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In this work we demonstrate simple techniques to form well crystallised CuAlO2 powders and thick films 

from CuO and boehmite or alumina, using a novel molten salt painting process. We examine the 

formation mechanism using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray 15 

spectroscopy and in situ high temperature X-ray diffraction and find that the annealing atmosphere plays 

a critical role. From this we develop a method to create Cu-Al2O3 conductive metal-ceramic composite 

materials with novel morphologies via the thermal decomposition of CuAlO2 precursor films. 

1. Introduction 

There is a growing interest in transparent wide bandgap p-type 20 

semiconductor oxides as they may become an essential 

component in the development of next generation devices in 

areas such as transparent electronics and solid state UV 

optoelectronics.1-3 The discovery of intrinsic wide bandgap p-type 

conduction in the dellafossite  material CuAlO2 represents an 25 

important step towards realising these technologies.4 In addition 

CuAlO2 as been demonstrated as an effective catalyst for solar 

water splitting and chlorine production and may also have 

applications in low power field emission based displays and in 

sensor technologies.5-8 Another area, also of increasing interest, is 30 

metal ceramic composite (MCC) materials, such as Cu-Al2O3, 

which have been shown to have favourable properties for many 

applications, such as high wear resistant conductive coatings, 

electrodes and structural applications.9-11  

 Many different techniques to form CuAlO2 films and powders 35 

have been demonstrated including sol-gel, hydrothermal, pulsed 

laser deposition, MO-CVD and solid state reactions.12-19  

Preparing CuAlO2 using high temperature methods is challenging 

due to the complex Cu-Al phase diagram.20 Normally it is 

considered essential to ensure that the Cu and Al are intimately 40 

mixed in order to achieve a phase pure material and this 

requirement necessitates remixing and multiple anneals when 

preparing powders using solid state methods. In contrast, by 

complexing the Cu2+ during sol-gel preparation methods phase 

separation can be inhibited leading to phase pure material, which 45 

can be obtained in a single anneal. Subsequent burn out of the 

complexing agent leads to a final porous material morphology 

with many holes in the film.21 Recently it has been shown that 

CuAlO2 films with excellent optical properties can be prepared 

by the interfacial reaction between Cu2O and sapphire substrates 50 

using a sandwich structure to inhibit the molten CuxO from 

beading on the substrate surface due to surface tension.22-23 For 

catalytic applications and for MCCs the use of sapphire is less 

desirable owing to its high cost and brittleness.  

 In this work we will demonstrate simple techniques for the 55 

synthesis of CuAlO2 powders and films on Al2O3 ceramic 

substrates and their conversion to a MCC, showing the potential 

CuAlO2 offers in the synthesis of MCCs, e.g. for durable wear 

resistant conductive ceramics. The initial CuAlO2 film deposition 

process involves a novel molten salt painting procedure, that with 60 

suitable adaption, could be used to coat complex ceramic 

geometries.        

2. Experimental 

2.1 Preparation of CuAlO2 reference powder 

CuAlO2 reference powder was prepared by a solid state reaction 65 

between boehmite and CuO. Aluminium isopropoxide was added 

in small portions to DI-H2O preheated to 80°C under vigorous 

stirring. CuO powder was then added to the resultant boehmite 

gel. The molar ratio of Al to Cu was 0.3. The excess water and 

isopropanol by-product was evaporated from the gel whilst 70 

maintaining the vigorous stirring until the viscosity of the gel had 
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increased to the point where no CuO sedimentation took place. 

The viscous gel was then transferred to a PTFE dish and heated at 

200°C for several hours.  During drying an easily handled semi-

solid cake formed which was then transferred to a pre-heated 

furnace at 1100°C for 5 hours. After calcination the cake was 5 

quickly removed from the furnace under a nitrogen stream and 

cooled to room temperature. The excess CuxO was then removed 

by grinding the cake in 36% HCl. The CuAlO2 powder was 

recovered by vacuum filtration and the filter cake was washed 

with several aliquots of 36% HCl before being washed with water 10 

and then isoproanol and finally dried at 60°C for 24 hours. Excess 

copper can then be easily recovered from the filtrate. 

2.2  Preparation of CuAlO2 films on Al2O3 

Sintered Al2O3 plates 7.5cm x 7.5cm x 1mm were cut into 1 x 2 

cm sized samples and cleaned by sonication in acetone and water 15 

and gently dried with a nitrogen stream.  Copper nitrate was then 

painted onto the substrate surface in a simple coating procedure. 

A few crystals of copper nitrate were placed on the surface of the 

substrate which was then heated to 150°C on a hotplate.  When 

the nitrate salt melted, a small pin was used to paint the entire 20 

substrate with the molten salt. After a few minutes heating the 

molten nitrate lost its water of crystallisation resulting in a dry 

copper hydroxyl nitrate gel. Over the course of 15 minutes the 

temperature was increased to 300°C so as to decompose the 

nitrate, leaving a CuO film on the substrate surface. The coated 25 

substrate was then inserted into a pre-heated furnace at 1100°C 

and heating continued for a further 5 hours to form a CuAlO2 

film. The substrates were quickly removed from the furnace 

under a stream of nitrogen and cooled to room temperature. 

Excess CuxO was removed by soaking the substrate in 36% HCl 30 

for 10 minutes, rinsing with fresh HCl, DI-H2O and dried at 60°C 

for 1 hour. The entire coating process was then repeated to ensure 

a uniform and complete coating across the substrate.   

2.3 Characterisation and thermal decomposition 

The morphologies and crystal structures of the powders and films 35 

were examined using scanning electron microscopy (SEM: Karl-

Zeiss EVO series) and x-ray diffraction (XRD: Bruker AXS D8 

Advance Texture Diffractometer). In situ high temperature XRD 

measurements and CuAlO2 decompositions were performed using 

a Jordan Valley D1 Evolution XRD fitted with an Anton Paar 40 

DHS1100 domed hot stage.  

3. Results 

3.1 CuAlO2 powder 

CuAlO2 powders prepared by high temperature solid state 

reactions from mixtures of boehmite gel and CuO showed a good 45 

deal of variability in their composition depending on the 

stoichiometry of reactants used. As shown by the powder XRD 

data in figure 1(i), samples prepared with a direct 1:1 ratio of [Al] 

and [Cu] typically had component peaks due to Al2O3, indicating 

an incomplete consumption of the boehmite most likely due to 50 

inadequate intermixing of the two reactants. Metallic copper 

reflections were also detected at 2θ values of 43.3° and 50.4°, 

corresponding to PDF card no: 04-0836.  To eliminate phase 

impurities, samples are typically re-ground, pressed and re-

annealed. In the absence of high pressure pelletisation, re-55 

annealing the as-prepared powders (figure 1 (ii)), leads to a large  

 

 
Figure 1: (a) XRD data showing CuAlO2 powder made from boehmite and 

CuO using [Cu]/[Al] ratios of (i) 1:1with single anneal at 1100°C (ii) 1:1 60 

with 2 anneals at 1100°C (iii) 3:1 with single 1100°C anneal. The blue, red 
and green lines indicate the peak positions of CuAlO2 (PDF card no: 35-

1401), CuAl2O4 (PDF card no: 33-0448) and Al2O3 (PDF card no: 46-1212), 
respectively. (b) SEM image showing the CuAlO2 powder corresponding 

to the XRD data shown in (iii).  65 
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increase in the spinel CuAl2O4 impurity phase as evidenced by  

the increase of the (220) peak at 2θ = 31.3° and (400) peak at 2θ 

= 44.9°.  

 As compared to other recent reports using boehmite in 5 

conjunction with copper salt precursors where residual impurities 

remained,24 it was found that phase pure CuAlO2 powder can be 

prepared by a single anneal by using an excess of CuO. The XRD 

data in figure 1 (iii) reveal that, ratios of 3:1 [Cu]/[Al] were 

sufficient to ensure the complete conversion of the boehmite 10 

precursor without the formation of any impurity phases such as 

residual boehmite or Al2O3. Close inspection of the XRD pattern 

baseline did not reveal any impurity related diffractions 

indicating that the material is phase pure. The relative intensities 

of the CuAlO2 peaks identified closely match those of the PDF 15 

card 35-1401. The excess copper, which according to the phase 

diagrams is most likely a mixture of both CuO and Cu2O, can 

easily be removed and subsequently recovered by soaking the as-

prepared powders in concentrated HCl and filtering.20 SEM 

analysis reveal that the phase pure powder is composed of a 20 

mixture of morphologies including bulky aggregates of smaller 

particles along with large well crystallised particles with sizes 

ranging  

 

 25 

Figure 2: SEM image of (a) cleaved edge and (b) plan view of a CuAlO2 
film on Al2O3 substrate. 

from hundreds of nm up to 40-50µm. Most of the particles are 

significantly larger than either the CuO or boehmite source 

powder particles. CuO has previously been used as a flux to grow 30 

CuAlO2 single crystals.18-19 In this case we speculate that the 

excess CuO may be contributing to the enlarged crystal by acting 

as a flux, however a number or other explanations are also 

possible such as the formation of a eutectic or peritectic.  

 35 

3.2 CuAlO2 Thick films 

Thick CuAlO2 films were successfully prepared using the 

straightforward procedure outlined in the experimental section. 

The as-prepared films were black in colour and covered the 

substrates uniformly after two deposition cycles. While many 40 

samples had complete substrate coverage after a single deposition 

cycle, some samples had small gaps in the films where part of the 

CuO coating dewetted during the annealing step. The SEM 

images in figure 2 show that the films produced by this technique 

were typically between 10 and 30µm thick. The thickness range 45 

was similar from sample to sample and did not appear to be 

dependent on the CuO coating thickness.  

 Similar to the CuAlO2 powders, the films were composed of a 

variety of particle sizes, ranging from 1-2µm to larger 20-30µm 

crystals. Cross-sectional SEM analysis reveals that the films vary  50 

 
Figure 3: XRD data showing (i) the Al2O3 substrate (ii) CuAlO2 film 
made from the interfacial reaction between CuO and Al2O3 substrates 

with 2 deposition cycles (iii) with 2 deposition cycles and a 3rd anneal at 

1100°C with the CuO film removed. The blue, red and green lines 55 

indicate the peak positions of CuAlO2 (PDF card no: 35-1401), CuAl2O4 

(PDF card no: 33-0448) and Al2O3 (PDF card no: 46-1212), respectively. 

from being quite dense to slightly porous in some regions. XRD 

analysis, as shown in figure 3 (ii), indicates that CuAlO2 is the 

dominant constituent of the film. However, on close inspection, 60 

weak diffractions peaks are detected at 2θ = 31.3° and 55.7° 

which are not associated with the substrate (figure 3 (i)) but 

correspond to spinel impurity phase CuAl2O4 (220) and (422) 

planes. After the second deposition cycle, re-annealing the 

sample as shown in figure 3 (iii), leads to an increase in the 65 

impurity spinel phase, which suggests that once formed the spinel 
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is quite stable and thus difficult to remove. The relative intensity 

of the CuAlO2 diffraction peaks vary substantially as compared to 

the reference powder spectra shown in figure 1 (a), implying a 

texture in the film. Increases are seen in the 2θ peaks located at 

15.7° and 31.7° corresponding to the (003) and (006) planes, 5 

indicating a preferential growth along the [001] direction.   

 To further understand the dynamics of the reactions taking 

place during sintering, CuO and CuAlO2 films on Al2O3 were 

monitored by in situ XRD at 1050°C and 1100°C, respectively. 

Previously, it has been found that the interfacial reaction between 10 

Al2O3 and CuO is the origin of the CuAl2O4 spinel impurity 22-23, 

whilst earlier studies of the interfacial reaction between CuO, 

Cu2O and Al2O3 have indicated that CuAl2O4 preferentially 

grows on the (0001) plane and CuAlO2 grows on the (11-20).25 In 

this work, the polycrystalline Al2O3 substrates used have x-ray 15 

reflections corresponding to both the (0001) and (11-20) planes 

and these are used in conjunction with CuO thereby satisfying 

conditions identified in previous work for both CuAl2O4 and 

CuAlO2 formation. However, our results in figure 4 below show 

that, post annealing, only a very small fraction of the films are in 20 

the spinel phase.    

 It should be noted that the XRD scan range shown in figure 4 

and time durations were chosen so as to effectively monitor 

changes in the sample composition in real time. Each scan lasted 

8 minutes and the 2θ range 30 - 40° was chosen as all the 25 

components of interest have reasonably strong reflections in this 

range. At higher temperatures, thermal expansion effects shift the 

peak positions with respect to room temperature, however the 

substrate peak provides a useful reference point for the 

identification of the other components. In addition, peaks 30 

remaining at the end of the reaction period were tracked back to 

room temperature to confirm their assignments. XRD data prior 

to annealing are shown in figure 4 and curve (i) in figure 4(a) 

shows reflections at 32.5°, 35.5° and 38.7° corresponding to the 

(-110) (002) and (111) planes of CuO. The broad FWHM suggest 35 

that the dimensions in the crystallographic directions being 

examined in this region are quite small. SEM images (not shown) 

of the CuO film prior to annealing, show that the film is 

composed of CuO nanoblades approximately 100 - 120 nm thick 

with a cross sectional diameter between 200 and 1000 nm. In the 40 

first 8 minutes at 1050°C (curve (ii) of figure 4(a)) the CuO 

reflections increase in intensity and the peak FHWM decreases. 

This is most probably due to the sintering behaviour of CuO at 

high temperature leading to the fusing of smaller grains into 

larger denser structures and amorphous CuO crystallising.26 A 45 

new weaker peak emerges at 36.3°C which is assigned to the 

Cu2O (111) reflection. During the 8-16 minute scan, the CuO 

peaks completely disappear and are replaced by a dominant Cu2O 

peak. After 16 minutes, the Cu2O film has largely decomposed 

into metallic copper and alumina (curve (i) of figure 4(c)). In 50 

addition to the dominant copper and alumina components a 

number of weaker diffractions are detected at 2θ = 32.8°, 36.3°, 

37.6°, 44.0°, 44.7°, 51.4° and 59.3° which are tentatively ascribed 

to CuO and CuAl2O4 and different phases of Al2O3. However, the 

exact origin of these impurities has yet to be determined.   55 

 

 

 

 

 60 

Figure 4: XRD data of (a) CuO coated on Al2O3 at (i) room temperature (ii) 
1050°C,0-8 mins (iii) 1050°C 8-16 mins (iv) 1050°C 16-24 mins. (b) CuAlO2 
coated on Al2O3 at (i) room temperature (ii) 1100°C 0-8 mins (iii) 1100°C 
8-16 mins (c) room temperature diffractogram of (i) CuO coated on Al2O3 
post annealing at room temperature (ii) CuAlO2 coated on Al2O3 post 65 

annealing (c = CuO, a = Al2O3, o = Cu2O, mc = metallic copper  s = CuAl2O4, 
x = CuAlO2 h = AlN heating stage) 
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Figure 5: (a) SEM image and EDX spectra of the well faceted discontinuous surface coating. (b) SEM image and EDX spectra of the 

larger grains of the film coating. (c) and (d) SEM images of the bulk film, highlighting the stratification of the grains. 

 5 

 From these XRD data some interesting points emerge. During 

this set of experiments, very little copper aluminates were 

detected, implying the amount formed was very limited (at least 

at the detection limit of the present measurement). During the 

initial heating period and during the first 8 minutes when CuO 10 

was major component of the film, no CuAl2O4 was detected, nor 

was any CuAlO2 detected during the second 8 minutes when 

Cu2O was the dominant species present. In addition, the final 

product formed was metallic copper. The conversion of CuO to 

Cu2O at these temperatures is expected as it agrees well with the 15 

Cu phase diagrams and other reports.27-28 During the CuAlO2 film 

formation excess Cu2O is clearly evident on the sample surface 

even after several hours annealing. From this we conclude that 

the reaction atmosphere plays a critical role in the formation of 

CuAlO2. The stagnant atmosphere of the heating stage graphite 20 

dome inhibits the reaction between the CuO or Cu2O and Al2O3. 

The gaseous Cu components reduce the oxygen partial pressure 

sufficiently so as to drive the reaction equilibrium towards the 
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decomposition of Cu2O. In an open atmosphere, the Cu vapour 

can equilibrate with surrounding air, stopping the decomposition 

process thus allowing the Cu2O to react with the Al2O3, as would 

be expected by the ternary phase diagram for this system.20  This 

suggests that an optimum annealing procedure would consist of 5 

two stages with the initial heating being conducted at low oxygen 

partial pressure so as to encourage the rapid decomposition of 

CuO, followed by a prolonged anneal at atmospheric oxygen 

partial pressures so as to enable the reaction between Cu2O and 

Al2O3. Furthermore, the dependence on annealing atmosphere 10 

also suggests that it may be possible to convert previously formed 

CuAlO2 films to a MCC via a thermal decomposition route. The 

distinct advantage of this route lies in the fact that the Cu and Al 

are already intimately mixed at the atomic level, and are of equal 

stoichiometry, which should yield highly conductive MCCs. 15 

3.3 Cu-Al2O3 MCC 

Figure 4(b) shows the in situ XRD data for a CuAlO2 film 

annealed at 1100°C. Prior to annealing, the film consisted 

primarily of CuAlO2, with a small amount of spinel impurity and 

a trace amount of CuO. The sample was then rapidly heated to 20 

the target temperature before scans were commenced. During the 

first 8 minutes (figure 4(b) curve (ii)), there is a noticeable 

reduction in the CuAlO2 peak intensities with respect to the 

substrate peaks. A new peak emerges at 2θ = 32.6°, which is 

identified from room temperature scans as due to the AlN heating 25 

stage. Between the 8th and 16th minutes of the anneal, the CuAlO2 

film peaks reduced markedly in intensity to the limit of detection. 

Room temperature XRD post annealing, (figure 4(c) curve (ii)) 

shows that the sample is now largely composed of Al2O3 and 

metallic Cu, which was confirmed by SEM and EDX analysis as 30 

shown in figure 5 (a)-(d). Similar to the CuO annealed samples, a 

number of weaker additional diffractions were detected at 2θ = 

19.5°, 31.6°, 32.8°, 35.7°, 36.8°, 37.7°, 44.8° 45.4°, 49.5°, 51.4° 

and 59.1°. Given the initial composition of the film prior to 

annealing, the most likely origin of most of the weaker impurity 35 

phases are residual CuAlO2, CuAl2O4, Al2O3 and CuO, which 

have diffraction peaks in reasonable agreement with those 

detected.   

Post annealing the films are composed of large crystals, with 

some evidence of faceting, coated by a dusting of smaller well 40 

faceted material. EDX analysis of many of these smaller well 

faceted crystallites indicate that they are composed of reduced 

metallic copper (figure 5a). The larger grains, which constitute 

the bulk of the film structure are composed of a composite of Cu 

and Al2O3. EDX analysis of grains free from metallic copper 45 

coating (figure 5(b)) confirm the stoichiometry of Cu to Al to O 

as 1:2:3, matching the expected stoichiometry of a Cu-Al2O3 

MCC. The individual grains of the films appear stratified, being 

composed of alternating layers, with clear contrast differences in 

some regions, as shown in the images in figures 5(b) - (d).  The 50 

alternating crystal structure of the CuAlO2 precursor very 

possibly plays an important role in the formation of layering. 

Under these preparation conditions, the CuAlO2 film 

decomposes, which in turn leads to the reduction of the Cu+1 state 

yielding elemental Cu metal. It is interesting to note that the 55 

previously reported phase diagram suggests that CuAlO2 at 

atmospheric conditions should be stable above 1100°C and 

1140°C is the temperature often used to oxidise Cu to form Cu2O 

single crystals.20,25,29 Experiments performed in open atmospheric 

conditions confirm the stability of the films up to these 60 

temperatures. Therefore a temperature rise or overshoot is 

unlikely to lead to the decomposition of the CuAlO2 film. 

Similarly, from the phase diagram it is seen that reducing the 

temperature range below circa 1000°C at atmospheric conditions 

decomposes CuAlO2 into CuAl2O4 and CuO.20,25 In this work, 65 

both CuO films and CuAlO2 films, were observed in situ, 

reducing to Cu and Cu + Al2O3 respectively. It is well known that 

the composition of CuXO melts are dependant on the O2 partial 

pressure. At atmospheric oxygen partial pressures, at 1100°C the 

CuO stability diagram for this system predicts that the final 70 

product is Cu2O with Cu only forming at significantly lower 

partial pressures.30 Phase diagram measurements are typically 

made for bulk materials and therefore the Cu-Cu2O-CuO system 

reported in reference 30, may not be direct applicable to this 

system given that the CuAlO2 is decomposing at an atomic level. 75 

At present we are unaware of any reported phase diagrams for the 

CuAlO2 system at reduced oxygen partial pressures which may 

explain the anomalous decomposition temperature.      

Four point probe electrical measurements in the van der Pauw 

configuration on these films confirm that they are conductive 80 

with a sheet resistance ~1.6 /□, giving a bulk resistivity of the 

order of 2-5 mΩcm-1, based on the experimentally determined 

maximum and minimum film thickness. Given that the phase 

pure copper identified by EDX on the film surface only forms a 

discontinuous dusting, it is unlikely to contribute much to the 85 

overall film conductivity. Both Cu2O and CuO are well know p-

type semiconductors. The question then arises whether the 

conductivity is due to the presence of residual oxides or metallic 

Cu. The lowest reported resistivity for Cu2O that we are aware of 

is 12 Ωcm-1, for high quality Si doped single crystals, which is 90 

orders of magnitude lower than that of bulk single crystals of 

CuO.31,32 Given that our films are polycrystalline and that the 

resistivity is orders of magnitude lower than that of high quality 

single crystal Cu2O, it is also highly unlikely that the conductivity 

arises from residual oxides. Therefore we speculate that the 95 

conductivity arises within the large stratified grains of the 

material, due to the metallic Cu. However our data are 

insufficient to comment further at present as to whether the 

stratifications are linked to the conduction mechanism and the 

associated issue of the exact distribution of the metallic Cu within 100 

the large grains.      

  4. Conclusions 

We have demonstrated that phase pure CuAlO2 powders can be 

produced in a simple and scalable manner using boehmite and 

CuO precursors and adjusting the stoichiometry of the starting 105 

materials to ensure complete consumption of the boehmite. 

CuAlO2 films were also produced using a novel molten nitrate 

salt painting process, the simplicity of which could easily be 

adapted to coating complex ceramic geometries. To further 

understand the formation mechanism the reactions of CuO with 110 

Al2O3 were monitored in situ at high temperature by XRD and 

this study revealed that the annealing atmosphere plays a critical 

role in both the formation of CuAlO2 and its spinel impurity 

phase. Based on this, a method was developed to convert the 

CuAlO2 into a conductive MCC film with an unusual 115 
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(micro/nano) structure via thermal decomposition. Further work 

is currently underway to examine the tribological and mechanical 

properties of the MCC films and the possibility of using pressed 

CuAlO2 powders to form conductive MCC parts for advanced 

ceramic applications. Further work is also necessary to clarify the 5 

details of the MCC (micro/nano) structure and conduction 

mechanism. 
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