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ABSTRACT

Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a level of intelligence seen in human walking. As such, this thesis

focuses on the mechanisms involved during human walking, while transitioning from

rigid to compliant surfaces such as from pavement to sand, grass or granular media.

Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for

human walking, rigid to compliant surface transitions are simulated. The analysis of

muscular activation during the transition from rigid to different compliant surfaces

reveals specific anticipatory muscle activation that precedes stepping on a compliant

surface. There is also an indication of varying responses for different surface stiffness

levels. This response is observed across subjects. Results obtained are novel and

useful in establishing a framework for implementing control algorithm parameters to

improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt

to a new surface and therefore resulting in a more robust smart powered lower limb

prosthesis.
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Chapter 1

INTRODUCTION

1.1 Overview and Motivation

Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. It is the displacement of the entire body

from one place to another. It should be noted that locomotion involves various

locomotive movements such as walking, jumping, running, crawling, swimming etc.

Locomotion is successfully achieved in humans by the interaction and movement of

tissues and joints such as muscles, bone, cartilage, ligaments, tendons etc. Human

bipedal locomotion has been shown to depend less on reflexive automaticity as in the

case of quadrupeds[1] and more on integration with higher controls.

Figure 1.1: Skeletal Muscle Control System.
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These controls involve the transmission of signals from the brain, via the spinal

cord through a complex somatic motoneuron network as depicted in Figure 1.1 [2].

Walking, which is the effect of skeletal muscle activity, is controlled by different

systems, one of which is the vestibular system, which collects information relevant

for balance and control of movement[3]. Muscle activity to a great extent, sums up

the bodys response to changes in the environment while walking. However, for some

individuals, due to limb loss being one of the factors, this entire process has been

tampered with and walking is a great challenge.

In the US, approximately 2 million individuals live with limb loss with an es-

timated increase of about 3.6 million by the year 2050[4]. Of these, amputations

of the lower-limb are the majority, representing approximately 71% of dysvascular

amputations amputations occurring from the poor vascular status of the limb[5, 6].

Amputation of one or both lower limbs poses long term physical and psychological

challenges for amputees with major issues relating to balance, falling and the fear of

falling[7]. After an amputation, such individuals depend on the prosthetic devices

they are provided with to return to their normal lives and daily activities. Regret-

tably, these devices are more suited for walking on level ground and users experience

shortfalls when complicated walking conditions are encountered. Figure 1.2 depicts

the gap of current prosthetic devices in achieving high human volitional control as in

the case of natural human walking. Standard prosthetic limbs are capable of restor-

ing walking capabilities but are yet to replicate natural walking in more complicated

walking conditions.

Research indicates that approximately 52% of out-patients fall with major reasons

related to the prosthesis they use[8]. With the ankle joint being the most critical

joint for gait stability and propulsion [9], extensive work has been done regarding

human gait to improve the design of powered ankle prostheses in dynamic walking

2



conditions[10, 11, 12, 13, 14]. A very important aspect of walking is an adaptation

to terrain, and although previous studies have been successful in utilizing control

strategies for walking and running with powered ankle prosthesis[15, 16, 17], there

is a loophole in adapting to compliant surface walking. To advance current state-of-

the-art lower limb prosthetic devices, it is necessary to adapt performance at a level

of intelligence seen in human walking. Hence, an understanding of how able-bodied

humans integrate sensorimotor control mechanisms resulting in robust gait control in

dynamic walking is highly relevant. Limited joint angle mobility at the prosthetic end

of lower limb amputees and the lack of distal muscles and sensory feedback from the

lower limb results in difficulties while walking on uneven or non-rigid surfaces. Young,

active trans-tibial amputees have been shown to increase toe clearance by increasing

hip and knee flexion on the prosthetic side while increasing knee and ankle flexion

on the intact limb during locomotion on a destabilizing rock surface[12]. Further-

more, Gates’ study disclosed that variability of all step parameters and kinematic

measures are affected by the surface type[11]. Intact individuals take conservative

measures such as increasing minimum toe clearance to improve stability on complex

Figure 1.2: Available Prosthesis and Gap in Human Volitional Control and Envi-
ronment Adaptability.
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surfaces and reduce the likelihood of falls. In addition, it has been demonstrated

that there is a shift in the synchronization of muscle activation while walking on

cross-sloped surface compared to level-ground walking. This reveals the existence of

a possible feed-forward system for control as small alterations to the walking surface

were demonstrated to have significantly altered gait patterns[13]. Studies done in the

past with human runners proved that stiffness of stance was adjusted to accommodate

surface stiffness during steady-state running[17]. However, there was no indication

of anticipatory response of specific muscles prior to transitioning to the compliant

surface. While those previous studies are useful in understanding gait mechanisms

involved in walking over some common obstacles, they were limited to hard, rigid

surfaces, which only encompasses a limited type of natural environment individuals

encounter daily. Additionally, studies carried out involving compliant surfaces iden-

tified the muscle activity only during walking on the compliant surface. Despite the

progress made in research findings, a gap remains in the ability of amputees using

powered ankle prosthesis for the maintenance of balance and stability when traversing

complex, and especially compliant, terrains.

1.2 Proposed Work

This thesis is focused on the mechanisms involved during human locomotion while

transitioning from rigid to different compliant surfaces. I hypothesize that; 1.) There

is statistically significant difference in muscle activation just before and right after

stepping on a compliant surface and 2.) There is variation in muscle activation

for different compliant surfaces. The results observed can be used in the control

of advanced powered ankle-foot prostheses to eventually achieve natural and robust

walking on compliant surfaces for lower limb amputees. Figure 1.3 indicates how

electromyographic(EMG) data would be used in control of prosthesis by providing

4



Figure 1.3: Architecture of Powered Ankle Prosthesis Control System. Indicating
EMG Signal use in Control

real-time information. For a more robust system, a better understanding of muscle

behavior is relevant; knowing which specific muscle and how that muscle responds

would provide a good foundation on how to replicate this behavior for non-intact

subjects, in this case, for lower-limb amputees.

In this work, a unique tool, the Variable Stiffness Treadmill (VST), is utilized

as the platform for human locomotion, simulating rigid to compliant surface transi-

tions. The ability to simulate transitions between rigid and non-rigid surfaces, while

measuring lower limb muscle responses, creates a window on sensorimotor control

strategies for dynamic walking that has not been explored previously. The results of

this study indicate solid evidence that when human subjects are prepared to transi-

tion from rigid to compliant surfaces, there exist significant muscle activity alteration

that precedes the step onto the compliant surface. Additionally, the results indicate

that muscle alterations vary depending on the surface type. An application of these

result to vary control parameters for powered ankle prosthesis to properly adapt to a

compliant surface will increase gait performance and stability for amputees.

5



1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses relevant liter-

ature that is useful in understanding similar work that has been done in the past,

specifically, muscle activity and kinematic strategies while walking on different sur-

faces and further addresses the gap and limitations that exist. Chapter 3 provides

information on all experimental methods as far as the setup of the system, experi-

ment protocol and data collection and analysis for EMG data collected while subject

walked on the Variable Stiffness Treadmill(VST). Chapter 4 expands on the analysis

of EMG activation results obtained for the different compliant surfaces used in this

study. Finally, Chapter 5 concludes the thesis with a discussion and recommendation

for future work included.
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Chapter 2

LITERATURE REVIEW

2.1 Muscular Activity and Synchronization on Different Surfaces for Prosthetic

Device Control

Muscles are controlled by the nervous system and the output from the nervous

system to the muscles is based on the stimulus received. The goal of this thesis is

to identify muscle responses while intact humans transition during walking from one

compliant surface type to another. Hence, this section expands upon published work

relating to muscle responses as well as general gait adaptations in response to varying

walking surfaces.

Estermann et al. investigated muscular synchronization between walking on flat

and cross-sloped surfaces and introduced the fact that movement and muscular adap-

tations are necessary for daily living. This is generally expected as different types

of stimulus will generate different types of responses. Also, based on the type of

stimulus, different muscles will be activated, and the duration and amplitude of the

activation are also expected to vary. The focus was drawn on the evidence of an-

ticipation in muscular activation patterns in performing certain tasks in a specified

manner. More specifically, Estermann et al. analyzed the extent of the temporal

shift in muscular synchronization while walking on a flat and cross-sloped surface.

Since most biomedical signals are functions of time [18],it is ,therefore, necessary to

understand the fundamentals of such signals as they relate to time before further

inferential analysis are made.

In the study carried out by Estermann et al., a total of nine muscles of the right leg
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were investigated for walking on a flat surface and a cross-sloped surface inclined at

an angle of about 6 degrees. Specifically, the muscles were the Tibialis anterior (TA),

Peroneus longus (PL), Gastrocnemius medialis (GM), Gastrocnemius lateralis (GL),

Vastus medialis (VM), Vastus lateralis (VL), Rectus femoris (RF), Semitendinosus

(ST) and the Biceps femoris. This provided an indication of the types of muscles to

investigate for the purpose of this work. With a focus on what happens just before

and after stepping on a compliant surface from a rigid terrain, there was the need

to investigate lower limb muscles that are activated during the swing phase and just

after heel strike. These are; 1. The TA - responsible for dorsiflexion of the ankle

joint at heel strike and 2. the GA, PL and, Soleus (SOL) - responsible for plantar

flexion of the ankle joint during the swing phase of the gait cycle. Per the results, a

significant difference was observed for knee flexion and ankle dorsiflexion during the

stance phase.

Though only rigid surfaces were investigated, an instance of the surface -surface

condition is addressed by comparing level ground walking to an inclined surface.

The conclusion drawn is that even with small changes in surface condition, there

is a detectable change in the kinematic and muscular activation pattern [13]. One

interesting observation in the experiment is the fact that subjects were made to walk

barefooted. The reasoning behind this is not explained in detail. However, though the

usefulness will most probably be to get enough sensory information, most everyday

walking is done with footwear on.

Furthermore, Huang et al. undertook an interesting study which will be of sig-

nificance to the long-term application of this thesis. In their study, they developed

an algorithm based on neuromuscular-mechanical fusion to continuously recognize a

variety of locomotion modes performed by patients with transfemoral amputations.

EMG signals were recorded from the gluteal and residual thigh muscles and ground

8



reaction forces/moments measured from the pylon were used as inputs to a phase de-

pendent pattern classifier for continuous locomotion-mode identification. The results

obtained showed that neuromuscular-mechanical fusion outperformed methods that

used only EMG signals or only mechanical information.

With the development of intent recognition strategies, there is an intuitive pros-

thetic leg control. One of these methods is known as the “Echo control” where the

prosthetic leg repeats the motion of the sound leg. While this work does not involve

directly, the control strategies used, this piece was found very useful in understand-

ing the role of the contralateral leg. With regards to experiments carried out in this

work, perturbations were applied only to one limb. However, muscle activation was

recorded for both limbs. In their article, the assumption used in ”echo control” that

the motion of the two legs is symmetric during locomotion was argued out. Due to the

fact that motions of lower limbs are different in the transition from level-ground walk-

ing to stepping over an obstacle[19], the assumption of symmetry is not always valid.

This is probably one of the reasons why current prosthesis that uses this approach

fail and about 50% of users tend to fall as a result[8]. From this study as well, it

was made known, that while mechanical sensors respond to the patients movements,

EMG signals precede movement onset and may be used to help predict task transi-

tion. This aligns very well with the purpose of this thesis, to identify anticipatory

muscular responses and implement this using good control strategies for ankle-foot

prostheses control. Reflecting on the study on muscular synchronization, in their

discussion of the results, they concluded that there was some sort of feed-forward

system controlling the response[13], an anticipated muscular synchronization which

agrees with the conclusions of Huang et al.

Additionally, an investigation of muscle activity and movement variability relative

to the center of pressure (COP) indicated a significant cross-correlation between COP

9



and the ankle joint as well the peroneus longus muscle during a unipedal stance on

a solid and compliant surface[10]. Compliant surfaces tend to disturb upright stance

by reducing sensory input and decreasing effective use of ankle torque. The decrease

in ankle torque can be most associated with reduced muscular activation on the

compliant surface. This study focused more on stability during a unipedal stance

on foam and on an air-filled disc, investigating control strategies for maintaining

stability. As in the case of this thesis, EMG data was collected from the TA, GA,

SOL, and PL among other muscles. Force data was collected using force plates and the

anterior-posterior and mediolateral center-of-pressure traces were calculated as well.

For analysis, they determined the mean cross-correlational curves for each subject

and for each of the surfaces.

From Figure 2.1, it can be inferred that the ankle dorsiflexion angle and eversion

angle have a very high correlation with the center of pressure in the anterior-posterior

and in the mediolateral direction respectively. This affirms the fact that the ankle

joint is the most critical joint for gait stability and balance [9]. The end goal of this

thesis is to improve balance and stability in amputees. Hence, narrowing on ankle

joint dorsiflexors and plantar flexors.
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Figure 2.1: Means (SD) of Maxima of Cross-correlations with Center of Pressure.
Horizontal line level of significance. R raw correlation values. Upper chart correla-
tions with the anterior-posterior component of the center of pressure. Ank = ankle
dorsiflexion angle; Hip = hip flexion angle; Trunk = trunk extension angle; MG =
medial gastrocnemius activity; COM = anterior-posterior location of center of mass.
Lower: maxima of cross-correlations with the mediolateral component of the center
of pressure. Ank = ankle eversion angle; Knee = knee abduction angle; Hip = hip
abduction angle; Trunk = trunk L side flexion angle; HipC = contralateral hip ad-
duction angle; PER = peroneus longus (fibularis longus) activity; ADD = adductor
activity; GM = gluteus medius activity; COM = mediolateral position of center of
mass. (Adapted from Croft et al.)

2.2 Kinematic Strategies and Other Locomotion Modes on Different Surfaces.

Previous studies indicate the existence of an inherent relationship between muscle

parameters and kinematic variables[20, 21]. There have been instances of high cor-

relation between specific muscle kinetics and kinematics as associated with specified

movements both in the cases of able-bodied and impaired individuals. As such, it is,

therefore, necessary to understand the existing knowledge of kinematics on compliant
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surfaces. Hence, this section discusses previous research investigating gait kinematics

in response to different surfaces.

Gates et al. investigated the kinematic strategies employed for walking on a desta-

bilizing rock surface. Most outdoor falls are said to be caused by uneven surfaces[22]

and these surfaces are known to apply both mechanical and kinesthetic perturba-

tions. Like in this thesis, the focus is drawn on mechanisms adapted when there are

perturbations of some sort. A lower center of mass (COM) may enhance stability by

decreasing the moment arm between the COM and the ground reaction force such

that a greater amount of force is needed to induce a fall. Their study quantified lower

limb joint kinematics, center of mass height (COMVT ) and minimum toe clearance

(MTC) while subjects walked across a level ground (LG) and on a destabilizing loose

rock surface (RS) as depicted in Figure 2.2 at four control levels of speed utilizing

Froude number for normalizing walking speed of subjects.

Toe clearance, which is the distance between the foot and the ground when the

foot swings forward during normal walking could give an indication of the behavior

of muscle activity more specifically during the swing phase before the leg contacts

the ground again. In their work, it was observed that at faster speeds, subjects in-

creased step length (SL) and decreased step time (ST) but maintained step width

(SW). However, the difference in the average step parameters was not significant[11].

Additionally, the surface type was shown to affect the variability of all step parame-

ters. More specifically, the variability in these parameters for walking on the RS was

shown to have increased by two-fold as compared to LG as depicted in Figure 2.3.

More importantly, the interaction effect for step length variability was significant.

This variability is expected as the surface is not rigid. Furthermore, the MTC was

found to be 3.8 times greater on the RS as compared to LG and MTC increased with

speed only on the RS as depicted in Figure 2.4 section B. This can be most likely

12



Figure 2.2: Experimental Setup by Gates et al. Depicting Level Ground and Desta-
bilizing Rock Surface

associated with the increase in hip and knee flexion and ankle dorsiflexion during the

swing phase on the rock surface. This is very insightful and useful to know while

critically investigating the muscle responses on the different compliant surfaces.

kinematic strategies for walking on compliant surfaces has been investigated. How-

ever, there has been no focus on response during the transition period. In Gates study,

the surface types were analyzed separately without considering transitioning from one

surface to another. This thesis delves into muscle responses for transitioning between

different surfaces and as muscle activation is known to precede movement, it can serve

as an indication of the type of kinematic response to expect while transitioning.
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Figure 2.3: Temporal Distance Parameters from Gates et. al. A) RS Rock surface
LG Level ground SL -Step length ST Step time SW- Step width Vertical axis walking
speed B) Average within-subject variability of SL, ST and SW

Figure 2.4: B. Minimum Toe Clearance for both Destabilizing Rock Surface and
Level Ground
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Chapter 3

METHODOLOGY

This section provides insight into the rationale and techniques employed in car-

rying out this experimental research. As this research investigates muscle responses

prior to and right after stepping on compliant surfaces, the first section explains the

basis for the stiffness levels chosen to be simulated. The subsequent sections explain

the various components of the experiment, the role they played and how they were

put together to test the hypothesis and draw conclusions on results obtained.

3.1 Surface Stiffness Determination

With a focus on different surfaces of different stiffness levels, there was the need to

simulate stiffness values that will clearly differentiate one surface type from another

without presenting an uncomfortable experience to subjects. This section answers

the basis upon which the VST was programmed to achieve the desired environmental

simulations.

A few examples of compliant surfaces encountered on a regular day includes beach

sand, gravel, grass among others. Different surface types will exhibit different stiffness

properties. It is important to note that no surface type will have a single unique

number representing its stiffness but rather the stiffness properties of the surface are

described by a range of values. The stiffness of a surface in response to an axial load

is given by the equation

k =
P

δ
(3.1)

Where P is the axial stress applied and δ is the deflection produced as a result.

Considering Figure 3.1, the behavior of a rigid surface such as pavement is de-
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Figure 3.1: Response of a Surface to an Axial Load.

Figure 3.2: Soil Surface Response to Increasing Loads

picted. In this scenario, with the application of an axial load, B, there is a change in

length of the material A. Rigid surfaces usually experience very minimal deflections

in response to the forces exerted while walking. The second Figure, Figure 3.2 on

the other hand best depicts surfaces that are compliant. The compliance of an object

is inversely related to its stiffness. With the application of a load, in this case, the

force exerted by the foot, the amount of air present reduces. The more compliant a

surface is, the less closely packed the individual particles that make up the surface

area. Hence, an individual walking on surfaces of very high compliance tends to have

their foot sinking more into that surface.

The Youngs modulus or modulus of elasticity can be related to stiffness although

these two properties are different. The Youngs modulus of a material is a measure

of the materials resistance to elastic deformation under load and it is an intensive
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property whereas stiffness is an extensive one. Typical values of Youngs Modulus

for granular material[23] are indicated in Table 3.1 with units in MPa. Appropriate

stiffness values to be implemented were obtained using these values.

Table 3.1: Typical Values of Young’s Modulus for Granular Material

USCS Description Loose Medium Dense

GW,SW Gravels/sand well-grained 30 - 80 80 - 160 160 - 320

SP Sand, uniform 10 - 30 30 - 50 50 - 80

GM, SM Sand/ Gravel Silty 7 - 12 12 - 20 20 - 30

CALCULATING STIFFNESS FROM YOUNGS MODULUS

YM = E =
σ

ε
=

F/A

δL / Lo
=

F.Lo

A.δL
(3.2)

δL =
F.L

A.E
(3.3)

K =
F

F.L/A.E
=

A.E

L
(3.4)

Equation 3.2 represents the formula for Young’s modulus of a material which is

given by the product of the force applied and the original length divided by the prod-

uct of the area of surface and deformation. Equation 3.4 represents the formula for

the stiffness of a material, K, which is the force divided by the deformation. Using

these equations, the stiffness of a surface can be determined given the Youngs mod-

ulus of the surface. Based on previous literature[14], and knowing that the average

step length of males and females is 0.71625 m, the assumed dimensions used for the

compliant surface of the experiment were; 0.71625m long, 0.46m wide and 0.10m

high. Assumption: A/L from equation 2 is a constant value C. Where C represents

the compliant surface dimensions. Focusing on the surface area of the medium, the

total surface area (TSA) of the compliant surface is given by the equation:
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TSA = 2 ( lw + wh + hl) (3.5)

= 2 [(0.71625)(0.5) + (0.5)(0.10) + (0.10)(0.71625)] = 2 (0.47975)

∴ TSA = 0.9595m2

C =
TSA

L
=

0.9595m2

0.71625m
= 1.3396m

Using the values of the medium range from table 3.1 and with the assumption

that the surface under consideration is of a much smaller area, the Youngs modulus

values are scaled into KN/m2. The table below indicates the final stiffness values for

three compliant surface levels.

Assumption : Cd =
C

103
(3.6)

Table 3.2: Stiffness Values in KN/m used to Simulate Real-world Compliant Surfaces

USCS Description Young’s modulus Stiffness

GW,SW Gravels/sand well-grained 80 - 160 107.68 - 214.336

SP Sand, uniform 30 - 50 40.188 - 66.98

GM, SM Sand/ Gravel Silty 12 - 20 16.0752 - 26.792

With this information, it was possible to program the VST such that the subjects

could liken the feel of the perturbation to familiar surfaces. In the experiment, two

stiffness levels were simulated and this will be explained further in the subsequent

sections.
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3.2 Experimental Setup

In this research, lower limb muscle activation in response to varying stiffness levels

are investigated. The experimental setup is designed to simulate real-world walking

on two surface types while recording muscle activation and joint kinematics of the

subject.

Specific Aims: The goal of this experiment was to:

Identify and establish a fundamental relationship between the transition responses

of the various lower limb muscles on one compliant surface type as considered to

another.

It is expected that as the surface compliance differs, the muscle response will differ

as well but how significant and consistent will this difference be across subjects. This

Figure 3.3: Real-world Big Picture Illustration of Experimental Setup.
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is very important to consider in the control of an ankle prosthesis as this would be

needed to determine what error range is allowable and how fine-tuned it should be.

With the design of this experiment, it is necessary to develop a broad perspective

of the transition relationship and based on results, further studies would need to be

carried out to fine tune the system. Figure 3.3 depicts the big picture of what is

simulated in the experiment.

Human walking transitions are simulated using a novel tool, the Variable Stiffness

Treadmill developed by Skidmore, Barkan, and Artemiadis which will be expanded

upon in the next subsection. During the experiment, unilateral stiffness perturbations

are applied while the subject walks on the treadmill to investigate muscle responses.

3.2.1 The Variable Stiffness Treadmill

The variable stiffness treadmill, by regulating the walking surface stiffness in real

time, has the capability of controlling the load feedback stimulus. It has a wide range

Figure 3.4: The Variable Stiffness Treadmill Developed by Skidmore, Barkan and
Artemiadis

20



of controllable stiffness theoretically from zero to infinity while maintaining a high

resolution. In addition, the compliance of the treadmill surface can be actively varied

within the gait cycle. This special feature allows the flexibility of determining when

perturbations should occur, their timing, duration, and stiffness levels. The ability to

vary stiffness levels allowed different compliant surfaces to be created for the purpose

of simulating the environment. The VST is shown in figure 3.4.

To change the effective stiffness of the treadmill, the stiffness mechanism on

the track is re-positioned. Figure 3.5 depicts the stiffness mechanism employed in

the VST. It utilizes a high-capacity linear track (Thomson Linear, Part Number:

2RE16-150537) and a precision drive (Kollmorgen, Part Number: AKD-P00606-

NAEC-0000). The development and analysis of the mechanism are expanded upon

by Skidmore, Barkan, and Artemiadis (2014, 1717-24).

Figure 3.5: Stiffness Mechanism of the VST - Conceptual Diagram

The vertical stiffness of the walking surface is varied by controlling the kinetic

and kinematic interaction between the subject and the walking surface. The stiffness

mechanism consists of a spring-loaded lever mounted on a translational track. By

design, the coefficient of stiffness, S of the linear spring and the moment arm, r

through which it exerts its force remains constant. Varying the distance, x of the
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treadmill controls its effective stiffness. Hence, by changing the distance x, different

surface levels are simulated. To accommodate the stiffness mechanism, the treadmill

belts are supported 70cm above ground level to enable deflection of the belt. This

mechanism is only employed to the left belt of the VST. Each belt of the VSTs

effective stiffness can range from its minimum value (61.7N/m) to its maximum,

which is theoretically infinite and this is used to implement rigid surface walking[24].

Figure 3.6: The VST Platform Experimental Setup. The infrared camera system for
tracking the leg motion is shown (IR camera, IR markers), along with the body-weight
support (BWS) that was used solely for subjects’ safety during the experiment. The
stiffness mechanism can alter the effective stiffness of the treadmill

The experimental set up also includes a motion capture system which consists of

two infrared (IR) cameras positioned on the side of the treadmill as depicted in figure

3.6. The cameras are calibrated to capture IR marker positions as the subject walks

on the treadmill. Additionally, the body weight support system (BWS) shown in the

figure 3.6 was only used as a safety precaution during the experiment. The motion

capture system is further described in section 3.4.1.
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3.3 Experimental Protocol

This section describes exactly how perturbations were timed and allocated during

the experiment to gather data necessary for evaluating the anticipatory behavior

of the muscles. A total of 6 healthy subjects [age 21.5 ± 3.5 years, weight 166 ±

50 lbs] undertook this experiment. Each subject was made to walk on the VST

for approximately 10 minutes per experimental block (a total of two blocks) and

was verbally notified throughout the experiment three steps before a perturbation

occurred. The perturbations were programmed to occur within a specific point in the

gait cycle.

Subjects walked on the VST at a speed of 0.60m/s for a minimum of 380 gait

cycles. The right belt only delivered infinite stiffness, representing a rigid surface,

throughout the entire experiment. The left belt, on the other hand, was commanded

to deliver a stiffness of 100KN/m for block one and 60KN/m for block two. These are

the stiffness levels determined in section 3.1. The two blocks of the experiment run

were the same except for the stiffness delivered by the treadmill based on the linear

track position. Moving the linear track to 4cm and 5.3cm resulted in an effective

stiffness of 100KN/m and 60KN/m respectively. The break between the two blocks

was to allow the subject to take a break and to ensure that the EMG sensors and

the IR markers placed on the subject had not shifted in position as this would affect

the quality of data collected either being unrepresentative of the measure or no data

being collected at all.

Figure 3.7 depicts the experimental flow of the treadmill motion as well as the

duration and implementation of stiffness in the VST as the subject walked on the

treadmill. The experiment initiates with the subject walking on a rigid surface (K =

1MN/m) for 30 cycles. This is used to establish a reference profile for rigid surface
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Figure 3.7: Experimental Protocol

walking such as pavement. After this, the cycle of alternate surface walking begins.

There are 40 trials per compliant surface with 8 steps per trial, giving a total of 320

cycles. This is the period where the subject experiences the deflections on the left belt.

Because enough data is needed to make good conclusions, a total of 40 trials were

carried out per surface type. Perturbations were delivered following immediately after

the left heel strike, approximately 5% of each gait cycle. Each perturbation delivered

lasted throughout the left leg stance phase i.e. until the left leg toe is off. Every

5 steps on a solid surface (infinite stiffness) is followed by 3 steps on the compliant

surface, a stiffness of 100kN/m for the first set and 60K/Nm for the second set.

After 320 trials of alternating surface stiffness, the subject is then made to walk for

a minimum of 30 cycles on a rigid surface, infinite stiffness. All subjects were made

to wear a body harness as a safety measure, but no body weight support was used

during the experiment.
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3.4 Data Collection and Processing

This section discusses how data was collected during the experiment. The type of

data necessary was; 1. Lower limb kinematics and 2. Muscle activation. Kinematic

data was collected using the IR motion capture system whiles muscle activation was

collected using wireless surface EMG electrodes.

3.4.1 Kinematic Data

Kinematic data collection for this experiment was needed not only to know the

subjects joint angles but also for timing the changes in stiffness of the VST, as a way

of determining when exactly a perturbation should occur within the subjects gait

cycle. This allows for consistency across subjects.

Using an infrared (IR) motion capture system, kinematic data for both legs were

collected at 140Hz. This system consists of two IR cameras (Code Laboratories

Inc, model: DUO MINI LX) which track a total of 12 IR light emitting diode (LED)

markers (Super Bright LEDs Inc, model: 1WS-850), six per each leg. The IR markers

were placed as a pair each on the foot, the shank and the thigh at the lateral end of the

leg, parallel to the sagittal plane. These markers provide information on the ankle,

knee, and hip joint angles. The advantage of using the infrared-based measurement

system is its ability to capture data in real time, as needed for this experiment. The

cameras were carefully placed one on either side of the VST such that one captures the

joint angles of the left leg while the other captures that of the right leg. This system

provides automatic marker detection with high spatial and temporal resolution.

Prior to starting the experiment, the cameras are first calibrated to the length

and position of the VST within which the subject would walk. For this experiment,

the gait cycle begins with the left leg heel strike and continues until the next left
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leg heel strike i.e. when the tracked foot position reached its minimum value after

full extension during the swing phase for both legs. Kinematic data was sampled at

140Hz and resampled at 0.1% of the gait cycle. This was then used to determine the

timing of the gait cycles to process EMG data and for further processing of EMG

data. The gait cycles were determined by finding the minimum of every foot position,

closest to heel strike with a cutoff at 50.

3.4.2 Electromyographic Data

Muscle activity of the lower limb muscles, specifically the Tibialis Anterior (TA),

Gastrocnemius (GA), Soleus (SOL) and Peroneus Longus (PL) were collected us-

ing a wireless surface EMG system (Delsys Trigno Wireless EMG) and recorded at

2000Hz. In this thesis, the focus is on the muscles that contribute to ankle dorsiflex-

ion and plantarflexion as the ankle joint plays a very important role in stability. The

placement of the surface EMG electrodes is shown in Figure 3.8.

Figure 3.8: Surface EMG Sensor Placement for Lower Limb Muscles

The electrodes were placed on these muscles for both right and left legs of subjects.
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Electrodes were correctly placed on these muscles and the clinical tests were done

using seniam guidelines for EMG electrode placement[23]. The subjects performed

the following; dorsiflexion of the ankle joint and inversion of the foot for the TA,

heel up for the GA and SOL and plantarflexion of the ankle joint and eversion of the

foot for the PL. Raw EMG signals were recorded at 2000Hz and using Simpsons 1/3

rule, the sum of the electric potential difference within each muscle was determined

by finding the Root Mean Square(RMS) within a 250ms window for each muscle.

Because of the need to compare the EMG amplitude of the different muscles for the

different instances of surface stiffness perturbations, the signals were normalized to

the maximum amplitude value for all data obtained for a specific muscle under the two

experimental sets. Subsequently, the filtered EMG data was re-sampled at 0.1% of the

gait cycle because of the dependence of muscle activity on the phase of the gait cycle.

As the EMG data contained information for two instances of perturbed (walking on

compliant surface) and unperturbed (walking on rigid surface of infinite stiffness),

the data was further broken and separated into cycles of perturbed and unperturbed

and was processed and plotted for two gait cycles, with the goal of investigating

anticipatory responses. To determine statistically significant difference between rigid

surface walking(unperturbed) and compliant surface walking(perturbed), two-tailed,

two-sample unpaired t-tests were performed at 95% confidence level.

Figure 3.9 justifies the method employed in data segmentation for two gait cycles.

It depicts the vertical displacement of the treadmill belt. The response of subjects is

analyzed with respect to vertical deflection due to loading and lowered stiffness of the

belt. The belt is made to deflect just before heel strike of the gait cycle. With the

deflection of the belt, only downward motion is of importance as upward motion is due

to oscillatory behavior. The mean and standard deviation of the unperturbed (rigid

surface) is depicted in the red-dashed line while that of the perturbed transitions is
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Figure 3.9: Vertical Deflection of the Left Belt of Treadmill across two Gait Cycles

indicated with a blue solid line. The perturbation occurs just after left leg heel strike

at approximately 105% of the gait cycle.
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Chapter 4

RESULTS AND DISCUSSION

This section presents and discusses the EMG activation plots obtained for the

four lower limb muscles: Tibialis Anterior (TA), Gastrocnemius (GA), Soleus (SOL)

and Peroneus Longus (PL) muscles for both limbs. Data was processed and analyzed

for four out of a total of 6 subjects that participated due to some discrepancies in

results and other factors that could potentially affect validity. Plots indicated in this

section are of a representative subject. In all plots from subsection 4.1 -4.4, the solid

blue line represents the response to perturbed cycles, the solid red line represents the

response to unperturbed cycles and the statistically significant difference is indicated

by solid magenta lines at the top of the graph. They indicate muscle response for

both legs the perturbed leg(left) and the unperturbed leg (Right). In this section,

four main questions are addressed;

1.) Is there anticipatory behavior in EMG while transitioning from a rigid to a

compliant surface?

2.) Is there reactive behavior in EMG while transitioning from a rigid to a com-

pliant surface?

3.) Is the result in (1) affected or influenced by the surface type?

4.) Is the result in (2) affected or influenced by the surface type?

Subsections 4.1 and 4.2 discusses the activity of the perturbed leg, that which ex-

periences surface perturbations for 60KN/m and 100KN/m respectively in response

to questions (1) and (2). Subsections 4.3 and 4.4 also expands on the activity of

the unperturbed leg, that which does not experience changes in surface stiffness for

60KN/m and 100KN/m respectively in response to questions (1) and (2). Finally,
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subsection 4.5 discusses the activity of both perturbed and unperturbed legs in re-

sponse to question (3) and (4). During the experiments, the VST was commanded to

deliver a stiffness of 60KN/m which is the least compliant in comparison to a stiffness

of 100KN/m. The first gait cycle (0-100%) represents the step before perturbation

occurs and the second gait cycle (100% to 200%) represents the step after the pertur-

bation occurs. As stated earlier, the perturbation occurs at approximately 105% of

the gait cycle which is indicated by PST in the plots. All subjects were verbally in-

formed prior to a perturbation to best simulate real-world experience. To conclude on

anticipatory behavior, statistically significant difference at 95% confidence level must

be observed prior to a perturbation i.e. before 105% of the gait cycle. A reactive

response is considered for statistically significant difference after the perturbation.

4.1 Muscle Responses to Compliant Surface 1 (60KN/m Stiffness) for the Left

(Perturbed) Leg

Statistically significant difference is observed in all four muscles. The TA and

PL indicate anticipatory response at about 98% and 102% in Figure 4.1 and 4.4

respectively. There is no significant anticipatory response in the GA and SOL muscles.

All four muscles present a reactive response just after the perturbation occurs. For

the plantar flexors of the ankle joint, the GA, SOL and PL, there is an increase

in activation of the muscle in response to the compliant surface. This is noticed

right after the perturbation occurs. This indicates the role of the TA and PL during

transitioning as the subject prepares to step on a compliant surface. Activation

is increased in the plantar flexors to maintain balance over the compliant surface.

Additionally, the significant rise in the TA perturbed response towards the very end

of the second gait cycle of the left leg shows the possibility of its behavior just before

30



stepping on the compliant surface with the assumption of three gait cycles plotted

where the third also indicates perturbation.

Figure 4.1: Response of Left Tibialis Anterior (TA) to 60KN/m Perturbation

Figure 4.2: Response of Left Gastrocnemius (GA) to 60KN/m Perturbation
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Figure 4.3: Response of Left Soleus (SOL) to 60KN/m Perturbation

Figure 4.4: Response of Left Peroneus Longus (PL) to 60KN/m Perturbation
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Figure 4.5: Left Leg Anticipatory and Reactive Response for all Four Subjects to
60KN/m Stiffness

Figure 4.5 depicts the response distribution for all four subjects. Anticipatory

response is observed in the TA and PL for most subjects and reactive response is

seen in all four muscles.

4.2 Muscle Responses to Compliant Surface 2 (100KN/m Stiffness) for the Left Leg

In this section as well, anticipatory and reactive responses are observed for the left

leg to a perturbation of 100KN/m. Anticipatory response is observed in the TA and

PL and reactive response is observed for all four muscles as depicted in Figures 4.6

to 4.9. Like in the response to a stiffness of 60KN/m discussed in subsection 4.1, the

patterns are very similar. It can then be said that the brain prepares itself to tackle

compliant surfaces in a rather similar manner. In these figures as well, the GA, TA

and SOL show a rise in perturbed muscle activation after the perturbation and this

is expected because of their role in plantar-flexion of the ankle during push-off.
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Figure 4.6: Response of Left Tibialis Anterior (TA) to 100KN/m Perturbation

Figure 4.7: Response of Left Gastrocnemius (GA) to 100KN/m Perturbation
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Figure 4.8: Response of Left Soleus (SOL) to 100KN/m Perturbation

Figure 4.9: Response of Left Peroneus Longus (PL) to 100KN/m Perturbation
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Figure 4.10: Left Leg Anticipatory and Reactive Response for all Four Subjects to
100KN/m Stiffness

4.3 Muscle Responses to Compliant Surface 1 (60KN/m Stiffness) for the Right

Leg

This section discusses the response of the right leg to perturbation which occurs

on the left leg. While this leg, does not experience change in surface stiffness, it is

useful to understand how a change in surface stiffness of the other leg affects muscle

activation. It is expected that, a deflection in the left belt causes some variability

in the gait of the right leg. Of notable significance is the strong anticipatory and

reactive behavior in the soleus (SOL) muscle just before and after the perturbation

and the anticipatory behavior present in the gastrocnemius (GA) in Figure 4.12 and

4.13 respectively. However, it can be observed that the increase in activation during

perturbed cycles of the left leg is not that high but for the case of the GA.
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Figure 4.11: Response of Right Tibialis Anterior (TA) to 60KN/m Perturbation

Figure 4.12: Response of Right Gastrocnemius (GA) to 60KN/m Perturbation
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Figure 4.13: Response of Right Soleus (SOL) to 60KN/m Perturbation

Figure 4.14: Response of Right Peroneus Longus (PL) to 60KN/m Perturbation
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Figure 4.15: Right Leg Anticipatory and Reactive Response for all Four Subjects
to 60KN/m Stiffness

4.4 Muscle Responses to Compliant Surface 2 (100KN/m Stiffness) for the Right

Leg

Statistically significant difference is observed in the TA and SOL before pertur-

bation occurs in the left leg in Figures 4.16 and 4.18 respectively. From sections 4.3

and 4.4, we see that information from the right leg can potentially be used to encode

information regarding anticipatory strategies prior to stepping on compliant surfaces.

Notably in section 4.3 and 4.4, from the plots, we can deduce that there is not

much variation in amplitude considering the two modes, there still is a difference and

further investigation into this can be used to fine tune movements of the prosthetic

limb in the case of bilateral lower limb amputations.
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Figure 4.16: Response of Right Tibialis Anterior (TA) to 100KN/m Perturbation

Figure 4.17: Response of Right Gastrocnemius (GA) to 100KN/m Perturbation
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Figure 4.18: Response of Right Soleus (SOL) to 100KN/m Perturbation

Figure 4.19: Response of Right Peroneus Longus (PL) to 100KN/m Perturbation
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Figure 4.20: Right Leg Anticipatory and Reactive Response for all Four Subjects
to 100KN/m Stiffness

4.5 Comparison of Anticipatory and Reactive Response for the Left (Perturbed)

Leg to both Surfaces (60KN/m and 100KN/m)

In this section, the response of each muscle to the different surface modes are plot-

ted. For each graph, the solid blue line and the solid red line represent perturbed and

unperturbed cycle responses to a stiffness of 100KN/m (the least compliant surface)

respectively. The solid cyan line and the solid yellow line represent perturbed and

unperturbed cycle responses to a stiffness of 60KN/m (the most compliant surface)

respectively. In essence, the dark-colored shaded graph represents the response to

stiffness of 100KN/m and the light-colored shaded graph represents the response to

a stiffness of 60KN/m. In all instances, it can be clearly seen that muscle response

varies for the two surfaces which is expected as muscles will not be activated at the

same level for different surfaces although the pattern must be the similar. In figure
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4.21 we observe the response of the ankle dorsiflexor, the Tibialis Anterior (TA) to

the two surfaces. Anticipatory and reactive behavior exists prior to and after per-

turbation occurs at 105% of the gait cycle, lasting from approximately 95% to 140%

of the gait cycle.The TA tends to indicate a much stronger activation for the more

compliant surface at about 190% of the gait cycle where we see a higher activation

on the more compliant surface. Additionally, we see in the GA, SOL and PL that in

after stepping on a compliant surface, there is an increase in muscle activation. The

ankle plantar flexors, therefore, increase activation on compliant surfaces. However,

the more compliant the surface is, the less activation we have in the plantar flexors.

Figure 4.21: Left Tibialis Anterior (TA) Response to both Compliant Surfaces
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Figure 4.22: Left Gastrocnemius Response (GA) Response to both Compliant Sur-
faces

Figure 4.23: Left Soleus (SOL) Response to both Compliant Surfaces
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Figure 4.24: Left Peroneus Longus (PL) Response to both Compliant Surfaces
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The primary goal of this work was to identify anticipatory behaviour of spe-

cific lower limb muscles - tibialis anterior(TA), gastrocnemius(GA), soleus(SOL) and

peroneus longus(PL) muscles while humans transition during walking from a rigid

surface to a compliant surface for example from pavement to beach sand and to de-

termine whether the response varied based on the surface type. By investigating

two different compliant surface levels - most compliant(60KN/m stiffness) and least

compliant(100KN/m), it can be inferred based on results obtained, that indeed there

is anticipatory response and the response varies based on the surface type as intact

humans prepare to make a step on a compliant surface. Most specifically, there was a

decrease in activation of the TA right before the perturbation and an increase during

the terminal swing. In comparing the response of the TA for the two compliant surface

types, there is a decrease in activation the more compliant the surface is. However,

there is a higher increase in activation of the most compliant surface above what is

observed in the least compliant surface. On the other end, the GA, SOL, and PL

show an increase in activation after stepping on a compliant surface with GA showing

the highest level of muscle activation. As these muscles are all ankle plantar flexors,

their response is quite similar. From the viewpoint of the two compliant surfaces,

the GA, PL, and SOL showed higher activation in response to the least compliant

surface. Hence, the more complaint the surface is, the less the muscle is activated.

Statistically significant difference prior to stepping on a compliant surface is observed
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in the TA and PL while the reactive response is present in all four muscles.

5.2 Recommendation for Future Work

In this study, anticipatory muscle responses to changes in surface compliance

were investigated to be implemented in the control of powered ankle-foot prosthe-

ses. Understanding the response of intact subjects was necessary as the base level

information. To further advance knowledge in this area to the point of its imple-

mentation, future studies will be to compare muscle responses between intact and

non-intact subjects. As the end beneficiaries are amputees, an understanding of their

response as it relates to intact subjects is of relevance. Most particularly, studies

should be carried out with both right and left unilateral amputees as well as intact

subjects. This will be useful in determining whether there is the for a separate kind

of investigation for amputees, or whether the results obtained will be implemented in

the control of prostheses for increased robustness.
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