour through Twitter. For the purpose of the detection of unusual

socio-geographic events, we first decide what the usual status of local crowd behaviour in

a geographical region is in terms of Twitter. After mapping the geo-tagged tweets onto

relevant locations on a map, we focus on the following points: First, a sudden increase or

decrease in the number of tweets happening in a geographical region which can be an im-

portant clue to an unusual event happening. Secondly, the increasing number of non-regular

visitors in a geographical region for a short time period may indicate the occurrence of a

local event. Thirdly, inconsistency in Twitter content in the region can be another important

clue of unusual events happen in the region. Our aim is to build an alert system based on

the detection results. This system can raise alarm in almost real-time for what is going on

in the city, in other words, "sensing the city pulse". Potential users of such a system are:

• Police forces, fire departments and governmental organizations to increase their situ-

ational awareness picture about the area they are responsible for.

• Journalists and news agencies to instantly be informed about breaking events.

• Private customers that have an interest in what is going on in their area.

• Event organizers that want to understand event participant behaviour.

3.2 Twitter and Geotagging

Twitter, as described in the Introduction, is a micro-blogging service which allows users to

share 140 character messages, also known as statuses and tweets. Users are automatically

shown the tweets of other users who they "follow". They can also keep track of conversa-

tions by searching for topics or usernames of interest. Status updates can be either publicly

available or restricted to a user’s connections. Users can make status updates on the Twitter

website, or using one of many applications that interface with Twitter. Twitter has many

mobile users, including some who use GPS-enabled devices to geotag their tweets. It is also

possible to allow Twitter to access browser location information to geotag a user’s tweets,

however the tagged locations are only at a high level, such as Dublin city, or southern city.
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Because our research target area is at a city level, tweets sent through browsers are not con-

sidered in this work. According to popular digital advertising website eightytwenty1, around

5% of tweets generated in Ireland are geotagged, we would expect higher ratio in Dublin

city area in terms of the higher ratio of smart phone users. Particularly in our dataset, we

collected 387,800 tweets over one month period from Dublin area, that is about 13,000 per

day, this is a significant amount considering the Twitter population size of Dublin. Appli-

cation developers have two options for attaching geotags to tweets: they can include the

latitude and longitude of the tweet, or they use Twitter’s reverse geocoding function to in-

clude a description of a place, for example at the neighbourhood level. Our analysis makes

use of those tweets which are tagged with the user’s coordinates. There is a Twitter-specific

syntax which will later be taken into account in building language models for different part

of a city. Tweets can contain mentions of usernames, specified by prefixing a username

with an @ symbol as in "@RTE1". Tweets can be tagged with a topic or other annotation,

by prefixing a tag with a hash to make a "hashtag" e.g. #twitterapi. Twitter users can also

"re-tweet" an other user’s status updates to relay a message to their own followers, by pre-

fixing a message with the "RT username:", or by clicking a "re-tweet" button, which results

in the tweet’s metadata showing it as a retweet. Retweets are just a duplicate of the original

tweet, so we do not consider these either. Table 3.1 lists the five most commonly occurring

sources of geotagged tweets, sampled within a month period. A source is the service such

as a website or application from which the user sent the tweet. Some services have the pur-

pose of providing information about the location of the user at the time the tweet was issued.

For example, Foursquare allows users to "check-in" at a venue to win points. A check-in

results in the creation of a tweet containing location information such as "I’m at the Auld

Dubliner (Dublin)". For example, Foursquare2 is the most popular location-oriented Twitter

application, and has been used for analysis of user spatio-temporal behaviour [51], but other

location-based services provide similar functionality, such as Instagram3 which allow users

to upload pictures etc. But through our observations, the majority of the tweets generated
1www.eightytwenty.ie, date accessed 01-06-2013
2https://foursquare.com/
3http://instagram.com/
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through these check-in services are automatically generated contents, they do not provide

useful information in their contents, such as the Foursquare generated tweets given above,

so tweets from these sources are not considered in this work.

Table 3.1: Most popular Geotagged Tweets source

Device % of tweets
Iphone 67%

Android 25%
Windows 4%

BlackBerry 2.4%
Mobile Web 1.4 %

3.3 Discovering Socio-geographical Boundaries

To detect unusual local events for a given large area, Dublin city area in this case, we first

need to determine how to partition the target city area into sub-areas by establishing socio-

geographic boundaries. In order to configure socio-geographic boundaries conveniently, we

adopt a clustering-based space partition method that can reflect a geographical distribution

of a dataset and better deal with heterogeneous regions differently. Some research work di-

vided the target area into equally sized grids with different granularity [16]. There are a few

reasons we chose not to use this approach. Firstly, the adequate cell size is very difficult to

determine. For instance, if we split a region into excessively small cells, most suburban ar-

eas will consume considerable unnecessary monitoring costs, even though the probability of

tweet occurrence is generally very rare. Secondly, since this approach does not consider the

geographical distribution of tweets, the balance over the target region becomes inefficient

and consequently results in poor detection performance. On the other hand, partitioning on

the basis of administrative districts also has a weakness since we cannot determine whether

crowd activity regions are strongly relevant or almost dependent on the administrative dis-

tricts. In addition, if two neighbouring districts are strongly connected to each other in

terms of social crowd activities, simply splitting them into two different groups will not be

a good choice.
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In detail, we adopt the K-means clustering method [43] based on the geographical oc-

currences of our dataset. The K-partitioned regions are demonstrated in different colours

onto a unit graph, as shown in Figure 3.2. As a result, we achieve an appropriate socio-

geographic boundary setting for the target region by distributing the actual occurrences of

tweets. The city of Dublin is partitioned into 25 regions empirically, 25 is decided using el-

bow method as shown in Figure 3.6, experimental results proofed that 25 is the best solution

for our case. By comparing the partition results to the actual population distribution of the

Dublin city area according to the Central Statistical Office data, as in Figure 3.3, the parti-

tion results are acceptable. Hot spots can easily be identified, such as city center area, where

there are high population density and high volume occurrence of tweets. In addition, some

low population areas which with high volume occurrence of tweets can be identified, such

as Dublin Airport and the Phoenix Park. Each polygon area in Figure 3.3 is called a Small

Area. "Small Areas are areas of population comprising between 50 and 200 dwellings cre-

ated by The National Institute of Regional and Spatial Analysis (NIRSA) on behalf of the

Ordnance Survey Ireland (OSi) in consultation with CSO. Small Areas were designed as

the lowest level of geography for the compilation of statistics in line with data protection

and generally comprise either complete or part of townlands or neighbourhoods. There is a

constraint on Small Areas that they must nest within Electoral Division boundaries. Small

areas were used as the basis for the Enumeration in Census 2011. Enumerators were as-

signed a number of adjacent Small Areas constituting around 400 dwellings in which they

had to visit every dwelling and deliver and collect a completed census form and record the

dwelling status of unoccupied dwellings. The small area boundaries have been amended in

line with population data from Census 2011".4.
4http://www.cso.ie/en/census/census2011boundaryfiles/
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Figure 3.2: Geo-social partitioning of Dublin
into 25 clusters Figure 3.3: Population distribution of Dublin

in Small Areas

Major Assumption Every Twitter user has his/her topic of interests, and favourite loca-

tions that he/she always likes to visit and send tweets, such as places they work or live.

Therefore for each location there is some consistency in Twitter activity, such as regular

users appearance and topic of interests over time.

3.4 Geo-Social Event Detection

Our assumption is that we can recognize local events from any inconsistency in Twitter

user behaviour in the location. In this section, we address the process of our proposed event

detection method in detail. We first describe a platform which is designed to realize the

proposed method based on the two critical functions: (1) geographic regularity construction

and (2) final event detection. In the following subsections, we will explain the process

separately from the configuration of socio-geographic boundaries to the final detection.

We present a summary of the status of these user behaviours:

1. The number of tweets sent in the zone in a given time window

2. List of regular users (visitors) in a given location

3. Language model for representing the semantic consistency of all of the tweets from
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a location

3.4.1 Measuring Geographical Regularities

This section explains how we set up the measurements of regularity and how we derived

our city partitions.

3.4.1.1 Regular Twitter Activity

Number of Tweets (NT) Within each partition of the city, there are a number of tweets

generated over time. In our work we analyze weekday and weekend days differently. This

is because certain partitions have different activities for weekday vs weekend day. Exam-

ples would be partitions covering business areas, such as industrial estates, which will be

relatively quiet during weekdays, but partitions covering shopping areas will be much more

active during the weekend. The regularity of the total amount of tweets is calculated using

the average of each day during a month period, with± 1 standard deviation. The results are

assigned into hourly bins, any number outside the 1 std will be considered as an unusual

activity, as shown in Figure 3.4.
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Figure 3.4: Twitter occurances in hourly bins

Number of Users (NU) For every partition we keep a list of regular Twitter users, these

users are constantly active inside the partition. If there are many unseen Twitter users

(visitors) sending tweets in the partition, we consider this as another clue of irregular Twitter

activity.

Semantic Regularity (SR) Measurement of semantic regularities is explained in the fol-

lowing sections.
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3.4.1.2 Locations as bags-of-words

For each tweet in our data collection, we keep the following sources of information: a Twit-

ter ID, a pair of geographical co-ordinates (latitude and longitude), tweet text, a timestamp

of when was the tweet was generated, a set of tags (mention tags and hash tags), the source

from which application the tweet was generated. After we identify the partitions of the city

area, we place each tweet into the partition, then use all of the texts in each partition to

derive a language model that represents the semantic consistency of the location. In order

to preserve the semantics of the tweet contents we do not apply any stop-word filtering,

special characters are removed, such as "#" and "@". Although special characters such as

emoticons can be useful for sentiment analysis, we do not consider them in this work, this

may be a subject for further analysis in future work.

3.4.1.3 Modeling The Language of Locations

We use the language modeling approach as described in Ponte and Croft [58] to build indi-

vidual models of locations for each of the partitions in the city. For each location, i.e. for

each of the city partitions, we estimate a distribution of terms associated with that location.

We can then estimate the probability that a new tweet was issued from a given location by

sampling from the term distribution for that location. The locations can then be ranked by

the probability that they “generated" the tweet. More concretely, given a set of locations

L, and a tweet T , our goal is to rank the locations by P (L|T ). Rather than estimate this

directly, we use Bayesian inversion:

P (L|T ) = P (T |θL)P (L)
P (T )

(3.1)

where L is the model of the location. Assuming independence between terms:

P (T |θL) =
∏
i

P (ti|θL) (3.2)
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The probability of a term, given a location, P (Ti|θL), is estimated using Dirichlet smooth-

ing [72]:

P (t|θL) =
c(t, L) + µP (t|θC)

|L|+ µ
(3.3)

where µ is a parameter set empirically, t,L is the term frequency of a term t for location L,

and |L| is the number of terms in location L. In this work we assume the prior probability

of the locations, P(L), is distributed uniformly. We ignore P (T ), since it is the same for all

locations, and thus does not affect the ranking. The locations can be ranked directly by the

probability of having "generated" the tweet, or they can be ranked by comparing the model

yielded by the tweet to the mode of the location using Kullback-Leibler (KL) divergence. In

this thesis we use both methods for ranking locations. When ranking by KL divergence, we

let θT be the language model for the tweet T and L be the language model for the location

L. Then the negative divergence from the query language model to the document language

model is:

KL(θT |θL) =
∑
i

P (t|θT ) log
P (t|θT )
P (t|θL)

(3.4)

where t is a term. The KL divergence is smoothed according to:

KL(θT |θL) =
∑
i

P (t|θT ) log
P (t|θT )
αP (t|θL)

+ log(α) (3.5)

where:

α =
µ

µ+ |L|
(3.6)

In this work we use the Lemur Toolkit [7] for building our language models and carrying

out our experiments.

3.4.1.4 Reliability of Our Language Models

As mentioned above, we generate language models for each partition of the city using

tweets generated from that area. We rely on the these language models to detect irregu-

larities in semantics, but how reliable are they? How accurate it can our language models

represent the consistency in the topics of interest in the location? Can we maximize the reli-
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ability of the language model? To address the above questions, we carried out experiments

to test our language models by trying to predict the generation of location of tweets, then

using the prediction accuracy to test the language model’s reliability. We explore different

ways to improve the accuracy of the prediction such as doubling or eliminating the weight

for hash tags and mention tags. Experimental results show that removal of hash tags do

not improve the accuracy of the prediction, however double mention tags does improve the

accuracy. Details are explained in the experiments and results section.

3.4.1.5 Semantic Irregularity

In order to identify semantic irregularity in each partition, we setup a small time window of

1 hour, for instance. If there are a number of tweets which are generated in this partition in

the time window, then these contents are compared to all of the language models defined for

each of the 25 partitions, and the similarity is measured using KL-divergence. If the actual

partition is not in the top ranked predictions, then we consider these tweets are semantically

irregular, and should be used as another clue for the occurrence of unusual events.

3.4.2 Event detection

In our research, we want to detect geo-social events that result in unusual Twitter user be-

haviour. For this, we define that a socio-geographic boundary is under an unusual condition

when its indicators, Number of Tweets (NT), Number of Users (NU) and Semantic Regu-

larity (SR) satisfy the following equation:

F = αNT + βNU + γSR (3.7)

In equation 3.7, F is a measure for the scale of an unusual event, α, β, and γ are coefficients

for normalizing the measurements of each regularity. If F is over a fixed threshold, we

predict that it is an indication of an unusual event happening. The value of F is determined

empirically using historical event related data.
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3.5 Experiments and Results

In this section we describe the experimental setup for testing the reliability of our language

models through predicting the locations where a tweet was made. We will first discuss the

Twitter data-set we used, followed by the evaluation measures adopted. The results are

tested against the true location of where the tweet was generated.

3.5.1 The Twitter Dataset

To evaluate the proposed models, we crawled geo-tagged Twitter messages through the

Twitter Streaming API 5. We set up a bounding box which covers the Dublin area with

north east corner of NE (53.489679, -5.946350), and south west corner of SW (53.174765,

-6.502532) as shown in Figure 3.1. We crawled over a time period starting from 24/Jan/2013

to 19/Mar/2013. We kept only English tweets with exact geo-locations attached to the mes-

sage. Our dataset ended up with 387,800 tweets in total. The first task was to map each

geographical co-ordinate to a location on the map of Dublin city. In order to do this we im-

plemented K-means partitioning. Each of these universal geographical co-ordinates (UGC)

was projected onto unit length distance to the SW corner of the bounding area, the geo

distance was calculated using the Harversine formula 6, then normalized into unit distance.

For example: (53.3297976,-6.2581027) was projected into a point as (0.4372,0.5627), as

shown in Figure 3.5; then this distance was used to calculate the partitions of the city area.
5https://dev.twitter.com/docs/streaming-apis/parameters# locations
6http://en.wikipedia.org/wiki/Haversine_formula
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Figure 3.5: UGC projection to unit length distance

3.5.2 Evaluation Measures

The main metric that we use for the evaluation and for tuning parameters on our training

data is location accuracy (Acc), which calculates the percentage of correct predictions over

all test examples. We also analyze using additional measures of prediction quality, namely

Mean Reciprocal Rank (MRR). MRR is a statistical measure for evaluating any process

that produces a list of possible responses to a sample of queries, ordered by probability of

correctness. The reciprocal rank of a query response is the multiplicative inverse of the rank

of the first correct answer. The mean reciprocal rank is the average of the reciprocal ranks
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of results for a sample of queries Q.7

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(3.8)

MRR measures the ability of the system to find the actual location of a tweet among its top

recommendations. The Lemur toolkit returns a list of predicted partitions, the top one of

the returned list is considered as accurate, and very likely there are different partitions with

a similar topic of interests and also close in space. So it is reasonable for us to assume that

if the predicted partition is close in space with the actual locations, we can also consider it

as accurate, but the results are calculated using MRR as mentioned above.

3.5.3 Evaluation

In order to test how well our language model can represent the consistency of the partition,

we carry out an evaluation by comparing the predicted location to the actual location. The

prediction accuracy is computed using 10-fold cross validation. We use the Weka 3 toolkit8

to carry out our experiments. The targeted city area is partitioned into 25 zones using the

elbow method 9 as illustrated in Figure 3.6.
7http://en.wikipedia.org/wiki/Mean_reciprocal_rank
8http://www.cs.waikato.ac.nz/ml/weka/
9http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
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Figure 3.6: Elbow method for K-means clustering results

We performed no stopword removal, and each tweet text was stemmed by the Krovetz

stemmer, with default Dirichlet smoothing with µ = 2500. We also performed some ma-

nipulation of the features in the tweets text, including removal/double the occurrences of

hashtags and mentions tags. Double or removal of entities from text contents are commonly

used techniques in text retrieval research. In this thesis, we considered hashtags and men-

tions tags as such entities, and performed above experiments to see if the same techniques

can be applied in Twitter case. Double of entities involved adding a same entity after each

one, and removal of entities involved deleting of each entity from tweet content. The results

are shown in Table 3.2.

As can be seen from the results, removal/double of hashtags from the text body, makes

almost no difference to the prediction accuracy, this may be because the hashtags are com-

pletely independent from the Twitter text contents. However removal of mentions tags
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Table 3.2: Accuracy at different level of MRR

type Acc MRR
with all tags 0.3124 0.4110
no mention tag 0.1481 0.2396
double mentiontag 0.3347 0.4290
double hashtag 0.3171 0.4166
no hashtag 0.3110 0.4085

caused a 20% drop in the prediction results, and doubling mention tags achieved the best

accuracy at 42.9% MRR. Mention tags plays an important role in the contents of the tweets

in building language models. 42.9% shows good validation of our assumption that there is

good consistency in our partitioning of the city areas.

3.6 Analysis And Future Work

Based on our experimental results in this initial part of our work, we find that with our iden-

tified city partitions, the language models generated from the contents created inside each

of the partitions provide good consistency for defining the regularity of each partition of

the city. This also answers our RQ 1 introduced in Hypothesis 1.4: "Is there some consis-

tency in user’s tweeting activities in certain areas of the city over time, such as regular users

appearance and topic of interests?." The actual event detection using the proposed model

is beyond the scope of this thesis, and will be tested in future work and more complicated

text-driven models will be used in our next experiments. Our results will be used to com-

pare with some state-of-art event detection methodologies. In the following subsections we

will briefly explain our plans for some future work to be carried out based on our collected

data-set.

3.6.1 Twitter on the Way

Content without context is meaningless, according to Jain et al. [29]. Context can help

us understanding content. Much research uses "closing in space" as a context for under-

standing Twitter contents similarity, in [34], tweets generated within a 200 metres radius
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are used as their context and clustered together. However, it is not reasonable to assume

that people sitting in their cars driving on the highway will report the same event as people

who sit in the pub, who are both within a 200 metres radius. From our observations of the

tweet occurrences in the Dublin city area, there are many clear travel and commuter routes

which can be identified from the tweets’ geo-locations from Figure 3.7. The M1 motorway

heading north, the M50 ring road, the Naas road, Navan Road, etc. are all quite clear in

the map. So we can see that a considerable amount of Twitter messages are sent on the

Twitter users’ traveling routes. These tweets may not be generated by the driver, but by

someone seating in the vehicle, which could be a private car or public trnsport, and it is

highly likely that these tweets are related to what is happening on the route, such as traffic.

Obviously "being on the same road" can be a much better context than "closing in space"

in the case of an event occurrence related to the route. Much information can be revealed

from these tweets as these users may be heading towards the same events, if they are talk-

ing about similar events or performers, or they are all stuck in traffic, not only because they

tweet about traffic, but also because they send more tweets than usual in a short traveling

distance. Because of the above analysis, we decided to extract all the tweets which were

generated along the route, and see if there are any semantic or temporal relations.

Figure 3.8 is an illustration of extracted tweets sent on the route of the Naas Road. A

few samples of the contents are:

• @BeckyCroke I am I’m on my way

• My first match in the Aviva and not a single fecking try scored!! #depressed #TooManyPenal-

ties

• Traffic is mental :-( I hate Monday

• En route home see you bright and early @EmmaLCarey @aoifehannon1 :)!

By simply reading the content, we can see these tweets were generated by commuters

and a match spectator on his/her way home from the event, so it is not necessary for these
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tweets to have specific keywords such as "traffic". The purpose of this task is to make the

task of our extraction of traffic-related tweets, easier.

In this thesis, we also explore other popularly implemented crowd monitoring and event

detection techniques, such as Bluetooth tracking. Each Bluetooth device can be identified

by a unique serial number and detected in a short range by Bluetooth sensors. Bluetooth

function is widely available in almost every mobile device, much research has successfully

carried out crowd monitoring research using Bluetooth tracking technology [66]. We briefly

introduced our implementations of Bluetooth tracking for our event detection task in the

next section.

Figure 3.7: Twitter bound

Figure 3.8: Tweet occurances along the Naas
Road

3.6.2 Event Detection Through Bluetooth Devices

Bluetooth device detection data is a type of accurate spatio-tempopral information appli-

cable for event detection, Bluetooth can be applied to measure the size of a crowd or to

predict the crowds’ trajectory if it is in motion. In [66], Mathias et al. used Bluetooth

technology for the mobile mapping of spectators of the Tour of Flanders 2011 road cy-

cling race, and achieved good results in identifying the most popular spectating locations

along the race route. Each Bluetooth device is represented by a unique MAC address (a

48-bit identifier of the mobile device), which can be considered as an individual person.

Based on estimated crowd size, we can identify an unusual gathering of crowds such as
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a demonstration etc. by measuring and detecting unusual Bluetooth occurrences. Dur-

ing our research period, we set up a device in a Dublin city center location, just beside a

busy road, and collected Bluetooth information from pedestrians and vehicle passing by.

We collected video records as groundtruth for the actual size of the crowd. As shown

in Figure 3.9, the Bluetooth data was logged simultaneously, as in the following sample

Timestamp : 01/08/2013, 9 : 43 : 15, 00102EE80C6E,MOBILE, Jenny

Figure 3.9: Video footage of the street

The total amount of data collected was for about a one-month period, logging both

Bluetooth and video data 24 hours a day, 7 days a week. In our future work, we will try

to detect any unusual gathering of crowds during that period by analysing the Bluetooth

occurrences.

3.7 Summary

This chapter explains our proposed method for detection of small scale unusual events,

based on geo-social regularities of Twitter user behaviour and the experiments we carried

out for testing the reliability of our language models built for each of 25 partitions of Dublin
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city, We answered RQ1 based on the analysis to our experimental results: "Is there some

consistency in user’s tweeting activities in certain areas of the city over time, such as regular

users appearance and topic of interests?". We also briefly explained the future work we are

planning to do in the next stage for the event detection. The event detection is beyond the

scope of this thesis, and will be carried out in later work.

Based on our observations of Twitter message distributions and population distributions,

we found interesting correlations between Twitter messages and their locations where they

were generated and population distribution. This raises some research questions such as

how Twitter users are distributed across the city, and what age groups contribute the most

event-related information through Twitter. These would be interesting questions to solve

and will be addressed in the next chapter.
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Chapter 4

Social Community And Population

Demographics Correlation

4.1 Introduction

As well as a way to broadcast messages across communities of users, Twitter is also a new

way of direct communication between people, particularly between friends. Exchanges of

tweets directly between users can be realised through mentioning another Twitter user’s

name, specified by prefixing a Twitter username with an @ symbol as in @exampleuser.

This means that the message or tweet is either a direct message to another user, or mentions

another Twitter user’s name. In this work, we refer to such tweets with mention tag(s)

as part of a conversation. The number of mentioned usernames is the number of people

involved in the conversation.

In our dataset, we have 387,800 tweets in total, these tweets were collected through

Twitter API by predefining a bounding box which covers the whole Dublin metropolitan

area over a collecting time span of one month. Table 4.1 shows the percentages of tweets

that are of different types of conversation in our overall dataset. As we can see from the ta-

ble, nearly 60% of tweets are of the type conversation mentioning one or more other Twitter

users. Especially in Twitter, friendship between users can be formed by the Twitter-specific

45



Table 4.1: Percentage of tweets of type conversation

No of mentions Percentage of overall
no mentions 40.73%
mentions 1 user 47.25%
mentions 2 users 8.69%
mentions 3 users 2.12%
more than 4 users 1.17%

follower-following feature. In order to explore this further and to see how this could be

used in other applications, we decided to combine friendship and conversation between

users in order to identify communities between Twitter users. In order to find such com-

munities, we propose a definition for defining “close friends” on Twitter. We explore the

homophily phenomenon and analyse the influential figures within our derived communi-

ties. The goal of this chapter is to study the topological characteristics of Twitter, in par-

ticular those geo-tagged tweets coming from Dublin city. Through the analysis of Twitter’s

follower-following topology, which is different to the geographic topology of geo-tagging

those tweets, and conversations between friends, we are aim to address the following 2

research questions:

• RQ2: Do users within the same community also have similar mobility patterns (be-

cause of the homophily phenomenon)?

• RQ3: Are users who have the most friend connections, really more influential (for

example with high Klout (see section 4.3) scores), in Twitter?

4.2 Community Based Profile

In this section we introduce our method for community detection in Twitter, and explore

the presence of the homophily phenomenon within Twitter communities. We use a user’s

mobility patterns to examine this phenomenon. We also carry out some small scale ex-

periments to test our major hypothesis: "Twitter can be used as a new way to interpret

population demographic analysis", and we provide the results accordingly.
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4.2.1 The Homophily Phenomenon

Homophily is a tendency that “a contact between similar people occurs at a higher rate than

among dissimilar people” [44]. There are two underlying reasons for this:

• First, the process of social influence leads people to adopt behaviours exhibited by

those they interact with; this effect is at work in many settings where new ideas

diffuse by word-of-mouth or imitation through a network of people.

• Second, people tend to form relationships with others who are already similar to

them. This phenomenon, which is often termed selection, has a long history of study

in sociology.

Or to put this more simply . . .

• @ Aristotle "People love those who are like themselves"

• @ Plato "Similarity begets friendship"

• @ Lazarsfield & Merton "Birds of a feather flock together"

Various studies have demonstrated the homophily phenomenon within Twitter com-

munities. Weng et al. have reported that two users who follow reciprocally share topical

interests by mining their 50,000 follower-following relationships [70]. Kwak et al. [33]

studied the reciprocated relationships between Twitter users and they found a certain level

of homophily in degree correlation, which is where users of certain popularity follow other

users of similar popularity and they reciprocate. Here, we are trying to detect and show the

homophily phenomenon among Twitter user communities from the point of view of users’

mobility patterns.

4.2.2 Twitter Community Detection

One of Twitter’s special characteristics is that Twitter allows a user, A, to“follow” updates

from other members who are added as “friends”. An individual who is not a friend of
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user A but “follows” her updates is known as a “follower”. Thus friendships can either

be reciprocated or one-way. One challenging task of community detection is to deal with

this reciprocity since it may even become circular where A follows B, B follows C and C

follows A, but there are no other follower relationships among these three users.

Reciprocity Top users, as determined by their number of followers on Twitter, are mostly

celebrities and mass media personalities like sports stars, actors or musicians. Most of

these individuals do not follow their followers back. In fact Twitter shows a low level of

reciprocity where 77.9% of user pairs with any link between them are connected in one-way

only, and 22.1% have reciprocal relationships between them as observed in our dataset. We

call these latter followers r-friends of a user as they reciprocate a user’s following. Previous

studies have reported much higher reciprocity on other social networking services: 68% on

Flickr [14] and 84% on Yahoo! 360 [32]. Moreover, 67.6 % of users are not followed by

any of their followers in Twitter at all. We conjecture that for these users, Twitter is rather

a source of information rather than a social networking site. User profile identification will

be explained in detail in Chapter 6, and this can provide some insight into this question.

To tackle the challenge of interpreting Twitter user relationships, we further restrict our

definition for community detection to keep only users who have conversations between each

other within the timespan of our data collection, one month in our case. A conversation is

defined as: one user directly sends tweet(s) to another user or mention another user’s name

in his tweets. Our communities can then be detected under the following 3 rules:

• A and B are two Twitter users who are active in Dubin (generate at least one tweet

within Dublin area recently).

• A and B have a bidirectional relationship, A follows B, also B follows A.

• There is/are conversation(s) between A and B (A send B a message directly through

reply or mention B in a message using @ tag)

By following these 3 rules, we can filter out users who are not really friends, such as a

regular user and the celebrity he follows. In order to form a larger community in which users
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have direct and indirect connections to others, we use the transitive relation, for example,

if A and B are friends, B and C are also friends, then A and C are friends too. Figure 4.1

gives examples of how these communities can be formed.

Figure 4.1: Forming a community

From this follower information, a uni-directional weighted graph can be built where the

number of tweets from A to B or from A mentioning B are considered as the weight of the

edge. Figure 4.2 gives an example for an identified community. Each node in the graph

represents a Twitter user, the width of the edge represents the frequency of communication

between 2 users, and the size of the node represents the degree of Twitter activity of the

user.
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Figure 4.2: A Twitter community

4.2.3 Mobility Patterns

In our research work in Chapter 3, after we project Twitter users’ tweeting locations onto

our 25 zones, we observed interesting spatial patterns, namely that Twitter users tend to

send their tweets from across a range of different zones in the city, though there are always

1 or 2 “favourite” zones which contain most of the tweets sent by a user. This pattern is

very common across different users in our dataset. People have certain locations where they

spend most of their time such as their home or workplace, and prompted by this intuition, we

assume these favourite tweeting locations are the users’ working, living, or leisure places.
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The way these users visit (generate tweets in) their favourite locations are considered as

the users’ mobility pattern. In this work, we only consider the spatial pattern, which is the

number of times that the user sends his/her tweets from inside the zone. Previous work

has shown that Twitter users in the same community have topics of interest in common.

We assume this homophily phenomenon is also shown in users’ mobility patterns, so we

form our hypothesis as “Users in the same Twitter community will have similar mobility

patterns”, this is closely related to our RQ2: "Do users within the same community also

have similar mobility patterns (because of the homophily phenomenon)".

4.2.4 Homophily in the Relationship Between User Community and Mobility

Patterns

In order to prove our hypothesis, we examine whether users from the same community can

also be classified as similar based on features shown in their mobility patterns. The number

of tweets sent in a zone is considered as a feature. For each user there are 25 features,

which are used for our classification task. Figure 4.3 shows an example of 5 different users

(represented by their user ids), with their tweeting activity across our 25 different zones in

the city.

Figure 4.3: Tweeting activity in 25 different zones, vertical axis numbers are user ids, darker
blue shading represent higher levels of tweeting activity

The classification is achieved using a Support Vector Machine (SVM), and the imple-

mentation is through LibSVM1.
1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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4.2.5 Experiments and Results

In this section we describe the experimental setup for testing the homophily phenomenon

in user’s mobility patterns of the same Twitter community. We will first discuss the Twitter

dataset we used, followed by our evaluations. Experiments are conducted with available

implementation of SVM classifier in WEKA using 10-fold cross validation, a linear kernel

and all other parameters are set using default values.

4.2.5.1 The Dataset

We used a small portion of the overall data, which is drawn from a subset of just 239

users chosen because these users belong to 5 different communities as shown graphically

in Figure 4.4, where the comminities are labelled C1, C2, . . . C5.

Figure 4.4: Twitter community

4.2.5.2 Evaluation

Table 4.2 gives the results of our classification.
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Table 4.2: Classication results using the partition feature

Class Precision Recall F-Measure
C1 (123 users) 63.5% 87.8% 73.7%
C2 (77 users) 60% 42.9% 50%
C3 (13 users) 50% 7.7% 13.4%
C4 (15 users) 25% 6.7% 10.5%
C5 (11 users) 59.8% 62.3% 58.3%
Weighted Avg. 59.8% 62.3% 58.3%

With such a simple experimental setup, we achieved 62.34% accuracy in our classi-

fication. The best performance is from the largest community group (C1). However the

classification performance on community C5 is much better than on C3 or C4, even though

they have almost the same number of users. Further analyse of the reasons behind the focus

of future work.

By looking at the derived Twitter communities graph from our experiments shown in

Figure 4.4, we can see that there are certain users who appear to be in the centrepoint of the

whole community. These users have more connections than other users, and they appear to

be the connecting points of small sub-communities; we call these users pivot users.

While the results of these experiments are in themselves interesting, they also lead to

another research question: are these pivot users really influential in the Twitter world? In

the next section, we use some of the most popular methods from the literature to measure

these users influence, and we give some brief analysis.

4.3 Ranking Twitter User’s Influence

Measuring influence and social networking potential on Twitter has been discussed in var-

ious previous published work as well as in numerous blogs and online media [28, 70]. Re-

lated scientific work on Twitter analysis includes approaches which measure influence by

not only taking followers and interactions into account, but also by analysing topical simi-

larities with the help of a ranking method similar to PageRank [70], the ranking algorithm

which exploits the topology of a linked graph to reward highly connected “nodes”, first

proposed and used in the Google search engine. An interesting aspect of this work is that
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in the analysed sample of Singapore-based users, a high reciprocity (e.g. mutual following

relationship) was found. Huberman et al. [28] suggest that Twitter actions and thus influ-

ence are crucially influenced by “hidden networks” which consist of closer relationships

between network nodes than a mere follower/following relationship.

Due to Twitter’s openly available API, there are numerous rating services that, on the

one hand, calculate a score for individual users, and, on the other hand, compare scores

of Twitter users to create a rating and ranking of users. A very popular and commonly

used online rating service in this sector is Klout 2, which determines user performance and

influence on Twitter.

Klout score is a very popular and commonly used online rating service [1] which de-

termines user performance and influence on Twitter, Facebook and LinkedIn. The service

works with numerous partners who integrate Klout scores in their products (e.g. the Klout

score:influence of people. Social CRM platform Radian6). Klout measures, as it states on

its website, a user’s overall online influence with a score ranging from 1 to 100, with 100

being the highest amount of possible influence. Klout analyses more than 25 variables, also

offering the possibility to combine the scores from all three analysed platforms, Twitter,

Facebook and LinkedIn. The complex algorithm used to calculate the score is not pub-

lished and cannot be reconstructed, but Klout states that it sees influence as the “ability to

drive people to action”, thus making replies and retweets the most important factors. Ac-

cording to the calculated score, Klout places the user in a so-called influence matrix with

16 possible classifications created from the combination of eight attributes. Table 4.3 gives

the 3 top Klout score owners in the world. 3

2www.klout.com
3http://toplibertarian.com/twitter/klout/

54



Table 4.3: Top 5 Klout score owners in the world

Rank/Score Name Description

1 / 91.8 reason @reason Reason is the monthly magazine
and website of “free minds and
free markets.” Follow @rea-
son247, a newsfeed for people
who care about freedom.

2 / 89.7 Ron Paul @RonPaul Former US Congressman from
Texas.

3 / 86.6 Senator Rand Pau l @SenRandPaul Proud to represent the Com-
monwealth of Kentucky in the
United States Senate.

The problem of ranking nodes based on their topological inter-dependence in a network

is similar to ranking web pages based on their connectivity or links. Google uses the PageR-

ank algorithm to rank web pages in their search results [54]. The key idea behind PageRank

is to allow propagation of influence along the network of web pages, instead of just count-

ing the number of other web pages pointing at the web page. In this section we rank our

Twitter users by our form of the PageRank algorithm based on the following relationships

between users, this "following" relationships include following and message exchange in

terms of Twitter. As a working collection, we take 2 large communities from our dataset,

such communities are formed by a number of users who have connections defined by our 3

rules, these 3 rules are described in the Reciprocity section, examples of these communities

are shown in Figure 4.4. Figure 4.5 shows a part of community 1, which contains 183 users,

and figure 4.6 shows community 2, which contains 93 users.
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Figure 4.5: Twitter Community 1
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Figure 4.6: Twitter Community 2

We apply the PageRank algorithm to calculate scores for each user, such score measures

the relative importance of this user within his/her community. We also use the Klout API4 to

retrieve each user’s Klout score. Tables 4.4a and 4.4b show a listing of the top 5 PageRank

scorers and their Klout scorers from the 2 selected communities.
4http://klout.com/s/developers/docs
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Table 4.4: Users PageRank score vs. Klout score in different Communities

(a) Community 1: Users PageRank score vs. Klout score

User name Pagerank score Klout score
Glanraff 0.0125 35.179

leinsterrugby 0.009 79.658
IrelandHandball 0.009 36.677

darraghdoyle 0.0080 78.544
samanthamumba1 0.005 81.802

(b) Community 2: Users PageRank score vs. Klout score

User name Pagerank score Klout score
Naoise95 0.0179 40.054

GaryRoche 0.0154 37.760
TallaforniaMarc 0.008 50.242

fionaallen 0.008 48.573
x_sophiabyrne_x 0.007 49.705

From this list, we can see that some users have high Klout score and also high PageRank

score, such as “leinsterrugby” and “darraghdoyle”. “leinsterrugby”, as is suggested by its

name, is an account aimed at sending information to rugby fans in Dublin, allowing them

to share their feelings about Leinster rugby by tweeting to this account; “darraghdoyle” is

a very active Dublin Twitter user, his tweets topics cover various categories, and he has

many active followers. We can also see that some users have low Klout scores but high

PageRank scores, such as “GarryRoche” and “Naoise95”. These 2 users do not have many

followers or following, but within their friends’ circles, users are relatively active in terms

of the number of tweets generated per day.

4.4 Analysis And Future Work

Based on our experimental results in this initial part of our work, we find the following:

• There are some levels of homophily in the users mobility patterns where those users

belong to the same Twitter community. For example, by using the users’ mobility

patterns (tweeting activity in 25 different zones), we successfully identified the actual

Twitter communities for 62.34% of the users. We can conclude that users from the
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same Twitter community not only have topics of interest in common, but also similar

tweeting activities. We will further expand this idea to users’ socio-economic status

in future work.

• We also found that users who appear to have the most connections in the commu-

nity are not necessarily the most influential figures in Twitter world. For example,

“GarryRoche” and “Naoise95”, these 2 users do not have many followers or follow-

ing, they are not very influential in Twitter world in terms of Klout measure, but

within their friends’ circles, these users are relatively active in terms of their daily

tweet exchanges. We also found that some very high Klout scorers do not have much

interaction with their friends in their circles, such as "samanthamumba1", who is a

celebrity born in Dublin, she has very high Klout score but low PageRank score. This

is because even though she has a large number of followers, she only publishes her

own status, and barely interacts with her followers.

These results also answered our RQ 2 and RQ 3 research questions, introduced in the

Hypothesis section 1.4 earlier in the thesis: RQ2: "Do users within the same community

also have similar mobility patterns (because of homophily phenomenon)?" and RQ3: "Are

users who have the most number of friends connections really more influential with high

Klout4.3 score figure in Twitter?", as mentioned above. In the following sections we will

briefly explain our plans for some future work to be carried out based on our collected

data-set.

4.4.1 Correlation Between Social Relationship and Socio-economic Background

In Oliver et al.’s work [53], they identify social communities through telephone call ex-

changes between users. They use the derived community to predict the user’s soico-economic

status. Because tweet exchanges between Twitter users are kind of similar to making phone

calls, in our future work, we aim to find correlations between Twitter users and their com-

munity structures, and their socio-economic status. Furthermore we will aim to be able to

make predictions as to the socio-economic status of these users too.
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4.5 Summary

In this chapter, we briefly talked about the our work on Twitter social communities. We

found certain levels of the homophily phenomenon in users’ mobility patterns who are

within the same Twitter social community. We also analyzed the influence of users within

our derived Twitter social community. We answered RQ2 and RQ3 based on the analysis

of our experimental results. We also briefly explained the future work we are planing to do

in the next stage for identifying the correlations between Twitter user’s social relationships

and their socio economical background.

We found interesting correlations between Twitter message distributions and population

distribution. This raises some research questions such as how Twitter users are distributed

across the city, and what Twitter user age groups contribute the greatest amount of event-

related information through Twitter? These would be interesting questions to solve which

will be addressed in the next chapter.
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Chapter 5

User Tweeting Behaviour Analysis

5.1 Introduction

In our dataset, collected for this thesis, each tweet is timestamped and embedded with its

geolocation. For each user, aggregating this time and location information over time reveals

a lot of information about his/her temporal and geographical behaviour. As members of

society, while we would like to believe that our movement and mobility patterns have a

high degree of freedom and variation, at a global scale human mobility exhibits structural

patterns which are subject to geographic and social constraints [17].

Based on our observations from our dataset, we found that such types of periodic be-

haviour commonly appear among the individuals in our dataset. In order to make our anal-

ysis task simple, we project all individual geolocations of tweets into 25 different zones, as

introduced in Chapter 3. Then for each user, there are a number of different zones in which

the user will generate tweets over a one-month period. We noticed that for most users there

are 1 or 2 zones which are each user’s “favourite”, which are those zones which contain a

large proportion of the overall tweets for each user among our 14,533 users. On average,

73% of tweets were sent from the favourite 1 or 2 different zones of each user.

One would expect that people exhibit strong periodic behaviour in their movement as

they move back and forth between their homes and workplace [22, 36]. Prompted by this

intuition, and together with our observations mentioned above, we assume that for each
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user the number of zones which contain most of a user’s tweets, are indeed his/her home,

workplace, or favourite leisure locations. It is obvious that Twitter users are more active

when they are at home or at leisure locations. However, we also found that users tweeting

behaviour patterns demonstrated in each different zone follow a power law figure. From

this we can infer that users not only tweet actively at their home or workplace, but also

they are active in random locations. We expect that tweets sent from random locations will

contain unexpected information different from user’s regular topic of interests. Through the

analysis of these random tweets, we are able to build a better context for helping us to better

understand the tweet contents, and extend our event detection models.

By studying our users’ temporal tweeting behaviours, we found groups of users who

have typical timing characteristics in their tweeting activities. For each group of users, we

roughly estimated their social status based on their temporal tweeting characteristics. We

also observed interesting correlations between the users’ tweeting activities across different

zones of the city and the city’s population demographics. Based on these correlations, we

are able to understand the fabric and operation of the city from a different point of view, not

visible previously.

In this chapter, we will study the main two aspects of users’ tweeting behaviour: ge-

ographic behaviour (where do we tweet?) and temporal dynamics (when do we tweet the

most?), and correlations between tweeting activity and city demographics.

5.2 Geographical Behaviour Analysis

In this section, we demonstrate the geographical distributions of our users’ tweeting loca-

tions. One would expect that people exhibit strong periodic behaviour in their movement

as they move back and forth between their homes and workplace. We observed this pattern

in our users’ tweeting locations. We use the partitions generated from Chapter 3, for which

the Dublin city area was partitioned into 25 different zones based on the geolocations em-

bedded in the tweets collected over a one-month period of time. We identified 5,875 unique

users from our dataset. These users generated 95% of the total number of tweets, which
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narrowed down our total number of tweets to 368,476 tweets. The reason for us to drop

tweets generated by the rest of the 5,658 users is because of their inactiveness, where most

of those users only generate 1 or 2 tweets within a month.

We observed strong periodic behaviour in the distribution of locations where tweets

were sent from. In table 5.1, we can see that almost 44 % of users sent tweets from less

than 3 of 25 different zones across the city.

Table 5.1: Percentage of users tweeting activities in different zones

Different number of zones % of overall users
1 21.8%
2 22.7%
3 18.8%
4 13.7%

5-25 23%

It is reasonable for us to assume these locations are the users’ homes, workplaces or

leisure places, and it is common sense that Twitter users are more active in the above lo-

cations. But we also notice that there are 23% of users who not only generate tweets in

their favourite zones but also across different seemingly random zones. The tweets sent

from these random locations are of particular interest, especially for our event detection

task introduced in Chapter 3. When we go back to the event detection task in Chapter 3, un-

derstanding the noisy contents of Twitter is a non-trivial task, but having good information

on the context in which tweets are sent may help us to address this problem. If people only

send tweets while in their favourite locations, their contents can be expected to be similar,

and even predictable. Thus if we want to find irregular, unexpected event-related content,

tweets sent from their non-favourite locations should be what we are looking for. Therefore,

we consider Twitter messages generated from such random locations as examples of good

context for event detection.

However, will we be able to find enough information from these contexts in order to

make automatic event detection possible? To answer this question, we construct a location

distribution for each user, for example: user1 sent 10% of tweets in zone1, with 200 tweets

in total, and 90% in zone5 with 1,800 tweets in total, thus zone5 is user1’s favourite lo-
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cation; user2 sent 100% of tweets in zone10 with a total of 1,000 tweets, thus zone10 is

user2’s favourite location, etc. Then we make 100 percentage bins, one for each 1%. So in

the 100% bin, we will have 1,000 tweets in total from user2, and in the 40% bin, we will

have 400 tweets in total from user1, etc. The results are shown in Figure 5.1a.

As we can observe from the graph, there are a significant number of tweets generated at

random locations distinct from the users’ favourite locations, our next experimental results

show that the distribution is well-fitted into a long tail distribution, as shown in Figure 5.1b.

In statistics, a long tail of some distribution of numbers is the portion of the distribution

having a large number of occurrences far from the “head” or central part of the distribution.
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(a) Location distributions in percentage bins

(b) Fitting of power low distribution

Figure 5.1: Location distribution and power law fit

So we can conclude that even though Twitter users do have certain favourite locations

from where they send most of their tweets, there are still significant amounts of information

that can be found outside their favourite locations. Therefore we are able to find enough

information from these random tweeting locations to support our event detection task. More

interestingly, when we take a closer look at the geolocations of our tweets in a small region,
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we observe that these locations match closely to actual road locations, as compared in

Figure 5.2a and Figure 5.2b where the lines marked in red have very close match. This

match happens on some major roads in other part of the city areas too. This would be a

good example for the context we use for our events detection, because what people see on

the road is most likely to be related to traffic or transport-related events which may cause

traffic conditions.
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(a) Plot of tweets: geolocations over a city area

(b) Highlights of road maps of a city area

Figure 5.2: Comparison between tweet geolocations and city roadmaps

5.3 Temporal Dynamic Analysis

The volume of tweets generated by different users over time exhibits unique characteristics.

These characteristics potentially represent, in some way, the user’s daily living patterns.

Through studying Twitter users temporal tweeting behaviours, we hope to group users with
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similar daily life patterns, and roughly estimate the social status of these grouped users.

Each tweet is our dataset is timestamped, for example "Thu Jan 24 10:57:03 +0000 2013".

Based on these timestamps, we aggregate the tweets into hourly bins for each 24 hours for

weekdays and weekends. The reason that we analyze user’s tweeting behaviours during

weekdays and weekend days differently is because we observed significant differences be-

tween them as most people work during the week and relax at weekends. Figure 5.3a shows

2 different trends from user’s tweeting patterns for weekdays and weekends in terms of the

average number of tweets generated in each hour. We can see that users are much less active

during the weekend than weekdays, the boosting time of the volume of tweets starts much

later in the weekend, which is 2pm as compared to 8am during weekdays. Particularly, in

the weekdays trend, the most active tweeting time is between 9pm to 12pm. We speculate

that this is because people active in the night are the most active contributors of tweeting

activity.

We cluster our users by their temporal tweeting features. For each user, there are 48

features, each feature represents the average number of tweets a particular user generated

within an hour, across a timespan of a one month period. The first 24 features are for

weekdays, and the other 24 features are for weekend days. In our experiments, we only

consider users who sent more than 100 tweets in our one-month data collection timespan.

100 was chosen empirically based on observations on our dataset. This cut down the total

number users in our experiments to 805. We used the built-in EM algorithm clustering from

WEKA to run these experiments. We divided all of our users into 10 different clusters.

Within each cluster, we can detect users who have noticeably unique characteristics in their

temporal tweeting patterns, as shown in the following graphs.

Figure 5.3b shows a group of very active users, they are 10 times more active than

average in terms of hourly tweeting volume. Because their temporal tweeting patterns are

similar to the overall trend, we consider these people as general Twitter users, who are just

more active than others.

By contrast, clusters 1 Figure 5.3c and 6 Figure 5.3d show completely different patterns.

For example in cluster 1, users are mostly active across the whole day. Yet in cluster 6, lunch
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time, between 12pm to 2pm, is their most active tweeting time, with another small boost of

activity for these users starts at 9pm and stops at around 11 pm. We could infer that these

people are typical office workers, their tweeting times are mostly during their lunch break,

and after dinner, and they don’t stay out late at night socialising because they have to get up

early for work in the morning.

In Figure 5.3e, the pattern shows the activity of a property sales agency, this account

is used for broadcasting property advertisements. As we can see, this user is constantly

generating Twitter messages, no matter what time it is, this feature can be typically used to

identify non-human tweeting accounts.
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(a) Overall tweeting behaviour

(b) Tweeting distribution for Cluster 0 (c) Tweeting distribution for Cluster 1

(d) Tweeting distribution for Cluster 2 (e) Tweeting distribution for Cluster 8: Advertisement
accounts

Figure 5.3: Distribution of tweet volumes.

5.4 Geographical Distribution vs. Population Density

In this section we analyze the relationship between Twitter activities and population densi-

ties in the Dublin area. The derived relations reveal some interesting structures of the city,
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such as tourists hotspots. The analysis of Geographical distributions of tweets. This lets us

view the city and its demographical fabric in a different way to other views.

In our experiments, the population and area boundary data is taken from the Irish Cen-

tral Statistics Office (CSO), where each area boundary is defined by the CSO as a Small

Area (SA) [52] as follows: Small Areas are areas of population comprising between 50 and

200 dwellings created by the National Institute of Regional and Spatial Analysis (NIRSA)

on behalf of the Ordnance Survey Ireland (OSI) in consultation with the CSO. Small Areas

were designed as the lowest level of geography for the compilation of statistics in line with

data protection legislation and generally comprise either complete or part of townlands or

neighbourhoods. There is a constraint on Small Areas that they must nest within Electoral

Division boundaries and cannot straddle these boundaries. Small areas were used as the

basis for the enumeration of the population in the most recent census in 2011. Enumerators

were assigned a number of adjacent Small Areas constituting around 400 dwellings each,

in which they had to visit every dwelling to deliver and collect a completed census form

and record the dwelling status of unoccupied dwellings. The Small Area boundaries have

been amended in line with population data from Census 2011.

We only take a portion of the total population in each Small Area, whose ages are be-

tween 16 to 59 years old, because these are the major age groups of Twitter users according

to the report from Royal Pingdom 1. The population densities for each Small Area are cal-

culated by taking the number of the population aged 16-59 (male and female) divided by

the total area size calculated based on the geographical coordinates of the boundary. As in

equation 5.1:

density =
population

|(lat1lng2−lng1lat2)+(lat2lng3−lng2lat3)+...+(latnlng1−lngnlat1)|
2

(5.1)

For example, the SA boundary which covers the Phoenix Park area is shown in figure 5.4.
1http://royal.pingdom.com/2012/08/21/report-social-network-demographics-in-2012/
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Figure 5.4: Population (age group 16-59) density of Phoenix Park area

The area marked in light blue has a total residence of 574 people of age 16-59. The

total area size calculated using the above equation is 6.96 km2, so the population density

of this small area is 574/6.96(km2)=0.000082 per km2. Figure 5.5 demonstrates the Small

Area population densities of the age group 16-59 over the Dublin area. Figure 5.6 shows the

Twitter activities from different areas of the city over a one month period. We can observe

that some areas have low population density but have a high volume of Twitter activities. We

consider these locations as Twitter user hotspots. Figure 5.7 which shows the distributions

of the number of unique Twitter id numbers in different Small Areas. By comparing the 3

figures, we can visually identify some outlier zones, such as Dublin Airport, Phoenix Park,

the Trinity College, UCD and DCU campuses, the Dundrum shopping centre, etc. Dublin

Airport, the Phoenix Park and Heuston train station are popular areas, which have very small

numbers of residents, but have a lot of visitors or travelers. College campuses have both

high Twitter activities and high numbers of Twitter users. This is because college students

are among the most active Twitter groups. The Temple Bar area of the city centre and the
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Stephen’s Green Park in the middle of the city have high Twitter activities as well, and have

more Twitter users because they are the hot spots for tourists. Through the comparison

between Twitter user activities and population densities we can gain some understanding of

the city fabric from a different point of view.

Figure 5.5: Population (age group 16-59) density of Small Areas
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Figure 5.6: Twitter activity in Small Areas

Figure 5.7: Unique number of Twitter ids in Small Areas
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5.4.1 Summary

In this chapter, we developed our observations of our users’ geographical and temporal

tweeting behaviours. We found that although Twitter users are more active in their favourite

locations in term of tweet generation, such as their home, workplace or leisure places, they

contribute significant numbers of tweets from random locations, and these tweets are of

particular interest to us for our event detection tasks. By studying the temporal tweeting

patterns of our users, we can identify groups of users with similar patterns and be able

to roughly estimate their social status. We also discovered some interesting correlations

between Twitter users tweeting activities and population densities in the Dublin city ar-

eas. These correlations show that we can understand the city fabric from a different angle

through Twitter activities.
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Chapter 6

Twitter Source Classification

6.1 Introduction

In our work we have employed Twitter, working as a form of online sensor for the task of

detecting events in a real, physical city. We consider Twitter users’ tweets as sensor readings

and Twitter users as sensors. Even though this is a simplified model of how to use social

media data, this data is very noisy and not very reliable. The noise inherent in social media

data like tweets not only comes from the sensor readings themselves, because Twitter users

use informal language in their tweets, but also from the sensors themselves. Twitter users

have different intentions when they tweet [30], such as acting as information providers who

constantly publish news or advertisements, or sometimes acting as information seekers who

are looking for news or celebrity gossip, etc. Based on this notion, we divide our users into

2 different types:

• non-personal users (such as information sources)

• personal users (information seeker or people shares their everyday life).

Non-personal users usually have different motivations from personal users. The former

normally publish news, advertisements or political opinions in a clear form. In our relatively

small scale experiments where we target the task of detecting unexpected events, these

tweeters are not of interest to us because it is very unlikely that these users will tweet about
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a house fire on the street, or complain about a traffic jam at a junction on their way home,

etc. In general, the information provided and the behaviour demonstrated by these non-

personal accounts are not related to our event detection task.

In order to avoid getting overwhelmed by this unrelated noise generated from these

accounts and to improve the performance of our system, a filter is required. The goal of this

work is to build such a filter which is able to automatically determine whether a Twitter user

account is personal or non-personal based on the authorship profile. This profile is derived

based on the author’s previous tweet contents. For our classification task, we proposed a

set of features with a focus on the users’ previous Twitter content, such as the presence of

slang words, sentimental symbols, etc. Experimental results show that our classification

method provides acceptable accuracy for this task, and so the classifier will be used in our

future work. This uses this filter to remove information from unrelated accounts in order to

improve the performance of our event detection language models.

6.2 Feature Selection

Selecting a subset of relevant features for building robust machine learning models1 is a

major research problem. Hence in our work we use a greedy strategy to select the feature

set which generally follows the definitions of the 2 classes. We extracted a set of 4 features

as follows:

1. Percentage of tweets containing personal pronouns (I, you, he, she, it, we, they). The

rationale behind this is that a large number of tweets containing personal pronouns

in the tweet set are considered as a strong indication that this account is a personal

account.

2. Emphasis on words based on uppercase letters, and the usage of repeating characters

in a word (eg. "veeeery"). Like the first feature, the rationals is that this is considered

as a strong indicator of a personal account.
1http://en.wikipedia.org/wiki/Feature_selection
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3. Presence of slang words is determined by a lookup in a wordlist which consists of

about 100 most commonly used slang words in Ireland obtained from the Web. Pres-

ence of slang words is also indicative of a personal account.

4. Finally, we also capture the presence of non-ASCII keywords, such as smily faces

(Twitter allows users to attach UTF-8 symbols in tweets), etc. or occurrences of

“haha” or other popular sentimental symbols in different forms, such as “hahahaha”,

and “:D” etc. this feature is commonly adopted by personal users to express their

sentiment.

6.3 Experiments and Results

6.3.1 Experimental Setup

Our Twitter dataset was collected from within the Dublin area over a one-month period,

containing a total of 384,000 tweets, created by 14,533 different Twitter users. We selected

the most active 500 users from our dataset, where the least amount of tweets generated

by these users over the one month period was 150 tweets. Two annotators were assigned

to manually label these 500 users into one of two categories: personal user (PU) or non-

personal user (NU). Their agreement on the categorisation was measured using Cohen’s

Kappa coefficient yielding a result of (0.62), indicating substantial agreement between the

annotators. To ease annotation, the annotators were shown 10 randomly selected tweets

from the user that they were asked to categorise (at least 5 words in length, mention tags,

hash tags and ascii symbols are included) from each user’s tweet set.

Experiments were conducted with an available implementation of the Naive Bayes clas-

sifier in WEKA2 using 5-fold cross validation. For each user’s tweet set, we removed the

stopwords except for personal pronouns (I, you, he, she, it, we, you, they).
2http://www.cs.waikato.ac.nz/ml/weka/
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6.3.2 Performance Evaluation

Figure 6.1 shows our classification results of using each of the four individual features

and then all features taken together, to train the classifier. We can see that each one of

our proposed features provides good performance according to three different performance

measures namely Precision, Recall and F-Measure, used in earlier work in this thesis. All of

the results are above 86%, but using 4 features together gave consistent performance across

all 3 measures. In particular, using the personal pronoun feature scores the highest. This is

a reasonable expectation because personal users tend to publish their personal status using

first person pronouns such as “I" and “we”, very frequently. However we can’t ignore the

fact that our personal account set is much larger than the non-personal account set among

the users in our dataset, in the ratio of 468:32 in our case. In later work, we will expand the

negative set to include more non-personal accounts.

Figure 6.1: Classification performance for individual features.

To avoid the bias on the dataset, a separate experiment was carried out using unbiased
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dataset, which contains randomly selected 32 out of 468 personal accounts and 32 non-

personal accounts. The results are shown in Figure 6.2:

Figure 6.2: Classification performance for individual features on unbiased dataset.

The overall performance is on average 70%, which is also acceptable.

6.4 Summary

In this chapter, we briefly introduced our work on building a classifier for identifying Twit-

ter users in terms of their type, either personal or non-personal users, by using an analysis of

the content of their historical tweets. Using such a classifier, we can now filter out possible

non-event-related information (tweets) generated from non-personal accounts. Experimen-

tal results show that our proposed features can provide accurate classifications. Currently

we are working on a small set of users, 500 in this case, and our 2 categories are very unbal-

anced with only 32 out of 500 users in the non-personal category. In future work, we will

incorporate more non-personal accounts to our dataset. Most importantly, we will use the
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filtered information to improve our language modelling based event detection technique.
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Chapter 7

Discussions and Future Work

In this thesis, we tackled some of the problems in the very challenging yet popular area of

automatic social media content interpretation.

Aiming to find a better way to comprehend city dynamics through social media sensors,

we first focused on an exploration of the consistencies across Twitter users’ behaviour. This

was in an attempt to learn more about our users and looked at things such as their topics

of interest. We gauged these interests from Twitter user-generated content over a period

of time, and we then concentrated on the derivation of language models from such topic

of interests. Combining these language models with geographical information, we built a

mapping from semantic consistency to locations.

We then ran a series of experiments which showed some level of such consistency across

these. As a result, our event detection task can now be based on observing whatever in-

consistencies that may arise from Twitter content based on analysing the combination of

semantics of the Twitter content, and locations from which the tweets are issued. Thus

unexpected content, not forming part of the language model and arising from an unusual

location, can be an indicator of an event in the real world.

Secondly, we demonstrated the observed correlations between social communities formed

by social media relationships and populations demographics. Our experimental results

proved our proposed concept that social relationships between users can infer some of their

social status, such mobility patterns, etc. Also we proposed an intuitive method for clas-
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sifying Twitter users into types as personal or non-personal users by using a set of simple

features.

Our four research questions were examined in turn when applying the above tasks to

event interpretation and social community profile analysis. The corresponding research

questions which drove our investigation into these tasks are now revisited as follows:

• (RQ1:) Is there some consistency in user’s tweeting activities in certain areas of the

city over time, such as regular users appearance and topic of interests?

• (RQ2:) Do users within the same community also have similar mobility patterns

(because of homophily phenomenon)?

• (RQ3:) Do users who have the most friends connections have really more influencial

(With high Klout4.3 score) figure in Twitter?

• (RQ4:) How can we filter out these non related twitter accounts in order to enhance

our system’s performance?

Generally speaking, the research question (RQ1) is raised for the task of real-time event

detection in Twitter, while (RQ2) and (RQ3) deal with social media community based pro-

file analysis. The derivation of social media user behaviours from (RQ1) forms the basis

for (RQ2) and (RQ3) and the answers for (RQ2) and (RQ3) are also supportive back to

the task of (RQ1). The answer to (RQ2) shows that there are certain levels of homophily

in the users’ mobility patterns where these users belong to the same Twitter community.

(RQ3) suggests that although Twitter users are more active in their favourite locations in

term of tweet generation, such as their home, workplace or leisure places, they contribute a

significant amount of tweets from random locations, and that these tweets are of particular

interest to us for our event detection tasks.

By studying the temporal tweeting patterns of our users, we can identify groups of users

with similar patterns and be able to roughly estimate their social status. (RQ4) is proposed

to deal with the issue of Twitter account type classification for the purpose of enhancing the

performance of our system. Trying to answer these research questions, different algorithms
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are developed and demonstrated to be effective in Chapter 3, Chapter 4, and Chapter 5,

which are the main contributions of this thesis. With these analysis and experimental results,

we believe that the semantics of events can be maximally interpreted to provide an efficient

tool for city planners to quickly grasp the city pulse, and even aiding individual information

seekers for accurate information they are looking for.

7.1 Main Contributions

A location-text joint modelling algorithm was introduced in Chapter 3 for the purpose of

real-time event detection in Twitter. Although, event detection in social media, such as

Twitter, has been studied for a few years, the area is still relatively new, and there are still

many challenges to be solved, our proposed method gives a different way of cracking this

issue. To the best of our knowledge, the method we introduced in Chapter 3, has never been

used before. In chapters 4 and 5, we explained the correlations between social relationships

and population demographics discovered through our observations. These results show that

we can use social media as a tool to view city dynamics from a different angle. In chapter

6, we proposed a novel Twitter user account profile classification method, our introduced

set of features produce very good classification performance. These main contributions

tackled the four research questions we just revisited. Semantic Web technologies have been

employed in all of our contributions at different levels of abstraction. Since not one single

technology, either Multimedia Retrieval or Semantic Web, can successfully fulfill the task

of event detection in social media, Semantic Web technologies have been assimilated in

our contributions to address the research questions together with traditional Multimedia

Retrieval technologies like supervised machine learning, unsupervised machine learning,

etc. As answers to the research questions, the contributions of this thesis have supported

our hypotheses formulated at the beginning of thesis, that is, “Social Media as a new way of

sensing technology can work as an extension of traditional media for urban city dynamics

interpretation”.
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7.2 Future Work

The future work section is rewritten as: Our algorithms and models have shown their merits

to some extent in fulfilling event semantic interpretation tasks. But not all of them are free

of limitations. Especially, our event detection model has not been put into practice, how-

ever our proposed location based language modeling technique provides good consistency

for defining the regularity of each partition of the city. Also, our correlation analysis be-

tween social media relationships and social status is only small scale, but we found strong

indications of homophily phenomenon in Twitter user’s mobility patterns, who are within

the same Twitter social community. Our proposed features for Twitter account type clas-

sification also show promising results. In future work, we are planning to explore other

event detection paradigms implementing different modern technologies such as Bluetooth

mentioned in Chapter 3, to build a more complex system for our event detection task.
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