
A Model for Calculating Damage Potential in Computer Systems

by

Sharad Nolastname

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved December 2018 by the
Graduate Supervisory Committee:

Rida Bazzi, Chair
Arunabha Sen
Adam Doupé

ARIZONA STATE UNIVERSITY

May 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ASU Digital Repository

https://core.ac.uk/display/200249966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

For systems having computers as a significant component, it becomes a critical

task to identify the potential threats that the users of the system can present, while

being both inside and outside the system. One of the most important factors that

differentiate an insider from an outsider is the fact that the insider being a part of the

system, owns privileges that enable him/her access to the resources and processes of

the system through valid capabilities. An insider with malicious intent can potentially

be more damaging compared to outsiders. The above differences help to understand

the notion and scope of an insider.

The significant loss to organizations due to the failure to detect and mitigate the

insider threat has resulted in an increased interest in insider threat detection. The

well-studied effective techniques proposed for defending against attacks by outsiders

have not been proven successful against insider attacks. Although a number of se-

curity policies and models to deal with the insider threat have been developed, the

approach taken by most organizations is the use of audit logs after the attack has

taken place. Such approaches are inspired by academic research proposals to address

the problem by tracking activities of the insider in the system. Although tracking and

logging are important, it is argued that they are not sufficient. Thus, the necessity

to predict the potential damage of an insider is considered to help build a stronger

evaluation and mitigation strategy for the insider attack. In this thesis, the question

that seeks to be answered is the following: ‘Considering the relationships that exist

between the insiders and their role, their access to the resources and the resource set,

what is the potential damage that an insider can cause?’

A general system model is introduced that can capture general insider attacks

including those documented by Computer Emergency Response Team (CERT) for

the Software Engineering Institute (SEI). Further, initial formulations of the damage

i

potential for leakage and availability in the model is introduced. The model usefulness

is shown by expressing 14 of actual attacks in the model and show how for each case

the attack could have been mitigated.

ii

To Megha, Saurav and Monika Bharti

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor, Professor Rida Bazzi,

for his continuous motivation, patience, and support throughout the research. I

express my sincere gratitude to him for giving me the intellectual freedom in my

work while demanding a high quality of effort in all my endeavors.

Besides my advisor, I would like to thank my thesis committee members, Prof.

Arunabha Sen and Prof. Adam Doupé for their insightful comments and interest in

my work.

I thank all my friends at the university for their continuous encouragement and

stimulating discussions. Finally, I would like to thank my parents, brother, sister,

and life partner for their love and unyielding support during the different stages of

my research.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Approach . 3

1.2 Contributions . 4

1.3 Organization . 5

2 RELATED WORK . 6

3 MODEL . 10

3.1 Definitions . 10

3.2 Creation of Process at a Node . 14

3.3 Access of Objects . 15

3.4 Killing of Process at a Node . 17

3.5 Illustration . 17

3.6 Effective Damage Potential . 18

4 INFORMATION FLOW IN THE COMPUTER SYSTEM 19

4.1 Max-Flow and All-Path Algorithms . 20

4.1.1 Max Flow . 20

4.1.2 All paths between the source and target 21

5 AVAILABILITY IN THE COMPUTER SYSTEM . 24

5.1 Calculating Value of Availability . 27

6 MAPPING MODEL TO THE USE CASES . 28

6.1 Case 1 . 28

6.1.1 Summary. 28

6.1.2 Model Representation . 29

v

CHAPTER Page

6.1.3 Mitigation Strategy . 30

6.2 Case 2 . 30

6.2.1 Summary. 30

6.2.2 Model Representation . 31

6.2.3 Mitigation Strategy . 32

6.3 Case 3 . 32

6.3.1 Summary. 32

6.3.2 Model Representation . 32

6.3.3 Mitigation Strategy . 33

6.4 Case 4 . 34

6.4.1 Summary. 34

6.4.2 Model Representation . 34

6.4.3 Mitigation Strategy . 35

6.5 Case 5 . 36

6.5.1 Summary. 36

6.5.2 Model Representation . 37

6.5.3 Mitigation Strategy . 37

6.6 Case 6 . 38

6.6.1 Summary. 38

6.6.2 Model Representation . 38

6.6.3 Mitigation Strategy . 39

6.7 Case 7 . 40

6.7.1 Summary. 40

6.7.2 Model Representation . 41

vi

CHAPTER Page

6.7.3 Mitigation Strategy . 41

6.8 Case 8 . 42

6.8.1 Summary. 42

6.8.2 Model Representation . 42

6.8.3 Mitigation Strategy . 43

6.9 Case 9 . 44

6.9.1 Summary. 44

6.9.2 Model Representation . 44

6.9.3 Mitigation Strategy . 45

6.10 Case 10 . 46

6.10.1 Summary. 46

6.10.2 Model Representation . 46

6.10.3 Mitigation Strategy . 47

6.11 Case 11 . 47

6.11.1 Summary. 47

6.11.2 Model Representation . 48

6.11.3 Mitigation Strategy . 49

6.12 Case 12 . 49

6.12.1 Summary. 49

6.12.2 Model Representation . 49

6.12.3 Mitigation Strategy . 50

6.13 Case 13 . 50

6.13.1 Summary. 50

6.13.2 Model Representation . 51

vii

CHAPTER Page

6.13.3 Mitigation Strategy . 52

6.14 Case 14 . 52

6.14.1 Summary. 52

6.14.2 Model Representation . 53

6.14.3 Mitigation Strategy . 53

6.15 Limitations . 54

7 CONCLUSION . 56

viii

LIST OF FIGURES

Figure Page

3.1 Computer System’s Object . 11

3.2 Computer System’s Capability . 12

3.3 Computer System Overview . 14

4.1 Information Flow . 20

5.1 Example of a Service . 25

6.1 Model Representation of Case 1 . 29

6.2 Model Representation of Case 2 . 31

6.3 Model Representation of Case 3 . 33

6.4 Model Representation of Case 4 . 35

6.5 Model Representation of Case 5 . 36

6.6 Model Representation of Case 6 . 39

6.7 Model Representation of Case 7 . 40

6.8 Model Representation of Case 8 . 42

6.9 Model Representation of Case 9 . 44

6.10 Model Representation of Case 10 . 46

6.11 Model Representation of Case 11 . 48

6.12 Model Representation of Case 12 . 50

6.13 Model Representation of Case 13 . 51

6.14 Model Representation of Case 14 . 53

ix

Chapter 1

INTRODUCTION

There has been a significant rise in risks, threats, and several forms of attacks on

the organizations, where information plays a crucial role (PwC 2015). For systems

having computers as a significant component, it becomes a critical task to identify

the potential threats that the users of the system can present, while being both inside

and outside the system. Most of the initial works done in the field of security identify

themselves with the outsider threat, proposing models and techniques, such as attack

graphs (Phillips, Swiler et al. 1998; Sheyner, Haines, et al. 2002; Swiler, Phillips

et al. 2001) Intrusion Detection Systems (Porras and Neumann 1997; Stanifor-Chen,

Cheung et al. 1996), and Access Control Lists (Zhang, Li, et al. 2004). But a growing

reliance of organizations on information infrastructures and individuals who own the

capabilities for such infrastructures made the organization increasingly vulnerable to

threats from the insiders. This demanded a shift in research paradigm towards insider

threat.

One of the most important factors that differentiate an insider from an outsider

is the fact that the insider being a part of the system, owns privileges that enable

him/her access to the resources and processes of the system through valid capabilities

(Bishop and Gates 2008). Another aspect of this difference is the amount of knowledge

that an insider has about the organization’s system. Such knowledge can include not

just the information about resources, but also the location of the resources along with

the capabilities of other employees having access to these resources. This knowledge,

overall, exposes partial or full internal structure of the system to the insider.

Despite the fact that trusting insiders is paramount to the functionality of an

1

organization, a full and blind trust could create a potential for misuse of their capa-

bilities. An insider with malicious intent can potentially be more damaging compared

to outsiders. The above differences help us understand the notion and scope of an

insider.

The implication of attack from the insiders is clearly manifested by the findings of

Moore et al. (2008), according to which the monetary losses, due to insider attacks,

ranged from five hundred dollars to tens of million dollars. Around 75 percent of

the organizations had a negative impact on their business operations and 28 percent

experienced a negative impact on their reputation as an affect of insider attack (Bara-

caldo and Joshi. 2013). The report by U.S State of Cybercrime Survey (PwC 2015),

sponsored by CERT insider threat center, found that 23 percent of electronic crime

events were suspected or known to be caused by an insider. In the 2017 survey, by

the same division of CERT (PwC 2017), nearly 30 percent of all respondents reported

that incidents caused by insider attacks were more costly or damaging than outsider

attacks. Among the attacks where insiders were the source, 35 percent of incidents

had private or sensitive information intentionally exposed by them.

The significant loss to organizations due to the failure to detect and mitigate the

insider threat has resulted in an increased interest in insider threat detection. The

well-studied effective techniques proposed for defending against attacks by outsiders

have not been proven successful against insider attacks (Colwill and Carl 2009). Al-

though this has led to the development of different security policies and models which

directly deal with the insider threat, the approach taken by most organizations is the

use of audit logs such as the one suggested by Anderson and Brackney (2004), af-

ter the attack has taken place. Such approaches are inspired by academic research

proposals to attack the problem by tracking activities of the insider in the system.

Although tracking and logging are important, we argue that they are not sufficient.

2

With the in-depth knowledge of the system, malicious insiders tend to create an at-

tack path which can remain invisible to such tracking methods. Thus, we consider

that a method of predicting the potential damage based on the knowledge of the in-

sider which the insider accumulates from his/her access to the resources in the system

can help build a stronger evaluation and mitigation strategy for the insider attack.

In this thesis, the question we seek to answer is, ‘Considering the relationships

that exist between the insiders and their role, their access to the resources and the

resource set, what is the potential damage that an insider can cause based on future

events from use of such accesses?’

1.1 Approach

Security agencies and organizations such as CERT have successfully documented

several instances of insider attacks in the form of use cases and determined the pat-

terns and trends of malicious activities (Silowash, George et al. 2012). Detailed

classifications of incidents have been provided based on where the threats can be

detected within the target system. We start by utilizing these use cases and classifi-

cations to formulate an exhaustive model in which various scenarios discussed in the

use cases can be expressed.

Such a model is not straightforward. In fact, our study of the CERT cases shows

that the insiders can cause damage either by remaining within their default set of

privileges or exceeding it by seeking new capabilities. In the latter case, the exposed

value to the insider could increase with the augmentation of new capabilities. We want

our model to represent access to and propagation of the information. For example, “it

is one thing to control access to a file and another to control access to all information

in the system derived from or dependent upon the data in the file” (Cohen, Ellis,

et al. 1975). Thus, with an established model, we take into consideration, various

3

aspects of data leakage and availability compromise through capability augmentation

and see how it can contribute to the calculation of the final exposed value.

1.2 Contributions

The contributions in this thesis are structured around the central questions of how

to calculate the damage potential of an insider working for an organization having

access to the computer system. Our model is motivated by Hydra, an object-based

computer system with capability developed for the creation of a highly secured system

and by the elements of graph theory. The unique contributions of this thesis are listed

below.

• Differing from the previous systems that suggest the use of attack paths (Chin-

chani, Iyer. et al. 2005) and those which uses the risk values derived from the

trust factors (Baracaldo and Joshi. 2013), to calculate the risk of occurrence of

threats , we try to focus on how a legitimate user can access the system around

him and use his capabilities to affect the state of the system. In this work,

we analyze the nature of information in the computer system and the insider’s

capabilities to move the information within or outside the system.

• As our next contribution, we model the capability of the insider to affect the

availability of the system. To our current knowledge, no models which tried

to predict the threat of the insider considered the availability aspect of the

system. Our study of CERT insider attack cases reveals that among the 50

cases analyzed, 20 had the insider affecting or trying to affect the availability

of the system.

• Another important contribution of this work is the creation of a corpus of se-

lected cases, where we analyze each type of data that has been accessed, the

4

access rights that were available to the insider, and the channels used for the

attack. Further, we provide the representation of the cases using our model

which would help us understand the ways that malicious insiders use to launch

the attack in the system. We also provide mitigation strategies based on threat

actions that explain how our model could be used to prevent similar attacks.

1.3 Organization

The remainder of the thesis is organized as follows. Related work is discussed in

Chapter 2. In Chapter 3, we describe our proposed model and define various com-

ponents that build a computer system. Information Flow and the damage potential

associated with it are given in Chapter 4. The Availability Damage is described

in Chapter 5. In Chapter 6, we apply our model to several use cases. Chapter 7

concludes the thesis.

5

Chapter 2

RELATED WORK

The research community has focused on various modes of insider threat detection and

prevention such as attack paths, attack strategies, intrusion model, access control and

risk-assessment processes. But the analysis and calculation of damage potential of

an employee within the organization have not yet received the appropriate research

focus. Silowash suggest that the organizations must identify those high-risk users

who most often interact with the critical systems or data (Silowash, George, et al.

2012). Such an identification is a complex task and requires an elaborate study of the

system and its user’s capabilities. Various approaches have been suggested in order

to identify such users and resources in order to mitigate insider threat.

One of the few recent works on the estimation of threat by an insider belongs

to Chinchani et al. The authors used a threat model called key challenge graph

which focuses on the legitimate user’s view of an organization network (Chinchani

et al. 2005). It relies on the representation of capabilities present as any vertex as

a key and the presence of a security measure or policy that protects the resources

as a key challenge on the channel of communication. It then identifies the scope of

threat by defining the cost of an attack that the insider can perform. Although we

follow a similar graph representation for our model, in our approach, we focus on

the damage that an insider can cause as opposed to the cost of individual attacks

as proposed by them. A Key Challenge Graph has also been used by Ha et al who

introduced an information-centric and graph-oriented tool which takes the physical

network topology and a predefined set of vulnerabilities as external inputs, combined

with the network translational tools and cost analysis for constructing a key-challenge

6

graph (Ha, Upadhyaya, et al. 2007). Unlike our work, which looks at the graph from

the perspective of the user’s capabilities, they used the graph to know the likely attack

strategies, vulnerable points, and critical points of the attackers based on the cost of

attacks.

In the context of our work, other relevant proposed methods are those based on

the use of attack graphs and privilege graphs. The attack graph is usually used to

determine whether attackers starting from a specific location can gain normally re-

stricted privilege levels on one or more important targets (Lippmann and Ingols 2005;

Ammann 2002). Starting from a source, (Artz 2002) proposes to find all paths to all

possible goals and perform reachability computation. It then determines the visibility

of attack paths to the intrusion detection system. Taking this approach a step further,

(Gorodetski 2016) uses formal grammar to specify allowable paths and then generate

individual random paths from the grammar. With the final goal of preventing the

attacker from reaching the goal state, (Jajodia, Noel, et al. 2003) reads vulnerability

and reachability information, computes attack graphs using the approach described in

(Ammann 2002) and makes the recommendations to prevent access to critical hosts.

A weakness of these approaches is the assumption that reachability information is

available prior to computing attack graphs. Determining such information can be

computationally complex task (Lippmann and Ingols 2005). Differing from the at-

tack graphs, our approach does not limit itself to exposure of paths and reachability

problem but goes beyond to calculate the damage associated with each found path.

A related technical approach taken by some researchers is of risk assessment based

on the potential risks of illegal access via role misuse or abuse. (Baracaldo and Joshi

2013) presented a framework that extended the role-based access control (RBAC)

model by incorporating a risk assessment process and the trust system has in its

users. It explains trust as dependent on the context in which the interaction between

7

entities takes place and explains risk by the likelihood of a hazardous situation and its

consequence if it occurs. It then calculates the risk using the expected value formula

(Celikel et al. 2009), where the probability of occurrence is multiplied by the cost

of the event. (Salim et al. 2011) uses the costs of access assigned to permissions

depending on the risk of their operations with each user being assigned a budget.

The activation of a role by a user depends not just upon the assigned roles to him but

also on the cost of activating the role which is bounded by the budget. In another

effort, (Chen et al. 2001) proposed a model which uses the trustworthiness of a user

to calculate the risk associated with a role, and the degree of appropriateness of the

permission-role assignments. None of these techniques takes into account how the

information accessed by a role can be used malevolently against the interest of the

organization, which is the prime focus of our model.

Behavioral theories have also been used for the development of preventive models

for insider threats. (Schultz 2002) described a theoretical prediction model based

on five behavioral indicators, “deliberate markers, meaningful errors, preparatory

behavior, correlated usage patterns and verbal behavior”, which could be counted

together to predict and detect insider threats. Similarly [Wood 2000] identifies various

aspects of users who pose insider threat and claims that users are assumed to have

the skills needed to attack the system and to be risk-averse. Some works also present

a comprehensive view of psychological approaches to detecting the insider threat.

(Greitzer and Frincke 2010) described this approach by identifying factors such as

disgruntlement, anger management, disengagement, performance and absenteeism

as predictors of insider threat together with the use of Bayesian-Net led predictive

model. On the same note, several different theories on the behavior of insiders are

presented by (Theoharidou, Marianthi, et al. 2005), among which situational crime

prevention theory suggests that cyber crimes occur when a person has both motive and

8

opportunity- so by either removing motive or denying a malicious user an opportunity,

we can help prevent the crime. These approaches are limited because of their methods

of predicting the threat revolves around only the behavioral aspect of the threat. We

choose to take an approach of not predicting the attack but evaluating the potential

attacks, if they ever happen.

Potential leaks and compromises have been calculated using various activity and

risk analysis models that are built around the database activities. (Celikel 2009)

proposed a probabilistic risk management model for enhanced access control in dis-

tributed databases. They incorporated failure modes and effective analysis (FMEA)

for measuring user risks in their design. (Harel, Amir, et al. 2012) presented a new

concept, Misuseability Weight, for estimating the risk emanating from data exposed

to insiders. It assigns a score that represents the sensitivity level of the data exposed

to the user and by that predicts the ability of the user to maliciously exploit this

data.

As previously stated, none of the above-proposed methods comprehensively con-

sider the capabilities to transfer the data as well as affect the availability of the system

together to estimate the potential damage to an organization by any given user.

9

Chapter 3

MODEL

The proposed model is designed to calculate the damage potential of an insider by

considering the insider’s access to the various resources in the computer system. In

our model, we assume that the insider has some authorization in terms of access rights

and can use these rights to perform actions that affect the system. Furthermore, we

assume that the insider and the potential target are not necessarily at the same

location and thus one or more intermediate channels of interaction are needed to

establish communication between the insider and the target. Since the system has a

finite set of tasks that can be performed, we assume that any action performed in the

system is a combination of such predefined tasks. We consider that the insider has

an initial authentication to use the system.

3.1 Definitions

Prior to the formal definition of the system model and the actions that could be

performed within the system, we describe the various components.

Definition 3.1 The object set O is a set of all physical and logical resources

available to be accessed by a process in the system. For example, disks, files, source

codes can be represented as objects. An object has the following components: Type,

Nature, Data and Capability List (Figure 1).

1. Type determines what operation can be performed on the object. It could be of

either Procedure or Text.

10

Figure 3.1: Computer System’s Object

2. Nature represents the nature of the resource that the object represents and is

assumed to be related to the value of the object in the real world. For instance,

some objects require that their integrities be well guarded, other objects are

sensitive (their leakage would result in a lot of damage to the organization),

while others may be critical and sensitive simultaneously.

3. Data part represents the information stored in the object

4. Capability List (C-list) represents the capability that an object of type procedure

has. This field is empty for the objects that are not of type procedure.

Definition 3.1.1 The Procedure set Pr is a set of objects of type procedure which

can be executed to create new processes. Each procedure has a C-list associated with

it. We assume that the set of objects in the system is finite.

Definition 3.2 The Process set P is a set of processes executing in the system.

This set is not fixed. Processes can be created and killed. A process can create

another process by executing a procedure and can pass capabilities to the newly

created process. The newly created process inherits the capabilities already present

in the procedure along with the capabilities passed to it by the process creating it.

In order for a process to execute a procedure, it should own exec capability for the

procedure.

Definition 3.3 The vertex set V is a finite set of physical nodes where processes

11

Figure 3.2: Computer System’s Capability

and objects can reside.

Definition 3.4 The channel set represents the set of channels in the system. Each

channel is defined by two vertices, possibly the same. Objects can be transferred

across channels and processes can be executed or created across channels.

channel ⊆ V × V

Definition 3.5 The capability set C is a set of tokens which gives the process a

permission to perform an action on an object or a process in the computer system.

It is represented as a tuple containing a unique entity and the access right (figure 2),

where the entity can be either an object or a process. The access right defines the

operation that can be performed on the entity and can be, but is not limited to, read,

write, execute, or kill. For example, (antivirus , kill) is a capability describing that a

process which owns it can kill the antivirus process.

Definition 3.6 (Capability of a process)

Cap : P → P(O × A) is a function which determines the set of capabilities

possessed by a process p ∈ P . For example, Cap(p) = [(o, read), (o′, copy)] means

that process p has two capabilities: read of o and copy of o′.

Definition 3.7 (Resource at a vertex)

Res : V → P(O ∪ P) is the resource mapping from a node to the set of objects

12

and processes that it contains. Thus, the set of processes and objects that can also

be expressed as:

P =
⋃
v∈V

Res(v) \O

O =
⋃
v∈V

Res(v) \ P

Definition 3.8 (Location of a resource)

Loc : P ∪ O → V is the location mapping from processes or objects to their

respective location, i.e. the vertex at which they reside.

Definition 3.9 (Value of a resource)

val : P ∪ O → R≥0 is a mapping from entities to their value in the system. The

value of all entities is positive.

Definition 3.10 (Adjacent Vertices)

Adj : V → P(V) is a function which maps a given node v to a set of adjacent

nodes. Adjacent nodes are the nodes which are directly reachable from the given

node.

Definition 3.11 (System State) Given a system with set of vertices and adja-

cency relation on these vertices, the system state specifies the state of each vertex in

the system and the capabilities of all processes in the system. The state of a vertex

includes the resources that reside at the vertex. Formally, specifying the system state

consists of two mappings that specifies where objects and processes are and what

capabilities they have.

• Resources: specifies for each vertex the resources at the vertex. Res : V 7→

P(O ∪ P).

13

Figure 3.3: Computer System Overview

• Capabilities specifies for each process in the system the capability of the process:

Cap : P 7→ P(O × A).

The state of the system is then defined as a

state = 〈Res × Cap〉

. Let State be the set of all possible states in the system.

3.2 Creation of Process at a Node

In the system with set of vertices V , set of processes P , and a set of capabilities

C, a process p ∈ P running at node v can create a process p′ at v′ which could be

the same node as v or a node adjacent to v, by executing the procedure o which

transitions the system to a state where p′ gets added to the existing set of resources

at v′. Formally, the action createProcess(〈Res,Cap〉, v, v′, p, c) is enabled if

14

• o ∈ Pr,

• Cap(p) 3 (execute, o),

• v = Loc(p),

• v′ = Loc(o), and

• v′ ∈ adj(v) ∨ v′ = v, then

After executing the action, we have the new system state 〈Res′, Cap′〉 whereRes′(v′) =

Res(v′) ∪ p′ and C = C ∪Cap(p′) and Loc(p′) = v′ and Res′(x) = Res(x) for x 6= v′.

3.3 Access of Objects

A process can delete an object residing at the same node and it can read and

write objects residing at the same node or at an adjacent node if the process has the

required capability for the action.

Deletion of an object In the system with set of vertices V , set of processes P ,

and a set of capabilities C, the action a =′ delete′ can be performed on an object

{o} ∈ O at node v by process p running on the same node v. It transitions the system

in which all resources are unchanged except at node v for which the object is deleted

from the set of resources. The deletion of an object is enabled if:

• v = Loc(p)

• v = Loc(o)

• Cap(p) 3 (delete, o)

A function delete : State × V ertices × Processes × Capabilities −→ State is

defined by

delete(〈Res, Cap〉, v, p, c) = 〈Res′, Cap〉

15

where Res′(v) = Res(v)− o, Res′(x) = Res(x) for x 6= v.

The effect of a process accessing an object for reading or writing is not explicitly

modeled in the system state. Such action transfer data between processes and objects

and we reason about their effect when we model the damage potential by considering

possible executions in the system.

Reading of object In a system with set of vertices V , a set of processes P , and

a set of capabilities defined by Cap, the read action can be performed on an object

{o} ∈ O at node v′ by process p running on node v, where v and v′ are the same node

or are adjacent nodes. The read action is enabled if

• v = Loc(p)

• v′ = Loc(o)

• v′ ∈ adj(v) or v′ = v

• Cap(p) = (read, o)

Writing of object In a system with set of vertices V , a set of processes P , and

a set of capabilities defined by Cap, the write action can be performed on an object

{o} ∈ O at node v′ by process p running on node v, where v and v′ are the same node

or are adjacent nodes. The write action is enabled if

• v = Loc(p)

• v′ = Loc(o)

• v′ ∈ adj(v) or v′ = v

• Cap(p) = (write, o)

16

3.4 Killing of Process at a Node

A process can kill another process at the same or an adjacent node if it has the

required capability. The kill action is enabled if:

• v = Loc(p)

• v′ = Loc(p′)

• v′ ∈ adj(v) or v′ = v

• Cap(p) 3 (p′, kill)

A function killProcess : State × V ertices × V ertices × Process × Process ×

Capabilities −→ State is defined by:

killProcess(〈Res ,Cap〉, v, v′, p, p′, c) = 〈Res ′,Cap〉

where Res ′(v′) = Res(v′)−p′ and C ′ = C\Cap(p′) In the system with set of vertices V ,

set of processes P , and a set of capabilities C, a process p ∈ P running at node v can

kill a process p′ at v′ which can be same as node v or adjacent to v, which transitions

the system to a state where p′ is removed from the existing set of resources at v′.

3.5 Illustration

An Example showing deletion of an object Consider a set of operations by

a process aimed at deleting an object located at an adjacent node. Let 〈Res ,Cap〉 be

the initial state of the system (assuming V and the adjacency information is given).

The steps that would be required for satisfying the request would be of the form:

〈Res ,Cap〉 ====================⇒
createProcess(v, v’, p, (execute, o))

〈Res ′,Cap〉 (3.1)

17

where Res′(v′) = Res(v′) ∪ p′ and C ′ = C ∪ Cap(p′)

=============⇒
delete(v, p, (delete, o))

〈Res ′′,Cap〉 (3.2)

where Res′′(v) = Res′(v)− o

================⇒
killProcess(v, v’, p, (kill, p’))

〈Res ′′′,Cap ′〉 (3.3)

where Res′′′(v′) = Res′(v′)− p′ and Cap ′ = Cap − Cap(p′)

3.6 Effective Damage Potential

To calculate the effective damage potential of a process, we need to consider

damages that could be incurred by both the transfer of data as well as by the affect

on the availability of the system. This damage depends on the capabilities initially

possessed by a process along with the capabilities gained with the creation of new

processes by it. Thus the effective capability of a process is defined as

EffectiveCapability(P) = Cap(P)
⋃

P ′ created byP

EffectiveCapability(P ′)

18

Chapter 4

INFORMATION FLOW IN THE COMPUTER SYSTEM

An information flow policy within a computer system specifies a set of nodes and a

flow relation defining permissible flows among these nodes.

In order to characterize the admissible transfer rate for the information flow from

a single node, let us revisit our definition of computer system network. The computer

system is represented by a directed graph G(V,E), where information can be sent

noiselessly from v to v′ through (v, v′) ∈ E, where E represents the set of channels.

Definition 4.1 (Capacity of a channel) The capacity of a channel is the max-

imum permitted rate of object access (in bit per unit time) between two nodes.

HV×V : V × V → R≥0

A local access within the same node is a special case of object access by the process

running on the node. This makes the access relation among the nodes a partial order

relation.

Definition 4.2 (Flow) Flow fx,y is defined as the rate of transfer of information

(per unit time) stored in x to y, where x and y could be an object or a process. An

access specifies a flow in one of the following ways

• From an object to a process o −→ p

• From an object to an object o −→ o′

• From a process to an object p −→ o

19

Figure 4.1: Information Flow

• From an object to a process recursively through objects o
∗−→ o′ −→ p

• From an object to a process recursively through processes o
∗−→ p −→ p′

A flow is admissible only if the process initiating the flow has the required capa-

bility for the transfer of information, and if the sum of all such flow is bounded by

the capacity of channel between the vertices on which the source and the destination

reside.

∑
x,y∈(O∪P)×P

fx,y ≤ Hv,v′ where Loc(x) = v, Loc(y) = v′

Definition 4.3 (Value of a Flow) valF : F → R≥0 is a mapping from flow to

their value in the system. It is the value of all the data transferred in the flow. The

value of all flows are positive.

4.1 Max-Flow and All-Path Algorithms

4.1.1 Max Flow

To calculate the maximum rate at which information can be transferred from a

source node to a target node, we use the Push-Relabel algorithm (Algorithm 1), which

20

is considered one of the most efficient maximum flow algorithm. Throughout its exe-

cution, the algorithm maintains a ”preflow” and gradually converts it into a maximum

flow by moving flow locally between neighboring nodes using push operations under

the guidance of an admissible network maintained by ’relabel’ operations.

For example, let the capacities of the channels for the graph shown in figure 5 be as

following: H(s, a) = 2, H(s, b) = 2, H(a, b) = 2, H(a, t) = 2, H(b, t) = 1, H(s, t) = 0.

In this case, we can calculate the value of max flow from s to t is 3.

Let maxF be the maximum flow obtained from the algorithm. Thus, the total

value of information that could be transferred from the source vertex to a target

vertex is given by:

val(maxF)

4.1.2 All paths between the source and target

For a critical resource, we need to find all the paths to it to monitor the flow

through them. This is accomplished by the recursive algorithm below which finds all

the available paths between two nodes s and t in the system. The function canAccess :

V ×V → [True, False] determines if any process p at a node v can transfer the objects

to node v’ based on its available capabilities to create a process and access objects at

the adjacent node.

Consider the example in Figure 4 which illustrates the available channel between

the source and target nodes. If we suppose that node s has capability to access node

a, node a has capability to access the node b and t and node b has a capability to

access t, then using the above algorithm, the available paths between s and t would

be [s, a, t] and [s, a, b, t].

21

Algorithm 1 To find maximum rate at which objects can be accessed at the desti-

nation node
s← source vertex

t← target vertex

V ← list of vertices

E ← list of Edges

G← Input Graph

G′ ← Residual Graph

procedure Initialize Preflow(n)

Initialize height and flow of every vertex as 0

Set original labelling d(s) = n, d(v) = 0,∀v ∈ V, v 6= s

Send c(s− v) flow on each edge s− v ∈ Eand v ∈ V

For each node v with s− v ∈ E, v − s ∈ G′ and excess e(v) = c(s− v)

procedure Push(u)

if ∃v with admissible edge u-v∈ Ef then

Send δ
.
= min(c(u− v), e(u)) from u to v

e(u)← e(u)− δ

e(v)← e(v) + δ

procedure Relabel(u)

for each u-v from u do

if u− v /∈ Eford(v) ≥ d(u) then

d(u) = 1 +min(v:uv)∈Ef
d(v)

procedure Main Loop()

while (do Push() or Relabel() returns true)

Push() or Relabel()

return flow

22

Algorithm 2 Brute force algorithm to find all the paths with permitted flow of

information between two given nodes

s← source vertex

t← target vertex

P ← list of vertices

Path← list of P

procedure FindAllPaths(v),

P.append(v)

for each vertex v’ in adj(v) do

if canAccess(v, v′) = true then

if v′ = t then

Path← Path ∪ P

else if adj(v′) = NULL then

return

else if v′ /∈ P then

FindAllPath(v′)

P ← P − P [length of P]

return

23

Chapter 5

AVAILABILITY IN THE COMPUTER SYSTEM

To formally define availability, we need to introduce the concept of service.

Definition 5.1 (Service) Service s = Ps ∪Os is a set of processes and objects.

The processes and objects of a service are those processes and objects necessary

for providing the functionality that the service implements. A variety of services can

be provided by a computer system. For example, rendering of a patient portal page

with the patient’s information can be a service provided by a health-care organization.

Every service requires a set of processes and objects which can be made available to

the client of the service.

For a given service s = Ps ∪ Os, each object or process in Ps ∪ Os might be

available (operational) or not available, but the availability of the service does not

necessarily require the availability of all resources of the service. It is possible that

some resources are interchangeable. Also, it is not always the case that the availability

of a service requires full connectivity among all its entities. For example, Figure

4 shows an application’s back-end system. Each server processes have their own

database objects along with the shared database object. Both the processes provide

simultaneous services to the web request, and the services are said to be available

if either of the process and local objects pair is available and the shared object is

available. Such conditions are expressed by an assertion, which is a predicate that

capture the requirements on the availability of individual and groups of resources for

the system to be considered available.

24

Figure 5.1: Example of a Service

As an example the following assertion for the service in Figure 5.1

(P1 ∧O1 ∧O3) ∨ (P2 ∧O2 ∧O3) (5.1)

states that if P1, O1 and O3 are available, the system is available. Also if P2, O2 and

O3 are available, the system is available.

Definition 5.2 (Availability of a Resource) avail : Ps ∪Os → {True, False}

is the availability function whose value determines if the process or object in the

system is available to be accessed by the client through the services.

Definition 5.3 (Minimum Resources for Availability) minAvailable : S →

P(Ps ∪ Os) is the set of all such set of processes and objects whose combination

satisfies the assertion for the service’s availability. For the example in Figure 4,

{(p1, o1, o3), (p2, o2, o3)} would be the minAvailable set, with each of its elements

satisfying the assertion at (5.1). We can call the service available, if all the entities

are available for at least one element of this set.

Thus, the set of process and objects required by a service can be formally written

as:

Os = (
⋃

e∈minAvailable(s)

e) ∩O

25

Ps = (
⋃

e∈minAvailable(s)

e) ∩ P

We further define the service to exhibit one of the following types of availability:

• Full Availability A service s ∈ S in the system is said to be fully available if

avail(o) = True, ∀o ∈ Os ∧ avail(p) = True, ∀p ∈ Ps

A fully available service has all its entities available for the clients.

Hence, the set of entities that contributes to the availability of the partial avail-

able system are the ones belonging to the subsets in the minAvailable that

satisfies the availability assertion and is represented as:

Entitiesf =
⋃

∀e∈Ps∪Os:avail(e)=True

e

• Partial Availability A service s ∈ S in the system with entities e ∈ P ∪O is

said to be partially available if

∃M ∈ minAvailable(s), ∀e ∈M : avail(e) = True

A partially available service has some of its entities unavailable for the clients

such that it still provides a part of the service or the full service at a lower rate.

Hence, the set of entities that contributes to the availability of the partial avail-

able system are the ones belonging to the subsets in the minAvailable that

satisfies the availability assertion and is represented as:

Entitiesp =
⋃

∃M∈minAvailable(s),∀e∈M :avail(e)=True

M

• Unavailability A service s ∈ S in the system with entities e ∈ P ∪O is termed

to be unavailable if

∀M ∈ minAvailable(s),∃e ∈M : avail(e) = False

26

An unavailable service has all or some of its entities unavailable for the clients

which result in no service being provided to the clients and is represented as Su.

5.1 Calculating Value of Availability

A fully available service can be transformed into partially available service by

deleting some entities required by the service, for example by killing a running process

or by deleting objects with some value to the service.

Thus the value of Availability for a service in a system can be given in terms of

fully available service and partially available service as

A =

∑
e∈Entitiesp

val(e)∑
e∈Entitiesf

val(e)

where Entitiesp and Entitiesf are the entities that contributes to the availability of

partial and fully available systems respectively.

27

Chapter 6

MAPPING MODEL TO THE USE CASES

This section demonstrates the application of our model using various cases which are

the part of the corpus created by Silowash, George, et al. (2012) for CERT, which

archive incidents related to the insider attacks. The model representation for each

case relates the subjects and actions of the case to the components of our model, and

how the threat manifests in the form of the threat value.

The mitigation strategies for each case offer a set of possible countermeasures that

could have been used to prevent the relevant attack. The suggested countermeasures

provide a more technical approach as compared to the countermeasures provided in

(Silowash, George, et al. 2012) which organizes the cases into different groups based

on the best practices to better aid the organization with the design of an insider

threat program. Although these provided solutions aides well for the policy-making,

most of the practices remain irrelevant to the technical aspects of the system.

6.1 Case 1

6.1.1 Summary

Figure 6.1 represents a research chemist working on a research project of an orga-

nization involving electronic technologies. He used his computer system to copy data

from the organization’s server to a laptop located at competitive organization. In

four months period, the insider downloaded 15,000 PDF files and more than 20,000

abstracts containing trade secrets of the victim organization. The leakage of data

outside the system took place using a removable device as a physical medium of

28

Figure 6.1: Model Representation of Case 1

transfer.

6.1.2 Model Representation

Using our model representation, we can view the transitions in the system. The

sequence of transition steps are:

1. Insider created a process P2 at V2 using channel E1 from his computer V1, .

2. He accessed the objects at server V2 through P2.

3. With the use of ‘read’ and ‘write’ capability on objects, insider copied the

objects from V2 to V1 through the bidirectional channel E1.

4. He then used P1 to transfer objects o1...on to a removable device through E2.

5. Finally, he physically moved the removable device containing the objects outside

the organization. This physical movement is represented by channel E3.

29

6.1.3 Mitigation Strategy

1. Threat Action - Large amount of data (around 300 documents) downloaded

every day for a period of four months and copied to a laptop at a different or-

ganization.

Countermeasure - Network level access control should define a limit on the

rate of data transfer for roles. A threshold should be defined to cap the maxi-

mum amount of data passing through a network point over a definite period of

time.

2. Threat Action - Accessed data not related to the research project.

Countermeasure - Consistent deployment of granular access control employ-

ing the principle of least privilege (insiders should have access only to the crit-

ical system functions and permissions necessary for carrying out their tasks) in

the form of capabilities. Creation of regularly monitored audit log objects to

capture access provided to high-risk users. Such an audit log would require a

strategic balance between what kind of events can be logged without affecting

the privacy of the insiders.

6.2 Case 2

6.2.1 Summary

Figure 6.2 represents a key member of IT support staff for a local bank who used

his privileged physical access to the area running live system to insert a malicious xls

file to bank’s batch file transfer system when most of the bank’s staff was off-duty.

The malicious file executed an unauthorized transfer in favor of the insider. An xls

spreadsheet was used to credit salary to the employees accounts through the bank’s

corporate account. The genuine salary transfer process was replicated in the malicious

30

Figure 6.2: Model Representation of Case 2

file which had an additional list of charges, and this small amount was debited from

the bank’s corporate account and credited to his account each month.

6.2.2 Model Representation

The sequence of actions can be described with the model as:

1. Physical access for the insider to the area V1 running the live systems to support

the banking application system through high privileged capabilities.

2. He created procedure o2 representing malicious .xls file to be executed along the

normal .xls file which takes care of the salary transfer process.

3. Use of the edge E2 by him to connect to the server V2 containing the corporate

accounts.

4. Creation of process P2 at V2 through P1 by execution of procedure o2 to transfer

small amount from the bank’s corporate account to insider’s account.

31

6.2.3 Mitigation Strategy

1. Threat Action - Accessed live system (meant to support banking application

system) when most of the bank’s staff were off-duty

Countermeasure - Access to vertices containing critical processes should re-

quire a combination of more than one capability (Separation of Duty) and the

capabilities should enforce time-based access control. Separation of Duty is

limited to organizations which can have more than one employee for similar

roles.

2. Threat Action - Created a new process inside a running critical system

Countermeasure - Creation of new process in a running system should not

be allowed or some regularly monitored audit log objects should be created to

capture the creation of a process that can access critical resources.

6.3 Case 3

6.3.1 Summary

Figure 6.3 represents a bookkeeper as an insider. She wrote around 70 checks,

which were available for her access, to pay for herself in two years. She altered

computer accounting records through her computer to show a different payee using

the highly effective write capability to manipulate objects of nature that were critical

to the organization’s finance. $200,000 was embezzled from the organization.

6.3.2 Model Representation

The sequence of actions can be described with the model as:

1. Insider used physical access to the area V1 containing physical checks and her

computer.

32

Figure 6.3: Model Representation of Case 3

2. She created the process P1 to connect to the system containing the accounting

records.

3. She used the edge E1 to create process P2 at V2 and altering account objects o1

to on using write capability.

4. Further, she used the edge E2 to physically modify the checks.

5. She physically moved the check objects outside of the organization using edge

E3 to pay for herself.

6.3.3 Mitigation Strategy

1. Threat Action - Wrote large amount of checks worth $200,000

Countermeasure -

• Use of principle of Separation of Duty (splitting actions into separate duties

and having multiple persons do each action in order to complete the task)

33

to perform actions such as finance operations that directly impact the

organization. Two processes having the capabilities for the action should

work together to perform it.

• A rate limit should be placed on the edge linking to the critical resource,

e.g. the edge to checkbook in this case.

2. Threat Action - Altered Organization’s records to show a different payee

Countermeasure - Logical objects that represent a physical object of high

value in the real world should have stronger access control. Creation of regularly

monitored audit log objects to capture accesses through high-risk processes.

6.4 Case 4

6.4.1 Summary

Figure 6.4 represents the scenario where a Unix Engineer working as a contractor

for a mortgage company was allowed to finish out the workday after being notified

for the contract termination. He planted a logic bomb in a trusted script while being

on-site. The script was designed to disable log-ins, delete root passwords and erase

all data, including backup data, on those servers. The script was designed to remain

dormant for 3 months but was detected before it could be executed.

6.4.2 Model Representation

The possible sequence of actions can be described with the model as:

1. Insider’s access to his computer in the organization V1 and creation of process

P1.

2. Further, he created a new process P21 to create a new procedure object (script)

o1 on V2 which can be executed later.

34

Figure 6.4: Model Representation of Case 4

3. Activation of the procedure o1 would have created a process P22 which would

further create processes on other nodes, using the create capability for the new

processes.

4. P22 would have created edge E31 to create process P31 at V31. P31 could delete

all root passwords and hence disable log-in.

5. Similarly, P22 would have created edge E32 to create process P32 at V32. P32

could delete back up data objects on the server.

6. Further P3 would have created other process at different nodes to delete data,

including backup data.

6.4.3 Mitigation Strategy

1. Threat Action - Planted logic bomb in a trusted script

Countermeasure - Use of the principle of Separation of Duty for code devel-

opment and review. The capabilities to edit the objects containing critical codes

should be restricted to nodes meant for development and should be reviewed

35

Figure 6.5: Model Representation of Case 5

before reaching the production environment.

2. Threat Action - Script designed to disable log in and monitoring

Countermeasure - Putting critical processes such as logging and monitoring

out of the application’s purview. The edges between the nodes running scripts

and the one controlling monitoring should have stronger access control.

6.5 Case 5

6.5.1 Summary

Figure 6.5 represents a scenario where a system administrator was responsible for

critical system servers. Having root access to one server, he created a file that enabled

him access to the second server. The insider then inserted a malicious code inside

the second server that had capabilities to delete all organization’s file when a certain

volume is reached

36

6.5.2 Model Representation

The sequence of actions can be described with the model as:

1. Insider’s access to his computer V1 and creation of process P1.

2. Insider then accessed first server at V2 using E1 over local area network which

was created by root password as a capability.

3. He then created procedure object o2 at V2 with capability for creating process

at V3.

4. Further, he created process P31 at second server located at V3 by creating an

edge E3 over local area network.

5. Once at V3, he edited an object o3 by inserting the malicious code using the

‘write’ capability.

6. He planned to use procedure o3 with malicious code owning capability to create

a new process P32 at V3 which has delete capabilities for objects at V3

7. P32 would have deleted objects o31 to o3n using the delete capability.

6.5.3 Mitigation Strategy

1. Threat Action - Use of privilege account to create an object enabling access

to a different server

Countermeasure - Pulling entitlement decision (creation of capabilities) out

of the application. Enabling Separation of Duty by moving policy-making de-

cisions to a central node.

2. Threat Action - Inserted malicious code that would delete all the organiza-

tion’s files.

37

Countermeasure - Since the procedure would have found an access path (a

sequence of one or more access points that lead to a critical system) to all the

data in the organization, discovering all paths to the critical system can prevent

such attacks. Access paths can be discovered by locating all the processes and

the edges they can create based on the capabilities available. Regular moni-

toring for finding such access paths can reduce the number of unknown access

paths available to the insiders.

3. Threat Action - The code could have disabled system logging, removed history

files and removed traces of malicious code

Countermeasure - Putting critical processes such as logging and monitoring

out of the application’s purview. Deletion capabilities should come under Sepa-

ration of Duty access control with a threshold value on how much and how fast

data can be deleted.

6.6 Case 6

6.6.1 Summary

Figure 6.6 has an insider working for the organization as an IT administrator. Af-

ter being fired, he created another user account. Later he accessed the organization’s

server using the backdoor account from his home and public network. He deleted

some customer data using this account and affected the availability of the company’s

server.

6.6.2 Model Representation

The sequence of actions can be described with the model as:

1. Creation of process P1 by insider using access to the computer V1.

38

Figure 6.6: Model Representation of Case 6

2. He accessed the account server at V2 using E1 to create a process P2.

3. He then created an account object at account server using P2.

4. Further, he gained capabilities through the newly created account, after creating

an edge E2 using home computer to V2.

5. Insider used newly gained capabilities to create a new edge E3 from outside the

system to V3

6. Finally he deleted objects o31 to o3n using the delete capabilities.

6.6.3 Mitigation Strategy

1. Threat Action - Creation of new backdoor account with administrator privilege

Countermeasure - The nodes representing Policy Enforcement Points (Point

which manages access authorization policies) should be kept out of the business

application nodes, with additional enabled separation of duty. Such a separation

could be expensive and organizations with limited resources can just do with

39

Figure 6.7: Model Representation of Case 7

the separation of duty.

2. Threat Action - Deleted customer data and made it hard for customers to

access data

Countermeasure - New account created by the person had capability to delete

data which is a case of capability creation. Capability creation should be entitled

to Separation of Duty principle.

6.7 Case 7

6.7.1 Summary

Figure 6.7 describes a scenario where insider disabled the anti-virus application in

the organization’s system. Following it, a malware was installed to it which was used

to gain unauthorized access to his supervisor’s system. This access was then used to

plant a logic bomb at a critical server.

40

6.7.2 Model Representation

The sequence of actions can be described with the model as:

1. Insider used the access to his computer V1 for creation of process P11.

2. He disabled the anti virus process P12 by killing it using the kill capability

through the edge E1.

3. He created a malware object o1 at V1 as no anti-virus was available to stop this

event.

4. Further, he used an edge E2 through internet from V1 to supervisor’s computer

V2 using access capability gained from the newly created malware.

5. Creation of process P2 by him at supervisor’s computer which was further used

to create an edge E3 from V2 to a critical server V3.

6. Next he created a procedure object o2 at V3 which could act as a logic bomb.

7. o2 could have been executed to create the process P4 at server V3 which would

have affected other objects in the server using write or delete capability.

6.7.3 Mitigation Strategy

1. Threat Action - Disabled anti-virus application to install a malware

Countermeasure - Critical process such as anti-virus should be centrally con-

trolled rather than having the control dispatched to local levels. Systems must

also have certain ”choke-points” (nodes through which data must flow during

system operations) which can provide filtering on malicious codes and software.

41

Figure 6.8: Model Representation of Case 8

2. Threat Action - Used malware to gain access to the supervisor system

Countermeasure - Creation of capability should not be allowed by any pro-

cess. Such access rights should be limited to certain highly effective process.

6.8 Case 8

6.8.1 Summary

Figure 6.8 describes a computer system belonging to a large telecommunication

firm where the insider worked as a help desk technician. The insider installed hacking

tools in his computer, stole other employees credential from the server and passed it

to an external conspirator who used this to gain unauthorized access to the website

of the organization and deface it. This led to a loss in customer and share value for

the organization.

6.8.2 Model Representation

The sequence of actions can be described with the model as:

42

1. The insider accessed the computer V1 and created the process P1 to install the

hacking tool as an procedure object o1.

2. He used o1 to create a new process P2 at the server V2 which contained other

employee credential using Local Area Network represented by edge E2.

3. He then passed the credential to the external agent physically through edge E3.

4. External agent created an edge E4 to the vertex V3 which contained the website

of the organization.

5. He used the write capabilities gained through the credentials to edit the objects

(o1 to on) stored in the website server.

6.8.3 Mitigation Strategy

1. Threat Action - Help Desk technician installed hacking tools at the company’s

computer

Countermeasure - Trusted system should be highly resistant to manipulation

from within by prohibiting the creation of a new process in the system without

required capabilities.

2. Threat Action - Passed credential to external conspirator

Countermeasure - The access paths to critical nodes such as those containing

credentials should be protected with stronger capabilities. Capabilities should

not be transferable outside the organization. This is not applicable for the

organizations whose systems are controlled by people outside the organizations,

such as contract agencies, in which case such a transfer is inevitable and stronger

access control on external capabilities could facilitate with the security.

43

Figure 6.9: Model Representation of Case 9

6.9 Case 9

6.9.1 Summary

Figure 6.9 describes a network engineer working for a retail organization who used

USB VPN tokens for remote access. On being terminated, the insider created a token

in the name of a fake employee, contacted insider IT department to convince them

to activate the token. He further used it to access the network and delete virtual

machines, email servers and storage area network.

6.9.2 Model Representation

The sequence of actions can be described with the model as:

1. The insider created process P1 at his own computer V1 inside the organization.

2. He used P1 to create a VPN token object o1 and passing it to the V2, the server

containing all the tokens.

3. Token was carried outside the organization physically by him through USB,

44

represented by edge E2.

4. He then contacted the IT department through edge E3 representing internet

connection, which activated the token object o1 by using the process P4.

5. Further, he used the activated token and its capability to access various servers

to create a new process at servers such as email and SAN server.

6. Finally he used the delete capability to delete the objects in the newly created

processes on the servers.

6.9.3 Mitigation Strategy

1. Threat Action - Created an USB VPN token in name of a fake employee

Countermeasure - Hardware authentication objects should only be forgeable

by the process with strong capabilities.

2. Threat Action - Convinced IT department to activate the token

Countermeasure - Request edges from outside the organization should be

separable from the one within the organization. Since activation of tokens led to

the creation of capabilities, it should involve the Separation of Duty principle.

3. Threat Action - Several months later, VPN used to delete virtual machines,

shutdown SAN and delete email boxes.

Countermeasure - Implementation of procedure to be used for removal of

employees with a high degree of access (e.g. that doesn’t allow them to retain

such privileges after a certain point of time) by implementing the principle of

session-based access control. The killing of a critical process such as the one

running SAN should be bound by strong authentication rules.

45

Figure 6.10: Model Representation of Case 10

6.10 Case 10

6.10.1 Summary

Figure 6.10 describes a system administrator working for a unified messaging ser-

vice discovered a security vulnerability in the organization’s email service. Six months

after leaving the organization, the insider used the organization’s email account to

email 5600 of organization’s customer. The email exposed the security flaw and di-

rected them to a link which crashed the victim organization’s servers and caused a

major damage to reputation.

6.10.2 Model Representation

The sequence of actions can be described with the model as:

1. Creating process P0 at his own computer outside the organization.

2. Using P0 to create a process P1 on the email server inside the organization.

3. Using the email server and write capability to create email objects o1...on and

46

send it to various other users.

4. Other users accessing the email object and following the link to access the

resource on the server at V3.

5. Overloading the process P3 at V3 with multiple requests, thus crashing the

server.

6.10.3 Mitigation Strategy

1. Threat Action - After leaving the organization, the old account used to email

employees.

Countermeasure - Account invalidation should cause removal of all the ca-

pabilities associated with the account.

2. Threat Action - Emailed 5600 customers using the organization’s email ac-

count.

Countermeasure - The rate of creation of objects (email in this case) should

be limited and bound by a threshold and a dynamic warning should be gener-

ated when the threshold is exceeded.

6.11 Case 11

6.11.1 Summary

Figure 6.11 describes a situation where a tax preparer for a tax preparation service.

During working hours, the insider printed Personal Identification Information (PII)

of 30 customers. This information was used by the insider to submit fraudulent tax

returns. The refunds of around $290,000 were deposited by the insider at various

bank accounts.

47

Figure 6.11: Model Representation of Case 11

6.11.2 Model Representation

The sequence of actions can be described with the model as:

1. Creating process P1 at his own computer V1 inside the organization.

2. Using P1 to create a process P2 on the server containing the PII of the customers.

3. Printing the PII objects o1...on with the ’Read’ capability.

4. Physically accessing the printed objects and moving them to his own space

represented by edge E2.

5. Creating the process P3 to submit fraudulent tax returns using the SSN in the

printed PII objects.

6. Receiving the funds in his own bank accounts.

48

6.11.3 Mitigation Strategy

1. Threat Action - Insider printed PII of 30 customers during work hours.

Countermeasure -Actions such as printing should be defined as a ’Copy’

capability and should have more granular access control for critical objects.

2. Threat Action - Submit fraudulent tax records with stolen SSN

Countermeasure - Management of critical objects should be handled with

the principle of Separation of Duty.

6.12 Case 12

6.12.1 Summary

Figure 6.12 describes a scenario where insider planned for the organization and

its customer to loose $1 Million over the course of one year by tempering the risk

assessment’s program’s code. The risks of deal increments were kept very small to

prevent any suspicion so that the traders would not be able to realize the deals getting

riskier with the time.

6.12.2 Model Representation

The sequence of actions can be described with the model as:

1. Creating process P1 at his own computer while working inside the organization.

2. Creating process P2 at the server containing the risk assessment program.

3. Manipulating the risk management program O21 using ’write’ capability.

4. Using an edge E2 at V2, to create the process P3 to run the edited procedure

object.

49

Figure 6.12: Model Representation of Case 12

5. Accessing of process P3 running the riskier deal program by various trader’s

processes (P31...P3n) at their respective vertices using the execute capability.

6.12.3 Mitigation Strategy

1. Threat Action - Insertion of logic bomb in the risk assessment program.

Countermeasure - Configured audit log to capture the changes made in crit-

ical procedures which are accessed by high-risk users. This separate log objects

should be monitored frequently.

6.13 Case 13

6.13.1 Summary

Figure 6.13 describes an insider working as a lead software engineer for a govern-

ment agency, who on learning about his future demotion and reduction in pay, wrote

code in an obscure way to undermine the project’s transition. The insider copied the

source code to a removable media and encrypted it with a password. He also deleted

the source code from his laptop and it later turned out to be the only copy of the

50

Figure 6.13: Model Representation of Case 13

source code for the system.

6.13.2 Model Representation

The sequence of actions can be described with the model as:

1. The insider accessed the code in procedure object o1 on his computer V1 inside

the organization using the process P1.

2. He used the ′write′ capability to write obscure code in the procedure, rendering

it unreadable.

3. Moreover, he used removable media to copy the code objects from the computer

to the device.

4. He then used the edge E1 to move the physical media from V1 to the external

world.

51

5. Lastly he deleted the only copy of source code object from the node V1.

6.13.3 Mitigation Strategy

1. Threat Action - Wrote critical source code in an obscure way

Countermeasure - write capability for critical objects should be reviewed

before making its way towards production. Even for a very small organization

with limited work-force, such capabilities should involve more than one process.

2. Threat Action - Use of removable media to transfer code to the external world

Countermeasure - External devices can provide channels with the unlimited

rate for data extrusion. Such channels, if allowed, should have a capacity limit

and all such transfer should require extra capability.

3. Threat Action - Deleted the only copy of the source code

Countermeasure - Objects of type procedures should have more than just

local copy and should be submitted to a server to maintain software baselines.

6.14 Case 14

6.14.1 Summary

Figure 6.14 describes a software developer and tester as an insider who was ter-

minated for poor performance but the victim organization failed to change a shared

account password upon his departure. The company’s laptop provided by his subse-

quent employer was used by him to remotely access 14 of the victim organization’s

user accounts. The insider also exploited 13 systems storing trade secrets valued at

approximately $1.3 million.

52

Figure 6.14: Model Representation of Case 14

6.14.2 Model Representation

The sequence of actions can be described with the model as:

1. The insider accessed his own computer at V1 to learn the shared password which

provided him the capability to access the computer system remotely.

2. He physically moved this capability to the external organization’s system using

the edge E1.

3. The credential of another employee along with the shared password capability

was used by him to access user account server at V2.

4. Further, he accessed accessing 13 other systems containing trade secrets (V31...V3n).

6.14.3 Mitigation Strategy

1. Threat Action - Use of shared password for shared accounts.

Countermeasure - Separate capabilities should be used for access to the

53

shared accounts. Such separation can help ease of removal of capabilities when

a process is removed.

2. Threat Action - An access from the external world was able to exploit 13

systems.

Countermeasure -

• A limit should be established on a number of processes that could be

created from a single access.

• Channels from the external world should have restricted capabilities and

access through such channels should always be monitored.

6.15 Limitations

The ability to predict the above attacks and their damage value based on the

model and the algorithms have inherent limitations. For some of the above cases, it

is difficult to foresee the attacks through the model as attackers keep coming up with

unique attack approaches and such approaches could be beyond the scope of policy

framers. Consider the examples in Case 2 and Case 12. Here, the attackers in both

the cases tried to modify procedures to change the behavior of the process which led

to revenue losses to the organizations. Although the model is capable of representing

such attack after it has taken place, it is difficult to anticipate such attacks and

calculate the damage in advance. Similarly, Case 3 represents a scenario of physical

manipulation of objects and it is tough to calculate the extent of such manipulation

beforehand. Hence, our algorithm for data leakage cannot take into account such

leakage as the capacity of physical channels can be unpredictable.

In cases where social factors are used to devise attacks, there are limited means to

model such events. Such as in Case 9, where convincing the IT department to activate

54

the token can be seen as an attack involving social engineering. Likewise, the extent

of external help is also difficult to be determined, and hence could not be modeled

perfectly before the attack occurs. Case 10 is an example of such a scenario where the

insider used the vulnerability of the organization’s customers to attack the services.

While cases like these do arise, but from our study of several attacks, we found that

such method of attacks are rare. But such parameters should be considered while

developing the policies and appropriate methods should be engineered to prevent

them.

55

Chapter 7

CONCLUSION

As organizations continuously face threats from users of their computer system, dif-

ferent models have been introduced to represent these threats and predict the risk

value of a user. In this thesis, we take these approaches further by looking at the

problem from a perspective of capabilities that the users possess, and how the calcu-

lation of the potential threat of that user depends on dynamic augmentation of these

capabilities. Although we focus on two major aspects of damage, i.e. information

flow and leakage, and change in the availability of the system, yet we believe that the

model serves a more general purpose for almost every kind of damage that a user can

cause to the computer system.

We implement the model to show that it can be used in real-world scenarios. We

also analyze several insider attacks that took place in the last few decades to suggest

how our model could represent those attacks and then suggest mitigation strategies

within the scope of our model for all such use cases.

There are several areas in which the model can be improved in the future.

• The current model represents the physical users as a process with pre-defined

capabilities. But the physical capabilities of a user can be dependent on many

other features of the external environment and would need more detailed rep-

resentation.

• The thesis focuses on the damage potential of a user of the system based on

just their individual capabilities. However, the user can collude with other

users to complete its attack. Such collusion can dynamically change the damage

56

potential of the insider and can be a subject of future research.

• The suggested mitigation approaches for all the use cases are within the scope

of our model. Other mitigation approaches can be suggested keeping other

real-world factors in mind.

57

REFERENCES

Ammann, Paul, Duminda Wijesekera, and Saket Kaushik. “Scalable, Graph-based
Network Vulnerability Analysis.” Proceedings of the 9th ACM Conference on Com-
puter and Communications Security - CCS 02, 2002. doi:10.1145/586139.586140.

Anderson, Robert H., and Richard C. Brackney. “Understanding the Insider Threat:
Proceedings of a March 2004 Workshop.” Santa Monica, CA: RAND, 2004.

Artz, Michael Lyle. NetSPA: A Network Security Planning Architecture. Master’s
thesis, 2002.

Baracaldo, Nathalie, and James Joshi. “An Adaptive Risk Management and Ac-
cess Control Framework to Mitigate Insider Threats.” Computers and Security 39
(2013): 237-54. doi:10.1016/j.cose.2013.08.001.

Bishop, Gates. “Defining the Insider Threat.” UC Davis Previously Published Works,
UC Davis, 2008

Celikel E, Kantarcioglu M, Li X, Bertino E. “A risk management approach to RBAC.”
Risk and Decision Analysis 2009;1(2):21e33.

Chen L, Crampton J. “Risk-aware role-based access control.” In: Proc. of the 7th
International Workshop on security and trust management 2001.

Chinchani, R., A. Iyer, H.q. Ngo, and S. Upadhyaya. “Towards a Theory of Insider
Threat Assessment.” 2005 International Conference on Dependable Systems and
Networks (DSN05), 2005. doi:10.1109/dsn.2005.94.c

Cohen, Ellis, and David Jefferson. “Protection in the Hydra Operating Sys-
tem.” ACM SIGOPS Operating Systems Review 9, no. 5 (1975): 141-60.
doi:10.1145/1067629.806532.

Colwill, Carl. “Human Factors in Information Security: The Insider Threat ? Who
Can You Trust These Days?” Information Security Technical Report 14, no. 4
(2009): 186-96. doi:10.1016/j.istr.2010.04.004.

Gorodetski, Vladimir, and Igor Kotenko. “Attacks against Computer Network: For-
mal Grammar-Based Framework and Simulation Tool.” Lecture Notes in Computer
Science Recent Advances in Intrusion Detection, 2002, 219-38. doi:10.1007/3-540-
36084-0 12.

Greitzer, Frank L., and Deborah A. Frincke. “Combining Traditional Cyber Secu-
rity Audit Data with Psychosocial Data: Towards Predictive Modeling for Insider
Threat Mitigation.” Insider Threats in Cyber Security Advances in Information
Security, 2010, 85-113. doi:10.1007/978-1-4419-7133-3 5.

Ha, D., S. Upadhyaya, H. Ngo, S. Pramanik, R. Chinchani, and S. Mathew. “In-
sider Threat Analysis Using Information-Centric Modeling.” Advances in Digital
Forensics III IFIP ? The International Federation for Information Processing, 2007,
55-73. doi:10.1007/978-0-387-73742-3 4.

58

Harel, Amir, Asaf Shabtai, Lior Rokach, and Yuval Elovici. “M-Score: A Misuseability
Weight Measure.” IEEE Transactions on Dependable and Secure Computing 9, no.
3 (2012): 414-28. doi:10.1109/tdsc.2012.17.

Jajodia, Sushil, Steven Noel, and Brian O?Berry. “Topological Analysis of Network
Attack Vulnerability.” Managing Cyber Threats Massive Computing, 2003, 247-66.
doi:10.1007/0-387-24230-9 9.

Lippmann, R. P., and K. W. Ingols. “An Annotated Review of Past Papers on At-
tack Graphs.” Lincoln Laboratory, Massachusetts Institute of Technology, 2005.
doi:10.21236/ada431826.

Phillips, C., T. Gaylor, and L.p. Swiler. “A Graph-based Network-vulnerability Anal-
ysis System.” 1998. doi:10.2172/573291.

Porras, P. A., P.G. Neumann. “EMERALD: Event Monitoring Enabling Response
to Anomalous Live Disturbance”. In Proceedings of the 19th National Computer
Security Conference, Pages 22-25, Baltimore, Maryland, Oct 1997. National Insti-
tute of Standards and Technology (NIST) / National Computer Security Center
(NCSC).

PwC. “Key Findings from the 2015 US State of Cybercrime Survey.” PwC. Accessed
November 23, 2018. https://www.pwc.com/us/en/services/consulting/library/us-
cybercrime-survey-2015.html.

PwC. “2017 U.S. State of Cybercrime Highlights.” SEI Insights. January
17, 2018. Accessed November 24, 2018. https://insights.sei.cmu.edu/insider-
threat/2018/01/2017-us-state-of-cybercrime-highlights.html.

Salim F, Reid J, Dawson E, Dulleck U. “An approach to access control under uncer-
tainty.” In: Availability, reliability and security (ARES), 2011 Sixth International
conference on 2011. p. 1e8. http://dx.doi.org/10.1109/ARES.2011.11.

Schultz, Eugene. “A Framework for Understanding and Predicting Insider Attacks.”
Computers and Security, vol. 21, no. 6, 2002, pp. 526?531., doi:10.1016/s0167-
4048(02)01009-x.

Sheyner, O., J. Haines, S. Jha, R. Lippmann, and J.m. Wing. “Automated Generation
and Analysis of Attack Graphs.”Proceedings 2002 IEEE Symposium on Security
and Privacy. doi:10.1109/secpri.2002.1004377.

Silowash, George, Dawn Cappelli, Andrew Moore, Randall Trzeciak, Timothy J.
Shimeall, and Lori Flynn. “Common Sense Guide to Mitigating Insider Threats
4th Edition.” 2012. doi:10.21236/ada585500.

Stanifor-Chen, S., S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K.
Levitt, C. Wee, R. Yip, D. Zerkel. “GRIDS - A Graph Based Intrusion Detection
System for Large Networks”. In Proceedings of the 20th National Information Sys-
tem Security Conference (NISSC), Oct. 1996. National Institute of Standards and
Technology (NIST), 1996.

59

Swiler, L.p., C. Phillips, D. Ellis, and S. Chakerian. “Computer-attack Graph Gen-
eration Tool.” Proceedings DARPA Information Survivability Conference and Ex-
position II. DISCEX01, June 2001. doi:10.1109/discex.2001.932182.

Theoharidou, Marianthi, Spyros Kokolakis, Maria Karyda, and Evangelos
Kiountouzis. “The Insider Threat to Information Systems and the Effec-
tiveness of ISO17799.” Computers and Security 24, no. 6 (2005): 472-84.
doi:10.1016/j.cose.2005.05.002.

Wood B, “An insider threat model for adversary simulation”, SRI Int. Res. Mitigating
Insider Threat Inf. Syst., vol. 2, 2000, pp. 1-3.

Zhang, G., J. Li, G. Gu. “Research on Defending DDoS Attack-an Expert System
Approach”. In Proceedings of the 2004 IEEE International Conference on Systems,
Man and Cybernetics, Netherlands, Vol. 4, pp. 3554-3558, Oct. 2004.

60

	LIST OF FIGURES
	1
	1.1 Approach
	1.2 Contributions
	1.3 Organization

	2
	3
	3.1 Definitions
	3.2 Creation of Process at a Node
	3.3 Access of Objects
	3.4 Killing of Process at a Node
	3.5 Illustration
	3.6 Effective Damage Potential

	4
	4.1 Max-Flow and All-Path Algorithms
	4.1.1 Max Flow
	4.1.2 All paths between the source and target

	5
	5.1 Calculating Value of Availability

	6
	6.1 Case 1
	6.1.1 Summary
	6.1.2 Model Representation
	6.1.3 Mitigation Strategy

	6.2 Case 2
	6.2.1 Summary
	6.2.2 Model Representation
	6.2.3 Mitigation Strategy

	6.3 Case 3
	6.3.1 Summary
	6.3.2 Model Representation
	6.3.3 Mitigation Strategy

	6.4 Case 4
	6.4.1 Summary
	6.4.2 Model Representation
	6.4.3 Mitigation Strategy

	6.5 Case 5
	6.5.1 Summary
	6.5.2 Model Representation
	6.5.3 Mitigation Strategy

	6.6 Case 6
	6.6.1 Summary
	6.6.2 Model Representation
	6.6.3 Mitigation Strategy

	6.7 Case 7
	6.7.1 Summary
	6.7.2 Model Representation
	6.7.3 Mitigation Strategy

	6.8 Case 8
	6.8.1 Summary
	6.8.2 Model Representation
	6.8.3 Mitigation Strategy

	6.9 Case 9
	6.9.1 Summary
	6.9.2 Model Representation
	6.9.3 Mitigation Strategy

	6.10 Case 10
	6.10.1 Summary
	6.10.2 Model Representation
	6.10.3 Mitigation Strategy

	6.11 Case 11
	6.11.1 Summary
	6.11.2 Model Representation
	6.11.3 Mitigation Strategy

	6.12 Case 12
	6.12.1 Summary
	6.12.2 Model Representation
	6.12.3 Mitigation Strategy

	6.13 Case 13
	6.13.1 Summary
	6.13.2 Model Representation
	6.13.3 Mitigation Strategy

	6.14 Case 14
	6.14.1 Summary
	6.14.2 Model Representation
	6.14.3 Mitigation Strategy

	6.15 Limitations

	7

