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ABSTRACT 

 

Flooding is a critical issue around the world, and the absence of comprehension of 

watershed hydrologic reaction results in lack of lead-time for flood forecasting and 

expensive harm to property and life. It happens when water flows due to extreme rainfall 

storm, dam breach or snowmelt exceeds the capacity of river system reservoirs and 

channels. The objective of this research was to develop a methodology for determining a 

time series operation for releases through control gates of river-reservoir systems during 

flooding events in a real-time using one- and/or two-dimensional modeling of flows 

through river-reservoir systems.  

The optimization-simulation methodology interfaces several simulation-software 

coupled together with an optimization model solved by genetic algorithm coded in 

MATLAB. These software include the U.S. Army Corps of Engineers HEC-RAS linked 

the genetic algorithm in MATLAB to come up with an optimization-simulation model for 

time series gate openings to control downstream elevations. The model involves using the 

one- and two-dimensional ability in HEC-RAS to perform hydrodynamic routing with 

high-resolution raster Digital Elevation Models. Also, the model uses both real-time 

gridded- and gaged-rainfall data in addition to a model for forecasting future rainfall-

data. 

This new model has been developed to manage reservoir release schedules before, 

during, and after an extraordinary rainfall event that could cause extreme flooding. 

Further to observe and control downstream water surface elevations to avoid exceedance 
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of threshold of flood levels in target cells in the downstream area of study, and to 

minimize the damage and direct effects in both the up and downstream. 

The application of the complete optimization-simulation model was applied to a 

portion of the Cumberland River System in Nashville, Tennessee for the flooding event 

of May 2010. The objective of this application is to demonstrate the applicability of the 

model for minimizing flood damages for an actual flood event in real-time on an actual 

river basin. The purpose of the application in a real-time framework would be to 

minimize the flood damages at Nashville, Tennessee by keeping the flood stages under 

the 100-year flood stage. This application also compared the three unsteady flow 

simulation scenarios: one-dimensional, two-dimensional and combined one- and two-

dimensional unsteady flow. 
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1 CHAPTER 1 INTRODUCTION 

1.1 Background 

Flooding, according to the Cambridge Dictionary, is defined as the condition of a 

region or piece of land being filled or covered with a significant amount of water, 

especially from the rain. This can happen in many different ways. Most commonly, 

flooding occurs when a river stream overflows its banks due to excessive rain. 

Throughout history, several ways to mitigate the impact flooding have been invented, but 

the most effective one was the construction of a dam and then a reservoir at a specific 

location on the river basin or watershed. However, this river-reservoir system needs to be 

carefully managed; otherwise, the problem could be worse than it was before the 

reservoir system was built, and could result in multiple losses.   

When flooding happens, the downstream areaa of a river or reservoir systems are 

inundated by the overflow and rise in water level. It most commonly happens when water 

flows due to extreme rainfall, a dam breach or snow melting exceeding the capacity of 

river system channels, lakes, or the way into which it runs. Usually, the combined flow of 

several tributaries causes flooding along river banks or floodplains. Flooding is a critical 

issue around the world and the absence of comprehension of watershed hydrologic 

reaction and demonstrating constraints result in a lack of lead-time for flood forecasting 

and expensive property damage as well as life. Global warming and climate change 

problems have promoted extreme weather events in the recent past and underscored the 

need for accurate predictions of flood levels before it is too late to happen. 
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Despite the extensive studies that many previous researchers have done to analyze 

floods and flow management, flooding problems still occur, causing tremendous 

devastation of life and property in both the short and long terms. As of late, there have 

been new approaches and systems created in GIS techniques that are considered to have 

more productive storage, processing of information, and joint examination of various 

datasets. The extensive use of data has shown that it can be reliable in producing rainfall 

intensities and patterns. That enables and enhances the application of real-time flood 

forecasting and merges the use of real-time and forecast rainfall and streamflow data into 

hydrologic and hydraulic simulation models to predict flow rates and stages of the river-

reservoir system for a period of time, ranging from hours to days in advance. 

1.2 Real-Time Flood Forecasting 

One of the most effective measures for flood management is real-time flood 

forecasting. As a focused activity in the hydro-meteorological sector, flood forecasting is 

a relatively recent development that might indicate a growing seriousness of flood 

impacts. Formerly, in many different European countries, response focused on flood 

forecasting and warning through the global meteorological forecasting of severe weather. 

The estimations of flood forecasts regarding quantity and time have grown with the 

acknowledgment of the consequence of flood warnings as a contribution to flood 

management. That implies that the conventional methods of basic extrapolation of 

forecasts from gauged sites are no longer sufficient (Moore, Cole, Bell, & Jones, 2006). 

However, the occurrence of numerous severe events resulted in the founding of many 

national flood forecasting and warning centers. These warning centers contributed to 
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enhancing the development of monitoring networks particularly for flood forecasting and 

warning purposes. Hydrological systems consist of instruments that have electronic 

facilities for data storage and transmission (rain gauges and water surface elevations), and 

meteorological effort has focused on collection and delivery of satellite and radar data. 

Due to the nature of Hydrological and meteorological phenomena, flood forecasting and 

warning is exposed to uncertainty, as it is somehow based on the principles of probability 

(World Meteorological Organization, 2011).  

The process of any hydrologically related forecast is an estimation of the future 

state of a hydrological event. Like the flow rate, the water volume and level of an area 

that would be affected or inundated by water and average velocity of flow in a particular 

region or location of a stream. The lead time for such a forecast can be defined as the 

interval of time starting from making the forecast to the future point in time for which the 

forecast is applied; Figure 1.1 depicts the procedures of developing flood forecasting 

model. Determining a lead-time requires many constraints to be considered; the main one 

of them is the size of the catchment within a particular region or even country. However, 

for instance, a short-term forecast of lead time between 2 to 48 hours is considered in the 

United States of America, while between 2 to 10 days is classified as medium-term 

forecast, and a long-term forecast would be exceeded by ten days (World Meteorological 

Organization, 2011). 
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Figure 1.1 Process for Developing a Flood Forecasting Model, (World Meteorological 

Organization, 2011) 
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To formulate a real-time flood forecasting problem for a river-reservoir system, 

Figure 1.2, meteorological and flow data are observed and then transmitted to the 

determining station through a different method of information correspondences. The 

meteorological and flow data obtained in real-time are then used in the flood forecasting 

model to estimate the movement of the flood and the corresponding water levels. The 

lead-time, as mentioned above, ranges from a few hours to days depending on the 

catchment size and aim of the forecast. The modeling framework should not have 

excessive input requirements, but at the same time, the forecasted flood should be as 

accurate as possible. 

 
 

Figure 1.2 Schematic of River-Reservoir System, (Ahmed, 2006) 
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In many cases, modeling which considers one-dimensional flows is difficult to 

model floodplain flows accurately, as there are numerous directions of water flow on a 

flat plain. Therefore, the hydraulics of the flood plain needs to be precisely predicted. 

Usually, modeling flow in a network of channels can be performed using one-

dimensional modeling. It can somehow reach a solution but does not take the change of 

direction of flow at a point of interest into consideration, while the modification in a 

direction is considered to be a part of the solution in two-dimensional models (Beffa & 

Connell, 2001). 

Diffusion of flow in a flood plain includes many issues to be considered, 

especially in complex topography. During flooding conditions, allocating water stream 

flow at a particular time can exceed the flood level and then propagate horizontally onto 

the flood plain in different directions, so it is going to be difficult to model in one 

direction. Starting with a dry flood plain is another important feature of two-dimensional 

solutions. Based on the topography of the flooding area, water spreads out in the flood 

plain in different directions at the beginning of modeling. Two-dimensional flow models 

were first developed and applied to estuary flows in 1967 by Leendertse, see (Beffa & 

Connell, 2001). They succeeded in implementing the finite difference method to solve the 

problem of subcritical flow regime. Later, in the eighties and nineties, that type of 

modeling became widely applied to the simulation of tidal flows and lowland flows. 

However, later on, the use of these schemes receded because of their inability to predict 

the critical and supercritical flow regimes accurately. In other words, they could not 

model flow in the steep slope channels.  
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The one-dimensional modeling could only determine one resulting water surface 

elevation at a cross-section. Therefore, the fluctuations across the section will not occur 

in the model as they would in the case of a real event. However, the one-dimensional 

analysis can predict good results for river reaches. This research will use both one, and 

two-dimensional unsteady flow routing for river reaches. The river segments are modeled 

using one-dimensional flow equations, while floodplains will be modeled using the two-

dimensional analysis.  

The basic equations that describe the unsteady flow (propagation of a wave) in an 

open channel are the Saint-Venant equations represented by continuity and the 

momentum equations, (V. Te Chow, Maidment, & Mays, 1988): 

𝜕𝑄

𝜕𝑥
+

𝜕𝑠𝑐𝑜(𝐴 + 𝐴0)

𝜕𝑡
− 𝑞 = 0 (1.1) 

Momentum Equation 

𝜕(𝑠𝑚𝑄)

𝜕𝑥
+

𝜕(𝛽𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴 [

𝜕ℎ

𝜕𝑥
+ 𝑆𝑓 + 𝑆𝑒 + 𝑠𝑖] − 𝐿 + 𝑊𝑓𝐵 = 0 (1.2) 

where 

 Q  is the discharge. 

 A is the cross-sectional area of flow. 

 A0 is the inactive off-channel cross-sectional area.  

 h  is the water surface elevation.   

 sco and sm  are the sinuosity factors which vary with h. 

 q  is the lateral inflow or outflow per lineal distance.  

 x  is the longitudinal distance along the river. 
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 t  is the time. 

 β  is the momentum correction coefficient. 

 g is the acceleration of gravity. 

 L is the momentum effect of lateral flow. 

Wf is the surface wind resistance. 

 B  is the top width of the channel.   

   Sf   is the slope of the energy grade line derived from Manning’s 

equation.  

Se  is the contraction/expansion slope. 

Si is the additional friction slope associated with internal viscous dissipation 

of non-Newtonian fluids. 

In practice, two-dimensional unsteady flow simulation models are one of the 

approaches for streamflow and floodplain forecasting as well. For a given set of operating 

policies, a two-dimensional unsteady flow simulation model can be used to simulate the 

flow rates, water surface elevations, and velocities in both X and Y directions at various 

locations for specified time steps. The basic equations that describe the two-dimensional 

unsteady flow (propagation of a wave) in an open channel and floodplain are the Saint-

Venant equations represented by continuity and momentum equations in both the X and 

Y directions: 

Two-Dimensional Conservation of Mass: 

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0 (1.3) 
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X-Direction Momentum 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑔

𝜕(ℎ + 𝑧)

𝜕𝑥
+

𝑔𝑛2𝑢√𝑢2 + 𝑣2

ℎ4/3

−
𝑣

ℎ
(2

𝜕2ℎ𝑢

𝜕𝑥2
+

𝜕2ℎ𝑢

𝜕𝑥2
+

𝜕2ℎ𝑣

𝜕𝑥𝜕𝑦
) = 0 

(1.4) 

 

Y-Direction Momentum 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑔

𝜕(ℎ + 𝑧)

𝜕𝑦
+

𝑔𝑛2𝑣√𝑢2 + 𝑣2

ℎ4/3

−
𝑣

ℎ
(

𝜕2ℎ𝑣

𝜕𝑥2
+ 2

𝜕2ℎ𝑣

𝜕𝑦2
+

𝜕2ℎ𝑢

𝜕𝑥𝜕𝑦
)  = 0  

(1.5) 

 

Where 

u and v  are the components of the horizontal velocity in the X and Y 

direction. 

h    is the flow depth. 

z    is the bed elevation. 

x and y   are horizontal distances in the x and y directions respectively. 

t   is the time. 

g   is the acceleration due to gravity. 

n   is Manning's coefficient of roughness. 

There are various types of one and two-dimensional unsteady flow models, most 

of which are commercial models and used in practice are presented in details in Chapter 

5. The two-dimensional unsteady flow equations solver (HEC-RAS) uses the Implicit 
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Finite Volume Algorithm. The algorithm of implicit solution allows for longer 

computational time steps than explicit methods. The Finite Volume Method gives an 

increment of improved stability and robustness over traditional finite difference and finite 

element techniques. The wetting and drying of 2D cells are very robust; two-dimensional 

flow areas can start completely dry and handle a sudden rush of water into the area. 

Additionally, the algorithm can handle subcritical, supercritical, and mixed flow regimes 

(flow passing through critical depth, such as a hydraulic jump), (G. Brunner, 2016). 

Going back to lead time, which is considered as the most criterion in flood 

forecasting and as (L. Mays & Tung, 1992) define it as the interval of time between the 

issuing the of a forecast and expected arrival of the forecasted event. In flood forecasting, 

both the location and time are necessary to include. For instance, relatively short lead 

time for a short river reach may become a long lead time for locations much further 

downstream. Consider the scenario depicted in Figure 1.3 (L. Mays & Tung, 1992). 

There are three urban areas: A, B, and C; with a major rainfall in the upper region of the 

watershed. Short lead time is required for urban area A, with a longer time for urban area 

B, where urban area C has the longest lead time. Due to the time for the flood to travel 

down the river, a longer lead time is needed. The flood hydrographs at urban areas A, B, 

and C are shown in Figure 1.3, respectively.  In this example, the lead time for urban area 

A is very short, but the lead time for urban area C is relatively longer. Moreover, the 

beginning of the flood hydrograph at urban area C occurs approximately at the same time 

the rainfall ends. This example also shows that, in order to forecast for a flood 

hydrograph at urban area A, precipitation forecasts are required, whereas, for urban area 
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C, the precipitation will be observed throughout the rainfall event in order to forecast 

properly. Often, several precipitation forecasts are needed during the flood event. As 

shown in Figure 1.4, urban area A needs for rainfall forecasts, where urban area C 

requires one.  

 
 

Figure 1.3 Effect of  Lead Time (L. Mays & Tung, 1992) 
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Figure 1.4 Flood hydrograph at Downstream Location in a Watershed (L. Mays & Tung, 

1992) 
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1.3 Research Objective 

The objective of the research is to define a strategy for determining a time series 

operation for releases through control gates of a river-reservoir system during a flooding 

event in a real-time fashion. That will be done through interfacing several simulation 

software coupled together with an optimization technique (genetic algorithm) by a 

MATLAB code. These software are HEC-RAS 5.0.3, and HEC-HMS linked the genetic 

algorithm in the MATLAB environment to come up with a simulation-optimization 

model for time series gate openings to control downstream elevation. The model involves 

using the two-dimensional (2D) ability in HEC-RAS 5.0.3 to perform hydrodynamic 

routing with high-resolution raster Digital Elevation Models. This new model will be 

developed to manage reservoir releases schedules before, during, and after an 

extraordinary rainfall storm event causing flooding, to observe and control downstream 

water surface elevations to avoid exceedance of threshold of flood levels in target cells in 

the area of study. The Hydrologic Engineering Center of the US Army Corps of Engineer 

has added this feature of 2D simulation and analysis recently to the HEC-RAS.  

Accurate rainfall data in real-time should be available in order to forecast the 

upcoming inflow to the reservoir and then to decide the outflow from the flood control 

gates of the reservoir. The gates opening of the reservoir’s spillway are considered in the 

problem formulation as the decision variable to determine the optimal control in real-time 

operations.  

Real-time simulation performed in discrete time with constant step (fixed-step 

simulation) as time moves forward in an equal duration of time to estimate the rainfall 
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over the watershed and then use it as input data for the next phase of the study which is 

the rainfall-runoff simulation model. Runoff modeled by using the U. S. Army Corps of 

Engineers Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS). 

HEC-HMS integrated with GIS technique model as well as the topographic and the 

parameter of the way of computing the runoff to produce the outflow hydrograph from 

the watershed. Basic steps of the proposed model are depicted in Figure 1.5. 

Watershed Response/HEC-HMS Model

Reservoir Operation 

Two Dimentional Unsteady 
flow Model
HEC-RAD 2D

Downstream Flood desired 
Elevations for time t

No

yes

Start at T=0

Next Storm Forecast

End

NO

NEXRAD & Rainfall Data Over Δt

Optimization 
Model

(MATLAB & 
Genetic 

Algorithm)

t+Δt

 
 

Figure 1.5 General Flow Chart of Simulation-Optimization Model 
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To start simulating the runoff, accurate real-time data of rainfall (NEXRAD data) 

should be available to obtain the output hydrographs of the watershed at each time step 

(Δt). The obtained watershed hydrographs are then used as input data, into the two-

dimensional unsteady flow model to be routed downstream to the location of the 

reservoirs. By getting the watershed hydrographs and routing them downstream to the 

site of a reservoir throughout the unsteady model (HEC-RAS), adequate information and 

data of how much water, that will input to the reservoir into a period will be computed. 

Especially, in the case of the intended reservoir has a specified flood control volume as 

illustrated in Figure 1.6. Before high quantities of water flow reached the reservoir in real 

time, a decision should be made through the optimization model, to decide how much 

water should be released, in advance from the gate openings. The gate openings are the 

decision variables of the optimization model. The purpose is to ensure that there is 

enough volume in the reservoir to accommodate the upcoming water quantities without 

causing flooding downstream.  
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Figure 1.6 Allocation of Reservoir Capacity in Flood Season, (Asia Pacific Adaptation 

Network (APAN), 2013) 

A simple hypothetical model as illustrated in Figure 1.7 and will be applied to the 

flooding event of the 2010 Cumberland River in Nashville, Tennessee.  Four major 

components are brought together to form the optimization-simulation model for operating 

a river-reservoir system in a real-time fashion. Figure 1.8 illustrates the connecting 

among those components. The first element of the model is the simulation of rainfall-

runoff from the watershed system by using the HEC-HMS (Hydrologic Modeling 

System), (U.S. Army Corps of Engineers, 2007) & (U.S. Army Corps of Engineers, 

2010a). The second one is the unsteady flow routing from the watershed to the reservoir 

by using HEC-RAS (River Analysis System) which can be performed in both one and 
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two-dimensional unsteady flow computations studies, (G. Brunner, 2016). The third and 

fourth  

 
 

Figure 1.7 Simplified Hypothetical Model 

Components which are the most important part of the overall model are the 

operation of the reservoir gate and the optimization model for determining the optimal 

gates opening as a function of time; which is the decision variable of the objective 

function. The rainfall forecasting model produces rainfall in the future based on the actual 

real-time rainfall up to real-time of the operation are then taken from the National 

Weather Services gridded rainfall values, and a rainfall gage network until the time of 

resuming reservoir operation. The model will also be responsible for measuring the real-

time flood elevation in the selected cell in a river and the two-dimensional area. After 
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that, an approach of projecting short-term rainfall using the forecasting model should be 

developed in the next minutes or maybe a few hours after resuming the reservoir 

operation. 

 
 

Figure 1.8 Connecting Among Model Components 

The optimization approach adopted in this research is to use the genetic algorithm 

optimizer programmed through MATLAB software to interface the other components of 

the model to decide the optimal gate opening of the reservoir system in the real-time 

operation. Figure 1.9 illustrates the interfacing between the model components. Rainfall-

runoff simulation is done by using HEC-HMS model, depending on The National 

Weather Service gridded rainfall data (NEXRAD) to produce the hydrographs which will 
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be utilized as input to the optimization model to determine the optimal gate openings at 

series of time along with the event of the storm in a river-reservoir system. After the 

optimal operation of the reservoir’s gate opening obtained, the decision variables (gate 

openings) enter into the two-dimensional unsteady model HEC-RAS, for flood 

simulations in the river downstream of the reservoir system at target locations. 

The genetic algorithm optimizer though MATLAB is used as an optimization 

method to determine the feasible solution. Different from the conventional optimization 

methods, like gold section and simplex methods. The genetic algorithm does not 

necessarily require a well-defined function. Historically, the genetic algorithm firstly 

developed by Holland in the middle of 1970s as model simulates the Natural Selection of 

Charles Darwin’s Theory of Evolution. In general, the genetic algorithm consists of three 

operators: selections, crossover, and mutations. The reason behind using the genetic 

algorithm in this research is of the advantages over traditional optimization methods and 

its ability to solve very complex optimizations problems and parallelism, (Deb, 2011). 

The main objective of the research proposes a simulation/optimization 

methodology for controlling the flood flows and flood elevations at various locations of a 

river-reservoir system using one- and or two-dimensional simulation in the river-reservoir 

system. One example might be to keep the flow rates and flood elevations below the 100-

year level. If the objective is not met, the genetic algorithm optimization through 

MATLAB will reiterate its process to determine the reservoir’s gate release until the 

maximum downstream water surface elevation is reached. The moment that the objective 

is attained, the model proceeds to the next iteration. At that very moment, the short-term 
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projected rainfall is used to run the precipitation-runoff model to produce the hydrograph 

that used to operate the reservoirs for the following forecasting period. At this point, the 

real rainfall data have been processed and ready to be used to calculate the actual runoff 

from the watershed, the water surface elevation, reservoir gate releases, and the unsteady 

flows. The model will be reiterated and proceed until the goal is obtained with fulfilling 

all constraints for the whole simulation time frame. The explanation behind the model 

begins the simulation days before the storm event is started. it can figure out which 

activities are fundamental for the reservoir to take to get ready for the floodwaters for the 

coming days. A detailed description of the real-time reservoir operation model will be 

presented later in chapter seven of this dissertation. 
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Figure 1.9 Interfacing of Model Components  



 

22 
 

1.4 Research Phases    

The phases of the research are categorized into two types; phases of model 

development and phases application 

1.4.1 Model Development Phases 

1. Literature review on conducted works on two-dimensional flow modeling, real-

time flood forecasting, GIS technique patterns in flood management, rainfall-

runoff models and one and two-dimensional unsteady flow models. 

2. Develop a georeferenced terrain model for the study area using the BASINS 

model for the purpose of the two-dimensional model.  

3. Build a model based upon using the HEC-HMS and HEC-RAS, genetic algorithm 

Solver through MATLAB, so that a data exchange system can be programmed to 

interface data among these components of the modeling system. 

4. Interface the various model components including the rainfall projection software, 

HEC-HMS, HEC-RAS, the NEXRAD rainfall data, and the genetic algorithm for 

the optimization routine through a MATLAB’s code needed to perform the 

interfacing. 

5. Search for the space of all feasible solutions in which the genetic algorithm can be 

used in selecting gate operations of the various reservoirs.  

6. Develop a model to forecast short-term future rainfall for hours in advance of a 

known rainfall considering the lead time. 

7. Examine the accuracy of the sub models and overall model. 
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8. Create a simplified hypothetical model, after the model components had been 

tested. 

The study will focus on the using of two-dimensional feature the HEC-RAS and the 

understudy the flow downstream of a reservoir, as well as the importance of using real-

time and forecasting data for an extreme flood event in the real-time flood control 

operation of a river-reservoir system. 

1.4.2 Phases of Model Application  

  A demonstration of the model will be performed using the data from the May 

2010 flood event on the Cumberland River system. The U.S. Army Corps of Engineers 

set up the HEC-HMS model input and the one-dimensional HEC-RAS models for the 

2010 flood event. So, 

1. The optimization/simulation model developed herein will be applied to a portion 

of the Cumberland River system that includes the Cordell Hull Dam, J. Percy 

Priest Dam, and the Old Hickory Dam (see Figure 1.10 and Figure 1.11).  These 

are the three dams that have the most impact on the Cumberland River upstream 

of Nashville, Tennessee.    

2. A detailed study of the Old Hickory dam operations during the 2010 flood 

event while considering the actual operation done by the U.S. Army Corps of 

Engineers and the operation rules established years prior.  
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Figure 1.10 Reservoirs on the Cumberland River Near Nashville 
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Figure 1.11 Cumberland River System (USACE, 2013) 
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2 CHAPTER 2 STATE-OF-THE-ART OF REAL-TIME FLOOD 

MANAGEMENT AND PREVIOUS MODELS 

2.1 Flood Management 

Floods are natural disasters that affect millions of people all over the world. More 

than ninety million of people are affected by floods every year worldwide, that accounts 

for 39% of all natural catastrophes after 2000, causing life losses and injuries, home 

displacement, destruction of properties and infrastructures, and many other problems 

(Emerton et al., 2016). Over the years, humans somehow succeeded to diminish the effect 

of floods, by constructing different kinds of dams somewhere on the riverway and later 

on they developed these hydraulic structures by adding more facilities for operation 

purposes to control and manage the flood water. However, full protection against floods 

is almost impossible. Flood management strategies generally encompass policy, design, 

planning, and management. In the literature, there are two deferent kinds of flood 

management strategies: planned management and real-time management. This research 

focuses on real-time management and reservoir operation under flood condition. 

2.2 Real-Time Flood Management and Forecasting 

Real-time flood management needs real-time inflow data to determine how much 

water should be released from the control facilities. Sometimes inflow data would not be 

available at the event time so, forecasting the required data for short-term depending on 

the availability may be required. This research will also focus on the flooding caused by 

heavy rainfall events requiring very fast response. Flood forecasting studies endeavor to 

produce as accurate as possible futures estimate of how much water will be discharged 
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from a reservoir-river system based on the present state and past behavior of the river-

reservoir scheme. (Bálint, 2002) defines flood forecasting as “an operational, result-

oriented activity and as such pays less attention to the modeled system than to the output 

of the forecasting procedure.”  The forecasting outputs are peak stage or flood crest, flood 

flows, and stage or discharge hydrographs, flood volume, and floodplain inundation 

maps. Flood forecasting and warning processes are also, in most cases, to provide timely 

reliable information to the related department of civil and general public protection. The 

entire forecasting and warning process should be performed with enough lead time to 

allow the decision makers to take possible measures to prevent or to minimize the 

prospective flooding by taking appropriate actions. 

2.3 Global-Scale Flood Forecasting Systems 

In recent years, forecasts at the global scale have become possible because of the 

integration abilities of meteorological and hydrological modeling, satellite observations 

and land-surface hydrologic modeling, data collection improvements, and increases in 

resources and computer capabilities. Global hydrological forecasting and modeling are 

complicated because of the various processes of rainfall runoff and river systems. 

However, flood forecasting in terms of large-scale, with the advanced technologies and 

increased integration of hydrological and meteorological stations, has become easier, 

with an allowable percentage of uncertainty from the meteorological data input to the 

forecasted downstream flow rates in rivers.  

The forecasting proficiency of the numerical models of global weather prediction 

has remarkably increased recently. The proficient medium scale precipitation numerical 
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forecasting models have been shifted to large-scale forecasting models for the use of 

early warning. Table 2.1, depicts the resolutions and forecast ranges of some of the main 

quantitative precipitation forecasting products used in operative large-scale flood 

forecasting regimes. 

Table 2.1 large-scale Flood Forecasting, Quantitative Precipitation Forecasts, (Emerton et 

al., 2016) 

 

 

The process of forecasting is challenging because of the atmosphere nature, as a 

small change in the initial condition in the system will produce an unpredictable result. 

The process of generating precipitation is difficult to model because the implicit physical 

processes of how precipitation is generated are complex to model, and that can result in  

deficiencies and forecast inaccuracies, particularly at longer lead times. 

2.4 State of the Art of Real-Time Flood Forecasting 

Floods are considered more than half of the world natural disaster, threatening 

millions of people’s lives and properties each and every year. Thus, real-time flood 

forecasting is essential to integrate flood risk management. Several types of the current 
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state of the art of real-time flood forecasting models around the world have been 

reviewed here. 

2.4.1 Real-Time Flood Warning Using High-Resolution Radar in Denmark  

The Municipality of Hvidovre is a southwest suburb of Copenhagen, Denmark. 

During summer 2008, a real-time online alert system has been set up to provide 

information on the risk of basement flooding. The alert system based on local area 

weather radar (LAWR)8 rainfall forecast and a hydrological book-keeping model for 

twenty-two urban catchments. The high-resolution radar pictures are retrieved every 5 

minutes to produce and update a projection for the next hour. This forecast is used by the 

decision support system (DSS) together with historical data to calculate the accumulated 

rainfall for each sub-catchment and to issue a warning if any of the pre-defined critical 

levels are exceeded. The Hvidovre citizens can be either warned automatically by the 

DSS, SMS and e-mail or access to the current status information through a web page 

developed with Dashboard Manager. 

2.5 National Weather Services (NWS) 

The task of the National Weather Service (NWS) can be summarized as providing 

water, weather, and climate forecasts and warnings for all the United States’ territories, 

adjacent waters, and ocean areas, for life and property proection and the enhancement of 

the national economy. NWS data and products form a national information database and 

infrastructure which can be used by other governmental agencies, the private sector, the 

public, and the global community” (NWS, 2011b). Public, marine, and aviation forecasts 

are provided routinely by the NWS, as well as unscheduled short- and long-fused 
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advisories and life-saving warnings when conditions warrant. NWS also provides 

seasonal and longer-term climate forecasts and warnings, and its observations are a 

critical part of the long-term climate record. (National Weather Service's Modernization 

Program, 2012). 

2.5.1 Weather Prediction Center (WPC) 

One of the nine centers of  National Centers for Environmental Prediction 

(NCEP) is Weather Prediction Center (WPC), which belongs to the National Weather 

Service (NWS) (WPC, 2014). The WPC serves as a center for quantitative precipitation 

(QPF), medium range forecasting, typically three to eight days, and the interpretation of 

weather forecasting models. The QPF depicts the amount of liquid precipitation expected 

to fall in a given period of time. The WPC issues storm information on storm systems 

bringing significant rainfall to portions of the United States. The WPC also forecasts 

precipitation amount for the Contiguous United States (CONUS) for systems expected to 

make an impact over the next seven days. The WPCQPF prepares and issues forecasts of 

quantitative of precipitation accumulation, heavy rain, heavy snow, and highlights areas 

with the possibility for flash flooding, with forecasts effective over the following five 

days (WPC, 2014). These data are sent to the NWS Weather Forecast Offices (WFOs) 

and are available on the web for the general public. One station of the National 

Environmental Satellite Data and Information Service (NESDIS) is co-located with the 

WPC-QPF station, which together form the National Precipitation Prediction Unit 

(NPPU). NESDIS meteorologists prepare rainfall estimation and the current trends based 

on satellite data, and this information is used by the Day 1 QPF forecasters to help create 
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individual 6-hourly forecasts that cover the next 12 hours. With access to radar data, 

satellite estimates, and NCEP model forecast data as well as current weather observations 

and WPC evaluations, the forecasters have the latest data for use in real-time operational 

forecasting model’s preparation of short-range precipitation forecasts. To produce QPFs, 

the WPC meteorologists analyze the current condition of the atmosphere. Then they use a 

numerical model to forecast pressure systems, fronts, jet stream intensity, etc., to form a 

conceptual model of how the storm (or weather) will evolve. The WPC forecasters would 

make consecutive runs of the forecasting model to obtain the trend analysis of the model 

QPFs (WPC, 2014). Figure 2.1, illustrates an example of a Day 1 QPF on March 1st, 

2017. 

 
 

Figure 2.1 Example of a Quantitative Precipitation Forecast (Weather Prediction Center, 

2017) 
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2.5.2 Advanced Hydrologic Prediction Service (AHPS) 

The Advanced Hydrologic Prediction Service (AHPS), under the National 

Weather Service, is a web-based suite of accurate and data-rich forecast information 

(NWS, 2002). The AHPS produces the magnitude and uncertainty of occurrence of 

floods or droughts, from hours to days and months, in advance. The AHPS uses 

sophisticated computer models and large amounts of data from a variety of sources such 

as supercomputers, automated gauges, geostationary satellites, Doppler radars, weather 

observation stations, and the computer and communications system, called the Advanced 

Weather Interactive Processing System (AWIPS). National Weather Services provides 

hydrologic forecasts for almost 4,000 locations across the CONUS, (National Weather 

Service, 2002). 

The current group of AHPS products covers forecasting periods from hours to 

months. It also includes information about the chances of flood or drought. The 

information, like the flood forecast level to which a river will rise and when it is most 

likely to reach its peak or crest, is shown through hydrographs. Other information 

includes but not limited to (National Weather Service, 2002) 

a) The probability of a river exceeding minor, moderate, or major flooding. 

b) The likelihood of a river exceeding a certain level, volume, and flow of water at 

certain points on the river during 90 day periods. 

c) A map of areas surrounding the forecast point that provides information about 

major roads, railways, landmarks, etc. likely to be flooded, the levels of past 

floods, etc. 
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2.5.3 River Forecasting System (NWSRFS) 

The National Weather Service River Forecasting System (NWSRFS) comprises 

programs and techniques for developing river forecasts (National Weather Service, 

2005). The NSWRFS is not a single model but rather a framework containing 

hydrologic/hydraulic algorithms to model a basin for river, flash flood and water 

resources forecasting. The NWSRFS contains three major systems which are utilized to 

set up and use hydrologic and hydraulic models in river forecasting. The three 

components include (National Weather Service, 2005): 

a) the Calibration System,  

b) the Operational Forecast System (OFS), and 

c) the Ensemble Streamflow Prediction System (ESP).  

Every system interrelates with other different models and could be used to determine  

rivers forecast. Figure 2.2, shows the major components of the NWSRFS.  
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Figure 2.2 Operational flow diagram of the NWS River Forecast System. (McEnery, 

Ingram, Duan, Adams, & Anderson, 2005) 

The components of the NWSRFS have the following primary functions: 

Operation Forecast System 

❖ generate short-term river and flood forecasts using calibrated model 

parameters 

❖ maintain model state variables 

Calibration System 

❖ use historical data to generate time series 

❖ determine model parameters 

Ensemble Streamflow Prediction System 
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❖ generate probabilistic forecasts extending weeks or months into the future 

using current model states, calibrated model parameters, and historical time 

series. 

Hydrologic operations in the NWSRFS are organized into Table 2-2 to specify the 

physics of water movement for any sub-basin (NWS, 2005): 

Table 2.2 Hydrologic Operations in the NWS River Forecast System, (National Weather 

Service, 2005) 

 

Types of Operation Methods 

Snowmelt Models HYDRO 17 Snow Model 

Rainfall-Runoff Models 

Sacramento Soil Moisture Accounting 

NWS RFC Antecedent Precipitation Index Model 

Xinanjiang Soil Moisture 

Temporal Runoff Unit Hydrograph 

Channel Losses and Gains Simplified Loss/Gain Method, Consumptive Use 

Routing Model 

Lag and K; Muskingum; Layered Coefficient; 

Tatum 

Dynamic wave routing models 

(DWOPER/FLDWAV) 

Baseflow Simulation 
The base flow simulation model 

Single, independently controlled reservoir under 

Reservoir Regulation 
Various modes of operation 

Multiple reservoirs operated jointly 

Adjustment Procedures 
Simplified flow adjustment and blend 

Single-valued rating curve with log or hydraulic 
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Stage-Discharge Conversion Extensions and loop ratings 

Time Series Computation Computation of mean discharge; Weight time series 

 

The National Weather Service River Forecast Centers (RFCs) use the NWSRFS 

to make short-term forecasts (one day to a week in advance) in river flows and floods and 

long-term probabilistic river outlook (one week to months in advance) in support of water 

supply management and flood mitigation. The RFCs use the NWSRFS to generate the 

following (National Weather Service, 2005) 

➢ flood forecast 

➢ general river forecasts used for navigation, recreation and other purposes 

➢ reservoir inflow forecast 

➢ snowmelt flood forecast 

➢ flash flood guidance 

The NWSRFS has been in operation for over thirty years and is continuously 

refined and improved (NWS, 2005). 

2.5.4 Community Hydrologic Prediction System (CHPS) 

In the past thirty years, NWS hydrologists have used the NWSRFS as the 

essential infrastructure for their hydrologic operations. NWSRFS is remarkable that it has 

met most of the NWS needs for a long time. With increasing operational needs and rising 

support costs, the NWSRFS will be retired and substituted through the Community 

Hydrologic Prediction System. CHPS has been developed by the NWS in collaboration 

with Deltares (Delft Hydraulics as formerly known) in the Netherlands. The Delft-Flood 

Early Warning System (FEWS) serves as the infrastructure for CHPS with NWS 
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hydrologic models and the U.S. Army Corps of Engineers (USACE) hydraulic models 

providing the forecasting core. Figure 2.3 illustrates the core idea of the relationship 

between CHPS and FEWS (NWS, 2010): 

 
 

Figure 2.3 Relationship Between CHPS and FEWS, (National Weather Service, 2010) 

CHPS is a system and a concept. The community concept of CHIP indicates a 

desire on the part of National Oceanic and Atmospheric Administration (NOAA) to get  

to the broader hydrologic community. CHPS is also an open forecasting system designed 

to be modular in nature and built upon standard software packages, modern protocols, 

and open data modeling standards. CHPS uses the FEWS as the core of its infrastructure 

combined with NWS and U.S. Army Corps of Engineers hydrologic and hydraulic 

models. FEWS provides data import, storage, display, and some basic hydrologic 

calculations. The current CHPS includes the same models that are currently used in 

NWSRFS, with the exception of the hydraulic routing models. The NWS models 
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includes: the Anderson Snow model (the Snow 17 model); the Sacramento Soil Moisture 

and Continuous Antecedent Precipitation Index Runoff Model; a Unit Hydrograph 

model; Lag and K, Tatum, Layered Coefficient, and Muskingum routings; and NWS 

developed glacial melt model; and NWS Rain/Snow Elevation Model; and NWS channel 

baseflow and losses models. The NWS DWOPER and FLDWAV unsteady flow routing 

models will not be ported in CHPS. The U.S. Army Corps of Engineers HEC-RAS will 

be used for the unsteady hydraulic routing by the NWSRFCs in their operational 

forecasting environment for the first time (National Weather Service, 2010). 

2.6 Lower Colorado River Authority 

Since the late 1980s, the Highland Lake System under the Lower Colorado River 

Authority (LCRA) has adopted a mathematical model, developed by the University of 

Texas at Austin for the reservoirs and dams management (Mays, 1991). The model uses 

current and anticipated river discharge, rainfall data, and reservoir characteristics to 

simulate and demonstrate the potential for flooding in specific communities under 

various scenarios of reservoir operation in real time and through graphic displays. The 

real-time flood management model consists of two components: 1) a real-time flood 

control module, and 2) a data management module. Figure 2.4, illustrates the basic 

structure of the real-time flood management model. 
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Figure 2.4 Structure of the LCRA Highland Lake System Real-Time Flood Management 

Model 

 

The real-time flood control module contains the following submodules shown in 

Figure 2.4 Rainfall-runoff submodule rainfall-runoff model developed by the University 

of Texas at Austin for ungauged drainage area. 

1. Unsteady flow routing submodule NWS, Dynamic Wave Operational Model 

(DWOPER). 

2. Gate and Operation submodule a computer program developed by the University 

of Texas at Austin to determine gate-operation information for the unsteady flow 

model. 
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3. Display submodule graphical software developed by the University of Texas at 

Austin. 

The data-management submodule was developed by the LCRA for maintaining 

and validating data. The data-management module consists of two types of data: 1) real-

time data, which is dynamic, and 2) stored data, which are stored in the database and are 

fixed. Real-time data are rainfall collected at gaging stations, streamflow collected at 

automated stations, headwater and tailwater elevations at each dam, information on 

which rivers and reservoirs are to be simulated in flood routing, and current reservoir 

operations. Stored data are drainage-area information, hydrologic-parameter estimates for 

the rainfall-runoff submodule, unsteady flow model data that describe the physical 

system and include river cross-section information on roughness and other 

characteristics, and characteristics of reservoir spillway structures (L. W. Mays, 1991). 

The development of this model represents a logical step in the evolution of flood 

forecasting and flood management models that can be used in a real-time mode for 

multiple reservoir operation. The combination of the rainfall-runoff models and the 

hydraulic-routing models in the Highland Lake System has been a step forward in real-

time operational forecasting model’s development. The integration of these models for 

real-time flood management using real-time data along with simulated future rainfall, 

river-stage, and operational controls is a further step in the evolution of real-time 

operational forecasting models for large river-reservoir systems (L. W. Mays, 1991). 
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2.7 Flood Forecasting and Warning Service in Italy 

In Italy, the Civil Protection Authority, created under the National Law 225/92 

(Todini, et al., 2005), is responsible for forecasting and mitigating risks and acts together 

with the central and local governments and the principal forces. The regional Civil 

Authorities in charge of managing flood emergencies, while a number of “Functional 

Centers” were created for issuing real-time flood forecasting and warnings to the Civil 

Protection Authorities. Thus, the implementation of the law varies from one region from 

another. The following subsection presents an example of a river system in Italy that is 

under the administration of a regional Civil Authority. 

2.7.1 The Upper Po River Flood Forecasting System 

In the Upper Po River basin, the Civil Protection Authority developed flood 

emergency plans in stages: Survey, Warning, Alarm, and Emergency.  Emergency 

services are initiated by flood forecast, and then the flood control policies are carried out 

based on observing the evolution of the flood event. Risk is categorized by three levels: 

 1) normal situation, 

 2) low danger 

 3) high danger. The plans are carried out in the SSRN (Room for the Situation of 

Natural Risks), as the operational center dedicated to managing the task. The SSRN is a 

24-hour operation for survey and warning. The technical activities of the SSRN include:  

❖ A hydro-meteorological survey by running computer systems and collecting and 

collating data from the survey network;  
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❖ Hydro-meteorological forecast which produces and disseminates forecasting and 

warnings, also carry out appropriate studies improvement for the system and the 

practice. 

The information systems used by the SSRN are the following: 

✓ Automatic network for hydro-meteorological monitoring; 

✓ Meteorological radar; 

✓ Automatic vertical profiler of the atmosphere; 

✓ Meteorological forecasts on a local and global scale; 

✓ Numerical modeling for flood forecasting on the main river system. 

Flood forecasting is conducted using the MIKE-FLOODWATCH system. 

2.8 Flood Forecasting and Warning Service in the United Kingdom 

The Environment Agency (EA) is a non-departmental organization, formed in 1996 

and under administrated by the United Kingdom Government’s Department for 

Environment, Food and Rural Affairs (DEFRA), with the responsibilities relating to the 

protection and enhancement of the environment in England, such as: climate change, air 

quality, land quality, water quality, water resources, fishing, and river navigation (Todini, 

et.al., 2005). The EA is the primary authority for flood risk management operation. The 

EA is responsible for increasing public awareness of flood forecasting/warning, flood 

risk, and has general supervisory duty for flood control management. The EA 

administrates six regions in the United Kingdom: the Anglian Region, the Midlands 

Regions, the North-West Region, the South West Region, the South East Region, and the 

Yorkshire & North East Region. The following subsection discusses the real-time flood 
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forecast and operation in the Anglian Region, which is the largest of the six Environment 

Agency administrative regions. 

2.8.1 The Anglian Flow Forecasting Modeling System (AFFMS) 

The Environment Agency Anglian Region is in charge of flood forecasting and flood 

warning in the region (Todini, et al., 2005). The Environment Agency Anglian Region 

covers an area of 10,502 square miles, and it is about twenty percent of England and 

Wales. The Anglian Region is the largest of the six Environment Agency administrative 

regions. The Anglian region has developed an internet-based comprehensive and fully 

operational, region-wide flow forecast modeling system, the Anglian Flow Forecasting 

Modeling System (AFFMS). The AFFMS has the following fundamental features 

(Todini, et al., 2005): 

❖ A highly accessible internet-based user interface that can be used to view forecast 

data and conduct forecasts throughout the Anglian Region; 

❖ Comprehensive geographic information system (GIS) user interface for available 

geographical information. 

❖ Easily understood display of forecast information designed for the public. 

❖ Comprehensive forecast databases with forecast analysis archive. 

❖ An external data interface to allow visualization and application of a variety of 

data types from different sources. 

❖ A generic modeling interface which allows applications of different forecast 

modeling tools including the MIKE 11 system. 
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❖ User-defined scenarios to evaluate alternative operation policies and uncertainty 

analysis. 

2.9 Real-Time Flood Forecasting Previous Studies  

The need for reliable flood forecasting in real time has recently increased, 

especially in, because of the high costs caused by flood events damages. Since the early 

eighties of the past century, the subject of real-time flood forecasting has gained 

increasing attention of many researchers.  

2.9.1 Integrated Simulation and Optimization Models  

The idea of connecting simulation and optimization models together first started 

by (L. W. Mays, Unver, & Lansey, 1987). They developed at that time new methodology 

for the real-time optimal flood operation of river-reservoir systems. it was based on 

interfacing a nonlinear optimization model, which based upon the generalized reduced 

gradient approach, GRG2 (Lasdon, et al. 1978 and Lasdon, and Warren, 1978), with the 

U.S. NWS 1-D unsteady flood-routing simulation model, DWOPER (Fread, 1978).  The 

model’s objective function was based upon minimizing total damages of a flood, which 

are functions of water surfaces elevations.  The optimization model was formulated for 

the operation policy of multi-reservoir systems under flooding conditions to minimize the 

objective function, which defined by minimizing the total deviations from target level of 

water stages and/or discharges.  The optimization model included hydraulic constraints 

and operational constraints.  The optimization model(Unver & Mays, 1990) for the 

operation of multi-reservoir systems under flooding conditions was formulated as 

follows: 
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1. Objective: 

𝑀𝑖𝑛 𝑍 = 𝑓(ℎ, 𝑄) (2.1) 

 

2. Constraints: 

a) Hydraulic constraints defined by the Saint-Venant equations for one-

dimensional gradually varied unsteady flow and other relationships such 

as upstream, downstream, and internal boundary conditions and initial 

conditions that describe the flow in the different components of a river-

reservoir system, 

𝑔(ℎ, 𝑄, 𝑟) = 0 (2.2) 

b) Bounds on discharges defined by the minimum and maximum allowable 

reservoir releases and flow rate at specified locations, 

𝑄 ≤ 𝑄 ≤ 𝑄 (2.3) 

c) Bounds on elevations defined by the minimum and maximum allowable 

water surface elevations at specified locations (reservoir levels included), 

ℎ ≤ ℎ ≤ ℎ (2.4) 

d) Physical and operational bounds on gate operations,  

0 ≤ 𝑟 ≤ 𝑟 ≤ 𝑟 ≤ 1 (2.5) 

e) Other constraints such as operating rules, targets, storages, storage 

capacities, etc. 

𝑊(𝑟) ≤ 0 (2.6) 
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The objective z is defined by minimizing the total flood damage or deviations 

from target levels, or water surface elevations in flood areas or spills from reservoirs or 

maximizing storage in reservoirs.  The variable h and Q are, respectively, the water 

surface elevation and the discharge at the computational points, and r is the gate setting.  

The objective function for minimizing the overall damage was formulated as the 

summation of the total damage at each location. The mathematical expression for this 

objective function is: 

Min 𝑍 = ∑ ∑ 𝑐𝑖ℎ𝑖
𝑡

𝑡𝑖

 (2.7) 

which 𝑖 ∈ 𝐼𝑐 and 𝑡 ∈ 𝑇, where Z is the objective function value; I is the location 

index; Ic is the set that contains flood control locations; t is the time index; T is the time 

domain; and c is the cost coefficient of flood damage.  The real-time model was applied 

to the Highland Lake System including Lake Travis on the Lower Colorado River in 

Texas. 

Ahmed and Mays (2013), developed a newer model and applied it to the same 

lake system. This newer model methodology was for evaluating real-time optimal 

reservoir releases under flooding condition to minimize flood damages for a river-

reservoir system. They formulated the problem as a discrete-time optimal control 

problem in which reservoir releases were considered as the control variables and water 

surface elevations and discharges as state variables. They also used the penalty function 

method to impose the reservoir’s water surface elevations and discharges to the 

downstream reaches into the objective function, Equation 2.8. Their model approach 

consisted of two primary interfaced components, Figure 2.5. These components are the 
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U.S. Geological Survey Full Equation routing model (Franz & Melching, 1997), to 

simulate the dynamic of unsteady flow of the river-reservoir system in one-dimensional 

and simulated annealing method as an optimization technique to optimize reservoir 

releases by flood control gates operating subjected to the mentioned above system 

constraints. The constraints of the were the same as the (Unver & Mays, 1990) model. 

The methodology solved an augmented control case. The model was applied to the Lake 

Travis on the Lower Colorado river-reservoir system in Texas,  

Figure 2.6. The application of the model revealed the advantage of the model in 

improving a given operation policy, no matter what kind of objective function was, 

whether it was linear or nonlinear. The objective of this model was also similar to the 

Unver and Mays model, which minimize the total damage or deviations from target levels 

of water surface elevations and/or discharges. 

Min 𝑍 = ∑ ∑ 𝑐𝑖ℎ𝑖
𝑗

+ 𝑐𝑖
′𝑄𝑖

𝑗

𝑗𝑖

 (2.8) 

which i ∈ Ic and/or 𝐼𝑐
′  , j ∈ T .  The indices are the same as the previous model 

described previously. The new term, 𝑐𝑖
′s the cost coefficient as a function of discharge.  
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Figure 2.5, Optimal control approach to operations problem, (Ahmed & Mays, 2013) 



 

49 
 

 
 

Figure 2.6, Highland Lakes System, Texas 

 

A newer approach, later on, developed and tested by (Che & Mays, 2015), for 

determining of river-reservoir systems release schedules that is before during and after an 

extreme flood event in real-time. They formulated the problem as a real-time optimal 

control problem in which the releases from a reservoir represented the decision variables 

of their optimization model. There were five components in their model: the first 

component was the U.S. Army Corps of Engineers (USACE) Hydrologic Engineering 

Center - Hydrologic Modeling System (HEC-HMS), That models rainfall-runoff 

processes of watershed systems; the second was the U.S. Army Corps of Engineers 
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Hydrologic Engineering Center - River Analysis System (HEC-RAS) for one-

dimensional unsteady flow dynamics and routing; the third components was a reservoir 

release operation model followed by the fourth part which was a short-term rainfall 

forecasting model to forecast rainfall over the next a few hours during a rainfall event; 

and the last components was a genetic algorithm (GA) (in Microsoft Excel) optimizer 

interfaced with the other components that determine the real-time operation of a river-

reservoir systems.  

 

Figure 2.7, depicts the model structure is an interconnection of model 

components. 

 The mechanism of the model lets it start with the known real-time rainfall as the 

actual rainfall input up to the time of decision making. Thereafter, the forecasting process 

of the next time period will start to generate forecasted rainfall, also flows in the system 

using real-time rainfall of NEXRAD or rainfall gages network will be determined. The 

model considers both observed and forecasted rainfall data to use it as the input of HE-

HMS model to simulate the rainfall runoff process of the watershed, the output though of 

HEC-HMS which is the hydrographs will be used as inputs for the optimization model 

which is here the genetic algorithm into Microsoft Excel to determine the releases of the 

river-reservoir system, Figure 2.8, shows the basic steps of the optimization and 

simulation model mechanism. 
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Figure 2.7 Model structure and interconnection of model components, (Che & Mays, 

2015, 2017) 

The model uses MATLAB version 2014b to perform the interfacing between 

HECHMS, the reservoir operation model, and HEC-RAS. They used free open software 

Pullover’s Macro Creator version 4.1.0 to automate the overall communicating processes 

among all model components. The model employed the genetic algorithm (GA) of 

Microsoft Excel as optimization method which is not as efficient as MATLAB’s (GA) 

that we are using in this research, more details about MATLAB’ (GA) is explained in 

chapter seven. 
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Figure 2.8, Basic steps of the optimization and simulation model, (Che & Mays, 2015) 
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The authors tested the model in a real-time flood control operation of a river-

reservoir system and for quality assurance as well by suggesting a small example 

application. They proposed two watersheds with two reservoirs system 1 and 2. Reservoir 

1 and 2 located downstream watershed 1 and 2 respectively, so that the runoff of every 

watershed discharged directly in its respective reservoir. Figure 2.9 illustrates the 

schematic of the example application. Then, the releases from each reservoir are routed 

downstream through the reaches 1, 2 which in reach up to the city A where the damage 

has to be minimized. 

 
 

Figure 2.9, Example system 
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Thereafter, (Che & Mays, 2017) applied the same model to a real-world problem 

which was the catastrophic May 2010 flood on the Cumberland River at Nashville, 

Tennessee, Figure 2.10, which is described in more details in the next chapter, using the 

same components and the methodology above. 

 
 

Figure 2.10, Cumberland River Basin 

The application of the model was to a portion of the Cumberland River upstream 

of Nashville, Tennessee for the May 2010 extreme flood event which is used is this 

researched as well. The optimization/simulation model has been applied to a portion of 

the large river-reservoir system, the Cumberland River basin as in Figure 2.11. The 

objective (Equation 2.9) of the optimization and simulation model was to minimize the 

peak flood stage at Nashville, subsequently to keep the flood elevation at downtown 

Nashville below the 100-year stage of 48 ft during the whole simulation period. The 

reservoir operations rules were set in the model according to the water control USACE 

manual. 
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Min 𝑍 = 𝑀𝑖𝑛(𝑀𝑎𝑥 ℎ𝑖
𝑡) (2.9) 

The process of simulating and optimizing of the river-reservoir system starts with 

the HEC-HMS model the (hydrologic modeling), that simulates the Cumberland River 

Basin rainfall-runoff process. The rainfall-runoff model (HEC-HMS) includes all sub-

basins and reaches upstream to the Cordell Hull Reservoir, where the reservoir inlet node 

is the outlet node of the HEC-HMS model. Then the HEC-HMS model generates the 

Cordell Hull reservoir inflow hydrograph. These inflow hydrographs is transmitted to the 

Cordell Hull reservoir operation and optimization models for determining its optimal 

operation. Once the gate release decisions are computed, the information becomes the 

input of the unsteady flow HEC-RAS model for downstream hydraulic routing up to Old 

Hickory Reservoir inlet.  
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Figure 2.11, Schematic of the portion of the Cumberland River Basin used in the 

optimization/simulation model, (Che & Mays, 2017) 

The inflow hydrographs now enter the Old Hickory reservoir operation and 

optimization model like Cordell Hull Dam and also for J. Percy Priest Dam to determine 

the optimal operation. The condition of the system control point at Nashville, Tennessee 

determines the optimization model decision variables. Thus, the process will be repeated 

until the objective is met. The objective here is to keep the levels of flood peak at 

Nashville under the 100-year level through the event of May 2010 which is 48 ft with 

associated flow rate 172000 cfs as seen in Figure 2.12. 
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Figure 2.12, Discharge and flood stage as a function of time in Nashville, Tennessee 

during the April 29 – May 7, 2010 event, (U.S. Army Corps of Engineers, 2010a) 

The optimization/simulation operation model showed an efficient methodology, 

algorithm, numerical, and optimal reservoir systems operation model for determining 

reservoir release schedules prior to, during, and after an extreme flood event in a real-

time fashion. 
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3 CHAPTER 3 RAINFALL-RUNOFF MODEL 

3.1 Introduction 

Reliable estimation of a river flow generated from the watershed is required as part 

of a data set that help to make a decision for planning and to manage river-reservoir 

systems. The characteristic of the time series of a river flow that can affect modeling, 

simulation, and planning of river-reservoir system can include the sequencing of flows 

hourly and longer time steps, the spatial and temporal changes in flows, season allocation 

and flows characteristics. The better prediction of streamflow would be expected to come 

from water level observations got at a gauge station, converted to flow estimates using a 

well defined and stable stage-discharge curve. However, such observations are only 

available for a limited number of gauging locations and for the relatively short time 

range. Estimates for ungauged locations and a much longer period are required for 

contemporary water management, and ways to make estimates for possible future 

conditions are required as well (Vaze, Jordan, Beecham, Frost, & Summerell, 2012). 

A variety of methods are available to determine the run-off from catchments, using 

either observed or forecasted data wherever possible, or estimating by experimental and 

statistical techniques, and more commonly using rainfall-runoff models.  The 

methodology of modeling used to estimate streamflow depends on the purpose of the 

modeling, time, and skills and instruments are available within the organization. With 

increasing levels of inter-agency collaboration in water planning and management, 

development of a best practice approach to rainfall-runoff modeling is desirable to 
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provide a consistent process and improve interpretation and acceptability of the modeling 

results. 

3.2 KINEROS (The Kinematic Runoff and Erosion Model) 

The Kinematic Runoff and Erosion Model, KINEROS2, is an event-oriented, 

physically based model describing the process of interception, infiltration, surface runoff, 

and erosion from a small urban and agricultural watersheds (Woolhiser, Smith, & 

Goodrich, 1990). A cascade of planes and channels represents the watershed; the partial 

differential equations are describing overland flow, channel flow, and erosion, and finite 

difference techniques solve sediment transport. Spatial variability of rainfall and 

infiltration, runoff, and erosion parameters can be determined. KINEROS can also be 

used to compute the effects of a number of artificial features such as urban developments, 

small detention reservoirs, or lined channels on flood hydrographs and sediment yield. 

(Memarian et al., 2013) used three storm events in different intensities and durations 

were required to calibrate KINEROS2. They showed that the calibration results were 

excellent and very good fittings for runoff and sediment simulations based on the 

aggregated measure. Validation results demonstrated that the INEROS2 is reliable for 

runoff modeling, while KINEROS2 application for sediment simulation was only valid 

for the period 1984–1997. Later on, (Guber et al., 2014) has tested KINEROS2 fitting to 

the experimental cumulative runoff data. They considered infiltration in unsaturated soil 

is accounted for by a net capillary drive parameter in the Parlange equation,G. Results 

showed that the most accurate prediction was obtained when the G parameter was 

matched to the cumulative ranfall-runoff. The KINEROS2-recommended parameter 
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slightly overestimated the calibrated value of parameter G and yielded less accurate 

predictions of runoff. The pad transfer functions estimated parameters systematically 

deviated from calibrated G values that caused high uncertainty in the KINEROS2 

predictions. The flow chart below Figure 3.1 illustrates the solution solving algorithm of 

the KINROS2 model: 
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data from the 

closest gage

Yes

Rainfall exceeds the 

infiltrability of the soil 

at the surface

Compute the out flow 
(Hortonian Overland Flow) 

Q=αhm Q is discharge per unit 
width and h is the storage of 

water per unit area.  Parameters 
and m are related to slope, 

surface roughness, and flow 
regime

No

Conjunct Q with continuity equation

∂h/∂t+∂Q/∂x=q(x,t)

where t is time, x is the distance along the slope direction, and q is the 

lateral inflow rate. To get  ∂h/∂t+αmhm-1 ∂h/∂x=q(x,t)

Routing the 

overflow 

land with The 

kinematic 

routing 

method, the 

boundary 

condition is 

h(0,t)=0

solves the kinematic wave equations using a four-point implicit finite 

difference method 
hi+1,j+1- hi,j+1+ hi+1,- hi,j+2∆t/∆x{Ɵw[αi+1,j+1(hi+1,j+1)

m]+(1- 
Ɵw)[αi,j+1(hi,j+1)m- αi,j(hi,j)

m]}-∆t(  j+1+  j)=0

subdivide the watershed into overland flow 

and open channel elements, typically using a 

topographic map with minimal number of 

overland flow elements, to reflect substantial 

variations in soils, slope, vegetation, land use, 

etc.

assigned appropriate parameter values 

describing its geometric, hydraulic, 

infiltrative and erosive characteristics, as well 

as its connections to neighboring elements.

Start

Topographic Map, climate 

and soil information

Obtain the solution 

by by Newton's 

method

No

Obtain 

element 

output

(Hydrograph)

Yes

Channel Routing

Unsteady, free surface flow in channels is 

also represented by the kinematic 

approximation to the equations of 

unsteady, gradually varied flow. The 

continuity equation for a channel with 

lateral inflow is 

∂A/∂t+∂Q/∂x=q(x,t)

Compound 

channle

The compound channel 

algorithm is based on two 

independent kinematic 

equations -- one for the main 

channel and one for the 

overbank section - that are 

written in terms of the same 

datum for flow depth.

Yes

no

The kinematic equations for channels are 

solved by a four point implicit technique 

similar to that for overland flow surfaces, 

except that A is used instead of h, and the 

geometric changes with depth must be 

considered:
Ai+1,j+1-Ai,j+1+Ai+1,-Ai,j+2∆t/∆x{Ɵw[dQi+1/

dA(Ai+1,j+1-Ai+1,j+1)]+(1- Ɵw)[ dQi/dA(Ai,j+1-
Ai,j)]}-0.5∆t(qoi+1,j+1+qoi+1,j+ qoi,j+1+qoi,j)=0

 define infiltrability, following Hillel (1971), 

as the limiting rate at which water can enter 

the soil surface.  This is more often called 

infiltration capacity, but capacity is not a 

dynamic term.  The general one-layer model 

for infiltrability, fc, as a function of infiltrated 

depth, I, is (Parlange et al., 1978)
fc=ks[1+α/exp(αI/B)-1]

Plane

Channel

Or Pipe

Pond

no

Detention Structure 

Routing

a watershed may contain 

detention storage 

elements, which receive 

inflow from one or two 

channels and produce 

outflow from an 

uncontrolled outlet 

structure. the dynamics of 

the storage are well 

described by the mass 

balance and outflow 

equations
dV/dt=qI-qO-APfC

qO=C1 (hr - hz)
C2

No

Output

End

 
 

Figure 3.1 Detailed Flowchart of the Procedure Used in KINEROS 
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3.3 MIKE SHE Model 

The integrated hydrological modeling system MIKE SHE was first developed by 

Institute of Hydrology in the United Kingdom, Société Grenobloise d’Etudes et 

d’Applications Hydrauliques (SOGREAH) in France, and Danish Hydraulic Institute 

(DHI) in Denmark in 1977. The model simulates water flow in the entire land-based 

phase of the hydrological cycle from rainfall to river flow, via different flow processes 

such as overland flow, infiltration in soils, evapotranspiration from vegetation, and 

groundwater flow. MIKE SHE can be characterized as a deterministic, physically-based, 

distributed model. The distributed model MIKE SHE has been used to model wetlands 

for a lowland wet grassland, the Elmley Marshes, in southeast England and demonstrated 

by (Thompson, Sørenson, Gavin, & Refsgaard, 2004). The results suggested that 

improvements could be made to the MIKE SHE bypass flow routine to enable it to 

represent macropore flow associated with soil cracking and swelling more accurately. 

(Butts et al., 2005) Presented new developments of grid-based hydrological modeling 

have been spurred by increasing access to meteorological modeling, radar, and satellite 

remote sensing. The approach adopted in the flood relief project has been to develop a 

flexible, hydrological modeling framework based on the MIKE SHE that permits changes 

in the model structure, including both conceptual and physics-based process descriptions, 

to be made within the same modeling tool. The model framework was used to derive a 

distributed sub-catchment based conceptual model for modeling the rainfall-runoff 

process and a comprehensive hydraulic model for the highly flood-prone and complex 

Upper and Middle Odra River in Poland. This model has been successfully calibrated 



 

63 
 

against measurements both in the main river system and tributary catchments, including 

the extreme flooding in July 1997. Figure 3.2 shows how a catchment is represented in an 

integrated fashion by the major processes and their interaction (MIKE by DHI, 2008). 

Applications of MIKE SHE include but not limited to integrated catchment hydrology, 

conjunctive use of surface water and subsurface water, irrigation and drought 

management, wetland management and restoration, environmental river flows,  

floodplain management, induced groundwater flood, climate and land use change, 

nutrient fate and management, and groundwater remediation (Danish Hydraulic Institute, 

2003). 

 
 

Figure 3.2 Process-Based Structure of the MIKE SHE Hydrological Modeling System 
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3.4 BASINS (Better Assessment Science Integrating point & Non-point Sources) 

The Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) 

is a multipurpose environmental analysis system intended to help regional, state, and 

local agencies perform watershed- and water quality-based studies. It was developed by 

the U.S. Environmental Protection Agency to assist in watershed management and 

TMDL development by integrating environmental data, analysis tools, and watershed and 

water quality codes. A geographic information system (GIS) provides the integrating 

framework for BASINS. GIS organizes spatial information so it can be displayed as 

maps, tables, or graphics. GIS allows the user to analyze landscape information and 

display relationships among data. Figure 3.3 depicts BASINS’s Geographic Information 

System Interface. By using GIS, BASINS has the flexibility to display and integrate a 

wide range of information (e.g., land use, point source discharges, and water supply 

withdrawals) at a scale chosen by the user (U.S. Environmental Protection Agency’s, 

2015) 

BASINS models watershed and water quality studies easier by putting together key 

data and analytical components in one tool. BASINS allow users to access national 

environmental information efficiently, incorporate local site-specific data, apply 

assessment and planning tools and run a variety of proven, robust nonpoint loading and 

water quality models. The  BASINS model is a useful tool for those interested in 

watershed management, development of total maximum daily loads (TMDLs), coastal 

zone management, nonpoint source programs, water quality modeling, and National 
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Pollutant Discharge Elimination System (NDPES) permitting, (U.S. Environmental 

Protection Agency’s, 2015). 

BASINS, through its extensible component-based architecture, is a dynamic 

system whose capabilities have increased as technology has allowed, and needs have 

demanded. Another implication of the extensible architecture is that each BASINS tool 

can be developed independently of each other BASINS tool, greatly increasing the 

potential for independent groups to develop compatible BASINS extensions 

simultaneously, (Kinerson, Kittle, & Duda, 2009), Figure 3.4 shows BASIN4 system 

overview. 

 
 

Figure 3.3 BASINS Geographic Information System Interface 
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Figure 3.4 BASIN System Overview 

3.5 Hydrologic Modeling System (HEC-HMS) 

The Hydrologic modeling system (HEC-HMS) program is a product of the US 

Army Corps of engineer’ research and development program, (Feldman, 2000). HEC-

HMS is intended to simulate the precipitation-runoff processes of a dendritic watershed. 

It is also designed to be applicable in a wide range of geographic areas for solving a 

broad range of problems and examples. This includes large river basin water supply and 

flood hydrology to small urban or natural watershed runoff. Hydrographs produced by 

the program can be used directly or in conjunction with other software for studies of 

water availability, urban drainage, flow forecasting, future urbanization impact, reservoir 

spillway design, flood damage reduction, floodplain regulation, wetlands hydrology, and 

systems operation, (Fleming & Brauer, 2016). 
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For precipitation-runoff-routing simulation, the program provides the following 

components, (Feldman, 2000): 

✓ Precipitation-specification options which can describe an observed (historical) 

precipitation event, a frequency-based hypothetical precipitation event, or an 

event that represents the upper limit of precipitation possible at a given location. 

✓ Loss models which can estimate the volume of runoff, given the precipitation and 

properties of the watershed. 

✓ Direct runoff models that can account for overland flow, storage, and energy 

losses as water runs off a watershed and into the stream channels. 

✓ Hydrologic routing models that account for storage and energy flux as water 

moves through stream channels. 

✓ Models of naturally occurring confluences and bifurcations. 

✓ Models of water-control measures, including diversions and storage facilities. 

HEC-HMS has been used in this research to model the rainfall-runoff as the first 

component of the optimization simulation model. Figure 3.5 reparents watershed scale 

rainfall-runoff process represented by HEC-HMS. 
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Figure 3.5 Watershed Scale Rainfall-Runoff process Represented by HEC-HMS 

(Feldman, 2000). 

When modeling a storm event using HEC-HMS, precipitation falls on the land 

surface, and water may pond. For continuous, non-event-based simulation, 

evapotranspiration may be included in the model. Depending on soil type, land surface 

type, antecedent moisture and other properties of the watershed, a portion of the water 

may infiltrate. The infiltrated water stored temporarily in the soil layer. Although 

physically, some of the infiltrated water may rise to the surface again due to capillary 

action, HEC-HMS does not include this phenomenon. Instead, HEC-HMS accounts for 

horizontal movement as interflow just beneath the surface, and the model also accounts 

for vertical percolation of water from the soil layer to groundwater aquifer underneath the 

watershed. The interflow eventually moves into the basin stream channel. Water in the 

groundwater layer although moves very slowly, a portion of it eventually returns to the 
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channel as base flow. Rainfall that does not pond or infiltrate moves by overland flow to 

a basin stream channel and the total watershed outflow is the combination of overland 

flow, the rainfall that directly falls on water bodies in the watershed, and interflow and 

base flow (USACE, 2000a, and 2010b). In the optimization/simulation model, the 

HECHMS serves as the first component to compute the watershed runoff after a storm 

event, with a given input of an observed hyetograph or a designed storm. The watershed 

runoff data then becomes the input of the next component, the hydraulic unsteady flow 

model. 

3.5.1 Water Description in HEC-HMS 

Physically, a watershed can be represented in the HEC-HMS using the BASIN 

model. The is a number of hydrologic elements can be added and connected to each other 

to model the natural flow of water for a real watershed. Table 3.1 describes each 

hydrologic element of HEC-HMS.  

The HEC-HMS program deals with each element through parameter data so that 

that program models the hydrologic processes assigned to each element. For example, the 

sub-basin element has many mathematical models available in the program for 

determining the losses of precipitation, transforming excess precipitation to the subbasin 

outlet also adding baseflow. Table 3.2 shows the available method for reach and sub-

basin elements. The parameter data can be entered the component editor or through the  

global editor which can be used for viewing the parameter data. 
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Table 3.1 The Hydrologic Elements Kinds, (U.S. Army Corps of Engineers, 2016d) 
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Table 3.2 Sub Basin and Reach Elements Method in HEC-HMS 
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3.5.2 HEC-HMS Meteorology Modeling 

The meteorological model determines the precipitation input data that sub-basin 

element requires. The meteorological model uses both gridded and point precipitation and 

the ability to simulate frozen and liquids precipitation along with evapotranspiration. 

Table 3.3 below briefly describes the available methods for determining grid cell 

precipitation or basin average precipitation. 

Table 3.3 HEC-HMS Precipitation Methods 
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4 CHAPTER 4 ONE AND TWO-DIMENSIONAL UNSTEADY FLOW MODELS 

4.1 Introduction 

Most open channel flow is unsteady (such as natural streams, drainage channels, 

and even storm sewers) is unsteady as the flow conditions when the hydraulic properties 

are varying with respect to time. These variations are significant, especially during and 

after a storm event. In practice, for flood studies, sometimes the steady flow equations 

use to determine the maximum flow depths in a stream channel, assuming the flow is 

steady at peak discharge. Nevertheless, this approach is conservative, since it does not 

account for the attenuation of flood waves due to the storage effect of the channel, on the 

one hand. On the other hand, the timing of the peak flows in the steady flow approach 

cannot be determined, while it is very important to time the flood elevations at a specific 

location as well as to the water surface elevation. Prediction of how a flood wave 

propagates in a channel precisely is possible only through the use of the unsteady open 

channel flow equations. Usually, referred to unsteady flow calculations in open channels 

as flood routing or channel routing calculations, (Akan, 2006). 

Unsteady flow equations are very complicated, and for the most part, are not docile 

to analytical solutions. So, the numerical methods are being used for solving unsteady 

flow equations. Because of the enormous progress in computer technology and numerical 

methods that have been achieved in recent years, the use of numerical simulation 

methods in water resources engineering gets extreme importance. In general, it can be 

applied to all engineering disciplines. Numerical computations in many cases offer a 
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cost-efficient and, therefore, a very attractive possibility for the investigation 

optimization of processes and research operations.  

An important aspect when using numerical simulation techniques is the “proper” 

mathematical modeling of the processes to be investigated. If there is no following proper 

model, even a perfect numerical method will not yield reasonable results. Another crucial 

issue related to modeling is that frequently it is possible to significantly reduce the 

computational effort by certain simplifications in the model, (Schäfer, 2006).  

The unsteady one and two-dimensional Saint-Venant equations are solved by an 

implicit finite difference scheme and finite volume method respectively to handle wide 

open channel range and river flows. The complete derivation of the Saint- Venant 

equations can be found in text Applied Hydrology, (V. Te Chow et al., 1988). There are 

many models (software) have been developed by different agencies, which are very 

accurate and useful to simulate river flow in both one and two-dimensional directions 

computations. All most, all of them solve the conservation of mass and momentum 

equations. 

4.2 One-Dimensional Unsteady Flow 

Steady and unsteady flow classification is useful in describing the flows of interest. 

The uniform flows simplest steady flow, in which there are no changes in hydraulics 

properties with respect to distance. For a uniform steady flow, every flow variable is 

constant on distance and time. If any modification in the flow variable occurred, then it is 

classified and called as nonuniform and can be further subdivided into a rapidly varied 

and gradually varied flow. The flow variables may change with distance, in a gradually 
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varied steady flow,  but all variables are still constant in time. The series of backwater 

profiles explained in details in open channel hydraulics (V. T. Chow, 1959). On the other 

hand, rapidly varied flow, remarkable variations happen in the vertical and transversal 

flow. A hydraulic jump downstream a hydraulic structures is a good example for that. 

This flow can still be analyzed as one-dimensional flow, but the zone that including the 

rapidly varied of the flow must be recognized and isolated in the analysis. The last case 

of unsteady uniform flow cannot exist, so the hydraulic analysis focus only on 

nonuniform unsteady flow, (V. T. Chow, 1959). 

Due to the high development in computer processing, a huge amount of work has 

been done during the past few decades in developing computer models especially for use 

in water resources planning and management. Powerful software packages are now 

playing an increasingly essential role in all aspects of water resources management and 

providing a broad range of analysis capabilities as reported in the literature. 

4.2.1 Dynamic Wave Operational Model (DWOPER) 

In the early 1970s, the NWS Hydrologic Research Laboratory began to develop a 

dynamic wave routing method based on the implicit finite difference solution of the St. 

Venant equations. This model is known as DWOPER (Dynamic Wave Operational 

Model) (Fread, 1978). DWOPER routing model is a dynamic wave flood routing model 

can be used to routes an inflow hydrograph to a point downstream. It can also be used on 

a one or multiple river systems of where storage routing methods are inadequate due to 

the effects of backwater, tides, and mild channel bottom slopes. The model is based on 

the complete one-dimensional St. Venant equations. A weighted four-point nonlinear 
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implicit finite difference scheme is applied to get a solution to the St. Venant equations 

using a Newton- Raphson iterative technique.  

DWOPER has some features (Fread, 1978) that make it applicable to a variety of 

natural river systems for real-time forecasting. It is designed to accommodate various 

boundaries conditions and irregular cross-sections at unequal distances along a single 

multiple-reach or many rivers having a dendritic configuration. It allows for roughness 

parameters to vary with location, stage or discharge. Temporally varying lateral inflow, 

wind effects, bridge effects, off-channel storage, and weir-flow channel bifurcations to 

simulate levee overtopping are included among its features. Time steps are solely on the 

desired accuracy since the implicit finite difference techniques are not restricted to the 

tiny time steps of explicit technique due to numerically stability considerations. However, 

this can enable DWOPER to be very efficient as to computational time for simulating 

slowly varying floods of several days duration. The mathematical basis for DWOPER is a 

finite difference solution of the conservation form of the one-dimensional equations flow 

consisting of the conservation of mass and momentum equations (Fread, 1978): 

Conservation of Mass Equation 

𝜕𝑄

𝜕𝑥
+

𝜕(𝐴 + 𝐴0)

𝜕𝑡
− 𝑞 = 0 (4.1) 

Momentum Equation 

𝜕𝑄

𝜕𝑥
+

𝜕(𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴 [

𝜕ℎ

𝜕𝑥
+ 𝑆𝑓 + 𝑆𝑒] − 𝑞𝑣𝑥 + 𝑊𝑓𝐵 = 0 (4.2) 

 

Where: 
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Q the discharge; 

A the cross-sectional area; 

A0  the off channel cross-sectional area where velocity is negligible; 

h the water surface elevation; 

q  the lateral inflow or outflow; 

x  the distance along the channel; 

t  the time; 

g  the acceleration of gravity; 

vx  the velocity of lateral inflow in the x-direction; 

Wf  the wind term; 

B  the top width of the channel; 

 Sf  the energy grade line slope.  

Se  the large-scale eddy loss slope for contraction/expansion. 

4.2.2 Dam-Break Flood Forecasting Model (DAMBRK) 

Forecasting downstream flash floods due to dam failure is an application of flood 

routing that has gained considerable attention in recent decades. The most widely used 

dam-break model in the late 1970s to early 1990s was the NWS DAMBRK (Dam-Break 

Flood Forecasting) model by Fread (1977,1978, 1980). This model consisted of three 

functional components:  

a. Temporal and geometric description of the dam breach. 

b. Computation of the breach outflow hydrograph. 

c. Routing the breach outflow hydrograph downstream. 
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In the DAMBRK model, the reservoir outflow consisted of both the breach 

outflow Qb (board-crested weir-flow) and spillway outflow Qs: 

𝑄 = 𝑄𝑏+𝑄𝑠 (4.3) 

 

The break outflow can be computed by using the combination of the formulas for 

aboard-crested rectangular weir, gradually enlarging as the breach widens, and a 

trapezoidal weir for the breach side slopes (Fread, 1980): 

𝑄𝑠 = 3.1𝐵𝑊𝑡𝑏𝐶𝑣𝐾𝑠

(ℎ − ℎ𝑏)

𝑇
+ 2.45𝑧𝐶𝑣𝐾𝑠(ℎ − ℎ𝑏)2.5 (4.4) 

 

Where: 

tb the time after dam breaching. 

BW  the width of the breach bottom. 

Cv  the correction factor for the approaching velocity. 

KS  the submergence correction for the tailwater effects on weir flow. 

h the reservoir water surface elevation. 

hb  the breach bottom elevation. 

T  the failure time interval. 

z the side slope of the breach (trapezoidal shape assumed). 

The spillway outflow can be computed using the following formula (Fread, 1980): 

𝑄𝑠 = 𝐶𝑠𝐿𝑠(ℎ − ℎ𝑠)1.5 + √2𝑔𝐶𝑔𝐴𝑔(ℎ − ℎ𝑠)0.5 + 𝐶𝑑𝐿𝑑(ℎ − ℎ𝑑)0.5 + 𝑄𝑡 (4.5) 

 

Where 
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Cs  the uncontrolled spillway discharge coefficient. 

Ls  the of the uncontrolled spillway length. 

hs the uncontrolled spillway crest elevation. 

Cg the gated spillway discharge coefficient. 

Ag  the area of the gate opening. 

hg  the centerline elevation of the gated spillway. 

Cd  the discharge coefficient of the dam crest flow. 

Ld  the crest length. 

hd   the dam crest elevation. 

Qt  the constant outflow or leakage. 

The DAMBRK model used hydrologic storage routing or the dynamic wave model 

to compute the reservoir outflow. The reservoir outflow hydrograph is then routed 

downstream using the full dynamic wave model (Fread, 1980), or simply the continuity 

and momentum equations, neglecting wind shear and lateral flow momentum: 

𝜕(𝐾𝑐𝑄)

𝜕𝑥𝑐
+

𝜕(𝐾𝑙𝑄)

𝜕𝑥𝑙
+

𝜕(𝐾𝑟𝑄)

𝜕𝑥𝑟
+

𝜕(𝐴𝑐 + 𝐴𝑙 + 𝐴𝑟 + 𝐴0)

𝜕𝑡
− 𝑞 = 0 (4.6) 

 

 And 

𝜕𝑄

𝜕𝑡
+

𝜕(𝐾𝑐
2𝑄2/𝐴𝑐)

𝜕𝑥𝑐
+

𝜕(𝐾𝑙
2𝑄2/𝐴𝑙)

𝜕𝑥𝑙
+

𝜕(𝐾𝑐
2𝑄2/𝐴𝑐)

𝜕𝑥𝑐

+ 𝑔𝐴𝑐 [
𝜕ℎ

𝜕𝑥𝑐
+ 𝑆𝑓𝑐 + 𝑆𝑒] + 𝑔𝐴𝑙 [

𝜕ℎ

𝜕𝑥𝑙
+ 𝑆𝑓𝑙]

+ 𝑔𝐴𝑟 [
𝜕ℎ

𝜕𝑥𝑟
+ 𝑆𝑓𝑟] = 0 

(4.7) 
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The subscripts, l, r, and c denoted in equations 5.5 and 5.6 are the left flood plain, 

the right floodplain, and the channel.  The cross-section area of the flow is the sum of AC, 

Al, Ar, and Ao.  The constants KC, Kl, and Kr divide the total flow Q into channel flow, left 

floodplain flow, and the right floodplain flow, respectively, which 
QQK CC =

, 

QQK ll = , and QQK rr = .  In the late 1980s and early 1990s, a newer computational 

hydraulic routing model, the NSW Flood Wave Routing Model (FLDWAV), eventually 

replaced the DAMBRK model. 

4.2.3 Flood Wave Routing Model (FLDWAV) 

The NWS FLDWAV model (Flood Wave Routing Model), is a combination of 

DWOPER and DAMBRK and adds significant modeling capabilities not available in 

either of the other models. FLDWAV is primarily based on the four-point implicit finite 

difference numerical solution scheme of the expanded complete Saint-Venant equations 

of one-dimensional unsteady flow along with appropriate internal boundary equations 

representing downstream dams, ridges, weirs, waterfalls, and other human-made or 

natural flow controls. The expanded Saint-Venant equations, which govern the 

FLDWAV model (Fread, 1998) are: 

Conservation of Mass Equation: 

𝜕𝑄

𝜕𝑥
+

𝜕𝑠𝑐𝑜(𝐴 + 𝐴0)

𝜕𝑡
− 𝑞 = 0 (4.8) 
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Momentum Equation: 

𝜕(𝑠𝑚𝑄)

𝜕𝑥
+

𝜕(𝛽𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴 [

𝜕ℎ

𝜕𝑥
+ 𝑆𝑓 + 𝑆𝑒 + 𝑠𝑖] − 𝐿 + 𝑊𝑓𝐵 = 0 (4.9) 

 

Where: 

 Q  the discharge;  

 A the cross-sectional area of flow;  

 A0 the inactive off-channel cross-sectional area;   

 h  the water surface elevation;   

 sco and sm  the sinuosity factors which vary with h;  

 q  the lateral inflow or outflow per lineal distance;  

 x  the longitudinal distance along the river; 

 t  the time; 

 β  the momentum correction coefficient;  

 g the acceleration of gravity; 

 L the momentum effect of lateral flow;   

Wf the surface wind resistance; 

 B  the top width of the channel;   

   Sf   the slope of the energy grade line derived from Manning’s 

equation;  

Se  the contraction/expansion slope; 

Si the additional friction slope associated with internal viscous dissipation of 

non-Newtonian fluids. 
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The FLDWAV model includes the several capabilities which are not found in 

DAMBRK and as the following:  

1) The flood may occur in a system of interconnected rivers like the main-stem river 

and the tributaries. 

2) Levee-overtopping/crevasse flows into and through levee-protected floodplains 

that may be compartmentalized by dikes and elevated roadways. 

3) Automatic calibration of Manning’s n values based on observed historical floods. 

4) Improved numerical stability. 

5) Menu-driven interactive data input.  

6) Color graphics displays of model output. 

 The NWS FLDWAV model has been widely used by 

hydrologists/engineers for real-time flood forecasting of dam-break floods and/or natural 

floods, dam breach flood analysis of overtopping associated with the PMF flood, 

floodplain inundation mapping for contingency dam break flood planning, debris 

inundation mapping, and improvements of waterway design (Fread, 1998). In the late 

2000s, NWS began the phases to replace the FLDWAV model with the USACE HEC-

RAS model (Reed, 2010 and Moreda, 2010).  

4.2.4 USGS Model (FEQ) 

The Full Equations (FEQ) model by the U.S. Geological Survey (USGS) for the 

simulation of one-dimensional unsteady flow through control structures and in open 

channels was first developed in 1976 (Franz and Melching 1997a and 1997b).  The FEQ 

has been widely used and updated since its first development.  A system of stream 
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simulated by FEQ model can be subdivided into stream reaches, some of the stream 

system for which complete data on flow and depth are not required (classified as dummy 

branches), and level-pool reservoirs.  These components are connected by special 

features, such as hydraulic control structures, including junctions, dams, bridges, culverts, 

spillways, waterfalls, weirs, pumps, and side weirs.  The principles of conservation of 

mass and conservation of momentum are used to calculate the flow and depth throughout 

the stream system given the known information of initial and boundary conditions.  An 

implicit finite-difference technique solves the FEQ at fixed points.  The equations 

represented in the FEQ model are the integral form of the conservation of mass (the 

continuity equation) and conservation of momentum (motion equation) (Franz and 

Melching, 1997a and 1997b): 

Conservation of Mass: 

∫ [(𝐴)𝑡2 − (𝐴)𝑡1] 𝑑𝑥 = ∫ [(𝑢𝐴)𝑥1
− (𝑢𝐴)𝑥2

]
𝑡2

𝑡1

𝑥2

𝑥1

𝑑𝑡 (4.10) 

Conservation of Momentum: 

∫ [(𝑢𝐴)𝑡2 − (𝑢𝐴)𝑡1] 𝑑𝑥 = ∫ [(𝑢2𝐴)𝑥1
− (𝑢2𝐴)𝑥2

]
𝑡2

𝑡1

𝑥2

𝑥1

𝑑𝑡

+ 𝑔 ∫ [(𝐼1)𝑥1
− (𝐼2)𝑥2

]
𝑡2

𝑡1

𝑑𝑡

+ 𝑔 ∫ ∫ 𝐼2𝑑𝑥𝑑𝑡 + 𝑔 ∫ ∫ 𝐴(𝑆0 − 𝑆𝑓)𝑑𝑥𝑑𝑡
𝑥2

𝑥1

𝑡2

𝑡1

𝑥2

𝑥1

𝑡2

𝑡1

 

(4.11) 

 

where 

 u the velocity;  
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 A the cross-sectional area of flow;  

  x the distance along the channel; 

  t  the time;  

  g  the acceleration due to gravity;   

  I1  the hydrostatic pressure exerted on the ends of the control-volume 

element;  

  I2  the component of pressure in the direction of the channel axis because of  

       the non-prismatic channel wall;  

  S0 the bottom slope of the canal, positive with decline downstream; 

Sf  the energy gradient.  

 The FEQ model solves the numerical solutions of the continuity and momentum 

equations by the finite-different four-point weighted implicit scheme.  

4.2.5 MIKE11 

MIKE11 is software developed by DHI (Danish Hydraulic Institute) to simulate 1D 

flow problems. The program enables the user to simulate unsteady flow in river networks 

as well as looped networks using an implicit finite difference scheme. Sub-critical as well 

as supercritical flow conditions can be calculated. The big advantage of the model is that 

most of the input parameters can be variable in time (for example K-values). 

Furthermore, MIKE11 can simulate mass transport processes as well as sedimentation 

and erosion processes, (Monninkhoff, 2014). 

The model applied with the fully dynamic descriptions solves the vertically 

integrated equations of the conservation of mass and conservation of momentum (Saint 
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Venant equations), which are based on the following assumptions, (Danish Hydraulic 

Institute, 2009): 

❖ Incompressible flow and homogeneous. 

❖ Very mild channel bed slope. 

❖ Wavelengths are significant compared to water depth. 

❖ Open channel flow regime is sub-critical. 

❖ MIKE 11 uses the implicit 6-point Abbott scheme to solve the governing 

equations, (Danish Hydraulic Institute, 2009) 

Conservation of Mass Equation: 

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 𝑞 (4.12) 

Momentum Equation: 

𝜕𝑄

𝜕𝑥
+

𝜕(𝛽𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴

𝜕ℎ

𝜕𝑥
+

𝑔𝑄|𝑄|

𝐶2𝐴𝑅
= 0 (4.13) 

 

Where: 

Q is the discharge; 

A is the flow area; 

x  the distance along the channel; 

t  the time; 

g  the acceleration due to gravity; 

q  the lateral flow; 

h  the flow depth; 
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R  the hydraulic radius; 

C the Chezy resistance coefficient; 

Β the momentum correction factor. 

MIKE 11 has been designed to perform detailed modeling of rivers, including 

special condition of floodplains, road overtopping, culvert, gate openings, and weir flows. 

MIKE 11 is accepted by the U.S. Federal Emergency Management Agency (FEMA) for 

use in the National Flood Insurance Program, (Danish Hydraulic Institute, 2007). 

4.3 Two-Dimensional Models 

There are many models that can perform two-dimensional flow analysis and 

simulation. Almost, all of them are commercial models except for HEC-RAS, it is 

available for free for all users. Here are some of them and the way that they function:  

4.3.1 TUFLOW 

TUFLOW is a computer program to simulate depth-averaged, one and two-

dimensional free-surface flows such as occurs from floods and tides, with the two-

dimensional solutions occurring over a regular grid of square elements. TUFLOW was 

originally developed for modeling two-dimensional flows and stands for two-dimensional 

unsteady flow.  

TUFLOW couples two grid based solvers; a CPU based second order semi-

implicit solution often referred to as TUFLOW Classic, and a heavily parallelized first 

order explicit solver built for speed referred to as TUFLOW GPU.  

TUFLOW also contains the full functionality of the ESTRY one-dimensional 

network or quasi-two-dimensional modeling system based on the full one-dimensional 
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free-surface Saint Venant flow equations. In addition to the ESTRY one-dimensional 

engine, TUFLOW has also been dynamically linked (fully integrated) with the following 

external one-dimensional solvers: Flood Modeller (formerly known as ISIS); XP-SWMM 

one-dimensional solution engines; and 12D Civil Engineering Solutions 1D drainage 

module,(Forum et al., 2016). 

TUFLOW’s implicit two-dimensional solver is based on (Stelling, 1984) and is 

documented in (Syme, 1991). It solves the full two-dimensional, depth-averaged, 

momentum and continuity equations for free-surface flow using a 2nd order semi-implicit 

matrix solver. The solution scheme includes the viscosity or sub-grid-scale turbulence 

term that other mainstream software deleting. The first development was done as a joint 

development and research project between WBM Oceanics Australia (now BMT WBM) 

and The University of Queensland in 1990. The project was successfully developed a 

2D/1D dynamically linked modeling system(Syme, 1991). Later improvements from 

1998 up to nowadays converges on hydraulic structures, flood modeling, linking one and 

two and two and two-dimensional models, and using GIS for data management (Syme, 

2001). TUFLOW has also been submitted to extensive extermination and validation by 

WBM Pty Ltd and others (Barton, 2001; Huxley & Syme, 2004; Neelz, S. & Pender, 

2013). TUFLOW is particularly orientated towards establishing flow and inundation 

patterns in floodplains, coastal waters, estuaries, rivers and urban regions where the flow 

behavior is essentially two-dimensional in nature and cannot or would be awkward to 

represent using a one-dimensional model. 
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A good feature of TUFLOW is its capaility to dynamically link to one-

dimensional networks using the hydrodynamic solutions of ESTRY, Flood Modeler, XP-

SWMM, and 12D.  The users prepare a model as a combination of one-dimensional 

network domains linked to two-dimensional domains.  As such, the two-dimensional and 

one-dimensional domains are linked to form one overall model. 

4.3.2 Two-Dimensional Schematization of TUFLOW 

TUFLOW topography in a two-dimensional domain is defined by elevations at 

the cell centers, corners, and mid-side. Every cell has the following elevations assigned to 

it, as shown in Figure 4.1: 

• “C” (ZC) – middle of cell  

• “U” (ZU) – middle right of cell  

• “V” (ZV) – middle top of cell  

• “H” (ZH) – top right-hand corner of cell  

One of the very important aspects of TUFLOW modeling is to understand the roles 

of the elevation (Zpt) points. 
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Figure 4.1 Location of Computation Points and Zpts 

 ZC point:  

• Defines the volume of water (cell volume is based on a flat square cell that 

wets and dries at the height of ZC in addition to the Cell Wet/Dry Depth);  

• Controls when a cell becomes wet and dry (note that cell sides can also 

wet and dry); and  

• Determines the slope of the bed when testing for the upstream controlled 

flow regime  

The ZU and ZV points: 

• Control how water is conveyed from one cell to another; 
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• Represent where the momentum equation terms are centered and where 

upstream controlled flow regimes are applied; 

• Deactivate if the cell has dried (based on the ZC point) and cannot flow; 

and 

• Dry and wet independently of the cell wetting or drying. This allows for 

the modeling of “thin” obstructions such as fences and thin embankments 

about the cell size (e.g., a concrete levee). 

4.3.3 TUFLOW Solving Scheme 

TUFLOW solves the depth-averaged 2D shallow water equations. The shallow 

water equations are the equations of fluid motion used for modeling long waves like 

floods, ocean tides, and storm surges. They are derived using the hypotheses of vertically 

uniform horizontal velocity and negligible vertical acceleration (i.e., a hydrostatic 

pressure distribution). These assumptions are valid where the wavelength is greater than 

the depth of water. In the case of the ocean tide, the SWE are applicable everywhere. 

The two-dimensional SWE in the horizontal plane is described by the partial 

differential equations of mass continuity and momentum conservation in the X and Y 

directions for an in-plan Cartesian coordinate frame of reference as in the following. The 

equations are: 

Two-Dimensional Conservation of Mass: 

𝜕𝜁

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (4.14) 

 

X-Direction Momentum: 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
− 𝑐𝑓𝑣 + 𝑔

𝜕𝜁

𝜕𝑥
+ 𝑔𝑢 (

𝑛2

𝐻
4
3

+
𝑓1

2𝑔∆𝑥
) √𝑢2 + 𝑣2

− 𝜇 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) +

1

𝜌

𝜕𝑝

𝜕𝑥
= 𝐹𝑥 

(4.15) 

 

Y-Direction Momentum: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
− 𝑐𝑓𝑢 + 𝑔

𝜕𝜁

𝜕𝑦
+ 𝑔𝑣 (

𝑛2

𝐻
4
3

+
𝑓1

2𝑔∆𝑦
) √𝑢2 + 𝑣2

− 𝜇 (
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) +

1

𝜌

𝜕𝑝

𝜕𝑦
= 𝐹𝑦 

(4.16) 

 

Where: 

 ζ    Water suface elevation; 

 u and v  Depeth avrage velocity components in x and y directions; 

 H  Depth of water 

 T   Time 

 x and y  Distance in X and Y directions 

 Δx and Δy Cell dimensiona in x and y directions 

 Cf  Coriolis force Cefficient 

 n   Manning’s n 

 f1  Form energy loss coefficient 

 μ   Horizontal diffusion of momentum coeffient 

 p   Atmospheric pressure  
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 ρ  Density of Water 

 Fx and Fy Sum of comoponents of external forces (wind) in X and Y 

directions. 

4.3.4 Flood Modeler CH2M 

Flood Modeler program is a commercial flexible and comprehensive package of 

tools for deriving flood maps, flood forecasting, designing flood management schemes, 

developing catchment strategies and many other flood and non-flood applications 

including modeling low flows, sediment, and water quality. 

Flood Modeller can also be used to solve systems under both unsteady and steady 

flow routing. Steady flow solutions are discussed further in the Steady Flows topic. For 

unsteady solutions, Flood Modeller uses the governing hydraulic equations for each unit. 

These equations are inevitably a combination of empirical and theoretical equations many 

of which are non-linear. The non-linear equations are first linearized, and the solution of 

the linear version of the problem is then found via matrix inversion. An iterative 

procedure is used to account for the non-linearities. 

Flood Modeller two-dimensional solver and many other models of its type 

represent shallow water hydraulics. The shallow water equations can describe the 

following: 

Two-Dimensional Conservation of Mass: 

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0 (4.17) 

 

X-Direction Momentum: 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑔

𝜕(ℎ + 𝑧)

𝜕𝑥
+

𝑔𝑛2𝑢√𝑢2 + 𝑣2

ℎ4/3

−
𝑣

ℎ
(2

𝜕2ℎ𝑢

𝜕𝑥2
+

𝜕2ℎ𝑢

𝜕𝑥2
+

𝜕2ℎ𝑣

𝜕𝑥𝜕𝑦
) = 0 

(4.18) 

 

Y-Direction Momentum: 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑔

𝜕(ℎ + 𝑧)

𝜕𝑦
+

𝑔𝑛2𝑣√𝑢2 + 𝑣2

ℎ4/3

−
𝑣

ℎ
(

𝜕2ℎ𝑣

𝜕𝑥2
+ 2

𝜕2ℎ𝑣

𝜕𝑦2
+

𝜕2ℎ𝑢

𝜕𝑥𝜕𝑦
) … . = 0 

(4.19) 

 

Where: 

u and v two components of the horizontal velocity; 

h   flow depth; 

z   bed elevation; 

x and y   horizontal distances in the x and y directions; 

t   time; 

g  acceleration due to gravity; 

n  Manning's coefficient of roughness; 

The kinematic eddy viscosity used to parameterize horizontal turbulent 

momentum transport, with a value between 0 and 1. The default value in the interface for 

this parameter is zero, meaning that viscosity is excluded from the Shallow Water 

equations. This can improve model run times, but a better solution would be gained using 

a value of 0.15 or higher (can be much higher for open sea). 
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The movement of water in terms of a depth-averaged two-dimensional velocity 

and the water depth are described by that equations, in response to the forces of gravity 

and friction. These equations typically represent situations where the flow is 

approximately horizontal, is uniform with depth, and where vertical accelerations are 

small. The velocity components represent the water velocity averaged: 

• Over the depth of the water column, ignoring variations in flow direction and 

magnitude with the depth 

• Over time, ignoring short-term turbulent velocity variations 

One important property of shallow water flows is the different behaviors of 

subcritical and supercritical flows. Supercritical flows tend to develop jumps (sudden 

changes in velocity and water level), which are difficult to represent in the model without 

causing any instability.  

Flood modeler uses the Preissmann four-point implicit finite difference scheme 

for solving the channel equations and sparse matrix solver to invert the matrix. 

4.3.5 MIKE 21 

MIKE 21 Flow Model FM is a new modeling system based on a flexible mesh 

approach. The modeling system has been developed for applications within 

oceanographic, coastal and estuarine environments. MIKE 21 Flow Model FM is 

composed of following modules:  Hydrodynamic Module, Transport Module, ECO 

Lab/Oil Spill Module, Particle Tracking Module, Mud Transport Module, and Sand 

Transport Module. The Hydrodynamic Module is the basic computational component of 
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the entire MIKE 21 Flow Model FM modeling system providing the hydrodynamic basis 

for the other modules. 

The Hydrodynamic Module is based on the numerical solution of the two-

dimensional shallow water equations - the depth-integrated incompressible Reynolds-

averaged Navier-Stokes equations. However, the model consists of continuity, 

momentum, temperature, salinity and density equations. In the horizontal domain, both 

Cartesian and spherical coordinates can be used. Below the governing equations are 

presented using Cartesian coordinates, (Danish Hydraulic Institute, 2013). 

Mass Conservation: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 𝑆 (4.20) 

X-Direction Momentum: 

𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑣𝑢

𝜕𝑦
+

𝜕𝑤𝑢

𝜕𝑧

= 𝑓𝑣 − 𝑔
𝜕𝜂

𝜕𝑥
−

1

𝜌0

𝜕𝑝𝑎

𝜕𝑥
−

𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑥

𝜂

𝑧

𝑑𝑧 + 𝐹𝑢

+
𝜕

𝜕𝑧
(𝑣𝑡

𝜕𝑢

𝜕𝑧
) + 𝑢𝑠𝑆 

(4.21) 

Y-Direction Momentum:  

𝜕𝑣

𝜕𝑡
+

𝜕𝑣2

𝜕𝑥
+

𝜕𝑣𝑢

𝜕𝑦
+

𝜕𝑤𝑢

𝜕𝑧

= 𝑓𝑢 − 𝑔
𝜕𝜂

𝜕𝑦
−

1

𝜌0

𝜕𝑝𝑎

𝜕𝑦
−

𝑔

𝜌0
∫

𝜕𝜌

𝜕𝑦

𝜂

𝑧

𝑑𝑧 + 𝐹𝑣

+
𝜕

𝜕𝑧
(𝑣𝑡

𝜕𝑣

𝜕𝑧
) + 𝑢𝑠𝑆 

(4.22) 
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Where: 

t   time 

x, y, z   Cartesian coordinates 

u, v, w   flow velocity components 

The spatial discretization of the primitive equations is performed using a cell-

centered finite volume method. The spatial domain is discretized by subdivision of the 

continuum into non-overlapping element/cells. In the horizontal plane, an unstructured 

grid is used comprising of triangles or quadrilateral element. An approximate Riemann 

solver is used for computation of the convective fluxes, which makes it possible to handle 

discontinuous solutions. For the time integration an explicit scheme is used, (Danish 

Hydraulic Institute, 2011). 

4.4 Hydrologic Engineering Center's River Analysis System (HEC-RAS) 

HEC-RAS is an integrated system of software, programmed for interactive use in 

a multi-tasking environment. The HEC-RAS system contains the following river analysis 

components for (1) steady flow water surface profile computations; (2) one-dimensional 

and two-dimensional unsteady flow simulation; (3) Quasi unsteady or fully unsteady flow 

movable boundary sediment transport computations; and (4) water quality analysis. A 

key element is that all four components use a common geometric data representation and 

common geometric and hydraulic computation routines. Besides the four river analysis 

components, the system contains several hydraulic design features that can be invoked 

once the water surface profiles are computed. HEC-RAS is designed to perform one-



 

97 
 

dimensional and two-dimensional hydraulic calculations for a full network of natural and 

constructed channels, overbank/floodplain areas, levee-protected areas, (U.S. Army 

Corps of Engineers, 2016a). 

HEC has introduced the ability to perform two‐dimensional (2D) hydrodynamic 

flow routing within the unsteady flow analysis portion of HEC‐RAS. Users can now 

perform one‐dimensional (1D) unsteady flow modeling, two-dimensional (2D) unsteady 

flow modeling (Full Saint Venant equations or Diffusion Wave equations), as well as 

combined one‐dimensional and two-dimensional (1D/2D) Unsteady‐Flow routing. The 

two-dimensional flow areas in HEC‐RAS can be used in some ways. The following are 

examples of how the 2D Flow Areas can be utilized to support modeling with HEC‐RAS, 

(G. W. Brunner, 2014): 

❖ Detailed 2D channel modeling 

❖ Detailed 2D channel and floodplain modeling 

❖ Combined 1D channels with 2D floodplain areas 

❖ Combined 1D channels with 2D Flow Areas behind levees 

❖ Directly connect 1D reaches into and out of 2D Flow Areas. 

❖ Directly connect a 2D Flow Area to 1D Storage Area with a hydraulic 

structure 

❖ Multiple 2D Flow Areas in the same geometry 

❖ Directly connect multiple 2D Flow Areas with hydraulic structures 

❖ Simplified to very detailed Dam Breach analyses 

❖ Simplified to very detailed Levee Breaching analyses 
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❖ Mixed flow regime. The 2D capability (as well as the 1D) can handle the 

supercritical and subcritical flow, as well as the flow transitions from 

subcritical to supercritical and supercritical to subcritical (hydraulic 

jumps). 

Two‐dimensional flow modeling is accomplished by adding two-dimensional 

flow area elements into the model in the same manner as adding a storage area. A two-

dimensional flow area can be added by drawing a two-dimensional flow area polygon; 

developing the 2D computational mesh; then linking the two-dimensional flow areas to 

one-dimensional model elements and directly connecting boundary conditions to the 2D 

areas. In this research, HER-RAS represents the second major components of the 

optimization simulation model to simulate flow routing in downstream two-dimensional 

area.  

4.4.1 Routing Inflow Flood Throughout the Reservoir  

HEC-RAS can be used to route inflow flood hydrograph through a reservoir by 

using one of the following methods: 

❖ unsteady flow routing in one-dimensional using Saint Venant equations 

❖ unsteady flow routing two-dimensional using Diffusion wave equations or 

Saint Venant equations. 

❖ Routing level reservoir pool.   

The unsteady flow routing one or two-dimensional will be more accurate for both 

the with and without breach process. That method can capture the water surface slope 

through the reservoir pool as the inflowing hydrograph arrives, the change in water 
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surface slope that occurs during a dam breach too. However, reservoirs with long narrow 

pools will exhibit greater water surface slope upstream of the dam than reservoirs that are 

short and wide. Thus, the most accurate modeling technique to capture pool elevations 

and outflows of long narrow reservoirs is full dynamic wave (unsteady flow) routing. For 

wide and short reservoirs, level pool routing may be appropriate. 

4.4.2 Two-Dimensional Unsteady Flow Hydrodynamic 

The movements of fluid in three-dimensional can be described by the Navier-

Stokes equations. In the context of the flood and channel modeling are imposed. A 

simplified set of equations is the Shallow Water (SW) equations. The assumption if 

incompressible flow, hydrostatic pressure, and uniform density are assumed, and the 

equations are Reynolds averaged so that turbulent motion is approximated using eddy 

viscosity. Likewise, the vertical length scale is assumed much smaller than the horizontal 

length scales. Consequently, the vertical velocity is relatively small and pressure is 

hydrostatic, leading to the differential form of the SW equations. 

Furthermore, to improve computation time, a sub-grid bathymetry approach can 

be used. The reason behind this method is to use a relatively coarse computational grid 

and finer scale information about the underlying topography (Casulli, 2008). The 

conservation of mass equation is discretized using a finite volume technique. The fine 

grid details are factored out as parameters representing multiple integrals over volumes 

and face areas. As a result, the transport of fluid mass accounts for the fine-scale 

topography inside of each discrete cell. Since this idea relates only to the mass equation, 

it can be used independently of the version of the equation of momentum.  
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The bottom surface elevation is given by z(x,y); the water depth is h(x,y,t); and 

the water surface elevation as in Figure 4.2 below. 

 
 

Figure 4.2 Datum of Surface Elevation 

 So, 

𝐻(𝑥, 𝑦, 𝑡) = 𝑧(𝑥, 𝑦) + ℎ(𝑥, 𝑦, 𝑡) (4.23) 

 Mass Conservation: 

𝜕𝐻

𝜕𝑡
+

𝜕(ℎ𝑢)

𝜕𝑥
+

𝜕(ℎ𝑣)

𝜕𝑦
+ 𝑞 = 0 (4.24) 

Where: 

t   time 

 u and v  the velocity components in the x- and y- direction respectively  

q  a source/sink flux term.  
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In vector form, the continuity equation takes the form: 

𝜕𝐻

𝜕𝑡
+ ∇ ∙ ℎ𝑉 + 𝑞 = 0 (4.25) 

 

Where: 

V=(u,v) is the velocity vector, and the differential operator del (∇) is the vector of 

the partial derivative operators given by ∇=(∂/∂x, ∂/∂y). 

Integrating over a horizontal region with boundary normal vector n and using 

Gauss’ Divergence theorem, the integral form of the equation is obtained: 

𝜕

𝜕𝑡
∭ 𝑑Ω

Ω

+ ∬ 𝑉 ∙ 𝑛𝑑𝑆 + 𝑄 = 0

𝑠

 (4.26) 

The volumetric region Ω represents the three-dimensional space occupied by the 

fluid. The side boundaries are given by S. It is assumed that Q represents any flow that 

crosses the bottom surface (infiltration) or the top water surface of Ω (evaporation or 

rain). The source/sink flow term Q is also convenient to represent other conditions that 

transfer mass into, within or out of the system, such as pumps. Following the standard 

sign conventions, sinks are positive, and sources are negative, (U.S. Army Corps of 

Engineers, 2016a). 

HEC-RAS uses the subgrid bathymetry approach to solve such a problem. The 

computational grid cells have some extra data such as cross-sectional area, volume, and 

even the hydraulic radius volume and cross-sectional area that can be pre-computed from 

the fine bathymetry. 
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4.4.2.1 Momentum Conservation 

When the horizontal length scales are much larger than the vertical length scale, 

volume conservation implies that the vertical velocity is small. The Navier-Stokes 

vertical momentum equation can be used to justify that pressure is nearly hydrostatic. In 

the absence of baroclinic pressure gradients (variable density), strong wind forcing and 

non-hydrostatic pressure, a vertically-averaged version of the momentum equation is 

adequate. Vertical velocity and vertical derivative terms can be safely neglected (in both 

mass and momentum equations). The shallow water equations are obtained,(U.S. Army 

Corps of Engineers, 2016a). 

 X-Direction Momentum: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝑔

𝜕𝐻

𝜕𝑥
+ 𝑣𝑡 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) − 𝑐𝑓𝑢 + 𝑓𝑣 (4.27) 

Y-Direction Momentum: 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −𝑔

𝜕𝐻

𝜕𝑥
+ 𝑣𝑡 (

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑦2
) − 𝑐𝑓𝑢 + 𝑓𝑣 (4.28) 

 

Where: 

 u and v  the velocities in the Cartesian directions, 

 g    the gravitational acceleration,  

vt    horizontal eddy viscosity coefficient,  

cf   the bottom friction coefficient,  

R   the hydraulic radius and, 

f   the Coriolis parameter. 
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The left-hand side of the equation contains the acceleration terms. The right-hand 

side represents the internal or external forces acting on the fluid. The left and right-hand 

side term are typically organized in such a way in accordance with Newton’s second law, 

from which the momentum equations are ultimately derived. The momentum equations 

can also be rendered as a single differential vector form. The advantage of this 

presentation of the equation is that it becomes more compact and easily readable. The 

vector form of the momentum equation is: 

𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉 = −𝑔∇H + 𝑣𝑡∇2𝑉 − 𝑐𝑓𝑉 + 𝑓𝑘 × 𝑉 (4.29) 

 

Where the differential operator del (∇) is the vector of the partial derivative 

operators given by ∇=(∂/∂x, ∂/∂y) and k is the unit vector in the vertical direction. 

4.5 Controlling HEC-RAS Through MATLAB 

The interfacing between the various simulation programs used in the optimization-

simulation model is one of the objectives of this research. the interfacing and data 

exchange between HEC-RAS and MATLAB in a challenging task. The users of HEC-

RAS often have unique applications for using this software that may include the coupling 

with other software to perform systems analysis such as flood risk analysis, optimization 

of flooding structures under uncertainty and multi-objective reservoir operation under 

uncertainty, multi-objective reservoir operation under uncertainty, among others  (Leon & 

Goodell, 2016). One state-of-the-art environment for integrating proprietary software 

and/or open source codes is MATLAB. MATLAB is a high-performance language for 
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technical computing. It integrates computation, visualization, and programming in an 

easy-to-use environment, (Mathworks, 2016).  



 

105 
 

5 CHAPTER 5 COMPONENTS OF MODELING APPROACH 

The various components of the optimization-simulation model developed herein 

include the rainfall-runoff model, the unsteady flow routing models, the rainfall 

forecasting model, the reservoir operation model and the optimization model.    The 

interfacing of these components was first introduced in Figure 1.9.  In chapter 3 the 

rainfall-runoff model has been discussed in detail and in chapter 4 the unsteady flow 

models have been discussed.  This chapter discusses the rainfall forecasting model, the 

reservoir operation model and the optimization model.  

5.1 Rainfall Forecasting Model 

Forecasting natural phenomena is not an easy task and is a challenging subject, 

particularly the forecasting of information about water availability such as rainfall 

forecasting, which is very useful for real-time modeling of flooding events. This research 

proposes a methodology to design a system that can provide a sequence of rainfall data 

that represents the future scenario of predicted rainfall. 

Rainfall forecasting is another necessary component in the optimization - 

simulation model. Forecasted precipitation is needed for flood forecasting since reservoir 

management personnel would have to make reservoir releases decisions based upon the 

forecasted information prior to the actual rainfall event and floodwater arrival. In this 

research, a statistical regression analysis approach is used for the rainfall forecasting 

model. 
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5.1.1 Forecasting Approach 

The rainfall forecasting approach used herein was adopted from (Che, 2015) 

which based on, (Montgomery et al., 2012) for forecasting rainfall in time period t+Δt, 

knowing the actual rainfall in the current time period t is expressed as: 

𝑃̂𝑡+𝛥𝑡 =  𝛷̂𝑃𝑡 + (1 − 𝛷̂)𝛽̂0 + 𝛽̂1[(𝑡 + 𝛥𝑡) − 𝛷̂𝑡] (5.1) 

Where: 

𝑃̂𝑡+𝛥𝑡 is the vector of predicted rainfall values over the time (𝑡 + 𝛥𝑡). 

𝑡 + 𝛥𝑡  is the forecasting time period. 

t  is the current time period.  

𝑃𝑡  is the vector of known rainfall values at the end of the current time 

period, t. 

𝛷   is an autocorrelation parameter defined as: 

𝛷 =  ∑
𝑒𝑡𝑒𝑡−1

∑ 𝑒𝑡
2𝑡

𝑡=1

𝑡

𝑡=2

 (5.2) 

 

 𝑒𝑡  is the vector of residuals from the prediction. 

𝛽̂0, 𝛽̂1  are model parameter.  

The general procedure of rainfall forecasting model is illustrated in Figure 5.1 

where Pt in this model is the known rainfall at time t. First, the model obtains the actual 

rainfall up to current time, t. Then the rain data is entered into the step that used in the 

prediction model equation 5.1 to generate rainfall over time period t+Δt. Once the 

prediction model of time t+Δt is generated, the prediction model is used to make rainfall 
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forecast over Δt. After obtaining the projected rainfall, this data will exit the rainfall 

forecasting sub-routine and is entered the optimization/simulation model. When the last 

simulation period, t, ends, the forecasting model repeats the process by obtaining the 

actual rainfall up to current time, t. A new rainfall prediction will be generated for each 

simulation period. The process repeats until the very last simulation period when 

forecasting is no longer needed.  

Obtain Actual Data Up to 

Time t

Forecasting model using equation 5.6 

& 5.7

Obtain Projected Rainfall over Δt

Optimization-Simulation Model,

Using the forecasted rainfall data 

over Δt
 

 

Figure 5.1 General Procedure of Rainfall Forecasting Model. 

5.1.2 Suggested Rainfall Forecasting Methods 

The optimization simulation model needs an accurate time series rainfall data so 

that can continue produce a reliable output for making the final decision. Four time series 
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forecasting models are suggested by Che & Mays (2015) for their 

optimization/simulation model autoregressive model (AR), autoregressive exogenous 

model (ARX), autoregressive moving average exogenous model (ARMAX), and the 

state-space estimation model (SSEST). These four specific models are proposed because 

of the convenience in the MATLAB built-in control environment. A generated 

hypothetical rainfall hyetograph Figure 5.2 is used for the comparison of the four times 

series forecasting models. The time span is set to be 72 hours, and the forecasting starts at 

t equal to 7 hours. 

 
 

Figure 5.2  Hypothetical Rainfall 

The autoregressive model (AR) is a stochastic process for time series that gives 

the output variable depends linearly on its own previous values (Diebold & Li, 2006). 

The equation for a Nth order autoregressive polynomial model for time series of rainfall is 

presented as follows: 
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𝑃𝑡+𝛥𝑡 + 𝑎1𝑃𝑡 + 𝑎2𝑃𝑡−∆𝑡 + 𝑎3𝑃𝑡−2∆𝑡 … + 𝑎𝑁𝑃𝑡−(𝑁−1)∆𝑡 = 𝑒𝑡+∆𝑡 (5.3) 

 

 Where: 

𝑃𝑡+𝛥𝑡 is the forecasted rainfall values over the time (𝑡 + 𝛥𝑡). 

𝑡 + 𝛥𝑡  is the forecasting time period. 

t  is the current time period. 

𝑃𝑡  is the known rainfall values at the end of current time period, t. 

𝑎𝑁  are the model parameters which depend on the time series pattern. 

𝑒𝑡+∆𝑡  is the white noise from the forecast.  

The advantages of the autoregressive models are flexibility in handling a wide 

range of different time series patterns. Figure 5.3 depicts the forecasting result based on 

the hypothetical rainfall hyetograph.  
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Figure 5.3 Forecasting Result of the AR Model, Δt = 4 hours 

The autoregressive exogenous model (ARX) uses the same concept as the AR 

model which uses previous values which are linearly related but also can incorporate 

exogenous variables which also depend on previous values (Diebold & Li, 2006). The 

basic formulation of an ARX model is as follow: 

𝑃𝑡+𝛥𝑡 + 𝑎1𝑃𝑡 + 𝑎2𝑃𝑡−∆𝑡 + 𝑎3𝑃𝑡−2∆𝑡 … + 𝑎𝑁𝑃𝑡−(𝑁−1)∆𝑡

= 𝑏1𝑢𝑡 + 𝑏2𝑢𝑡−∆𝑡 + 𝑏3𝑢𝑡−2∆𝑡 … + 𝑏𝑁𝑢𝑡−(𝑁−1)∆𝑡 + 𝑒𝑡+∆𝑡 

(5.4) 

Where: 

𝑃𝑡+𝛥𝑡 is the forecasted rainfall values over the time (𝑡 + 𝛥𝑡). 

𝑢𝑡  is the exogenous values at the end of current time period, t. 

𝑎𝑁 , 𝑏𝑁  are the model parameters. 
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𝑒𝑡+∆𝑡  is the white noise from the forecast. 

Since the generated rainfall is purely hypothetical, the exogenous variable used 

here is the cumulative rainfall up to time t. Figure 5.4 depicts the forecasting result based 

on the hypothetical rainfall hyetograph. 

The autoregressive moving average exogenous model (ARMAX) incorporates the 

autoregressive portion and exogenous variable, which are previously defined, and also 

the component of the moving average, or simply the past forecast error (Diebold & Li, 

2006). The basic formulation of an ARMAX model is as follows:  

𝑃𝑡+𝛥𝑡 + 𝑎1𝑃𝑡 + 𝑎2𝑃𝑡−∆𝑡 + 𝑎3𝑃𝑡−2∆𝑡 … + 𝑎𝑁𝑃𝑡−(𝑁−1)∆𝑡

= 𝑏1𝑢𝑡 + 𝑏2𝑢𝑡−∆𝑡 + 𝑏3𝑢𝑡−2∆𝑡 … + 𝑏𝑁𝑢𝑡−(𝑁−1)∆𝑡 + 𝑐1𝑒𝑡

+ 𝑐2𝑒𝑡−∆𝑡 + 𝑐3𝑒𝑡−2∆𝑡 … + 𝑐𝑁𝑒𝑡−(𝑁−1)∆𝑡 + 𝑒𝑡+∆𝑡 

(5.5) 
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Figure 5.4 Forecasting Result of the ARX Model, Δt = 4 hours  

Where: 

𝑃𝑡+𝛥𝑡 is the forecasted rainfall values over the time (𝑡 + 𝛥𝑡). 

𝑢𝑡  is the exogenous values at the end of current time period, t. 

𝑒𝑡  is the forecast error at the time t. 

𝑎𝑁 , 𝑏𝑁 , 𝑐𝑁  are the model parameters. 

𝑒𝑡+∆𝑡  is the white noise from the forecast. 

Figure 5.5 depicts the forecasting result based on the hypothetical rainfall 

hyetograph. 
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Figure 5.5 Forecasting Results of the ARMAX Model, Δt = 4 hours 

The state-space estimation model (SSEST) is a mathematical model of a physical 

as a set of input, output, and state variables related by ordinary first-order differential 

equations (Ljung, 1999). The SSEST model is often used in system control engineering. 

The followings are the basic formulation of the SSEST model: 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐾𝑒𝑡 (5.6) 

 

𝑃𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝑒𝑡 (5.7) 

 

Where: 

𝑃𝑡 is the model output variable (rainfall values). 

𝑢𝑡  is the model input variable (time). 
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𝑋𝑡  is the model state variable (average). 

𝑒𝑡  are the model parameters. 

𝐴, 𝐵, 𝐶, 𝐾  are the model parameters. 

Figure 5.6 depicts the forecasting result based on the hypothetical rainfall 

hyetograph. 

 
 

Figure 5.6 Forecasting Result of the SSEST Model, Δt = 4 hours 

Three metrics are used for the comparison of the four models: (1) the cumulative 

forecasting error (CFE), (2) the root mean squared error (RMSE), and (3) the 

computational time per forecasting period (per iteration). The cumulative forecasting 

error (CFE) calculates the percent difference between the actual cumulative rainfall and 

the forecast cumulative rainfall. The formulation is as follow: 
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𝐶𝐸𝐹 =
∑ 𝑃𝑡 − ∑ 𝑃̂𝑡𝜏𝜏

∑ 𝑃𝑡𝜏
, ∀𝑡 ∈ 𝜏 (5.8) 

 

 Where: 

 if  CFE {
  > 0, 𝑈𝑛𝑑𝑒𝑟 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
< 0, 𝑜𝑣𝑒𝑟 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡   

 

 𝑃𝑡  is the hypothetical rainfall up to time t. 

 𝑃̂𝑡  is the forecasted rainfall upto time t. 

 𝜏 is the total forecasting period. 

The CFE is a way to measure the performance of the forecasting model in terms 

of “quantity.” Ideally, the small CFE is desirable since large deviation in cumulative 

forecast rainfall would create uncertainties in the rest of the optimization-simulation 

model. Based on the CFE formation, a negative value indicates over-forecasting in 

cumulative rainfall; a positive value indicates under-forecasting in cumulative rainfall.  

The root mean square error (RMSE) calculates the sample standard deviation of 

the difference between the actual cumulative rainfall and the forecast cumulative rainfall. 

The formulation is as follow: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑡 − 𝑃̂𝑡)2

𝜏

𝑛
, ∀𝑡 ∈ 𝜏 (5.9) 

 

where 

𝑃𝑡  is the hypothetical rainfall up to time t. 

𝑃̂𝑡 is the forecasted rainfall up to time t. 
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𝜏  is the total forecasting period. 

The RMSE is a way to measure the performance of the forecasting model in terms 

of “quality,” and it is always greater than or equal to zero. Preferably, the small RMSE is 

desired since large RMSE indicates a large standard deviation difference between the 

actual and the forecasted rainfall, thus resulting unwanted uncertainties in the rest of the 

optimization model. 

The computation time is calculated by taking the total computation time divide by 

the total number of the forecasting period. In a real-time decision-making scenario, the 

less computational time is desired, since many cases decision would need to be made in a 

short time fashion. 

Table 5.1 Summary of the Forecasting Model 

 

 RMSE [in] CFE 
Time per 

Iteration [s] 

AR 0.1499 0.4148 0.0716 

ARX 0.134 0.3768 0.1048 

ARMAX 0.1544 -0.1 0.2507 

SSEST 0.1561 -0.109 0.7763 

 

The RMSE for all four models are similar; therefore the four models each produce 

a similar quality of forecasting. There are significant differences in the CFEs for the four 

models. The autoregressive (AR) model and the autoregressive exogenous (ARX) model 

both have large CFE values, which indicates that both methods are way under forecasting 

as compared to the actual (hypothetical) rainfall. The autoregressive moving average 

exogenous (ARMAX) model and the state-space estimation (SSEST) model performed 

much better than the AR and ARX models. Both the ARMAX and the SSEST over 
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forecast cumulatively, but only over forecast around 10%. The last criterion of the 

comparison is the computational time. Both the AR and the ARX models took less time 

than the ARMAX and the SSEST models. However, due to the less quality forecast 

produced by the AR and the ARX models, the ARMAX and the SSEST models is were 

then compared to each other. The ARMAX takes significantly less time than the SSEST 

for this hypothetical rainfall example; thus the ARMAX is the most desired method of all 

four methods. The optimization - simulation model, would use the ARMAX approach for 

its rainfall forecasting component due to its quality of forecast and lesser computational 

time required. The rainfall forecasting component of the optimization-simulation model 

incorporates an updating procedure for projected rainfall in real time similar to the 

procedure such as presented by (Madsen & Skotner, 2005), as well as the discussion in 

Section 6.4. 

5.2 Reservoir Operation Model 

The principle of any reservoir operation, whether in real-time or for planning 

purposes, is governed by is the conservation of mass (the continuity equation). Reservoir 

operation in real time is a process of continuously determining the releases through the 

reservoir gates to keep the water surface elevations at the upstream and downstream 

within the desired levels. Strategic planning defines the operation rules. While the 

reservoir operation in some parts of it based upon forecasting information, so the process 

not without an error. Uncertainty and inaccuracy are unavoidable in real-time reservoir 

operation and even in the planning processes, that come from the forecasting and then 
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determining the net inflow into the reservoir and that is the source of uncertainty and 

inaccuracy. 

The reservoir operation model governed by the conservation of mass (the 

continuity equation). Conservation of mass for a control volume Figure 5.7 states that the 

net rate of flow into the volume be equal to the rate of change of storage inside the 

volume. The rate of inflow into the control volume is: 

 

𝑄 −  
𝜕𝑄

𝜕𝑥

∆𝑥

2
  

 

The outflow rate is: 

𝑄 +  
𝜕𝑄

𝜕𝑥

∆𝑥

2
  

 

The rate of storage changes is: 

𝜕𝐴𝑇

𝜕𝑡
∆𝑥  

 

Assuming that Δx is small, the change in mass in the control volume is equal to: 

𝜕𝐴𝑇

𝜕𝑡
∆𝑥 = 𝜌 [(𝑄 − 

𝜕𝑄

𝜕𝑥

∆𝑥

2
) − (𝑄 +  

𝜕𝑄

𝜕𝑥

∆𝑥

2
)] + 𝑄1 (5.10) 

 

Where 𝑄1 is the lateral flow entering the control volume and ρ is the fluid density, 

 simplifying and dividing through by ρΔx yields the final form of the continuity equation: 
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𝜕𝐴𝑇

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
− 𝑞1 = 0 (5.11) 

In which 𝐴𝑇 is the area of the control surface and 𝑞1 is the lateral inflow per unit 

length. 

 
 

Figure 5.7 Elementary Control Volume for Derivation of Continuity and Momentum 

Equations 

The reservoir operation model is coupled with an optimization model to 

determine the flow rate that should be released from the reservoir over the Δt time. The 

importance of the optimization model is to compute the optimal decision for the releases 

schedule from the reservoir to keep the downstream water surface elevation under the 

flood level. The optimization technique used is the genetic algorithm into MATLAB 

interfaced with other model components that provides the best solution for the aim of the 

problem.  
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5.2.1 Principle of Reservoir Operation Model 

The principle that governs any reservoir operation is the conservation of mass 

(continuity) expressed mathematically for a control volume (as shown in  Figure 5.8). 

𝑑(𝑚𝑐𝑣)

𝑑𝑡
+ ∑ 𝑚𝑜𝑢𝑡

𝑐𝑠

− ∑ 𝑚𝑖𝑛

𝑐𝑠

= 0 (5.12) 

 Where: 

 𝑑(𝑚𝑐𝑣) the accumulation of mass in the control volume. 

 ∑ 𝑚𝑜𝑢𝑡𝑐𝑠  the total mass inflow through the control surface. 

 ∑ 𝑚𝑖𝑛𝑐𝑠  the total mass outflow through the control surface. 

Equation (5.12) states that the accumulation rate of mass in the control volume 

plus the net rate of the outflow of mass through the control surface is equal to zero.  

Instead of using the flow of mass rate, equation (5.12) can be written in terms of 

inflow volume by dividing all terms by the density of the water ρ, as the in following: 

 

1

𝜌

𝑑(𝑚𝑐𝑣)

𝑑𝑡
+

1

𝜌
∑ 𝑚𝑜𝑢𝑡

𝑐𝑠

−
1

𝜌
∑ 𝑚𝑖𝑛

𝑐𝑠

= 0 (5.13) 

 

In other words, equation 5.13 is simplified to  

𝑑(𝑉𝑐𝑣)

𝑑𝑡
+ ∑ 𝑄𝑜𝑢𝑡

𝑐𝑠

− ∑ 𝑄𝑖𝑛

𝑐𝑠

= 0 (5.14) 

  

 Where: 

 
𝑑(𝑉𝑐𝑣)

𝑑𝑡
   the volume change in the control volume. 
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 ∑ 𝑄𝑜𝑢𝑡𝑐𝑠  the total volumetric in flow through the control surface. 

 ∑ 𝑄𝑖𝑛𝑐𝑠  the total volumetric outflow through the control surface. 

Equation (5.14) is the basis of gated spillway model. The schematic reservoir with 

components of flows and the storage of the reservoir is shown in Figure 5.8 below. 

 
 

Figure 5.8 Reservoir Inflow, Outflow, and Storage 

In the case of a flooding situation, the operation of the gated spillway is 

concerned with the optimal operation of an existing reservoir system, and the decisions 

releases for various purposes have to be made in a considerably shorter time period based 

on the optimization model to obtain the optimal releases for the reservoir gates.  

An optimization procedure based on a genetic algorithm (GA) optimizer 

interfaces the other components of the model to determine actual gate operations during 

the real-time operation of the reservoir systems. The optimization model is the next major 

component of the optimization/simulation model, with formulation explained below. 
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5.2.2 Reservoir Operational Constraints 

There are many types of constraints in the world of optimization including bound 

constraints. The reservoir operation constraints can be assorted as greater than and less 

than sort of constraints, which define the operational target, upper and lower variables 

bounds, limitation of the outlet and spillway gates, and the reservoir storage capacity. All 

the constraints mentioned above are included in the problem formulation in the 

optimization model (genetic algorithm). 

The process of gate operation (openings) is a main operational constraint designed 

for operation between a range of minimum and maximum allowed gate opening. The gate 

operation limits depend on the physical limitation of gate operation at which the 

minimum and maximum allowed rate of change in gate opening is predetermined.  

The optimization simulation model used to determine real-time operation decisions 

(gate operations) incorporates real-time precipitation and streamflow data and forecasted 

rainfall throughout the system. The model consists of the following components:  

❖ Forecasting model, to predict the precipitation for next the time period of 

simulation. 

❖ Rainfall-runoff model, to demonstrate the hydrologic response of a watershed and 

then determine the discharge come off from the watershed. 

❖ Unsteady one or two-dimensional flow model for the river-reservoir system, (in 

our case here two-dimensional model), to route the water flow in the river stream 

and further in the flood plain area in case one-, two- and  combined one-and two-

dimensional. 
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❖ Optimization model for determining the optimal reservoir spillways’ gates 

operation.  

An important part for the completeness of these components is a real-time 

operation model that predicts the results of a given operation policy for forecasted flood 

hydrographs. As one observes from the graph, precipitation events, as shown in Figure 

5.9, occurred in the month of March 1967 at Kanawha Falls, West Virginia (USACE, 

1983). Real rainfall data were recorded from March 11th through March 19th. On March 

19th, precipitation forecasts were made for the next several hours, which are represented 

by dashed line running vertically through the graph.  
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Figure 5.9 a, the precipitation forecasts were made on the morning of March 19th 

resulting in the ability to make forecasts of flood hydrographs. A similar phenomenon is 

seen in Figure 5.9 b, where the precipitation and flood hydrograph forecasts were made in 

the evening on the same day. The real-time reservoir operation problem involves the 
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operation of a reservoir system by making decisions about reservoir releases as 

information becomes available, with relatively short time intervals, ranging from several 

minutes to several hours. The real-time operation of multi-reservoir systems involves 

many considerations, such as hydrologic, hydraulic, operational, technical, and 

institutional considerations. That will enable engineers in the field to make critical 

decisions about releases from the reservoirs to control floodwaters. For an operation to be 

efficient, a monitoring system is essential to provide the operator of the reservoir with the 

flows and water levels at various locations in the river system. These include upstream 

flow conditions, tributaries, reservoir levels, and precipitation data for the watersheds of 

which output (rainfall and runoff) are not gaged. Flood forecasting in general and real-

time flood forecasting, in particular, have always been a significant problem in 

hydrologic engineering, especially when flood-control reservoir operations are involved. 

A forecasting problem can be viewed as a system with inputs and outputs. The 

inputs of a system are inflow hydrographs at the upstream end of a rivers system and 

runoff from rainfall in various catchments converging to the system. The outputs of a 

system are flow rates and water levels at points of interest in the river system, (L. Mays 

& Tung, 1992). 
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Figure 5.9 Observed and Forecasted Hydrographs at Kanawha Falls, Resulting from a 

Forecast of the March 1967 Flood Event, (L. Mays & Tung, 1992) 

5.3 Optimization Model 

The optimization technique adopted in this research is the genetic algorithm in 

MATLAB. A genetic algorithm is an optimization method that is a heuristic solution-
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search, basically based on the principle of Darwinian evolution through genetic selection. 

Genetic algorithms use a highly abstract version of the evolutionary processes to evolve 

solutions. Each genetic algorithm (GA) operates on a population of 

artificial chromosomes which are strings in a finite alphabet, usually binary. Each 

chromosome represents a solution to a problem and has fitness, a real number which is a 

measure of how good a solution is to the problem. Genetic algorithms differ from other 

optimizing methods such as gradient-based method and the simplex method, GA does not 

necessarily require a well-defined fitness function (objective function). There is no global 

definition describes GA; however, in general, genetic algorithm constructed of a number 

of operators. 

5.3.1 Genetic Algorithm Structure  

A genetic algorithm consists of several distinct components. This is a particular 

strength because it means that standard components can be re-used, with trivial 

adaptation in much different GAs, thus easing implementation. The main components are 

the chromosome encoding, the fitness function, selection, recombination and the 

evolution scheme (McCall, 2005). 

5.3.1.1 Encoding of Chromosomes 

The most critical issue in using a genetic algorithm is to find a suitable encoding 

to a chromosome of the examples in the problem domain. A decent decision of 

representation will help the search to be easier by limiting the search range; a poor choice 

will result in a large search range. Thus, chromosomes encoding is one of the problems, 
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when someone starts solving genetic algorithm problem. Encoding very depends on the 

problem.   

5.3.1.2 Fitness function  

The fitness function is a computation that evaluates the quality of the 

chromosome as a solution to a particular problem. By analogy with biology, the 

chromosome is referred to as the genotype, whereas the solution it represents is known as 

the phenotype. The translation process can be quite complicated. In timetabling and 

manufacturing scheduling GAs, for example, a chromosome is translated into a timetable 

or set of scheduled activities involving large numbers of interacting resources. The fitness 

computation will then go on to measure the success of this schedule in terms of various 

criteria and objectives such as completion time, resource utilization, cost minimization 

and so on. This complexity is reminiscent of biological evolution, where the 

chromosomes in a DNA molecule are a set of instructions for constructing the 

phenotypical organism. 

5.3.1.3 Selection 

A GA uses fitness as a discriminator of the quality of solutions represented by the 

chromosomes in a GA population. The selection component of a GA is designed to use 

fitness to guide the evolution of chromosomes by selective pressure. Chromosomes 

selected for recombination by fitness. Those with higher fitness should have a greater 

chance of selection than those with lower fitness, thus creating a selective pressure 

towards more highly fit solutions. Selection is usually with replacement, meaning that 

highly fit chromosomes have a chance of being selected more than once or even 
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recombined with themselves. The traditional selection method used is the Roulette Wheel 

(or fitness proportional) selection. This allocates each chromosome a probability of being 

selected proportional to its relative fitness, which is its fitness as a proportion of the sum 

of finesses of all chromosomes in the population (Goldberg,1989). There are many 

different selection schemes. 

5.3.1.4 Recombination 

Recombination is the process by which chromosomes selected from a source 

population are recombined to form members of a successor population. The idea is to 

simulate the mixing of genetic material that can occur when organisms reproduce. Since 

selection for recombination is biased in favor of higher fitness, the balance of 

probabilities (hopefully) is that more highly fit chromosomes will evolve as a result. 

There are two main components of recombination, the genetic operator crossover, and 

mutation. Genetic operators are nondeterministic in their behavior. Each occurs with a 

certain probability, and the exact outcome of the crossover or mutation is also non-

deterministic. 

5.3.1.5 Evolution 

After recombination, resultant chromosomes are passed into the successor 

population. The processes of selection and recombination are then iterated until a 

complete successor population is produced. At that point, the successor population 

becomes a new source population (the next generation). The GA is iterated through a 

number of generations until appropriate topping criteria are reached. These can include a 

fixed number of generations having elapsed, observed convergence to a best-fitness 
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solution, or the generation of a solution that fully satisfies a set of constraints. There are 

several evolutionary schemes that can be used, depending on the extent to which 

chromosomes from the source population are allowed to pass unchanged into the 

successor population. These range from complete replacement, where all members of the 

successor population are generated through selection and recombination to steady state, 

where the successor population is created by generating one new chromosome at each 

generation and using it to replace a less-fit member of the source population. The choice 

of the evolutionary scheme is an important aspect of GA design and will depend on the 

nature of the solution space being searched. A widely-used scheme is replacement-with-

elitism. This is almost complete replacement except that the best one or two individuals 

from the source population are preserved in the successor population. This scheme 

prevents solutions of the highest relative fitness from being lost from the next generation 

through the nondeterministic selection process. 

5.3.1.6 Genetic Algorithm Design 

There are many choices that have to be made in designing a GA for a given 

application. The choice of encoding will depend on the nature of the problem. Nonbit-

string representations are now common and include sequences of integer or floating-point 

values as the size of the allele set expands, for example, where the strings consist of 

floating-point numbers, the set of possible chromosomes becomes considerably greater. 

Many modern (or non-classical) GAs use a range of representational approaches to 

ensure that the set of possible chromosomes is a close match for the set of possible 

solutions to the problem. Having selected an encoding, there are many other choices to 
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make. These include the form of the fitness function; population size; crossover and 

mutation operators and their respective rates; the evolutionary scheme to be applied; and 

appropriate stopping/re-start conditions. The usual design approach is a combination of 

experience, problem-specific modeling, and experimentation with different evolution 

schemes and other parameters. Several examples of non-classical GAs can be found in 

[9] and [21]. Part G of [1] contains several examples of real-world applications. A typical 

design for a classical GA using complete replacement with standard genetic operators 

might be as follows: 

(1) Randomly generate an initial source population of P chromosomes. 

(2) Calculate the fitness, F(c), of each chromosome c in the source population. 

(3) Create an empty successor population and then repeat the following steps until 

P chromosomes have been created. 

5.3.1.7 Resources 

There are a number of resources freely available on the Internet for those 

interested in applying Gas in their own area. A good place to start is the Genetic 

Algorithms Archive, maintained by the US Navy Centre for Applied Research in 

Artificial Intelligence (http://www.aic.nrl.navy.mil/galist/). The site is a long-established 

resource for the genetic algorithm and evolutionary computation communities and 

contains lists of research groups, downloadable software, and links to related sites of 

interest. The Archive also maintains an archive of postings to the EC Digest mailing list 

(formerly GA-List). 
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A wide range of downloadable software is available to assist the rapid 

development of GAs. Toolkits are available in many programming languages and vary 

widely in the level of programming skill required to utilize them. Mathematicians are 

likely to find GAOT, the Genetic Algorithm Toolbox for MATLAB, the easiest way to 

begin experimenting with GAs. The Toolbox implements a GA as a set of MATLAB 

functions, which can be redefined and reconfigured to suit different applications. GAs 

using binary and floating-point encodings can be defined, and a range of standard 

recombination operators are also supplied. The Toolbox website also provides some 

example of GAs to solve some standard problems. GAOT can be downloaded from 

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/. 

5.3.2 Genetic Algorithm in MATLAB 

Genetic algorithms are an inbuilt function of the Global Optimization Toolbox in 

MATLAB. It is a method available in MATLAB to solve both constrained (which have 

to be converted to an unconstrained problem) as well as unconstrained optimization 

problems.  A GA only solves unconstrained problems. The genetic algorithm function 

repeatedly modifies a population of individual solutions, selecting individuals at random 

from the current population to be parents and using them to produce the children for the 

next generation, at each successive generation, Figure 5.10. 

The genetic algorithm solution methodology Figure 5.11 starts with creation of a 

random initial population, then creating a sequence of new populations and computing 

the values of a fitness function for each new population. The algorithm then chooses 

members called parents based on their fitness and chose individuals in the current 
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population with the lower fitness as elite. The current population is replaced with the 

children of the elite by combining the vector entries of a pair of parents – crossover. The 

replaced population then forms the next generation. This runs through an infinite loop 

type sequence until a predefined ‘stopping criteria’ is met.  

The algorithm chooses the initial population with a size of the ‘population size,’ 

which is an input for the genetic algorithm. If an approximate location of the minimal 

point for a function is known, an ‘Initial range’ is required to be set so that the point lies 

near the middle of the range. Thereafter, at each step, the genetic algorithm selects 

individuals that have better fitness values as parents. The algorithm usually selects 

individuals that have better fitness values as parents. The ‘Selection Function’ field in the 

‘Selection’ options could be used to provide selection criteria for the selection of the elite 

individuals for every generation. The selection function chooses the parents for the next 

generation based on their scaled values from the fitness scaling function. Thus, this 

function plays a vital role of comparing the various individuals of a generation based on 

their individual fitness function values. The selection option lays out a line in which each 

parent corresponds to a section of the line f length proportional to its scaled value. The 

algorithm moves along the line in steps of equal size.  

Another category of options required to be set are the ‘Reproduction Options. 

Reproduction options control how the genetic algorithm creates the next generation. The 

breeding options include the elite count (number of elite individuals determined from 

each generation), crossover function (fraction of individuals in the next generation other 
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than the elite children). The genetic algorithm uses the individuals in the current 

generation to create the children that make up the next generation.  

The various steps involved in developing a Genetic Algorithm in MATLAB include: 

1. Identification of the objective function and the constraints of the problem 

The first phase in the formulation of a genetic algorithm is to define the 

problem in the form of a standard minimization optimization problem; this 

includes identifying all the decision and state variables as well as the parameters 

in the model and then formulating the objective function and the constraints as 

required. 

2. Conversion to an unconstrained form 

As explained earlier, the problem formulated in step 1 is required to be 

converted to an unconstrained optimization problem format. The objective 

function of the unconstrained problem (including the penalty functions for the 

various constraints).  

3. Creation of ‘Fitness function’ using a function (.m) file in MATLAB. 

A fitness function file created in MATLAB for computation of the value 

of the objective function defined in step 2. This function is used to compute the 

individual fitness values for each generation. 

4. Identification and setting the various parameters for the Genetic Algorithm. 

This process requires a deep analysis of the different terms associated with 

the fitness function of the genetic algorithm. The parameters necessary for the GA 
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as explained earlier are computed using an exhaustive regime of sensitivity 

analysis for the variously considered parameters.  

Identification of Objective function and Constraints – 

Constrained Formulation of Problem

Conversion to an unconstrained form – Unconstrained objective function 

(minimization) with Penalty functions

Creation of a fitness function computation method using a ‘.m’ 

function file in MATLAB

Identification of GA options, settings and parameters. 

Create a option set file using ‘optimset.m’ function

Sensitivity Analysis for GA parameters

Final GA with modified option set

 
 

Figure 5.10 Genetic Algorithm   
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Figure 5.11 General Procedure of Genetic Algorithm 
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6 CHAPTER 6 FORMULATION OF THE PROBLEM  

6.1 Statement Theoretical  

The expected damages caused by a natural flood event that exceeds the hydrologic 

design return period of the reservoir to a certain degree cannot be avoided. Using 

optimization techniques in managing and operating the flooding facilities can 

tremendously minimize the effect and damage cost. The general theoretical formulation 

for optimizing and simulation of the flood releases condition from a river-reservoir 

system that minimizes the expected flood damage are subjected to the following: 

1. Hydrologic constraints for rainfall-runoff are simulated using HEC-HMS. 

2. Diffusion-Wave or Saint-Venant Equations for simulating unsteady flow 

modeling in a two-dimensional form which predicts the flow and its various 

components in a river -reservoir system simulated using HEC-RAS 5.0.6. 

3. The allowable releases from the reservoir, i.e., the maximum and minimum and 

the flow at particular locations or computational cells.  

4. The maximum allowable water surface elevations at specific computational cells 

in the flood plain and minimum water surface elevation in the river system. 

5. The operation limits of reservoir gates during flooding conditions. 

6. The storage capacity of the reservoir. 

The simulation part of the problem is described through the first two constraints 

and the fifth constraint of the model. The HEC-RAS 5.0 two-dimensional computational 

module has an option of either using the 2D diffusion-wave equations, or the full 2D 
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Saint-Venant equations (sometimes referred to as the full 2D shallow water equations) to 

run a simulation model. The 2D diffusion-wave equation is set as the default. Generally, 

the 2D diffusion-wave equations are considered for most flooding applications. The 

diffusion wave equation set runs faster, more stable than 2D Full Saint Venant equation. 

Definitely, that does not mean it works the same for all applications. However, there are 

many applications and cases where the two-dimensional Full St. Venant equations should 

be used for more accuracy. The choice between the two options is not that hard task; it is 

simply a matter of selecting the equation set. Both can be used in two separate runs and 

compare the results, (Bunner, 2016). 

There are three important dependent variables form the optimization-simulation 

model, which are the water surface elevations and the discharges in all computational 

cells in the downstream floodplain, the discharges values at all computational cells and 

the reservoir releases for all reservoirs. The mathematical expression of the optimization-

simulation problem for operating a river-reservoir system is described as in the following 

section. 

6.2 The Objective Function 

The objective function is to minimize the flow rate at control points in addition to 

minimizing the water surface elevation at specified cells, i, in all time t during the 

flooding condition. Then the mathematical expression of that objective function can be 

represented in term of flow for to that minimizing the total damage caused by the raising 

water elevation or depth at a certain location as below: 
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 𝑀𝑖𝑛 𝑍 = ∑ ∑ [𝐶𝑥,𝑦 𝑄𝑥,𝑦,𝑡
𝑇

𝑡=1
]

𝑥,𝑦

𝑥=1,𝑦=1
 (6.1) 

Where: - 

-  𝑄𝑥.𝑦,𝑡  is the flow rate time-series at the the control point, (x, y), of the river-

reservoir system that affects the cell, i, in the downstream two-dimensional 

area. 

- 𝐶𝑥,𝑦  is the penalty coefficient at control cells, x, y. 

- 𝑥, 𝑦 & 𝑡 are spatial and temporal indices, respectively.  

Alternative objective function has been adopted to solve the problem that 

maximizes the downstream water surface elevation (H) at specified control cells while 

satisfying all the constraints stated above can also minimize the total damage, and the 

objective function could also be written as in the following form: 

𝑀𝑖𝑛 𝑍 = 𝑀𝑎𝑥 [ℎ𝑥,𝑦,𝑡] (6.2) 

 

The objective minimizes the total damage in the entire river system at all times, t, 

including the upstream side, as it reliefs the headwater upstream reservoir gate 

6.3 Problem Constraints 

To achieve the objective function stated above a number of constraints and 

limitations must be specified. In general, the constraints that governed the objective 

function and as it has been described earlier in this chapter can be classified as four main 

types: 
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a) Hydrologic constraints: represented by the rainfall-runoff relationships defined by 

the sub-basin areas, rainfall losses due to canopy interceptions, depression 

storage, soil infiltration, excess rainfall transform methods, watershed runoff 

routing method, internal boundary conditions and initial conditions that depict the 

rainfall-runoff process in different components of a watershed system and 

function as generally stated as: 

ℎ(𝑃𝑥,𝑡, 𝐿𝑖,𝑡, 𝑄𝑖,𝑡) = 0 (6.3) 

 

where (𝑃𝑥,𝑦,𝑡) is the matrix of precipitation data in the system; (𝐿𝑥,𝑦,𝑡) is 

the rainfall losses of the watershed system and (𝑄𝑥,𝑦,𝑡) are the watershed and 

reaches discharges.  

 All the hydrologic can be expressed constraints are in matrix form 

because the problem has dimensions of space, x, y, and time, t solved using HEC-

HMS. 

b) Hydraulic constraints define the unsteady 1-D and 2-D flow in the river-reservoir 

system. They are defined by the Saint-Venant equations for one- (equations 1.3-

1.5) and two-dimensional unsteady flow, and related relationships of upstream 

boundary condition, downstream boundary condition, external two-dimensional 

flow area boundary conditions, internal two-dimensional area boundary 

conditions, and initial conditions that depict the flow in different components of a 

river-reservoir system, 

𝑔(ℎ𝑥,𝑦,𝑡, 𝑄𝑥,𝑡) = 0 (6.4) 
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where (ℎ𝑥,𝑦,𝑡) is the matrix of water surface elevations in the system; 

(𝑄𝑥,𝑦,𝑡) is the discharge matrix of the system. All the hydraulic constraints are in 

matrix form is because of the problem has dimensions of space, i, and time, t 

solved using HEC-RAS. 

c) Bound constraints include upper and lower discharge limits that define the 

maximum and minimum allowable reservoir releases and flow rates at target 

locations: 

  𝑄𝑥,𝑦  ≤  𝑄𝑥,𝑦,𝑡  ≤ 𝑄𝑥,𝑦 (6.5) 

The bars above and underneath the variable denote the upper limit (bound) 

and lower limit (bound) for that variable, respectively. 

Another significant hydraulic constraint is the water surface elevation 

bounds defined by the allowable the upper limit and lower limit at specified 

locations in the downstream two-dimensional area, including reservoir levels: 

ℎ𝑥,𝑦,  ≤  ℎ𝑥,𝑦,𝑡  ≤ ℎ𝑥,𝑦 (6.6) 

 

d) Operation constraints which include the rules of reservoir operation and releases, 

reservoir storages and the beginning and the end of the simulation period, 

reservoir storage capacities, etc., are also important to be included in the 

optimization-simulation model:  

W(𝑄𝑥,𝑦,𝑡, ℎ𝑥,𝑦,𝑡)  ≤ 0 (6.7) 
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6.3.1 Reduced Optimization Model 

The previous optimization model is an optimal control problem solved by 

interfacing an optimization solver which is here the genetic algorithm in MATLAB and 

the unsteady flow simulation model (HEC-RAS). Usually, the genetic algorithm used to 

solve an unconstrained problem which is a reduced optimization problem combining 

equation 6.5 -6.7, and HEC-RAS solves equation 6.4 implicitly to the optimization model 

at iteration it is called. A reduced optimization model with constraints equations 6.5 – 6.7 

in the form of penalty function can be solved by the genetic algorithm which solves an 

unconstrained problem. The unconstrained reduced optimization model is in the 

following:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑊1,𝑡 ∑ ∑ 𝐶𝑥,𝑦𝑄𝑥,𝑦,𝑡

𝑇

𝑡=1

𝑋,𝑌

𝑥=1, 𝑦=1

+  𝑊2,𝑡 ∑ ∑((𝑚𝑎𝑥(0, 𝑄𝑖,𝑡 − 𝑄𝑚𝑎𝑥,𝑖)) 𝑛
𝑇

𝑡=0

𝐼

𝑖=0

+ (max(0, 𝑄𝑚𝑖𝑛,𝑖,𝑡 − 𝑄𝑖,𝑡))𝑛)

+ 𝑊3,𝑡 ∑ ∑((𝑚𝑎𝑥(0, ℎ𝑖,𝑡 − ℎ𝑚𝑎𝑥,𝑖))𝑛

𝑇

𝑡=0

𝐼

𝑖=0

+ (max(0, ℎ𝑚𝑖𝑛,𝑖,𝑡 − ℎ𝑖,𝑡))𝑛) 

 

(6.8) 

Where:  

  𝑊1,𝑡 − 𝑊3,𝑡 are penalty weights  
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6.4 Optimization/Simulation Solution Methodology  

A real-time optimation and simulation to manage a river-reservoir system by 

determining the releases before, during and even after the extreme flood event through an 

optimization simulation model that could help the decision maker to control reservoir 

releases and consequently the water surface elevations and keep it within the desired 

level as much as possible. The decision variable of the problem formulation is the water 

discharge (Q), based on the reservoir gate or gates opening that represents the control 

variable (state variable). 

The overall model starts inputting actual rainfall data, at time that it is needed to 

make decision on how much water should be released to so that to prepare enough 

volume in the reservoir to accommodate the upcoming flood water wave, meanwhile the 

model generates a short-term rainfall forecast and then the floods that can be happened by 

using the real-time rainfall of the precipitation gages and expects the real-time flood 

water elevation in the river-reservoir system to avoid accumulating a headwater on the 

gate of the reservoir. A methodology of projecting future rainfall within the next few 

minutes to hours has been developed by Danny Che, 2015, as a part of the methodology. 

Forecasted rainfall data will be used to simulates the watershed rainfall-runoff through 

HEC-HMS model, and then to produce hydrographs as time series of the reservoir 

inflows that is going to be used as inputs of the optimization model to compute the 

releases of the reservoirs gates in a river-reservoir system. The optimization model will 

come up with sets of a feasible solution of how much water should be released to satisfy 

some the problem constraints. Once these set of feasible solutions for the decision 
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variable which may or might not contain the optimal sets are obtained, the obtained data 

then is to use as the input of one- and two-dimensional unsteady model to be routed 

downstream and simulated though HEC-RAS 5 model to check if the flooding will occur 

or not. If the answer was yes, the model would repeat the process until the target water 

surface elevations are achieved without or with minimum damage effect for the system or 

for the area downstream. So, the main objective of this study is to control the reservoir 

resales and keep the water surface elevations acceptable level. For instance, 100-year 

flood elevation might be one of the targeted levels in the processed system. For, the next 

iteration, the model uses the hourly projected real rainfall data for running the HEC-HMS 

model to compute the actual runoff quantities from the watershed and then the reservoir 

water level and consequently the releases from the reservoir and hence routing them 

downstream to make a decision for the next iteration of the operation period. This process 

continues and repeats until the objective is met at all time with satisfying all of the 

constraints for the entire period of simulation. The reason behind that model enabled to 

forecast and run the simulation in advance of the storm event is the can help to make pre-

decision and take the necessary action to minimize the flood condition as much as 

possible. The stages of the simulation and optimization model algorithm are illustrated in 

Figure 6.1. 
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Figure 6.1 Overall Optimization-Simulation Stages 
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The optimization simulation model initiates to obtain real-time rainfall data from 

precipitation gages stations to get for the HEC-HMS to start simulating the rainfall-runoff 

model and to produce the required hydrographs to input them into one dimensional 

unsteady model for routing them from the watershed exist point to the reservoir location. 

Now, the optimization model has the required data and ready to run and search for the 

optimal solution to make the proper decision of real-time releases from the reservoir. The 

optimization model starts to generate the possible operation to the reservoir until and 

determine the gate opening. These possible solutions represent the releases from the 

reservoir gates, so the next step is to route these discharges downstream into one and/or 

two-dimensional unsteady model through HEC-RAS to simulate further downstream to 

the two dimensional areas of study where other some constraints should be stratified and 

meet the objective of the targeted water level at the control cell in the study area. This 

stage in the most important operation in the model where the model began to test the 

objective and repeats the process to readjust the releases from the reservoir. For example, 

if the releases of the first iteration after routed in the unsteady flow models produced 

water level in the downstream control cell higher than the target level, the model will 

repeat the process and reduce the releases and vice versa until acceptable water levels are 

obtained. The process continuous iterating and the optimization and simulation (HEC-

RAS) model. Once the objective is satisfied and obtained the target water levels up this 

time t, the overall process repeats for the next period t+Δt of simulation and optimization 

until the last time of Δt. The process of forecasting rainfall is a complementary process to 

the model to ensure the continuity of model operation, right after they enter the actual 
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rainfall data. The model of rainfall forecasting starts to forecast the upcoming rainfall 

storm over the next Δt, while the model uses the known rainfall up to the immediate 

simulation time. t. the forecasting rainfall model generates and provides the required 

precipitation data for the next iteration that prompts the simulation process to start and 

simulate the hydrologic model. The overall process of the simulation-optimization model 

process will continue until the last period of simulation, and then the model will be 

stopped. Figure 6.2 below illustrate the various component of River-Reservoir System 

operation in a real-time pattern. 

 
 

Figure 6.2 Model Components Interfacing 
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6.4.1 Model Development 

The overall model is developed by using the MATLAB environment for 

interfacing and exchanging data among the aforementioned submodels. Both actual 

(measured) rainfall data to time t are known, the forecasted rainfall is used to obtain 

future rainfall estimation and the time interval t to t+Δt. The model starts with inputting 

the first actual available rainfall data and the forecasted rainfall data of time Δt into the 

MATLAB model. MATLAB sends the rainfall data to the HEC-HMS model through an 

algorithm programmed into MATLAB. Once the HEC-HMS model receives the rainfall 

data, the rainfall-runoff is simulated. The results of the rainfall-runoff model (HEC-

HMS) will be resent to the MATLAB through the same algorithm which represents the 

watershed outflow hydrographs in a matrix form so that the MATLAB can deal with it 

and sent it to the next sub model. These results now need to be routed to the reservoir 

location, so MATLAB is going to communicate HEC-RAS model and sent it the 

produced hydrographs to route it to where the reservoir is located and resent the data 

which is reservoir inflow hydrographs back to the MATLAB to use in the next sub-model 

which is the reservoir operation model. The model of reservoir operation started once the 

data of floodwater being arrived at the reservoir location to initiate set feasible solutions 

of how much water is going to be released for the reservoir gate. Genetic algorithm solver 

into MATLAB is coded to carry out this most important task of generating the feasible 

and optimal solutions and according to the operating constraints discussed before. These 

feasible solutions will be resent to the on- and two-dimensional unsteady flow model of 

the HEC-RAS model to route it further downstream where the control cells and the 
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targeted water elevations should be. The feasible solutions generated tested one after 

another by communicating and resending the data back and forth between the reservoir 

operation model and the unsteady model of HEC-RAS until the optimal solution reached 

with satisfying all hydraulic and operation constraints, and the flood elevation at the 

control cell in the area downstream. Figure 6.3 shows the operation optimization model 

process into MATLAB. The process will exit the optimization subroutine of the reservoir 

operation optimization model once the objective is met and move to the next Δt of 

rainfall forecasting and the repeat the same all over the process until the end of the storm. 
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Figure 6.3 The Operation Optimization Model Process in MATLAB 
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7 CHAPTER 7 MODEL APPLICATION 

An example application is introduced in this chapter for demonstrating the 

optimization-simulation model for real-time operation of a flood event.  The application 

is designed specifically for testing the optimization-simulation model to determine the 

optimal operation of the floodgates in a reservoir with possible downstream flooding in 

the river and floodplain of an urban area.  The river reach is real, but the reservoir is a 

hypothetical reservoir with one floodgate.  The application assumes an inflow hydrograph 

to the hypothetical reservoir so that the HEC-HMS portion of the overall model is not 

employed  in this application.  The unsteady flow modeling is performed using the 

combined one and two-dimensional approach.   

The other very important purpose of this chapter is to describe in detail the 

development of the two-dimensional mesh for the two-dimensional modeling. Movement 

of water through the two-dimensional area is governed by the computational mesh. 

7.1 Model Description 

The example application, referred to as the Muncie Project (for Muncie, Indiana), 

is based upon information from (U.S. Army Corps of Engineers, 2016b). Muncie is 

located on the West and East Forks of the White River, which flows through Central and 

Southern Indiana as shown in Figure 7.1, creating the largest watershed contained 

entirely within the state. Muncie is located in East Central Indiana, about 50 miles (80 

km) northeast of Indianapolis.  

This example model application includes a hypothetical reservoir (modeled as a 

storage area) upstream of Muncie. Figure 7.2 illustrates the one-dimensional area along 
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the main channel shown in blue and the two-dimensional flow area is outlined in red 

downstream of Muncie, Indiana and the main channel area in blue is the one-dimensional 

flow area. Figure 7.3 shows the location of the hypothetical reservoir (storage area) and 

the connection to the hypothetical dam (inline structure). The modeling purpose is to 

determine the reservoir operation (gate operations of the inline structure) in real-time for 

the hypothetical reservoir using an optimization-simulation model. 

 
 

 Figure 7.1 Location of Muncie, Indiana and White River  
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Figure 7.2 One-Dimensional Flow Area in Blue and Two-Dimensional Flow Area 

Outlined in Red Downstream of Muncie, Indiana 

As a part of the Mississippi River system, the White River Basin drains 11,350 

square miles of central and southern Indiana. The average streamflow is about 12,300 

cubic feet per second close to the White River's confluence with the Wabash River in 

Southwestern Indiana. Changes in streamflow generally occurred seasonally and 

moderated. The peak flows are typically recorded in April and May, whereas in Summer 

and Fall are the lost flows. The annual precipitation rates in average from between 40 
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inches in the northern part of the basin and 48 inches in the south-central part. The 

precipitation is evenly distributed through the year, the winter and early spring rainfall. 

  
 

Figure 7.3 Hypothetical Storage Area and Connection to the Hypothetical Dam (Inline 

Structure) 

As a part of the Mississippi River system, the White River Basin drains 11,350 

square miles of central and southern Indiana. The average streamflow is about 12,300 

cubic feet per second close to the White River's confluence with the Wabash River in 

Southwestern Indiana. Changes in streamflow generally occurred seasonally and 

moderated. The peak flows are typically recorded in April and May, whereas in Summer 

and Fall are the lost flows. The annual precipitation rates in average from between 40 
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inches in the northern part of the basin and 48 inches in the south-central part. The 

precipitation is evenly distributed throughout the year. The winter and early spring 

rainfall are generally characterized by a long-term duration, steady and of moderate 

intensity, while during late spring and summer rainfall seems to be of high intensity of 

short duration, see https://in.water.usgs.gov/nawqa/wr00002.htm. 

7.2 Hypothetical Model. 

The elevation-storage area of the hypothetical reservoir is presented in Table 7.1 

and Error! Reference source not found.. The system is modeled using the combined 

one and two-dimensional modeling approach. The river reach is modeled using one-

dimensional unsteady flow, while the floodplain area and/or the probable flood 

inundation areas are modeled using the two-dimensional unsteady flow approach, Figure 

7.5 shows the one-dimensional area and the cross-sections of the river reach. Figure 7.6 

shows the two-dimensional finite difference grid system of the floodplain and possible 

flood inundation area. The two-dimensional modeling is based upon the diffusion-wave 

modeling described in Chapter 4. 

 

  

https://in.water.usgs.gov/nawqa/wr00002.htm
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Table 7.1 Storage Area Elevation Volume Relationship  

 

Elevation Volume (Acre-Feet) 

840 0 

885.4 1657 

894.8 5591 

904.2 12228 

913.6 22746 

923 38559 

932.4 60089 

941.8 86922 

951.2 119473 

960.6 156859 

970 201293 

979.4 246078 

988.8 295791 

998.2 347839 

1007.6 401953 

1017 457592 

1026.4 514117 

1035.8 571196 

1045.2 628516 

1054.6 685971 

1064 743449 
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Figure 7.4 Hypothetical Model Storage Area Elevation-Volume Curve 

The hypothetical reservoir is connected to river reach at the first upstream cross-

section see Figure 7.7, through a gated spillway (inline structure) with a large radial gate 

to allow passing a wide range of significant discharges for the purpose of simulation 

process of a flooding event. One radial gate type is assumed to regulate the flow from the 

dam to the downstream channel. The total gates width is assumed to be 30 feet with 

maximum opening 21 feet, and the discharge coefficient of the gate is 0.98, as shown in 

Figure 7.8 and Figure 7.9 respectively. 
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.  

Figure 7.5 One-Dimensional River Reach. 
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Figure 7.6 Finite Difference Grid System of the Model Area of Floodplain and Possible 

Inundation Area 
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Figure 7.7 Storage Area Connected Through an Inline Structure  
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Figure 7.8 The inline regulating structure with gate specifications 

 

 
 

Figure 7.9 Gate Specifications 
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7.3 Two-Dimensional Area Terrain Model Development  

The two-dimensional hydraulics model essentially requires a detailed and accurate 

terrain model in order to have accurate results and closer to reality. So, the terrain fitness 

(resolution) is the most important factor that can affect the hydraulic model results. There 

are many different sources, formats, and levels of details to obtain terrain data. Gridded 

data is what HEC-RAS uses to describe the terrain. The U.S. Geological Survey is a good 

source to download a digital elevation in ASTER GDEM form which is a product of 

METI and NASA. Another source to download a digital elevation model is the US 

Environmental Protection Agency through the model of Better Assessment Science 

Integrating Point & Nonpoint Sources (BASINS) which can download a digital elevation 

model in TIF format and then can be directly uploaded to the HEC-RAS mapper to create 

a terrain model. A user can collect data from multiple sources, create an accurate terrain 

model, and they can convert and export it into a gridded data format which can be 

processed in HEC-RAS. Creating a terrain model in HEC-RAS mapper before the user 

can perform his model computations that contain 2D flow areas is highly recommended, 

or even before the user can display two-dimensional or combined mapping results, (G. 

Brunner, 2016). The user can also visualize the terrain layer as a background image in the 

HEC-RAS geometry editor. It is also recommended to create background images that 

assists the user in defining the 2D flow area boundaries. This allows the modeler to 

recognize the tops of levees, floodwalls, and any high ground that could act as a barrier to 

flow. Figure 7.10 shows the RAS Mapper with a terrain data layer of the hypothetical 

model. 
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Figure 7.10 The RAS Mapper with the Terrain Data Layer of the Hypothetical 

Model 

7.4 Creating Computational Mesh Dimensions  

The movement of water through the two-dimensional area is governed by the 

computational mesh so that for each cell of the grid is going to be a single water surface 

elevation at each time step. Each cell in the grid may have several faces depends on 

where it is located within the grid. Normally, lock cells have a regular rectangular shape 

which also called structured cells, while the terminal cells take unregular shapes and 

named as unstructured cells as well, as shown in Figure 7.11. However, the movement of 

water flow between any adjacent cells depends on the cells faces. HEC-RAS processes 

the underlying terrain and the computational mesh before doing any hydraulics process to 

develop individual relationships for elevation–volume for each cell, and then detailed 
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hydraulic aspects relations for every face of a cell in the grid such as roughness (Manning 

n), elevation vs. wetted perimeter and area. 

 
 

Figure 7.11 HEC-RAS 2D Modeling Computational Mesh Terminology, (Brunner, 2016) 

7.5 Mesh Size Selection 

The underlying terrain defines the hydraulic parameter in table form so that they 

will be used in water conveyance and storage but without considering the computational 

cell size. How big or small the cell size is still pawned with few important considerations 

and limits to decide where large coarse cells can be used versus the little small cells are 

needed. The two-dimensional modeling ability of HEC-RAS 5.0.3 uses a finite-volume 
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solution scheme algorithm. The development of this algorithm allows for the users using 

structured and unstructured computational mesh. Furthermore, the computational mesh 

can be a mixture of three to eight-sided computational cells as HEC-RAS has a maximum 

of eight sides in a computational cell. However, the user will most likely select a simple 

grid resolution to use (e.g., 200 x 200 ft cells) as what adopted herein the hypothetical 

model, and the automated tools within HEC-RAS will build the computational mesh. 

However, the user can refine the grid after the initial mesh is built through break lines 

and the mesh editing tools, (Brunner, 2016). 

Generally, the slope of the water surface is one of the important factors to define 

the cell size for a given area. The obstruction in another factor affects choosing the cell 

size in terrain as well. In other words, larger grid cell sizes are recommended where the 

slope of the water surface is nearly flat and changing gradually. For steeper slopes area, 

where the water surface elevation changes more rapidly, smaller grid cell sizes are 

required to monitor that rapid change in the water surface elevation. Because of the 

movement of flow depends on the cell faces of the computational cell, significant 

changes to geometry and quick changes in flow dynamics required to be defined by the 

smaller cells.  

7.6 Hypothetical Model Application Input and Output 

As mentioned above the system is modeled using the combined one and two-

dimensional modeling approach. The river reach is modeled using one-dimensional flow, 

and the floodplain is modeled using the two-dimensional modeling approach based upon 

the diffusion wave model.  A hypothetical reservoir is connected to the river reach at the 
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very first upstream cross-section, through a gated spillway inline structure with large 

enough radial gate to allow passing a range of significant discharges for simulation 

process of a flooding event. A radial gate type is assumed to regulate the flow from the 

dam to the downstream channel. The total gate width is 30 feet long with a maximum 

opening of 21 feet, and the discharge coefficient of the gate is 0.98. The river channel has 

an initial steady flow of 1000 cfs.  

 The hypothetical inflow hydrograph to the reservoir is shown in Figure 7.12, 

which is used for this example application.   

 

Figure 7.12 Reservoir Hypothetical Inflow Hydrograph 

A computation interval Δt of one hour is used, starting at time t=0. To determine 

the optimal sequence of reservoir gate openings for the targeted downstream water 
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surface elevations, an adequate theoretical optimization scheme should be presented and 

the potential constraints that must be satisfied during a flooding event. These time series 

of gates openings should achieve downstream water surface elevations within the 

allowable range of elevations at the points of interest, which is here in the model 

represented by Muncie City. So, the problem objective is to minimize the flow rates at 

the city of Muncie, while satisfying all hydraulic, hydrological and operational 

constraints during the entire period of flooding event simulation. The input parameters 

that have been used the simple model are listed in Table 7.2, and the inflow hydrograph 

shown in Error! Reference source not found. is applied as hypothetical inflow 

hydrograph to reservoir pool for 64 hours with Δt of one hour. 

Table 7.2, Hypothetical Model Reservoir Input Parameters  

 

 

On the other hand, The optimization-simulation model is responsible for keeping 

the storage level above the inactive storage (minimum water surface elevation), and 

below the maximum flood storage, also the stage at the control point (Muncie city) must 

always be under the flood stage, 950 ft. This phase includes the reservoir operation model 

with global optimization model solved by the genetic algorithm solver in the MATLAB 

Parameter Value 

Max reservoir level 974 ft 

Min reservoir level 952 ft 

Max reservoir discharge 14500 cfs 

Max water surface elevation at Muncie 950 ft 
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program. So that, each optimization iteration results, which is here the gate opening as 

decision variable and hence the released discharges, can be simulated and routed 

downstream to the control point by HEC-RAS 5.0.3. That is to check and satisfy the 

hydraulic constraints downstream.  

The process of simulation starts at t=0, where the initial level of the storage area 

was set to be as 971 ft above the sea level.  

After that, the forecasting starts at t=5 h. The hypothetical hydrographs of 

watershed outflow which is supposed to be computed by the HEC-HMS used as reservoir 

inflow hydrograph. The data exchanges among the submodels though MATLAB code. At 

this time the reservoir operation model link with GA in MATLAB starts generating the 

possible solution for determining the reservoir releases over next Δt. The reservoir 

operation model and the genetic algorithm solver succeeded to keep the reservoir storage 

within the desirable range, which the storage for the reservoir was kept above the inactive 

storage and below the maximum flood storage, thus preventing any potential dam failure. 

The time series of the gate openings of the inline structure is depicted in Figure 7.13, with 

these results.  
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Figure 7.13 Time Series of The Gate Openings  

The reservoir operation model and the genetic algorithm solver succeded to keep 

the reservoir storage within the desirable range, which means the storage for the reservoir 

was kept above the inactive storage and below the maximum flood storage, thus 

preventing any potential dam failure, Figure 7.14. Moreover, the stages at the control 

point Muncie city were under the flood stage at all time, and the area of inundation before 

and after the add the reservoir depicted in Figure 7.15 and Figure 7.16 respectively. 
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Figure 7.14 Storage Area Stages Time Series  

 

 
 

Figure 7.15 Maximum Simulated Stage at Muncie City Using the optimization-

Simulation Model 
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Figure 7.16 Maximum Simulated Stage at Muncie City without Using the Optimization- 

Simulation Model 
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8   CHAPTER 8 THE STUDY AREA AND THE FLOOD EVENT 

8.1 May 2010 Flooding Event at Nashville 

The application of the complete optimization-simulation model was applied to a 

portion of the Cumberland River System in the vicinity of Nashville Tennessee, Figure 

2.10 and Figure 8.1, for the flooding event that occurred during May 2010.  This event 

caused severe flooding in Nashville, surrounding areas. Many lives and home were lost 

and ruined, but Nashville rose above the tragedy. The rainfall occurred on the weekend of 

May 1-2, 2010. According to the National Weather Service, 13.57 inches of rain was 

recorded in just a 36 hour period. The rainfall total doubled the previous 48-hour rainfall 

record in Nashville. Twenty-six lives passed away; as a result, the flooding in Tennessee 

and Kentucky, including 11 in the Nashville area. Final, body of a victim, Danny 

Tomlinson of Pegram found Sept. 26, 2010, about five months after the flood. Nearly 

11,000 properties were damaged or destroyed in the flooding, and 10,000 people were 

displaced from their homes. The flood caused over $2 billion in private property damage 

and $120 million in public infrastructure damage in Nashville. One year after the event, 

The Tennessean, citing the Nashville, TN Area Chamber of Commerce, reported that 300 

to 400 businesses stayed closed and 1,528 jobs were "very unlikely" to return, (Grigsby, 

2015). 

A significant weather system brought torrential rains and severe thunderstorms on 

Saturday, May 1st through Sunday morning, May 2nd. A stalled frontier accompanied with 

very humid air streaming northward from the Gulf set the stage for repeated rounds of 

rain. Numerous locations along the I-40 corridor across western and middle Tennessee 
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reported more than ten to fifteen inches, with some places receiving up to twenty inches 

per Doppler radar estimates, (NWS, 2010). 

 
 

Figure 8.1 Ohio River System (U.S. Environmental Protection Agency’s, 2017) 

 

8.2 Cumberland River Basin 

The Cumberland River, Figure 2.10, is a major river in the Ohio River Basin. The 

688-mile-long (1,107 km) river drains almost 18,000 square miles (47,000 km2) of the 

south of Kentucky and north-central Tennessee. The river flows to the west from the 

Appalachian Mountains to its confluence with the Ohio River near Paducah, Kentucky, 
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and the mouth of the Tennessee River. Major tributaries include the Obey, Caney Fork, 

Stones, and Red rivers, (USGS, 2011). 

The Ohio River starts at the confluence of the Monongahela and Allegheny Rivers 

near Pittsburgh, Pennsylvania. The Ohio River flows along the borders of states: Indiana, 

Illinois, Kentucky, West Virginia, and Ohio to its confluence with the Mississippi River 

at Cairo, Illinois. Figure 8.1 illustrates the Ohio River Basin. The Ohio River the largest 

tributary, by volume, to the Mississippi River, and contributes 60% on average of the 

flow in the Mississippi River at Cairo. The Ohio River is 981 mi in long and has a total 

drainage area of about 204,000 mi2 converging parts of 15states. The Cumberland River 

enters the Ohio River 58 miles upstream of its junction with the Mississippi River as seen 

in Figure 8.1, (U.S. Environmental Protection Agency’s, 2017). 

The Cumberland River is the second largest tributary of the Ohio River.  From 

that point the 694 miles long river flows southwest toward Nashville, Tennessee; then 

flows toward northwest into western Kentucky. The Cumberland River Basin Figure 

2.10, lies entirely within the states of Kentucky and Tennessee and has a total area of 

17,914 mi2 miles, of which 10,695 square miles (60%) are in the state of Tennessee.  The 

topography of the Cumberland River Basin changed  from rugged mountains in the 

eastern upstream portion to rolling low plateaus in western, or downstream, sector.  

Elevations range from 4150 ft  above mean sea level (MSL) in the Cumberland 

Mountains to 302 ft in the pool at the start of the river (USACE, 2010c and 2012).   

Five projects on the Cumberland River mainstream are maintained and operated 

by the U.S. Army Corps of Engineers Nashville District, plus five other projects on the 



 

175 
 

tributaries.  The mainstream projects are the Cordell Hull, Barkley, Cheatham, Old 

Hickory, and Wolf Creek. Wolf Creek and Barkley are only congressionally authorized in 

terms of flood risk management, while Congress authorizes Barkley, Cheatham, Old 

Hickory, and Cordell Hill for hydropower generation and commercial navigation.  The 

five Corps of Engineers tributary projects, Dale Hollow, Center Hill, Martin’s Fork, 

Laurel, and J. Percy Priest are congressionally authorized for flood risk management 

(USACE, 2010c and 2012). Figure 8.2 and Figure 2.10, illustrates the current U.S. Corps 

of Engineers projects in the Cumberland River Basin, and Table 8.1 summarizes of 

current purposes of these congressionally authorized projects.  

The system for control of the Cumberland River and its tributaries is comprised of 

ten dams, five on the main stem, and the other five are on the tributaries.  All of them 

produce hydropower, except the Martin’s Fork Dam.  Four of the projects have 

navigation locks, and six do not. All the projects enhance the water supply of the 

Cumberland River Basin. However, the U.S. Congress for water supply purposes 

specifically authorizes none.  All projects contribute to improving water quality, but only 

Martin’s Dam, specifically permitted for water quality improvement.  The entire Corps’ 

projects in the Cumberland provide recreation, fish, and wildlife enhancement.  Only six 

dams have been authorized for flood control purposes. The storage reservoirs of Wolf 

Creek, Dale Hollow, Center Hill, and J. Percy projects provide on the Cumberland River 

between Wolf Creek and Barkley Dams.  These dams account for 71% of the flood 

storage volume in Cumberland River Basin.  They also control runoff from 55% of the 

total basin drainage area and 77% of the drainage area upstream of Nashville, Tennessee.  
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Lake Cumberland impounded by the Creek Dam has the greatest flood control capacity in 

the Cumberland River Basin.  Lake Cumberland has 42% of the basin’s flood storage and 

58% of the capacity upstream of Nashville.  It also controls runoff from 33% of the 

Cumberland drainage area (USACE, 2010c and 2012). 

Table 8.1 Currently Congressionally Authorized Projects Purposes (U.S. Army Corps of 

Engineers, 2010a) 
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Figure 8.2 U.S. Army Corps of Engineers' Projects in the Cumberland River Basin (U.S. 

Army Corps of Engineers, 2010a) 
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Cumberland lake is designed to retain over 6.5 inches of rainfall runoff within its 

flood control pool elevation. During the early flood season (springtime), storage space is 

occasionally available within the power pool to store an additional 3.5 inches of runoff.  

The key location that the Wolf Creek Dam controls is Celina, Tennessee, located along 

the Cumberland River, 80 miles downstream. Celina is located about 108 miles northeast 

of Tennessee.  Dale Hollow Lake contains about 7% of the basin flood storage capacity.  

Similar to the Wolf Creek Dam, Dale Hollow Dam mainly controls flooding at Celina, 

Tennessee.  Center Hill Lake contains 15% of the Cumberland River Basin’s flood 

storage capacity.  

The main control point for flood control by Center Hill Dam is Carthage, 

Tennessee.  Carthage is about 55 miles east of Nashville. J. Percy Priest Reservoir 

contains about 7% of the basin flood storage capacity.  The primary location the J. Percy 

Priest Dam controls is Nashville, Tennessee; the dam also controls 7% of the drainage 

area upstream of Nashville.  Martin’s Fork reservoir has flood storage of only 0.4% of the 

basin flood control storage; thus its effect of controlling flood is negligible. The three 

mainstream projects, Cordell Hull, Old Hickory, and Cheatham provide no flood control 

purpose due to their limited storage capacity.  The three projects are exclusively designed 

for navigation and hydropower generation. The permanent impoundment of the water 

within the river valley decreases the natural capacity of the channel to store flood water.  

Thus, it is necessary to operate these reservoirs in a way to mitigate the loss of natural 

valley storage in the reservoir areas during floods. 
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  Barkley Dam is the most downstream project in the system.  It controls runoff 

from 98% of the drainage for the Cumberland River Basin, and it also has 28% of the 

basin flood control storage.  The primary areas receiving flood protection from the 

project are outside the Cumberland River Basin (USACE, 2010c and 2012).  

The existing projects in the Cumberland River Basin provide a very high degree 

of flood control capability to mitigate major damage along the main stem of the 

Cumberland River between Wolf Creek Dam and Nashville.  The storage capacity of the 

reservoirs reserved for flood water amounts to about 7 inches of runoff from the drainage 

areas for each of the four major upstream reservoir projects; the system should have 

sufficient storage for flood protection during normal rainy seasons.  During major 

flooding events, storage projects may reduce the outflow to zero to minimize the flow at 

key control points: Celina, Carthage, Nashville, and Clarksville (USACE, 2010c and 

2012).  Nonetheless, uncontrolled inflows below projects may result in inflows, which 

significantly exceed damage levels, mainly on the lower parts of the river.  

Reservoirs continue to store incoming upstream floodwaters during a major flood 

event until streamflow recedes at the control locations, after which the water stored in the 

reservoirs is gradually released until the flood control storage has been evacuated and the 

pool levels have been lowered to their normal non-flood operation levels.  On the lower 

Cumberland River, uncontrolled tributary inflows during flood events are such that the 

effectiveness of reservoir control is less than in the upper portions of the river.  For 

instance, early parts of a flood may exceed flood levels before upstream discharge 

reductions become more efficient in the lower river.  However, during an extreme 
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flooding event, for example, a 500-year flood event or more, the traditional reservoir 

operation rules during flooding condition may not be sufficient and efficient for flood 

control purposes.  A new philosophy and new approaches for flood control are therefore 

necessary to response to potential future extreme rainfall and consequential flooding 

events. The occurrence of these extreme events will become more frequent and more 

intense primarily due to climate change.  

8.3 Rainfall and Flood Event in May 2010 

A catastrophic flooding event occurred across western and middle parts of 

Tennessee, also western central areas of Kentucky from May 1st to May 4th, 2010.  Flood 

damage was estimated at more than two billion dollars and 26 flood-related fatalities.  

This event was the worst flooding ever occurred in and around Greater Nashville, 

(Service, 2011). 

8.3.1 Antecedent Moisture Conditions 

In most cases, an extended period of rainfall increases soil moisture, and river 

stream flows, therefore increasing the potential for runoff.  Conditions like such typically 

precede major or sometimes extreme, large-scale flood events.  Drier than normal 

conditions were observed in Tennessee and Kentucky from February through late April in 

2010; however, showers and thunderstorms moving through the region from April 24th to 

April 28th, 2010 did bring widespread rainfall (NWS, 2011b).  Figure 8.3 to Figure 8.7 

are the high-resolution precipitation images illustrating the movement of the showers and 

thunderstorms from April 24th to April 28th.  Total rainfall received in the projects in the 

Cumberland River Basin, prior and after the May 2010 storm event is summarized in 
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Table 8.2 for the months of March through June in 2010.  With appropriate conversion 

factor, runoff values in inches are calculated from monthly net effective runoff volume 

divided by that drainage area.  The information from Table 8.2 shows the runoff from 

these storms did not cause flooding but did increase antecedent conditions to normal 

levels immediately preceding the May 2010 flood event, in other words, the total rainfall 

values were close to historical averages.  The analysis in Table 8.2 shows the previous 

rain event restored the area to normal condition, and the antecedent conditions were 

irrelevant due to the massive amount of rainfall which followed on May 1st and 2nd. 

Table 8.2 Cumberland River Basin Project Drainage Basin Rainfall/Runoff Values, (U.S. 

Army Corps of Engineers, 2012) 

Drainage 

Basin 

Rainfall (in.) Runoff (in.) 

Observed Normal Difference Observed Normal Difference 

Barkley L&D       

March 3.46 4.96 -1.50 2.02 3.66 -1.64 

April 4.94 4.27 0.67 1.23 2.57 -1.34 

May 10.11 4.97 5.14 4.21 2.27 1.94 

June 4.18 4.14 0.04 0.70 1.26 -0.56 

Cheatham 

L&D 
      

March 3.87 5.30 -1.43 1.76 3.55 -1.79 

April 4.23 4.19 0.04 1.23 2.67 -1.44 

May 15.25 5.21 10.04 3.50 2.10 1.40 

June 3.08 4.19 -1.11 0.42 1.02 -0.60 

J. Percy Priest 

Dam 
      

March 3.20 5.57 -2.37 2.10 3.65 -1.55 

April 2.08 4.18 -2.10 0.55 2.20 -1.65 

May 11.43 5.16 6.27 7.43 2.08 5.35 

June 4.02 4.29 -0.27 0.21 0.98 -0.77 

Old Hickory 

L&D 
      

March 3.11 5.35 -2.24 1.67 3.40 -1.73 

April 3.42 4.10 -0.68 1.26 2.55 -1.29 

May 12.86 5.17 7.69 5.14 2.01 3.13 
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June 3.35 4.30 -0.95 0.41 0.98 -0.57 

 

Center Hill 

Dam 

      

March 3.60 5.94 -2.34 2.21 3.77 -1.56 

April 2.12 4.41 -2.29 1.20 2.74 -1.54 

May 8.64 5.28 3.36 3.61 2.16 1.45 

June 3.74 4.45 -0.71 0.66 1.02 -0.36 

Cordell Hull 

L&D 
      

March 3.05 5.20 -2.15 1.52 3.44 -1.92 

April 3.22 4.01 -0.79 1.33 2.62 -1.29 

May 11.40 5.07 6.33 4.73 2.01 2.72 

June 4.64 4.43 0.21 0.39 1.07 -0.68 

Dale Hollow 

Dam 
      

March 2.46 5.25 -2.79 1.67 3.56 -1.89 

April 2.69 4.23 -1.54 1.17 2.65 -1.48 

May 9.34 5.22 4.12 5.09 2.01 3.08 

June 4.34 4.54 -0.20 0.38 0.90 -0.52 

Wolf Creek 

Dam 
      

March 2.37 4.85 -2.48 1.37 3.46 -2.09 

April 3.05 4.04 -0.99 1.38 2.65 -1.27 

May 7.11 5.10 2.01 4.25 2.00 2.25 

June 4.29 4.47 -0.18 0.26 1.07 -0.81 
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Figure 8.3 Composite High-Resolution Precipitation Image at April 24, 2010, 12:00 UTC  

(U.S. Army Corps of Engineers, 2012) 

 

 
 

Figure 8.4 Composite High-Resolution Precipitation Image on April 25, 2010, 12:00 

UTC (U.S. Army Corps of Engineers, 2012) 

 



 

184 
 

 
 

Figure 8.5 Composite High-Resolution Precipitation Image on April 26, 2010, 12:00 

UTC (U.S. Army Corps of Engineers, 2012) 

 
 

Figure 8.6 Composite High-Resolution Precipitation Image on April 27, 2010, 12:00 

UTC (U.S. Army Corps of Engineers, 2012) 
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Figure 8.7 Composite High-Resolution Precipitation Image on April 28, 2010, 12:00 

UTC (U.S. Army Corps of Engineers, 2012) 

8.3.2 Meteorological Conditions 

Weather disturbances in the mid-level atmosphere contributed to trigger storms 

that produced heavy rainfall over the mid-Mississippi and Lower Ohio Valley region 

(NWS, 2011b).  This rare convergence of conditions favorable for a prolonged and 

powerful rainfall event over the central Continental U.S. caused the May 2010 historical 

precipitation and flooding across Tennessee and Kentucky.  Primary factors that 

contributed to the record rainfall event are (1) unseasonably strong late-spring storm 

system; (2) stationary upper-air pattern; (3) persistent tropical moisture deed; and (4) the 

time of the impulse moving through the jet stream.  On April 30th, a very intense storm 

system moved into the central parts of the United States.  The deep system which was 

unseasonable maintained a central pressure as low as 988 millibars.  The jet stream 
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moved from central Mexico north through the Mississippi Valley and into eastern 

Canada. The configuration caused an extreme favorable upper-air condition for 

widespread heavy storm and severe thunderstorms over the mid-Mississippi, Tennessee 

and Cumberland River Basin on May 1st, 2010.  A stationary front, jet stream orientation 

and moisture supply provided for the second round of heavy rain and intense 

thunderstorm activities on May 2nd, 2010.  Figure 8.8 shows the weather disturbances in 

the mid-levels of the atmosphere helped trigger storms that produced heavy rainfall and 

intense thunderstorms on May 1st and 2nd (NWS, 2011b).  

 
 

Figure 8.8 Upper Air Chart Showing Flow and Disturbances at Approx. 18000 Ft. AGL, 

May 1st, 7:00 a.m. (Service, 2011) 
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In the lower levels of the atmosphere, a 75 miles per hour jet was the main source 

of transporting moisture into the region, this phenomenon was illustrated in Figure 8.9.  

The orientation of the jet streams, positioned roughly south to northeastward, was 

perpendicular to the surface front, west to northeastward, stopping it from progressing 

eastward and allowed for an endless supply of tropical moisture across the Gulf of 

Mexico into the Mississippi Valley (NWS, 2011b). 

 
 

Figure 8.9 Lower Levels Atmosphere Showing Moisture Transport (Green Lines) at 

Approx. 5000 Ft. AGL, May 1st, 7:00 a.m. (Service, 2011) 

These elements combined to produce two episodes of heavy intense rainfall 

across Kentucky, and western and Middle Tennessee. Between 10 to 20 inches of rain fell 
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within 36 hours on May 1st and 2nd, causing catastrophic flooding events.  The heaviest 

rains fell primary on unregulated portions of the Cumberland River Basin, downstream of 

the reservoirs containing sufficient flood control storage to help contain the event’s 

runoff and mitigated flood damages (NWS, 2011b).  Figure 8.10 and  Figure 8.11 

illustrate the total spatial precipitation data in the Cumberland River Basin on May 1st and 

May 2nd, 2010; and Figure 8.12 shows the total rainfall received over the two days, (U.S. 

Army Corps of Engineers, 2012). 

Hourly and accumulative rainfall data at the Nashville International Airport are 

shown in Figure 8.13.  In Nashville, over 13 inches of rain was recorded during a 36-hour 

period; 6.23 inches on May 1st, the 3rd highest 24-hour total ever on record, and 7.25 

inches on May 2nd, which exceeded the previous 24-hour rainfall record of 6.60 inches set 

in September 1979 (NWS, 2011b).  The highest weekend rainfall total was reported by 

NWS Cooperative Observer in Camden, Tennessee at 19.41inches.  Figure 8.13 also 

depicts the resultant river level rise (the brown curve) on the Cumberland River at 

Nashville, Tennessee.   
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Figure 8.10 Total Precipitation Data in the Cumberland River Basin on May 1st, 2010, 

(U.S. Army Corps of Engineers, 2012) 
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Figure 8.11 Total Precipitation Data in the Cumberland River Basin on May 2nd, 2010, 

(U.S. Army Corps of Engineers, 2012) 

As seen in Figure 8.13, the flood crest of 53.86 feet was well above the major 

flooding stage of 45 feet.  The record rain event also set water level and discharge records 

on numerous tributaries and at several main stem locations across the Cumberland River 

Basin. Table 2.3 summarizes the significant river crests across the Cumberland River 

Basin. 
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,  

Figure 8.12 Total Precipitation Data in the Cumberland River Basin over May 1st and 2nd, 

2010, (U.S. Army Corps of Engineers, 2012) 
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Figure 8.13 Hourly and Accumulative Rainfall at Nashville International Airport from 

12:00 a.m., May 1st to 12:00 a.m., May 3rd, (Service, 2011) 
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Table 8.3 Record of Flood Levels Set During the May 1-2, 2010 Flood Event (Source:  

USACE, 2010) 

 

 

Table 8.2, summarizes some of the rainfall totals across the region over the two-

day record flooding event.  The gages selected are a part o a larger network administrated 

by the U.S. Army Corps of Engineers Nashville District and Tennessee Valley Authority.  

Figure 8.14 and Figure 8.15 illustrate the base condition of the Cumberland River 

levels and the peak stage inundation and the severity of the May 2010 flood event. 
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Table 8.4 Rainfall Total from May 1st to May 3rd, 2010, (U.S. Army Corps of Engineers, 

2010b)  

 

Gage Location 

Cumberland River Basin 
Total Rainfall (in) 

Clarksville, TN 9.22 

Elkton, KY 9.4 

Springfield, TN 10.38 

Franklin, TN 17.87 

Antioch, TN 16.22 

J. Percy Priest Dam, 

Nashville, TN 
12.96 

Lascassas, TN 9.33 

Murfreesboro, TN 9.76 

Old Hickory Dam, 

Hendersonville, TN 
11.88 

Spring Creek near 

Lebanon, TN 
9.51 

Statesville, TN 9.58 

Bethpage, TN 12.11 

Cordell Hull Dam, 

Carthage, TN 
9.15 

Liberty, KY 10.587 
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Figure 8.14 Nashville Area during Base Condition, (U.S. Army Corps of Engineers, 

2012) 

 

During a critical period, May 2nd Sunday afternoon and evening, the NWS and 

USACE did not communicate effectively regarding the updated reservoir releases from 

USACE projects (USACE 2010c, 2012 and NWS 2011b).  This lack of critical exchange 

of information and mutual understanding of each agency’s operations led to inaccurate 

river stage forecasts on the Cumberland River. With untimely and incorrect data from the 

USACE about their reservoir operations, as well as miscommunications and ineffective 

exchanges of information between the two Federal agencies, NWS crests forecast on the 
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Cumberland River were quick exceeded on Sunday when the river stage at Nashville, 

TN, rose rapidly through moderate and major flood levels as seen in Figure 8.13 (USACE 

2010c and 2012).  The next section, the actions and reservoir operations of the USACE 

during the flood event is described in detail.  

 
 

Figure 8.15 Nashville Area during Peak Stage Condition, (U.S. Army Corps of 

Engineers, 2012) 
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8.4 Actions Taken by the U.S. Army Corps of Engineers during the Event 

Typically, during normal flooding events, the Corps uses water control manuals 

for guidance for each flood risk management project.  These water control manuals 

provide instructions on how best to regulate levels of water at the project, therefore 

minimizing downstream flooding. Water control manuals are based on the dynamics of 

the entire watershed; including uncontrolled downstream tributary drainage areas, 

reservoir storage capacity, and the time distribution and volume of inflows from upstream 

drainage areas (USACE 1990 and 1998).  Due to the magnitude of the May 2010 

flooding event, the environment of which the Corps operated was far beyond the scope of 

the guidance instructed in the water control manuals for each project. 

With proper decision-making, the projects are capable of being operated outside 

the manuals’ scope; however, the water control manuals did not cover the full range of 

the reservoirs’ capability during extreme events.  During the event, the reservoir storage 

capacities were not fully utilized at Wolf Creek, Dale Hollow, and Center Hill Dams due 

to the fact the intense rainfall was concentrated in the downstream drainage areas in the 

Cumberland River Basin rather than upstream (USACE 2010c and 2012). 

Figure 8.16 reveals the radar and observed precipitation totals for the May 1st and 

2nd 2010 flood event, also the locations of the rainfall in relation to controlled and 

uncontrolled drainage basins of Cumberland River, respectively.  As seen on the figure, 

the storage capacities in those projects which are purposeful for flood control such as 

Wolf Creek, Dale Hollow, and Center Hill Dams (see Table 8.1) were not fully used; 

whereas, dams that are not designed to have flood control purposes such as Cordell Hull 
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Lock and Dam, and Old Hickory Lock and Dam were nearly overtopped by unusually 

extreme flood water volume during the event; which both have significantly less total 

storage as compare to Wolf Creek, Dale Hollow, and Center Hill Dams (USACE 2010c 

and 2012). 

 
 

Figure 8.16 Cumberland River Basin Projects, Controlled and Uncontrolled Drainage 

Areas: May 1st and 2nd, 2010 (Source: UASCE, 2010c) 

During the May 2010 flooding event, J. Percy Priest Dam, located just upstream 

of Nashville, TN, the spillway gates were nearly overtopped (USACE 2010c and 2012).   

The flood storage capacity was exceeded requiring the operation of those spillway gates 

to avoid overtopping and potentially catastrophic failure of the gates.  Cheatham Lock 
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and Dam, a Cumberland River navigation project located downstream of Nashville were 

overtopped.  Spillway-gate operations were necessary at the navigation projects of 

Cordell Hull and Old Hickory to prevent failure of critical structure and losing control of 

water leases. J. Percy Priest Dam operated in a fashion to decrease the impacts of releases 

from the project the flood crest moved down the Cumberland River, which resulted in the 

lake level exceeding the top of spillway gate elevation of 504.5 ft. Barkley Lock and 

Dam had a historical maximum discharge of 303,200 ft3/s.  During the flood event, the 

project was visually inspected twice a day.  Old Hickory Lock and Dam experience a 

tremendous water load coming with 6.6 inches of complete dam failure.  A maximum 

historical discharge of 212,260 ft3/s along with a historical maximum headwater elevation 

of 451.45 feet was set during this event (USACE 2010c and 2012).  If the dam were 

overtopped at Old Hickory, the spillway gate would have been inoperable, resulting in 

uncontrolled flow and increased downstream damage impact.  Figure 8.17 illustrates a 

brief summary of the operations at Old Hickory and J. Percy Priest. 

During the event, the spillway gate operation at Cordell Hull changed as often as 

every 30 minutes; and on Monday, May 3rd, 2010, it experienced a new pool elevation of 

508.33 feet and a recorded discharge of 130,100 ft3/s.  The recorded pool elevation at 

Cordell Hull was only 2 inches from overtopping the lock gate.  If water had reached the 

point of overtopping the dam at Cordell Hull, it would have resulted in extreme large 

flows downstream in the Cumberland River.  Cheatham Lock and Dam experienced the 

most impact, with a maximum historical discharge of 240,000 ft3/s along with a 

maximum historical headwater elevation of 404.15 feet (USACE 2010c and 2012).  



 

200 
 

 
 

Figure 8.17 Old Hickory, J. Percy Priest, and Nashville Gage, (U.S. Army Corps of 

Engineers, 2010b) 

The Army Corps of Engineers projects in the Cumberland River Basin use 

traditional reservoir operation method of headwater-discharge relationship (USACE 1990 

and 1998).  Many of the projects, including some in the mainstream of the Cumberland 

River, the operation policies do not extend to the full range such as when extreme events.  

The ability to sustain the operation of the Cumberland River Basin reservoir system 

under extreme rain and flooding events is highly questionable.  The water control 

manuals of the projects were last updated in 1998, and these updates were mostly updates 

of the original water control manuals.  The magnitude, duration, and location of the 
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rainfall during this May 2010 event were such that flood stages along the Cumberland 

River were elevated to new record levels.  The information in the control manuals at the 

time did not cover the full range of operations required to respond to this particular 

record rainfall event.  For example, the spillway rating curve for Old Hickory did not 

extend to the full range of required gate openings.  

As a normal operation procedure, each day the Corps of Engineers provides the 

NWS a morning report that includes the reservoir release data and forecast for a reservoir 

within the Great Lakes and Ohio River Division (LRD) (USACE 2010c and 2012).  The 

NWS applies the information to account for the operation of the USACE projects in its 

hydrological forecasts.  However, there were no direct communications between the 

USACE Nashville District (LRN) and the NWS regarding the forecast discharges on 

Saturday, May 1st, 2010 (USACE 2010c and 2012).  On Sunday, between conference 

calls of the two agencies, additional releases from the projects occurred, and this 

information was not provided to the NWS except during the scheduled conference calls.  

The conditions at Cordell Hull, Old Hickory, and Cheatham were so dynamic that 

discharge information relayed during the calls quickly became outdated.  LRN had 

discussed conditions at the navigation projects to portray the gravity of the flooding 

observed at those projects, and not with the understanding that the NWS Ohio River 

Forecast Center (OHRFC) was applying the discharge information in their hydraulic 

models.  As a result, LRN WM did not recognize the need to update that information as it 

rapidly changed throughout the afternoon and evening on Sunday, May 2.  Once that 

expectation was realized, LRN Water Management (WM) readily shared updated 
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spillway release information with NWS OHRFC, (U.S. Army Corps of Engineers, 2010b, 

2010a, 2012). 

Before the May 2010 flood event, the NWS had produced 3-Day Quantitative 

Precipitation Forecast (QPF) as its usual practice (USACE 2010c and 2012); the USACE 

Nashville District had the forecast information days before the flooding event but did not 

act early or nor made any operations decisions in the Cumberland River Basin.  Figure 

8.18 illustrated increased 3-day rainfall total up to 7 inches in central Tennessee.  

However, the USACE did not utilize the information NWS 3-day QPF which was 

available before the actual event. It is fairly clear that little if any of the decision-making 

processes concerning the operation of the reservoirs used by the U.S. Army Corps of 

Engineers was based upon the forecast modeling performed by the National Weather 

Service.  

8.5 The Flooding Damages   

The May 2010 flood event established the new flood record for much of middle 

Tennessee. Figure 8.19 shows the aftermath on Cumberland River near downtown 

Nashville. The immediate concern was issued regarding the quality of municipal water 

supplies.  It was reported that 42 water supply systems were adversely affected. Ten of 

these systems were completely offline with several being out of service for two weeks or 

more. The city of Nashville lost the usage of one of the primary water treatment plants; 

another water treatment plant was nearly inundated, which would have affected the water 

supply ability to nearly 750,000 people.   
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Figure 8.18 NWS QPF published on April 30, 2010, (U.S. Army Corps of Engineers, 

2010a) 

Numeral water line breaks also occurred due to exposed and damaged water lines. 

An estimated 70 wastewater treatment facilities in Tennessee were damaged by flooding, 

while about 20 of them were severely damaged and required to close for a few weeks.  

Although water and wastewater contamination were of immediate concern to public 

health, drift, and debris that were carried by floodwater often create additional damage to 

the flooding areas, such as clogging the important waterways and drainage.  The 52-

county region was affected by the flooding.  The flooding within the Cumberland River 

Basin impacted thousands of homes and businesses.  An estimated $2 billion dollars in 

property damage were experienced as a result of this flood event.  Tragically, the flood of 
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May 2010 resulted in the deaths of 26 individuals in the west and middle Tennessee and, 

western and central Kentucky, 18 of which occurred within the USACE Nashville 

District boundaries (USACE, 2010c and 2012).    

 
 

Figure 8.19 Flooding along First Avenue on the Cumberland River near Downtown 

Nashville, (U.S. Army Corps of Engineers, 2012) 

8.6 Real-Time Operation Situation in the Cumberland River System  

The primary control location for the release from the Old Hickory Dam is 

Nashville, Tennessee, which is about 25 miles downstream of the dam (USACE, 1998).  

Flow propagate through Nashville is directly affected by the releases from the Old 

Hickory Dam and the J. Percy Priest Dam as illustrated in  
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Figure 8.20. J. Percy Priest is a flood control structure, so it has a greater capacity 

than the Old Hickory.  However, the J. Percy Priest is a tributary river (the Stone River) 

to the main Cumberland River, the Old Hickory that is on the Cumberland River 

mainstream is not a flood control dam.  The Old Hickory project does not have any flood 

control storage capability.  It does, however, have a small amount of space dedicated to 

flood storage.  The Old Hickory is permitted to have pre-flood drawdown prior to the 

arrival of the flood waters (USACE, 1998).  The Old Hickory Dam has certain guidelines 

for operation during a storm event.  For instance, the gates (six in total) must be opened 

uniformly as the headwater rises about the elevation of 447 feet as shown in 

Table 8.5. As flood progresses, the Old Hickory discharges are increased, and 

Nashville flows are allowed to reach control levels before any storage is used. Once the 

control flows are reached, J. Percy Priest discharge then reduced to maintain the control 

flow at Nashville.  If the Nashville control flow cannot be maintained, then flood storage 

of the Old Hickory is utilized.  The increase in maximum combined spillway releases 

from the Old Hickory and the J. Percy Priest is limited to 5000 ft3/s per hour.  The 

maximum combined decrease in spillway discharges from Old Hickory and J. Percy 

Priest is limited to 10,000 ft3/s per hour (USACE, 1998). 

Prior to the May 2010 storm event, the projects in the Cumberland River Basin 

managed by the U.S. Army Corps of Engineers used the traditional method, the 

headwater-discharge relationship, for their reservoir operations.  The decisions of 

releases are based on the pool elevation of control points at the time.  As of May 2010, 

the flood regulation at the Old Hickory Dam was based on the decades-old USACE 
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Water Control Manuel (USACE, 2010c).  The managers at the dam were to follow the 

Flood Regulation instruction during the flooding condition.  According to the USACE 

Water Control Manuel (USACE, 1998), the flood operations of the run-of-river Old 

Hickory Dam on the Cumberland River, 25 miles upstream of Nashville, are based on the 

peak stage and rate of rising at the control location Nashville.  The reservoir operators 

then use the rating table to determine the spillway gate openings at the Old Hickory Dam 

as illustrated in  

Table 8.5. 

Table 8.5 Spillway Releases for various Headwater Levels, (U. S. Army Corp of 

Engineer, 1998) 

 

Headwater Minimum Minimum 

Elevation Gate Opening Spillway Discharge 

(feet) (feet) (cfs) 

445 0 0 

446 0 0 

447 0 0 

448 1 7500 

449 2 14880 

450 3 22440 

 

During the May 2010 flood event, USACE personnel was sent to the reservoirs 

and flood sites to observe flood stages (USACE, 2010c), and reservoir decisions were 

made based on observations at the time, but not based on pre-flood forecasting.  As 

illustrated in Figure 8.17, during the midday on May 2nd, the pool elevation of the Old 

Hickory Dam reached above 450 feet, and nearly a foot over by the end of the day, which 

was above its maximum flood surcharge storage pool of 450 feet.  Although the Old 
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Hickory Dam does not primarily provide flood control service, with adequate real-time 

operation strategies of the entire river-reservoir system, the pool elevation of the Old 

Hickory Dam should have been below the maximum flood surcharge storage pool of 450 

feet.  Had the optimal real-time operation of the river-reservoir system, as described 

briefly in Chapter 1 and in detailed in chapter 7, been adopted, the flood damage during 

the May 2010 might have been minimized.  By employing the optimal real-time 

operation of the river-reservoir system, the operating decisions are made for the entire 

reservoir systems simultaneously based on rainfall-runoff forecasting, operational 

hydrologic and hydraulic model simulations, and optimization model.  The entire 

reservoir system operation decisions could have been made hours, or even days before 

the real storm arrive.  

8.7 Old Hickory Dam Impact  

The USACE operation at the Old Hickory Dam can be further analyzed.  The Old 

Hickory Dam is immediately upstream of Nashville, see Appendix A.  

Figure 8.20 shows the gate opening over the five-day span from the start of May 

1st to the end of May 5th. Figure 8.21 shows the reservoir discharge over the same five-

day span.  Obviously, the USACE did not start operating the gates at the dam until well 

after the storm had started (see Figure 1.11 and Figure 8.13).  It was not until later in the 

day on May 1st that the USACE started to release water from the reservoir gates. The late 

response at the Old Hickory Dam to the storm was one of the main reasons why 

Nashville was flooded.  The USACE needed to release quickly; thus the gates were 

opened rapidly on May 2nd, causing huge discharges from the dam as seen in  Figure 
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8.21. Figure 8.22 shows the flow comparison of the Old Hickory Dam discharges and the 

flow in downtown Nashville.  There was a strong correlation between the two flow time 

series, and it was evident that the huge rapid increase in discharges from the Old Hickory 

Dam was the major cause of the flooding at Nashville.  The 100-year flood stage at 

Nashville is 48 feet; the flood stage at Nashville was greater than the 100-year flow for 

the time span between May 2nd and May 4th as shown in Figure 8.23.  

 
 

Figure 8.20 The Gate Openings at the Old Hickory Dam during the May 2010 Storm 

Event (U.S. Army Corps of Engineers, 2010b) 
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Figure 8.21 Reservoir Outflow at the Old Hickory Dam during the May 2010 Storm 

Event (U.S. Army Corps of Engineers, 2010b) 

In fact, not only the Old Hickory Dam operation during the May 2010 storm event 

was flawed, but the existence of the dam was also problematic under the flooding 

conditions. According to the study and simulations conducted by Dr. Larry W. Mays of 

Arizona State University with the dam in place and the USACE operation caused a 2.2 ft. 

increase in maximum water surface elevation for the May 2010 storm event , as 

illustrated in Figure 8.23.  Figure 8.25 shows the flooding inundation in downtown 

Nashville and at Pennington Bend/Opryland. 
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Figure 8.22 Reservoir Outflow at the Old Hickory Dam and Flow at Nashville during the 

May 2010 Storm Event, (Che & Mays, 2015) 

 

 

 
Figure 8.23 Flood Stage Condition at Nashville during the May 2010 Storm Event 
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Figure 8.24 Flow Comparison (with and without Old Hickory Dam) at Nashville during 

the May 2010 Storm Event 

 

 

 

Figure 8.25 Flooding in Downtown Nashville and Pennington/Opryland by the 

U.S. Army Corps of Engineers 
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9 CHAPTER 9 MODEL APPLICATION TO THE CUMBERLAND RIVER BASIN 

9.1 Model Applications  

The optimization – simulation model, described in chapters 5 and 6 and tested in 

chapter 7, has been applied to the Cumberland River system described in chapter 8 using 

the May 2010 flood event, also explained in the previous chapter. The main objective of 

this model application is to demonstrate the applicability of the model for minimizing 

flood damages for an actual flood event in a real-time fashion on an actual river basin.  

The purpose of the application in a real-time framework was to minimize the flood 

damages at Nashville, Tennessee by keeping the flood stages (water surface elevations) 

under the 100-year flood stage of 48 feet at the Nashville Woodland station during the 

storm event. 

The model application compared the three unsteady flow simulation scenarios: 

one-dimensional unsteady flow, two-dimensional unsteady flow (diffusion-wave model), 

and combined one- and two-dimensional unsteady flow (diffusion-wave model) utilizing 

the current version of HEC-RAS 5.7. This allowed a comparison of the three unsteady 

flow simulation methodologies. The reservoir regulation and operation rules prepared by 

Sverdrup Corporation in 1998 for the U.S. Army Corps of Engineers, Nashville District 

were used in the model to set the operation rules constraints. The domain or simulated 

portion of the model application on the Cumberland River system is shown in Figure 9.1, 

and Figure 9.2 shows the entire Cumberland River system. The HEC-RAS two-

dimensional module has the option of either running the two-dimensional diffusion-wave 
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equations. Basically, the diffusion wave equations run faster and more stable. Thus, the 

diffusion wave equations set have been used in this model. 
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Figure 9.1 Cumberland River Simulated Portion 
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Figure 9.2 Cumberland River Basin HEC-HMS and HEC-HMS Model Domain 
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The approximate watershed area modeled is 14,160 mi2 of the Cumberland River 

system. The modeled watershed area included headwater of the basin starts in Lechter 

County, Kentucky to its end at Cheatham Dam around 30 miles downstream from 

Nashville, Tennessee. The hydrologic model in HEC-HMS is already set up and consists 

of 66 reaches and 69 basins of areas ranging from 7 to 17 mi2. The hydrologic simulation 

methods adopted in the HEC-HMS model for the Cumberland River basin are listed in 

Table 9.1. 

Table 9.1 HEC-HMS Hydrologic Processes and Methods Used  

 

Hydrologic Process Method  

Loss Deficit Constant 

Transform  Clark Unit Hydrograph  

Base Flow  Bounded Recession 

Channel Routing  Muskingum Method 

 

The real-time rainfall data source of the May 2010 event is the high resolution 

gridded generated by Next Generation Radar (NEXRAD), which is used for the 

hydrologic modeling. Figure 9.3 illustrates a time revolution (May 1st 10 a.m. to 1 p.m.) 

of the storm movement the NEXRAD gridded rainfall data during the May 2010 event, 

(Che, 2015). 

The forecasted rainfall is determined using gridded area weighted rainfall 

forecasting. The rainfall was extracted from each cell of grid areas up to time t, from time 

series (hyetograph). The weights of each grid cells, w, within a subbasin are determined  

Figure 9.4. 
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Figure 9.3 Sample Time Revolution of the May 2010 Storm Event from NEXRAD (May 

1st 10 a.m. to 1 p.m.) 

 

 

 
 

Figure 9.4 Hyetograph Generation for a Cell using Grid Data Extraction, (Che, 2015) 

The time series up time t of rainfall for i subbasin is computed using the following 

equation:  

𝑃𝑖,𝑡 = ∑ 𝑤𝑖,𝑗𝑃𝐽,𝑡
𝑗

 (9.1) 

Where: 
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 𝑃𝑖,𝑡 is time series of rainfall up to current time t for the i-th sub basin 

 𝑤𝑖,𝑗 weight of the j-th grid overlaying the i-th sub basin 

 𝑃𝑗,𝑡 time series of rainfall up to current time, t, for the j-th grid 

The HEC-HMS was already calibrated and validated for the May 2010 storm 

event by (Che, 2015). He compared the simulated, and the observed Dale Hollow 

reservoir inflow hydrograph during the May 2010 storm event. He utilized the root mean 

square error (RMSE) at the Dale Hollow reservoir for the HEC-HMS model is 6174 ft3/s, 

which is acceptable considering the magnitude of the storm event. Equation 9.1 

determines the root square: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)2𝑁

𝑖=1

𝑁
 (9.2) 

Where: 

 𝑄𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is observed i is the i-th observed hydrograph ordinate. 

 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is simulated i is the i-th simulated hydrograph ordinate. 

 N   is the number of hydrograph ordinate for the model  

    validation 

Modeling efficiency has been used as well to validate the HEC-HMS Cumberland 

River basin, which tests the quantitative measure of performance and goodness of fit. 

(Nash & Sutcliffe, 1970) described the modeling efficiency based on the deviation 

variance, Equation 9.2: 
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𝐸 = 1 −  
𝜎𝑒

2

𝜎𝑜
2
 (9.3) 

Where: 

 E is model efficiency. 

 𝜎𝑒
2  is the variance of the deviation between observation and simulation 

 𝜎𝑜
2 is the variance of the observations. 

The HEC-HMS model of the Cumberland River Basin is well validated with a 

model efficiency of 0.853 as shown in Figure 9.5, (Che, 2015).  

 
 

Figure 9.5 HEC-HMS Model Validation for the May 2010 Storm Event at Dale Hollow 

Dam, (Che, 2015) 
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9.2 One-Dimensional Unsteady Flow Model Application 

The one-dimensional unsteady flow (HER-RAS) model of the Cumberland River 

system consists of computational components. These components are 675 cross sections, 

8 inline structures, 117 lateral structures, and 1 bridge. Che (2015) has also calibrated and 

validated the 1-D unsteady flow model for the May 2010 storm event. He computed the 

root mean square error (RMSE) at Nashville for HEC-RAS model as 14,550 ft3/s, which 

is in the range of acceptance considering the magnitude of the storm event and the nature 

of unsteady flow modeling. The model efficiency for the HEC-RAS model is 89%. The 

difference between the observed and simulated flow for the May 2010 storm is illustrated 

in Figure 9.6. The root means square error (RMSE) at the Nashville stage for this 

simulation is 1.777 ft, as in Figure 9.7 

 
 

Figure 9.6 Simulated VS Observed Flow at Nashville, (Che, 2015) 
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Figure 9.7 Observed and Simulated Stages at Nashville, (Che, 2015) 

9.3 Unsteady Flow Simulation Approach 

As stated above the optimization - simulation model was applied to a portion of 

the Cumberland River basin including Old Hickory and Cordell Hull reservoirs and J. 

Percy Priest lake as shown in Figure 9.1. The portion of the Cumberland River modeled 

in HEC-RAS using the two-dimensional approach is from Old Hickory Dam downstream 

through Nashville to Cheatham Dam. 

 The flows downstream of Old Hickory and J. Percy Dams were modeled using 

the two-dimensional unsteady flow approach and combined one, and two-dimensional 

unsteady flow and the area upstream of Old Hickory has been modeled using only one- 

dimensional unsteady flow routing. 
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Three scenarios have been adopted to simulate the unsteady flow for the May 

2010 flood event. The first scenario uses combined one- and two-dimensional unsteady 

flow modeling, in which the Cumberland River, Nashville reach has been model in one 

dimensional, while its flood plain was modeled using two-dimensional unsteady flow 

simulation. The two-dimensional area was divided into four subregions, two the for the 

north side of the river reach and two for the south side and as NE, NW, SE, and SW. 

These sub-areas were gridded into 832, 1068, 235 and 1208 cells respectively, Figure 9.8. 

The maximum cell size of 2.19 M square feet minimum cell area of 714 k square feet, 

and the average cell area of 1 M square feet. The total area of these cells that cover two-

dimensional modeling is around 106 square miles. The input spacing into the 2-D flow 

area editor for generating these cells is 1000 x 1000 feet, Figure 9.11. 

The other components include two reaches, cross sections, storage areas, laterals, 

inline structures, and one junction. The Nashville reach connects Old Hickory Dam at the 

upstream to Cheatem at the downstream using 76 cross sections over the total length of 

51 miles. The other reach is Stoned River reach that links the J. Percy Priest Lake to the 

Nashville reach via 22 cross sections. The cross sections were extracted from the terrain 

model and modified with the actual cross sections surveyed by U.S.AC.E. The terrain 

does not accurately represent the actual bathymetry of a river reach because the LIDAR 

technology does not have the ability to penetrate the water surface elevation. 

Each of the two-dimensional areas is connected to the river reach (one-

dimensional area) through a lateral structure, Figure 9.8. The Nashville’s reach connected 

form the upstream to the Old Hickory reservoir using inline structure representing the 
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Old Hickory Dam as shown in Figure 9.8, and the and the same for J Percy Priest Lake. 

Each run iteration of a combined one- and two- dimensional model takes 5 to 6 minutes 

to run one unsteady flow simulation for this portion of the Cumberland river system 

shown in Figure 9.1. 

 
 

Figure 9.8 Combined One- and Two- Dimensional Areas  

The second scenario is using only the two-dimensional unsteady flow modeling. 

One of the problems in using only the two-dimensional approach is that terrain data does 

not often include the actual terrain underneath the water surface in the channel region 

(river bathymetry) due to the fact that LIDAR processing is not capable of penetrating the 
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water surface elevation (U.S. Army Corps of Engineers, 2016c). As a result, many HEC-

RAS users do not prefer only the two-dimensional approach. Thus, the terrain model of 

the only two – dimensional of the Nashville reach has been modified through RAS 

Mapper by creating a terrain model of the channel region only from the cross sections 

surveyed and measured in the field by U.S Army Corp Engineers and the cross-section 

interpolation surface. As mentioned above the general surface terrain model does not 

accurately depict the terrain below the water surface so, it is merged with the created 

channel region terrain to improve the whole terrain model for hydraulic modeling 

purposes. Figure 9.9 shows Nashville’s terrain before modification while Figure 9.10, 

shows the modification on Nashville’s terrain model which reflexes the existing 

bathymetry of Nashville’ reach of Cumberland river.  

Though, the second scenario was set up with only two-dimensional area enhanced 

with 2-D break lines along the river reach to enforce the mesh generation tools to align 

the computational cell faces along the break lies. The two-dimensional flow element 

connected directly to the storage areas: Old Hickory Reservoir and J. Percy Priest Lake 

using the storage area and 2-D area connections that allow inputting the data of hydraulic 

structures such as gates to weirs as it set in normal inline structures to control the flow 

between the two elements of the area. The 2-D area was divided into 3211 cells, with a 

maximum cell area of 2.2 M square foot, minimum cell area of 439 K square foot, and 

the average cell area of 974165 square foot. The total area of these cells that cover the 

two-dimensional modeling is around 112.2 square miles, see Figure 9.11. The input 

spacing into the 2-D flow area editor for generating these cells is 1000 x 1000 feet, which 
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is considered relatively course, the reason behind that is any finer cell size will take 

longer time to run the simulation and that may cause exceeding the lead time in which the 

decision for reservoir releases has to be made. However, the model ran well with the 

suggested spacing. 

Due to the limited availability of the LIDAR that was used to develop the terrain 

model for Nashville, the area upstream of Old Hickory Dam was modeled using 1-D 

unsteady flow simulation.  The terrain resolution used in the model was 2.5 X 2.5 feet 

which is considered high enough to produce more accurate and detailed hydraulic table 

properties for two-dimensional computational cells and cell faces.  

 
 

Figure 9.9 Nashville Orphan Terrain 
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Figure 9.10 Nashville's Modified Terrain 

 

 
 

Figure 9.11 Nashville Two-Dimensional Area 
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9.4 Solution Approach 

The basic objective of the optimization-simulation model for river-reservoir 

system operation in real time is to keep the discharges and water surface elevations below 

specified or target values during an extreme storm event. For this application, the 100-

year frequency values Nashville, Tennessee are 48 feet for the stage, 417.52 for elevation 

and 172,000 cfs for Woodland station. The process of simulation starts with the 

hydrologic modeling for the system using the hydrologic modeling system HEC-HMS, 

which simulates the process of Cumberland River basin rainfall runoff. The HEC-HMS 

model for entire Cumberland River Basin was previously developed by the U.S. Army 

Corp of Engineers.   

The solution processes start with the available actual rainfall data up to time t for 

the area upstream from Cordell Hull reservoir and J. Percy Priest Lake to the model 

through a MATLAB code. The MATLAB code sends the actual rainfall data to the HEC-

HMS to simulate the rainfall-runoff process. The discharge hydrograph of the HEC-HMS 

model becomes the inflow for the Cordell Hull Reservoir. The inflow hydrograph enters 

the optimization and operation model to determine the optimal releases from the Cordell 

Hull Dam gates. The model now calls HEC-RAS to route the releases up to Old Hickory 

reservoir, where it considered as the inflow to the Old Hickory reservoir. Once the inflow 

hydrograph for Old Hickory reservoir is determined, the operation and optimization 

model determines the releases for the next 4 hours from the Old Hickory Dam. The 

optimization model employs the genetic algorithm in MATLAB to generate the initial 

solution considering all the operating rules constraints described previously and, calls the 
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unsteady flow model (HEC-RAS) to test the generated solutions which are the time series 

of the Old Hickory gates openings. The unsteady flow model routes through the gate 

openings at both reservoirs downstream to the Woodland station at Nashville. The 

process continues iteratively until the objective function is satisfied. Then the model steps 

to the next time t + Δt. The model continues to run until the last Δt of the storm. 

The optimization model (GA) uses the last generation or the optimal solution at 

time t as the initial solution for time t+Δt to reduce the search time of the next step. This 

saves around 17 minutes of computation time for each iteration for this application. This 

computational time savings may be very valuable in real-time river-reservoir operation 

under flood conditions. 

9.5 Model Results and Discussion 

The most important factor that could limit this model is the simulation time. 

Shorter simulation times allows the optimization model (GA) to increase the number of 

objective function evaluations, which means the number of times that the simulator 

(HEC-RAS) is called. Producing faster simulation model taking into consideration the 

accuracy of the mode was a priority of this research. The most time-consuming part of 

the overall model application was the unsteady flow simulations. Every factor that may 

affect the time of simulation time, including the mesh size, computation interval, 

mapping output, and even hydrograph interval was considered. 

To obtain a faster two-dimensional unsteady simulations, the diffusion wave 

model was utilized using the current version of HEC-RAS instead of the full two-

dimensional simulation. The portion of the Cumberland River modeled in HEC-RAS 
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using the one- and two-dimensional approaches is from Old Hickory Dam downstream 

through Nashville to Cheatham Dam. 

All the simulation scenarios showed close simulation results for the flood 

situation at Nashville during the May 2010 flooding event. The optimization and the 

combined one- and two- dimensional simulation as well as the one-dimensional model 

successfully kept the discharge at or below 171,809 cfs, after 64 iterations. This is a little 

higher than the one-dimensional result of the simulation-optimization model of (Che, 

2015) with 171,076 cfs.  

Each simulation run of the combined one- and two- dimensional simulation and 

took from 6 to 8 minutes depending on the decided discharges for 4 hours’ time span, for 

which the optimization model could perform around 23 iterations except the first iteration 

which took longer. The optimized and simulated water surface elevations for the three 

scenarios at Nashville are depicted in Figure 9.13. The inundation map of the observed 

water surface of May 2010 for Nashville, that simulated using the combined one- and 

two-dimensional simulation approach is depicted in Figure 9.14. The simulated and 

optimized water surface elevations for May 2010 at Nashville is shown in Figure 9.15. 
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Figure 9.12 Optimized Discharges at Nashville for the May 2010 Flood Event 

 

 

 
 

Figure 9.13 Optimized Water Surface Elevations for May 2010 Flood Event at Nashville 
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 Figure 9.14 Simulated Inundation Map Using Combined One- and Two-Dimensional 

Approach in HEC-RAS for the May 2010 Flood Event 

 

 
 

Figure 9.15 Optimized Water Surface Elevations (Inundation) Using Combined One- and 

Two-Dimensional Approach in HEC-RAS for the May 2010 Flood Event 
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Contrary to expectations, the two-dimensional simulation model linked with the 

optimization model resulted in peak discharges that did not exceed 169,694 cfs during the 

entire period of simulation of May 2010 storm event. This two- dimensional unsteady 

flow model ran faster than the combined one- and two-dimensional, so the optimization 

model had more time to improve the solution.  The reason why the previous model is 

slower than this one is because of the connection way between the two-dimensional and 

one-dimensional areas, which is modeled as very long lateral structures. 

The observed water surface elevations in the form of inundation map for the May 

2010 event at Nashville using the two-dimensional unsteady flow modeling approach 

(HEC-RAS) is depicted in Figure 9.16.  Figure 9.17 shows the flood inundation area 

resulting from the application of the optimization-simulation model. 

 
 

Figure 9.16 Simulated Flooding (Inundation Areas) Using the HEC-RAS Two-

Dimensional Approach for the May 2010 Flood Event 
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Figure 9.17 Optimized Flooding (Inundation Areas) Using the Two-Dimensional 

Approach in the Optimization-Simulation Model for the May 2010 Flood Event. 

9.6 Operations of Old Hickory Dam  

The time series of the dam’s gate openings are the decision variables of the 

optimization–simulation model including the constraints of reservoirs constraints such as 

gates openings discharge relationships, operation rules of the gates under flooding 

condition, the gate height hourly rate of change and reservoirs stage storage relationship. 

The severe storm event that hit Nashville, Tennessee in May 2010 was a very high-

frequency storm. Thus, the objective of the optimization-simulation model is to reduce 

the river flows down to 100- year frequency flows or less by determining optimal gate 

releases. The model determines the operation for each forecasting period Δt, which is 4 

hours for the Cumberland River. The gate operations and the discharges from the Old 
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Hickory Dam determined using the one- and two and combined one- and two- 

dimensional optimization-simulation during the May 2010 event versus the actual 

operation and discharges at Nashville, TN are shown in Figure 9.18 and 

 

 

Figure 9.19 respectively.  

The actual operation of the Old Hickory Dam during the event started the releases 

at night on May 1, 2010, despite the forecast warnings from severe rainfall several days 

in advance. Using the optimization-simulation model with the available forecasting 

information could have helped the U.S. Army Corps of Engineers make a decision at Old 

Hickory Dam before the actual storm entered the Old Hickory Reservoir in a timely 

manner.  
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Figure 9.18 Optimized Gates Operation of Old Hickory Dam, May 2010. 

 

 
 

Figure 9.19 Optimized Discharges From Old Hickory Dam for the May 2010 Flood 

Event. 
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Woodland gage station at Nashville is considered as the control cell of the 

optimization-simulation model for both scenarios. It is simulated as a profile line created 

across the region where the model can read the time series of the passing flow and the 

stage as well. Figure 9.13 shows the flood stage at the Woodland station.  

A comparison is now presented of the resulting optimized operations with the 

actual operations by the U.S. Army Corps of Engineers during the May 2010 flooding 

event.  Figure 19.20 illustrates the differences between the optimized operations of the 

Old Hickory flood gates which were all opened the same distance as compared to the 

actual operations which were all opened the same distance.  Obviously, the actual 

operation of the gates waited too late to open the gates.  Figure 19.21 illustrates the 

optimized and actual releases at Old Hickory Dam during the May 2010 flooding event.  

Figure 19.22 compares the optimized and simulated flows at Nashville during the May 

2010 flooding event. 
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Figure 19.20 Differences Between the Optimized and Actual Operations of the Old 

Hickory Flood Gate Openings during the May 2010 Flooding Event 
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Figure 19.21 Optimized and Actual Releases at Old Hickory Dam during May 2010 

Flooding Even 
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Figure 19.22 Optimized and Simulated Flows at Nashville during the May 2010 Flooding 

Event 
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10 CHAPTER 10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

10.1 Summary 

An optimization-simulation model has been presented to determine real-time optimal 

gates operations for a river - reservoir system under severe flood conditions. Reservoir 

releases schedules before during and after the flood event are necessary to minimize 

and/or eliminate flooding. The proposed optimization-simulation model consists of five 

interfaced components: rainfall forecasting model, rainfall-runoff model, one and two-

dimensional unsteady flow model, reservoir operation model and an optimization model. 

Each of these components functions independently of other elements to serve their 

purpose. The model components communicate through a MATLAB code written for 

efficient operation. 

The one and two-dimensional optimization-simulation model uses the hydrological 

modeling system HEC-HMS to simulate the rainfall runoff and the newest version of 

river analysis system HEC-RAS 5.0.6 developed by the U.S. Army Corps of Engineers 

Hydrologic Engineering Center which has the ability of both one and two-dimensional 

modeling. The river reaches, and floodplain areas are modeled using the combined one 

and two-dimensional modeling for both applications. The river reaches were modeled 

using the one-dimensional and combined and two-dimensional approaches, floodplain 

areas were modeled using the two-dimensional in both two-dimensional and combined 

one- and two-dimensional approaches. 
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Heavy rainfall events are becoming more intense and frequent in different regions 

in the United States and across the world as well, mostly attributed to climate change. 

Studies provide valuable evidence of the expectations that extreme rainfall events will 

continue to increase. Thus, real-time operation of river-reservoir systems is required to 

avoid and\or to minimize the expected damages that can happen. A measure to enhance 

and advance the real-time operation of the river-reservoir system is using the two-

dimensional modeling. This became possible due to the technology and high speed of 

computers that helps in reducing the required computation times of two-dimensional 

simulation. Also, the Hydraulic Engineering Center of the U.S. Army Corps of Engineers 

facilitated the task of two-dimensional modeling by incorporating this ability to the HEC-

RAS to become the first two-dimensional unsteady flow software open to the public for 

free. Practically, now that two-dimensional modeling is becoming widespread in the HEC-

RAS community and attracting the interest of civil engineers due to the reasons explained 

above.  

10.2 Conclusions 

The basic conclusions include: 

• The research objectives set forth in Section 1.3 of this dissertation have been 

accomplished. 

• A strategy for determining a time series operation for releases through control 

gates of a river-reservoir system during a flooding event in a real-time fashion has 

been developed. 
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• A model has been developed to manage reservoir releases before, during, and 

after an extraordinary storm event that could cause significant flooding. 

• This effort has advanced the methodologies for real-time operation of river-

reservoir systems under severe storm conditions. 

• The work presented herein adopted different scenarios to simulate the unsteady 

flow modeling upstream and downstream of a reservoir using one-dimensional, 

combined one and two- dimensional, and two-dimensional unsteady flow 

modeling. In One-dimensional simulation, the water surface elevation over each 

cross section is averaged, thus when a wide flood plain modeled, this 

approximation of properties is not accurately described as in case of using two- 

dimensional modeling. So, in many cases, modeling considers one-dimensional 

flows is difficult to model floodplain flows accurately, as there are numerous 

directions of water flow on a flat plain. Therefore, the hydraulics of the flood 

plain needs to be precisely predicted. Usually, modeling flow in a network of 

channels can be performed using one-dimensional modeling. Also, ate one-

dimensional modeling could only determine one resulting water surface elevation 

at a cross-section. Therefore, the fluctuations across the section will not occur in 

the model as they would in the case of a real event. However, the one-dimensional 

analysis can predict good results for river reaches. 

• In spite of the extensive studies that many previous researchers have done to 

analyze floods and flow management, but uncertainties remain about the precise 
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nature of these changes and flooding problems still occur, causing tremendous 

devastation of life and property in both the short and long terms. 

• One of the most effective measures for flood management is real-time flood 

forecasting. As a focused activity in the hydro-meteorological sector, flood 

forecasting is a relatively recent development that might indicate a growing 

seriousness of flood impacts. 

• The process of any hydrologically related forecast is an estimation of the future 

state of a hydrological event. Like the flow rate, the water volume and level of an 

area that would be affected or inundated by water and average velocity of flow in 

a particular region or location of a stream. 

• Diffusion of flow in a flood plain includes many issues to be considered, 

especially in complex topography. During flooding conditions, allocating water 

stream flow at a particular time can exceed the flood level and then propagate 

horizontally onto the flood plain in different directions, so it is going to be 

difficult to model in one direction. Starting with a dry flood plain is another 

important feature of two-dimensional solutions. Based on the topography of the 

flooding area, water spreads out in the flood plain in different directions at the 

beginning of modeling. 

• In practice, two-dimensional unsteady flow simulation models are one of the 

approaches for streamflow and floodplain forecasting as well. For a given set of 

operation policies, a two-dimensional unsteady flow simulation model can be 
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used to simulate the flow rates, water surface elevations, and velocities in both X 

and Y directions at various locations for specified time steps. 

• There are various types of one- and two-dimensional unsteady flow models, most 

of which are commercial models and used in practice.  

• Accurate rainfall data in real-time should be available in order to forecast the 

upcoming inflow to the reservoir and then to decide the outflow from the flood 

control gates of the reservoir, as the majority of uncertainty and capability to 

precisely predict the flow and the associated water surface elevations in a river-

reservoir system primely because of poor forecasting of rainfall and then under or 

overestimation of reservoir inflow hydrograph. Thus, real-time flood management 

needs accurate real-time inflow data to determine how much water should be 

released from the control facilities. Sometimes inflow data would not be available 

at the event time so, forecasting the required data for short-term depending on the 

availability may be required. 

10.3 Recommendations for Future Research 

10.3.1 Reduction of Number of Simulations of Two-Dimensional Model 

The reservoir operation (determination of spillway gate operations) is optimized 

using the genetic algorithm in MATLAB. The genetic algorithm requires many function 

evaluations (solutions of the simulator HEC-RAS) to reach an optimal solution. 

The application of the optimization – simulation model to the Cumberland River 

System pointed out this throughout this dissertation. The modeler should present more 

effort on how to reduce the number of times to call the simulator (in this case HEC-
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RAS), because it is the consuming time, to reduce the time of the model running. This 

will help in making the right decision of the reservoir operation.   

The metaheuristic types of optimization approaches have been very valuable in 

allowing simulation models to be interfaced with optimization.  The genetic algorithm 

approach has become very powerful in allowing the development of optimization – 

simulation models to be developed.  However, these optimization methodologies require 

a large number of simulations to be performed in many applications.  Research needs to 

be performed to consider other types of optimization approaches that can be interfaced 

with the HEC-RAS simulator.  These optimization approaches include the leap-frog 

method and others. 

10.3.2 Choice of Two-Dimensional Approach 

The HEC-RAS program allows the modeler to choose either the Saint-Venant or 

diffusion-wave equations in two-dimensions to solve the model which are set as the 

default. In general, the two-dimensional diffusion-wave equations have reduced 

computation times and have more stable properties than using the full two-dimensional 

Saint-Venant equations. Even though, a wide range of modeling situations can be 

precisely modeled with the two-dimensional diffusion-wave equation, the user always 

has to test if the full Saint-Venant Equations are required for his specific situation by 

creating another run, then if there will be a significant difference between the two runs 

plans, the modeler must use the Saint-Venant Equations (full momentum) as it is more 

accurate. The last, the Hydraulic Engineering Center now is developing a new version of 

HEC-RAS considering a hydrologic model inside of it, if this version comes out, 
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considering it in the optimization-simulation presented here in this research will subside 

two components which are the HEC-RAS and HEC-HMS. This saves more time in 

running the model.  Therefore, a study to identify the various types of applications that 

are more favorable to each of the two types of two-dimensional solution techniques is 

needed. 

10.3.3 Inclusion of Sediment Transport and Erosion into Optimization-Simulation Model 

 The HEC-RAS model used in the optimization-simulation model has the 

capability to perform sediment transport and erosion for rivers and flood plains. This 

component of the modeling system (HEC-RAS) could be coupled with the optimization-

simulation model developed in this research to control the sediment transport and 

movable boundaries resulting from scour and deposition in a river-reservoir system. The 

optimization-simulation model can be employed to determine the optimum discharges 

over the system and can be applied whether to a single flood event or to simulate long 

term trends of scour and deposition in a river reservoir-system.  

10.3.4 Inclusion of Water Quality into the Optimization-Simulation Model 

 The HEC-RAS model used in the optimization-simulation model has the 

capability to perform water quality analysis of streams, rivers, and reservoirs. This 

component of the modeling system (HEC-RAS) could be coupled with the optimization-

simulation model developed in this research to perform river-reservoir system water 

quality analysis in a real-time as well for controlling the transportation of several water 

quality constituents. This can be done through using the optimization-simulation model to 
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determine the optimum release from the reservoir gates while satisficing all the demands, 

the concentration of the moving water quality constituent and the other constraints. 

10.3.5 Use of Optimization-Simulation Model for Developing Operation Manuals 

 This research would focus on the demonstration of the optimization-simulation 

model for determining operation rules for river-reservoir systems considering flood 

operation, sediment transport and erosion control, and water quality operation. Thus, the 

model can be applied to any river-reservoir system for different scenarios and different 

rainfall storms frequency to test the system reaction and prepare a flood operation manual 

and contingency flood plan for the system.  

10.3.6 Expand Optimization-Simulation Model for Purposes of Early Flood Warning 

System 

 The optimization-simulation model developed herein could be expanded into a 

framework for use as an early flood warning system. This research work could be very 

valuable for various groups for the reduction of damages and lives as a result of major 

flooding events.  
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APPENDIX A  

SUMMARY OF OLD HICKORY LOCK AND DAM OPERATION 
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Project: Old Hickory Lock and Dam 

Location: Cumberland River Mile 216.2, Davidson and Sumner Counties, Tennessee 

The Flood of May 2010 resulted in a peak project headwater of 451.45 feet msl 

and required an estimated maximum discharge of 212,260 cfs to control reservoir levels.  

Prior to the Flood of May 2010, based upon National Weather Service rainfall forecasts, 

the Old Hickory Lock and Dam pool elevation was lowered approximately 0.5 foot.  This 

adjustment was within normal reservoir levels.  Beginning at 1200 hours on Saturday, 

May 1, spillway discharges were initiated at Old Hickory Lock and Dam at a rate of 

approximately 5,000 cfs/hour until a total flow of 75,000 cfs was reached at 2300 hours 

on the same day. This discharge was held in an effort to allow local inflows to recede 

downstream, until 1000 hours on Sunday, May 2, when a series of spillway discharge 

increases were required as a result of rapidly increasing reservoir elevations.  Spillway 

discharge increases as often as every 15 minutes, and as much as 10,000 cfs each, were 

necessary to prevent the upstream lock wall from being overtopped.  Had the pool 

climbed 0.55 feet higher it would have overtopped the upstream lock wall, resulting in 

flooding of the powerhouse, and requiring the complete evacuation of the dam.  It has 

been estimated that such an event would have resulted in a flood crest approximately 4 

feet higher in Nashville than was actually experienced. 

At 2100 hours on Sunday, May 2, the first spillway discharge reductions were 

made to manage the crest at Nashville that was forecast at that time to occur at 0100 

hours on Monday, May 3.  Additional reductions were made throughout the night; 

however, at 0300 hours on Monday, May 3, spillway discharge increases were again 

required as large discharges from Cordell Hull and local uncontrolled runoff had pushed 
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the reservoir dangerously high. In an effort to reduce the flood crest through Nashville 

and protect the lone remaining water treatment plant for the city, spillway discharges 

were reduced beginning at 1300 hours on Monday, May 3.  Between 1300 hours and 

1700 hours the total discharge out of Old Hickory Lock and Dam was reduced from 

196,500 cfs to 144,200 cfs.  These spillway gate settings were held until 0900 hours on 

Wednesday, May 5 when a series of spillway discharge reductions were made in response 

to steadily declining inflow to the project.  By the end of the day on Thursday, May 6 Old 

Hickory Lock and Dam was back within its normal operating range.  

Flood damages sustained at Old Hickory Lock and Dam are estimated at $11.5M.  

The debris load, and force of the flood, damaged spillway gates and components, the tail 

deck crane and collector rails, underwater spillway structures, capstans, handrails, and 

power cables on the lock and dam and left large amounts of debris in the intake trash 

screens.  Large amounts of debris were deposited on the tail deck and in the left bank 

tailwater area.  The tail deck crane was knocked off of its rails and sustained damage.  

Severe erosion occurred on the dam embankments and abutments resulting in 

destabilization of slopes, and on the bluff adjacent to the switchyard, resulting in slope 

instability which threatens the access road to the power plant as well as the parking lot.  

Damage occurred at numerous recreation areas and associated facilities; propane and fuel 

tanks and household chemicals were deposited at various areas across the project.  

Several campsites were inundated and electrical hookup facilities damaged by water.  

The nature trail by the dam was impacted as high water washed away the boardwalks and 
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deposited tons of debris. The stream gage on Bledsoe Creek was lost during the event due 

to the extreme high water. 

U.S. Army Corps of Engineers (2010b). May 2010 Flood Event Cumberland River Basin. 

After Action Report. Appendix H (Final) Great Lakes and Ohio River Division, 

(November). 

 


