
IRE

A Framework For Inductive Reverse Engineering

by

Connor Nelson

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2019 by the
Graduate Supervisory Committee:

Adam Doupé, Chair
Yan Shoshitaishvili

Ruoyu Wang

ARIZONA STATE UNIVERSITY

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/200250017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2019 Connor Nelson

All Rights Reserved

ABSTRACT

Reverse engineering is critical to reasoning about how a system behaves. While

complete access to a system inherently allows for perfect analysis, partial access is

inherently uncertain. This is the case for an individual agent in a distributed system.

Inductive Reverse Engineering (IRE) enables analysis under such circumstances.

IRE does this by producing program spaces consistent with individual input-

output examples for a given domain-specific language. Then, IRE intersects those

program spaces to produce a generalized program consistent with all examples. IRE,

an easy to use framework, allows this domain-specific language to be specified in

the form of Theorists, which produce Theorys, a succinct way of representing the

program space.

Programs are often much more complex than simple string transformations.

One of the ways in which they are more complex is in the way that they follow

a conversation-like behavior, potentially following some underlying protocol. As a

result, IRE represents program interactions as Conversations in order to more cor-

rectly model a distributed system. This, for instance, enables IRE to model dynami-

cally captured inputs received from other agents in the distributed system.

While domain-specific knowledge provided by a user is extremely valuable, such

information is not always possible. IRE mitigates this by automatically inferring pro-

gram grammars, allowing it to still perform efficient searches of the program space.

It does this by intersecting conversations prior to synthesis in order to understand

what portions of conversations are constant.

IRE exists to be a tool that can aid in automatic reverse engineering across nu-

merous domains. Further, IRE aspires to be a centralized location and interface for

implementing program synthesis and automatic black box analysis techniques.

i

DEDICATION

Thank you to Adam, for not expelling me when I reported a potential security

vulnerability in his principles of programming languages’ project submission server,

but instead inviting me to take his course on software security and inviting me to

join ASU’s hacking team, the pwndevils. His course immediately hooked me into the

“cybersecurity” world. It was more game-like than it was course-like, with an actual

scoreboard on several of the assignments, which ultimately created the passion I

have today for solving security challenges. From there, Adam gave me the amazing

opportunity to do security research with him and serve as a teaching assistant in his

software security course. These experiences have been truly invaluable and absolutely

amazing to be a part of.

Thank you to Yan, for showing me that anything can be done the day before it is

absolutely necessary, as we worked through the night and early morning at a coffee

shop–just before his first class on systems security–to create a challenge infrastruc-

ture (which would be hacked by one of the students just hours later). I remember

listening to Yan’s talk on angr at DEF CON 23, a couple of years before he joined

our lab–and I remember how excited I was when I learned that this legendary hacker

might join our lab. The level of energy and humor that Yan has brought to the lab

is truly inspiring.

It has been an absolute blast working with both Adam and Yan, as well as Fish,

Tiffany, and the rest of the lab. Our amazing lab is the reason that I continue to do

research.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES . iv

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

3 THEORISTS AND THEORIES . 5

3.1 Grammar Theorists . 5

3.2 Theorists to Theories . 8

3.3 Theory Intersection . 9

4 CONVERSATIONS . 12

4.1 Capturing Theorists and Theories . 13

5 GRAMMARLESS SYNTHESIS . 18

5.1 Conversation Intersection . 19

6 RELATED WORK . 22

REFERENCES . 23

iii

LIST OF FIGURES

Figure Page

1. Theorist . 5

2. Theory . 6

3. HTML Grammar Theorist . 6

4. Simple HTML Echo Program. 8

5. Output of Simple HTML Echo Program . 8

6. Simple HTML Echo Theory . 9

7. Theory Intersection . 10

8. Another Output of Simple HTML Echo Program . 10

9. Another Simple HTML Echo Theory . 10

10.Simple HTML Echo Theory Intersected . 11

11.Conversation . 12

12.Capture Theorist and Capture Theory . 13

13.HTTP Theorist . 15

14.Simple HTTP Conversation . 16

15.Simple HTTP Theory . 17

16.Generic Theorist . 18

17.Generic Theory . 18

18.Conversation Intersection . 20

19.Another Conversation Intersection . 21

iv

Chapter 1

INTRODUCTION

Reverse engineering is a methodology for precisely analyzing the internal work-

ings and substructure of a process or system in order to better understand how it

works. In practice, it is done in the absence of high-level specifications and can be

thought of as working backward through the standard engineering process—design

towards implementation—and instead, implementation towards design. In theory,

reverse engineering is relatively straightforward: simply observe how the internals

are operating and how the subcomponents are connected. Of course, it is more nu-

anced than this; but even so, a complete working system that can be observed is, by

its very nature, perfectly descriptive of what it does and how it works. This is an un-

derlying requirement of standard reverse engineering. In hardware, a physical object

is disassembled and examined. In software, its source code is read through, or in its

absence, binary disassembled and machine code analyzed.

Consider, however, the task of reverse engineering without complete access to

observing the system. This is the case in distributed systems, where some agent has

only partial access to the overall system. Take for instance web applications, where a

client makes a request to a server and is only made aware of its response. From the

client’s perspective, the server is merely a black-box—an oracle—that takes some

input and returns some output. What happens in between is left unknown to the

client. In such cases, reverse engineering becomes inherently uncertain.

Further consider the problem of systems in which interactions take place between

persons and computers; for instance, a human interacting with some computer pro-

1

gram in a repetitive way. This constitutes a distributed system, where part of the

program takes place in the computer, but also part of it takes place in the person’s

intentions towards interacting with the computer. In such cases, the program oc-

curring in the person’s intentions—in the person’s mind—is but a black-box to the

computer. It is in this way that reverse engineering may be applied not only towards

analyzing a computer, but also a person. Reverse engineering may be useful here in

order to profile or improve upon the user experience of the person.

Although reverse engineering in these situations becomes an inherently uncertain

process, this does not stop human-efforts in reverse engineering. In practice, hu-

mans build up an entire model of the black-box system under analysis. They make

assumptions based on past systems, attempt to rule out and confirm these assump-

tions, and use intuition as a means of guiding this process. This inductive reasoning

forms the basis for inductive reverse engineering: IRE.

IRE serves to solve this problem of reverse engineering in a black-box environ-

ment. IRE is an easy to use, open source, Python 3 framework, that enables users

to transform input-output examples into executable programs consistent with those

examples. This effectively allows for programming by example. Users can easily in-

troduce domain-specific knowledge about the problem they are working on to further

enhance this process.

2

Chapter 2

BACKGROUND

This sort of reverse engineering without access to internals has become a mas-

sively important skill, and in particular, critical to cybersecurity. Take for instance

phone phreaking, where early hackers mapped out the phone network and how it

worked simply by interacting with it using various tones and observing the results [1].

In more recent times, penetration testing has become an important profession that

often relies on reverse engineering in order to audit the security of companies from

the perspective of an outside attacker.

One of the common tasks of a penetration tester is in utilizing tools such as

black-box web vulnerability scanners. These scanners naively scan a web application,

blindly sending exploits at input points and trying to detect if they worked. A survey

of these tools shows that there is much work to be done in improving them [2].

Furthermore, efforts to provide more semantic information about an application’s

state has proven to be effective, despite still fundamentally only having black-box

access [3].

In response to the demand for reverse engineering, recent efforts have been made

to push towards Cyber Reasoning Systems which aid in this effort, and in some cases

entirely automate it. The Defense Advanced Research Projects Agency (DARPA)

led an initiative to develop fully autonomous systems capable of reverse engineering

and exploiting challenge binaries in their Cyber Grand Challenge [4]. This has led to

significant advances in program analysis and various techniques surrounding state-

of-the-art reverse engineering. Many of these techniques can be seen in open source

3

frameworks for performing program analysis including angr and Manticore [5]–[8].

These frameworks provide users with tools for precisely reasoning about a program

by analyzing their internals.

4

Chapter 3

THEORISTS AND THEORIES

IRE works around two central primitives: theorists and theories. Theorists use

input-output examples to produce theories. They act as a sort of domain-specific

language. Theories use input to produce output. They model the synthesized pro-

gram.

3.1 Grammar Theorists

IRE fundamentally solves a parsing problem. It must parse input-output exam-

ples to produce a program, not entirely dissimilar to a programming language parser

which parses source code to produce a program. For this reason, it is useful to

think in terms of context-free grammars. While in the programming language realm

Figure 1. Theorist

5

Figure 2. Theory

1 import ire
2

3 class HTML(ire.GrammarTheorist, entry=’html’):
4 html = ire.RepeatTheorist(html_element)
5 html_element = (open_tag & close_tag & self_tag) | data
6

7 open_tag = ’<’ + tag_content + ’>’
8 close_tag = ’</’ + tag_name + ’>’
9 self_tag = ’<’ + tag_content + ’/>’
10

11 data = ’.|\n’ & ire.FunctionTheorist(None) & ire.FunctionTheorist(b64)
12

13 tag_content = (tag_name + whitespace + attributes) | tag_name
14 tag_name = ’[a-zA-Z]+’
15

16 attributes = (attribute + whitespace + attributes) | attribute
17 attribute = ’[a-zA-Z]+’ & (’[a-zA-Z]+=”’ + attribute_value + ’”’)
18 attribute_value = ’[a-zA-Z0-9]’
19

20 whitespace = ’\s+’

Figure 3. HTML Grammar Theorist

context-free grammars strive to be unambiguous, IRE leverages ambiguity to pro-

duce the program space. Consider, for instance, the HTML grammar theorist (Figure

3) written using the IRE framework.

Here, a GrammarTheorist is defined, with html being the entry point, or start

symbol in context-free grammar terminology. Variables that appear on the left side of

6

an = indicate a nonterminal symbol, while all other expressions are terminal symbols.

Each of these assignments forms the basis for a production rule.

Strings are implicitly RegexTheorists, which as the name suggests, perform

regex matching. Addition expressions (using the + operator) are implicitly

ConcatTheorists, which serve to concatenate theorists, and their produced the-

ories, together.

Rather than defining several production rules for the same nonterminal, operators

& and | both respectively serve to implicitly create AndTheorists and OrTheorists.

All theorists within an AndTheorist will attempt to produce theories. After some

theorist within an OrTheorist has produced some number of theories, any remain-

ing theorists will not be given a chance to produce theories. This evaluation takes

place from left to right and allows for a conditionally restricted search space, and

consequently more efficient parsing. On line 5, the OrTheorist indicates that an

html_element can be an open_tag, close_tag and self_tag, or if that is not the case

then it must be data.

On line 4, the RepeatTheorist indicates that parsing should repeatedly consume

(one or more times) html_elements until it no longer can. Implementation wise,

this is more efficient than how looping is traditionally performed in context-free

grammars by having a self-referential production rule.

FunctionTheorists wrap functions to make them behave as theorists. Line 11

showcases two of these theorists. FunctionTheorist(None) indicates the identity

function (f(x) = x). FunctionTheorist(b64) on the other hand assumes the existence

of a b64 function (defined elsewhere), which base64 encodes its input.

7

1 def echo(name, msg):
2 return \
3 f”””
4 <html>
5 <head>
6 <title>Echo</title>
7 </head>
8 <body>
9 <p>Hello {name}!</p>
10 <p>”{msg}” is {b64(msg)}</p>
11 </body>
12 </html>
13 ”””

Figure 4. Simple HTML Echo Program

<html>
<head>

<title>Echo</title>
</head>
<body>

<p>Hello Paul!</p>
<p>“Hello World” is SGVsbG8gV29ybGQ=</p>

</body>
</html>

Figure 5. Output of Simple HTML Echo Program

3.2 Theorists to Theories

Consider the simple HTML echo program (Figure 4) in order to understand how

IRE is able to utilize the prior HTML grammar theorist (Figure 3) to reason about

this program and produce theories.

This simple program (Figure 4) transforms the inputs into an HTML output.

Inputs name=’Paul’ and msg=’Hello World’ result in the output shown in Figure

5.

Running this input-output example (Figure 5) through the prior HTML grammar

8

{
<html>

<head>
<title>Echo</title>

</head>
<body>

<p>Hello {{{Input[0]}}, Paul}!</p>
<p>“{{{Input[1]}}, Hello World}” is {{{b64(Input[1])}}, SGVsbG8gV29ybGQ=}</p>

</body>
</html>
}

Figure 6. Simple HTML Echo Theory

theorist (Figure 3) results in the theory shown in Figure 6, displayed as a simple

program summary using the IRE framework.

In this simple program summary (Figure 6), the gray curly braces and commas

representUnionTheorys, and the blue text represents individual theories within those

UnionTheorys. UnionTheorys are a way of succinctly representing the program

space, allowing common theories among candidate program traces to not be re-

peated, effectively forming a directed acyclic graph. Double curly braces indicate

theories that depend on the input (e.g. FunctionTheorys).

This shows an interesting result common to running a theorist against only one

input-output example: the complete original constant output by itself appears as a

possible program trace within the program space. These constant theories can be

ruled out only with more input-output examples.

3.3 Theory Intersection

In order to collapse the program space, theories resulting from different input-

output examples must be intersected together.

9

Figure 7. Theory Intersection

<html>
<head>

<title>Echo</title>
</head>
<body>

<p>Hello Pablo!</p>
<p>“Hola Mundo” is SG9sYSBNdW5kbw==</p>

</body>
</html>

Figure 8. Another Output of Simple HTML Echo Program

{
<html>

<head>
<title>Echo</title>

</head>
<body>

<p>Hello {{{Input[0]}}, Pablo}!</p>
<p>“{{{Input[1]}}, Hola Mundo}” is {{{b64(Input[1])}}, SG9sYSBNdW5kbw==}</p>

</body>
</html>
}

Figure 9. Another Simple HTML Echo Theory

Inputs name=’Pablo’ and msg=’Hola Mundo’ result in the output shown in Fig-

ure 8.

Running this input-output example (Figure 8) through the prior HTML grammar

theorist (Figure 3) results in the theory shown in Figure 9, displayed as a simple

program summary using the IRE framework.

10

{
<html>

<head>
<title>Echo</title>

</head>
<body>

<p>Hello {{{Input[0]}}}!</p>
<p>“{{{Input[1]}}}” is {{{b64(Input[1])}}}</p>

</body>
</html>
}

Figure 10. Simple HTML Echo Theory Intersected

Intersecting the first theory (Figure 6) with the second theory (Figure 9), results

in just one program trace in the program space: our original program (Figure 4).

11

Chapter 4

CONVERSATIONS

Often times, distributed programs follow a conversation-like behavior, potentially

following some underlying protocol. In such cases, program synthesis cannot merely

take place over only simple input-output examples. Instead, input-output examples

must be generalized to conversation examples. Here, discerning between input and

output doesn’t necessarily make sense, as it depends on an agent’s perspective. In-

stead, a conversation takes place over a series of messages, where a message has

some source agent and destination agent. Further, these agents have context–a gen-

eralization of input–representing what an agent individually brings as their input to

a particular conversation. This allows for some notion of state. Nevertheless, in a

deterministic program, identical contexts will produce identical conversations.

Figure 11. Conversation

12

Figure 12. Capture Theorist and Capture Theory

4.1 Capturing Theorists and Theories

An agent is not aware of other agents’ contexts; only its own context and any

received messages. This is a fundamental problem in reverse engineering distributed

systems. Therefore, IRE must use an agent’s received messages in order to recover

the sender’s context. It does so using CaptureTheorists and CaptureTheorys.

CaptureTheorists wrap other theorists and effectively leverage their ability to

parse. Those CaptureTheorists go on to create CaptureTheorys, which also wrap

those same theorists. During synthesis, the underlying theorists attempt to produce

theories, and anything consumed during this is captured. This captured data may then

be used in later theorists, much like a traditional input. Those produced theories do

not actually become a part of the program space, but instead the CaptureTheorys

storing the underlying theorist does. This allows this parsing done during the synthe-

sis to be performed again during execution of the theory.

Consider the HTTP theorists shown in Figure 13, written using the IRE frame-

work, in order to understand how these CaptureTheorists and CaptureTheorys may

be applied.

13

In the case of web applications, it is common for an HTTP server to negotiate

some token, commonly known as a cookie, for keeping track of state with its clients

[9]. Cookies are a way of enabling statefulness in the otherwise stateless HTTP pro-

tocol. An HTTP client will include the cookies associated with a particular server

with all web requests made to that server. By introducing a CaptureTheorist on line

28, this behavior is effectively conveyed and enables IRE to capture the cookie.

Now consider the HTTP conversation (Figure 14) that results from the client’s

context of username=’Paul’, password=’p455w0rd’, and msg=’Hello_World’;

and unknown to the client, server’s context of cookie=’sessionid=12345’.

Running this conversation example (Figure 14) through the prior HTTP theorist

(Figure 13) results in the theory shown in Figure 15, displayed as a simple program

summary using the IRE framework.

With another example conversation, this program space could be collapsed as

discussed in Section 3.3.

14

1 class HTTPRequest(ire.OutputMessageTheorist, entry=’request’):
2 request = request_prolog + headers + ’\n’ + request_contents
3 request_prolog = ’(GET|POST) ’ + request_url + ’ HTTP/1.1\n’
4 request_url = ire.RepeatTheorist(request_url_data)
5 request_url_data = ’[^]’ & inputs
6

7 headers = ire.RepeatTheorist(header)
8 header = ’[a-zA-Z-]+: ’ + ire.RepeatTheorist(header_data) + ’\n’
9 header_data = ’.’ & inputs
10

11 request_contents = ire.RepeatTheorist(request_contents_data) | ’’
12 request_contents_data = ’.|\n’ & inputs
13

14 inputs = ire.FunctionTheorist(None) & ire.FunctionTheorist(b64)
15

16

17 class HTTPResponse(ire.InputMessageTheorist, entry=’response’):
18 response = response_prolog + headers + ’\n’ + response_contents
19 response_prolog = ’HTTP/1.1 [0-9]+ [a-zA-Z]+\n’
20

21 headers = ire.RepeatTheorist(cookie_header | header)
22 cookie_header = ’Set-Cookie: ’ + cookie + ’\n’
23 header = ’[a-zA-Z-]+: ’ + ire.RepeatTheorist(header_data) + ’\n’
24 header_data = ’.’ & inputs
25

26 response_contents = HTML() | ’’
27

28 cookie = ire.CaptureTheorist(cookie_data, ’cookie’)
29 cookie_data = ’[a-zA-Z]+=[a-zA-Z0-9]+’
30

31 inputs = ire.FunctionTheorist(None) & ire.FunctionTheorist(b64)
32

33

34 http = HTTPRequest() & HTTPResponse()

Figure 13. HTTP Theorist

15

POST /login HTTP/1.1
Host: example.com
Content-Type: application/json

{“username”: “Paul”, “password”: “p455w0rd”}

HTTP/1.1 200 OK
Set-Cookie: sessionid=12345
Connection: close

GET /echo?msg=Hello_World HTTP/1.1
Host: example.com
Cookie: sessionid=12345

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Connection: close

<html>
<head>

<title>Echo base64</title>
</head>
<body>

<p>Hello Paul!</p>
<p>“Hello_World” is SGVsbG9fV29ybGQ=</p>

</body>
</html>

Figure 14. Simple HTTP Conversation

16

{
POST /login HTTP/1.1
Host: example.com
Content-Type: application/json

{“username”: “{{{Input[username]}}, Paul}”, “password”: “{{{Input[password]}}, p455w0rd}”}
}

{
HTTP/1.1 200 OK
Set-Cookie: {{{Capture[cookie]}}}
Connection: close

}

{
GET /echo?msg={{{Input[msg]}}, Hello_World} HTTP/1.1
Host: example.com
Cookie: {{{Input[cookie]}}, sessionid=12345}

}

{
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Connection: close

<html>
<head>

<title>Echo base64</title>
</head>
<body>

<p>Hello {{{Input[username]}}, Paul}!</p>
<p>“{{{Input[msg]}}, Hello_World}” is {{{b64(Input[username])}},

SGVsbG9fV29ybGQ=}</p>
</body>

</html>
}

Figure 15. Simple HTTP Theory

17

Chapter 5

GRAMMARLESS SYNTHESIS

While it is useful to be able to provide domain-specific knowledge to an analysis,

doing so is not always possible. Providing a grammar to IRE allows it to be more

efficient in its search, by reducing the possible program space. Consider, for instance,

the grammar shown in Figure 16 which is highly generic.

This grammar (Figure 16) repeatedly matches against a single byte and derivations

of the input. Repeatedly matching against a single byte is what effectively drives the

parsing forward.

Inputs name=’Paul’ and msg=’body’ run against the prior simple program (Fig-

ure 4) and through the generic theorist (Figure 16) result in the theory shown in

Figure 17, displayed as a simple program summary using the IRE framework.

1 class Generic(ire.GrammarTheorist, entry=’entry’):
2 entry = ire.RepeatTheorist(data)
3 data = ’.|\n’ & ire.FunctionTheorist(None) & ire.FunctionTheorist(b64)

Figure 16. Generic Theorist

{
<html>

<head>
<title>Echo</title>

</head>
<{{{Input[1]}}, body}>

<p>Hello {{{Input[0]}}, Paul}!</p>
<p>“{{{Input[1]}}, body}” is {{{b64(Input[1])}}, Ym9keQ==}</p>

</{{{Input[1]}}, body}>
</html>
}

Figure 17. Generic Theory

18

Note that in this case, the HTML body tags are considered to have been poten-

tially derived from the input. Of course, with another input-output example, this

program space could be collapsed to resolve this as discussed in Section 3.3. Nev-

ertheless, it is useful for demonstrating how much extra work must be needlessly

done in the absence of domain-specific knowledge about the HTML structure of

this program’s output.

5.1 Conversation Intersection

The prior structure of the generic theorist (Figure 16) does not scale very well

with message sizes and the number of core theorists (e.g. FunctionTheorists).

Consider for instance a message of 100,000 bytes, with hundreds of potential

FunctionTheorists and CaptureTheorists defined to allow for all sorts of context

derivations. This would likely be the case in applying IRE to real world web appli-

cations, where HTML pages get quite large, and context derivations quite complex.

Under such circumstances, applying this sort of generic theorist would become in-

feasible.

Fortunately, IRE can do much better by analyzing multiple conversations at once,

prior to producing their theories and intersecting them. With this early access, IRE

can perform a sort of conversation intersection before it begins its traditional analysis.

In doing so, IRE analyzes the supplied conversations to determine their structure. In

particular, it looks for portions of messages which remain constant throughout all of

the conversations. IRE uses the insight that if portions of a message don’t change

across any conversation examples, then it must be the case that a consistent program

trace keeps it constant. Boldly, IRE assumes that it must be constant.

19

<html>
<head>

<title>Echo</title>
</head>
<body>

<p>Hello Pa{u, b}l{, o}</p>
<p>“H{ell, }o{, la}” is SG{V, 9}s{bG8, VQ=}=</p>

</body>
</html>

Figure 18. Conversation Intersection

Effectively, IRE automatically generates a grammar, where constant sections are

parsed by constant theorists, and nonconstant sections are parsed by all supplied core

theorists. This can dramatically decrease the program search space. However, IRE

must first determine which sections of messages are constant, and which aren’t.

This is done by taking all corresponding messages across all conversations, and

finding the longest common substring across them. The longest common substring

is marked as being constant in the grammar, and this is recursively applied to all the

prefixes and all the suffixes. This continues on until there no longer is a common

substring. This ultimately results in marking the maximum amount of constant data

across all conversations.

Observe what happens (Figure 18) when the output from input name=’Paul’ and

msg=’Hello’ and output from input name=’Pablo’ and msg=’Hola’ run against the

prior simple program (Figure 4) are intersected.

This shows an interesting result common to intersecting only a few examples: too

much of the conversation is marked constant. This can potentially cause problems

with inputs being fragmented, though this is not necessarily a major issue. Fortu-

nately, though, with more examples this problem is resolved. Figure 19 shows the

result of introducing another output due to input name=’Joe’ and msg=’ABC’.

This discovered structure (Figure 19), in turn, is used by IRE for automatically

20

<html>
<head>

<title>Echo</title>
</head>
<body>

<p>Hello {Paul, Pablo, Joe}!</p>
<p>“{Hello, Hola, ABC}” is {SGVsbG8=, SG9sYQ==, QUJD}</p>

</body>
</html>

Figure 19. Another Conversation Intersection

generating a grammar. This dramatically reduces the possible program space, en-

abling IRE to be much more efficient.

21

Chapter 6

RELATED WORK

Early work in this field has formalized inductive learning as a search problem [10].

Past work has shown just how useful version space algebras can be in representing a

program space [11]–[13]. Several search techniques including enumerative, stochastic,

and constraint-based algorithms have been developed in order to search the program

space in a number of domains [14]–[17].

Microsoft has made major contributions in this area. Much of the research dis-

cussed here builds upon their work in Inductive Program Synthesis. Their PROSE

SDK enables program synthesis development in a way akin to what this research ex-

plores [18]. Their FlashFill program demonstrates some of the potential applications

that this research has for millions of users [19], [20].

The specific problem of protocol reverse engineering is a very closely related area

that has been researched in order to quickly understand custom botnet protocols in

Prospex and Dispatcher [21], [22].

Because this topic can be applied to so many areas, research on it is scattered

in several fields [23]. For this reason, IRE aspires to be a centralized location and

interface for implementing program synthesis and automatic black box analysis tech-

niques.

22

REFERENCES

[1] K. D. Mitnick and W. L. Simon, The art of deception: Controlling the human element
of security. John Wiley & Sons, 2011.

[2] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An analysis of
black-box web vulnerability scanners,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, Springer, 2010, pp. 111–131.

[3] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state: A
state-aware black-box web vulnerability scanner,” in Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security 12), 2012, pp. 523–538.

[4] T. Shellphish, “Cyber grand shellphish,” Phrack Papers, 2017.

[5] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J.
Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state of) the art
of war: Offensive techniques in binary analysis,” 2016.

[6] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through se-
lective symbolic execution.,” in NDSS, vol. 16, 2016, pp. 1–16.

[7] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmal-
ice - automatic detection of authentication bypass vulnerabilities in binary
firmware,” 2015.

[8] T. of Bits, Manticore: Symbolic execution for humans, https://github.com/trailofbit
s/manticore.

[9] A. Barth, “Rfc 6265-http state management mechanism,” Internet Engineering
Task Force (IETF), pp. 2070–1721, 2011.

[10] T. M. Mitchell, “Generalization as search,” Artificial intelligence, vol. 18, no. 2,
pp. 203–226, 1982.

[11] H. Hirsh, “Theoretical underpinnings of version spaces.,” in IJCAI, 1991,
pp. 665–670.

[12] T. A. Lau, P. M. Domingos, and D. S. Weld, “Version space algebra and its
application to programming by demonstration.,” in ICML, 2000, pp. 527–534.

23

https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore

[13] T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld, “Programming by
demonstration using version space algebra,” Machine Learning, vol. 53, no. 1-
2, pp. 111–156, 2003.

[14] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin, and R.
Alur, “Transit: Specifying protocols with concolic snippets,” ACM SIGPLAN
Notices, vol. 48, no. 6, pp. 287–296, 2013.

[15] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in
ACM SIGPLAN Notices, ACM, vol. 48, 2013, pp. 305–316.

[16] A. Solar-Lezama and R. Bodik, Program synthesis by sketching. Citeseer, 2008.

[17] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure transforma-
tions from input-output examples,” in ACM SIGPLAN Notices, ACM, vol. 50,
2015, pp. 229–239.

[18] S. Gulwani, “Programming by examples: Applications, algorithms, and ambi-
guity resolution,” in International Joint Conference on Automated Reasoning, Springer,
2016, pp. 9–14.

[19] ——, “Automating string processing in spreadsheets using input-output exam-
ples,” in ACM SIGPLAN Notices, ACM, vol. 46, 2011, pp. 317–330.

[20] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid,
and B. Zorn, “Inductive programming meets the real world,” Communications of
the ACM, vol. 58, no. 11, pp. 90–99, 2015.

[21] P. M. Comparetti, G.Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol
specification extraction,” in Security and Privacy, 2009 30th IEEE Symposium on,
IEEE, 2009, pp. 110–125.

[22] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher: Enabling
active botnet infiltration using automatic protocol reverse-engineering,” in Pro-
ceedings of the 16th ACM conference on Computer and communications security, ACM,
2009, pp. 621–634.

[23] E. Kitzelmann, “Inductive programming: A survey of program synthesis tech-
niques,” in International workshop on approaches and applications of inductive program-
ming, Springer, 2009, pp. 50–73.

24

	Title Page
	Table of Contents
	List of Figures
	Chapter
	1 Introduction
	2 Background
	3 Theorists and Theories
	4 Conversations
	5 Grammarless Synthesis
	6 Related Work
	References

