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ABSTRACT

One of the critical issues in the U.S. healthcare sector is attributed to medications

management. Mismanagement of medications can not only bring more unfavorable

medical outcomes for patients, but also imposes avoidable medical expenditures,

which can be partially accounted for the enormous $750 billion that the American

healthcare system wastes annually. The lack of efficiency in medical outcomes can be

due to several reasons. One of them is the problem of drug intensification: a prob-

lem associated with more aggressive management of medications and its negative

consequences for patients.

To address this and many other challenges in regard to medications mismanage-

ment, I take advantage of data-driven methodologies where a decision-making frame-

work for identifying optimal medications management strategies will be established

based on real-world data. This data-driven approach has the advantage of support-

ing decision-making processes by data analytics, and hence, the decision made can

be validated by verifiable data. Thus, compared to merely theoretical methods, my

methodology will be more applicable to patients as the ultimate beneficiaries of the

healthcare system.

Based on this premise, in this dissertation I attempt to analyze and advance

three streams of research that are influenced by issues involving the management of

medications/treatments for different medical contexts. In particular, I will discuss

(1) management of medications/treatment modalities for new-onset of diabetes after

solid organ transplantations and (2) epidemic of opioid prescription and abuse.
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Chapter 1

INTRODUCTION

One of the critical issues in the U.S. healthcare sector is attributed to medica-

tions management. Mismanagement of medications can not only bring more unfavor-

able medical outcomes for patients, but also imposes avoidable medical expenditures,

which can be partially accounted for the enormous $750 billion that the American

healthcare system wastes annually. The lack of efficiency in medical outcomes can be

due to several reasons. One of them is the problem of drug intensification: a prob-

lem associated with more aggressive management of medications and its negative

consequences for patients.

To address this and many other challenges in regard to medications misman-

agement, we take advantage of data-driven methodologies where a decision-making

framework for identifying optimal medications management strategies will be estab-

lished based on real-world data. This data-driven approach has the advantage of sup-

porting decision-making processes by data analytics, and hence, the decision made

can be validated by verifiable data. Thus, compared to merely theoretical methods,

our methodology will be more applicable to patients as the ultimate beneficiaries of

the healthcare system.

Based on this premise, in this dissertation we attempt to analyze and advance

three streams of research that are influenced by issues involving the management of

medications/treatments for different medical contexts. In particular, we will discuss

(1) management of medications/treatment modalities for new-onset of diabetes after

solid organ transplantations and (2) epidemic of opioid prescription and abuse.

1



1.1 Medications Management for New-Onset Diabetes after Transplant

As reported by the United Network of Organ Sharing, nearly 20,000 kidney trans-

plantations were conducted in the U.S. in 2017 (140,992 cases since 2010) (UNOS,

2018). According to the Organ Procurement and Transplantation Network (OPTN),

the average cumulative probability of 1 to 10-year organ rejection after kidney trans-

plantation is estimated to be 6.35% to 48.7% (OPTN, 2011). To reduce the risk of

organ rejection post-transplant, physicians typically use an intensive amount of an

immunosuppressive (a.k.a. anti-rejection) drug (e.g., tacrolimus). However, due to

the well-known diabetogenic effect, excessive exposure to an immunosuppressive drug

may induce New Onset Diabetes After Transplantation (NODAT) which refers to

incidence of diabetes in a patient with no history of diabetes prior to transplantation

(Chakkera et al., 2009).

Our clinical data shows that more than 80% (20%) of patients who undergo trans-

plantation are in danger of becoming pre-diabetic (diabetic), mainly because of in-

tensive amount of immunosuppressive drugs used in practice. Considering the total

number of transplantations carried out worldwide, this can account for more than

90,000 new patients per year who are in danger of elevated blood glucose levels. El-

evated blood glucose levels, in turn, increase the risk of organ rejection and may

result in re-transplantation, which is a costly medical operation. Although physicians

attempt to control the risk of elevated blood glucose levels by putting the patient

on insulin, using insulin should be coordinated with the intensity of the immuno-

suppressive drug(s) used, because unnecessary use of insulin is harmful (Kromann

et al., 1981). Despite this conundrum faced by physicians, there is currently no clear

guideline on how these medications should be simultaneously managed. Our goal in

this research is to address this deficit. To this end, we will discuss my two studies

2



in chapters 2-3, where the first study is a fundamental theoretical/numerical analysis

that deals with actual management of medications after transplant, and the second

study is an empirical research about incidence of hyperglycemia (i.e., elevated blood

glucose levels) as a result of using immunosuppressive drugs.

1.2 Opioid Prescription and Abuse Epidemic

According to the Centers for Disease Control and Prevention (CDC), a total of

47,055 drug-related deaths ocurred in 2014, among which opioid analgesics were the

main contributing factor accounting for 18,893 deaths (40% of total deaths). These

opioid painkillers may ultimately result in heroin addiction/overdose, which caused

additional 10,574 deaths in the same year (CDC, 2015). In addition, the societal

costs of opioid prescription abuse in the U.S. can get up to $78.5 billion (including

healthcare cost, workplace cost, and criminal justice cost) (MedlinePlus.gov, 2016),

and almost 2 million people are estimated to be dependent on prescription opioids or

abusing them (USA Today, 2016). All these factors have prompted CDC to call this

problem an epidemic.

To address this issue, CDC proposed a set of guidelines for prescribing opioids for

chronic pain (Dowell et al., 2016), which mainly focus on reducing the strength or

duration of supply for these medications. However, as mentioned by the American

Medical Association (AMA), some of these guidelines may not reflect the existing ev-

idence (AMA, 2016a): “[. . . ] while the AMA supports many of the recommendations,

we continue to have serious concerns that some either contain a degree of specificity

not supported by the existing evidence or conflict with official Food and Drug Ad-

ministration (FDA)-approved product labeling for opioid analgesic products.” More

importantly, these guidelines make very general recommendations for prescribing opi-

oid painkillers, leaving the ultimate prescription decision up to a provider/physician

3



(Dowell et al., 2016): “Clinicians should consider opioid therapy only if expected

benefits for both pain and function are anticipated to outweigh risks to the patient.”

Despite the clear intuition behind this strategy, the extent where potential benefits

of these medications would be comparable to their side effects/risks is not completely

known.

We attempt to address the foregoing question in chapter 4. In particular, we

will explore evidence for a potential trade-off between benefits and risks of using opi-

oid painkillers. To this end, we utilize Commercial Insurance and Medical Claims

data, which contains the history of medical encounters and prescribed medications

for millions of patients over a three-year period. Employing some machine learning

algorithms, we make statistical inference about whether or not there exist associ-

ations between benefits/risks and (1) using opioid painkillers, (2) using non-opioid

painkillers, and (3) duration of supply. Furthermore, we make this inference in the

presence of different patient’s characteristics, which include (1) demographics (e.g.,

age and gender), (2) behavioral risk factors (e.g., history of alcohol consumption,

smoking, mental disorder, and substance abuse), and (3) route of encounter (e.g.,

inpatient vs. outpatient).
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Chapter 2

ROBUST STOCHASTIC DECISION-MAKING FOR MEDICATIONS

MANAGEMENT: A DATA-DRIVEN APPROACH

2.1 Introduction

As reported by the United Network of Organ Sharing, nearly 20,000 kidney trans-

plantations were conducted in the U.S. in 2017 (140,992 cases since 2010) (UNOS,

2018). According to the Organ Procurement and Transplantation Network (OPTN),

the average cumulative probability of 1 to 10-year organ rejection after kidney trans-

plantation is estimated to be 6.35% to 48.7% (OPTN, 2011). To reduce the risk of

organ rejection post-transplant, physicians typically use an intensive amount of an

immunosuppressive (a.k.a. anti-rejection) drug (e.g., tacrolimus). However, due to

the well-known diabetogenic effect, excessive exposure to an immunosuppressive drug

may induce New Onset Diabetes After Transplantation (NODAT) which refers to

incidence of diabetes in a patient with no history of diabetes prior to transplantation

(Chakkera et al., 2009).

To illustrate this point, we use a data set of 407 patients who had kidney transplant

surgery at our partner hospital between 1999 and 2006. Based on this data set, Figure

2.1 depicts the empirical cumulative distribution functions (C.D.F.s) of blood glucose

level (measured by the HbA1c test) right before and one month after transplantation

for patients who had no prior history of diabetes. As can be seen, more than 80%

(20%) of patients who undergo transplantation are in danger of becoming pre-diabetic

(diabetic), mainly because of intensive amounts of an immunosuppressive drug used

in practice. Considering the total number of transplantations carried out worldwide,
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this can account for more than 90,000 new patients per year who are in danger of

elevated blood glucose levels.

Elevated blood glucose levels, in turn, increase the risk of organ rejection and may

result in re-transplantation, which is a costly operation (Bentley and Hanson, 2011).

To control the risk of elevated blood glucose levels, a patient may need diabetes

medications (e.g., insulin). However, in the current practice, immunosuppressive

drugs and diabetes medications are typically prescribed by different departments

(transplantation/nephrology and endocrinology, respectively) of a hospital. This, in

turn, results in a sequential management of these medications, which may reduce

the efficacy of treatments. In addition, diabetes medications cannot be prescribed

arbitrarily, because unnecessary use of such medications is harmful (Kromann et al.,

1981). Therefore, the use of a diabetes medication should be coordinated with the

intensity of the immunosuppressive drug used. Despite guidelines on how to manage

these medications separately, there is currently no clear guideline on how to coordinate

these regimens (i.e., how to simultaneously manage these medications). Our goal in

this study is to address this deficit while taking into account the following issues:

Measurement Errors. Blood glucose levels are measured by test procedures such

as Fasting Plasma Glucose (FPG) and Hemoglobin A1c (HbA1c), which have a wide

range of false-positive and false-negative errors (Bennett et al., 2007). In addition,

the concentration of immunosuppressive drugs is measured in practice through test

procedures such as Abbott Architect and Magnetic Immunoassay, which are similarly

error-prone (Bazin et al., 2010).

Estimation Errors. Estimating various parameters (e.g., the probabilistic conse-

quences of various medications on a patient’s future health) from data sets is typically

subject to errors for a variety of reasons including lack of comprehensive data and

data entry errors among others. Furthermore, medication strategies are typically op-
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Figure 2.1: Empirical C.D.F.s of Patients’ Hemoglobin A1c (HbA1c) Level in Our
Data Set: An Illustration of the Diabetogenic Effect of Immunosuppressive Drugs.
The Left (Right) Vertical Dotted Line Shows the Threshold for Pre-diabetes (Dia-
betes) as Defined by American Diabetes Association (ADA, 2012).

timized with respect to such estimated parameters. Thus, unless carefully adjusted,

they may not represent patients’ best medical interest.

Ambiguity Attitudes. Incomplete/imprecise information (which results in the fore-

going estimation errors) typically makes physicians face ambiguity with respect to

unknown consequences of treatment choices and their impact on a patient’s health

outcomes. Furthermore, physicians have a range of ambiguity attitudes in prescrib-

ing treatments: while some show high conservatism (high ambiguity aversion), others

may exhibit low conservatism (low ambiguity aversion) (see, e.g., Han et al. (2009),

Arad and Gayer (2012), and Berger et al. (2013)).

Static and Dynamic Risk Factors. Both static/time-invariant (e.g., race and

gender) and dynamic/time-variant (e.g., blood pressure and body mass index) risk

factors play an important role in effective coordination of post-transplant medication

regimens, because they both affect organ rejection and/or diabetes complications.
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Ignoring any of the above-mentioned issues can yield suboptimal medication strate-

gies that may harm patients. Thus, in finding a solution for the conundrum discussed

earlier, one also needs an approach that allows addressing such issues in an inte-

grated way. To this end, we use a dynamic decision-making approach termed Am-

biguous Partially Observable Markov Decision Process (APOMDP)—an extension of

the traditional POMDP approach recently proposed by Saghafian (2018). Utilizing

the APOMDP approach allows us to find a dynamically optimal way of coordinat-

ing immunosuppressive and diabetes medications during each patient visit while ac-

counting for (1) imperfect state information about the patient’s health (caused by

measurement errors), (2) model misspecifications (caused by estimation errors), (3) a

range of attitudes towards model misspecifications (caused by physicians’ ambiguity

attitudes), and (4) several dynamic and/or static risk factors (age, gender, race, dia-

betes history, body mass index (BMI), blood pressure, total cholesterol, high-density

lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride,

and uric acid). This approach enables us to provide the first study (to the best of our

knowledge) that (a) simultaneously analyzes two medical conditions with conflicting

risks (i.e., post-transplant organ rejection versus NODAT), and (b) integrates such

risks with both static and dynamic patient-dependent characteristics.

Our study contributes to both theory and application. From the application per-

spective, we contribute to the medical literature by presenting new clinically relevant

findings:

(1) We calibrate our APOMDP model based on a clinical data set. Utilizing this

data set, we first estimate unobservable disease progression rates, inaccuracies of

medical test procedures, and reward-related parameters (e.g., quality of life and life

expectancy). Using these estimations along with the APOMDP approach, we then

generate risk-specific medication strategies for use in practice.
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(2) For non-White patients with age≥50, no diabetes history, and low-risk levels of

cholesterol, HDL, LDL, triglyceride, and uric acid, we find that, under the optimal

medication policy, a more conservative physician prescribes more intensive regimens of

immunosuppressive drugs as well as diabetes medications than a less conservative one.

This implies that, for patients with these risk factors, a more conservative physician

should be more concerned about both risks of organ rejection and NODAT compared

to a less conservative physician. However, this does not hold for male patients with

age<50, diabetes history, hypertension, and high-risk levels of cholesterol, HDL, and

LDL.

(3) Variations in physicians’ attitude toward ambiguity will not have a homogeneous

impact on the intensity of drugs prescribed under the optimal policy. Thus, drug

intensification (i.e., use of intensified levels of medication regimens) observed in the

current practice should not be attributed merely to physicians’ behavior toward am-

biguity. Our result suggests that lack of adherence to (or knowledge of) the optimal

medications is the main contributor to using intensive regimens.

(4) Our study sheds light on the predictors of tacrolimus dose variability. Specifically,

we find that risk factors such as age, gender, race, BMI, blood pressure, HDL, and

LDL make patients more vulnerable to the risk of organ rejection. Furthermore,

the diabetogenic effect of tacrolimus is more likely to influence male patients with

age≥50, diabetes history, hypertension, high cholesterol, and low HDL. This implies

that, when using high-dose tacrolimus, such patients become more dependent on

diabetes medications than others.

(5) We compare the performance of the optimal medication policies that we obtain

from the APOMDP approach with (a) benchmarks from the current medical practice,

and (b) medication policies that arise when one uses a traditional POMDP approach.

We consider performance measures such as quality-adjusted life expectancy (QALE),
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medical expenditure, and the intensity of prescribed medications. Some of the main

insights generated from our comparison are as follows:

• Compared to the current medical practice, and depending on different risk factors,

our optimal medication policies can improve (per patient per year) the average (a)

QALE up to 4.58%, and (b) medical expenditures up to 11.57%. In particular,

for cohorts of patients formed by age, diabetes history, blood pressure, choles-

terol, HDL, and triglyceride, our proposed medication strategies yield the highest

improvements in QALE while incuring the least amount of medical expenditure,

providing more cost-effective ways of managing medications.

• We find that deriving optimal strategies via a traditional POMDP instead of using

the APOMDP approach (i.e., ignoring inevitable parameter ambiguities) may cause

a patient to lose between 1.04 and 4.68 weeks of QALE over the course of first year

post-transplant, while imposing between $31 and $214 more medical expenditures

per patient to the system during the same time.

From the theory perspective, our contributions are two-fold: (1) we demonstrate

the use of the APOMDP approach to make robust dynamic decisions under both

imperfect state information and model misspecifications. Since both imperfect state

information and model misspecifications are inevitable in many applications includ-

ing those in the general field of medical decision-making, our work sheds light on

the advantages of an applicable new tool. Specifically, our approach empowers a

decision maker who is facing hidden states to dynamically optimize actions under a

variety of possible models (a “cloud” of models as opposed to a single model), and

thereby gain robustness to potential model misspecifications. Importantly, this re-

moves the need to perform sensitivity analyses on such potential misspecifications.

(2) We develop a closed-form expression for the optimal value function (based on the
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piecewise-linearity and convexity property) which enables us to solve our APOMDP

formulation optimally. We also establish (a) an analytical link between the decision

maker’s ambiguity attitude and the intensity of optimal medication regimens, (b)

monotonicity results for the optimal medication policy, and (c) a lower bound for the

optimal value function.

In closing this section, we provide a roadmap for the implementation of our

APOMDP approach in the management of post-transplant medications. Figure 2.2

shows a data-driven decision support system (DSS) that not only can assist physi-

cians in their post-transplant medications management decisions, but can also influ-

ence medical guidelines. This DSS can achieve these goals by using our proposed

approach to better balance risks of organ rejection and diabetes complications (based

on each patient’s characteristics), while incorporating physicians’ attitudes toward

ambiguous outcomes along with various other factors such as false-positive and false-

negative error rates of medical tests and lack of data for valid estimation.

The rest of this chapter is organized as follows. In §2.2, we provide a brief literature

review. In §2.3, we present our APOMDP approach, and in §2.4, we demonstrate some

of its theoretical/structural properties. Our numerical study including our clinical

data set and parameter estimations as well as the resulted findings are described in

§2.5. Finally, I concelude the chapter in §2.6, and discuss some avenues for future

research.

2.2 Related Studies

We divide the related studies into six categories, and describe each separately

below.

Studies on Medical Decision-Making for Diabetes. The main body of literature

analyzing diabetes from a decision-making perspective uses Markov Decision Process
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Figure 2.2: Data-driven DSS for Post-Transplant Medications Management: An Im-
plementation Roadmap

(MDP) models to focus on optimal initiation time of statin (see, e.g., Denton et al.

(2009)), and optimal interval for other diabetes medications (see, e.g., Mason et al.

(2014)). Unlike this stream of research, we (1) address the management of diabetes

medications in the presence of an opposing medication (i.e., an immunosuppressive

drug), and (2) consider partial observability of health states that arises due to the

inevitable measurement errors in medical tests (e.g., FPG and HbA1c). Furthermore,

the above studies require incorporating dynamic risk factors as part of the state space

definition, which may aggravate the so-called “curse of dimensionality.” Instead,

our proposed approach directly incorporates such factors into optimal medication

strategies.

Operations Research/Management Science Studies on Pre-Transplant Pe-

riod. The majority of Operations Research/Management Science studies on trans-

plantation focus on the pre-transplant period, and typically study mechanisms to fa-

cilitate a better match between supply and demand of organs (see, e.g., Su and Zenios

(2005); Bertsimas et al. (2013), and Ata et al. (2016)). To the best of our knowledge,

our study is among the first in the OR/MS literature to consider post-transplantation

decisions.
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Studies on POMDP Applications in Healthcare. In the medical decision-

making field, POMDP models have been applied mainly for cancer screening re-

search. Examples include mammography screening in breast cancer (see, e.g., Ayer

et al. (2012)), screening in prostate cancer (see, e.g., Zhang (2011)), and colonoscopy

screening in colorectal cancer (see, e.g., Erenay et al. (2014)). Compared to this

stream, our proposed APOMDP approach (1) provides optimal policies that are ro-

bust to model misspecifications, (2) incorporates physicians’ behavorial attitudes to-

ward model misspecifications, and (3) is customized with eleven static/dynamic risk

factors. From the medical perspective, the latter is an improvement, since age and

history of screening/treatment are the typical risk factors that have been considered

thus far in the extant literature.

Studies on Robust Dynamic Decision-Making. Among theoretical studies ad-

dressing robustness in dynamic decision-making, we refer to those solving MDPs with

respect to a worst-case scenario (i.e., utilizing a max-min approach) within the set

of possible transition probabilities (see, e.g., Iyengar (2005); Nilim and El Ghaoui

(2005), and Xu and Mannor (2012)). However, as noted by Delage and Mannor

(2010), generated policies under a max-min approach are often too conservative. To

address this, Saghafian (2018) proposes an APOMDP approach, where a controller

makes decisions based on a weighted average of both the worst and the best possi-

ble outcomes. Moreover, unlike the above-mentioned literature on robust MDPs, the

APOMDP approach allows for making robust decisions under partial observability

of system states. This is an important advantage for various applications, including

our focus in this study where measurement errors are inevitable (e.g., due to false

positive/negative errors of medical tests). Considering the worst and the best pos-

sible outcomes (as opposed to all possible outcomes) is also important for partially

observable systems, because it does not add much to the computational complexity.
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Applications of robust dynamic decision-making in medical problems have been

centered around robust MDP formulations. Goh et al. (2018) develops a robust

Markov chain framework for analyzing cost-effectiveness of colorectal cancer screen-

ing policies. Steimle et al. (2018) proposes a multi-model MDP for managing blood

pressure and cholesterol, where model ambiguity is considered by averaging the per-

formance of a given policy across different MDP models. Kaufman et al. (2011) and

Zhang et al. (2017) model max-min MDPs for optimizing decisions on liver transplan-

tation and glycemic control in diabetes management, respectively, where transition

probabilities can vary within an uncertainty set. Compared to this stream, our work

is the first study of a medical decision-making problem that considers both (1) model

ambiguity and (2) behavioral attitudes of physicians towards ambiguity.

Studies on Measuring Ambiguity Attitudes. The ambiguity attitude of a

decision maker can be characterized by either parametric or nonparametric methods.

In the former, the ambiguity attitude is represented by utility-based models from the

economics literature (see, e.g., Arad and Gayer (2012) Peysakhovich and Karmarkar

(2015)), whereas, in the latter, it is measured by using behavioral scales based on so-

ciodemographic characteristics of decision makers (see, e.g., Han et al. (2009)). Our

APOMDP framework is a parametric approach based on the so-called α-maxmin ex-

pected utility (α-MEU) preferences (Ghirardato et al., 2004), which measure a convex

combination of the lowest (i.e., maxmin) and the highest (i.e., maxmax) possible out-

comes based on the parameter α ∈ [0, 1]. The parameter α captures a range of

individuals’ attitudes towards ambiguity, such that its high (low) values represent

high (low) levels of ambiguity aversion (for empirical investigations of the α-MEU

function, see Ahn et al. (2014) and the references therein).

The so-called range of ambiguity attitude has been estimated or set by the ex-

tant literature endogenously or exogenously. In the former, this parameter is inferred
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by conducting hypothesis testing with survey-/questionnaire-based experiments (see,

e.g., Chen et al. (2007)). However, in the latter, this parameter is set without resort-

ing to empirical experiments (see, e.g., Ahn et al. (2014)). Compared to this stream,

we can employ the DSS (shown in Figure 2) to implement our APOMDP approach

and optimize decisions (about medication regimens) for any level of ambiguity atti-

tude in [0,1]. Therefore, our methodology can also be used to determine the best

level of ambiguity attitude (i.e., the one that yields the highest QALE among all

possible levels). Based on this premise, our findings in this study are not predictive

of physicians’ behavior. Instead, they are prescriptive: they generate insights into

what physicians should be targeting in their practice (both given their own level of

ambiguity attitude and across all such possible levels).

Other Studies from the Medical Literature. We note that our work is also

related to three streams in the medical literature: (1) incorporating the measurement

errors of medical tests in decision-making for medication regimens (see, e.g., Bennett

et al. (2007)), (2) analyzing the diabetogenic effect of immunosuppressive drugs (see,

e.g., Chakkera et al. (2009) and Boloori et al. (2015)), and (3) customizing tacrolimus

dose variability based on different risk factors (see, e.g., Yasuda et al. (2008)). Uti-

lizing the APOMDP approach along with our clinical data set, we contribute to all

of these three streams.

2.3 The Ambiguous POMDP Approach

We use a discrete-time, finite-horizon ambiguous POMDP (APOMDP) approach

(see Saghafian (2018)) to determine optimal decisions that maximize QALE of a

patient with respect to risks of organ rejetion and NODAT complications. At each

patient’s visit, a decision maker (DM hereafter)—typically a physician—measures the

patient’s (1) lowest concentration of tacrolimus (in the body) known as trough level
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or C0, and (2) blood glucose level. Then, after evaluating whether the patient has a

low, medium or high C0, and whether s/he is diabetic, pre-diabetic, or healthy, the

DM needs to make two decisions: (a) whether to use a low, medium or high dosage

of tacrolimus, and (b) whether or not to put the patient on insulin. As noted earlier,

these decisions need to be made jointly and in an orchestrated way. This is mainly

due to the interactions between tacrolimus and insulin as well as their joint effect on

the patient’s health state. If prescribed, any medication will be used over the course

of one month until the patient’s next visit. As a result, the patient’s health state with

respect to both his/her C0 level and diabetes condition may move to a new state in

the next visit, and this routine continues throughout the planning horizon.

In addition to identifying optimal decisions and investigating their cost-effectiveness,

we use this setting to study unnecessary intensification of prescribed medications. We

do so by comparing the effect of using (a) lower dosages of tacrolimus, and (b) insulin

versus not using it. Furthermore, our notion of simultaneous prescriptions facilitates

the care coordination between “Transplantation/Nephrology” and “Endocrinology”

departments of a hospital that are typically in charge of administering tacrolimus and

insulin, respectively.

2.3.1 The Elements of the APOMDP Approach

The elements of our APOMDP approach are as follows. All vectors are considered

to be in a column format, and “ ′ ” represents the matrix transpose operator.

Decision epochs: Decision epochs correspond to a patient’s visits and are denoted

by n = 1, 2, ..., N , where n represents the number of months post-transplant. We con-

sider one year post-transplant as our planning horizon (N = 12), because it represents

the time period during which medication management strategies are (a) most impor-

tant, and (b) most variable among physicians particularly for tacrolimus regimens
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(see, e.g., Staatz and Tett (2004) and Schiff et al. (2007)).

Core state space: S = {∆,∇} ∪ S, where S =
{
si, i = 1, 2, . . . , 9

}
, and si’s

are described in Table 2.1. In addition, ∆ and ∇ represents “death” and “organ

rejection,” respectively. We note that ∇ and ∆ are fully observable and absorbing

states: the decision process ends if either of these two states is reached prior to the

end of planning horizon.

Observation state space: O = {∆,∇} ∪ O, where O =
{
oi, i = 1, 2, . . . , 9

}
, and

oi is the observation made by the DM leading him to think that the patient is in the

ith core state. For instance, o1 is the observation that the patient is in s1: medical

tests suggest a low C0 level while having organ survival and diabetic conditions.

Action space: A =
{
ai, i = 1, 2, . . . , 6

}
, where ai’s are described in Table 2.1.

Letting a � â represent the fact that a is more intensive than â (or â is less intensive

than a), it can be seen from Table 2.1 that a1 � a2 � a3, a4 � a5 � a6, a1 � a4,

a2 � a5, a3 � a6, and a1 � a6. Thus, a1 (a6) corresponds to administrating the

most (least) intensive medication regimen. Similarly, we use the notation a � â to

represent situations where a � â does not hold (i.e., when either â � a or when there

is no ordering between the two).

Ambiguity set (“cloud” of models): M = {m1,m2, ...,mK}, where K is the

number of models in the “cloud.” As mentioned in §??, estimating transition and

observation probability matrices from a data set is subject to errors. This, in turn,

results in model misspecifications which warrants the cloud of models (as opposed

to a single model). Each model in M represents a different estimation for the core

state transition and observation probability matrices (defined below). In §2.5.1, we

describe how we have used a clinical data set, obtained from our partner hospital, to

construct this cloud of models.

Core state transition probability: Pm = {Pa
m : a ∈ A}, where for each a ∈ A,
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Table 2.1: Description of Parts of Core Health States and Actions

State
Transplant Condition∗ Diabetes

(Tacrolimus C0) Condition

s1 Low

Diabetes (type II)s2 Medium

s3 High

s4 Low

Pre-diabetess5 Medium

s6 High

s7 Low

Healthys8 Medium

s9 High

∗ With the patient experiencing an organ survival

Action
Prescription Prescription

(Tacrolimus dose) (Insulin use)

a1 High

Yesa2 Medium

a3 Low

a4 High

Noa5 Medium

a6 Low

Pa
m = [pam(j|i)]i,j∈S, and pam(j|i) = Pr{j|i, a,m} is the probability of moving from

state i to state j when taking action a under model m ∈M .

Observation probability: Qm = {Qa
m : a ∈ A}, where for each a ∈ A, Qa

m =

[qam(o|j)]j∈S,o∈O, and qam(o|j) = Pr{o|j, a,m} is the probability of observing o under

model m and action a when being at core state j.

Information space: Π =
{
π = [πi]i∈S ∈ R|S| :

∑|S|
i=1 πi = 1, π1, π2 ∈ {0, 1}, π3, . . . ,

π11 ∈ [0, 1]
}

, where π is an information vector over the state space S. Since ∆

(death) and ∇ (organ rejection) are fully observable states, π = [1, . . . , 0]′ and π =

[0, 1, . . . , 0]′ represent death and alive with organ rejection, respectively.
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Belief space: In order to distinguish between fully and partially observable states,

we define a belief vector b such that, for any π 6= [1, 0, . . . , 0]′ or π 6= [0, 1, . . . , 0]′,

b = [0, 0, b3, . . . , b11] = π (i.e., DM’s belief about C0 and blood glucose levels in an

alive patient without an organ rejection). We also let ΠPO be the set of all such belief

vectors (PO: partially observable).

We use the Bayes’ Rule in a matrix format to update the elements of the belief

vector b under a model m when action a is taken and observation o is made:

B (b, a, o,m) =
(b′Pa

mQa,o
m )′

Pr{o|b, a,m}
, (2.1)

where B (b, a, o,m) : ΠPO ×A×O×M → ΠPO is the belief updating operator, Qa,o
m

is the diagonal matrix formed by the column o of Qa
m, and

Pr{o|b, a,m} =
∑

i∈S
bi
∑

j∈S
pam(j|i) qam(o|j) (2.2)

is the conditional probability that the DM will make observation o given the belief

vector b, action a, and model m.

Immediate reward: rn(a) = [rn(s, a) ≥ 0]s∈S for a ∈ A, where rn(s, a) is the quality

of life that a patient accrues when in state s ∈ S and taking action a in period n < N

(based on experiencing death, an organ rejection, or an organ survival while having

different blood glucose levels). Note that a patient experiencing death does not gain

any immediate reward (i.e., rn(∆, a) = 0) and 0 ≤ rn(∇, a) ≤ rn(s, a) for all a ∈ A

and s ∈ S.

Lump-sum reward: Rn = [Rn(s) ≥ 0]s∈S, where Rn(s) is a lump-sum reward (in

QALE) gained by a patient whenever s/he leaves the decision process at state s. This

can happen either (1) at the end of the planning horizon (n = N), when this value

serves as a terminal reward that the patient accrues for his/her remaining lifetime,
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or (2) during the planning horizon (n < N), if s/he experiences a death or an organ

rejection, where Rn(∆) = 0 and 0 ≤ Rn(∇) ≤ Rn(s) for all s ∈ S.

Ambiguity attitude set: Λ = {λ : 0 ≤ λ ≤ 1}, where λ represents the DM’s

conservatism level, and captures his/her range of attitude towards ambiguity. We

note that this is the same as parameter α in the α-MEU function described in §??.

Discount factor: β ∈ [0, 1], which allows us to obtain the present value of QALE

gained in future.

Using the elements of the APOMDP approach described above, we now present

its optimality equation. For the information vector π, DM’s conservatism level λ,

and any period n ≤ N , we have:

Vn (π, λ) =



Rn(∆), if π = [1, . . . , 0]′ ,

Rn(∇), if π = [0, 1, . . . , 0]′ ,

Vn (b, λ) , otherwise,

(2.3)

where

Vn (b, λ) =


b′RN , if n = N,

max
a∈A

{
Un (b, a, λ)

}
, if n < N.

(2.4)

In (2.4), the utility function Un (b, a, λ) is defined as:

Un (b, a, λ) = b′rn(a) + λ min
m∈M

{
Hn (b, a,m, λ)

}
+ (1− λ) max

m∈M

{
Hn (b, a,m, λ)

}
,

(2.5)
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where

Hn(b,a,m, λ) = β
∑
o∈O

Pr{o|b, a,m}Vn+1

(
B (b, a, o,m) , λ

)
. (2.6)

The first term in the RHS of (2.5) represents the expected current “reward” (in

QALE) in period n when the belief vector is b, and the action is a. The other terms in

the RHS of (2.5) denote the expected “reward-to-go” for period n, which is calculated

as the weighted average of the worst and the best possible expected rewards that can

be obtained in future. In (2.5), as λ increases (decreases), the utility function becomes

more (less) dependent on the worst total “reward” that can be achieved in the “cloud”

of models. Thus, a higher (lower) λ represents the ambiguity attitude of a more (less)

conservative DM (see, e.g., Chen et al. (2007) and Ahn et al. (2014)). By varying

λ, our framework allows us to capture the behavioral attitudes of physicians, and

evaluate their effects on the intensity of medications administered. We note that

λ = 1 represents an extension of existing robust dynamic programming approaches

(see, e.g., Iyengar (2005); Nilim and El Ghaoui (2005)) to settings with partially

observable states.

Finally, we define the worst model and the best model in period n as the minimizer

and maximizer of Hn (b, a,m, λ) defined in (2.6), respectively:

mn (b, a, λ) = arg min
m∈M

{
Hn (b, a,m, λ)

}
,mn (b, a, λ) = arg max

m∈M

{
Hn (b, a,m, λ)

}
.

(2.7)

For the ease of notation, we may refer to these worst and best models as m and

m, respectively.
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2.4 Structural Results

We now establish some structural properties, which allow us to analyze our

APOMDP model, and thereby gain insights into the simultaneous management of

post-transplant medications. Compared to the earlier work of Saghafian (2018) that

establishes structural results for general APOMDPs, we make use of the specific

properties of the medical problem under consideration, and provide (1) a closed-form

expression for the piecewise-linear and convex (PLC) value function, (2) an analyt-

ical link between the DM’s conservatism level and his actions (i.e., the intensity of

prescribed medications), (3) a lower bound for the optimal value function, and (4)

specific monotonicity results for the optimal policy.

Piecewise-Linearity and Convexity of Value Function. Unlike traditional

POMDPs, it is known that the value function in an APOMDP is not necessarily

piecewise-linear and convex (PLC) in the belief vector (Saghafian, 2018). This may

prevent us from using solution algorithms (similar to those used for POMDPs), since

many of them rely on the PLC property of the value function. Thus, to guarantee the

PLC property for the value function in our problem, we make use of the definition of

a belief-independent worst-case (BIWC) member in the cloud of models M :

Definition 2.4.1 (Saghafian 2018) mn (b, a, λ) ∈M defined in (2.7) is said to be

a BIWC member of M , if it is constant in the belief vector b.

This implies that, irrespective of the DM’s belief about a patient’s health state,

there exists a set of transition and observation matrices (given the action and conser-

vatism level) that yields the least total reward (in QALE). If such a model exists in

M , then the optimal value function is PLC in the belief vector b (see Proposition 2
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in Saghafian (2018)), and hence, can be written as:

Vn (b, λ) = max
ψ∈Ψn,λ

{b′ψ} ∀ b ∈ ΠPO, ∀ λ ∈ Λ, ∀ n ≤ N, (2.8)

where Ψn,λ is some finite set. Equation (2.8) is analogous to the use of POMDPs

proposed by Smallwood and Sondik (1973). Based on (2.8), to characterize the value

function, one only needs to characterize the set Ψn,λ.

Although the existence of a BIWC member in the cloud of models M can be a

relatively restrictive assumption, we are able to provide a sufficient condition. We

do so by benefiting from the notion of model informativeness (as a generalization

of Blackwell ordering): if, under an action a ∈ A, Pa
mQa

m = Pa
m̂Qa

m̂W for some

stochastic matrix W, then model m is said to be less informative than model m̂ (for

notational simplicity, we suppress the dependency on a). It follows that if one model

is less informative than the others, then it is a BIWC member in M (see Proposition

3 in Saghafian (2018)). Utilizing our clinical data set in Appendix A.2.3, we discuss

scenarios where the model informativeness condition (and thus the existence of a

BIWC member) is satisfied in our setting. In other settings where this property does

not hold, one can extend the ambiguity set so that it includes a BIWC member. This

will substantially reduce the underlying computational complexity by ensuring that

(2.8) holds, and can provide a close approximation.

Assuming that M is such that it has a BIWC member, we now establish a closed-

form analytical representation for the set of ψ-vectors, Ψn,λ. This, together with

(2.8), enables us to characterize and solve the optimal value function in our problem.

All the proofs are provided in Appendix A.1.

Proposition 2.4.1 (Representation of ψ-Vectors) Suppose M is such that it has

a BIWC member. Let m and m be the BIWC member and the best-case model of M
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defined by (2.7). Then, the set of ψ-vectors (Ψn,λ) in (2.8) can recursively be obtained

as:

ΨN,λ = {RN} ∀ λ ∈ Λ, (2.9)

Ψn,λ =
{
ψ ∈ R|S| : ψ = rn(a) + λ

(
β
∑
o∈O

Pa
mQa,o

m ψ(b,a,o)
m

)
+(1− λ)

(
β
∑
o∈O

Pa
mQa,o

m ψ
(b,a,o)
m

)
,

a ∈ A, ψ(b,a,o)
m ,ψ

(b,a,o)
m ∈ Ψn+1,λ

}
∀ λ ∈ Λ,∀ n < N,

(2.10)

where

ψ(b,a,o)
m = arg max

ψ∈Ψn+1,λ

{b′Pa
mQa,o

m ψ} ∀ b ∈ ΠPO, ∀ a ∈ A, ∀ m ∈M, ∀ o ∈ O.

(2.11)

The characterization of the set of ψ-vectors in Proposition 2.4.1 depends on iden-

tifying both models m and m. Although m can be obtained in the ambiguity set

M without the need for solving the APOMDP model (see our discussion above), m

cannot be identified a priori. To address this, we present the following alternative

approach for characterizing the ψ-vectors:

Ψ̃n,λ =
{
ψ̃ ∈ R|S| : ψ̃ = rn(a) + λ

(
β
∑
o∈O

Pa
mQa,o

m ψ̃
(b,a,o)

m

)
+(1− λ)

(
β
∑
o∈O

Pa
mQa,o

m ψ̃
(b,a,o)

m

)
,

a ∈ A,m ∈M \ {m},ψ̃
(b,a,o)

m , ψ̃
(b,a,o)

m ∈ Ψ̃n+1,λ

}
∀ λ ∈ Λ,∀ n < N.

(2.12)
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Then, Ψn,λ in (2.10) can be obtained from Ψ̃n,λ in (2.12) by applying the Mon-

ahan’s algorithm (Monahan, 1982). The equation in (2.12) implies that, even if we

consider all models in M \ {m}, using the Monahan’s algorithm, we can shrink the

set of the ψ-vectors to those attributed only to m and m.

Effect of DM’s Conservatism Level on Drug Intensification. As noted earlier,

the DM’s conservatism (i.e., ambiguity attitude) may affect the intensification of

medication regimens. To study this phenomenon, we start by defining the following

conditions. In Appendix A.2.5, we also numerically test the validity of conditions in

this section using our clinical data set, and discuss whether and when such conditions

hold.

Condition 2.4.1 (Monotonicity of Reward) (i) Under any action a ∈ A, the

immediate reward vector rn(a) is nondecreasing in state s ∈ S, and (ii) the lump-sum

reward vector Rn is nondecreasing in state s ∈ S.

Condition 2.4.1 implies that better health states have higher immediate and lump-

sum rewards (in QALE). For example, compared to a patient with an organ rejection,

a patient with an organ survival is expected to have a higher quality of life (all else

equal).

Condition 2.4.2 (TP2 Transitions) For all m ∈ M and a ∈ A, the kernels Pa
m

and Qa
m are TP2 (i.e., all their second-order minors are non-negative).

Condition 2.4.2 imposes a specific ordering between each two consecutive rows of

P and Q matrices. For example, this condition implies that, upon taking the same

medication regimen, a patient with a better health state is more likely to move to

a more favorable state than another patient who is in a worse health state (all else

equal).
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For later use, here we also define the well-known TP2 stochastic ordering between

two belief vectors. Since each belief vector b yields a probability mass function,

TP2-ordering (shown as “�TP2”) is equivalent to the weak monotone likelihood ratio

(MLR) ordering:

Definition 2.4.2 (Whitt 1982) A belief vector b is said to be dominated by another

belief vector b̂ in the MLR-ordering sense (shown as b �r b̂) if the ratio b̂/b is

nondecreasing in its elements.

From the medical standpoint, Definition 2.4.2 implies that a patient with associ-

ated belief vector b̂ is more likely to be in a better health state than another patient

with associated belief vector b. We also need to define the following condition, where

for notational simplicity, we let m(a, λ) = mn (b, a, λ) and m(a, λ) = mn (b, a, λ) for

any action a and conservatism level λ. In addition, B (b, a, o,m) is the belief-updating

operator defined in Equation (2.1). Similarly, we denote by
[
Pr{o|b, a,m}

]
o∈O the

vector of observation probabilities, where Pr{o|b, a,m} is the conditional probability

that a DM will make observation o given the belief vector b, action a, and model m

(see Equation (2.2) in §2.3.1).

Condition 2.4.3 Fix belief vector b ∈ ΠPO and time period n < N . Then, for all

a, â ∈ A with a � â, there exists a conservatism level λ∗ ∈ Λ such that, for all λ ≥ λ∗,

we have:

(i)
[
Pr{o|b, â,m(â, λ∗)}

]
o∈O �TP2

[
Pr{o|b, a,m(a, λ∗)}

]
o∈O,[

Pr{o|b, a,m(a, λ)}
]
o∈O �TP2

[
Pr{o|b, â,m(â, λ)}

]
o∈O,

(ii) B
(
b, â, o,m(â, λ∗)

)
�TP2 B

(
b, a, o,m(a, λ∗)

)
,

B
(
b, a, o,m(a, λ)

)
�TP2 B

(
b, â, o,m(â, λ)

)
,

(iii) Parts (i)-(ii) also hold for the best model m.
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To better understand Condition 2.4.3, let DMbase represent a baseline DM with

the conservatism level λ∗ introduced in Condition 2.4.3. Also, we denote by DMgen

a general DM with a conservatism level λ such that λ ≥ λ∗ (i.e., DMgen is more

conservative than DMbase). Then, part (i) of Condition 2.4.3 has the following impli-

cation for the medical practice: DMbase (DMgen) is more (less) likely to have a better

medical observation if prescribing a less intensive medication regimen (compared to

a more intensive one). Furthermore, part (ii) of Condition 2.4.3 implies that DMbase

(DMgen) has a better (worse) updated belief about a patient’s health state (in the TP2

sense) when taking less intensive (than more intensive) medications. Parts (i)-(ii) of

Condition 2.4.3 also require different utilizations of models (from the ambiguity set)

under different conservatism levels: for any a ∈ A and any λ, λ̂ ∈ Λ such that λ 6= λ̂,

m(a, λ) 6= m(a, λ̂) and m(a, λ) 6= m(a, λ̂). Otherwise, unlike our results in Theorem

2.4.1 or Corollary 2.4.1 (discussed below), the level of conservatism would have no

impact on the intensity of medication regimens.

Theorem 2.4.1 (Effect of λ on Drug Intensification) Let a∗n (b, λ) be the opti-

mal medication action for any belief vector b ∈ ΠPO, conservatism level λ ∈ Λ, and

time period n < N . Also, let λ∗ represent the baseline conservatism level introduced

in Condition 2.4.3. Then, under Conditions 2.4.1–2.4.3, for any λ ≥ λ∗, we have

a∗n(b, λ) � a∗n(b, λ∗).

Theorem 2.4.1 provides insights into conditions under which the optimal med-

ication regimen becomes more intensive as the DM’s conservatism level increases

compared to a baseline level. This result, however, may not hold for all patients,

because the sufficient conditions in Theorem 1 may not hold for them. In particular,

in Corollary 1 we show that if for some patients Condition 3 is reserved (i.e., the

reverse of orderings and inequalities in parts (i)-(ii) of Condition 2.4.3 hold), then
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the optimal medication regimen for them becomes less intensive as the DM’s conser-

vatism level increases. Thus, while under the optimal policy for some patients a more

conservative physician prescribes more intensive medications than a less conservative

one, for some patients this result might be reversed. In §2.5.2, we make use of our

clinical data set and shed more light on patient characteristics for which either of

these two cases holds.

Corollary 2.4.1 Under Conditions 2.4.1, 2.4.2, and reverse of 2.4.3, for any λ ≥ λ∗,

we have a∗n(b, λ∗) � a∗n(b, λ).

Monotonicity of the Optimal Medication Policy. When the optimal policy

is monotone, a simple control-limit policy becomes optimal, making the complex

search for an optimal medication policy a much simpler task. Furthermore, as we

will discuss, the control-limit policy provides an easy-to-implement guideline for the

medical practice. To establish the monotonicity of the optimal policy, we need the

following condition.

Condition 2.4.4 Suppose the value function is PLC and define vectors φ(b,a)
m =∑

o∈O
Pa
mQa,o

m ψ
(b,a,o)
m (for all b ∈ ΠPO, a ∈ A, and m ∈M), where ψ(b,a,o)

m is defined in

(2.11). Then, for any a, â ∈ A such that a � â and λ ∈ Λ, vectors φ
(b,â)
m(b,â,λ)−φ

(b,a)
m(b,a,λ)

and φ
(b,â)
m(b,â,λ) − φ

(b,a)
m(b,a,λ) are nondecreasing in their elements.

Conditions 2.4.4 implies that, when taking a less intensive medication regimen

compared to a more intensive one, the resulted difference between the reward to-go

(in QALE) is nondecreasing along core health states.

Theorem 2.4.2 (Monotone Optimal Medication Policy) Let a∗n (b, λ) be the op-

timal medication action for period n. Then, under Condition 2.4.4, b �TP2 b̂ yields

a∗n(b, λ) � a∗n(b̂, λ).
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Theorem 2.4.2 simplifies the search for an optimal medication policy. For instance,

consider two patients, patients 1 and 2, where patient 2 is believed to be in a better

health condition than patient 1 (in the TP2 sense). Then, if the optimal medication

policy for patient 1 is “tacrolimus: low dosage” and “no insulin,” then patient 2 should

be prescribed with the same regimen. On the other hand, if patient 2 is optimally

prescribed by “tacrolimus: high dosage” and “insulin,” then patient 1 must follow the

same prescription. In general, Theorem 2.4.2 transfers the typically complex search

for an optimal medication policy to a much simpler monotonic search. In particular,

under the condition of Theorem 2.4.2, the optimal policy will be of control-limit

(or switching-curve to be more precise) type, where we only need to impose limits

on the belief state, and change the action as we pass the limits. This provides an

easy-to-implement guideline for use in practice.

Bounds for the Value Function. For our numerical experiments, we solve our

APOMDP model optimally based on Proposition 2.4.1. However, the time complex-

ity of finding an optimal policy (at any period n and for any conservatism level λ)

is O
(
|M ||A||S||Ψn+1,λ||O|

)
(see Papadimitriou and Tsitsiklis (1987) and Hauskrecht

(2000) for discussions about the time and space complexities of (PO)MDPs). Al-

though we alleviate this effect by implementing the Monahan’s algorithm (Monahan,

1982) to eliminate dominated ψ-vectors, to further streamline computational bur-

dens, we now develop a bound for the value function in (2.4). We let Jn (b, λ) be the

approximate value function, and a∗,J (b, λ) be its corresponding action (denoted by

aJ for the ease of notation). In the optimal value function Vn (b, λ), the DM com-

putes the expected future reward based on his/her updated belief about the patient’s

health state (i.e., expected reward-to-go). However, in the approximate value func-

tion Jn (b, λ), the DM first obtains his/her expected belief (over all updated belief
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vectors), and then the reward based on the expected belief:

Jn (b, λ) = b′rn(aJ) + λ min
m∈M

{
βJn+1

(
b′PaJ

m , λ
)}

+(1− λ) max
m∈M

{
βJn+1

(
b′PaJ

m , λ
)}

,

(2.13)

where we obtain b′PaJ

m from
∑
o∈O

Pr{o|b, aJ ,m} B
(
b, aJ , o,m

)
by following the

Bayesian update in Equation (2.1) and the fact that
∑
o∈O

Qa,o
m = I, where I is an

identity matrix. Proposition 2.4.2 shows that the optimal value function Vn (b, λ) is

tightly bounded from below by the approximate value function Jn (b, λ).

Proposition 2.4.2 (Performance Bound) Suppose (i) the ambiguity set M has a

BIWC member, (ii) |pam(j|i) − pam̂(j|i)| ≤ η for some η ≥ 0 (∀ a ∈ A, ∀ m, m̂ ∈ M ,

∀ i, j ∈ S), and (iii) r is the maximum possible reward in each period. Also, let

εn+1 = εq
∑N−n−1

l=0 βl + εrβ
N−n, where εq and εr are upper bounds for the quality of

life and lump-sum reward, respectively. Then, we have:

Vn (b, λ)− Jn (b, λ) ≤ min

{
β η εn+1 |S|

1− β
,
r
(
1− βN

)
1− β

}
∀b ∈ ΠPO,∀λ ∈ Λ,∀n < N.

(2.14)

In Proposition 2.4.2, εq is a bound for the quality of life (QOL) score, which is a

score between 0 and 1. Similarly, εr is a bound on the lump-sum reward, which is

a function of residual life expectancy and a discount rate, such that as the discount

rate approaches 1, the lump-sum reward approaches QOL (see §2.5.1 for more details

regarding these reward parameters). We note that the bound provided by εn+1 is

relatively tight. For example, it goes to 0 as β → 0, and to ((N − n − 1)εq + εr)

as β → 1. Also, for β ∈ [0, 1), this bound asymptotically approaches
εq

1− β
as

N → ∞. Furthermore, Proposition 2.4.2 implies that, when the DM follows aJ
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instead of the optimal policy a∗, the reward loss (in QALE) will be less than or

equal to the RHS of (2.14). We note that, under the following conditions, Jn (b, λ)

converges to Vn (b, λ), making the performance bound in (2.14) completely tight: (1)

when transition probabilities under different models get closer to each other (i.e.,

different models in the cloud of models M become more similar), η approaches 0,

(2) when β ∈ [0, 1) and the time horizon increases, εn+1 asymptotically approaches

εq
1− β

, which, in turn, approaches 0 as a patient’s health status gets aggravated,

and (3) when β approaches 0 (i.e., the DM decides upon medications regimens in a

myopic approach). Furthermore, when β approaches 1, the performance bound in

(2.14) approaches Nr which is small when N or r is small. In general, the bound

in (2.14) is advantageous for the DM, because it enables him/her to obtain a near-

optimal performance.

2.5 Numerical Experiments

In this section, we first explain the following elements from our clinical data set:

the main risk factors affecting NODAT patients, the estimation of the set of transition

and observation probability matrices using our data set, the estimation of the reward

functions (in QALE), and the mechanism used to validate our estimated parameters.

We then describe the results we have obtained from our numerical experiments, and

shed light on their implications for researchers, practitioners, and those influencing

medical guidelines.

2.5.1 Data and Parameter Estimation

The Clinical Data Set. The clinical data set we use in this study contains infor-

mation of 407 patients who had a kidney transplant operation over a period of seven

years (1999–2006) at our partner hospital. The information pertains to each patient’s
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visit at months 1, 4, and 12 post-transplant and includes the following attributes: (1)

demographic (e.g., age, race, gender, etc.), (2) clinical (e.g., blood pressure, body mass

index (BMI), cholesterol level, etc.), (3) immunosuppressive drugs (e.g., tacrolimus)

and diabetes medications (e.g., insulin) prescribed by physicians, and (4) results of

medical tests (FPG, HbA1c, and Architect). Further details about our data set can

be found in our earlier study (Boloori et al., 2015).

Interpolation and Imputation. Since our data set only includes information at

months 1, 4, and 12 post-transplant, we employ the cubic spline interpolation method

(see, e.g., Alagoz et al. (2005)) to simulate the natural clinical history of patients

for months 1 to 12 post-transplant. Prior to that, to replace missing values in the

data entries, we employ multiple imputations by chained equations (MICE) by the

R computing package (see, e.g., Buuren and Groothuis-Oudshoorn (2011) for more

details).

Risk Factors. As noted earlier, our goal is to derive robust optimal medication

policies based on different risk factors. Table 2.2 summarizes the main risk factors

affecting NODAT patients, where each risk factor is considered to be low or high. In

this table: (1) age is classified based on a 50-year-old threshold, making an almost

equal percentage of patients in each age category (the median age of patients in

our data set is 53 years, and 40% of patients are below 50). (2) Non-White race

includes Hispanic, Black, and Native Americans. (3) Diabetes history refers to the

existence of diabetes prior to the time of transplant (Among 407 patients, there were

115 patients (28%) with the history of diabetes before or at the time of transplant).

(4) The thresholds for classifying risk factors (except for age, gender, race, and blood

pressure) as low/high is based on MedPlus (2018). (5) Blood pressure is defined as

“low” for patients with systolic and diastolic blood pressure of “<120” and “<80” mm

Hg, respectively, whereas it is defined as “high” when at least one of these conditions
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Table 2.2: Description of Main Risk Factors and Their Levels (See Also Boloori et al.
(2015))

Risk Factor (Abbreviation) Unit Low Level High Level
Static (S)/

Dynamic (D)

Age Years <50 ≥ 50 S

Gender — Female Male S

Race — White non-White S

Diabetes history (Diab Hist) — No Yes S

Body mass index (BMI) kg/m2 <30 ≥30 D

Blood pressure (BP) — Normal Hypertension D

Total cholesterol (Chol) mg/dL <200 ≥200 D

High-density lipoportein (HDL) mg/dL ≥40 <40 D

Low-density lipoportein (LDL) mg/dL <130 ≥130 D

Triglyceride (TG) mg/dL <150 ≥150 D

Uric acid (UA) mg/dL <7.3 ≥7.3 D

is violated (AHA, 2018).

Choice of Medication Regimens and Health States. To gain insights into

effective post-transplant medication management strategies, we consider tacrolimus

as the primary immunosuppressive drug. We do so because (1) it has been shown

that tacrolimus is superior to other immunosuppressive drugs (e.g., cyclosporine)

in preventing organ rejection for kidney transplantations (see, e.g., Bowman and

Brennan (2008)), and (2) tacrolimus is the main immunosuppressive drug used in

our partner hospital: based on our data set, 95% of patients are put on tacrolimus.

We also observe from our data set that 94% of patients who are put on diabetes

medications post-transplant (a) are prescribed insulin, and (b) are put on a fixed

dosage of it. Therefore, we (a) consider insulin as the main diabetes medication, and

(b) assume it is prescribed in a fixed dosage (see also Denton et al. (2009) and Mason

et al. (2014) for a similar assumption).
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Unlike insulin, which is prescribed in a fixed dosage, physicians prescribe tacrolimus

based on C0 (trough level). A lower (higher) C0 is known to be associated with a

higher (lower) risk of organ rejection (see, e.g., Staatz et al. (2001)). The target ther-

apeutic range of C0 at our partner hospital is 10-12 mg/dL (month 1 post-transplant),

8-10 mg/dL (month 4 post-transplant), and 6-8 mg/dL (month 12 post-transplant).

Thus, we lable any C0 ∈ [4, 8), [8, 10), [10, 14] mg/dL as “low,” “medium,” and

“high,” respectively. Similarly, we use lables “low,” “medium,” and “high” to refer

to tacrolimus prescription dosages [0.05,0.10], (0.10,0.20], and (0.20,0.25] mg/kg/day,

respectively. These discrete settings are consistent with the literature on therapeu-

tic monitoring of immunosuppressive drugs (see, e.g., Schiff et al. (2007)). Also,

from the diabetes perspective, blood glucose levels are measured by FPG and HbA1c

tests, where a patient with FPG≥126 (100 ≤FPG< 126) mg/dL or HbA1c≥6.5%

(5.7 ≤HbA1c<6.5%) is labled as diabetic (pre-diabetic), whereas FPG<100 mg/dL

or HbA1c<5.7% is labled as healthy (ADA, 2012).

Estimation of Probability Matrices and Cloud Construction. For each cohort

of patients in Table 2.2, we construct a cloud of probabilistic models in two phases:

Phase 1: Point Estimates. We employ the Baum-Welch (BW) algorithm (Welch,

2003) to obtain point estimations for core state transition and observation probabil-

ity matrices (lines 6–9 in Table 2.3). As inputs to this algorithm, we use (1) the

sequence of medical observations (tacrolimus C0 and blood glucose levels) and ac-

tions (prescribed medications) from our clinical data set and (2) initial transition and

observation probability matrices. We note that the BW algorithm is iterated 1,000

times to account for the inevitable variability caused by considering random initial

probability matrices. Thus, we treat the average outputs of the BW algorithm over

all iterations as our point estimates. Despite 1,000 iterations, the resulted point esti-

mates may not be reliable. Thus, we address this issue by constructing the cloud of
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models.

Phase 2: Cloud Construction. We construct an ambiguity set as a cloud of

probabilistic models surrounding the point estimates resulted from phase 1. We first

identify the set of all probability matrices that are within an ε-distance from the

points estimates. To this end, we characterize the distance by the Kullback-Leibler

(KL) divergence criterion (a.k.a. relative entropy), which is applied on each row of

probability matrices (see Table 2.3 for the notation used):

dKL
(
v,Pa

BW (i)
)

=
∑
j∈S

v(j) log2

( v(j)

paBW (j|i)

)
∀ v ∈ V,∀ a ∈ A,∀ i ∈ S \ {∆,∇},

(2.15)

where Pa
BW = [paBW (j|i)]i,j∈S is the point estimate returned by the BW algorithm,

and Pa
BW (i) is the ith row in matrix Pa

BW (the same procedure is used for matrix

Qa
BW = [qaBW (o|j)]j∈S,o∈O). We note that we do not apply the KL distance in (2.15)

for the absorbing states (i.e., death ∆ and organ rejection ∇) in probability matrices.

Instead, we simply consider a unit row vector for the first two rows in these matrices.

Because of the KL divergence in (2.15), the cloud of models is an infinite set (line

12 in Table 2.3). However, since we require the existence of a BIWC member in the

cloud (see §2.4), we randomly select a finite number (i.e., |M |) of samples from this

set, such that the BIWC member condition is satisfied (lines 13–15 in Table 2.3).

This, in turn, makes the cloud of models a finite set. In Appendix A.2.3, we provide

further details on the existence of a BIWC member in our clinical data set, and in

Appendix A.2.4, we validate our estimations of the set of transition and observation

probability matrices.

Estimation of the Initial Observation Probability Matrix. Our partner hos-
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Table 2.3: A Pseudocode for Constructing the Cloud of Models (Transition and Ob-
servation Probability Matrices)

In
p
u
ts

1 Initial transition (randomly generated)/observation (see below) probability matrices

2 Sequence of medical observations and actions (for each cohort) from our data set

3 Kullback-Leibler (KL) distance bound = ε ≥ 0 (e.g., ε = 0.05)

4 V =
{
v = [vi]1≤i≤|S| ∈ R

|S|
+ :

∑|S|
i=1 vi = 1

}
5 Number of distinct models in the cloud (the ambiguity set) = |M |

P
h
a
se

1

6 for i = 1 to 1,000 // number of iterations

7 do Baum-Welch algorithm // using inputs 1–2

8 return core state transition and observation probability matrices

9 return point estimates Pa
BW and Qa

BW for each action a ∈ A

// average of outputs over 1,000 iterations

P
h
a
se

2

10 while the model informativeness condition is not met for Pm and Qm (∀m ∈M)

11 for each a ∈ A and i = 3 to |S|

// i: any core health state except death and organ rejection

12 VP (i) = {v : v ∈ V, dKL

(
v,Pa

BW (i)
)
≤ ε},

VQ(i) = {v : v ∈ V, dKL

(
v,Qa

BW (i)
)
≤ ε}

// using inputs 3–4

13 for m = 1 to |M | // using input 5

14 do randomly select vectors p ∈ VP (i) and q ∈ VQ(i)

15 Pa
m(i) = p and Qa

m(i) = q

16 return probability sets Pm, Qm (for all m ∈M)

pital conducts two tests to measure blood glucose levels: if HbA1c ≥ 6.5% (5.7 ≤

HbA1c < 6.5%) or FPG ≥ 126 (100 ≤ FPG < 126) mg/dL, then the patient is said

to have diabetes type II (pre-diabetes). Each of these tests have their own specificity

and sensitivity values (see, e.g., Bennett et al. (2007)). Using the notations in Table

2.4, we then have:
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spH = 1−
(
spA1C

5.7 (1− spFPG100 ) + spFPG100 (1− spA1C
5.7 ) + (1− spFPG100 )(1− spA1C

5.7 )
)
,

(2.16a)

snPD = snFPG100 (1− snA1C
5.7 ) + snA1C

5.7 (1− snFPG100 ) + snFPG100 snA1C
5.7 . (2.16b)

Note that spPD is obtained by (2.16a), and snD is obtained by (2.16b), where,

the cut-off values of “5.7” and “100” are replaced by “6.5” and “126,” respectively.

Letting QD = [qDij ]i,j∈{1,2,3} and QT = [qTij]i,j∈{1,2,3} be the diabetes, transplant, and

overall initial observation probability matrices, respectively, we have:

QD =


snDsnPD

(
1− snD

)
1 + snPDsnD −

(
snPD + snD

)
spH

(
1− spPD

)
spPDsnPD spPD

(
spH − snPD

)
− spH + 1(

1− spH
) (

1− spPD
) (

1− spH
)
spPD spH

 ,

QT =


spT8

(
1− spT8

)
spT10

(
1− spT8

) (
1− spT10

)
spT10

(
spT8 − snT8

)
− spT8 + 1 spT10sn

T
8 spT8

(
1− spT10

)
1 + snT8 sn

T
10 −

(
snT8 + snT10

)
snT8

(
1− snT10

)
snT10

 ,

Q =



1 0 0 0 0 . . . 0 0 0

0 1 0 0 0 . . . 0 0 0

0 0 qT11q
D
11 qT11q

D
12 qT11q

D
13 . . . qT13q

D
11 qT13q

D
12 qT13q

D
13

...
...

...
...

...
. . .

...
...

...

0 0 qT31q
D
31 qT31q

D
32 qT31q

D
33 . . . qT33q

D
31 qT33q

D
32 qT33q

D
33


.

There is no consensus in the medical literature about the specificity/sensitivity

of the foregoing medical tests. However, the specificity (sensitivity) usually increases

(decreases) with increasing cut-off points. This is reflected in the values in Table 2.4.

We note that, using our APOMDP approach, we can account for other reasonable
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Table 2.4: Parameters for Calculating Specificity and Sensitivity of Observing Medical
Test Results

Notation Description Value

spFPG
100 Specificity: healthy (FPG< 100 mg/dL) 85%

spFPG
126 Specificity: healthy/pre-diabetes (FPG< 126 mg/dL) 90%

snFPG
100 Sensitivity: pre-diabetes/diabetes (FPG≥ 100 mg/dL) 90%

snFPG
126 Sensitivity: diabetes (FPG≥ 126 mg/dL) 85%

spA1C
5.7 Specificity: healthy (HbA1c< 5.7%) 85%

spA1C
6.5 Specificity: healthy/pre-diabetes (HbA1c< 6.5%) 90%

snA1C
5.7 Sensitivity: pre-diabetes/diabetes (HbA1c≥ 5.7%) 90%

snA1C
6.5 Sensitivity: diabetes (HbA1c≥ 6.5%) 85%

spH Specificity: healthy (based on FPG & HbA1c) see (2.16a)

spPD Specificity: healthy/pre-diabetes (based on FPG & HbA1c) see (2.16a)

snPD Sensitivity: pre-diabetes/diabetes (based on FPG & HbA1c) see (2.16b)

snD Sensitivity: diabetes (based on FPG & HbA1c) see (2.16b)

spT8 Specificity: low C0 (Architect–threshold< 8 mg/dL) 85%

spT10 Specificity: low/medium C0 (Architect–threshold< 10 mg/dL) 90%

snT8 Sensitivity: medium/high C0 (Architect–threshold≥ 8 mg/dL) 90%

snT10 Sensitivity: high C0 (Architect–threshold≥ 10 mg/dL) 85%

values.

Estimation of Immediate and Lump-Sum Rewards. As introduced in §2.3,

the immediate reward, rn(s, a), represents the quality of life that a patient receives

in period n based on core health state s ∈ S, and the action taken a ∈ A. We

obtain these rewards based on the quality-of-life (qol), which is a score in [0, 1], where

0 (1) represents death (full health). Let a core health state be dichotomized into

transplant and diabetes-related states: sT and sD, and rn(sT , a) and rn(sD, a) be the

corresponding immediate rewards for these health states, respectively. Also, let
〈
x, y
〉
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denote the average of two real numbers x and y. Then, we have for all a ∈ A and

n ≤ N − 1: rn(s, a) =
〈
rn(sT , a), rn(sD, a)

〉
, where

rn(sT , a) =


qol(organ rejection)/12, if sT = Organ rejection,

qol(organ survival)/12, if sT = Organ survival (different C0’s),

(2.17a)

rn(sD, a) =



qol(diabetes)/12, if sD = Diabetic,

qol(pre-diabetes)/12, if sD = Pre-diabetic,

qol(healthy)/12, if sD = Healthy.

(2.17b)

In (2.17a)-(2.17b), we note that the length of each period in our problem is one

month, and thus, the corresponding qol scores are converted to a monthly basis (i.e.,

divided by 12).

Furthermore, the lump-sum reward denoted by Rn(s) is the QALE that a patient

receives based on the core state s whenever s/he leaves the decision process (e.g.,

organ rejection or at the end of time horizon). Let RLE(s, n) ≥ 0 be the residual

life expectancy score (i.e., the expected remaining life years at any point of time)

attributed to core state s in period n. Following Sassi (2006), we assume:

Rn(s) =
qol(s)

(
1− e−r RLE(s,n)

)
r

∀ s ∈ S,∀ n ≤ N, (2.18)

where r is a discount rate which accounts for degradation of the core health state

over the remaining lifetime of a patient. In (2.18), qol(s) =
〈
qol(sT ), qol(sD)

〉
, and

RLE(s, n) =
〈
RLE(sT , n), RLE(sD, n)

〉
, where RLE(sT , n) and RLE(sD, n) are de-

fined similar to (2.17a)-(2.17b). Further details about estimating the required param-

eters (e.g., qol and RLE scores) can be found in Appendix A.2.1. When comparing
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our optimal policies with other benchmarks in §2.5.2, we perform sensitivity analyses

on the estimated reward parameters by changing the values of qol and RLE (see

Appendix A.5). Moreover, although in our base estimates we assign an equal weight

to diabetes and organ rejection outcomes (by taking the average of their related re-

wards), in our sensitivity analyses (Appendix A.5), we consider different values for

qol and RLE such that organ rejection outcomes can have a higher impact compared

to diabetes outcomes.

2.5.2 Numerical Results, Guidelines, and Policy Implications

In this section, we present our numerical results including the robust optimal

medication policies for different cohorts of patients (§2.5.2) and comparison of our

optimal policies with other policies including the current medical practice (§2.5.2).

As we will discuss, these results have important implications for guideline makers as

well as individual physicians and patients.

Robust Optimal Medication Policies.

We obtain optimal medication policies from our APOMDP approach separately for

22 cohorts of patients based on the risk factors in Table 2.2. To illustrate our results

for each of these cohorts and for computational tractability, we consider 3 different

values for the DM’s conservatism level (i.e., λ ∈ {0.0, 0.5, 1.0}) and 3 models for the

ambiguity set (i.e., |M | = 3). We also set the KL divergence bound ε in Table 2.3 as

0.05. We consider 0.05 instead of lower values such as 0.01 or 0.02 simply to increase

the likelihood of satisfying the model informativeness condition. Furthermore, we

use a 2-simplex to represent a cut of the belief space under a specific concentration

of tacrolimus. For example, a 2-simplex under “Low C0” indicates b3, b6, b9 6= 0 and

b4, b5, b7, b8, b10, b11 = 0 (i.e., the patient is alive and is believed to have organ survival
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with low C0, while the exact diabetes status is not perfectly known). Although we

calculate optimal medications over the entire belief space ΠPO, which is an 8-simplex,

we choose these cuts to understand the interaction of two medications under different

risks of organ rejection and diabetes complications. We aim to provide insights for

the medical practice into the following questions:

• Question 1. What is the impact of risks of organ rejection and diabetes complica-

tions on the optimal medication regimens?

• Question 2. What is the impact of various patient risk factors on the optimal

medication regimens?

• Question 3. What is the impact of DM’s conservatism levels on the optimal medi-

cation regimens?

To address these three questions, we summarize our main findings in Observations

2.5.1–2.5.3, and discuss their implications for the medical practice.

Remark 2.5.1 Based on the discussion in §??, our observations and implications

here are not predictive of what a physician will do under a specific conservatism level.

They are rather prescriptive in that they shed light on what a physician should be

doing (given his/her conservatism level) based on the optimal policies we find from

our APOMDP approach. Since we are able to characterize the optimal policy for any

given level of conservatism, we are also able to shed light on the optimal policy that

is based on the best conservatism level.

Observation 2.5.1 (Optimal Medication Policies) (i) Under low or medium C0,

the optimal tacrolimus regimen is to use the high dose as long as the risk of diabetes

is not very high. However, as this risk increases, using less intensive tacrolimus reg-

imens (e.g., medium or low dose) becomes optimal. (ii) Under high C0, it is optimal
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to use low-dose tacrolimus regardless of the underlying risk of diabetes. (iii) When

tacrolimus is prescribed in medium or high dose, insulin should be used to avoid the

potential onset of diabetes, even when the patient has a considerable chance of being

diabetes-free.

To better understand Observation 2.5.1, let us consider (a) different levels of C0 (to

reflect on different risks of organ rejection), and (b) four patients each corresponding

to a specific belief vector (to represent different risks of diabetes complications). These

patients are identified in Figure A.3 in Appendix A.3 via vectors b̃. For example,

patient 1 has b̃ = [0.80, 0.15, 0.05] (i.e., 80%, 15%, and 5% risks (perceived by the

DM) of being diabetic, pre-diabetic, and healthy, respectively). Patients 1, 2, and

3 have a high risk of being diabetic, pre-diabetic, and healthy, respectively, while

patient 4 has an equal risk among these three conditions. We present the following

results from Figure A.3:

Low C0: when the risk of diabetes is not very high (e.g., for patients 2–4), the

optimal tacrolimus regimen is the high dose, which is consistent with the current

practice. However, unlike the current practice, we observe that for patients with a

high risk of diabetes (e.g., patient 1) the optimal tacrolimus regimen is the medium

dose (for all patient cohorts). In addition, the optimal insulin regimen for patient 1

(3) is to use (not use) insulin. However, unlike the current practice, insulin is the

optimal regimen even when the risk of diabetes is lowered compared to patient 1:

patient 2 under all cohorts and patient 4 under all cohorts except being non-White

female with no diabetes history and normal levels of Chol, HDL, and LDL.

Medium C0: when C0 is medium, using med-dose tacrolimus is the first choice in the

current practice. However, we find that when the risk of diabetes is low (e.g., patients

2 and 3), the optimal tacrolimus regimen is the high dose (for all patient cohorts). As

the diabetes risk increases (e.g., patients 1 and 4), we find that the optimal tacrolimus
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regimen becomes the low/medium dose for non-obese, female patients with age<50,

hypertension, normal HDL, and high levels of LDL and TG. In addition, similar to

patients with low C0, we observe that, for patients with medium C0, it is optimal to

use insulin even when the diabetes risk is relatively low (unlike the current practice).

For example, in addition to patient 1, we find that patients 2 and 4 (i.e., those with

lower risk of diabetes compared to patient 1) should also be prescribed by insulin (for

patient cohorts formed by high levels of all risk factors except Chol).

High C0: when C0 is high, organ rejection is unlikely, and hence, using low (or

medium) dose of tacrolimus is recommended over high dose in the medical practice.

Our results confirm the optimality of this recommendation for all patient cohorts.

However, as the diabetes risk is lowered (e.g., patients 3 and 4), using low/med-dose

tacrolimus is optimal only for specific patient cohorts (e.g., non-White patients with

age<50 and normal levels of BP and Chol). Also, unlike the current practice, we find

that even for patients whose risk of diabetes is not very high (e.g., patients 2 and 4)

it is optimal to use insulin (for obese, female patients with age≥50, diabetes history,

and high LDL).

In Observation 2.5.1, we addressed Question 1 (i.e., how the optimal medication

regimens are affected by different risks of organ rejection and diabetes complications).

In the next two observations, we explore the impact of variations in risk factors

(Question 2) and the DM’s conservatism level λ (Question 3) on medication regimens.

Therefore, instead of specific belief vectors (e.g., patients 1–4 in Observation 2.5.1),

we consider all belief vectors (i.e., all patients). In particular, we utilize the optimal

policy regions depicted in Figure A.3 in Appendix A.3, and make the following:

Observation 2.5.2 (Tacrolimus Requirement and the Diabetogenic Effect)

Under any conservatism level λ, (i) the optimal policy region for using high-dose

tacrolimus is larger for non-White, male, obese patients with age≥50, hypertension,
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low HDL, and high LDL (compared to cohorts formed by the opposing risk levels

along each of these risk factors), and (ii) the optimal policy region for using insulin

(along with high/med-dose tacrolimus) is larger for male patients with age≥50, dia-

betes history, hypertension, high Chol, and low HDL (compared to cohorts formed by

the opposing risk levels along each of these risk factors).

It is known in the medical literature that age and race can be predictors of

tacrolimus dose variability (see, e.g., Yasuda et al. (2008)). However, Observation

2.5.2(i) suggests that the dosage of tacrolimus should be adjusted based on other risk

factors such as age, gender, race, BMI, blood pressure, HDL, and LDL. This im-

plies that such risk factors could make patients more vulnerable to the risk of organ

rejection, and hence, to offset this effect, the optimal tacrolimus regimens put more

emphasis on higher dosages of tacrolimus for such patients. In addition, regarding Ob-

servation 2.5.2(ii), Figure A.3 shows (as an example) that the policy regions for actions

a1 and a2 (i.e., using insulin along with medium/high dosage of tacrolimus) are larger

for patients with age≥50 compared to those with age<50. Observation 2.5.2(ii) re-

veals risk factors under which the diabetogenic effect of tacrolimus is stronger. These

findings address Question 2 and are useful for the medical practice, especially because

they highlight that the blood glucose level of patients with specific risk factors should

be monitored more closely than other patients in the post-transplant period.

Finally, we address Question 3 by making the following:

Observation 2.5.3 (The Effect of Conservatism Levels) Increasing the conser-

vatism level, λ, results in using (i) more intensive medication regimens (for both

tacrolimus and insulin) for non-White patients with age≥50, no diabetes history, and

low-risk levels of Chol, HDL, LDL, TG, and UA, and BMI (both non-obese and

obese), and (ii) less intensive tacrolimus regimens for male patients with age<50, di-
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abetes history, hypertension, and high-risk levels of Chol, HDL, and LDL. However,

increasing λ does not change the intensity of medication regimens for patients with

White race, female gender, normal blood pressure, and high-risk levels of TG and UA.

For example, as can be observed from Figure 2.3(b), for a non-White patient, a

higher conservatism level results in larger optimal policy regions for using high-dose

tacrolimus (as opposed to medium-dose) and insulin (as opposed to not using it).

On the other hand, based on Figure 2.3 (parts (a), (c), and (d)), we find that for a

patient with age<50, diabetes history, or hypertension, increasing the conservatism

level results in smaller optimal policy regions in which higher dose of tacrolimus

is prescribed. Regarding this observation, in §2.4 we explored relevant analytical

results via Theorem 2.4.1 and Corollary 2.4.1. In particular, we presented sufficient

conditions under which an increase in the conservatism level λ (compared to a baseline

level) results in more (or less) intensive medications regimens (equivalently, a larger

(or smaller) optimal policy region for such regimens).

Observation 2.5.3 has other implications for the medical practice. For non-White

patients with age≥50, no diabetes history, and normal levels of Chol, HDL, LDL,

TG, and UA, Observation 3 implies that a more conservative DM should be more

concerned about both risks of organ rejection and NODAT compared to a less con-

servative DM (which, in turn, results in elevating the intensity of both regimens).

However, for male patients with age<50, diabetes history, hypertension, and high-

risk levels of Chol, HDL, and LDL, a more conservative DM should be more concerned

about the potential risk of NODAT than that of organ rejection compared to a less

conservative DM. This may be due to the diabetogenic effect of tacrolimus, which

could make the more conservative DM prescribe less intensive tacrolimus regimens.

Also, for White, female patients with normal blood pressure, and high-risk levels of

TG and UA, increasing the conservatism level does not drastically affect the intensity
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Figure 2.3: Variations in Optimal Medication Policies (in the Same Period) Based
on Different Conservatism Levels (e1, e2, e3 Represent Diabetic, Pre-Diabetic, and
Healthy Conditions, Respectively; ej Denotes a Unit Vector with jth Element Equal
to 1 and Other Elements Equal To 0)

of prescribed medications under the optimal policy. This, in turn, implies that, for

these cohorts, there is no significant difference between a more conservative DM and

a less conservative one in utilizing medications optimally to balance risks of organ

rejection and diabetes complications.

Finally, Observation 2.5.3 reveals that variations in physicians’ attitude toward

ambiguity will not show a homogeneous pattern with respect to the intensity of the

drugs used, if physicians follow the optimal policy. Thus, drug intensification (i.e., use

of intensified levels of medication regimens) observed in the current practice should

not be attributed merely to physicians’ behavior toward ambiguity. Instead, our

findings suggest that lack of adherence to (or knowledge of) the optimal medications

might be the main cause of using intensive regimens in the current practice.

Comparison of Optimal Policies with the Current Practice.

We aim to show the potential impact of considering the ambiguity caused by model

misspecifications and the partial observability of medical tests. To this end, we have

developed a micro-simulation model (see Appendix A.4) to simulate costs and pa-

tients’ life expectancies during the planning horizon under (1) the optimal policies
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obtained from our APOMDP approach, (2) four benchmark policies that resemble the

current medical practice under different scenarios, and (3) a policy that is obtained

by a traditional POMDP (i.e., by ignoring the underlying ambiguity) (see Appendix

A.4 for more details).

Benchmark Policies. In the current medical practice, the outcomes of medical tests

(observations) are treated as the actual health state of the patient (see, e.g., Bennett

et al. (2007)), based on which physicians prescribe medication regimens. Further-

more, tacrolimus is typically administered based on a combination of an observation

(i.e., C0 level) and time elapsed post-transplant. However, there is currently no con-

sensus among physicians on how C0 level and elapsed time should be incorporated

in prescribing tacrolimus (see, e.g., Staatz and Tett (2004) and Schiff et al. (2007)).

To address this variation among physicians, we consider four different benchmark

policies that are typically used in the current practice (see Table 2.5). As Table 2.5

shows, for the first three months post-transplant, tacrolimus is prescribed in high

dosage in all of these four benchmark policies. This is consistent with the fact that in

the current practice patients are consistently kept on high levels of tacrolimus during

the first months post-transplant (see, e.g., Ghisdal et al. (2012)) so as to avoid organ

rejection. However, after the first three months, the four policies differ: benchmark

1 (4) represents the most (least) intensive policy for prescribing tacrolimus. For ex-

ample, when the patient is observed to have medium C0 (i.e., observations o2, o5, or

o8) during months 4-6 post-transplant, the regimen under benchmark 1 is to use high

dosage of tacrolimus (i.e., actions a1 or a4), whereas the regimen under benchmark 4

is to use medium dosage of tacrolimus (i.e., actions a2 or a5). Moreover, consistent

with the current practice, in all four benchmark policies, insulin is not prescribed for

a patient who is observed to be diabetic free (i.e., a patient with FPG< 126 mg/dL

or HbA1C< 6.5%).
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We compare the APOMDP, POMDP, and benchmark approaches based on three

performance measures: (1) average QALE achieved, (2) average medical expenditures

(see Appendix A.2.2 for related cost estimations), and (3) average number of times

that insulin and different dosage of tacrolimus are prescribed (Tables 2.6, 2.7, 2.8, and

2.9 show the results). The latter allows us to examine whether or not our methodology

yields less intensive medication regimens compared to the current practice. Further-

more, since dynamic risk factors are subject to change throughout the time horizon,

in our simulation we allow each dynamic risk factor to take either a low or a high level

in each period (i.e., unlike static risk factors, we do not run the simulation for each of

low-risk and high-risk levels of dynamic risk factors, separately). Considering seven

dynamic and four static risk factors in our study, we therefore have 7 + 4 × 2 = 15

(and not 22) cohorts of patients in Tables 2.6-2.9. We make the following observations

from the results presented in Tables 2.6-2.9:

Observation 2.5.4 (Impact) During one year post-transplant, compared to other

polices (i.e., benchmarks 1-4 and POMDP), our optimal policy on average (i) im-

proves the QALE per patient up to 4.58%, (ii) reduces the medical expenditures per pa-

tient up to 11.57%, and (iii) prescribes high-dose tacrolimus up to 3.69 fewer times per

patient, med-dose tacrolimus up to 1.48 more times per patient, low-dose tacrolimus

up to 2.09 fewer times per patient, and insulin up to 2.12 more times per patient.

Based on Observation 2.5.4 and the results provided in Tables 2.6-2.9, we shed

light on the following implications for medical practitioners, as well as those influenc-

ing medical guidelines and recommendations: (1) The improvements in QALE and

cost made by our optimal policy are not uniform across all cohorts of patients. From

Tables 2.6-2.8, we observe that for some cohorts of patients our approach yields the

most improvement in QALE while incuring the least amount of medical expenditure.
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These cohorts include patients with (a) age<50, (b) diabetes history, (c) normal or

hypertensive blood pressure, (d) normal or high levels of cholsterol and triglyceride,

and (e) normal or low HDL. (2) Gains obtained by following our proposed policies

compared to the current practice are higher versus benchmark policies 1 and 2 than

the other benchmark policies. The intensity of medications prescribed under these

policies could be a contributing factor. For example, by following benchmark poli-

cies 1 and 2 in one year (compared to our optimal policy), a patient takes high-dose

tacrolimus up to 3.69 more times, while taking insulin up to 2.09 fewer times. As a re-

sult, the patient becomes more vulnerable against the diabetogenic effect of tacrolimus

and NODAT complications. (3) The comparison between our APOMDP approach

and the POMDP approach reveals that, had we ignored the underlying model mis-

specifications, each patient would have lost between 0.02 and 0.09 QALE on average

(i.e., between 1.04 and 4.68 weeks), while incuring between $31 and $214 more med-

ical costs during one year post-transplant. This shows the importance of considering

model misspecifications that are inevitable when data is used to estimate parameters:

one should not rely on a single model to derive effective medication strategies. (4) The

above-mentioned improvements in performance measures are obtained over our plan-

ning horizon (i.e., one-year post-transplant). Since, compared to other approaches,

the APOMDP approach could (a) result in better outcomes in each time period and

(b) move the patient to a better health state over time, the potential improvements

could be more significant had these measures been calculated over a longer horizon

(e.g., two-year post-transplant).

Finally, in Appendix A.5, we conduct sensitivity analyses on the estimated reward

values (where both transplant and diabetes-related parameters are varied simultane-

ously), and find that the results discussed above are robust to the estimated values.
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2.6 Conclusion

Immunosuppressive medications are currently intensively prescribed in the post-

transplant period to ensure a low risk of organ rejection. However, this practice has

been shown to increase the risk of new-onset diabetes after transplantation (NO-

DAT), which, in turn, necessitates the use of medications such as insulin. To provide

guidelines for the simultaneous management of post-transplant medications such as

tacrolimus and insulin, we develop an ambiguous POMDP (APOMDP) model that

maximizes the quality-adjusted life expectancy (QALE) of patients, while controlling

the risk of organ rejection and NODAT. Utilizing our APOMDP approach along with

a data set of patients who underwent kidney transplantation at our partner hospital,

we establish a data-driven approach in which (1) the physician’s ambiguity attitude

toward model misspecifications is defined based on a combination of the worst and

the best possible outcomes in the “cloud” of models, (2) core state and observation

transition probability matrices are patient risk-factor specific but subject to poten-

tial estimation errors, and (3) optimal policies are customized for different cohorts of

patients.

Analyzing the APOMDP model, we first present some structural properties. These

include piecewise-linearity and convexity of the value function, a theoretical link be-

tween a decision maker’s conservatism level and the intensity of prescribed medica-

tions, monotonicity of the optimal medication policy, and a feasible bound on the

value function as an approximation. We then perform various numerical experiments

using our clinical data set, and discuss their implications. For example, we observe

that under the optimal policy for some patient cohorts (e.g., non-White patients with

age≥50, no diabetes history, and low cholesterol) a more conservative physician is

more concerned about both risks of organ rejection and NODAT than a less con-
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servative physician. Also, for other patient cohorts (e.g., male patients with age<50,

diabetes history, and hypertension), a more conservative DM is more concerned (under

the optimal policy) about the risk of NODAT than that of organ rejection compared

to a less conservative physician.

We also compare our proposed optimal policies with four benchmark policies that

represent the current medical practice (under different scenarios), and a POMDP

approach that ignores the underlying model misspecifications. Our results show that,

depending on different risk factors considered for each patient, in one year post-

transplant our optimal policy (compared to other policies) (a) improves the average

QALE up to 4.58%, (b) reduces the medical expenditures per patient up to 11.57%,

and (c) prescribes high-dose tacrolimus up to 3.69 fewer times per patient. The other

important implications of the above-mentioned results for practitioners and guideline

makers are: (1) Cohorts of patients formed by age, diabetes history, blood pressure,

cholesterol, HDL, and triglyceride will benefit most from our methodology, because for

such patients our approach yields the most improvement in QALE while incuring the

least medical expenditure. (2) Practitioners or guideline makers should not rely on a

single model to derive effective medication strategies: had we ignored the underlying

model misspecifications, each patient on average would have lost between 1.04 and

4.68 weeks of QALE during one year, while incuring between $31 and $214 more

medical costs durign the same period.

Our study has some limitations: (1) We consider 11 different risk factors each

having two levels (i.e., low vs. high). This creates as many as 211 = 2, 048 risk profiles

for patients. However, we consider 2 × 11 = 22 cohorts of patients by changing one

risk factor at a time. This allows us to focus on the effect of each individual risk factor

separately. However, this disallows us to study the potential interactions between the

risk factors. To perform such a study, we note that one needs to estimate transition
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and observation probabilities for each of the 211 risk profiles, which, in turn, requires

data of about 10, 000 patients (i.e., more than half of all kidney transplantations in

the U.S. in 2015 (UNOS, 2018)). This is much larger than the number of patients seen

at our partner hospital. Furthermore, one needs enough data to estimate the reward

functions (e.g., QALE values) for all of these 211 cohorts of patients. Nevertheless,

as noted earlier, we believe that our approach of considering 22 cohorts of patients

is strong enough to detect the impact of each risk factor on optimal prescription of

medications. (2) We consider tacrolimus as the main immunosuppressive drug in this

study, based on the practice at our partner hospital. Some of our results might be

specific to tacrolimus, and should not be extended to other immunosuppressive drugs

without additional analysis. Furthermore, unlike the case at our partner hospital,

multiple immunosuppressive drugs may be used in parallel in some medical practices.

Including all such drugs in our APOMDP approach will increase state and action

spaces, aggravating the so-called “curse of dimensionality.” This will necessitate using

some approximation schemes (e.g., utilizing a lower bound approach similar to the one

we discussed in §2.4, or obtaining policies via approximate dynamic programming).

Future research can extend our work in two other directions. First, our approach

can be applied to other solid organs (e.g., liver and pancreas) with the goal of creating

a multi-organ data-driven decision-support system. Compared to kidney transplan-

tation, where one can use dialysis when facing organ rejection, dialysis is not feasible

for other organs. As a result, risk of organ rejection is expected to be higher for

other organs compared to kidney, and this, in turn, can affect optimal medication

policies. Second, future research may consider a resource allocation problem for hos-

pitals, where the challenge is to effectively allocate limited resources (e.g., insulin

and tacrolimus along with nurses and beds) to Endocrinology and Nephrology de-

partments of hospitals for managing NODAT patients. This will create coordinated
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efforts between different parts of a hospital, and hence, may further reduce expendi-

tures while improving the care delivery process.
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Table 2.5: Description of Benchmark Policies Based on Medical Observations and
Time Elapsed Post-transplant

Month Observation
Benchmark

1 2 3 4

1–3

o1 a1 a1 a1 a1

o2 a1 a1 a1 a1

o3 a1 a1 a1 a1

o4,o7 a4 a4 a4 a4

o5,o8 a4 a4 a4 a4

o6,o9 a4 a4 a4 a4

Month Observation
Benchmark

1 2 3 4

4–6

o1 a1 a1 a1 a1

o2 a1 a1 a2 a2

o3 a1 a2 a3 a3

o4,o7 a4 a4 a4 a4

o5,o8 a4 a4 a5 a5

o6,o9 a4 a5 a6 a6

Month Observation
Benchmark

1 2 3 4

7–12

o1 a1 a1 a2 a2

o2 a2 a2 a2 a3

o3 a2 a3 a3 a3

o4,o7 a4 a4 a5 a5

o5,o8 a5 a5 a5 a6

o6,o9 a5 a6 a6 a6
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Table 2.6: Comparison of Medication Policies Based on Average QALE (Years) (Num-
bers in Parenthesis Represent Standard Deviation)∗
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Table 2.7: Comparison of Medication Policies Based on Average Cost ($) (Numbers
in Parenthesis Represent Standard Deviation)∗
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Table 2.8: QALE and Cost Improvement of APOMDP Policy over Other Policies
(Comparisons Are Made Based on Average QALE/Cost Values Reported in Tables
2.6-2.7)

Cohort
Benchmark Benchmark Benchmarks

POMDP
Worst∗ Best∗∗ Average∗∗∗

%
in
c
re

a
se

in
Q
A
L
E

Age<50 4.77% 0.94% 2.57% 0.35%

Age≥50 7.65% 0.51% 3.60% 0.31%

Gender:Female 2.42% 0.39% 1.23% 0.28%

Gender:Male 3.78% 0.13% 1.72% 0.19%

Race:White 3.22% 0.48% 1.71% 0.36%

Race:non-White 5.81% -0.14% 2.49% 0.36%

DiabHist:No 3.62% 0.33% 2.01% 0.26%

DiabHist:Yes 7.69% 2.40% 4.43% 0.22%

BMI 3.66% 0.35% 1.73% 0.21%

BP 4.12% 0.51% 2.06% 0.65%

Chol 4.75% 0.88% 2.63% 0.59%

HDL 5.35% 1.70% 3.30% 0.51%

LDL 5.30% 0.00% 2.36% 0.58%

TG 3.52% 0.37% 1.96% 0.30%

UA 3.03% 0.76% 1.92% 0.15%

Average∗∗∗∗ 4.58% 0.79% 2.38% 0.35%

%
d
e
c
re

a
se

in
c
o
st

Age<50 12.46% 5.36% 7.38% 1.28%

Age≥50 10.79% 4.44% 6.52% 2.04%

Gender:Female 9.88% 2.23% 5.89% 1.96%

Gender:Male 6.79% 0.07% 3.09% 1.00%

Race:White 11.77% 1.78% 6.20% 0.61%

Race:non-White 16.97% -0.64% 7.04% 0.95%

DiabHist:No 11.39% 0.83% 5.95% 0.73%

DiabHist:Yes 11.65% 7.32% 8.61% 1.06%

BMI 8.30% 1.41% 4.49% 1.16%

BP 11.51% 3.36% 7.12% 4.06%

Chol 11.23% 1.98% 6.12% 1.31%

HDL 13.43% 7.80% 9.77% 3.60%

LDL 9.91% -0.15% 4.75% 3.47%

TG 11.32% 2.92% 6.666% 2.81%

UA 12.58% 4.41% 8.03% 2.71%

Average∗∗∗∗ 11.57% 4.01% 6.51% 1.93%
∗ Highest improvement made by the APOMDP policy against benchmarks.
∗∗ Lowest improvement made by the APOMDP policy against benchmarks.
∗∗∗ Improvement made by the APOMDP policy against average of benchmarks.
∗∗∗∗ Average of improvement under each column (across all cohorts).
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Table 2.9: Comparison of Medication Policies (Based on Average Number of Medi-
cations Prescribed under Each Policy)

Cohort
Benchmark 1 Benchmark 2 Benchmark 3

1∗ 2 3 4 1 2 3 4 1 2 3 4

Age:L∗∗ 7.76 3.91 0.33 3.97 7.05 2.96 1.99 4.00 3.99 5.12 2.89 4.07

Age:H 8.13 3.87 0.00 4.21 6.73 3.08 2.19 4.10 4.13 5.39 2.48 4.17

Gender:L 8.10 3.65 0.25 3.72 7.15 3.25 1.60 4.37 4.24 5.32 2.44 4.45

Gender:H 8.46 3.54 0.00 4.48 7.08 3.35 1.57 4.28 4.41 4.99 2.6 3.96

Race:L 7.29 4.17 0.54 3.85 6.64 3.10 2.26 4.30 4.16 4.90 2.94 3.60

Race:H 7.56 4.35 0.09 4.34 6.54 3.47 1.99 4.30 3.62 5.24 3.14 3.84

DiabHist:L 8.38 3.46 0.16 3.89 6.97 2.80 2.23 4.34 4.36 5.24 2.40 3.79

DiabHist:H 7.54 4.14 0.32 4.07 6.64 2.90 2.46 4.55 3.98 5.53 2.49 4.24

BMI 7.82 3.55 0.63 4.30 7.42 2.90 1.68 3.69 4.08 5.50 2.42 4.34

BP 8.30 3.70 0.00 4.40 7.36 2.54 2.10 4.26 3.94 5.13 2.93 3.96

Chol 7.86 3.94 0.20 4.11 6.79 2.96 2.25 4.15 4.14 4.93 2.93 4.11

HDL 8.35 3.53 0.12 3.92 7.41 3.09 1.50 3.96 4.12 5.77 2.11 3.98

LDL 7.94 4.06 0.00 4.46 7.32 3.01 1.67 4.38 3.69 4.99 3.32 4.03

TG 7.61 3.62 0.77 3.96 6.83 3.39 1.78 4.34 3.72 5.19 3.09 4.46

UA 7.74 4.26 0.00 4.26 6.53 3.23 2.24 4.11 4.24 5.77 1.99 4.40

Difference∗∗∗ 3.69 -0.63 -2.06 -2.09 2.73 -1.41 -0.32 -2.01 -0.18 0.79 0.39 -2.12

Cohort
Benchmark 4 POMDP APOMDP

1 2 3 4 1 2 3 4 1 2 3 4

Age:L 4.05 3.15 3.80 3.98 4.07 4.35 2.58 5.24 3.66 4.87 2.47 5.12

Age:H 4.13 3.29 3.58 4.15 4.88 4.33 1.79 7.48 4.68 4.81 1.51 7.62

Gender:L 3.55 2.68 4.77 3.95 4.77 4.05 2.18 5.18 4.13 4.44 2.43 4.94

Gender:H 4.37 2.73 3.90 4.15 5.18 3.89 1.93 5.47 5.05 4.03 1.92 5.70

Race:L 3.77 2.80 4.43 3.81 4.71 3.83 2.46 4.84 4.65 3.97 2.38 4.89

Race:H 3.72 2.79 4.49 4.37 5.05 3.87 2.08 5.77 4.83 4.06 2.11 5.85

DiabHist:L 4.12 2.58 4.3 3.88 4.65 3.81 2.54 5.31 4.12 4.27 2.61 4.85

DiabHist:H 3.74 2.65 4.61 4.41 3.95 4.41 2.64 7.50 3.25 5.03 2.72 8.14

BMI 3.83 2.53 4.64 4.39 4.83 4.17 2.00 6.17 4.15 4.79 2.06 6.88

BP 4.21 2.64 4.15 4.20 5.07 3.85 2.08 5.96 4.25 4.70 2.05 6.38

Chol 3.73 3.46 3.81 4.11 5.02 3.94 2.04 6.13 4.34 4.79 1.87 6.78

HDL 3.96 3.64 3.40 4.28 4.56 3.76 2.68 6.07 3.78 4.69 2.53 6.67

LDL 3.82 3.29 3.89 4.34 5.14 3.66 2.20 6.13 4.55 4.52 1.93 6.98

TG 3.56 3.28 4.16 4.08 4.66 3.38 2.96 6.13 4.15 4.03 2.82 6.56

UA 3.87 3.48 3.62 4.11 4.22 4.03 2.75 5.68 3.97 4.17 2.86 5.88

Difference∗∗∗ -0.34 -1.48 1.82 -2.07 0.48 -0.52 0.04 -0.28 — — — —
∗ 1,2,3,4: number of times (on avg.) that high/med/low-dose tacrolimus and insulin are prescribed in 1 year, respectively.

∗∗ L: low level; H: high level
∗∗∗ Average of differences with the optimal policy (average is taken over all cohorts).
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Chapter 3

CHARACTERIZATION OF REMITTING AND RELAPSING

HYPERGLYCEMIA IN POST-RENAL-TRANSPLANT RECIPIENTS

3.1 Introduction

Hyperglycemia is a well-described complication following solid organ transplanta-

tion Bloom and Crutchlow (2008); Kesiraju et al. (2014); Räkel and Karelis (2011).

Among patients without a prior history of diabetes mellitus (DM), hyperglycemia

that either persists after transplant, or which resolves but later recurs and persists,

is termed new onset diabetes after transplant (NODAT). Hyperglycemia and NO-

DAT are strong predictors of graft failure and cardiovascular mortality occurring

commonly after solid organ transplant Bloom and Crutchlow (2008); Kesiraju et al.

(2014); Räkel and Karelis (2011). The occurrence of hyperglycemia or development

of NODAT have been attributed to many factors, including (1) immunosuppressive

drugs and their diabetogenic effects, (2) other demographic and medical-related risk

factors, and (3) inpatient hyperglycemic conditions.

Regarding the first factor, Table 3.1 summarizes studies on the diabetogenic effect

of anti-rejection agents (e.g., tacrolimus, sirolimus, cyclosporine, glucocorticoids, and

steroid) with respect to different solid organ transplantations (e.g., kidney, liver, and

pancreas). The main insights from this literature are related to: (1) the efficacy of

a drug in preventing organ rejection while imposing less risk for hyperglycemia or

NODAT, (2) the relative benefits/side effects of two or more drugs when compared

with each other, and (3) the potentials of drugs when switching from one therapy to

another.
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In addition to immunosuppressive drugs, the literature has analyzed other demo-

graphic or medical-related risk factors to establish possible statistically significant

associations with hyperglycemia and NODAT (Table 3.2). The majority of the liter-

ature in this stream attempts to (1) derive associations between risk factor(s) and a

continuous variable (linear regression models) that represents hyperglycemia/NODAT

status (e.g., blood glucose level measured by hemoglobin A1c and fasting plasma glu-

cose tests), (2) demonstrate the same effect for a categorical variable (i.e., whether

a patient suffers from hyperglycemia or not, at a specific point of time) by apply-

ing logistic regression models, or (3) discuss the probability of survival from hyper-

glycemia/NODAT at a single point of time (Cox regression models).

Furthermore, recent evidence indicates that hyperglycemia occurring in the im-

mediate post-transplant period (i.e., during the post-operative hospital stay) is also

associated with NODAT (see, e.g., Chakkera et al. (2009) and Chakkera et al. (2010)).

In spite of all these efforts, none of these factors (immunosuppressive drugs and

their diabetogenic effects, demographic and medical-related risk factors, and inpatient

hyperglycemic conditions) have been analyzed with respect to the time course of post-

transplant complications. Specifically, one critical aspect that is overlooked by the

literature is an understanding and analysis of remitting and relapsing hyperglycemia in

post-solid organ transplant recipients. Such an understanding can be critical because

(1) the insights gained can be quite different from those previously known for the

incidence of hyperglycemia and (2) these insights can be extended to other chronic

diseases with the possibility of remitting and relapsing, such as cancer and multiple

sclerosis. To the best of our knowledge, this is the first study analyzing the first and

recurrent incidence of hyperglycemia. In particular, utilizing a population of renal

transplant recipients who had no history of DM before transplantation, we undertake

a set of analyses to determine which contributing factors are significantly associated
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with the first incidence, and which ones are significantly associated with the recurrent

incidence.

3.2 Materials and Methods

3.2.1 Study Cohort.

After obtaining Mayo Clinic Institutional Review Board (Mayo Clinic IRB) ap-

proval (Continuing Review #: PR13-004295-01) and written informed consent from

all participating patients, this study conducts an analysis of 292 patients who under-

went a renal transplant between 1999 and 2006 in Mayo Clinic Arizona, and who had

no history of DM prior to surgery. Briefly, all patients were monitored at the time of

transplant as well as month 1, 4, and 12 post-transplant. The available data included

(1) demographic data such as age, race, and gender, (2) baseline patient characteris-

tics including body mass index (BMI), blood pressure (BP), total cholesterol (Chol),

high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL),

uric acid (UA), and triglyceride (TG), (3) type of immunosuppressive drugs and di-

abetes medications that were used by the patients, (4) trough level of tacrolimus

(as the main immunosuppressive drug used in this study), and (5) results of fasting

plasma glucose (FPG) and Hemoglobin A1c (HbA1c) tests as measures of glycemic

control. All major abbreviations used in this study are explained in Table 3.3.

3.2.2 Definitions.

NODAT was defined as HbA1c ≥ 6.5%, or FPG ≥ 126 mg/dL, or the require-

ment of diabetes medications (e.g., insulin or oral agent) after patient discharge from

hospital Chakkera et al. (2010, 2009). We apply this criteria to determine the inci-

dence of post-transplant hyperglycemia, which may happen just once or for multiple
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times (recurrent). We refer to either of these conditions as instances of remitting and

relapsing hyperglycemia.

3.2.3 Statistical Methods.

We now explain the statistical inference methods we employed to analyze the

effects of immunosuppressive drugs, the corresponding risk factors, and the inpa-

tient period conditions on the first and recurrent incidence of post-transplant hy-

perglycemia. The statistical models used were: (i) The Cox regression model with

time-dependent covariates, which measures the proportional hazard imposed on the

response variable (hyperglycemia incidence) by covariates that change over time. For

example, the BMI of a patient may change as his/her weight changes (Chol, HDL,

and LDL are some other examples of such covariates). As another example, whether

the patient uses an immunosuppressive drug at a specific time or not can be consid-

ered as a time-dependent covariate. Therefore, we sought to fully comprehend the

effect of these changing behaviors on the recurrent incidence of hyperglycemia. (ii)

Cox regression model with time-independent covariates, which measures the propor-

tional hazard imposed on the response variable (the first incidence of hyperglycemia)

by covariates at the time of the first incidence of hyperglycemia. (iii) Kaplan-Meier

survival analysis to characterize the cumulative probability of experiencing hyper-

glycemia over time.

The statistical analyses also include multiple imputations by chained equations

(MICE) Buuren and Groothuis-Oudshoorn (2011), which we used to replace some

missing data (with the prevalence of less than 10% in our data set) with validated

values. We conducted all statistical analyses by using the R computing package.
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3.3 Results

3.3.1 Demographic and Baseline Characteristics of Patients.

Among 407 patients in the study cohort, there were 115 patients with the history

of diabetes. The remaining 292 patients had no indication of diabetes prior to or at

the time of their transplants. The average age of patients who had no diabetes before

transplant was 49.7 years, while those who had diabetes before had the average age

of 56. Table 3.4 summarizes the demographic data along with some other baseline

characteristics of patients.

3.3.2 Incidence of Hyperglycemia.

Regarding the definition of remitting and relapsing hyperglycemia, Table 3.5 sum-

marizes different hyperglycemic states that can occur after renal transplantation.

Therefore, 79 (27.06%) patients experienced remitting and relapsing post-transplant

hyperglycemia (and hence the hyperglycemia for the first time). Among these pa-

tients, 19+3+1+24=47 patients experienced hyperglycemia multiple times, while

20+11+1=32 had it just once. As an example of the potential remitting and re-

lapsing nature of post-transplant hyperglycemia, there are 11 patients who developed

hyperglycemia at 4 months, which resolved at 12 months.

3.3.3 Summary of Immunosuppressive Treatment Regimens.

This section sheds light on information about main immunosuppressive medica-

tions that have been considered for this study (tacrolimus, steroid, and sirolimus).

As mentioned before, we focus on 292 patients with no prior history of diabetes.
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Tacrolimus

Tacrolimus (Prograf) is the main immunosuppressive drug utilized in this study. Fig

3.1 (the first three columns) demonstrates the number of patients at month 1, 4, and

12 using tacrolimus, which include 283, 275, and 270 patients (out of 292 patients),

respectively. As our primary interest in this study is to analyze the incidence of

hyperglycemia, we further classified patients in terms of whether they experienced

hyperglycemia at a specific time or not, and Fig 3.1 reveals this information as well.

Another important point regarding tacrolimus is the dosage goals and achieved

levels at different points of time. Tacrolimus goals are adjusted to avoid toxicity and

to the lowest dose possible to avoid rejection per clinical standards of care. This is a

standard clinical practice and is based on individual response and pharmacokinetics.

Table 3.6 summarizes this information. It should be noted that the achieved levels of

tacrolimus are represented in terms of the average trough level of tacrolimus.

Steroid

Steroid is the second main immunosuppressive drug incorporated in this study. Fig

3.1 (the second three columns) illustrates the number of patients at month 1, 4,

and 12 using steroid, which include 138, 147, and 140 patients (out of 292 patients),

respectively. This shows that in comparison with tacrolimus which was used by the

majority of patients, fewer patients used steroid. (According to what explained for

tacrolimus, the percentages of patients using tacrolimus at months 1, 4, and 12 were

283/292 = 97%, 275/292 = 94%, and 270/292 = 92%, respectively.) Fig 3.1 also

shows the number of patients who used steroid and experienced hyperglycemia.

Steroid is usually prescribed by the following mechanism. If after using induction

steroids (which last for up to 5 days post-transplant) a patient has an organ rejection,
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she will receive a taper dose of steroid (i.e., slow withdrawal). Then, by 1 month post-

transplant, the patient will be put on the maintenance regimen of 5 mg daily (which

is a low dosage), unless the patient has another rejection(s) later and needs possibly

extra dosage of steroid therapy. To this end, we observed the following from the data

set: (1) Among the 292 patients, only 20 patients had organ rejection at month 1, and

hence, had to use a taper dose of steroid at this month. Therefore, there remained

272 patients who had no rejection during month 1. (2) Among 20 patients at month

1, 4 patients at month 4 and 1 patient at month 12 experienced organ rejection (these

were mutually exclusive patients). (3) Among 272 patients at month 1, 5 patients at

month 4 and 6 patients at month 12 experienced organ rejection (these were mutually

exclusive patients). Therefore, according to the mechanism explained before, it can

be concluded that 4+5+1+6=16 patients (out of 292) had increased dose of steroid

(i.e., more than 5 mg daily) after 1 month post-transplant. Furthermore, as explained

before, according to Fig 3.1, 138, 147, and 140 patients used steroid at months 1, 4,

and 12, respectively. Therefore, 138-(4+1)=133, 147-(4+5)=138, and 140-(1+6)=133

patients remained on the regimen of 5 mg daily at months 1, 4, and 12, respectively.

Sirolimus

Sirolimus (Rapamune) is the third main immunosuppressive drug incorporated in this

study. Fig 3.1 shows that sirolimus was utilized by a very small proportion of patients.

3.3.4 Time-Dependent Cox Regression Model: Recurrent Incidence of

Hyperglycemia.

To address events that may occur repeatedly, such as the repeated occurrence of

hyperglycemia, we need to incorporate covariates that change over time (e.g., BMI,

BP, etc.). To this end, we employed a Cox regression model with time-dependent
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Figure 3.1: Number of Patients Who Used Immunosuppressive Drugs at Months 1,
4, and 12. Such Patients Are Further Classified as Having Hyperglycemia (HG) or
Not at That Specific Time Points.

covariates and recurrent events, where each event is assumed to occur once a patient

meets the criteria defined in Table 3.5. The performance measure in this model is the

hazard ratio (HR), such that if mean HR ≥ 1, the corresponding covariate will have

a positive effect on the response variable (and vice versa).

According to Table 3.8 (Part I), induction immunosuppressive agents (thymoglob-

ulin and simulect) and steroids were significantly associated with lower and higher

chance of recurrent hyperglycemia, respectively. However, neither using tacrolimus

nor its average trough level was significantly associated with the repeated occur-

rence of hyperglycemia. Therefore, one cannot establish the diabetogenic effect of

tacrolimus when hyperglycemia occurs repeatedly. As we will see in the next sec-

tion, this finding is in a sharp contrast with the case where only the first incident of

hyperglycemia is considered.
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3.3.5 Time-Independent Cox Regression Model: First Incidence of Hyperglycemia.

The reason that the diabetogenic effect of tacrolimus cannot be established when

hyperglycemia is occurring repeatedly may be due to the fact that tacrolimus dosage is

usually reduced with the passage of time after transplant (see Table 3.6). To test this

hypothesis, we analyzed the immunosuppressive effect when hyperglycemia happens

for the first time. We used a time-independent Cox regression model, in which only

covariates at the time of first occurrence are considered. According to Table 3.8 (Part

II), the average trough level of tacrolimus is significantly associated with a higher

chance of first hyperglycemia incident, which implies that the diabetogenic effect of

tacrolimus can be established in this case. This observation highlights the importance

of differentiating between the first and recurrent incidents of hyperglycemia.

As other observations made in this regard, induction immunosuppressive agents

(thymoglobulin and simulect) are significantly associated with lower chance of first

hyperglycemia. However, we cannot establish any significant association between

using steroid and the first incidence of hyperglycemia. This can be due to the fact

that high dosages of steroid were only considered for a small proportion of patients

in month 1 post-transplant (see section “Summary of Immunosuppressive Treatment

Regimens” for more information).

3.3.6 Kaplan-Meier Analysis: Hyperglycemia Incidence.

The results of time-independent analysis established by the Cox regression model

shows the significant association between the average trough level of tacrolimus and

the first incidence of hyperglycemia. Here, we aim to use Kaplan-Meier survival

analysis to calculate the probability of having hyperglycemia obtained from Kaplan-

Meier survival curves.
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To this end, we consider the main stratum based on average trough level of

tacrolimus classified as “≤ 10” and “> 10” mg/dL. In order to fully comprehend

the effect of these levels on the incidence of hyperglycemia, we conduct unadjusted

(univariate) analysis as well as ten adjusted analyses for those risk factors mentioned

before. However, to incorporate these risk factors into the Kaplan-Meier survival anal-

ysis, they should be discretized in classes, which are shown in Table 3.7. It should

be noted that the classification thresholds for each of these risk factors have been

set so as to distinguish the groups in terms of health-related risks (e.g., BMI of 30

kg/m2 for obesity). Furthermore, except age, gender, race, and blood pressure, other

thresholds have been obtained from MedPlus (2018). Regarding the blood pressure, if

the systolic and diastolic blood pressure are “<120” and “<80” mm Hg, respectively,

the patient is normal. Otherwise, the patient has hypertension. These thresholds

have been obtained from AHA (2018).

Fig 3.2 presents the above-mentioned survival curves. For simplicity, patients with

an average tacrolimus trough level of less than or equal to (more than) 10 mg/dL are

said to have Trough-level 0 (1). Fig 3.2A shows that Trough-level 1 patients have

significantly higher chance of experiencing hyperglycemia (HG) than Trough-level

0 patients (i.e., Logrank P <0.0001). Specifically, almost all of the former group

experience HG by month 4 (i.e., probability of experiencing HG ≈ 100%), while

the latter group still have about 80% chance of not experiencing HG by year 1.

Although we made these observations for the unadjusted (univariate) analysis, the

same behavior can be seen for adjusted analyses: the chance of experiencing HG

is significantly different (i.e., Logrank P <0.0001) across groups formed by different

risk factors (see Figs 3.2B-3.2K). Furthermore, Trough-level 1 patients with any of

the following conditions almost certainly experience HG by month 1: non-White

ethnicity, obese (BMI >30 kg/m2), and LDL ≥130 mg/dL. Moreover, Trough-level
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1 patients with any of the following conditions experience HG by month 1 with a

chance not less than 90%: age>50, male, hypertension, Chol ≥200 mg/dL, HDL <40

mg/dL, UA ≥7.3 mg/dL, or TG ≥150 mg/dL.

3.3.7 Other Risk Factors for the Incidence of Hyperglycemia.

We also analyzed the associations of other well-known risk factors for both the first

and recurrent incidence of hyperglycemia. To this end, we again applied two types

of Cox regression model. The results of these analyses are provided in Table 3.9.

We found that age and HDL were significantly associated with the first incident of

hyperglycemia, whereas age, race (non-White), BMI, HDL, and UA were significant

risk factors for the recurrent incidence of hyperglycemia.

Combining these results with those in Table 3.8, it can be stated that the first

incidence of hyperglycemia is more attributed to the diabetogenic effect of tacrolimus.

However, in the absence of such an effect, the recurrent incidence of hyperglycemia

is mainly imputed to other risk factors (e.g., age, race (non-White), BMI, HDL, and

UA). A review of Tables 3.8 and 3.9 also shows potential consequences of choosing

the right statistical tool in determining the diabetogenic effect of immunosuppressive

drugs or corresponding risk factors for hyperglycemia incidence. In addition, observ-

ing that the first and recurrent types of hyperglycemia are subject to different risk

factors might have broader implications for other similar chronic diseases. The cur-

rent literature largely overlooks time-dependent analyses, and our results shed light

on the importance of closing this gap.

3.3.8 Impact of the Inpatient Period.

Prior studies have addressed the importance of the inpatient period: what hap-

pens to patients during post-transplant hospitalization may have an impact on pa-
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tient’s conditions after hospital discharge Chakkera et al. (2010, 2009). To evaluate

the impact of inpatient period, we analyzed the effect of (1) average bed glucose

result (bed.avg), which is obtained by a poke test, (2) average blood glucose result

(blood.avg), and (3) inpatient hyperglycemia (in.hyp) on the incidence of hyper-

glycemia. Table 3.10 summarizes the results obtained from our statistical methods.

Based on Table 3.10, the average bed and blood glucose results are significantly as-

sociated with both the first and the recurrent incidence of hyperglycemia. However,

the occurrence of inpatient hyperglycemia is only associated with recurrent incidence

of hyperglycemia.

3.4 Discussion

Our analyses highlight the complex nature of post-renal transplant hyperglycemia.

Some patients never exhibit hyperglycemia, some develop permanent hyperglycemia

(NODAT), while for others hyperglycemia may be transient or even recurrent. Hy-

perglycemia and NODAT have been mostly analyzed for a short period after trans-

plantation Chien et al. (2008); Ghisdal et al. (2012). However, their incidence may

be underestimated by such short-term studies (see Bee et al. (2011); Cosio et al.

(2001); Davidson and Wilkinson (2004); Honda et al. (2013); Kaposztas et al. (2011);

Mozaffarian et al. (2007) for some studies analyzing long-term analyses). Our results

show that if the diabetogenic effect of immunosuppressive drugs is of interest, short-

term analyses might be preferred, while long-term analyses are more suitable when

studying other risk factors.

The idea of analyzing hyperglycemia from this perspective (i.e., time course of

complications) can also be extended to other chronic diseases in which both the first

incident and the recurrent ones need to be monitored. For example, prostate cancer

and breast cancer are among diseases that may show signs only once or may do so
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from time to time with periods of remission in between Cardoso et al. (2012); Mohler

et al. (2004). For this category of diseases, considering both time-dependent and

time-independent analyses (as we did in this study) may provide new and important

insights.

There are some limitations in our study. First, due to the nature of our study,

having patients’ information on a more regular basis (e.g., monthly) would improve

the accuracy of our results. Second, if the data set included patients’ information

after the first year post-transplant, we would be able to conduct a more robust Cox

regression and Kaplan-Meier survival analysis. Third, although, according to Table

3.5, 79 patients (who experienced post-transplant hyperglycemia for the first time)

are sufficient for the purpose of our analyses, it might be a relatively small sample.

Finally, even though sirolimus and steroid were used for the minority of patients (in

comparison with tacrolimus), we had no information about the exact dosages and

trough levels of these two drugs. Otherwise, we could also evaluate the possible

association between their trough levels and incidence of hyperglycemia.

Finally, some of our findings may not be generalizable to other types of solid

organ transplants (e.g., heart, liver, and pancreas). Therefore, testing our findings

can be a fruitful path for future research. By extending the idea of this study and

incorporating the time course of complications for other organs, one can establish a

holistic framework to analyze (a) the diabetogenic effect of immunosuppressive drugs,

and (b) the effect of other risk factors.

3.5 Conclusion

We analyzed the effects of (1) immunosuppressive drugs, (2) risk factors, and

(3) inpatient hyperglycemia on the first and recurrent incidence of post-transplant

hyperglycemia in patients who had no history of diabetes mellitus prior to their
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transplants. We employed two statistical inference methods: (1) Cox regression model

with time-dependent covariates to analyze hyperglycemia with recurrence and (2) Cox

regression model with time-independent covariates to evaluate the first incidence of

hyperglycemia. We also employed Kaplan-Meier survival analysis to characterize the

cumulative probability of experiencing post-transplant hyperglycemia over time.

Based on the results obtained from these methods, we can state that the dia-

betogenic effect of tacrolimus (based on its trough level) can be established when

hyperglycemia is experienced for the first time. However, in a sharp contrast, this

effect cannot be established for the recurrent incidents of hyperglycemia. This differ-

ence might be due to the fact that tacrolimus dosage is reduced by physicians over

time. As the diabetogenic effect is ruled out, our results show that age, race (non-

White), BMI, HDL, steroid use, and uric acid are the only significant risk factors for

the recurrent incidence.
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Table 3.1: Classification of Literature Based on the Diabetogenic Effect of Immuno-
suppressive Drugs

Drug Type Organ Type Selected References

Tacrolimus Kidney/ Bu lanowski et al. (2012); Duvoux et al. (2013)

Liver Furth et al. (1996); Herrero et al. (2003)

Kurzawski et al. (2012); Levy et al. (2004)

Levy et al. (2006); Marchetti (2004)

Mecule et al. (2010); O’grady et al. (2002)

Ramachandran et al. (2014); Saliba et al. (2007)

Sharif et al. (2010); Stevens et al. (2012)

Taylor et al. (2005)

Sirolimus Kidney/ Cohen et al. (2012); Johnston et al. (2008)

Liver Matias et al. (2008); Montero and Pascual (2015)

Romagnoli et al. (2006); Stevens et al. (2012)

Teutonico et al. (2005); Van Laecke et al. (2009)

Vodenik et al. (2009)

Cyclosporine Kidney Bending et al. (1987); Borda et al. (2011)

Dresner et al. (1989); Hjelmesæth et al. (2001)

Hricik et al. (1991); Meerwein et al. (2011)

Mora (2010); Ramos-Cebrian et al. (2007)

Taylor et al. (1999, 2005)

Van Den Hoogen et al. (2013); Wyzgal et al. (2003)

Glucocorticoids Kidney/ Kappe et al. (2015); Liu et al. (2014)

Pancreas Rafacho et al. (2014); Taylor et al. (2005)

Van Genugten et al. (2014)

Van Raalte and Diamant (2014)

Wajngot et al. (1992)

Wise et al. (1973)

Steroid Kidney/ Farris et al. (2010); Gelens et al. (2008)

Pancreas Rajab et al. (2007); Wissing and Pipeleers (2014)
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Table 3.2: Classification of Literature Based on the Impact of Risk Factors on Hy-
perglycemia and NODAT

Risk Factor Organ Type Selected References

Age Kidney/Liver Carter et al. (2014); Gaynor et al. (2015)

Kuo et al. (2010); Luan et al. (2010)

Lv et al. (2014); Palepu and Prasad (2015)

Park et al. (2015); Pirsch et al. (2015)

Rodrigo et al. (2006)

Gender Kidney/Liver Lv et al. (2014); Palepu and Prasad (2015)

Parvizi et al. (2014); Rodrigo et al. (2006)

Soule et al. (2005); Tokodai et al. (2014)

Wauters et al. (2012); Yadav et al. (2013)

Race/Ethnicity Kidney Bayer et al. (2010); Carter et al. (2014)

Lane and Dagogo-Jack (2011); Luan et al. (2010)

Palepu and Prasad (2015); Rodrigo et al. (2006)

BMI Kidney/Liver Carter et al. (2014); Gaynor et al. (2015)

Kuo et al. (2010); Lane and Dagogo-Jack (2011)

Palepu and Prasad (2015); Park et al. (2015)

Pirsch et al. (2015); Rodrigo et al. (2006)

Cadaveric organ Kidney/Liver Gaynor et al. (2015); Kuo et al. (2010)

Lv et al. (2014); Palepu and Prasad (2015)

Park et al. (2015); Rodrigo et al. (2006)

Hepatitis C Virus Kidney/Liver Carter et al. (2014); Kuo et al. (2010)

Lane and Dagogo-Jack (2011); Lv et al. (2014)

Park et al. (2015); Rodrigo et al. (2006)

Hypertension Kidney Ghanta et al. (2014); Lane and Dagogo-Jack (2011)

Luan et al. (2010); Park et al. (2015)

Salifu et al. (2005)

Diabetes History Kidney Carter et al. (2014); Lane and Dagogo-Jack (2011)

Lv et al. (2014); Rodrigo et al. (2006)

Salifu et al. (2005)
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Table 3.3: Description of Abbreviations Used in This Study

Abbreviation Description

HG Hyperglycemia

FPG Fasting plasma glucose

HbA1c Hemoglobin A1c

C0 Trough level of tacrolimus

BMI Body mass index

BP Blood pressure

Chol Total cholesterol

HDL High-density lipoprotein cholesterol

LDL Low-density lipoprotein cholesterol

TG Triglyceride

UA Uric acid
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Table 3.4: Demographic and Baseline Characteristics of Patients at the Time of
Transplant

Characteristics Diabetes History No Diabetes History

(n = 115) (n = 292)

Age (year) 56.0± 10.4∗ 49.7± 14.6

Gender: Male (%) 61.74 56.16

Race: White∗∗ (%) 59.13 75.34

BMI (kg/m2) 28.7± 5.4 27.0± 5.6

Donor: Live∗∗∗ (%) 52.17 67.47

Pre-transplant FPG (mg/dL) 143.8± 52.3 92.8± 11.3

Pre-transplant HbA1c (%) 6.9± 1.5 5.5± 0.3

Pre-transplant UA (mg/dL) 6.3± 2.3 6.6± 2.1

Pre-transplant Chol(mg/dL) 183.0± 47.4 181.9± 46.0

Pre-transplant HDL (mg/dL) 50.6± 16.0 50.6± 16.0

Pre-transplant LDL (mg/dL) 94.2± 33.0 93.9± 34.8

Pre-transplant TG (mg/dL) 191.2± 94.7 179.0± 87.7

∗ mean ± standard deviation,

∗∗ versus non-white (including Native American, Hispanic, and Black races),

∗∗∗ versus cadaveric.
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Table 3.5: Percentage of Patients Satisfying the Criteria

Time Having the criteria?

Month 1 No Yes No No Yes Yes No Yes

Month 4 No No Yes No Yes No Yes Yes

Month 12 No No No Yes No Yes Yes Yes

# of patients 213 20 11 1 19 3 1 24

% of patients 72.95 6.85 3.77 0.34 6.51 1.03 0.34 8.22

Table 3.6: Tacrolimus Goals and Achieved Levels (Average Trough Level) at Months
1, 4, and 12

Time point Tacrolimus goal Tacrolimus achieved

average trough level

1 month 10-12 mg/dL 11.88 mg/dL

4 months 8-10 mg/dL 9.59 mg/dL

12 months 6-8 mg/dL 7.83 mg/dL
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Table 3.7: Description of Groups Formed by Risk Factors

Risk Factors Unit Group 0 Group 1

Age Years <50 ≥ 50

Gender — Female Male

Race — White non-White

BMI kg/m2 <30 (non-obese) ≥30 (obese)

BP — Normal Hypertension

Chol mg/dL <200 ≥200

HDL mg/dL ≥40 <40

LDL mg/dL <130 ≥130

TG mg/dL <150 ≥150

UA mg/dL <7.3 ≥7.3
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Table 3.8: Effect of Immunosuppressive Drugs on Hyperglycemia: The Results of Two
Statistical Inference Methods (Numbers in Bold Represent Statistically Significant
Covariates at 95% Confidence Level).
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Fig 2. Kaplan-Meier survival curves: Cumulative probability of experiencing hyperglycemia (%) as a result of having different average trough
levels of tacrolimus:�10mg/dL vs. >10mg/dL. In all parts (A)-(K), the P-value by the Logrank test is <0.0001. (+ represents censored events.). (A)
Unadjusted (univariate) analysis. (B) Adjusted analysis with age. (C) Adjusted analysis with race. (D) Adjusted analysis with gender. (E) Adjusted analysis
with BMI. (F) Adjusted analysis with BP. (G) Adjusted analysis with Chol. (H) Adjusted analysis with HDL. (I) Adjusted analysis with LDL. (J) Adjusted
analysis with UA. (K) Adjusted analysis with TG.

doi:10.1371/journal.pone.0142363.g002

Remitting and Relapsing Hyperglycemia in Post-Renal Transplant

PLOS ONE | DOI:10.1371/journal.pone.0142363 November 9, 2015 9 / 16

Figure 3.2: Kaplan-Meier Survival Curves: Cumulative Probability of Experienc-
ing Hyperglycemia (%) as a Result of Having Different Average Trough Levels of
Tacrolimus: ≤10 mg/dL vs. >10 mg/dL. In All Parts (A)-(K), P-Value <0.0001 by
the Logrank Test. (+ Represents Censored Events.) (A) Unadjusted (Univariate)
Analysis; (B)–(K) Are Adjusted Analysis with Age, Race, Gender, BMI, BP, Chol,
HDL, LDL, UA, and TG, Respectively.
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Table 3.9: Risk Factors That Affect the Incidence of Hyperglycemia
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Table 3.10: Effect of Inpatient Period on Hyperglycemia Incidence
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Chapter 4

MACHINE LEARNING FOR THE OPIOID PRESCRIPTION AND ABUSE

EPIDEMIC

4.1 Introduction

According to the Centers for Disease Control and Prevention (CDC), a total of

47,055 drug-related deaths ocurred in 2014, among which opioid analgesics were the

main contributing factor accounting for 18,893 deaths (40% of total deaths). These

opioid painkillers may ultimately result in heroin addiction/overdose,1 which caused

additional 10,574 deaths in the same year (CDC, 2015). In addition, the societal

costs of opioid prescription abuse in the U.S. can get up to $78.5 billion (including

healthcare cost, workplace cost, and criminal justice cost) (MedlinePlus.gov, 2016),

and almost 2 million people are estimated to be dependent on prescription opioids or

abusing them (USA Today, 2016). All these factors have prompted CDC to call this

problem an epidemic.2

During the same period that opioid/heroin-related deaths soared up from 5,990

(in 1999) to 29,467 (in 2014) (i.e., a 492% increase), the sales of prescription opioids

have been quadrupled (CDC, 2016). A part of this increased sale befitted the ever-

growing urge for more opioid prescription in 1990s, and the fact that opioid therapies

for chronic pain was perceived to be efficient while imposing a low risk of addiction

(CNN, 2016b). However, this trend headed in a wrong direction by overprescription

of opioid painkillers: “As of 2011, 75% of the world’s opioid prescription drugs are

180% of heroin users are originally prescription drug users (DEA, 2015).
2The Obama administration proposed a $1.1 billion bill in 2016 to fight this epidemic (white-

house.gov, 2016).
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prescribed and swallowed up in a country that makes up less than 5% of the world’s

population, leading to the most common cause of unintentional death in America today

– drug overdoses.” (CNN, 2016a)

To address this issue, CDC proposed a set of guidelines for prescribing opioids for

chronic pain (Dowell et al., 2016), which mainly focus on reducing the strength or

duration of supply for these medications. However, as mentioned by the American

Medical Association (AMA), some of these guidelines may not reflect the existing ev-

idence (AMA, 2016a): “[. . . ] while the AMA supports many of the recommendations,

we continue to have serious concerns that some either contain a degree of specificity

not supported by the existing evidence or conflict with official Food and Drug Ad-

ministration (FDA)-approved product labeling for opioid analgesic products.” More

importantly, these guidelines make very general recommendations for prescribing opi-

oid painkillers, leaving the ultimate prescription decision up to a provider/physician

(Dowell et al., 2016): “Clinicians should consider opioid therapy only if expected

benefits for both pain and function are anticipated to outweigh risks to the patient.”

Despite the clear intuition behind this strategy, the extent where potential benefits

of these medications would be comparable to their side effects/risks is not completely

known.

We aim to explore evidence for the trade-off between benefits and risks of using

opioid painkillers. To this end, we utilize Commercial Insurance and Medical Claims

data, which contains the history of medical encounters and prescribed medications

for millions of patients over a three-year period. Employing some machine learning

algorithms, we make statistical inference about whether or not there exist associ-

ations between benefits/risks and (1) using opioid painkillers, (2) using non-opioid

painkillers, and (3) duration of supply. Furthermore, we make this inference in the

presence of different patient’s characteristics, which include (1) demographics (e.g.,
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age and gender), (2) behavioral risk factors (e.g., history of alcohol consumption,

smoking, mental disorder, and substance abuse), and (3) route of encounter (e.g.,

inpatient vs. outpatient).

The contributes of our study to the medical literature are two-fold: (1) we char-

acterize the efficiency of pain medications (in managing pain) through three different

notions,3 and show how these characterizations would impact the trade-off between

risks and benefits of prescribing opioids. (2) We employ novel machine learning algo-

rithms that are very capable in predicting risks of using (or not using) opioids based

on several demographic/clinical/behavioral characteristics of patients.

The rest of the chapter is organized as follows. In §4.2, we provide a literature

review. In §4.3, we discuss the data and the design of our problem. In §2.5.2, we

present numerical results obtained from our machine learning algorithms, and in §4.5

I conclude the chapter and discuss the next steps for this research.

4.2 Related Literature

Prescription of Opioid Painkillers and Prediction of Side Effects. Cochran

et al. (2014) analyze different risk factors that are associated with the incidence of opi-

oid abuse or diagnosis of opioid dependence (by comparing these patients with those

who do not experience such events). They find that age, gender, duration of supply,

filling prescriptions at multiple pharmacies, and history of mental health disorders

would contribute to these events. Liang and Turner (2015) use a Cox proportional

hazard model (i.e., survival analysis) to establish statistical associations between time

from the first opioid prescription until the first overdose and strength of prescribed

opioid. They also adjust their model based on confounding factors, including age,

3If (1) at least one encounter, (2) the majority of encounters, or (3) all encounters is/are due to
an unresolved pre-existing medical condition.
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gender, pain-related symptoms, history of mental illness, and drug abuse. Ciesielski

et al. (2016) use a multivariate logistic regression to measure the likelihood of de-

veloping opioid dependence or abuse with respect to demographic, physiological or

behavioral risk factors: high dose of opioid, age, history of mental illness, alcohol

abuse, and smoking are among factors that are stochastically associated with opioid

abuse or dependence. Dasgupta et al. (2016) conduct a prospective (observational)

study to analyze the impact of prescribed opioids (in different daily dose thresholds)

on overdose death. Worley et al. (2015) take a different approach in addressing the

opioid epidemic. They utilize the concept of drug reinforcement values from the be-

havioral economics literature (e.g., time and money spent on obtaining these drugs),

and establish an association with whether or not patients acquire these drugs from

standard sources (e.g., physicians) (for broader discussions in this regard, see refer-

ences therein). Finally, for reviews of studies that have analyzed the prescription

of opioid painkillers and their impact on developing addiction, drug dependence, or

incidence of overdose/death, one can refer to Fishbain et al. (2007) and Nuckols et

al. (2014).

Machine Learning for Opioid Risk Assessment. While the above-mentioned

studies mainly utilize conventional methods of statistical analyses, there also exist

a new body of literature applying machine learning algorithms to address the opi-

oid epidemic from different angles. Haller et al. (2016) employ Natural Language

Processing (NLP) techniques to develop a risk assessment tool for predicting risks

of drug abuse/addiction before a prescription is written. They also adjust this tool

with respect to confounding factors such as age, history of drug abuse, and psycho-

logical disorders (see Lingeman et al. (2017) for another application of NLP in the

opioid epidemic). Che et al. (2017) adopt two types of neural network models (i.e.,

Deep Feed-Forward Neural Network (DNN) and Recurrent Neural Network (RNN))
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to make predictions (i.e., classification) about the possibility of becoming a long-term

opioid user, and how these users are clinically diagnosed to be dependent on these

medications. They also compare these methods with other algorithms (including

logistic regression, support vector machine, and random forest) to show the classifi-

cation/prediction power that can be attained by employing deep learning algorithms.

Crosier et al. (2017) use random forests to predict the possibility of having an opioid

overdose. They find that any record of criminal history and number of overdose in-

cidents in a patient’s insurance network are strong predictors for an opioid overdose.

Vunikili et al. (2018) utilize an Extreme Gradient Boosting (XGBoost) algorithm

along with a logistic regression to not only predict the risk of opioid abuse, overdose,

and death, but also account for interactions of different opioid-related painkillers.

For an illustration of different machine learning algorithms and their applications in

healthcare problems, one can refer to Deo (2015).

Impact of Emergency Department and Hospital Admission. Although the

epidemic of opioid prescription is mainly attributed to primary care providers, two

other factors also play critical roles in this problem: emergency department visits

and post-operation pains. Regarding the former, Barnett et al. (2017) address the

high variability of opioid prescription rates by physicians when patients have a visit

to the emergency department (ED) within a hospital. By measuring the relative

quartiles of the prescription rates, they categorize low-density and high-density opioid

prescribers, and show how these two categories would result in different rates of long-

term opioid use for patients (even after an ED discharge). Addressing a broader

perspective, Poon and Greenwood-Ericksen (2014) shed light on the role of emergency

medicine physicians in this epidemic, how they can take advantage of prescription

drug monitoring programs (PDMP) database in managing their prescriptions, and

how residency education should provider training for these physicians in utilizing
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PDMPs. Axeen et al. (2018) compare the opioid prescription rates in EDs with

those in office visits (i.e., non-ED). They surprisingly find that, over a period of

seventeen years, office-based prescriptions have had an increasing trend, while ED-

based prescriptions have been on a decline. For some other works that study the

impact of ED visits on opioid prescription, dependence, and abuse, one can refer to

Braden et al. (2010), Mazer-Amirshahi et al. (2014), Chacko et al. (2017), Lynch and

Yealy (2018)

In addition, treatment of post-surgical pains with opioid is reported to be another

cause for the onset of opioid addiction: as many as seven million patients in the

U.S. are in danger of post-operation opioid dependence/addiction (ASER, 2016). For

studies showing that opioid prescription during hospital stay is associated with long-

term opioids usage after hospital discharge, one can refer to Pletcher et al. (2008),

Calcaterra et al. (2016), and Jena et al. (2016).

Measuring Pain and Efficacy of Pain Management. As noted earlier, the

main objective of our study is to address the trade-off between risks/side effects and

potential benefits of opioid painkillers. In §4.3, we demonstrate how we characterize

the efficacy of using these medications based on type and frequency of diagnoses made

by providers. Nevertheless, we provide a brief review of extant literature on methods

developed to measure efficacy of pain management strategies. Ong et al. (2005)

conduct a meta-analysis of studies that have explored the impact of five different

medication interventions on pain management for patients after surgical operations.

Nalamachu (2013) review studies that have evaluated the efficacy and side effects

of three medication modes for pain management. They further break down these

studies based on underlying types of pain (e.g., post-operative, back, migraine, etc.)

(see also Martell et al. (2006) for a review of studies on chronic back pain). For

reviews of clinical, physiological, and laboratory-based methods for measuring pain,

88



one can refer to Huskisson (1974) and Chapman (1985).

4.3 Data and Problem Design

The data we use in this study comes from the IBM MarketScan Research Database

of commercial claims and encounters (CCAE) for 2008-2010. The CCAE database

contains several data tables, including (1) inpatient admissions (Table I), (2) inpatient

services (Table S), (3) outpatient services (Table O), (4) outpatient pharmaceutical

claims (Table D), (5) drugs information (Table R), and (6) annual insurance enroll-

ment of patients (Table A). In Appendix B.1, we describe some of the most important

variables in these data tables (see Table B.1).

4.3.1 Information of Utilized Drugs

In this study, we not only analyze opioid painkillers, but also take non-opioid

analgesics into consideration so as to properly address the efficacy of pain medications.

To this end, we retrieve 20 different opioids and 33 different non-opioids from our data

(see Table B.2 in §B.1). It should be noted that some of these opioids/nonopioids

could be used in a same drug. For example, “Acetaminophen/propoxyphene” with

strength 325MG-50MG is a drug, where “propoxyphene” (“Acetaminophen”) is an

opioid (nonopioid) with the strength of 50 (325) milligram.

Furthermore, we break down the strength of opioid analgesics by using the Mor-

phine Milligram Equivalent (MME) that transforms the strength of any opioid painkiller

to a common measure (see Palliative Drugs (2009) and CMS (2018) for more details

about the MME conversion rates).
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4.3.2 Patients Inclusion Criteria

As noted earlier, the information of (1) patients’ prescription history and (2) their

inpatient/outpatient encounters is provided in different data tables. Thus, we need

to merge these tables to link such encounters to corresponding prescriptions. To this

end, we apply the following inclusion criteria for selecting patients (i.e., a patient

whose case does not apply to this criteria is excluded from our analysis):

(1) Full enrollment in 2008-2010 (i.e., 36 months).

(2) No history of cancer.4

(3) At least one episode of an opioid analgesic supply (with number of refills ≥ 1),

where an opioid analgesic is selected from Table B.1 (see §B.1).

(4) No history of opioid side effects (i.e., abuse, overdose, death, etc.) within the

first 90 days of 2008 (as the beginning of data time frame).

(5) No analgesic supply (opioid or non-opioid) within the first 90 days of 2008.

(6) No analgesic supply (opioid or non-opioid) before the first registered encounter.

Regarding criterion (4), if, for example, an overdose occurs, we must know which

medications the patient has used prior to that incidence. We consider the 90-day time

span to account for medications that would have significant impacts on this incidence.

Furthermore, regarding criterion (5), we aim to link an analgesic prescription to a

potential medical condition (because of which that prescription was made in the first

place). Similar to criterion (4), we consider the 90-day time span for this purpose.5

4We use the following terms for tracking cancer-related cases: cancer, neoplasm, malignant,
malignancy, benign, carcinoma, and palliative.

5After applying all these inclusion criteria, there exist a total of 1,203,439 patients in our data.
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Now, we explain the independent variables that we use in this study along with

our outcome (dependent) variables. Prior to that, we need the following definition.

Definition 4.3.1 (Time Window) A time window is a T -day period starting from

the beginning of the first opioid supply. In this study, we consider three different

thresholds (i.e., T ∈ {30, 90, 180} days). Note that T is different from the 90-day

threshold we use in the inclusion criteria.

We note that a patient may be prescribed with medications multiple times, such

that the time range of his/her drug supplies is spanned over several months/years.

Therefore, to account for multiple drug supplies, we increase the time window (in-

troduced in Definition 4.3.1) by 1 after every T days (this is the case for only those

patients with multiple drug supplies).

4.3.3 Independent Variables

In this study, we consider the following independent variables:

(1) Prescription-related variables in a time window: adjusted strength of opioids

(in MME), adjusted strength of non-opioids (in milligram or MG), and total

duration of supply. We shows how to measure these three variables by Exam-

ple 4.3.1. Also, Table 4.1 shows the average and standard deviation of these

variables obtained from our data under different time windows.

Example 4.3.1 Suppose in a 90-day time window, a patient has two episodes of

supply: the first supply with 10 days, opioids MME = 50, and non-opioids MG =

100, and the second supply with 25 days, opioids MME = 20, and non-opioids MG =

60. Then, we have:
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Table 4.1: Average of Adjusted Strengths and Duration of Supply under Different
Time Windows (Numbers in Parenthesis Represent Standard Deviation)

Variable
Window (days)

30 90 180

Adjusted strength opioids (MME) 8.598 (23.05) 11.387 (27.106) 12.142 (28.489)

Adjusted strength non-opioids (gram) 0.567 (1.368) 0.758 (1.682) 0.812 (1.793)

Total duration of supply (days) 9.933 (9.947) 16.813 (20.723) 19.862 (30.299)

Adjusted strength of opioids = (10 ∗ 50 + 25 ∗ 20)/(10 + 25) = 28.57 MME,

Adjusted strength of non-opioids = (10 ∗ 100 + 25 ∗ 60)/(10 + 25) = 71.43 MG,

Total duration of supply = 10 + 25 = 35 days.

(2) Demographic factors: age and gender.6

(3) Behavioral issues with a history along with each of the following factors: alcohol

consumption, smoking, substance drug abuse, non-substance drug abuse, and

mental disorders. We identify these factors via two routes: (1) a diagnosis

made (by using The International Classification of Diseases, Ninth Revision,

Clinical Modification (ICD-9-CM codes)) and (2) types of drugs prescribed for

addressing these issues (by using the therapeutic class in the CCAE data). In

Tables B.3-B.4 in §B.1, we provide a list of corresponding ICD-9-CM codes and

related drugs utilized for this purpose.

(4) Type of the first encounter: inpatient versus outpatient.

(5) History of using non-opioid analgesics before the first opioid supply.

6The CCAE data does not include information on race.
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Based on this premise, we have three main independent (prescription-related)

variables and nine other variables (i.e., confounding factors used for adjusting the

foregoing three variables). In Table 4.2, we show the summary of these confounding

factors.

Furthermore, since the duration of each supply is used to calculate the strengths

of opioids/non-opioids, we obtain the coefficient of correlation ρ ∈ [−1, 1] between the

total duration of supply and adjusted strengths of opioids and non-opioids, such that

ρ→ 1 (−1) represents a positive (negative) linear relationship, whereas ρ→ 0 would

imply no relationship. Figure 4.1 shows the plots of adjusted strengths of opioids and

non-opioids against total duration of supply based on time window of 90 days. As can

be observed, for the relationship between duration of supply and adjusted strength

of opioid (non-opioid), ρ = −0.062 (−0.068). Since both of these coefficients are very

close to 0, it would be reasonable to assume no correlation between these variables.

4.3.4 Dependent Variables

In order to address the trade-off between side effects and potential benefits of

opioid analgesics, we analyze two event types.

Definition 4.3.2 (Event Type 1: Opioid Side Effects) We say event type 1 has

occurred if, in a time window, there is at least one incidence of (1) poisoning, (2)

abuse, (3) dependence, or (4) any adverse effect caused by an opioid or heroin. We

use the ICD-9-CM codes in the primary diagnosis to identify such incidence (see Table

B.5 in §B.1 for the list of these codes).7

Regarding Definition 4.3.4, we note that these are high-risk events. Thus, even if

7In the CCAE data, there are up to 15 diagnoses in Table I and up to 2 diagnoses in Table O.
However, we only consider information related to the primary diagnosis to avoid any under-/over-
fitting.
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they happen only once, they could be very detrimental to a patient. Therefore, we

differentiate between no incidence and at least one incidence of such events.

Next, we present the following definition, which lays the foundation for charac-

terizing the second event type, which is related to the potential benefits of opioids.

To this end, we identify the medical condition due to which an opioid was prescribed

in the first place, consider a time period of X days prior to the first opioid supply,

and monitor all encounters in this X-day period. To estimate X, we use the 95th

percentile of number of days between all encounters prior to the first supply and that

supply (based on the CCAE data, we estimate that X = 35 days).

Definition 4.3.3 (Baseline Medical Condition) A patient is said to have a base-

line medical condition if, among all encounters in an X-day period prior to the first

opioid supply, the majority (i.e., at least 50%) of primary diagnoses pertains to that

medical condition.

Definition 4.3.4 (Event Type 2: Benefits of Pain Medications) Let CB be the

baseline medical condition introduced in Definition 4.3.3, and Cn represent the medi-

cal condition in time window n ≥ 1. Then, we say that event type 2 has occurred (in

time window n) if Cn = CB. Thus, we set

Event Type 2 (in window n) =


1, if Cn = CB,

0, if Cn 6= CB.

(4.1)

A value of 1 for Event 2 in a time window means that the baseline medical con-

dition still exists (i.e., not resolved) in that window. Hence, Event 2 = 0 implies the

benefits of using pain medications, whereas Event 2 = 1 implies the opposite. The
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Table 4.2: Characteristics of Patients Based on Confounding Factors (1,203,439: To-
tal Number of Patients after Applying Inclusion Criteria; Numbers in Parenthesis
Represent Standard Deviation)

Characteristic Value

Age 40.84 (15.46)

Gender (female) 695,264/1,203,439 = 57.77%

History: mental disorder 405,714/1,203,439 = 33.71%

History: smoke 26,123/1,203,439 = 2.17%

History: alcohol 6,528/1,203,439 = 0.54%

History: substance abuse 1,744/1,203,439 = 0.14%

History: non-substance abuse 1,282/1,203,439 = 0.11%

History: non-opioid use 99,186/1,203,439 = 8.24%

First encounter: inpatient 2,744/1,203,439 = 0.23%

way Cn is defined (i.e., the medical condition in window n) would play a critical role

in Equation (4.1). We consider three scenarios for defining Cn.

Definition 4.3.5 (Scenarios for Cn) There are three scenarios for defining Cn:

Scenario I: Cn refers to the primary diagnosis for any encounter (i.e., at least once).

Scenario II: Cn refers to the primary diagnosis for the majority of encounters.

Scenario III: Cn refers to the primary diagnosis for all encounters.

Incorporating these three scenarios in Equation (4.1) would have different clinical

implications about the benefits of using pain medications. Under scenario I, a patient

must have at least one encounter (with the primary diagnosis being the same as the

baseline medical condition), so that the medications used in that time window are not

deemed as effective. However, under scenario II (III), the majority (all) of encounters

in a window must be related to the baseline condition to yield the same outcome.
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Therefore, scenario I (III) characterizes the most (least) restrictive notion of benefits

of pain medications. In this study, we obtain our results based on scenario II, and

leave scenarios I/III as future steps of this research.

4.4 Numerical Results

4.4.1 Statistical Analysis

We use three machine learning methods to predict the incidence of type 1 and 2

events (see Definitions 4.3.2-4.3.4 for these two events). These methods include: (1)

logistic regression, (2) random forest, and (3) recurrent neural networks. In this study,

we show the results for the first two methods, and leave the latter as a future step

of this research. These methods are typically established for cross-sectional studies

(i.e., where patients’ records are registered at only one point in time). However,

in our study, we aim to monitor the prescription of painkillers (and their influence

on patients’ outcomes) over time (i.e., longitudinal study). Therefore, we employ

some variants of these methods: Generalized Estimating Equations Logistic Regression

(GEE Logit) (Wilson and Lorenz, 2015) and Mixed-Effects Random Forest (MERF)

(Hajjem et al., 2014).

4.4.2 Results and Comparison of Methods

In this section, we present the results that we obtain from the above-mentioned

methods. In particular, we show associations between incidence of type 1 and 2 events

and our independent variables in Tables 4.3-4.4 in Appendix B.1. We note that the

random forest method is not suitable for statistical inference. Instead, it is a very

powerful approach for prediction/classification. Therefore, here, we only present the

results for the logistic regression method. Later, we will compare the classification
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performance of these methods. Based on results in Tables 4.3-4.4, we present the

following observations.

Observation 4.4.1 (Event 1) (i) Higher incidence of type 1 event (i.e., observing

opioid side effects such as abuse, overdose, etc.) is associated with the following

factors: younger age, male patients, history of mental disorder, history of alcohol

consumption, history of smoking, and history of substance abuse. (ii) Patients with

the following characteristics have higher risk of experiencing event 1: no history of

using non-opioid painkillers before their first opioid supply, the first encounter being

in an outpatient (rather than inpatient) setting, longer supply of pain medications,

and prescribed by higher (lower) strength of opioids (non-opioids). (iii) Among all

risk factors, history of mental disorder, history of alcohol consumption, and history

of any non-substance abuse would have the highest impact on the incidence of event

1. (iv) Increasing the length of time window (from 30 to 180 days) would not change

the type of associations between risk factors and the incidence of event 1.

Observation 4.4.2 (Event 2) Inefficiency of pain medications is associated with

female patients, having history of mental disorder and smoking, history of using non-

opioid painkillers before the first opioid supply, and the first encounter being in an

inpatient setting.

Regarding Observation 4.4.2, we also note that inefficiency of pain medications

is not associated with the history of alcohol consumption and or substance abuse.

Furthermore, longer supplies of pain medications and stronger opioids do not result

in more efficiency in managing pain. Of note, these results are obtained based on

scenario II (see Definition 4.3.5). As mentioned before, as future steps of this research,

we intend to run our results based on scenarios I/III as well. Similar to the case for
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event 1, our results show that increasing the time window (from 30 to 180 days) would

not typically alter the type associations between risk factors and the outcome.

Finally, we compare the classification power of the two methods we use in this

study. We do this by performing a 10-fold cross-validation, where for each fold,

we train our method by using almost 90% of our data, and then test the trained

method on the remaining part (10%) of the same data. Figure 4.2 shows the Receiving

Operating Characteristic (ROC) curves for these two methods when we implement

them for time windows of 90 and 180 days. The area under the curve (AUC) in these

ROC curves is indicative of the classification power, where a higher AUC represent a

better method. We note that random forests are among machine learning algorithms

that typically result in a better classifications compared to more traditional methods

such as logistic regression. However, as illustrated in Figure 4.2, the performance

of logistic regression is comparable to that of random forest. One reason for this

observation is the size of trees in the random forest which is set as 50.8

4.4.3 Correlation Between Observations

In longitudinal data, there may exist correlation between consecutive observations

(e.g., strengths of opioid in two consecutive time windows). Therefore, we aim to

explore these correlations by means of autocorrelation functions. Figure 4.3 shows

these functions plotted for the duration of supply (days), strength of opioids (MME),

and strength of non-opioids (gram), where the time window is 30 days. Based on

Figure 4.3, for all of these three variables, one can observe that:

• The autocorrelation function (ACF) has exponential decays,

• The partial autocorrelation function (PACF) cuts off after lag 1, and

8Due to the size of our data, we could not run the algorithm for higher number of trees (e.g., 100
or 500).
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• The inverse autocorrelation function (IACF) cuts off after lag 2.

Therefore, it would be reasonable to assume an autoregressive of order 2 (i.e.,

AR(2)) for the correlations between consecutive observations for the above-mentioned

three variables (see, e.g., Montgomery et al. (2015) for a detailed discussion about

autocorrelation functions).

4.5 Conclusion

To address the epidemic of opioid prescription and abuse, the CDC proposed some

guidelines with the main focus being on reducing the strength or duration of supply

for these medications. However, some of these guidelines may not reflect the exist-

ing clinical evidence, or may be very general for prescribing opioid painkillers. We

attempt to contribute to this stream by addressing potential benefits of opioid medi-

cations compared to their side effects/risks. In particular, we explore evidence for a

potential trade-off between benefits and risks of using opioid painkillers. To this end,

we utilize data from commercial insurance and medical claims, which contains the

history of medical encounters and prescribed medications for millions of patients over

a three-year period. Employing machine learning algorithms (Generalized Estimating

Equations Logistic Regression and Mixed-Effects Random Forests), we make statis-

tical inference about whether or not there exist associations between benefits/risks

and (1) using opioid painkillers, (2) using non-opioid painkillers, and (3) duration

of supply. Furthermore, we make this inference in the presence of different patient’s

characteristics, including demographical and behavioral risk factors.

Our results show that younger age, being male, history of mental disorder, his-

tory of alcohol consumption, history of smoking, and history of substance abuse are

associated with higher risk of opioid’s side effects (e.g., abuse, overdose, etc.). Also,

patients with the following characteristics have higher risk of experiencing side ef-
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fects: no history of using non-opioid painkillers before their first opioid supply, the

first encounter being in an outpatient (rather than inpatient) setting, longer supply of

pain medications, and prescribed by higher (lower) strength of opioids (non-opioids).

Furthermore, regarding the efficiency of pain medications, our results show that lack

of efficiency is associated with female patients, having history of mental disorder and

smoking, history of using non-opioid painkillers before the first opioid supply, and

the first medical encounter being in an inpatient setting. We also note that longer

supplies of pain medications and stronger opioids do not result in higher efficiency in

managing pain.

Finally, as future steps of this research, we aim to implement another machine

learning algorithm (Recurrent Neural Network) as a more powerful classification method,

and compare its results with the current two methods (logistic regression and random

forest). We will also explore other characterizations of pain medications efficiency in

addressing the trade-off between risks and benefits of pain medications (see scenarios

I/II/III in Definition 4.3.5).
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Figure 4.1: Plots of Adjusted Strengths of Opioids and Non-Opioids Against To-
tal Duration of Supply Based on a Time Window of 90 Days (Pearson Correlation
Coefficients Are Statistically Significant with P-Value <.0001; Opioid (Non-Opioid)
Strengths Are in MME (MG)).
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Figure 4.2: ROC Curves for Different Methods for Time Window of 90 Days (AUC:
Area under the Curve).
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Figure 4.3: Autocorrelation Function Plots (ACF: Autocorrelation Function; PACF:
Partial Autocorrelation Function; IACF: Inverse Autocorrelation Function)
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Table 4.3: Results from GEE Logit Method: Incidence of Type 1 Event
(OR CI: Odds Ratio 95% Confidence Interval; P-value ≤ .05 Represents a Significant
Statistical Association)
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Table 4.4: Results from GEE Logit Method: Incidence of Type 2 Event
(OR CI: Odds Ratio 95% Confidence Interval; P-value ≤ .05 Represents a Significant
Statistical Association)
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A.1 Proofs of Structural Properties

Proof of Proposition 2.4.1. First, we show the result for the final period (n = N).

We have from (2.4): VN (b, λ) = b′RN . Also, due to the existence of a BIWC member

in M , the value function is piecewise-linear and convex in b (see our discussion in

§2.4). Thus, from (2.8), we have: VN(b, λ) = maxψ∈ΨN,λ{b′ψ}. Combining these

results, it is trivial to show that ΨN,λ = {RN}, and thus, the result holds for n = N .

Next, we show the result for other periods (n < N). From (2.4)-(2.7), we have for

any b ∈ ΠPO and λ ∈ Λ:

Vn(b, λ) = max
a∈A

{
b′rn(a) + λ

(
β Σo∈OPr{o|b, a,m} Vn+1

(
B (b, a, o,m) , λ

))
+(1− λ)

(
β Σo∈OPr{o|b, a,m} Vn+1

(
B (b, a, o,m) , λ

))}
(A.1a)

= max
a∈A

{
b′rn(a) + λ

(
β Σo∈OPr{o|b, a,m} max

ψ

{
b′Pa

mQa,o
m

Pr{o|b, a,m}
ψ

})
+(1− λ)

(
β Σo∈OPr{o|b, a,m} max

ψ

{
b′Pa

mQa,o
m

Pr{o|b, a,m}
ψ

})}
(A.1b)

= max
a∈A

{
b′rn(a) + λ

(
β Σo∈O max

ψ

{
b′Pa

mQa,o
m ψ

} )
+(1− λ)

(
β Σo∈O max

ψ
{b′Pa

mQa,o
m ψ}

)}
,

(A.1c)

where (A.1b) is obtained by following (2.1) and the fact that the value function is

piecewise-linear and convex in b, and hence, it can have the form of (2.8). Now, similar

to what we have for (2.11) (in the main body), letting

ψ(b,a,o)
m = arg max

ψ∈Ψn+1,λ

{b′Pa
mQa,o

m ψ}, (A.1c) results in (for any b ∈ ΠPO, λ ∈ Λ,

and n < N):
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Vn(b, λ) = max
a∈A

{
b′rn(a) + b′

(
λ
(
β Σo∈OPa

mQa,o
m ψ

(b,a,o)
m

)
+(1− λ)

(
β Σo∈OPa

mQa,o
m ψ

(b,a,o)
m

))}
.

(A.2)

Now, since any ψ-vector in (2.10) is a function of action a ∈ A, (A.2) and (2.8) (see

§2.4 in the main body) become equivalent (see pages 1076–1077 in Smallwood and

Sondik (1973)). Hence, we can conclude that ψ = rn(a)+λ
(
β Σo∈OPa

mQa,o
m ψ(b,a,o)

m

)
+

(1− λ)
(
β Σo∈OPa

mQa,o
m ψ

(b,a,o)
m

)
. �

Proof of Theorem 2.4.1. Let â = a∗n (b, λ∗) be the optimal medication action under

the baseline conservatism level λ∗. Using the definition of optimal value function (see

Equation (2.4) in the main body), we then have:

Un(b, â, λ∗) ≥ Un(b, a, λ∗) for all a ∈ A s.t. a � â. (A.3)

Now, if we show that the following result holds for all λ ∈ Λ such that λ ≥ λ∗:

Un(b, â, λ∗)− Un(b, â, λ) ≤ Un(b, a, λ∗)− Un(b, a, λ), (A.4)

then, we have:

Un(b, â, λ) = Un(b, â, λ∗)− [Un(b, â, λ∗)− Un(b, â, λ)] (A.5a)

≥ Un(b, a, λ∗)− [Un(b, â, λ∗)− Un(b, â, λ)] (A.5b)

≥ Un(b, a, λ∗)− [Un(b, a, λ∗)− Un(b, a, λ)] (A.5c)

= Un(b, a, λ), (A.5d)
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where (A.5b) is obtained by following the results in (A.3), and (A.5c) is obtained by

following the result in (A.4) (after multiplying both sides of (A.4) by a negative sign).

By our result in (A.5), we know that the optimal medication action under con-

servatism level λ cannot be any action a ∈ A such that a � â, and hence, the result

of Theorem 2.4.1 is obtained. We now show that the result in (A.4) holds under

Conditions 2.4.1–2.4.3. By following Conditions 2.4.1–2.4.2 and utilizing the result

of Theorem 1 in Saghafian (2018), part (ii) of Condition 2.4.3 yields:

Vn+1

(
B(b, â, o,m(â, λ∗)), λ∗

)
≤ Vn+1

(
B(b, a, o,m(a, λ∗)), λ∗

)
,

Vn+1

(
B(b, â, o,m(â, λ∗)), λ∗

)
≤ Vn+1

(
B(b, a, o,m(a, λ∗)), λ∗

)
,

Vn+1

(
B(b, a, o,m(a, λ)), λ

)
≤ Vn+1

(
B(b, â, o,m(â, λ)), λ

)
,

Vn+1

(
B(b, a, o,m(a, λ)), λ

)
≤ Vn+1

(
B(b, â, o,m(â, λ)), λ

)
.

(A.6)

Next, we have:

∑
o∈O

Pr{o|b, â,m(â, λ∗)}Vn+1

(
B(b, â, o,m(â, λ∗)), λ∗

)
≤
∑
o∈O

Pr{o|b, â,m(â, λ∗)}Vn+1

(
B(b, a, o,m(a, λ∗)), λ∗

)

(A.7a)

≤
∑
o∈O

Pr{o|b, a,m(a, λ∗)}Vn+1

(
B(b, a, o,m(a, λ∗)), λ∗

)
,

(A.7b)

where (A.7a) is obtained by the result of (A.6). Also, by Condition 2.4.2, Pa
m and

Qa
m are TP2. Thus, by following the result of Lemma 4.1 (part a) of Rieder (1991),
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we have, for any a ∈ A and m ∈M , B(b, a, o,m) �TP2 B(b, a, ô,m) for any o, ô ∈ O

such that o ≤ ô. Using this result together with part (i) of Condition 2.4.3, we utilize

the result of Lemma 1.1 in Lovejoy (1987) to obtain (A.7b). We also note that in

(A.7), we only obtain the inequality for one of four scenarios in (A.6). The other

three scenarios are obtained in a similar fashion. Next, utilizing our results in (A.7),

and following the definition of the immediate reward vector (see Equation (2.17) in

§2.5 in the main body), we have for â = a∗n (b, λ∗), a � â, and λ∗ ≥ λ̂:

b′rn(â) + λ∗Hn

(
b, â,m(â, λ∗), λ∗

)
+ (1− λ∗)Hn

(
b, â,m(â, λ∗), λ∗

)
≤ b′rn(a) + λ∗Hn

(
b, a,m(a, λ∗), λ∗

)
+ (1− λ∗)Hn

(
b, a,m(a, λ∗), λ∗

)
,

b′rn(â) + λHn

(
b, â,m(â, λ), λ

)
+ (1− λ)Hn

(
b, â,m(â, λ), λ

)
≥ b′rn(a) + λHn

(
b, a,m(a, λ), λ

)
+ (1− λ)Hn

(
b, a,m(a, λ), λ

)
.

(A.8)

Finally, multiplying both sides of the second inequality in (A.8) by a negative sign,

and then adding the two inequalities in (A.8), we will get Un(b, â, λ∗)−Un(b, â, λ) ≤

Un(b, a, λ∗)− Un(b, a, λ), which is the result in (A.4). This completes the proof. �

In Lemma A.1.1, we provide a more detailed sufficient condition for part (ii) of

Condition 2.4.3.

Lemma A.1.1 Let Ka
m(o|i, j) = pam(j|i)qam(o|j) for all i, j ∈ S and o ∈ O. Then,

if
Ka
m(a,λ∗)(o|i,j)

Kâ
m(â,λ∗)(o|i,j)

and
Kâ
m(â,λ)

(o|i,j)
Ka
m(a,λ)

(o|i,j) are nondecreasing in j ∈ S, for all i ∈ S, o ∈ O,

we have B
(
b, â, o,m(â, λ∗)

)
�TP2 B

(
b, a, o,m(a, λ∗)

)
and B

(
b, a, o,m(a, λ)

)
�TP2

B
(
b, â, o,m(â, λ)

)
.

Proof of Lemma A.1.1. We have for all j1, j2 ∈ S s.t. j1 ≤ j2, for all o ∈ O, and
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for conservatism level λ:

Ka
m(a,λ∗)(o|i, j1)

K â
m(â,λ∗)(o|i, j1)

≤
Ka
m(a,λ∗)(o|i, j2)

K â
m(â,λ∗)(o|i, j2)

(A.9a)

⇒
bi K

a
m(a,λ∗)(o|i, j1)

bi K â
m(â,λ∗)(o|i, j1)

≤
bi K

a
m(a,λ∗)(o|i, j2)

bi K â
m(â,λ∗)(o|i, j2)

(A.9b)

⇒
∑

i∈S bi K
a
m(a,λ∗)(o|i, j1)∑

i∈S bi K
â
m(â,λ∗)(o|i, j1)

≤
∑

i∈S bi K
a
m(a,λ∗)(o|i, j2)∑

i∈S bi K
â
m(â,λ∗)(o|i, j2)

(A.9c)

⇒

∑
i∈S bi K

a
m(a,λ∗)(o|i, j1)

Pr{o|b, a,m(a, λ∗)}∑
i∈S bi K

â
m(â,λ∗)(o|i, j1)

Pr{o|b, â,m(â, λ∗)}

≤

∑
i∈S bi K

a
m(a,λ∗)(o|i, j2)

Pr{o|b, a,m(a, λ∗)}∑
i∈S bi K

â
m(â,λ∗)(o|i, j2)

Pr{o|b, â,m(â, λ∗)}

, (A.9d)

where, in (A.9c), the part after (⇒) is obtained from the part before (⇒) by multiply-

ing both sides in Pr{o|b,â,m(â,λ∗)}
Pr{o|b,a,m(a,λ∗)} . By the definitions of the belief updating operator (see

Equation (2.1) in §2.3 in the main body), and the TP2-ordering for belief vectors (see

§2.4 in the main body), the last part of (A.9c) implies that: B(b, â, o,m(â, λ∗)) �TP2

B(b, a, o,m(a, λ∗)) and B(b, â, o,m(â, λ∗)) �TP2 B(b, a, o,m(a, λ∗)), where, the sec-

ond TP2-ordering is also obtained by part (iii) of Condition 2.4.3. Furthermore,

by the same lines of proof, we have: B(b, a, o,m(a, λ)) �TP2 B(b, â, o,m(a, λ)) and

B(b, a, o,m(a, λ)) �TP2 B(b, â, o,m(â, λ)). �

Proof of Corollary 2.4.1. The result is obtained by the same lines of proof in

Theorem 2.4.1. �

Proof of Theorem 2.4.2. For any a, â ∈ A and b, b̂ ∈ ΠPO such that a � â and

b �TP2 b̂, if we show that Un(b, â, λ) − Un(b, a, λ) ≤ Un(b̂, â, λ) − Un(b̂, a, λ), then

the result follows from Lemma 2.1 in Lovejoy (1987). To this end, we have:
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Un(b, â, λ)− Un(b, a, λ) = b′rn(â) + λ
(
β
∑
o∈O

Pr{o|b, â,m} Vn+1

(
B(b, â, o,m), λ

))
+(1− λ)

(
β
∑
o∈O

Pr{o|b, â,m} Vn+1

(
B(b, â, o,m), λ

))
−b′rn(a)− λ

(
β
∑
o∈O

Pr{o|b, a,m} Vn+1

(
B(b, a, o,m), λ

))
−(1− λ)

(
β
∑
o∈O

Pr{o|b, a,m} Vn+1

(
B(b, a, o,m), λ

))
(A.10a)

= λβ
(
b′
(∑
o∈O

Pâ
m(b,â,λ)Q

â,o
m(b,â,λ)ψ

(b,â,o)
m(b,â,λ) −

∑
o∈O

Pa
m(b,a,λ)Q

a,o
m(b,a,λ)ψ

(b,a,o)
m(b,a,λ)

))
+(1− λ)β

(
b′
(∑
o∈O

Pâ
m(b,â,λ)Q

â,o
m(b,â,λ)ψ

(b,â,o)
m(b,â,λ) −

∑
o∈O

Pa
m(b,a,λ)Q

a,o
m(b,a,λ)ψ

(b,a,o)
m(b,a,λ)

))
(A.10b)

= β b′
(
λ
(
φ

(b,â)
m(b,â,λ) − φ

(b,a)
m(b,a,λ)

)
+(1− λ)

(
φ

(b,â)
m(b,â,λ) − φ

(b,a)
m(b,a,λ)

))
, (A.10c)

where (A.10a) is obtained by following equations (2.5)-(2.7) and the definition of the

immediate reward vector rn(a) (see Equation (2.17) in the main body), (A.10b) is

obtained because of the PLC property of the value function, and (A.10c) is obtained

by our notion in Condition 2.4.4.

Now, since TP2 ordering is stronger than the first order stochastic ordering (�st),

b �TP2b̂ implies b �st b̂. Therefore, by Lemma 1.1 in Lovejoy (1987), it is sufficient

to show that the vector inside the outer parenthesis in (A.10c) is nondecreasing in

its elements. Since both λ and 1− λ are non-negative, this is obtained by Condition

2.4.4. �

Proof of Proposition 2.4.2. Let m
n

(b, a, λ) = arg min
m∈M

{
Jn+1(b

′Pa
m, λ)

}
,

mn (b, a, λ) = arg max
m∈M

{
Jn+1 (b′Pa

m, λ)
}
, where, for notational simplicity, we refer
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to m
n

(b, a, λ) and mn (b, a, λ) as m and m, respectively (we use different notations

for m and m to distinguish them with m and m defined in (2.7); see §2.3.1 in the main

body). Also, let ψ̂
(b,a)

m = arg maxψ̂∈Ψ̂n+1,λ

{
b′Pa

mψ̂
}
. Then, based on the definition

of the approximate value function in (2.13), it is trivial to show (by induction) that

Jn (b, λ) has the PLC property; i.e., Jn (b, λ) = maxψ̂∈Ψ̂n,λ
{b′ψ̂},∀ b ∈ ΠPO,∀ λ ∈

Λ,∀ n ≤ N , where Ψ̂N,λ = {RN},∀ λ ∈ Λ and

Ψ̂n,λ =

{
ψ̂ = rn(a) + λ

(
β Pa

m ψ̂
(b,a)

m

)
+(1− λ)

(
β Pa

m
ψ̂

(b,a)

m

)
,

a ∈ A, ψ̂
(b,a)

m ,ψ̂
(b,a)

m ∈ Ψ̂n+1,λ

}
∀ n < N,∀ λ ∈ Λ.

(A.11)

For any action a ∈ A, we let ψ(a) ∈ Ψn,λ and ψ̂(a) ∈ Ψ̂n,λ be the vectors

attributed to action a (without loss of generality, we assume that every action yields

one vector). Letting ‖. . . ‖1 be the L1-norm, we have from Equation (2.10) (in the

main body) and (A.11):

∥∥∥ψ(a)− ψ̂(a)
∥∥∥

1
= β ‖λ

(
Σo∈OP

a
mQ

a,o
m ψ

(b,a,o)
m − P a

mψ̂
(b,a)

m

)
+(1− λ)

(
Σo∈OP

a
mQ

a,o
m ψ

(b,a,o)
m − P a

m
ψ̂

(b,a)

m

)
1

(A.12a)

≤ β λ
∥∥∥Σo∈OP

a
mQ

a,o
m ψ

(b,a,o)
m − P a

mψ̂
(b,a)

m

∥∥∥
1

+β (1− λ)
∥∥∥Σo∈OP

a
mQ

a,o
m ψ

(b,a,o)
m − P a

m
ψ̂

(b,a)

m

∥∥∥
1
,

(A.12b)

where (A.12b) is obtained by the triangular inequality, and
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∥∥∥∥∥∑
o∈O

P a
mQ

a,o
m ψ

(b,a,o)
m − P a

mψ̂
(b,a)

m
1

=
∥∥∥Σo∈OP

a
mQ

a,o
m ψ

(b,a,o)
m − P a

mψ̂
(b,a)

m + P a
mψ̂

(b,a)

m − P a
mψ̂

(b,a)

m

∥∥∥
1

(A.13a)

≤
∥∥∥P a

m

(
Σo∈OQ

a,o
m ψ

(b,a,o)
m − ψ̂

(b,a)

m

)∥∥∥
1

+
∥∥∥(P a

m − P a
m

)
ψ̂

(b,a)

m

∥∥∥
1

(A.13b)

=
∥∥∥P a

mΣo∈OQ
a,o
m

(
ψ(b,a,o)
m − ψ̂

(b,a)

m

)∥∥∥
1

+
∥∥∥(P a

m − P a
m

)
ψ̂

(b,a)

m

∥∥∥
1

(A.13c)

≤
∥∥∥ψ(b,a,o)

m − ψ̂
(b,a)

m

∥∥∥
1

+ |S| η εn+1, (A.13d)

where, in (A.13c), the first term is obtained by the triangular inequality, and the

second term is obtained by condition (ii) in Proposition 2.4.2 and our result after this

proof (proof of Proposition 2.4.2, supplement). We note that the same inequality as

(A.13c) can be obtained for m and m. From (A.12b) and (A.13c), we have:

‖ψ(a) − ψ̂(a)1

≤ β

(
λ
∥∥∥ψ(b,a,o)

m − ψ̂
(b,a)

m

∥∥∥
1

+ (1− λ)
∥∥∥ψ(b,a,o)

m − ψ̂
(b,a)

m

∥∥∥
1

+ |S| η εn+1

)
.

(A.14)

Letting

∆n(ψ, ψ̂) =
∥∥∥ψ − ψ̂∥∥∥

1
∀ ψ ∈ Ψn,λ,∀ ψ̂ ∈ Ψ̂n,λ,∀ λ ∈ Λ,∀ n ≤ N, (A.15)
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∆ = maxψ∈Ψn,λ,ψ̂∈Ψ̂n,λ,n≤N,λ∈Λ

{
∆n(ψ, ψ̂)

}
, (A.16)

we then have from (A.14)-(A.16):

∆ ≤ β
(
∆ + |S| η εn+1

)
⇒
∥∥∥ψ(a)− ψ̂(a)

∥∥∥
1
≤∆ ≤ β

1− β
|S| η εn+1. (A.17)

Now, without loss of generality, we assume that the optimal and approximate

policies result in two different medications regimens; i.e., for any ai, aj ∈ A such that

ai 6= aj, we have:

ψ(ai) = arg max
ψ∈Ψn,λ

{
b′ψ

}
and ψ̂(aj) = arg max

ψ̂∈Ψ̂n,λ

{
b′ψ̂

}
. (A.18)

Then, we have:

Vn(b, λ)− Jn(b, λ) =
∣∣Vn(b, λ)− Jn(b, λ)

∣∣
=
∣∣∣b′ψ(ai)− b′ψ̂(aj)

∣∣∣
≤
∣∣∣b′ψ(ai)− b′ψ̂(ai)

∣∣∣
≤
∥∥∥ψ(ai)− ψ̂(ai)

∥∥∥
1

≤ β

1− β
|S| η εn+1,

(A.19)

where, in (A.19), the first term is obtained by the fact that Vn(b, λ) ≥ Jn(b, λ),

the first inequality is obtained based on (A.18) (which indicates that b′ψ̂(aj) ≥
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b′ψ̂(ai)), the second inequality is obtained due to the fact that bi ≤ 1, ∀i ∈ S,

and the last inequality is obtained based on our result in (A.17). Moreover, we have

Vn(b, λ)−Jn(b, λ) ≤ Vn(b, λ) ≤ r+β r+ · · ·+βN−1 r = r
∑N−1

l=0 βl, where the second

inequality is obtained by the fact that r is the maximum possible reward collected in

each period. Together with our results in (A.19), this completes the proof. �

Proof of Proposition 2.4.2 (supplement). Here, we show that for each ψ̂-vector

defined in (A.11), when there are k periods remaining until the end of the horizon

(ψ̂ = [ψ̂i]i∈S ∈ Ψ̂N−k, k < N), we have ψ̂i ≤ εN−k for all i ∈ S. We prove this

lemma by using induction. First, note that for k = 0 and λ ∈ Λ, we have ψ̂ = RN

for all ψ̂ ∈ Ψ̂N,λ. Also, by the assumption in Proposition 2.4.2, RN (i) ≤ εr = εrβ
0

for all i ∈ S. Next, we assume (by induction) that the result holds when there are

1 ≤ k < N periods remained until the end of time horizon (i.e., k periods to go). For

all ψ̂ = [ψ̂i]i∈S ∈ Ψ̂N−k,λ:

ψ̂i ≤ εq
(
1 + · · ·+ βk−1

)
+ εrβ

k ∀ i ∈ S. (A.20)

Now, we show that the result holds for k+ 1 periods to go. Combining the results

in (A.11) and (A.20), and letting

rn(a) + β Pa
m ψ̂

(b,a)

m =
[
rn(a, i) + β Σj∈Sp

a
m(j|i)ψ̂j

]
i∈S, (A.21)

we have for every row of the vector in (A.21):

rn(a, i) + β Σj∈Sp
a
m(j|i)ψ̂j ≤ εq + β

(
εq
(
1 + · · ·+ βk−1

) )
+ εrβ

k+1

= εq
(
1 + · · ·+ βk

)
+ εrβ

k+1.

(A.22)

As the same procedure in (A.22) can be applied to other rows in (A.21), the
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result holds for the vector in (A.21). Now, because (1) this component-wise ordering

is preserved under any model m, and (2) each ψ̂-vector is a convex combination of

vectors in the left-hand side of (A.21), the result follows: ψ̂i ≤ εN−k (in Proposition

2.4.2 we use k = N − n− 1). �

A.2 Parameter Estimation and Validation

A.2.1 Estimation of Parameters for Reward Vectors

Immediate Reward: Diabetes. We obtain qol(diabetes) and qol(healthy) for

different risk factors from the extant literature (e.g., Zhang et al. (2012)) . We

then interpolate these values to measure qol(pre-diabetes). We assume that: (1)

qol(healthy) always equals 1 across low-level risk factors, and (2) for some risk factors

whose qol(diabetes) cannot be obtained directly from literature (e.g., cholesterol),

qol(healthy)− qol(diabetes) = 0.2 (in one year) which is consistent with the medical

literature (Zhang et al., 2012).

Immediate Reward: Transplantation. The majority of patients with kidney

failure/rejection after transplant undergo dialysis (see, e.g., Messa et al. (2008)).

Thus, experiencing an organ rejection would be equivalent to undergoing dialysis.

We estimate qol(organ survival) and qol(organ rejection) for “Age” and “Gender”

from the extant literature (Laupacis et al., 1996). For other risk factors, we assume

these scores are equal to 0.65 and 0.80 (0.55 and 0.70) for a low-level (high-level) risk

factor (see, e.g., Laupacis et al. (1996)).

Lump-Sum Reward: Diabetes. We estimate RLE scores for “diabetes” and

“healthy” conditions from the extant literature (see, e.g., Narayan et al. (2003)).

Note that (1) for some risk factors for which these scores cannot be directly estimated

from literature (e.g., blood pressure and HDL), we assume that RLE(healthy) −
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RLE(diabetes) = 12 years which is consistent with the medical literature (Narayan

et al., 2003), and (2) similar to the case for the immediate reward, we interpolate

these values to obtain RLE(pre-diabetes).

Lump-Sum Reward: Transplantation. We obtain RLE scores for

RLE(organ rejection) and RLE(organ survival) for “Age,” “Gender,” and “Race”

from USRDS (2014). For other risk factors, we assume that RLE(organ rejection)

and RLE(organ survival) are equal to 15.00 and 19.50 (12.00 and 16.50) for low-level

(high-level) risk factors (USRDS, 2014).

Tables A.2–A.4 show the actual values of the above-mentioned reward parameters.

We also note that, in Online Appendix E, we address sensitivity analyses for these

reward parameters. These analyses enable us to also demonstrate the robustness of

our solutions to estimation errors for reward parameters.

• Information in Table A.2 is obtained from the following sources: Bardage and

Isacson (2001); Redekop et al. (2002); Picavet et al. (2004); Huang et al. (2007);

Vetter et al. (2011); Zhang et al. (2012).

• Information in Table A.3 is obtained from the following sources: Wilson et al.

(1988); Criqui et al. (1993); Grover et al. (2000); Narayan et al. (2003); Franco

et al. (2005); Clarke et al. (2009); Leal et al. (2009); Cunningham et al. (2011);

Chen et al. (2014)

• Information in Table A.4 is obtained from the following sources: Laupacis et al.

(1996); Liu et al. (2008); USRDS (2014).

A.2.2 Estimation of Medical Expenditures for Comparing Policies

One of the performance measures to compare different policies is the average cost

incurred due to transplant-related and diabetes-related complications. We use a back-
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Table A.1: Notations for Estimating Medical Cost Expenditures

cD: Indirect cost of diabetes during a month; cD = $210 (Dall et al., 2014)

cPD: Indirect cost of pre-diabetes during a month; cPD = $40 (Dall et al., 2014)

CDn : Total indirect cost attributed to diabetes/pre-diabetes in period n

crej : Cost of having an organ rejection at any time; crej = $29, 392 (Lee et al., 2009)

CTn : Total indirect cost attributed to transplant-related complications in period n

of-the-envelope calculation to estimate cost measures. Since our ultimate result is to

decide upon medication regimens, we do not consider the direct cost of medications

used. This cost can be interpreted as the monetary values of disutilities caused by

risks of organ rejection and diabetes complications. Table A.1 shows the notation

used. Let bi,n be the probability of being in core state i in period n. Then, under the

medication action a ∈ A and model m ∈ M , the transplant-related cost is obtained

as CT
n = crej

∑
i∈S bi,n pam (∇|i) , n = 1, ..., N . Also, the diabetess-related cost is

obtained as CD
n = (b6,n + b7,n + b8,n) ∗ cPD + (b3,n + b4,n + b5,n) ∗ cD, n = 1, ..., N , where

the first and second term inside (. . . ) represents Pr{having pre-diabetes in period n}

and Pr{having diabetes in period n}, respectively.

A.2.3 Model Informativeness in the Medical Context

We show examples of P/Q matrices (estimated from our clinical data set), where

the model informativeness condition (discussed in §2.4) is met. Note that, due to the

large sizes of matrices and number of actions, we only present the results for actions a1

and a4. As can be observed from these matrices (see Table A.5-A.6), model m = 1 is

the least informative model in the cloud of models M , and hence, it can be considered

as a fixed BIWC member.
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A.2.4 Validation

We validate our estimated probability matrices via the following steps.

Expert opinion: after obtaining the point estimates for P/Q matrices, we consulted

them with our co-authors who are physician experts in the endocrinology as well as

transplantation/nephrology areas. Then, they guided us to further adjust the Baum-

Welch algorithm, and bring these matrices more to clinical realism.

Clinical data: first, we let sn, on, and an be the health state, the observaion,

and the action in period n < N , respectively (unless otherwise stated). We use

cross-validation by splitting our data into training and testing sets (with equal size

of patients in each set): (1) calibrating point estimates for P/Q matrices from the

training set and (2) validating these estimated parameters on the testing set. For the

validation process, we target the progression of blood glucose levels and tacrolimus

trough levels, where (a) transition rates are captured by our estimated P/Q matrices,

and (b) information regarding the actual prescribing decisions by physicians in any

period n < N (e.g., observation on from medical test results and medical regimen an

prescribed by physicians) is retrieved from the testing set (see Figure A.1a). Also,

to account for the variability of training and testing sets, we iterate the foregoing

procedure 10 times, where we randomly select different sets each time. To characterize

our validation criteria, we first define the following measure:

Pr{ôn+1 = o|on, an, an+1} =
∑

sn+1∈S

∑
sn∈S

qan(on|sn) ∗ pan(sn+1|sn) ∗ qan+1(o|sn+1),

(A.23)

where the three terms on the RHS are described by our illustration in Figure A.1b.

Box 1: since observation on and action an are known from the testing data, the
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probability of being in core state sn is captured by qan(on|sn). Box 2: knowing an as

the medical action in period n, the probability of having a transition to a new core

state is captured by pan(sn+1|sn). Box 3: knowing an+1 as the medical action in period

n+1, the probability of making a new observation is measured by qan+1(o|sn+1). Using

the measure introduced in Equation (A.23), we now define four validation criteria:

Criterion 1: violation in matching observations = 1− Pr{ôn+1 = on+1|on, an, an+1},

(A.24a)

Criterion 2: likelihood of death = Pr{ôn+1 = ∆|on, an, an+1}, (A.24b)

Criterion 3: likelihood of organ rejection = Pr{ôn+1 = ∇|on, an, an+1}, (A.24c)

Criterion 4: likelihood of developing diabetes =
∑

o∈{o1,o2,o3}

Pr{ôn+1 = o|on, an, an+1},

(A.24d)

where criterion 1 measures the percentage of times that our estimation does not match

the actual observation on+1 in the testing data. Criteria 2–4 represent measuring

the likelihoods of deaths, organ rejection, and onset of diabetes when following our

estimated parameters. Since these estimations are used in conjunction with the the

actual prescribing decisions by physicians (i.e., the data from the testing set), this

helps us to calibrate our derived parameters against existing decision processes in the

medical practice.

Note that these validation criteria are obtained for each patient in the testing

data set (i.e., 203 patients) and pair of periods (n, n + 1) for n ≤ 11. Together with

10 iterations for our cross-validation, there will be a total of ≈ 20, 000 cases under

each cohort of patients. The results for the four criteria are reported in Figure A.2.
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Information from testing set:
1. Observations (from test results)

2. Actions (from medical prescriptions)

Our estimated

P/Q matrices

(from training set)

Validation 

criteria

(a)

Period
n+1n

1

2

3

(b)

Figure A.1: An Illustration for Our Validation Mechanism

We note that, for death and organ rejection, we use two benchmark thresholds: one

from our clinical data and the other from the national data (OPTN, 2011). We also

observe that there exist differences between these two thresholds for each of death

and organ rejection (e.g., average rates of organ rejection in our data and the national

data are 8.108% and 6.35%, respectively). This, may be, in part, due to the fact that

the corresponding data sets were collected throughout different years: 1999–2006 for

our data, and 2008–2015 for the national data. We also note that, for the case of

developing diabetes, the average rate obtained from our data (i.e., 22%) is very close

to that reported by the medical literature (i.e., 22.9%) (see, e.g., Woodward et al.

(2003)). The results in Figure A.2 shows that our estimated parameters can yield

reasonable outcomes compared to the existing decision processes (either the practice

from our partner hospital or other national healthcare settings). Finally, for the

validation of reward parameters, although we obtain the values of qol and RLE from

the extant literature (see Appendix B.1), we conduct various sensitivity analyses to

check the robustness of our numerical results (see Appendix E for more details).
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Figure A.2: 95% Confidence Intervals for the Validation Criteria in Equations
(A.24a)–(A.24d) (Numbers on X-axis Represent Likelihoods)

A.2.5 Numerical Evaluation of Sufficient Conditions

Regarding the four sufficient conditions that we employed to establish our struc-

tural properties (§2.4 in the main body), here, we numerically evaluate the validity

of these conditions using our data set.

Condition 2.4.1 (Monotonicity of Reward). As can be observed from Equations
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(2.17a), (2.17b), and (2.18) (§2.5.1 in the main body), Condition 2.4.1 is met in our

medical problem.

Condition 2.4.2 (TP2 Transitions). Since Pa
m and Qa

m are both 11× 11 matrices,

there will be a total of 2×

11

2

×
11

2

 = 6, 050 different 2× 2 minors. Considering all

actions and models, there will be a total of 6, 050× 6× 3 = 108, 900 such minors. We

obtain the average % of violations (i.e., a negative 2×2 minor) over all of these 108,900

cases. Based on the results in Table A.10, Condition 2.4.2 holds in the majority of

cases.

Condition 2.4.3. We utilize both Condition 2.4.3 and its reverse in our analytical

results on the impact of conservatism level λ on the intensity of medication regimens

(see our discussion before Corollary 2.4.1 in §2.4). Hence, we do not numerically

evaluate Condition 2.4.3 in our numerical results.

Condition 2.4.4. There are 8 different comparisons among ordered actions. Also,

considering a uniform grid with a 0.2 resolution, we will have

 |S|+ 5− 1

5

 =

 13

5

 =1,287 different belief vectors for b ∈ ΠPO. For the time horizon length,

we consider a 3-month horizon. Together with a 3-month planning horizon, 3 com-

parisons among different models, and 10 comparisons along each row i ∈ |S|, there

will be a total of 8× 1, 287× 3× 3× 10 = 926, 640 different comparisons. We provide

the average % of violations over all of these 926,640 cases in Table A.10. Despite mi-

nor violations in Condition 2.4.4, our numerical results in §2.5.2 (the optimal policy

regions) imply that there can exist control-limit policies across different risk factors.

A.3 Robust Optimal Medication Policies (Other Cohorts)

Regarding our results from Observation 2.5.1, here in Figure A.3 we present our

results for all cohorts of patients.
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A.4 Micro-Simulation Model for Comparing Policies

See Table A.7 for the micro-simulation model.

Line 5: 43,758 =

 |S| + 10− 1

10

 =

 18

10

 different initial belief vectors (10=1/0.1, where

0.1 is the resolution).

Lines 6–10: ΨA
n,λ is the set of ψ-vectors for our APOMDP approach (obtained from

Proposition 2.4.1; §2.4 in the main body). Since the POMDP approach ignores the

ambiguity, it utilizes each model instead of the whole cloud of models. Thus, we can

obtain the corresponding set of ψ-vectors for the POMDP from ΨA
n,λ by ignoring λ

and considering m instead of M . We show this set by ΨP
n,m for each model m ∈M .

Lines 11–16: for each initial belief vector (representing an individual patient), we

simulate his/her life during the planning horizon under each policy. For each patient,

we consider 1,000 replications in our simulation to account for (a) the simulation bias,

(b) possible medical observations, and (c) different levels of a risk factor (for dynamic

risk factors). These replications are set such that each policy can be simulated under

the same medical observations or risk levels. Therefore, any variations in the end

results would be attributed only to the performance of each policy (and not the

underlying stochasticity of our simulation).

Lines 17–26: we return the performance measure (e.g., avg. QALE) for POMDP and

benchmark approaches. We note that we do not consider ambiguity (and hence the

APOMDP objective function) for these approaches. Thus, they are evaluated based

on each individual model m (and not the conservatism level λ). Therefore, when

comparing our APOMDP approach with the POMDP and benchmark policies, we

report the performance measures by taking average results over all models in the

cloud. For each approach, we (1) obtain the medication regimen based on the current

belief vector in each time period, (2) measure the outcome (e.g., QALE) in that period
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based on the regimen and the belief vector, and (3) update the belief vector for the

next period. We then repeat this procedure for all time periods, and finally return

the cumulative measure over the planning horizon (for each individual patient).

Lines 27–35: we return the outcomes for our APOMDP approach based on the same

procedure above, with the difference that we follow this procedure for each con-

servatism level λ. We note that the APOMDP approach determines the optimal

medication regimen based on the worst and the best models in the cloud (m and m).

However, when we update a belief vector, this has to be done under each individual

model. Therefore, in lines 32–34, we take the average of the updated belief vectors

over all models.

Lines 37–38: considering number of iterations (1,000) and initial belief vectors (43,758),

we return the average outcomes over a total of 43, 758× 1, 000× |Λ| ≈ 1.3× 108 in-

stances for the APOMDP approach and 43, 758× 1, 000× |M | ≈ 1.3× 108 instances

for the POMDP and benchmark approaches.

A.5 Sensitivity Analyses for Reward Parameters

In Table A.11, we consider eight parameter sets for conducting sensitivity anal-

yses for qol and RLE values, where both transplanted-related (e.g., organ rejec-

tion/survival) and diabetes-related (e.g., healthy/diabetic) reward parameters are

changed simultaneously. Also, the values in Table A.11 are set such that the occur-

rence of diabetes (compared to an organ rejection) has a higher (e.g., sets 1–4) or

lower (e.g., sets 7–8) impact on a patient’s QALE. This, in turn, can address dif-

ferent preferences of patients/providers with respect to organ rejection and diabetes

outcomes. Then, for each parameter set in Table A.11, we run our simulation model

to compare the optimal policies obtained from our APOMDP approach against the

benchmarks (similar to the results presented in Tables 2.6-2.7 in the main body).
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We then report the average improvement in QALE (per patient) in Table A.12. As

can be observed from this table, the results in §2.5.2 of the main body are robust to

estimation errors in reward parameters.
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Table A.2: Input Parameters for the Immediate Reward (Column “Values” Includes
the Estimated Values for QOL(Diabetes) and QOL(Healthy), Respectively)

Factor Level Values

Age
Low 0.79,1.00
High 0.75,0.96

Gender
Low 0.78,1.00
High 0.82,1.00

Race
Low 0.79,1.00
High 0.76,0.97

Diab Hist
Low 0.80,1.00
High 0.60,0.80

BMI
Low 0.83,1.00
High 0.78,0.96

BP
Low 0.80,1.00
High 0.65,0.85

Factor Level Values

Chol
Low 0.80,1.00
High 0.58,0.78

HDL
Low 0.80,1.00
High 0.62,0.82

LDL
Low 0.80,1.00
High 0.58,0.78

TG
Low 0.80,1.00
High 0.62,0.82

UA
Low 0.80,1.00
High 0.51,0.71

Table A.3: Input Parameters for the Lump-sum Reward (Column “Values” Includes
the Estimated Values for RLE(Diabetes) and RLE(Healthy), Respectively)

Factor Level Values

Age
Low 33.01,47.18
High 13.86,21.09

Gender
Low 28.03,40.83
High 24.87,35.72

Race
Low 26.39,37.57
High 28.48,40.88

Diab Hist
Low 23.44,34.13
High 6.29,16.98

BMI
Low 24.23,36.23
High 14.68,26.68

BP
Low 20.00,32.00
High 16.83,28.83

Factor Level Values

Chol
Low 17.62,29.62
High 16.10,28.10

HDL
Low 22.13,34.13
High 14.75,22.75

LDL
Low 22.13,34.13
High 17.79,29.79

TG
Low 22.13,34.13
High 14.75,22.75

UA
Low 22.13,34.13
High 18.13,30.13

Table A.4: Input Parameters for the Immediate and Lump-sum Reward Vectors
(Column “Values” Includes the Estimated Values for Organ Rejection and Organ
Survival, Respectively; The Left (Right) Table Includes QOL (RLE) Scores)

Factor Level Values

Age
Low 0.65,0.80
High 0.59,0.74

Gender
Low 0.62,0.77
High 0.62,0.77

Factor Level Values

Age
Low 18.80,25.28
High 7.75,10.46

Gender
Low 15.10,20.55
High 14.77,19.74

Race
Low 14.80,19.88
High 13.69,18.38
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Table A.5: Set of P and Q Matrices Estimated from Our Data Set (Action a1)
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=
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Table A.6: Set of P and Q Matrices Estimated From Our Data Set (Action a4)

P
a
4

m
=

1
=

           1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.0
0
6
9
3
2
8
7

0
.0
2
0
2
6
0
4

0
.3
1
8
2
7
4

0
.4
2
3
7
5
4

0
.0
7
8
6
6
7
2

0
.0
5
6
1
5
3
5

0
.0
6
4
6
9
7
8

0
.0
1
5
0
2
5
1

0
.0
0
7
2
8
7
6
3

0
.0
0
6
2
5
7
9
4

0
.0
0
2
6
8
8
9
4

0
.0
0
7
5
8
7
7
7

0
.0
1
2
0
2
9
3

0
.0
9
2
9
3
7
7

0
.6
2
8
2
1
1

0
.0
8
8
9
1
5
7

0
.0
1
8
9
5
1
7

0
.1
1
1
5
9
5

0
.0
2
1
5
6
2
3

0
.0
0
5
0
1
6
4
3

0
.0
1
0
2
1
1
4

0
.0
0
2
9
8
1
7
9

0
.0
0
6
2
1
4
2
6

0
.0
1
2
9
1
5
5

0
.0
6
8
4
3
1

0
.4
9
0
8
3
7

0
.2
6
3
3
6
9

0
.0
1
6
4
1
6
6

0
.0
8
1
4
0
3
7

0
.0
4
6
0
6
8

0
.0
0
5
3
7
2
0
4

0
.0
0
3
5
0
8
0
3

0
.0
0
5
4
6
5
1
2

0
.0
0
8
0
2
0
0
8

0
.0
2
5
6
7
0
9

0
.0
1
8
2
6
1
6

0
.0
2
3
4
3
5
1

0
.0
1
2
4
3
2
3

0
.2
7
5
0
3
3

0
.3
5
2
2
9
6

0
.0
6
5
9
6
7
9

0
.0
9
3
4
7
3
7

0
.0
9
9
9
8
3
9

0
.0
2
5
4
2
5
9

0
.0
0
8
2
5
7
6
7

0
.0
1
9
9
6
2
6

0
.0
0
7
2
2
5
6
1

0
.0
2
6
1
5
0
5

0
.0
1
2
3
3
9
7

0
.0
8
5
6
6
7
8

0
.5
1
1
4
7

0
.0
8
5
4
5
9
4

0
.0
3
2
1
8
6
7

0
.1
7
8
5
3
5

0
.0
3
2
7
4
5
2

0
.0
0
7
1
9
2
3
3

0
.0
1
4
3
6
4
4

0
.0
0
9
2
2
4
8
1

0
.0
1
9
4
0
3
5

0
.0
1
7
9
9
7

0
.0
6
3
1
0
5
4

0
.3
9
7
0
4
4

0
.2
2
6
7
2
5

0
.0
2
1
5
5
9
8

0
.1
3
9
2
2
1

0
.0
8
4
1
6
2
2

0
.0
0
7
0
2
6
9
1

0
.0
2
6
0
7
0
3

0
.0
1
7
4
5
2
9

0
.0
1
7
2
5
2
1

0
.0
1
1
1
7
1
9

0
.0
4
9
4
6
4
6

0
.0
6
2
8
7
0
4

0
.0
1
7
0
9
4
2

0
.3
0
6
8
4
8

0
.3
9
1
8
5
7

0
.0
9
2
8
9
1
6

0
.0
0
5
7
8
9
1
2

0
.0
1
5
2
9
1
9

0
.0
1
0
8
2
2
9

0
.0
2
5
4
0
4
2

0
.0
1
1
3
9
6

0
.0
2
5
4
3
2
7

0
.0
9
0
4
8
5
6

0
.0
1
5
6
4
0
1

0
.1
0
4
0
0
7

0
.6
0
7
0
7
6

0
.0
8
8
6
5
5
1

0
.0
0
5
4
6
5
0
8

0
.0
1
4
1
2
3
7

0
.0
1
1
3
8
7
9

0
.0
2
4
6
6
3
2

0
.0
1
7
6
7
8

0
.0
1
9
7
8
8

0
.0
6
5
9
4
0
1

0
.0
4
3
3
1
1
9

0
.0
7
8
2
0
1

0
.4
4
8
9
9
6

0
.2
7
0
4
4
5

           

P
a
4

m
=

2
=

           1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.0
0
2
9
1
5
4
5

0
.0
1
6
5
2
0
9

0
.3
2
8
4
7
4

0
.4
3
2
4
5
9

0
.0
7
5
8
0
1
7

0
.0
5
1
5
0
6
3

0
.0
6
3
1
6
8
1

0
.0
1
0
6
9

0
.0
0
6
8
0
2
7
2

0
.0
0
9
7
1
8
1
7

0
.0
0
1
9
4
3
6
3

0
.0
0
3
0
3
3
3
7

0
.0
0
8
0
8
8
9
8

0
.0
8
9
9
8
9
9

0
.6
4
3
0
7
4

0
.0
9
2
0
1
2
1

0
.0
1
3
1
4
4
6

0
.1
1
0
2
1
2

0
.0
1
9
2
1
1
3

0
.0
0
2
0
2
2
2
4

0
.0
1
7
1
8
9
1

0
.0
0
2
0
2
2
2
4

0
.0
0
0
9
9
9
0
0
1

0
.0
0
8
9
9
1
0
1

0
.0
6
3
9
3
6
1

0
.4
9
7
5
0
2

0
.2
8
1
7
1
8

0
.0
1
0
9
8
9

0
.0
7
7
9
2
2
1

0
.0
4
1
9
5
8

0
.0
0
1
9
9
8

0
.0
0
6
9
9
3
0
1

0
.0
0
6
9
9
3
0
1

0
.0
0
1
9
9
8

0
.0
1
8
9
8
1

0
.0
0
7
9
9
2
0
1

0
.0
1
1
9
8
8

0
.0
0
2
9
9
7

0
.2
8
8
7
1
1

0
.3
7
3
6
2
6

0
.0
6
5
9
3
4
1

0
.0
9
3
9
0
6
1

0
.1
1
1
8
8
8

0
.0
2
1
9
7
8

0
.0
0
1
9
8
6
1

0
.0
1
2
9
0
9
6

0
.0
0
0
9
9
3
0
4
9

0
.0
1
0
9
2
3
5

0
.0
0
2
9
7
9
1
5

0
.0
8
1
4
3

0
.5
4
3
1
9
8

0
.0
9
1
3
6
0
5

0
.0
2
4
8
2
6
2

0
.1
9
8
6
1

0
.0
3
0
7
8
4
5

0
.0
0
1

0
.0
0
8

0
.0
0
2

0
.0
0
7

0
.0
0
7

0
.0
6

0
.4
1
6

0
.2
4
5

0
.0
1
4

0
.1
5
3

0
.0
8
7

0
.0
0
1
9
2
8
6
4

0
.0
2
0
2
5
0
7

0
.0
0
8
6
7
8
8
8

0
.0
0
9
6
4
3
2

0
.0
0
1
9
2
8
6
4

0
.0
4
3
3
9
4
4

0
.0
6
7
5
0
2
4

0
.0
1
2
5
3
6
2

0
.3
1
7
2
6
1

0
.4
2
9
1
2
2

0
.0
8
7
7
5
3
1

0
.0
0
1
0
3
7
3
4

0
.0
0
8
2
9
8
7
6

0
.0
0
3
1
1
2
0
3

0
.0
1
5
5
6
0
2

0
.0
0
1
0
3
7
3
4

0
.0
1
6
5
9
7
5

0
.0
9
6
4
7
3

0
.0
1
2
4
4
8
1

0
.0
9
5
4
3
5
7

0
.6
6
2
8
6
3

0
.0
8
7
1
3
6
9

0
.0
0
0
9
5
3
2
8
9

0
.0
0
7
6
2
6
3
1

0
.0
0
2
8
5
9
8
7

0
.0
1
5
2
5
2
6

0
.0
0
7
6
2
6
3
1

0
.0
1
3
3
4
6

0
.0
6
9
5
9
0
1

0
.0
4
2
8
9
8

0
.0
7
0
5
4
3
4

0
.4
8
6
1
7
7

0
.2
8
3
1
2
7

           

P
a
4

m
=

3
=

           1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.0
0
1
3
5
9
0
2

0
.0
1
6
5
8
9
3

0
.3
2
0
6
3
6

0
.4
4
4
9
8
7

0
.0
7
2
0
3
0
3

0
.0
5
9
1
1
2
3

0
.0
6
7
9
7
6
3

0
.0
0
9
0
2
9
2
2

0
.0
0
2
5
0
0
5
6

0
.0
0
3
9
8
3
8
4

0
.0
0
1
7
9
6
7
7

0
.0
0
2
2
2
7
4
1

0
.0
0
8
5
4
9
6
8

0
.0
8
3
7
1
4
1

0
.6
6
3
6
2
1

0
.0
7
8
2
1
1
5

0
.0
1
5
5
0
8
7

0
.1
2
0
3
8

0
.0
1
7
0
3
3
9

0
.0
0
0
1
9
6
8
1
3

0
.0
0
8
4
6
1
8
9

0
.0
0
2
0
9
5
6
8

0
.0
0
1
1
5
8
0
7

0
.0
0
9
6
5
7
9
9

0
.0
5
6
4
9
5
9

0
.5
1
3
4
9
1

0
.2
6
9
3
7
9

0
.0
1
1
8
3
1
1

0
.0
8
5
1
9
2
5

0
.0
4
5
3
9
3
4

0
.0
0
1
0
8
4
9
1

0
.0
0
1
3
1
7
3
5

0
.0
0
4
9
9
8
6
3

0
.0
0
4
0
2
5
7

0
.0
2
0
4
1
6
9

0
.0
1
7
9
3
8
8

0
.0
2
4
6
9
0
4

0
.0
0
8
2
7
0
6
7

0
.2
8
6
6
0
1

0
.3
7
0
8
9
7

0
.0
5
4
6
4
4
1

0
.0
8
9
0
2
8

0
.0
9
7
6
1
4
6

0
.0
2
5
8
7
2
9

0
.0
0
4
4
9
3
6
1

0
.0
1
4
9
3
0
1

0
.0
0
1
2
8
5
6
2

0
.0
3
2
9
5
9
1

0
.0
0
6
1
5
9
3
5

0
.0
8
5
6
6
4
1

0
.5
3
8
7
8
5

0
.0
7
5
4
8
6
1

0
.0
2
9
0
8
6
4

0
.1
7
8
0
7
9

0
.0
3
3
0
7
1
8

0
.0
0
3
4
1
8
5
2

0
.0
0
9
1
1
1
6
2

0
.0
0
2
8
8
8
6
5

0
.0
2
3
0
4
0
7

0
.0
1
5
8
8
2
1

0
.0
6
1
0
2
6

0
.4
1
2
0
0
9

0
.2
3
0
6
5
1

0
.0
1
8
2
4
6
1

0
.1
3
6
7
8
6

0
.0
8
6
9
4
0
4

0
.0
0
3
5
1
3
5
6

0
.0
2
1
6
1
5
8

0
.0
1
6
1
8
4
2

0
.0
1
6
1
0
0
1

0
.0
0
7
1
7
5
4

0
.0
5
0
6
5
8
3

0
.0
6
7
2
9
9
1

0
.0
0
9
2
7
4
1

0
.3
0
9
4
3
4

0
.4
0
5
4
2
4

0
.0
9
3
3
2
1
5

0
.0
0
1
9
6
9
2
4

0
.0
1
1
8
0
5

0
.0
0
8
4
6
5
1
2

0
.0
2
6
0
7
5
4

0
.0
0
6
4
7
8
8

0
.0
2
3
2
7
4
1

0
.0
9
7
2
0
7
6

0
.0
0
7
9
0
9
0
7

0
.1
0
1
0
5
3

0
.6
2
9
0
0
7

0
.0
8
6
7
5
5
9

0
.0
0
1
4
4
5
0
6

0
.0
1
0
1
5
7
6

0
.0
0
8
6
2
8
8
8

0
.0
2
2
7
5
9

0
.0
1
4
6
4
6
1

0
.0
1
6
7
6
3

0
.0
6
8
6
7
9
1

0
.0
4
1
3
0
1
9

0
.0
7
3
6
2
3
4

0
.4
5
8
4
8
4

0
.2
8
3
5
1
2

           

Q
a
4

m
=

1
=

           1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
0

0
.6
1
5

0
.0
9
8

0
.0
1
1

0
.1
9

0
.0
3

0
.0
0
3

0
.0
4
5

0
.0
0
7

0
.0
0
1

0
0

0
.0
7
6

0
.5
8
5

0
.0
6
1

0
.0
2
4

0
.1
8
1

0
.0
1
9

0
.0
0
6

0
.0
4
3

0
.0
0
5

0
0

0
.0
1
1

0
.0
9
8

0
.6
1
5

0
.0
0
3

0
.0
3

0
.1
9

0
.0
0
1

0
.0
0
7

0
.0
4
5

0
0

0
.0
5
2

0
.0
0
8

0
.0
0
1

0
.6
8
3

0
.1
0
8

0
.0
1
2

0
.1
1
6

0
.0
1
8

0
.0
0
2

0
0

0
.0
0
6

0
.0
4
9

0
.0
0
5

0
.0
8
4

0
.6
5
1

0
.0
6
8

0
.0
1
4

0
.1
1
1

0
.0
1
2

0
0

0
.0
0
1

0
.0
0
8

0
.0
5
2

0
.0
1
2

0
.1
0
8

0
.6
8
3

0
.0
0
2

0
.0
1
8

0
.1
1
6

0
0

0
.0
0
2

0
.

0
.

0
.0
1
9

0
.0
0
3

0
.

0
.8
2
9

0
.1
3
2

0
.0
1
5

0
0

0
.

0
.0
0
2

0
.

0
.0
0
2

0
.0
1
8

0
.0
0
2

0
.1
0
2

0
.7
9
1

0
.0
8
3

0
0

0
.

0
.

0
.0
0
2

0
.

0
.0
0
3

0
.0
1
9

0
.0
1
5

0
.1
3
2

0
.8
2
9

           

Q
a
4

m
=

2
=

           1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
0

0
.6
0
8

0
.0
9
4

0
.0
2

0
.1
9
7

0
.0
3

0
.0
0
7

0
.0
3
7

0
.0
0
6

0
.0
0
1

0
0

0
.0
8
1

0
.5
8
2

0
.0
5
8

0
.0
2
6

0
.1
8
9

0
.0
1
9

0
.0
0
5

0
.0
3
6

0
.0
0
4

0
0

0
.0
1

0
.1
0
8

0
.6
0
3

0
.0
0
3

0
.0
3
5

0
.1
9
6

0
.0
0
1

0
.0
0
7

0
.0
3
7

0
0

0
.0
6
2

0
.0
1

0
.0
0
2

0
.6
6
9

0
.1
0
3

0
.0
2
2

0
.1
1
1

0
.0
1
7

0
.0
0
4

0
0

0
.0
0
8

0
.0
6

0
.0
0
6

0
.0
8
9

0
.6
4

0
.0
6
4

0
.0
1
5

0
.1
0
7

0
.0
1
1

0
0

0
.0
0
1

0
.0
1
1

0
.0
6
2

0
.0
1
1

0
.1
1
9

0
.6
6
4

0
.0
0
2

0
.0
2

0
.1
1

0
0

0
.0
0
3

0
.0
0
1

0
.

0
.0
2

0
.0
0
3

0
.0
0
1

0
.8
1
9

0
.1
2
6

0
.0
2
7

0
0

0
.

0
.0
0
3

0
.

0
.0
0
3

0
.0
1
9

0
.0
0
2

0
.1
0
9

0
.7
8
6

0
.0
7
8

0
0

0
.

0
.0
0
1

0
.0
0
3

0
.

0
.0
0
4

0
.0
2

0
.0
1
4

0
.1
4
6

0
.8
1
2

           

Q
a
4

m
=

3
=

           1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

1
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
0

0
.6
2
5

0
.0
9
7

0
.0
1
3

0
.1
8
4

0
.0
2
9

0
.0
0
4

0
.0
4
1

0
.0
0
6

0
.0
0
1

0
0

0
.0
7
8

0
.5
8
9

0
.0
6
9

0
.0
2
3

0
.1
7
3

0
.0
2

0
.0
0
5

0
.0
3
8

0
.0
0
5

0
0

0
.0
1
9

0
.1
1
2

0
.6
0
5

0
.0
0
6

0
.0
3
3

0
.1
7
8

0
.0
0
1

0
.0
0
7

0
.0
3
9

0
0

0
.0
4
2

0
.0
0
7

0
.0
0
1

0
.6
8
5

0
.1
0
7

0
.0
1
5

0
.1
2
1

0
.0
1
9

0
.0
0
3

0
0

0
.0
0
5

0
.0
4

0
.0
0
5

0
.0
8
6

0
.6
4
6

0
.0
7
6

0
.0
1
5

0
.1
1
4

0
.0
1
3

0
0

0
.0
0
1

0
.0
0
8

0
.0
4
1

0
.0
2
1

0
.1
2
3

0
.6
6
3

0
.0
0
4

0
.0
2
2

0
.1
1
7

0
0

0
.0
0
2

0
.

0
.

0
.0
1
4

0
.0
0
2

0
.

0
.8
3
4

0
.1
3

0
.0
1
8

0
0

0
.

0
.0
0
2

0
.

0
.0
0
2

0
.0
1
3

0
.0
0
2

0
.1
0
4

0
.7
8
5

0
.0
9
2

0
0

0
.

0
.

0
.0
0
2

0
.

0
.0
0
2

0
.0
1
3

0
.0
2
6

0
.1
4
9

0
.8
0
8

           

145



A
g
e 

<
 5

0




 

 
3

4




 




 

 

5

e2 e3

e1

Med C0

1 5

2

3

6

e2 e3

e1

High C0

5

2

41

e2 e3

e1

Low C0

 A
g
e 

≥
 5

0

e2

1

 



3

1

2

4

e2 e3

e1

Med C0

2

3

5

1 4

e2 e3

e1

High C0

2

4

e3

e1

Low C0




 



 

 




 

 

G
e
n
d

er
: 

fe
m

a
le

G
e
n
d

er
: 

m
a
le

2

 

3

 

 1

5 4

6
1

3

2
5

4

e2 e3

e1

Med C0

e2 e3

e1

High C0

5

4

2

1

e2

e1

Low C0




 




 

 




 
5

3

2

1 4

e2 e3

e1

Med C0

1

2

4

5

6

3

e2 e3

e1

High C0

2

41

e2 e3

e1

Low C0




 




 

 




 

 

R
a
ce

: 
W

h
it

e



 

 

3
 

 

2

41
5

e3 e2 e3

e1

Med C0

5
1

6

3

2

4

e2 e3

e1

High C0

52

e2 e3

e1

Low C0

1 4






 




 



 

3

2

4

1

5

e2 e3

e1

Med C0

6

5
4

1

2

3

e2 e3

e1

High C0

4

1

2

e2 e3

e1

Low C0



 

 




 




 

 

R
a

ce
: 

n
o

n
-W

h
it

e


B
M

I:
 n

o
n

-o
b

es
e

B
M

I:
 o

b
es

e


   
5

3

4

2

1

e2 e3

e1

Med C0

4

6

5
1

2

3

e2 e3

e1

High C0

4
1

5

2

e2

e1

Low C0

e3



 




 




 

 

2

1
4

e2 e3

e1

Med C0

6

54

2

1

3

e2 e3

e1

High C0

5
1

4

2

e2 e3

e1

Low C0



 

 




 




 

 

  

3

4

5

2

1

e2 e3

e1

Med C0

5

2

6

3

e2 e3

e1

High C0

41

5

2

e2 e3

e1

Low C0




 




 




 

 

N
o
 D

ia
b
e
te

s 
H

is
to

ry

D
ia

b
et

es
 H

is
to

ry



3

4

2

1

e2 e3

e1

Med C0

6

5
1

2

3

e2 e3

e1

High C0

2

1

4

e2 e3

e1

Low C0



 

 




 

 




 

 

 B
P

: 
n

o
rm

a
l

4

1

3
 

 

5
2

e2 e3

e1

Med C0

1 5

2

3

6

e2 e3

e1

High C0

5

2

41

e2 e3

e1

Low C0



 

 




 




B
P

: 
h

y
p

er
te

n
si

o
n

1

 

4

 

1

5

2

3

e2 e3

e1

Med C0

5

6

4

3

2

e2 e3

e1

High C0

2

4
1

e2 e3

e1

Low C0



 




 

 




 

  



1

2

3
 

 
5

4

e2 e3

e1

Med C0

51

6

2

3

e2 e3

e1

High C0

5

41

2

e2 e3

e1

Low C0




 




 



 

C
h
o
l:

 n
o
rm

a
l

 

4

 51

3

2

e2 e3

e1

Med C0

5

6
2

4
1

3

e2 e3

e1

High C0

1 4

2

e2 e3

e1

Low C0




 




 




 

C
h
o
l:

 h
ig

h



 5  
2

11
4

3

2

e2 e3

e1

Med C0

e2 e3

e1

High C0

3

6

5

5

4
1

2

e2 e3

e1

Low C0



 




 




 

H
D

L
: 

n
o
rm

a
l

H
D

L
: 

lo
w

3

 



 

 
51

4

2

e2 e3

e1

Med C0

5
6

2

1

3

e2 e3

e1

High C0

e3

1 4

2

e2

e1

Low C0



 




 

 



L
D

L
: 

n
o
rm

a
l

 

3
 

 51

4

2

e2 e3

e1

Med C0

5

2

6

3

e2 e3

e1

High C0

4
1

5

2

e2 e3

e1

Low C0




 

 




 




L
D

L
: 

h
ig

h

2

4

3
 

5

1

2

e2 e3

e1

Med C0

6

54

1

3

e2 e3

e1

High C0

2

41

e2 e3

e1

Low C0




 

 




 

 



 

 
4



 

3
 

5

 
1

2

e2 e3

e1

Med C0

5

6

1

2

3

e2 e3

e1

High C0

41

2

e2 e3

e1

Low C0




 




 



T
G

: 
n

o
rm

a
l

4


 

3
 

 5
1

2

e2 e3

e1

Med C0

2

1

e2 e3

e1

High C0

3

6
5

41

5

2

e2 e3

e1

Low C0



 

 




 




T
G

: 
h

ig
h

U
A

: 
n

o
rm

a
l

 

3
 

 



 1
4

2

e2 e3

e1

Med C0

5

6

1

2

3

e2 e3

e1

High C0

5

41

2

e2 e3

e1

Low C0




 




 



U
A

: 
h

ig
h



3

 

 

 5
1

4

2

e2 e3

e1

Med C0

2

1
e2 e3

e1

High C0

3

6

5
41

5

2

e2 e3

e1

Low C0



 

 




 




Figure A.3: Optimal Medication Policies for the First Visit Based on Different C0

Levels and Diabetes Complications (e1, e2, e3 Represent Diabetic, Pre-Diabetic, and
Healthy Conditions, Respectively; ej Denotes a Unit Vector with jth Element Equal
to 1 and Other Elements Equal To 0); Results Are Presented for the Case λ = 0.5
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Table A.7: A Pseudocode for the Simulation Model (Superscripts A, P , and B Rep-
resent APOMDP, POMDP, and Benchmark Approaches, Respectively)
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Table A.8: Continuation of Table A.7 (Part 1)
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Table A.9: Continuation of Table A.7 (Part 2)
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Table A.10: Average Percentage of Violations for Sufficient Conditions under Different
Risk Factors

Condition Age Gender Race Diab Hist

Condition 2.4.2 (10.19,10.73) (12.95,17.60) (11.16,15.61) (13.39,19.27)

Condition 2.4.4 (19.21,14.61)∗ (6.57,19.09) (10.29,2.02) (9.13,7.25)

Condition BMI BP Chol HDL

Condition 2.4.2 (14.75,13.83) (12.62,5.02) (19.07,11.14) (15.79,11.40)

Condition 2.4.4 (16.11,13.98) (11.43,8.50) (9.12,10.07) (16.11,13.79)

Condition LDL TG UA

Condition 2.4.2 (14.91,13.79) (12.42,6.33) (10.40,13.56)

Condition 2.4.4 (18.31,15.60) (18.21,4.13) (11.73,9.84)

∗ (x, y)% represent the avg. % of violations for low/high risk levels, respectively.
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Table A.11: Reward Parameters for the Sensitivity Analyses (D: diabetes; H: Healthy;
R: Rejection; S: Survival)

Set Risk Level
qol RLE

D H R S D H R S

1
Low 0.90 1.00 0.80 0.95 33 40 18 28

High 0.75 0.85 0.65 0.80 25 32 13 22

2
Low 0.80 0.95 0.70 0.90 27 35 15 25

High 0.65 0.80 0.55 0.75 19 27 9 20

3
Low 0.70 0.90 0.60 0.85 21 30 12 22

High 0.55 0.75 0.45 0.70 11 19 6 16

4
Low 0.60 0.85 0.50 0.80 15 23 8 18

High 0.45 0.70 0.35 0.65 5 12 3 13

5
Low 0.80 0.95 0.90 1.00 27 35 20 30

High 0.70 0.80 0.75 0.85 20 27 18 26

6
Low 0.70 0.90 0.80 0.95 21 30 17 27

High 0.60 0.85 0.65 0.80 14 22 13 22

7
Low 0.60 0.85 0.70 0.90 15 23 15 25

High 0.50 0.70 0.55 0.75 10 18 8 18

8
Low 0.50 0.80 0.60 0.85 12 20 12 22

High 0.40 0.65 0.45 0.70 5 10 5 15
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Table A.12: Sensitivity Analyses under Categories Shown in Table A.11
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Table B.1: List of Some of Variables in Data Tables (See §4.3 For More Details; Same
Variable May Exist in Different Tables)

T
a
b
le

A
T
a
b
le

I
T
a
b
le

S
T
a
b
le

O
T
a
b
le

D
T
a
b
le

R

P
at

ie
n
t

ID
P

at
ie

n
t

ID
P

at
ie

n
t

ID
P

a
ti

en
t

ID
P

a
ti

en
t

ID
D

ru
g

ID

A
ge

S
er

v
ic

e
ye

ar
S

er
v
ic

e
ye

a
r

S
er

v
ic

e
ye

a
r

S
er

v
ic

e
ye

a
r

M
et

ri
c

si
ze

G
en

d
er

A
ge

S
er

v
ic

e
p

la
ce

S
er

v
ic

e
p

la
ce

A
g
e

P
a
ck

a
g
e

si
ze

M
on

th
ly

G
en

d
er

P
ro

v
id

er
ty

p
e

P
ro

v
id

er
ty

p
e

G
en

d
er

S
tr

en
g
th

E
n

ro
ll

m
en

t
A

d
m

is
si

on
d

at
e

A
ge

A
g
e

D
ru

g
ID

R
o
a
d

a
d

m
in

is
tr

a
ti

o
n

D
is

ch
ar

ge
d

at
e

G
en

d
er

G
en

d
er

D
ay

s
su

p
p

ly
D

E
A

sc
h

ed
u

le
ty

p
e

D
is

ch
ar

ge
st

at
u

s
A

d
m

is
si

o
n

d
a
te

S
er

v
ic

e
d

a
te

st
a
rt

#
u

n
it

s
d

is
p

en
se

d
T

h
er

a
p

eu
ti

c
cl

a
ss

D
ia

gn
os

ti
c

ca
te

go
ry

D
is

ch
ar

ge
d

a
te

S
er

v
ic

e
d

a
te

fi
n

is
h

#
re

fi
ll

s
D

ru
g

n
a
m

e

D
ia

gn
os

is
co

d
es

D
ia

gn
os

ti
c

ca
te

g
o
ry

D
ia

g
n

o
st

ic
ca

te
g
o
ry

T
h

er
a
p

eu
ti

c
cl

a
ss

P
ro

ce
d

u
re

co
d

es
D

ia
gn

os
is

co
d

es
D

ia
g
n

o
si

s
co

d
es

A
ll

p
ay

m
en

ts

A
ll

p
ay

m
en

ts
P

ro
ce

d
u

re
co

d
es

P
ro

ce
d

u
re

co
d

es
R

eg
io

n

R
eg

io
n

A
ll

p
ay

m
en

ts
A

ll
p

ay
m

en
ts

R
eg

io
n

R
eg

io
n

155



Table B.2: List of Opioid and Non-Opioid Analgesics
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Table B.3: List of Drugs Used for Characterizing Behavioral Risk Factors (Based on
Their Therapeutic Class)
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Table B.4: List of ICD-9-CM Codes Used for Characterizing Behavioral Risk Factors

Factor ICD-9-CM Codes

Alcohol 303.92, 303.93, 305, 305.01, 305.02, 305.03, 357.50, 425.50, 535.30, 535.31, 571.00

571.10, 571.20, 571.30 , 760.71, 790.30, 977.30, 980.00, E860.0, E860.1, E947.3

V11.30, V79.10

Smoking 305.10, 649.00, 649.01, 649.02, 649.03, 649.04, 989.84, E869.4, V15.82

Substance abuse 304.10, 304.11, 304.12, 304.13, 304.60, 304.61, 304.62, 304.63, 304.80, 304.81, 304.82

304.83, 304.90, 304.91, 304.92, 304.93, 648.30, 648.31, 648.32, 648.33, 648.34, 965.10

965.40, 965.61, 965.69, 965.70, 965.80, 965.90, 966.00, 966.10, 966.20, 966.30, 966.40

967.00, 967.10, 967.20, 967.30, 967.40, 967.50, 967.60, 967.80, 967.90, 968.00, 968.10

968.20, 968.30, 968.40, 968.60, 968.70, 968.90, 969.00, 969.10, 969.20, 969.30, 969.40

969.50, 969.80, 969.90, 970.00, 970.89, 970.90, 975.00, 975.10, 975.20, 975.30

E850.4, E850.6, E850.7, E850.8, E850.9, E851.0, E852.0, E852.10, E852.20, E852.30

E852.40, E852.50, E852.80, E852.90, E853.0, E853.10, E853.20, E853.80, E853.90

E854.0, E854.20, E854.30, E854.80, E855.0, E855.10, E855.20, E855.30, E855.40

E855.50, E855.60, E855.80, E855.90, E935.4, E935.7, E935.8, E935.9, E937.00

E937.10, E937.20, E937.30, E937.40 , E937.50, E937.60, E937.80, E937.90, E938.00

E938.10, E938.20, E938.30, E938.40, E938.60, E938.70, E938.90, E939.0, E939.1

E939.2, E939.3, E939.4, E939.5, E939.6, E939.7, E939.8, E939.9, E940.0, E940.8

E940.9, E945.1, E945.2, E945.3, E950.0, E950.1, E950.2 , E950.3, E980.0, E980.1

E980.2, E980.3, V14.50, V14.60

Non-substance abuse 304.20, 304.21, 304.22, 304.23, 304.30, 304.31, 304.32, 304.33, 304.40, 304.41, 304.42

304.43, 304.50, 304.51, 304.52, 304.53, 305.20, 305.21, 305.22, 305.23, 305.30, 305.31

305.32, 305.33, 305.60, 305.61, 305.62, 305.63, 305.70, 305.71, 305.72, 305.73, 760.73

760.75, 969.60, 969.72, 970.81, E854.1, E939.6

Mental disorders V110, V111, V112, V114, V118, V119, V1240, V1249, V7900
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Table B.5: List of ICD-9-CM Codes to Identify Any Adverse Effect Caused by an
Opioid or Heroin

Code Description

304.00 Opioid type dependence, unspecified

304.01 Opioid type dependence, continuous

304.02 Opioid type dependence, episodic

304.03 Opioid type dependence, in remission

304.70 Combinations of opioid type drug with any other drug dependence, unspecified

304.71 Combinations of opioid type drug with any other drug dependence, continuous

304.72 Combinations of opioid type drug with any other drug dependence, episodic

304.73 Combinations of opioid type drug with any other drug dependence, in remission

305.50 Opioid abuse, unspecified

305.51 Opioid abuse, continuous

305.52 Opioid abuse, episodic

305.53 Opioid abuse, in remission

965.00 Poisoning by opium (alkaloids), unspecified

965.01 Poisoning by heroin

965.02 Poisoning by methadone

965.09 Poisoning by other opiates and related narcotics

E850.0 Accidental poisoning by heroin

E850.1 Accidental poisoning by methadone

E850.2 Accidental poisoning by other opiates and related narcotics

E935.0 Heroin causing adverse effects in therapeutic use

E935.1 Methadone causing averse effects in therapeutic use

E935.2 Other opiates and related narcotics causing adverse effects in therapeutic use
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