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ABSTRACT

Understanding the consequences of changes in social networks is an important an-

thropological research goal. This dissertation looks at the role of data-driven social

networks on infectious disease transmission and evolution. The dissertation has two

projects. The first project is an examination of the effects of the superspreading

phenomenon, wherein a relatively few individuals are responsible for a dispropor-

tionate number of secondary cases, on the patterns of an infectious disease. The

second project examines the timing of the initial introduction of tuberculosis (TB) to

the human population. The results suggest that TB has a long evolutionary history

with hunter-gatherers. Both of these projects demonstrate the consequences of social

networks for infectious disease transmission and evolution.

The introductory chapter provides a review of social network-based studies in an-

thropology and epidemiology. Particular emphasis is paid to the concept and models

of superspreading and why to consider it, as this is central to the discussion in chapter

2. The introductory chapter also reviews relevant epidemic mathematical modeling

studies.

In chapter 2, social networks are connected with superspreading events, followed

by an investigation of how social networks can provide greater understanding of in-

fectious disease transmission through mathematical models. Using the example of

SARS, the research shows how heterogeneity in transmission rate impacts super-

spreading which, in turn, can change epidemiological inference on model parameters

for an epidemic.

Chapter 3 uses a different mathematical model to investigate the evolution of TB

in hunter-gatherers. The underlying question is the timing of the introduction of TB

to the human population. Chapter 3 finds that TB’s long latent period is consistent

with the evolutionary pressure which would be exerted by transmission on a hunter-
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gatherer social network. Evidence of a long coevolution with humans indicates an

early introduction of TB to the human population.

Both of the projects in this dissertation are demonstrations of the impact of var-

ious characteristics and types of social networks on infectious disease transmission

dynamics. The projects together force epidemiologists to think about networks and

their context in nontraditional ways.
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Chapter 1

INTRODUCTION

This dissertation connects aspects of social networks to the transmission of in-

fectious disease in two projects. The first is an examination of the effects that su-

perspreading can have on subcritical epidemics; superspreading is the phenomenon

wherein a small number of infected individuals account for a disproportionate num-

ber of secondary cases of an infectious disease. Subcritical epidemics are those which,

intuitively, should self-limit and become extinct (see text for more formal definitions

of these concepts). Particularly, using Severe Acute Respiratory Syndrome (SARS)

as an example, subcritical epidemics are shown to be potentially as large as super-

critical epidemics. The second project examines the evolution of tuberculosis (TB)

in hunter-gatherer populations. This project demonstrates that the structure of a so-

cial network can alter the evolutionary pressures on an infectious disease, potentially

providing insight into the timing of the spillover event bringing TB to the human

population.

The first project, modeling subcritical epidemics which exhibit superspreading,

uses a stochastic jump process model. The resulting simulated epidemics are similar

in size, in terms of total case count by city, to the reported case counts in the SARS

epidemic. While not arguing that SARS was indeed subcritical, this example of how

the network dynamic of superspreading can give rise to potentially large epidemics.

The second project, on the evolution of TB, simulates the spread of TB in a

hunter-gatherer social network. The TB persists for long periods of time, and is

shown to have an advantage in the specific social network if it has a lengthy latent

period, rather than always becoming infectious immediately. Although this has been
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suggested qualitatively (Gagneux, 2012), this confirms this qualitative consideration

with a realistic model. Since the long latent period of TB would primarily be an

advantage in a hunter-gatherer social network, and is observed in modern TB strains,

this suggests a lengthy period of coevolution with humans and a temporally distant

introduction to the human population.

Both of these projects use mathematical models and tools of mathematical epi-

demiology to advance anthropological questions. Both demonstrate the importance

of social networks to epidemiological inquiries and the importance of anthropological

approaches to epidemiology.

1.1 Research Questions

This is a dissertation in two parts, each exploring the effects of contact network

structure on the transmission dynamics of infectious pathogens. Chapter 2 is an

investigation into the consequences of human variation, of a particular type, on in-

fectious disease transmission using a stochastic process model. The model developed

in chapter 2 addresses the question of whether the social network phenomenon of

superspreading can give rise to large, yet subcritical epidemics.

Chapter 3 investigates the evolution of Mycobacterium tuberculosis infections in a

hunter-gatherer community. The question addressed is the origin of TB in humans.

Specifically, if TB has a long coevolutionary history, the transmission parameters may

be particularly well-suited to transmission in hunter-gatherers. Chapter 3 addresses

the question of whether TB’s current transmission pattern may be the result of a long

coevolution with human hunter-gatherers.

Each chapter examines a different aspect of the impact of contact networks on

infectious pathogen transmission. The model developed in chapter 2 does not explic-

itly model networks, which is a simpler approach, but which attempts to replicate
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network-like behavior through the incorporation of heterogeneity in transmission rate.

The model developed in chapter 3 explicitly is a network model, using a metapop-

ulation structure. There is a great deal of interest from both anthropological and

epidemiological researchers in the impact of networks on infectious pathogen trans-

mission (Newman, 2002; Morris, 1993).

1.2 Background

1.2.1 Connection to Medical Anthropology

The interface between epidemiology and anthropology is well recognized. Investi-

gations into how culture influences human health, how health and disease are defined

and characterized as part of a cultural context, and how both are shaped by the envi-

ronment are all broadly included in the field of medical anthropology (McElroy and

Townsend, 1996). Of particular interest is the way in which wellness and disease are

impacted by social networks, and how social networks impact the transmission and

evolution of pathogens. The interaction of cultural norms and disease can be quite

complex; expectations for interactions between individuals, in reference to age, sex,

or other factors, can enhance or inhibit disease transmission, and add evolutionary

pressures on to the pathogen.

Examples of diseases altering social norms abound in the anthropological liter-

ature (Lindenbaum, 1979; Herring and Swedlund, 2010). The alteration of social

norms, consequently alters the contacts between individuals which may result in the

transmission of infectious disease. Disease stigma and its concurrent alterations of

social contacts, can result from long endemic disease (Weiss, 2008) or recent epidemic

diseases (Bond and Nyblade, 2006). Changes in behavior around disease are well

documented among psychologists and sociologists (Strong, 1990; Schaller and Park,

3



2011); changes include normally nurturing relationships becoming distant and new

social connections may form to combat the disease. This results from both individuals

with illness changing their behavior, as well as changes in behavior among those who

would normally be involved in the ill individual’s care.

These changes to an ill person’s social network can have consequences for the

transmission of infectious disease. Social stigma related to disease can be a barrier to

seeking treatment (Weiss, 2008). Treatment itself is often carried out by professionals,

who themselves form a different social network. Hospitals, or other centers of care,

can become centers for the spread of infectious disease (Khan et al., 2017; Hsieh

et al., 2004). Cultural expectations regarding behavior surrounding illness can greatly

impact the social network through which an individual can transmit disease or become

infected. The history of understanding how social networks can alter infectious disease

transmission are explored in section 1.2.2; nosocomial infections play an important

role in the description of the superspreading of SARS in section 2.1.2.

Section 1.2.3 below goes into greater depth on the impact changes in social net-

works can have for the emergence of infectious disease. Two examples are explored:

the emergence of HIV, and the evolution of drug resistant Staphylococcus aureus in

hospitals. The changes to social networks induced changes to the pressures on these

infectious diseases; HIV was able to become a global pandemic due to the changes

in the social network associated with colonization of Africa (Sharp and Hahn, 2010),

and S. aureus has evolved resistance to antibiotics used in treatments in and out of

hospitals (Vysakh and Jeya, 2013).

Cultural Epidemiology

The classic investigation of Kuru, Lindenbaum (1979), relied heavily on epidemiolog-

ical data to understand both the epidemic and the Fore peoples’ worldview in which
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the epidemic resided. In addition to understanding the meaning of health and dis-

ease states, anthropology can identify cultural practices that give rise to epidemics.

Another study in Papua New Guinea, Maddocks (2013) illustrates this, showing how

cultural practices could give rise, independently, to helminth infections, foot lacera-

tions, and illness associated with a sedentary lifestyle. Studies such as these bring up

what Trostle and Sommerfeld (1996) called “cultural epidemiology.”

Cultural epidemiology, or the broadly similar proposed subfield within epidemiol-

ogy of “social epidemiology” has been controversial. Perhaps most notably, Zielhuis

and Kiemeney (2001) argued social epidemiology (considered as a subfield of epidemi-

ology concerned with social determinants of health and disease), was not epidemiology

at all since it considered factors other than human biology in explaining health and

disease. In the same issue of the International Journal of Epidemiology, five responses

to this claim were also published with opinions ranging from social epidemiology be-

ing necessary for a fuller understanding of health, to various attempts at refinement

and compromise. Much of this work has been done under the rubric of “social de-

terminants of health,” which examines the “upstream” causes of health, disease, and

disparity in health outcomes (Braveman et al., 2011).

Meanwhile, other authors have developed anthropological methodologies aimed

at uncovering cultural meanings and definitions of health and disease (Weiss, 1997,

2001). Such work has been applied to both infectious and noninfectious disease. In

one example, Sundaram et al. (2014) examines how viral influenza is understood in

Pune, Maharashtra, India, and how that understanding shapes the epidemiology of

the infection. Similarly, Weiss et al. (2008) examined tuberculosis in several locations,

characterizing the perceptions of the infection and their consequences. Although not

universal, a sizable portion of the literature investigating cultural epidemiology has

focused on disease stigma (Weiss, 2008).
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Many authors have pointed out the natural overlap between questions in medical

anthropology and epidemiology (Trostle and Sommerfeld, 1996; DiGiacomo, 1999;

Inhorn, 1995; Ashan, 2016). However most authors since Trostle and Sommerfeld

(1996) have described this overlap as under-utilized. Trostle and Sommerfeld (1996)

identifies several areas which may be fruitful for anthropological and epidemiologi-

cal collaboration: disease and stress, stratification and inequity, identifying culturally

relevant social variables, understanding the context of risk, classifying illness, improv-

ing epidemiological methodologies, using disease as a metaphor, and differentiating

illness at the population versus individual levels.

These areas have received some attention in both anthropology and epidemiol-

ogy. Din-Dzietham et al. (2004) exemplifies the importance of understanding the

perception of stress on health with a study of African-Americans in Atlanta, Geor-

gia, United States. The study found the experience of racial discrimination at work

among African-Americans, when the discriminatory actions were undertaken by non-

African-Americans, resulted in significantly higher rates of hypertension. However,

when compared to discrimination perpetrated by other African-Americans, no such

increase in hypertension was found. The study built on earlier anthropological work

on stress and hypertension (eg Dressler (1984)), and touches on two areas of collab-

oration noted in Trostle and Sommerfeld (1996).

Epidemiologists often classify factors related to the incidence of a disease by the

risk that the presence of such a factor brings for the onset of the disease. These

risk factors can be biological, however many are cultural (Braveman et al., 2011) and

thus need to be contextualized in a particular culture. Factors such as social status,

wealth, ethnic group, or family connectedness are intrinsically cultural variables and

thus it is fruitful to understand these factors in the context of the culture in which

they reside.
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A particularly clear example of a cultural category which has become a unique

descriptor of health comes from the United States. In the biomedical literature,

beginning in the 1950s, two personality categories were distinguished: type A and

type B, describing a risk factor for heart disease due to personality. Although it

was not known publicly at the time, research into this distinction was funded by

tobacco firms, possibly in an attempt to shift blame for coronary artery disease away

from their products (Petticrew et al., 2012). So these uniquely American cultural

descriptors, type A and B personalities, became commonly identified and described

as risk factors related to coronary artery disease (Riska, 2000). Similar examples are

likely to be found in nearly every culture.

Finally, Trostle and Sommerfeld (1996) identifies ways in which anthropology can

improve epidemiological practice. Data collection in epidemiology often relies on in-

formants and their description of health, disease, or symptoms. These descriptions

are rooted in a taxonomy of disease and an understanding of symptoms which may be

unfamiliar; using anthropologists to assist in the unpacking of these descriptions can

be a fruitful collaboration. Anthropologists may even be able to identify interview

questions that yield poor results. Ashan (2016) gives the example of an epidemiolog-

ical investigation of HIV among intravenous drug users. Traditional epidemiological

survey instruments identified high rates of bleach being used to rinse injectors be-

tween use; anthropological investigation, however, found that bleach being supplied

for this purpose was instead being used to launder clothing. The anthropological ap-

proach of participant observation identified an epidemiologically relevant fact, which

traditional epidemiological survey instruments did not uncover.

7



1.2.2 Social Networks and Disease Transmission

Humans are fundamentally social creatures, forming connections with other people

for a variety of purposes, including kin and non-kin (Bott, 1971). The broad history of

the concept of a social network is reviewed in Mitchell (1974), which could be assumed

theoretically either in a static or dynamic way. The importance of these connections

to the transmission of infectious disease has not gone unnoticed in sociology and

anthropology (Morris, 1993). Broadly there are two areas where anthropological

investigations into social networks have intersected the study of infectious disease

transmission. The first is looking at infectious disease transmission on a social network

as a metaphor for the transmission of ideas (Blackmore, 2008; Inhorn and Brown,

1990; Cavalli-Sforza and Feldman, 1981). The second is looking at the consequences

of changes to some aspect of social network structure on the transmission of a specific

infectious disease (Klovdahl et al., 1994).

It is important to recognize from the outset that in reference to infectious dis-

ease transmission, there are potentially as many or more social networks as there

are infectious diseases; the unique characteristics of the transmission of specific infec-

tious pathogens characterizes what constitutes contact between individuals (Jacob-

sen, 2008). This dissertation uses the terms “social network” and “contact network”

to mean the collection of probabilities of transmitting a specific infectious disease

between individuals in a population. In all cases discussed herein, the size of the

population is so large that these transmission probabilities are described statistically.

These transmission probabilities are a function of how the strength of contact between

individuals in the network change over time.
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Epidemics as a Metaphor

Anthropology, broadly, is sometimes described as the study of culture (Kroeber,

1988), and it may be the transmission of culture which most clearly differentiates

humans from other species (Hill et al., 2009). Although the evolution of humans

has been discussed since Darwin, much of anthropological work in the 20th century

centered on treating humans as a quintessentially unique species (Durkheim, 2000).

Although there were many attempts to put anthropology onto a biological footing

(McGee and Warms, 2000), arguably the most successful was the introduction of

sociobiology by E. O. Wilson in 1975 (Wilson, 2000).

Sociobiology as applied to humans broadly split into three areas of study: hu-

man behavioral ecology, evolutionary psychology, and dual inheritance theory (Smith,

1999). The third of these, dual inheritance theory, describes two routes for the trans-

mission of human behavior: cultural transmission and biological inheritance (Cronk

et al., 2000; Boyd and Richerson, 1988). The descriptions for the transmission of

culture, both vertically from one generation to the next, and horizontally to those in

the same generation, borrowed extensively from the language and approaches found

in mathematical epidemiology (Cavalli-Sforza and Feldman, 1981).

Perhaps nowhere is this borrowing clearer than in memetics (Blackmore, 2001). A

meme, as defined by Richard Dawkins, analogously to a gene being a unit of biolog-

ical inheritance, a meme as “a unit of cultural inheritance, or imitation” (Dawkins,

1989). Important in this understanding of cultural transmission is the meme as a

self-replicator, using humans as its host, for better or worse in terms of the humans’

goals. For this reason, memes are sometimes analogized to infectious agents moving

between humans. For an overview of this view and its critics, see Aunger (2000).
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Social Networks’ Impact on Transmission Dynamics

This dissertation does not take infectious disease epidemics as a metaphor for social

network transmission. Instead, it examines the impact that human social networks of

the type found in anthropological data, or specific aspects of them, have on infectious

disease transmission dynamics. This type of analysis is not new in anthropology.

The importance of social networks to disease transmission was first identified in the

epidemiological literature, related to sexually transmitted infections (Hethcote et al.,

1982; Yorke et al., 1978), and drew attention from anthropologists in the 1980s (Pot-

terat et al., 1985; Klovdahl, 1985).

Sexually transmitted infections remain a rich area in the overlap between infectious

disease dynamics and social structure. HIV transmission has been examined in terms

of social network factors leading to the increase or decrease in prevalence (Klovdahl,

1985; Klovdahl et al., 1994; Rothenberg et al., 1998), sexual partner patterns and the

influence of migration (Khanna et al., 2014), and in terms of population heterogeneity

(Williams and Dye, 2018). Attempts to measure the spread of sexually transmitted

infections have explicitly measured contact networks (Bearman et al., 2004), as well

as characterizing the network in terms of a statistical abstraction of networks (Eames

and Keeling, 2002).

The examination of the impact of changing aspects of social networks on disease

transmission dynamics has extended beyond sexually transmitted infections, however.

Klovdahl et al. (2001) analyze the contact network on which tuberculosis spread, after

an outbreak, in a manner similar to contact tracing from epidemiological research

(Shaban et al., 2008; Armbruster and Brandeau, 2007), with the goal of identifying

clusters on the network of particular risk. High resolution spatial data has been

used by Salathe et al. (2010) to measure close proximity interactions which may
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be conducive to the spread of diseases which are spread through aerosolized droplets.

While the data were collected absent an epidemic, the measurement of close proximity

interactions allowed them to examine the effects of network structure on the spread

of diseases through simulation. Zelner et al. (2012) was one of only a few examples

where the protective role of social networks was explicitly examined in relation to

infectious disease, considering how community cooperation and interdependence can

lower, rather than raise, rates of infectious disease.

A very rich area of interest is the description of mixing heterogeneity in hu-

man populations as a factor in altering infectious disease transmission dynamics

(Eames and Keeling, 2002). Superspreading is the phenomenon of a small number

of individuals being responsible for disproportionately many secondary cases (Stein,

2011). Like many terms, it is the term “superspreader” or “superspreading event”

describes a gradient of values, not a difference in kind between superspreading and

non-superspreading individuals or events. The two most commonly cited cut-off val-

ues are the top 20% of individuals, in terms of the number of secondary cases caused

(Woolhouse et al., 1997), or the top 1% (Lloyd-Smith et al., 2005). Both of these

values, however, are largely arbitrary.

Superspreading on contact networks has been suggested or described in the spread

of ebola (Lau et al., 2017), tuberculosis (Ypma et al., 2013), SARS (Chen and Leo,

2006), Middle East Respiratory Syndrome (MERS) (Kucharski and Althaus, 2015;

Oh et al., 2015), and others (Galvani and May, 2005). Superspreading has also been

investigated in non-human animal diseases, including West Nile Virus in birds and

brucellosis in water buffalo (Stein, 2011), however given humans’ social nature, much

of the work has focused on human to human transmitted diseases.

Some work has attempted to identify common features of either individuals (su-

perspreaders) or time-and-place factors (superspreading events) which lead to this
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sort of disproportionate transmission. Broadly, the superspreading phenomenon can

result from individual variation in the number of social contacts an infected individ-

ual in a network has, or from individual variation in the rate of transmission, due to

physiological, immunological, or behavioral factors, an infected individual in a net-

work has (Lloyd-Smith et al., 2005). However attempts to identify general patterns

which result in a priori identification of superspreaders or circumstances which lead

to superspreading events is in its formative phase. Immunological factors have been

identified as relevant in some diseases (Gopinath et al., 2014), properties of the dis-

ease itself has also been considered (Galvani and May, 2005). Behavioral risk factors

leading to superspreading events have also been identified (Yu et al., 2007). However

no general a prior method for identifying superspreading yet exists (Stein, 2011).

Consideration of the effects of superspreading, as a social network phenomenon

affecting infectious disease transmission, has largely focused on large epidemics, either

retrospectively examining known epidemics (Yu et al., 2007) or simulating prospec-

tively epidemics which might occur using estimates of superspreading (Fujie and

Odagaki, 2007). Missing from the literature is an examination of the effect that su-

perspreading could have on epidemics which, absent superspreading, would be small

and self-limiting. This project addresses that gap.

1.2.3 Biological Evolution of Humans and Infectious Disease

The biological evolution of any species is ultimately driven by factors affecting

reproductive success, often mediated through simple survival (Barton, 2007). Exam-

ination of the Ache, gathering data from informants about pre-contact mortality in

this hunter-gather group, finds that disease was a common, though by no means the

largest, cause of death (Hill and Hurtado, 1996). This is suggestive, though certainly

not definitive, that disease was a significant factor in human mortality in the past,
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and so shaped human evolution. Moreover, occasional epidemics, such as respira-

tory infections in the post-contact Ache, and which have been described in many

other groups (Milner, 1980), may substantially increase the effect that disease had on

human mortality in the past.

The human immune system co-evolved with parasites and pathogens, each shap-

ing and altering the evolutionary trajectory of the other (Nesse and Williams, 1996).

Pathogens nearly always have a much shorter generation time than humans, and so bi-

ologically can evolutionarily out-pace the human immune system. However pathogens

do not necessarily evolve towards increasing harm of their host; indeed, in many cases,

this is counter-productive from the perspective of the pathogen. Pathogens which kill

their hosts are usually selected against. As a result, humans have evolved in constant

contact with a wide range of pathogens, in many cases evolving toward commen-

sal tolerance, and in a few cases even coming to benefit from inhabitation by these

organisms (Gluckman et al., 2009).

The unprecedented industrialization and explosion in human population over the

past 200 years has radically transformed the landscape of human-pathogen coevolu-

tion. Among these changes has been alteration to human social networks, to include

rapid, long-distance migration and changes to domestic animal practices, both of

which have been implicated in the global emergence of novel infectious diseases (Has-

sell et al., 2017). This has been referred to as the “third epidemiological transition”

(Herring and Swedlund, 2010).

This phenomenon can be illustrated with an account of emergence of HIV. There

are two modern circulating strains of HIV, denoted HIV 1 and HIV2, both of which

entered the human population through contact with animals, most probably blood-

blood contact while hunting or butchering (Sharp and Hahn, 2010). Both strains had

separate origins from different primate species, and both have become worldwide,
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although HIV-2 remains at much lower prevalence outside of Africa (Adjorlolo et al.,

1993). The emergence and global spread of two strains of a virus in a few decades,

due to a spillover event–hunting–which humans have participated in for the entirety

of human existence, is suggestive of a change in the human social network which

facilitated the spread of the pathogen. In all probability, such spillover events occurred

regularly throughout human history, however only recently, due to changes in the

human social network, became capable of spreading globally.

HIV typifies the rapidity of the changes to the human social network on which

infectious pathogens may transmit. Infectious diseases which previously were iso-

lated and went extinct in humans may now, due to changes in the human social

network, population density, or behaviors associated with industrialization, spillover

into human populations and spread (Taylor et al., 2001; Daszak et al., 2000).

Another example of such evolution in response to a changing social network is the

evolution of antibiotic resistance in S. aureus. Antibiotic resistant S. aureus is most

commonly methicillin-resistant Staphylococcus aureus (MRSA), which is generally

resistant to both the penicillin family of antibiotics, as well as methicillin and its

derivatives (Otto, 2013). Resistance to these antibiotics emerged shortly after their

introduction, initially in hospitals (Chambers, 2001). MRSA has since spread globally

in and out of hospitals.

Didelot et al. (2016) has demonstrated that the evolution of drug resistance in

bacterial species can originate within a single host. Antibiotics strongly select for

antibiotic resistance through the differential removal of susceptible pathogens. High

rates of antibiotic use, therefore, can be expected to result in higher rates of antibiotic

resistance. Further, interactions between MRSA and antibiotic-susceptible S. aureus,

as might be expected to occur at a higher rate in a health-care setting, can result
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in horizontal gene transfer of the resistance-related genes to the susceptible strain

(Lindsay, 2014).

Hospitals are both frequent users of antibiotic therapies and provide a network

on which disease can transmit. Individuals who are ill, potentially with weakened

immune systems, are disproportionately found on the contact network of a hospital

(Otto, 2013). Further, with the prospect of horizontal gene transfer is heightened

by individuals with antibiotic-susceptible S. aureus infections potentially interacting

with individuals with MRSA. Even within MRSA, strains vary in their antibiotic

susceptibility. Hospitals may become centers for the creation of more strongly resis-

tant MRSA strains through horizontal gene transfer. These factors together result

in higher rates of MRSA, and more strongly drug resistant MRSA, in hospitals than

outside (Vysakh and Jeya, 2013). As individuals seek treatment, their changing so-

cial network associated with treatment exposes them to changing risks of infectious

disease and alters the evolutionary trajectory of the pathogens.

Superspreading and Human-Pathogen Coevolution

Very little has been written regarding human-pathogen coevolution resulting in su-

perspreading as a mechanism for pathogen emergence. As noted previously, there are

broadly two causes of superspreading as a phenomenon on disease transmission net-

works: disproportionately many contacts for a particular infected individual or small

collection of individuals, or a change in the immune response, pathogen, or behavior

which allows higher transmission rates than in the rest of the population.

Given that, one evolutionary strategy may be for a pathogen to evolve to be

asymptomatic, at least in some individuals. Asymptomatic carriers have been fre-

quently identified as superspreaders in typhoid (Yang et al., 2018) and polio (Mehndi-

ratta et al., 2014). It is reasonable to speculate that such asymptomatic carriers are
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the result of human-pathogen coevolution to create human superspreaders.

This project, in chapter 3, demonstrates the fact that disease transmission dy-

namics which might favor the pathogen in one human social network could be dis-

advantageous in another human social network. This fact can use used to identify

the likely social network on which a pathogen evolved, and thus estimate the time it

entered the human population.

1.2.4 Mathematical Modeling

The use of mathematical models in the biological sciences has a long history

(Kingsland, 1995). Quantitative models for outbreaks of infectious disease have taken

a wide variety of forms, from the very data-intensive agent based models to very simple

models (Brauer et al., 2008). First order autonomous ordinary differential equations

(ODEs) has an important place in mathematical biology. They are widely used in

biology (Murray, 2002), especially ecology (Kot, 2001) and infectious disease epidemi-

ology (Anderson and May, 2010). Deterministic solutions provide a useful starting

point, however much of biology involves quantifying behavior that has inherent and

natural stochasticity. Phenomena such as transmission of infection or birth/death

processes are fundamentally probabilistic in nature.

The need for probabilistic models can be seen in many fields, but particularly

in epidemiology. Ordinary differential equations (ODEs)-based models of infectious

disease capture deterministic and homogeneous mixing patterns, which may have

limited biological implications. There are many ways in which this limitation can

be overcome, however each has a shortcoming. The approach that is proposed here

likewise has limitations.

Modeling diseases on different contact networks can, therefore, be challenging in

two ways. The first is the development of a mathematical model which reflects and
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can, at least potentially, capture the disease dynamics induced by the structure of

the contact network. The second is that information about the contact network may

not always be available or adequately fine-resolution to make meaningful predictions,

or even explanations after the fact. Collection of high resolution data on contact

networks can be both expensive and invasive.

This project develops a mathematical model which can capture disease dynamics

caused by heterogeneity in the contacts, while simultaneously not requiring detailed

information about the network. The model developed in chapter 2 is not explicitly

a network model, as the network structure for most infectious diseases is difficult to

determine. Instead, the approach uses a stochastic approach to simulate the super-

spreading phenomenon without explicitly modeling contacts and individuals.

Incorporation of Heterogeneity in Models

There are, in principle, many ways to incorporate heterogeneity of the population in

epidemiological models. Several common approaches include partial differential equa-

tions (Anderson and May, 2010), adding demographical and epidemiological structure

to compartmental models, branching process models, and individual-based models

(Getz et al., 2006). Gustafsson (2000) proposed another method, a Poisson-process

based model, which forms the basis for this project. The Poisson method is described

below, after a survey of the other existing methods.

Compartmental models have played an important role in the history of epidemi-

ological modeling (Brauer, 2017). Naturally, early attempts to incorporate hetero-

geneity in models utilized these models. Making compartments for an epidemiological

state such as susceptible, but which differed by age, sex, or other characteristic, al-

lowed the modeling of these compartments as different from each other. That is,

splitting the susceptible compartment of an SIR model into male and female suscep-
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tibles allowed males and females to be modeled as having different susceptibilities.

This additional-compartment approach to modeling heterogeneity has been used

to capture superspreading events or superspreading individuals (Hethcote et al., 1982;

Mummert, 2011), although it is primarily used to model variation in pathogen trans-

mission dynamics which vary according to an identifiable characteristic such as age

or sex.

Some such characteristics, such as age, are continuous in their variation. This

suggests the use of a partial differential equation (for a pedagogical development of

this ideas, see Kot (2001)). A partial differential equation can model all possible ages

and use a function to describe how the epidemiological parameters vary as a function

of age, for example. Partial differential equations are a standard tool in mathemat-

ical modeling of epidemics (Anderson and May, 2010). A curious historical note is

that McKendrick (1925) actually developed the essentials of this approach prior to

the better-known ordinary differential equation approach (Kermack and McKendrick,

1927), however the approach was primarily popularized by von Foerester (Keyfitz and

Keyfitz, 1997).

A third approach to incorporating heterogeneity in epidemiological models is with

branching process based models (Jacob, 2010). The approach of a branching process

model, which is a realization of a random graph model, is distinct from compartmental

models. Branching processes, most frequently Galton-Watson branching processes,

are modeled as a series of events, each of which gives rise to a random number of

secondary events. For instance, an infected individual gives rise to n1 secondary

infections, following some distribution, and each of those give rise to additional in-

fections, also following the same distribution, and so forth (Harris, 1963). Branching

process models are typically what are used to model subcritical epidemics
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(see below) (Becker, 1977; Farrington and Grant, 1999; Blumberg and Lloyd-Smith,

2013a).

A fourth approach to incorporating heterogeneity in epidemiological models is

individually-based models. There is no single definition for what constitutes an

individually-based model (or agent based model), however the premise is that each

individual may potentially be modeled to have unique characteristics related to the

transmission of disease. These models can be large and difficult to parameterize, but

offer a tremendous flexibility in the ability of capture heterogeneity (Willem et al.,

2017).

The final approach to incorporating heterogeneity is less often used in mathe-

matical epidemiology. First proposed by Gustafsson (2000), the Poisson method is

a stochastic approach using a Poisson process describing a jump process, the mean

value of which is given by the corresponding ODE. Gustafsson and Sternad (2007)

has proposed the Poisson method as a general method for models of an intermediate

complexity, at once providing the flexibility of compartmental modeling while using

stochasticity as a means of capturing different solution trajectories due to heterogene-

ity in the population. The method itself is best illustrated in one dimension, although

multidimensional versions are important. Given the differential equation describing

state variable x at time t,

dx

dt
= f(x, t), (1.1)

the Euler method for simulating this involves discretizing the model into time

intervals ∆t. The value of the state space variables at time t, denoted xt can therefore

be approximated by equation 1.2.

xt+1 = xt + f(xt, t)∆t (1.2)
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The Poisson method developed in Gustafsson (2000) takes the change in the state

space variable, f(xt, t)∆t, and simulates it as a Poisson random variable, with rate

(and therefore mean) set to be f(xt, t)∆t. The project in chapter 2 extends this

approach by using, instead of a Poisson, a negative binomial random variable. The

mean of this random variable is again f(xt, t)∆t, and the overdispersion is set to be

a new parameter φ.

Uses of the Negative Binomial

A central mathematical method in chapter 2 is the replacement of the Poisson distri-

bution in an existing method Gustafsson (2000) with the negative binomial distribu-

tion in order to capture superspreading events. The negative binomial is a widely-used

statistical distribution for non-negative discrete random variables (Casella and Berger,

2002). It has a lengthy history into the earliest days of probability; early descriptions

of the negative binomial date to the 17th Century, due to Blaise Pascal and Pierre

de Fermat, however the precise formulation was not given until 1714 (Bartko, 1962).

Nevertheless, this early history gives rise to a second name for the negative bino-

mial: the Pascal distribution. The early applications involved the formulation of the

negative binomial as the length of a sequence of independent, identically distributed

Bernoulli trials before a specified number of failures has been reached. A Bernoulli

trial is one in which the outcome is either 0 or 1 (Casella and Berger, 2002).

The first connection between the Poisson and the negative binomial distributions

is usually attributed to Student (1907), although later works such as Greenwood

and Yule (1920) made explicit the idea that the negative binomial is a “generalized

Poisson.” Feller (1943) included the negative binomial in a class of “contagious”

distributions, so named because of their ability to capture distributions resulting from

processes in which “each ‘favorable’ event increases (or decreases) the probability of
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favorable future events.” He would go on in that article to describe how heterogeneity

in rates in a process could give rise to the same distributions. The terminological

connection to infectious disease was not an accident; the negative binomial was a

widely-used distribution for biological phenomena resulting from either heterogeneity

in rate, or the previously described autocatalysis (Gurland, 1959).

In this vein of “contagious” distributions, the negative binomial has been used to

model phenomena as diverse as counting bacteria in a microscope field (Jones et al.,

1948), dental carries in children (Gurland, 1959), or parasite loads in people (Grenfell

et al., 1990). The negative binomial has also been widely used in generalized linear

models, including in medicine and epidemiology, to model variables which arise from

Poisson processes, but which have higher-than-expected variance (Dobson, 2002).

This project is situated in the same meaning of the negative binomial as an

“overdispersed Poisson.” That is, incidence is expected to be an approximately-

Poisson process, however with heterogeneity in the transmission rate or connected-

ness of individuals. Consistent with these previous uses, a negative binomial is used

to model incidence where transmission probabilities.

1.2.5 Subcritical Epidemics and R0

History of R0

The basic reproductive number R0 is one of the most recognized parameters in math-

ematical epidemiology. The intuition behind R0 is it is the average number of sec-

ondary cases caused by an infected individual during the infectious period in a totally

susceptible population (Anderson and May, 2010). The demographic parallel, which

predated the development of the concept in epidemiology, was the growth rate of the

population (Cushing and Diekmann, 2016). However this connection was slow to be
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drawn (Heesterbeek, 2002).

Just as demography and population biology models often centrally place the idea

of population growth rate, infectious disease epidemiology models often use R0 as a

centrally important descriptive parameter (or combination of parameters) to describe

a first order approximation of the population trajectory (Anderson and May, 2010).

If R0 > 1, the population of infected individuals will grow (at least initially), while if

R0 < 1, the population will shrink to zero. For this reason, estimating R0 has become

a centrally important task in the prediction of infectious disease outbreaks.

There are simple methods for estimating R0 from data of differing types. If trans-

mission probability (probability of transmission of an infection given a contact be-

tween an infectious and a susceptible individual) β, contact rates (average number

of contacts between an infected individual and susceptible individuals) n, and the

duration of infectious period τ are known experimentally for a disease, then

R0 = nβτ. (1.3)

These parameters, however, are practically not normally known. As described

elsewhere in this project, the precise definition of what constitutes “contact” is critical

to this formulation, but is challenging to estimate. Nevertheless, it is useful as an

intuition into the behavior in more complex estimation.

Branching process models also have been used to estimate R0, described below.

However a very common approach is to develop a simple compartmental model for the

disease, fit the model, and use the resulting fit parameters to estimate R0 (Chowell

and Brauer, 2009). The precise formula for R0 is dependent on the model chosen,

however many models have well-described formulations.

There are two critically important considerations in the estimation of R0 which

are sometimes overlooked, although both have been recognized. The first is that
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R0 is dependent on both the biology of the disease and the properties of the host.

Changes to human contact networks can wildly alter the R0 for a particular disease;

despite the attraction and simplicity, tables of “diseases and their R0 values” leave

off the important contribution of the human social network. Second is the critical

importance of the model choice; relatively subtle changes to a model can yield very

different values of R0.

Subcritical Epidemics

This project uses the term “subcritical epidemics” to describe infectious disease out-

breaks for which the basic reproductive number R0 is less than 1. These outbreaks

have been previously described as “stuttering outbreaks” or simply “mortal” and

have generally been considered using branching process models (Bailey, 1957; Becker,

1974; Kimmel and Axelrod, 2015; Farrington and Grant, 1999). However modeled,

R0 < 1 describes an outbreak which generally dies out.

Branching process models are within the scope of random graph models and most

commonly are Galton-Watson branching process models. They describe a population

Xt at a sequence of discrete times t. The size of the population at time t + 1,

conditioned on Xt being known, is the sum of Xt independent, identically distributed

random variables Zt. The expected value of Zt, in this formulation, is R0. Although

R0 < 1 guarantees termination (also called extinction) of the branching process, there

is a positive probability that branching processes with R0 > 1 also terminate. Thus

a goal in the analysis of such models is the determination of R0 and in particular,

estimating the probability that R0 < 1 (Guttorp and Perlman, 2015).

In epidemiology, there is a classic result (Becker, 1974) that is seen as a first order

estimate for the size of subcritical epidemic outbreaks (De Serres et al., 2000). Under

the assumption of a geometric distribution for the number of connections at a node,
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the average size of the outbreak N when R0 < 1 is given in equation 1.4

N =
1

1−R0

(1.4)

This suggests, at least if the distribution is geometric, that large subcritical epi-

demics only occur if R0 is very close to 1 or exceedingly rarely.

Other distributions besides the geometric are possible, however. In the context of

epidemiology, Farrington and Grant (1999) examined in branching processes include

the Poisson and Bernoulli, which are analytically more difficult to describe. Never-

theless these can also be fit to outbreaks which terminate. Superspreading has been

incorporated into branching process models through the use of a negative binomial

distribution for the number of offspring per individual in each generation (Garske

and Rhodes, 2008). This is similar in principle to the present project, although the

present project does not use a branching process model. Much of the justification

for the model choice, however, is parallel to Garske and Rhodes (2008). The effect

of a negative binomial branching process model in an epidemic was surprisingly large

outbreaks.

Very little work on subcritical epidemics has been done outside of branching pro-

cess models. Branching process models are particularly applicable to subcritical epi-

demics since they assume, as is assumed here, an infinite population and easily extend

from an individual process to a population. However they are limited in their exten-

sions and do not have the history and development found in ODE models. As such,

a method for easily incorporating superspreading into ODE models is the need met

by this project.
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Term Definition

R0 The basic reproductive number describes the num-

ber of secondary infections caused by an infected

individual, on average, in a totally susceptible pop-

ulation. The value of R0 is always non-negative.

Supercritical Supercritical describes an epidemic of infectious

disease in which each infected individual causes

more than one secondary infections. It can be de-

scribed as having R0 > 1.

Subcritical Subcritical describes an epidemic of infectious dis-

ease in which each infected individual causes fewer

than one secondary infections, on average. It can

be described as having R0 < 1. These are some-

times referred to as “stuttering” epidemics.

Spillover event An animal to human transmission event for an in-

fectious disease.

Superspreading event An instance where an infected individual causes a

large number of secondary cases.

Parameterize Determine the key rates and constants applicable

to a particular model.

Table 1.1: Definitions of mathematical epidemiology terms used in this paper.
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1.2.6 Terminology

1.2.7 Subcritical Disease Transmission on Social Networks

The method used in chapter 2 to capture the network phenomenon of superspread-

ing is epidemiological modeling (Anderson and May, 2010). Differential equations

provide a useful framework for describing how prevalence changes through time by

describing the reasons why prevalence changes, together with an initial condition.

The central goal of chapter 2 is the impact which a specific type of social network

heterogeneity has on infectious disease transmission. This goal fits into the framework

of anthropological epidemiology identified in Trostle and Sommerfeld (1996). While

other anthropologists have described other types of social networks on disease trans-

mission (see review in section 1.2.2), this is the first examination of superspreading

in an anthropological context on subcritical epidemics.

Subcritical epidemics, sometimes also described as “sputtering outbreaks,” are

distinguished from epidemics by the basic reproductive number R0. The basic repro-

ductive number is the number of new infections caused by an infected individual in a

completely susceptible population (Diekmann et al., 1990). If R0 > 1, the outbreak

will become an supercritical epidemic, generally infecting a substantial portion of the

population; the intuition is straight-forward, if each infection causes more than one

additional infection, then the infection will spread. However if R0 < 1, the intuition

is the disease will die out, but might persist for a few additional cases before doing

so.

Networks can provide a contrast to this intuition about subcritical epidemics. A

network may have structure which permits local transmission to a significant number

of individuals, but considering the larger network, still have an R0 < 1. The specific

method was chosen to incorporate a lack of extensive knowledge of the likely contact
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network. The research question being investigated is whether we can distinguish

subcritical epidemics from supercritical epidemics. While this has been investigated

before (see review in section 1.2.5), this is a novel description of how human variation

impacts this assessment.

1.2.8 TB in Hunter-Gatherer Populations

There is an open question of the origin of Tuberculosis (TB) in humans. The

behavior of a TB infection is also somewhat surprising: most new TB infections are

not immediately infectious. Instead, they only become infectious years or decades

later, if ever. This delay might be explained by the network structure of hunter-

gatherers. The question of chapter 3 is whether the network structure of hunter-

gatherers can explain the seemingly paradoxical behavior of TB infections.

To address this question, the project develops a model of TB infecting a simulated

group of hunter-gatherers. The infection is introduced from a single active case, and

run for 100 years. The final outbreak size is measured as the number of individuals

infected at the end of the 100 year period. The network is the critical part of the

model: the simulation is on a network of discrete 25 person bands with limited contact

between bands. Birth and death processes are also modeled.

These simulations use realistic values of life history and TB parameters drawn

from the literature, varying the percent of individuals who become active immediately

after being infected. In TB, this value is low. The final outbreak size and the R0 for

different values of the percent active are calculated.

1.3 Brief Results

The two projects in this dissertation show several important results on the re-

search questions outlined in section 1.1. On the question of subcritical epidemics
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with superspreading, chapter 2 finds that as the degree of superspreading increases,

so too does the size of the rare, major epidemics. While these remain rare, and most

subcritical epidemics are immediately extinguished, the large epidemics which do oc-

cur are major. The question of the origin of TB in the human population is addressed

in chapter 3. The model demonstrates that over a wide range of parameter values,

TB can persist in the hunter-gatherer essentially indefinitely due in part to its long

latent period. This long latent period would be a disadvantage in a homogeneously

mixed population, suggesting that it evolved on a hunter-gatherer social network.

The idea of subcritical epidemics is certainly not new, however the project pre-

sented in chapter 2 is a demonstration of the complexity of the problem of distinguish-

ing between supercritical and subcritical epidemics based on case count data. Since

interventions are often aimed at reducing a supercritical epidemic into a subcritical

epidemic Anderson and May (2010), this is not a purely academic problem. The re-

sults in this chapter demonstrate the importance of the anthropological consideration

of network structure has to epidemiological practice.

Epidemiological methods and models can also be fruitfully applied to anthropolog-

ical investigations, as is demonstrated in chapter 3. The important demonstration of

the Mycobacterium tuberculosis pathogen’s long-term coevolution with humans illus-

trates how epidemiological characteristics can provide insight into the anthropological

question of the origins of TB in humans.

Both projects are demonstrations of the importance and interconnectedness of epi-

demiological and anthropological research. They can be considered as contributions

to the literature at this interface.
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Chapter 2

SUBCRITICAL EPIDEMICS AND SUPERSPREADING

2.1 Introduction

Human to human infectious disease transmission has been a topic of anthropologi-

cal interest in a variety of contexts (Inhorn and Brown, 1990). Of particular interest is

the impact that contact networks (sometimes referred to as social networks) have on

the spread of disease (Richardson and Gorochowski, 2015; Nunn et al., 2015; Khanna

et al., 2014). The spread of disease has been used as an analogy to phenomena such

as the transmission of ideas or culture (Blackmore, 2008; Inhorn and Brown, 1990).

Approaches to modeling the transmission of culture has borrowed from both the

language and model structure of epidemiology (Cavalli-Sforza and Feldman, 1981).

However this is not a project which takes a metaphorical approach.

In addition to the metaphorical approach, anthropologists have provided insight

into disease transmission dynamics by showing the effect of cultural factors can have

on these dynamics (Sattenspiel, 1990; McGrath, 1988). As with any eusocial organ-

ism, human social networks play an important role in determining pathogen trans-

mission (Stroeymeyt et al., 2018; Cremer et al., 2007). Anthropologists and epidemi-

ologists have looked at the influence of group size on pathogen transmission, in both

non-humans (Davies et al., 1991) and humans (Nunn et al., 2015). Human sexual

networks have been widely implicated as a determining factor for sexually transmitted

disease prevalence (Khanna et al., 2014; Yorke et al., 1978; Bearman et al., 2004; Day,

1994). This project builds on these by examining heterogeneity in contact networks,

specifically the presence of superspreading events, as a factor which can increase the
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size of certain epidemics.

Superspreading is a characterization of a feature of some infectious disease trans-

mission networks in which one or a few individuals are responsible for a dispropor-

tionate number of secondary infections (Lloyd-Smith et al., 2005). Descriptions of

superspreading include both superspreading individuals and superspreading events,

the latter emphasizing the importance of the confluence of both individual factors and

their circumstances or connections with others. The causes and consequences of this

superspreading network feature have been investigated in many infectious diseases

(Lau et al., 2017; Brown and Kelly, 2014; Salathe et al., 2010). The present project

examines changes in disease transmission dynamics created by superspreading events,

using the example of SARS. Specifically, this project asks the question whether the

network phenomenon of superspreading events can give rise to SARS-sized epidemics

of disease, if the epidemics would, absent superspreading, be relatively small.

A classic epidemiological approach to predicting the future of an epidemic is the

estimation of the basic reproductive number (Anderson and May, 2010; Cushing and

Diekmann, 2016). The basic reproductive number, R0, has the intuition of being the

number of secondary infections caused by an infected individual, on average, in a

completely susceptible population. Supercritical epidemics, those for which R0 > 1,

are generally thought to be large, infecting a significant portion of the population,

while subcritical epidemics, those for which R0 < 1, are usually thought of as small

and limited (Anderson and May, 2010).

The 2002-2003 epidemic of Severe Acute Respiratory Syndrome (SARS) had a

global reach, with more than 8000 people infected (WHO, 2003a). On the basis of

the large size alone, it is frequently identified as likely supercritical(WHO, 2003a).

Some estimates of R0 for SARS supported that (WHO, 2003a). However some of the

early modeling (Chowell et al., 2004) found a best fit to the epidemic to be subcritical,
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that is R0 < 1, although with error bars in the estimate which included R0 > 1. The

possibility of SARS being subcritical has largely been ignored, as the total case count

was far larger than what a subcritical epidemic process seems to which could give rise.

This project investigates whether superspreading events, which are well documented

in the SARS epidemic (Lloyd-Smith et al., 2005), could result in subcritical epidemics

which are of a similar or larger size to the SARS epidemic in cities.

Contact networks can dramatically change the transmission dynamics of infectious

diseases (Keeling and Eames, 2005). Superspreading is an aspect of this phenomenon,

characterized by a highly variable number of transmission events per infected indi-

vidual. Conceptually, a superspreading event is a confluence of circumstances which

allow a single infected individual to infect a large number of other individuals, while

under most circumstances secondary cases are much rarer.

This project develops a simple model of subcritical epidemics which can incorpo-

rate the network-level effect of superspreading. Using this model and the transmission

parameters from the SARS epidemic, it is shown that subcritical epidemics similar in

size to the SARS epidemic are possible. While this is not a demonstration that SARS

itself was a subcritical epidemic, it demonstrates that subcritical epidemics can be

large, even global in reach due to the network effect of superspreading.

2.1.1 Severe Acute Respiratory Syndrome

SARS is a potentially fatal viral infection which is spread through human to human

transmission, killing approximately 11% of those infected (WHO, 2003a). The only

large outbreak of SARS started in 2002, ultimately infecting more than 8000 people

before the outbreak ended in 2003. SARS has not re-emerged since, there is no known-

effective treatment and no vaccine (Stockman et al., 2006). The disease is genetically

most similar to strains found in bats, leading most to believe SARS emerged as a
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zoonosis from bats in Southern China (Li et al., 2005). It exemplifies a class of

pathogens which pose a significant threat: spillover events of previously undescribed

infectious diseases, capable of rapid transmission (Daszak et al., 2000).

The outbreak ultimately spread to 26 countries, causing 916 deaths (WHO, 2003a).

The rapid spread of the disease was facilitated by the airborne droplet and indirect

contact transmission. Air travel (Breugelmans et al., 2004) and the movement of

patients and infected staff during medical treatment spread the disease between and

within communities. Other disease transmission routes have been investigated, in-

cluding vector borne transmission and fecal-oral route, but little evidence supports

these (Ng, 2003). Symptoms of SARS included viral pneumonia and symptoms of a

respiratory tract infection, and diarrhea is also a feature in some infections (Wong

and Yuen, 2005).

Responses to SARS included hospitalization and quarantine, travel restrictions,

and attempts at treatment (WHO, 2003a; Hsieh et al., 2007). There is a good deal of

modeling evidence that indicates quarantine measures were effective at limiting the

spread of SARS and ultimately eliminating the infection (Hsieh et al., 2007). Treat-

ment measures were generally ineffective (Stockman et al., 2006) and some medical

procedures may have increased the risk of transmission, especially to hospital staff

(Stein, 2011).

The spillover event has never been conclusively identified, however initial cases

were disproportionately employed in food preparation or production (WHO, 2003a).

While the strain of SARS which infected humans most closely resembles strains found

in bats, related viruses have been located in a wide range of other species (Li et al.,

2005).

SARS was chosen for this project given its propensity to spread through so-called

“superspreader events,” that is a single individual who is responsible for a large

32



number of secondary cases. This project is examining the hypothesis that subcritical

epidemics, when superspreading is possible, can appear to be supercritical epidemics.

2.1.2 Networks and Superspreading Events

The structure of a contact network (variously called social network or simply

network) can have a significant impact on the transmission of an infectious disease

(Newman, 2002). Network structures are oftentimes assumed to be simple or homo-

geneous, with each individual in the network having the same probability of coming

into contact with another individual (Newman, 2002; Anderson and May, 2010). For

the most part, network structures are very complex and heterogeneous. The structure

of the network on which a disease transmits can have important implications for the

size, frequency, and other epidemiological characteristics of an outbreak (Castellano

and Pastor-Satorras, 2010; Martin and Boland, 2018), as well as control measures

such as vaccination (Kucharski et al., 2016). One feature of networks which can give

rise to unusual behavior is the superspreader phenomenon (Fujie and Odagaki, 2007).

Superspreading events, or superspreading individuals, are individuals who are

responsible for a disproportionate number of secondary infections (Stein, 2011). This

can be the result of individuals having more contacts in a network, or other factors

such as increased transmissible (Lloyd-Smith et al., 2005; Gopinath et al., 2014).

There is no specific cut-off which defines an individual as a superspreader or an event

as a superspreading event. Woolhouse et al. (1997) argued that 80% of new infections

were generally caused by 20% of individuals, while Chun (2016) arbitrarily defines

the 99th percentile of individuals in terms of their individual R0 (Lloyd-Smith et al.,

2005).

Although there is no clear and definitive cut-off for which individuals are super-

spreaders, there is a great deal of interest in identifying and limiting the impact of
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those individuals (Galvani and May, 2005; Kitsak et al., 2010). This task is com-

putationally complex, if even possible (Gu et al., 2017), but more than that it is

highly contextual. Transmission depends on both a changing physical and social

environment, as well as being dependent on the specifics of the pathogen involved.

Effectively, every pathogen can potentially have a different contact network.

Anthropologists have long recognized the importance of social networks to under-

standing culture and even its relevance to disease transmission (Morris, 1993; Salathe

et al., 2010; Nunn et al., 2015). The structure of a social network, in the context

of infectious disease modeling, means the potentially changing patterns of contact

through which disease may be transmitted. In this way, disease contact networks are

often unique to the specific disease, and not universal to a particular society. A great

deal of effort has been put into identifying the structure of social networks, but the

task is monumental. Contact networks are disease-specific, since different diseases

can have different properties and routes of transmission, and they can be ephemeral.

2.2 Hypothesis

This model does not have the goal of demonstrating SARS was certainly a sub-

critical epidemic, that is an outbreak where R0 < 1. This project investigates the

question whether the influence of average contact network, specifically the existence of

superspreading events, can result a similar total case count as seen in SARS without

requiring R0 > 1. This provides information on the question of whether separating

subcritical epidemic from supercritical epidemics is a feasible goal.
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2.3 Methods

2.3.1 Modeling Logic

The question here is whether a SARS-like epidemic could be reasonably modeled

as a subcritical epidemic. To address this question, a simple model of subcritical

epidemics is described, and realistic parameters are drawn from the literature. Pre-

vious work on outbreaks for which R0 < 1 has argued them to be generally small,

sometimes called “stuttering” epidemics (Blumberg and Lloyd-Smith, 2013b). Thus

the metric used to compare model output to the actual SARS data is total case count.

The model output matching the SARS data demonstrates the possibility that

SARS-sized outbreaks can result from subcritical epidemics, due to the presence of

superspreading events.

2.3.2 Model Structure

This model starts with a simple subcritical epidemic ordinary differential equation,

equation 2.1 described here as the EI model. There are two compartments in the EI

model, E which describes the number of exposed individuals, and I which describes

the number of infectious individuals. As a deterministic system, however, the EI

model does not have interesting dynamics.

dE

dt
= αI − βE (2.1)

dI

dt
= βE − δI (2.2)

Stochasticity is added to this model using the Poisson method, described in

Gustafsson (2000). Transitions between the E and I compartments it taken to be a

Poisson random variable, as is the transition out of the I compartment. The entrance
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into the E compartment is modeled to have a rate of αI. However to capture the

effect of superspreading events, this is taken to have a negative binomial rate, with

an overdispersion parameter of φα. The justification for using the negative binomial

is given in section 2.3.3 and section 1.2.4.

It is important to note that this model only has zero as a stable equilibrium R0 is

less than 1. If (E, I) = (0, 0) becomes an unstable equilibrium, the number of infected

individuals can potentially go to infinity, which is considered unbiological. As such,

this model is only applicable to subcritical epidemics.

2.3.3 Justification of the Negative Binomial

The negative binomial can be realized as the mixture of a gamma random variable

as the argument of a Poisson (Casella and Berger, 2002). That is a random draw from

X ∼ Negative Binomial(µ, φα) is equivalent to a random draw γ from Gamma(µ, φα)

random variable, and then another random draw from a Poisson(γ) random variable.

The rationale behind this procedure is to add additional variance to the Poisson

random variable. It allows for some departures from a Poisson process, making it

useful as a distribution which fits data with heterogeneous Poisson rates. There is a

very reasonable question as to whether that heterogeneity is captured by a Gamma

distribution, however that is an empirical question. There are two ways to justify the

choice, therefore. First, comparison to existing work, for example Lloyd-Smith et al.

(2005) shows a good the negative binomial is a good empirical fit to the individual

reproductive number. This can be generalized using the argument below to justify its

use for incidence. Second, the Poisson is the limiting case of the Negative Binomial

(as φα → 1), so in a sense, the Negative Binomial can be thought of as an almost-

Poisson process with more flexibility to account for at least some heterogeneity in

rates, even if it can not capture it all or perfectly.
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The justification for moving from an individual reproductive number in the sense

of Lloyd-Smith et al. (2005) to incidence requires additional work. Since the sum

of negative binomials is also negative binomially distributed, the distribution for

incidence is also negatively binomially distributed.

2.3.4 Model Parameters

There have been multiple models of SARS which use similar parameters to the

three disease parameters in this model. One of the first attempts at estimation of the

key parameters is Donnelly et al. (2003), which used data from the outbreak in Hong

Kong. They estimated an incubation period (time until symptoms appear) of 6.37

days, with a variance of 16.69 days. The estimated hospital admission time had a

mean of 23.5 days and a variance of 62.1 days, however if the patient died in hospital,

the admission to death time was longer, with a mean of 35.9 days and a variance

of 572.9 days. The period of highest risk to the public–the period after the onset of

symptoms but before admission to the hospital–varied as the outbreak progressed.

Early in the outbreak, the mean time to admission after the onset of symptoms was

4.85 1 and a variance of 12.19 days, mid-outbreak the time to admission dropped to

3.83 days (variance 5.99, and nearing the end of the outbreak, dropped to 3.67 days

(variance 10.71 days).

These data were used by Chowell et al. (2004) to estimate the distribution of

the basic reproductive number R0 using a statistical model and sensitivity analysis.

They also included an estimate of the transmission rate of 0.25 new cases per infected

person per day. Fitting the Hong Kong outbreak to their model, Riley et al. (2003)

estimated the transmission rate to be 0.062 new infections per infected person per

day, during the initial phase of the infection, although the parameter in their model

1Donnelly et. al. contains a typo, listing this number as 48.5
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was allowed to vary at later points in the outbreak.

The WHO consensus report (WHO, 2003a) summarized multiple sources of data

from a variety of studies of SARS in different regions, finding the men incubation

period ranged from 4 - 7.2 days. They also report real-time polymerase chain reaction

studies of viral shedding in respiratory and fecal samples. Fecal samples show a peak

around 10 days after the appearance of symptoms, with respiratory samples showing

a peak 12-14 days into the symptomatic period.

As challenging as it is to estimate the rate of new infections per infected indi-

vidual, it is the variance in that estimate that is of great interest to capture the

superspreader phenomenon. Lloyd-Smith et al. (2005) investigated the distribution

of the number of new infections caused by an infected individual in SARS and seven

other infectious diseases. They describe this “individual reproductive number,” find-

ing that the negative binomial was a good fit to the data from the Singapore and

Beijing. They fit a dispersion parameter ν to the Singapore data, finding a maximum

likelihood fit of 0.16.

Using the preceding, the parameter estimates used in this project are shown in

table 2.1. The rationale for each is discussed below.

This model is only applicable for subcritical epidemics, since any supercritical

epidemic would probably result in the number of infections going to infinity. As such,

only those values of the parameters which result in R0 < 1 are considered.

The Rate of New Infections α

Perhaps the most challenging parameter to set, α represents the number of new

infections caused by an infected individual per day of their infection. This can be

thought of as the combination of two factors: the number of contacts between infected

individuals and uninfected times the probability that such a contact leads to a new
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Variable Value Range Description

α 0.15 0.05− 0.25 The infection rate per infected individual per

day.

φα 5 1.94− 7.25 The overdispersion parameter of α

β 1
5

1
7.2
− 1

4
The reciprocal of the latent period.

δ 1
5

1
19
− 1

3
The reciprocal of the average time between

the initial infection and the ability to infect

others.

Table 2.1: The parameter values used in this model.

infection. The EI model is constructed to simulate situations where R0 < 1. Since

R0 = α
δ
, and δ is reasonably estimated to be less than 1

3
, the Chowell et al. (2004)

estimate of α = 0.25 provides a reasonable upper bound. Riley et al. (2003) estimated

the transmission rate to be 0.062. This was rounded down to 0.05 as the lower bound

of the range.

In addition to the parameter α itself, it is also necessary to estimate the overdis-

persion φα. Using Lloyd-Smith et al. (2005) estimate of the dispersion parameter

ν = 0.16, it is possible to estimate a range of φα. The dispersion parameter ν is related

to this model’s overdispersion parameter φα according to the formula φα = 1 + R0

ν
.

Since R0 = α
δ
< 1 in this model, and α ≈ 0.05−0.25 while δ ≈ 1

16
− 1

3
(see below), R0

ranges from 0.15 to 1. Thus the overdispersion parameter ranges from 1.94− 7.25.

Since the overdispersion is how this model captures the effects of superspreading

events. As such, it is the only overdispersion parameter which will include a range of

possible values. The larger values of φα describe more connected individuals, however

necessarily fewer of them.
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The Reciprocal Latent Period β

The latent period is defined as the starting with the infection of an individual and end-

ing when that individual becomes infectious. Infectiousness is not always apparent,

so a related quantity, the incubation period has been better reported. The incuba-

tion period is ends with the first appearance of symptoms. Since SARS is spread by

airborne droplet, it is probable that the appearance of symptoms and ability to infect

others are close in time. Nevertheless, that is an assumption.

The WHO consensus report (WHO, 2003a) estimated the incubation period to

be between 4 and 7.2 days; Donnelly et al. (2003) made a consistent estimate of 6.37

days. As such, the incubation period is taken to be approximately 5 days, setting

β = 1
5
, with a range 1

7.2
− 1

4
.

To determine the appropriate distribution, note Donnelly’s estimate of a variance

of 16.69, which is considerably larger than the estimate of the incubation period

of 5 days. Since overdispersion of the β parameter would be overdispersion of the

reciprocal of the incubation period, this variance of the incubation period does not

immediately lead to an estimate of the variance of the reciprocal. Without specifying

a distribution, it is not possible to estimate the variance of the reciprocal. Choosing

the negative binomial is not possible, since the presence of zeros means the reciprocal

is not defined. A truncated negative binomial, with the zeros removed, does have

a reciprocal, and the results are underdispersed. The normal distribution contains

negative values and values close to zero, which wildly inflates the variance of the

reciprocal. As no distribution is obvious, a Poisson distribution was chosen as a

default.
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The Reciprocal Infectious Period δ

Quarantine, if completely effective, can be thought of as shortening the infectious

period. Quarantine is thought to be a critical factor in ultimately controlling the

spread of SARS. However hospitalization was not always effective in limiting the

spread of SARS. Thus this model takes the lower bound of the range of 1
δ

to be

about 4 days, which is approximately the mean time to hospitalization. Although

hospitalization continued to 23 days, the viral shedding in the respiratory tract peaked

around day 12-14 (WHO, 2003a). The infectious period was extended to a mean of

19 days, for a situation in which the hospitalization was ineffective at controlling

the spread of SARS. Under the assumption that the hospitalization is effective at

controlling the spread of the disease, the mean infectious period is chosen to be 5

days, making δ = 1
5
.

For similar reasons to the choice of distribution for β, the distribution of δ is

assumed to be Poisson.

2.3.5 Simulations

The model described above was implemented in Python 2.7.12 and simulated using

a time step of 0.01 days. For most parameters, the model was simulated 500,000 times

at each of the six integer values of φα. Each of the 500,000 simulations represents

a new spillover event or a new infected individual arriving at a totally susceptible

city. The total case count was recorded for each of the model runs. Larger values

of φα correspond to more superspreading events, however to keep the mean fixed,

necessarily there will also be more outbreaks which stop immediately.

Each simulation was begun with a single individual in the I compartment, sim-

ulating an infected individual arriving in the city. The maximum time of any single
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Number of secondary cases

0-4 5-49 50 - 99 100-999 1000+

Baseline, φα = 5 90.4 8.3 0.8 0.5 0*

Baseline, φα = 7 91.5 7.1 0.8 0.6 0*

Table 2.2: Percentage of simulations which were between the specified range of
secondary cases. * The percentage rounded to zero, however there were two instances
of 1000+ sized simulations for φα = 5 and four instances for φα = 7.

simulation was 5000 days, although no simulations reached this value. Simulated out-

breaks which ended (no exposed or infectious individuals remaining) were stopped.

In each simulation, the total number of secondary infections was tracked. The

result was a list of case counts for 500,000 attempts at the introduction of SARS to

a city, for each of the six values of φα in its range.

2.4 Results

The simulation of 500,000 spillover/new infection events with parameters at their

baseline values and φα = 5 demonstrated an overwhelming number of simulations

(78.6%) result in no secondary infections (see figure 2.1). Fully 90.4% of simulations

showed 4 or fewer secondary cases.

Since there is a possibility that cities with few cases might not have detected the

cases, only simulations which had 5 or more secondary cases are shown in figure 2.2

The percentage of secondary cases at the baseline parameters is shown in table

2.2.

The effect of increasing φα over its range (1.94 - 7) is to increase the size of rare,

large epidemics while also increasing the number of epidemics which end immediately

with no secondary cases. Figure 2.3 shows that increasing φα, the overdispersion pa-

rameter has the effect of increasing the percent of epidemics which are fewer than five
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Figure 2.1: This shows the results of 500,000 simulations of the model at baseline
parameter values and with all simulations shown. The overdispersion parameter was
set φα = 5.

individuals. Figure 2.4 shows the percent of epidemics which exceeded 50 individuals

for larger values of φα. The pattern is less-clear in those results.

The pattern shown in figure 2.4 appears to be increasing. Thus the patten of

increasing the overdispersion parameter φα appears to be more small epidemics and

larger rare epidemics. The number of introductions which result in small, potentially

undetectable epidemics goes up with increasing φα, but so too does the number of

large epidemics, shown here as epidemics which exceed 100 individuals. There is some

leveling off of both graphs, which is likely a binning effect.
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Figure 2.2: This shows the results of 500,000 simulations of the model at baseline
parameters and with φα = 5, with only those simulations in which 5 or more secondary
infections occurred.

2.5 Discussion

The simulations reveal that increasing the value of φα, the overdispersion param-

eter, increases the number of outbreaks in the tens of individuals. This is similar, in

broad strokes, to the distribution of SARS case counts by city, see tables 2.3 and 2.4.

While there is not a perfect match between the distribution in the sizes of the out-

breaks, the data are also limited. Only a few cities reported large numbers of cases,

and in some cases, individuals who had no or few secondary transmission events may

have gone unreported.

The results demonstrate that SARS, which is widely recognized as an epidemic,
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Figure 2.3: This shows the results of 500,000 simulated epidemics for each φα = 2
through φα = 7. The vertical axis is the fraction of simulated epidemics which were
smaller than 5 secondary infections, including those which resulted in no secondary
infections.

has similarities in the size of the outbreak to simulations of a subcritical epidemic.

The history of the 2003 SARS outbreak indicates a chain of limited transmission

in Foshan and Guangzhou provinces prior to the rapid increase in the disease in early

2003 (WHO, 2003a). This may be characteristic of subcritical epidemic dynamics,

sustained as a stuttering chain. However the modeling results demonstrate that even

subcritical epidemic, which modeled with superspreading events, a substantial in-

crease in the incidence of the disease. Although there is no evidence that SARS was

indeed a subcritical epidemic, the results demonstrate the challenges in distinguish-

ing between supercritical epidemics (R0 > 1) from subcritical epidemics (R0 < 1).
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Country Cases Country Cases

Australia 6 Mongolia 9

Brazil 1 New Zealand 1

Canada 251 Philippines 14

China 5327 Republic of Ireland 1

Hong Kong SAR 1755 Republic of Korea 3

Macao SAR 1 Romania 1

Taiwan 665 Russian Federation 1

Colombia 1 Singapore 238

Finland 1 South Africa 1

France 7 Spain 1

Germany 9 Sweden 3

India 3 Switzerland 1

Indonesia 2 Thailand 9

Italy 4 United Kingdom 4

Kuwait 1 United States 33

Malaysia 5 Vietnam 63

Table 2.3: Total number of cases of SARS by country, data compiled by WHO
(2003b). No distinction was drawn between individuals who arrived in each country
with SARS, and within-country transmission. China includes only mainland China,
excluding its Special Administrative Regions.
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Figure 2.4: This shows the results of 500,000 simulated epidemics for each φα = 2
through φα = 7. The vertical axis is the fraction of simulated epidemics which greater
than 100 secondary infections.

City Country Cases Reference

Beijing China 2406 (Liang et al., 2004)

Hong Kong Hong Kong SAR, China 1755 (WHO, 2003b)

Guangzhou China 1246 (Xu et al., 2004)

Taipei Taiwan 341 (CDC, 2003)

Singapore Singapore 238 (WHO, 2003b)

Toronto Canada 140 (Low, 2004)

Hanoi Vietnam 63 (Nishiyama et al., 2008)

Table 2.4: Cities with case counts exceeding 50. It is very likely that there are
additional cities in China which have not been recorded or reported. Most cities and
towns which had reported case counts reported fewer than 50.
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Furthermore, since cities with few or no secondary transmission may be missed, de-

tection of subcritical epidemic transmission may be hampered by the appearance of

only large or moderate transmission chains.

The results, however, are not conclusive. The simulation of the model at baseline

parameters demonstrated that epidemics of a size over 1000 could occur, but were

rare. The larger the size of the epidemic, the more rarely it should occur. Given

that two cities had epidemics which exceeded 1000 people, this would suggest that

SARS does have a higher rate of transmission than the subcritical model can account,

although it is impossible to demonstrate this definitively given the uncertainty of the

data and the rarity of the events. In the simulation of 500,000 epidemics with φα = 5,

only twice did the epidemic exceed 1000 secondary cases. When φα = 7, four of the

500,000 simulations resulted in an epidemic over 1000. These are possible but rare

events. Since the city by city breakdown of the SARS data is not available for China,

it is difficult to determine if the distribution of city outbreak sizes is statistically

similar to the estimated distribution. However qualitatively, outbreaks of very large

size are possible in SARS and qualitatively have a similar distribution.

Differentiation between subcritical epidemic and supercritical epidemics has been

a topic of interest (Blumberg and Lloyd-Smith, 2013a; Guttorp and Perlman, 2015),

however much of this modeling has been done using branching process models. These

have an extremely limited ability to capture disease dynamics which have elsewhere

been captured. The negative binomial extension of the Poisson method provides a

tool to incorporate superspreading into any ordinary differential equation model, a

wealth of which have been developed for a wide range of diseases (Anderson and

May, 2010). As such, it is a step in the direction of capturing superspreading events

in models, without the simplifying assumptions of branching process models which

would limit the utility to all but the simplest cases for the spread of disease.
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The model developed here specifically demonstrates surprisingly large outbreaks,

similar in size to those expected from epidemics, are possible due to superspreading

events. It is not clear from the modeling effort herein described that it is possible or

likely that distinguishing between subcritical epidemic and supercritical epidemics is

possible from the case count data alone. However any such attempts will undoubtedly

need to be founded in models which reflect the transmission dynamics of the diseases,

which is challenging with branching process models.

2.6 Conclusions

The model presented here is not a demonstration that SARS was a subcritical

epidemic. However the size of subcritical epidemic generated with SARS-like param-

eters are sometimes similar in size to the SARS outbreaks. This demonstrates the

challenge in identifying subcritical epidemic; even if R0 is small, the potential for su-

perspreading events leads to potentially large outbreaks. This indicates that due to

contact network structure, the prospects epidemiological separation of supercritical

and subcritical epidemics based on case count is limited.

One of the characteristics apparent in the subcritical epidemics with superspread-

ing is the frequency with which introduction of an infectious disease fails to transmit

in humans. Repeated failures of a disease to pass to other humans may be taken

by some as evidence that the disease has a low potential to become an epidemic in

humans, beyond a few cases. However this research demonstrates that such behavior

is not inconsistent with a disease which could become a global pandemic in multi-

ple cities, if the disease and social network are conducive to superspreading. This

indicates a clear need for discussion of social networks in the assessment of potential

pandemic pathogens.

From a public health standpoint, in SARS and other diseases, a frequent goal
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of control efforts is to drive R0 less than one through interventions (WHO, 2003a).

If, as this work shows, it is possible for there to be large epidemics of infectious

disease arising from subcritical R0 values, this may indicate that R0 is a poor target

for epidemiological intervention. It may also have limited utility in predicting the

epidemic potential of novel infectious diseases. Instead, research into social network

structure may provide more fruitful results. More broadly, diseases which repeatedly

spillover to human populations and fail to spread might be considered by some to

be a low health risk. However it is possible that history of failure in spreading in

humans may not be a good predictor of future epidemics. Superspreading events, as

demonstrated here, can result in large, global pandemics. This has clear indications

of a need for social network considerations in infectious disease management and

planning.
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Chapter 3

THE EFFECT OF CONTRACT NETWORKS ON TB TRANSMISSION

3.1 Introduction

Tuberculosis (TB) is a bacterial infection found in many species, including hu-

mans, caused by the Mycobacterium tuberculosis complex of bacterial species. The

origins of the infection in humans is widely debated (Bos et al., 2014; Comas et al.,

2013; Brosch et al., 2002; Wilbur et al., 2009), and draws on evidence from a wide

range of sources. In this project, a model of TB in a hunter-gatherer community

is developed to investigate the effects of the network structure on disease transmis-

sion. The goal of this modeling effort is to elucidate the origins of TB in the human

population.

TB has been highly successful in infecting humans. TB is one of the most common

infectious diseases, approximately 1.7 billion people infected worldwide (World Health

Organization, 2017). The simulation of TB on the unique network pattern of hunter-

gatherer allows for the investigation of the unusual transmission dynamics. Most

of the TB cases are latent, wherein the immune system keeps the TB pathogen in

check and reduces the transmissible to effectively zero. However not all cases are

latent. Active TB describes an infection which is readily spread from person to

person via airborne infection. A person with active TB has both a shortened lifespan,

if untreated, and may infect others in close proximity (World Health Organization,

2017).

One explanation for the transmission pattern of TB is the success of the human

immune system at fighting off the pathogen. Certainly this is the proximate explana-
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tion for the pattern of TB transmission, however this project investigates a different,

evolutionary explanation for this pattern. The model developed below is used to as-

sess whether TB is uniquely evolved to transmit in hunter-gatherer contact networks.

This may be an additional line of evidence on the ultimate origin of the TB pathogen

in the human population.

3.2 Background

3.2.1 TB Origins and Evolution

The introduction of TB to humans is a wide-ranging debate with many sources

of data and no clear consensus on the timing or circumstances. This debate has its

origins in the mid-20th century, and draws upon data including paleopathological,

genetic, and microbial. This project takes a novel look at the debate by considering

the effect the social network of hunter gatherers would have had on the evolution of

the tuberculosis pathogen.

Investigations in the mid-20th century were largely based on historical records

and the paucity of reports of tuberculosis-like symptoms (Clark et al., 1987; Roberts

and Buikstra, 2003). Of note was the lack of resistance to tuberculosis found in many

indigenous groups in the Americas, which suggested no prior exposure. Investigations

of archaeological specimens for signs of skeletal damage consistent with tuberculosis

found evidence of lesions in specimens which predated European arrival in the Amer-

icas (Morse, 1961). The question of pre-Columbian tuberculosis was mostly settled

in 1973 with the identification of probable Mycobacterium bacteria in a prehistoric

Peruvian mummy (Allison et al., 1973; Clark et al., 1987). The mummy had evidence

of skeletal damage consistent with TB, as well as acid-fast bacteria which are most

commonly Mycobacterium. However being a soil-dwelling genus, contamination with
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another Mycobacterium species could not be ruled out at that time, and is a problem

which persists to the present (Muller et al., 2016). Salo et al. (1994) further tightened

this identification with the demonstration of M. tuberculosis DNA from a Peruvian

mummy in 1994.

However, the abundance of skeletal and DNA evidence of pre-European tubercu-

losis raised the question of origin and spread of tuberculosis in human broadly. Stead

et al. (1995) hypothesized that TB originated in humans as a spillover event from the

strain of TB found in cattle, M. bovis, likely around the time of the domestication

of cattle or after. This history, they note, is inconsistent with the appearance of

tuberculosis in the new world prior to European contact, and as such they dismiss

the analysis of Salo et al. (1994).

The general contention, however, is that if TB was present in the new world prior

to contact with Europeans, it likely had a much more ancient origin in the human

species. Genetic evidence has expanded the analytical methods available in the search

for the origins of tuberculosis (Tibayrenc, 2004). Broadly these fall into three groups:

comparison of closely related species, comparisons of modern strains, and studies on

ancient DNA. The oldest date from these studies is the divergence of TB from closely

related species. Gutierrez et al. (2005) investigated this question, finding a genetically

complex story and an origin of approximately 3 million years before present.

The advent of genome sequencing brought a new tool for the analysis of the

origin of tuberculosis in humans (Cole et al., 1998). Comas et al. (2013) used whole

genome sequences of 259 modern strains of TB to develop a phylogeny of modern

tuberculosis. Their analysis, along with some assumptions of the mutation rate for

TB known as the genetic clock, identify an ancient origin to TB. They characterize

pathogens co-evolving with, and migrating with humans as they migrate out of Africa

approximately 70,000 years before present. This pattern of TB evolution following
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human migration was supported by Wirth et al. (2008), who estimated a younger,

though still ancient, origin of TB at 40,000 years BP.

Their finding is consistent with a similar investigation conducted by Luo et al.

(2015), which estimated the age of the Asian strains of TB to be approximately

30,000 years old. Like all studies using a genetic clock, phylogenetic studies have

been criticized for lack of firm data on the mutation rate of the disease (Bos, 2018).

The ancient origin of tuberculosis in humans was disputed by Bos et al. (2014), in

a study of ancient DNA from TB samples found in three pre-contact Peruvian mum-

mies. The strain of TB identified in the study was most closely related to M. pinni-

pedii, a strain primarily found in seals and sea lions and of very recent—approximately

6000 years bp–divergence from their last common ancestor. This indicates a relatively

recent origin of TB in humans. Not all studies of ancient DNA have reached a similar

conclusion, however. Spigelman et al. (2015) examined human remains from a 9000

year old archaeological site, finding evidence of a tuberculosis infection in an infant.

Similarly Posa et al. (2015) identified tuberculosis from a grave site in Hungary, dating

to approximately 7000 years BP, seeming to suggest the introduction of TB detected

by Bos et al. (2014) was not the origin of TB in humans.

Further supporting the ancient origin of tuberculosis is paleoanthropological data.

Bone damage has been identified in the extinct human ancestor species Homo erec-

tus which may have been caused by TB (Kappelman et al., 2007), although this is

controversial (Roberts et al., 2009). There is broad consensus that TB was present

in the New World prior to European contact (Bos et al., 2014), although how much

earlier and the pattern of introduction remains unknown.

A final line of evidence has been suggested, although not throughly investigated.

Gagneux (2012) has suggested that the pattern of transmission of tuberculosis is in-

dicative of long-term coevolution with humans. Qualitatively, TB may have evolved
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traits which make it particularly well-suited to transmission in human populations,

although absent a quantitative approach, the precise nature of these traits is not

clear (Gagneux, 2012, 2018). Perhaps the most prominent feature of TB which has

been suggested is that TB has “sympatrically coevolved” with human hosts (Gag-

neux, 2012). Transmission is more probable when TB strains are those found local

to the people being infected, suggesting local TB adaptation (Fenner et al., 2013;

Hirsh et al., 2004). However the meaning of these data on the timescales of human

history are unclear. However Gagneux (2012) identified the possibility that other

features suggesting coevolution could be found, and this was an identified need in the

literature.

The present project seeks to investigate this question by examining whether TB

has traits which would be advantageous in a hunter-gatherer population, but disad-

vantageous in a highly connected population.

3.2.2 TB in Hunter-Gatherer Populations

Investigations into the transmission dynamics of tuberculosis has found consider-

able variation between different urban populations (Hirsh et al., 2004) and between

urban and hunter-gatherer (Hurtado et al., 2003). Prior to European contact, tuber-

culosis was not known in the Ache, a population of hunter-gatherers in the highlands

of Paraguay. As such, they were an immunologically naive population upon the in-

troduction of tuberculosis in the late 1970s or early 1980s. The epidemic differed in

several ways from epidemics seen in urban populations. (Hurtado et al., 2003)

The Ache tuberculosis epidemic affected a large percentage of the Ache population;

Hurtado et al. (2003) reported that of 427 tuberculin purified protein derivative (PPD)

tests given, 30.4% tested positive. This number is likely an underestimate, as they

also report active cases testing negative on the PPD test, and BCG vaccination status
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of individuals was negatively correlated with their PPD test results. This is unusual in

comparison to urban populations, where BCG vaccination generally causes a positive

PPD test, and the PPD test has generally been found to be reliable (Moran-Mendoza

et al., 2013). These are suggestive of immunological complexity in the infection.

Of particular relevance to the current project, Hurtado et al. (2003) found active

tuberculosis in the Ache had a case fatality rate of 7.7%, and an incidence rate of

3.7 cases per 100 people per year. Given the challenges of assessing latent infections,

the rate at which individuals transition from latent to active is difficult to assess,

however it is higher than in urban populations. There is also a significant age-effect,

with children under 5 years of age having a lower rate of active tuberculosis than

other age ranges.

The differences in the transmission dynamics of tuberculosis in the Ache may

be the result from immunological or pathogen variation, as has been suggested by

Hirsh et al. (2004) for urban populations. There may also be higher susceptibility

due to social network structure, as has been suggested for other small scale societies

(McGrath, 1988).

3.2.3 Hunter-Gatherer Population Structure

Human social life is a key distinguishing feature of human behavior (Hill et al.,

2009). For most of the time that anatomically modern humans have been on the

planet, they have subsisted as hunter-gatherers (Richerson et al., 2001). Although

human social networks vary widely, hunter-gatherer social networks share some sim-

ilarities (Hill et al., 2011). Hunter-gatherer populations are frequently divided into

bands, which have high levels of within-band cooperation and contact. Between-band

contact is present, but much less common. The rationale or social norms which give

rise to this common structure varies, but Hill et al. (2011) found an average band size
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of 28 individuals in a survey of hunter-gatherer groups.

Transmission of disease occurs on close contact, defining a unique “contact net-

work” or disease-specific “social network.” Here these terms are used interchangeably

to describe the close proximity of humans through which TB might transmit. This

project uses the estimate of 25 individuals per band, although death may reduce some

bands to be smaller. Within band dynamics are often complex, but are not modeled

in this project. Instead, within band dynamics are modeled as completely random,

with transmission between any two members of the same band to be identical to any

other two members.

3.2.4 The Basic Reproductive Number R0

There are few ideas more central to infectious disease epidemiology than the basic

reproductive number R0 (Anderson and May, 2010). The value, R0, has the intu-

ition of the number of new infections caused by an infected individual. It has been

widely used and is highly influential in epidemiology (Heesterbeek, 2002; Cushing and

Diekmann, 2016).

Placing a particular point of the introduction of R0 is challenging (Heesterbeek,

2002). However R0 is one of the major methods by which the public health threat

of an infectious disease is quantified, and its reduction is a major target for public

health interventions (Anderson and May, 2010; Liu et al., 2016).

In addition to the consideration of diseases in the present, it is important to look at

both their evolutionary history and potential future trajectories (Nesse and Williams,

1996). Pathogens are in a co-evolutionary relationship with their hosts which is often

described as an evolutionary arms race (Nesse and Williams, 1996; Gluckman et al.,

2009). The pathogens evolve strategies and weapons, while the host evolves defenses.

The naive assumption of the evolutionary trajectory of pathogens is perhaps that
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they would always seek to increase their R0 in the population. For many diseases, it

is likely that they do experience an evolutionary pressure to increase R0, however it

may not be for all.

Early examination of the evolution of disease, even predating major theoretical

developments such as R0 and the field of evolutionary medicine, noted that diseases

may in some circumstances evolve toward lessen the symptoms of infection (Gluckman

et al., 2009). A pathogen which kills its host also potentially kills itself. However R0

is not necessarily tied to the symptoms of a disease. In a homogeneous population,

the ideal infection from the pathogen’s point of view is one which is easily transmitted

but which lives for an extended period of time in the host.

Modern TB is also usually latent, which often does not transition to an active

infection. One account of why TB is so often latent is the effectiveness of the human

immune system, which is undoubtedly a proximate explanation; immunocompromised

individuals are more likely to develop active tuberculosis on infection, and may tran-

sition from a latent to an active infection. However the proximate explanation may

not be the ultimate, evolutionary explanation for this pattern in TB. Gagneux (2012)

suggested qualitatively that a long latent period might also be expected of a pathogen

transmitting on a hunter-gatherer contact network. What is shown below is that un-

der some reasonable assumptions, TB in a hunter-gather population may evolve this

longer latent period, even though it has the effect of lowering R0.

3.3 Methods

To investigate the dynamics of TB in a hunter-gatherer community, a model sim-

ulates the introduction of TB to a completely susceptible population. The TB model

simulates infection dynamics within 25 person bands, simulating daily contact with

every other person in the band. Each contact has a probability of transmission.
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There are separate random transmission between bands. For each band, the number

of susceptible, latent, and active individuals are tracked. Birth processes are simu-

lated within the band as a function of expected population size, while deaths occur

randomly at a rate dependent on infection status.

A single active case of TB is introduced into the population, and the infection

is simulated for 100 years. The final number of latent and active cases of TB is

tabulated. This process is repeated 300 times per set of parameters.

3.3.1 Model Construction

The modeling framework used here is a Reed-Frost chain binomial type model

on a pre-defined metapopulation type network. Each band i has a vector (S, L, I)i,t

which tracks the number of susceptible S, latent L, and active I cases at time t. The

time step is one day. In each time step, every individual with active TB interacts with

every susceptible individual in the same band. This leads to SI interactions, each

of which has a probability pg of transmission. Thus, in every time step, the number

of new within-group transmission events is a Binomial(SI, pg) random variable. New

infections have a pa probability of becoming immediately active, and 1−pa probability

of becoming latent infections.

The latent infected individuals have a mortality rate ml, and can also transition

to active TB at a rate of a. Thus every time step, and in every band, Binomial(L,ml)

and Binomial(L, a) random variables are computed and subtracted from the latent

class. In rare cases, these drive the L variable in a band negative, in which case it

is set back to zero. The active TB cases have a higher mortality rate, ma. Thus in

every time step, a Binomial(I,ma) random variable is calculated for each band and

subtracted from the active class.

When the number of individuals in a group is less than 25, another random variable
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is calculated. The birth rate is equal to the latent mortality rate ml, and is computed

every day for every band as a binomial(25 − (S + L + I),ml) random variable. All

new individuals are added to the susceptible class.

Between group infections are modeled differently from within group infections.

Each group is randomly paired with another group (repetition is permitted). If there

are Ii active cases in group i, and Sj susceptible individuals group j, a Binomial(IiSj, pb)

random variable is calculated. Never more than one new between-group infection is

permitted, however. A new infection is assigned to be active with probability pa.

Each of the parameters was kept constant (see below) except pa, the probability

a new TB case is active, which is varied between 0.1 and 1.0 with 0.1 increments.

For each set of parameters, 100 years (36525 days) were simulated 300 times. In each

simulation, one case of active TB was introduced into the population. The number

of bands in the simulation was set to be 20, merely for convenience, leading to a total

population size of approximately 500 individuals.

The model was coded and run in Python 2.7.12 using NumPy and MatPlotLib

packages.

3.3.2 Parameters

Many of the parameters were drawn from existing estimates in the literature, as

described in the subsections below. The parameters themselves are summarized in

table 3.1.

Within Group Transmission Probability pg

Transmission rates within the group is difficult to draw from the literature since the

situation and model vary so widely. The model assumes one contact between every
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Parameter Symbol Value Unit

Within group transmission probability pg 0.002739726 day−1

Between group transmission probability pb 0.0002739726 day−1

Probability of becoming immediately active pa See text day−1

Probability of transitioning from latent to active a 0.00027397 day−1

Latent mortality rate ml 0.00010140 day−1

Active mortality rate ma 0.000169 day−1

Table 3.1: The best estimate of the parameter values used in the model. See subse-
quent discussion for references and estimates of variability in these parameters.

individual per day, however clearly some individuals will be physically close more

than once per day. Liu et al. (2010) estimated the transmission rate to be 0.5905

per contact between susceptible and infected individual, normalized by the size of the

population. This would put the transmission rate at

1− exp

(
ln(1− 0.5905)

365

)
≈ 0.00244. (3.1)

Outside of a formal set of circumstances defining contact, it is essentially impossi-

ble to obtain a single value for the transmissibility of an infectious disease. The more

or less arbitrary value of 1
365

= 0.002739726 was chosen, and additional simulations

were performed at 10
365

= 0.02739726 and 0.1
365

= 0.002739726, to ensure the same effect

was observed.

Between Group Transmission Probability pb

Between group transmission suffers from the same problems as within group trans-

mission. Hunter-gatherer populations generally come into contact with members of

other bands at much lower rates. As such, the transmission rate between groups was

chosen to be one tenth of the within group transmission rate.
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Probability of Becoming Immediately Active pa

Several sources (Liu et al., 2010; Ziv et al., 2001) have used the figure of 5% of new

cases become active within a year. The method used to arrive at this estimate is

not clear, however. Another source estimated 2.4% of new infections become active

within 5 years (Mancuso et al., 2016; Sloot et al., 2014). This modeling effort varies

this parameter systematically, however, so a precise estimate is not needed. The

literature supports a relatively small number of new infections becoming active, but

a precise estimate is not needed.

The structure of this model also does not include a class of individuals who have

been recently infected and will shortly become infectious, but are still latent. In the

usage in the model, latent refers to generally long-term latent.

Probability of Transitioning from Latent to Active a

The reactivation of latent TB poses a significant source of new active TB cases in

the United States and globally (Ai et al., 2016; World Health Organization, 2017).

Estimates of the frequency with which an individual transitions from latent to active

is 5-10% over the course of their life. Using the 10% figure and a 73 year lifespan, the

parameter estimate is

1− exp

(
ln(1− 0.10)

365 ∗ 73

)
≈ 0.000004. (3.2)

A wide range of factors influence the rate at which reactivation occurs (Ai et al.,

2016), many of which would be different in a hunter-gather population. Most no-

tably, coinfections might increase the rate of transitioning to active TB, although

this is speculative. Nevertheless, that is the rationale for choosing the higher end

of the range. Experiments on this parameter were also performed to determine the
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sensitivity of the model to this parameter.

Latent Mortality Rate ml

Mortality rate and its corresponding lifespan, and other life history parameters in

hunter-gatherer populations is probably key to understanding many facets of human

evolution (Kaplan et al., 2000), however there are few reliable studies on pre-contact

mortality rates due to the challenges of collecting such data. The Hiwi, a hunter-

gatherer community in Venezuela, has been studied pre-contact using extensive an-

thropological interviews (Hill et al., 2007).

Estimates of pre-contact mortality rates show an estimated lifespan of 27 years

among the Hiwi, which is used to set the parameter. The data also show a high infant

mortality rate, so a separate simulation was performed with an estimated lifespan of

50 years, corresponding approximately to the lifespan at age 15 among the Hiwi, and

the same as in other work (Ziv et al., 2001).

In a stable population, birth rate and mortality rate should approximately balance,

birth rate is set to be the latent mortality rate, although it only

Active Mortality Rate ma

Active TB, unlike latent TB, causes a higher risk of death. Liu et al. (2010) estimated

the disease-induced death rate to be 0.06 per year, which works out to be

1− exp

(
ln(1− 0.0.06)

365

)
≈ 0.0001695. (3.3)

This is similar to the values found in other sources (Liu et al., 2010).
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3.3.3 Calculation of Active R0

The classical meaning of R0 is the number of new infections caused by an infected

individual. However for the purposes of predicting the eventual outcome of an infec-

tious disease, latent cases which do not transition to be active should not be counted.

As such, a slightly different definition of R0 is employed here, termed “active R0,” de-

fined as the number of new active cases of TB caused by an infection in an otherwise

entirely susceptible population.

First, it is necessary to find the probability that the infection is active or becomes

active before the individual becomes active before dying. The probability a new

infection is active initially is pa, one of the model parameters. The probability it

becomes active after x days is (1 −ml)
x(1 − a)x−1a. Summing over all x using the

geometric series formula yields the following.

∞∑
x=1

(1−ml)
x(1− a)x−1a = a(1−ml)

∞∑
x=1

((1−ml)(1− a))x−1 (3.4)

=
a(1−ml)

1− (1−ml)(1− a)
(3.5)

Thus the probability that a newly infected individual is either active or becomes

active is given by the following equation.

pa + (1− pa)
a(1−ml)

1− (1−ml)(1− a)
(3.6)

Given that an individual has an active infection, the new infections they cause can

be either within the band or in another band. While ordinary R0 does not distinguish

between secondary latent infections and secondary active infections, active R0 only

considers those secondary infections which are active or become active at some point.

If an individual has active TB, they have an expected lifespan of 1
ma

days. Each

individual in the band has a pg probability of becoming infected per day, and there
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are 24 individuals in the band. So the expected number of new infections in the band

from this one individual is 1
ma

(24)pg. Of these new infections, pa are active and 1−pa

are latent. So the new within-band active infections and, relying on equation 3.6, is

1

ma

(24)pg

(
pa + (1− pa)

a(1−ml)

1− (1−ml)(1− a)

)
. (3.7)

An infected individual also has a possibility of infecting someone outside of their

own band. In each time step, there is a pb probability of infecting each of 25 people in

another band. This means on average, the expected number of infections per day is

25pb, so over the expected life of the active TB case, there will be 25pb
ma

new TB cases in

other groups. Not all of these are active, however, so again, the result from equation

3.6 is used. The number of new active cases caused in other bands is therefore

25pb
ma

(
pa + (1− pa)

a(1−ml)

1− (1−ml)(1− a)

)
(3.8)

Adding equation 3.7 to 3.8 yields the number of new cases caused by an active

case of TB. This, multiplied by the probability the first case is or becomes an active

case, given by equation 3.6, yields the formula for active R0.

(
24pg
ma

+
25pb
ma

)(
pa + (1− pa)

a(1−ml)

1− (1−ml)(1− a)

)2

(3.9)

3.4 Results

3.4.1 Main Result

The principle result follows from increasing the percent of new infections which are

active from 10% to 100% in increments of 10%. In actual tuberculosis infections, this

percent is rather small (see discussion above). As the percent of new active infections
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increases, the end size of the epidemic decreases almost linearly. This is shown in

figure 3.1.

Simulations were generally fairly consistent for each set of parameter values. Failed

epidemics (simulations in which TB failed to spread at all) were rare. The maximum

size of the epidemic was measured and a similar but smaller effect was seen: as the

percent active increases, the maximum size of the epidemic decreased.

One important factor to note is the decrease in the overall population. Average

total population in all categories decreased as the percent active increased.

3.4.2 Active R0

The traditional definition of R0 does not differentiate between latent and active

infections, however it is useful to do so for the purposes of examining the potential

for an epidemic. The ten values of pa each provide a different value for active R0,

shown in table 3.2. Note that the traditional definition of R0 is identical for every

value of pa.

3.4.3 Parameter Sensitivity

To assess the robustness of this result to parameter misspecification, the model

was run 300 times at each of the following parameters.

3.5 Discussion

The transmission pattern of TB poses an interesting quandary: why is it a la-

tent infection in many people? An infection which always becomes infectious is, in

most circumstances, going to spread further. One possible explanation for the high
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Figure 3.1: As the percent of active infections increases, the average size of the
outbreak at 100 years decreases. Each point on this graph is the average of 300
simulations of the model with the same set of parameters.
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pa R0

0.1 235.88

0.2 253.02

0.3 270.76

0.4 289.10

0.5 308.04

0.6 327.59

0.7 347.73

0.8 368.48

0.9 389.82

1.0 411.77

Table 3.2: Active R0 values for different values of pa using the model parameters
found above. These R0 values indicate very high rates of transmission.

frequency of latent infections is simply the effectiveness of the human immune sys-

tem. However an alternative explanation which is consistent with the data is that TB

evolved to have a high rate of latent infection to be more effective at transmission on

the unique network structure of hunter-gatherers.

Although there are exceptions, increases in parameters affecting R0, in most net-

work structures and circumstances, are predicted to increase the final size of an epi-

demic. This project uses realistic model parameters and a simple stochastic model to

demonstrate that increasing pa, the probability a new infection is active, increases the

active R0 while decreasing the final size of the epidemic. This may be suggestive of an

evolutionary adaptation of TB to hunter-gatherer communities, which itself indicates

a relatively distant origin of TB.

The TB complex of bacterial species infects a wide range of mammalian hosts.

Bos et al. (2014) find a relatively recent origin of TB, finding a most recent common
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ancestor date for human TB strains in the mid-Holocene, and being derived from

pinniped strains. This is a similar time frame to the proposal that human TB origi-

nated with the domestication of cattle, however it is not consistent with the proposed

non-human source, Mycobacterium bovis (Stead et al., 1995).

If the modeling results indeed indicate an adaptation to hunter-gatherer contact

networks, these late introductions of TB would appear to be incorrect. Others have

suggested a much older, potentially ancient date for the introduction of TB to humans

(Kappelman et al., 2007; Roberts et al., 2009). Since the hunter-gatherer lifestyle

became common in the Holocene, but was exceedingly rare prior to the Holocene, it

is unclear how old of a date the results support.

Spigelman et al. (2015) has proposed that the long latent period is the result of a

long existence in humans, and the resulting evolution of the human immune system

to cope with TB. This is at least consistent with the results of this project, however

the focus of this project is on the benefits that the human immune response provides

to the TB pathogen. By suppressing the pathogen, the human immune response may

have actually provided an optimal method for transmission in the human hunter-

gatherer social network.

This project also has some significant limitations, and raises several additional

questions. From the modeling perspective, it is surprising that the R0 values were

as high as they were found to be. This may suggest an error or problem within the

model or the parameter values. The values in this project are certainly well-above

most published values Blower et al. (1995); Liu et al. (2010), which are generally

between 1 and 2.

This project also did not look at changing the pathogenicity of a TB infection,

even though the evolution of pathogenicity is widely discussed Frank (1996). Thus it

is possible that the results in this model are the result of the well-known evolutionary

70



trajectory toward lower pathogenicity of infections Bull (1994), being driven indirectly

by lowered infectivity rates.

Finally, the value of a model in the investigation of a hypothesis is ultimately

driven by the confidence in the model and its accuracy in capturing the system.

Definitive answers to questions on the origin of TB in humans will almost certainly

driven by compelling data, rather than modeling. Nevertheless, modeling can provide

some insight.

3.6 Conclusion

This modeling effort shows an inverse relationship between the frequency with

which new TB infections become immediately active and the long term eventual

size of the infection. Although higher R0 may be associated with more widespread

infections in a highly connected social network, it is not necessarily the case on a

hunter-gatherer network. If this is the result of disease evolution, or human-disease

co-evolution, this pattern seems to be consistent with a pre-Holocene introduction of

TB to humans. However it is not definitive.

More broadly, this work demonstrates the importance of social networks to dis-

ease evolution. Diseases may evolve transmission parameters or patterns which are

uniquely adapted to a particular contact network among the hosts. Identifying those

patterns may yet yield more insight into the evolution of disease.
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Chapter 4

CONCLUSION

The social interactions of humans are central to human behavior, and as the

results of this dissertation demonstrate, play an important role in determining the

spread of infectious disease in an epidemic. This dissertation is an examination of the

effects of social networks on the transmission of infectious disease. The first project

examined SARS, demonstrating that social networks–specifically superspreading on

social networks–plays an important role in determining the case counts. This demon-

stration illustrates how social networks can be a confounding effect on the evaluation

of infectious disease epidemics. The second project in this dissertation demonstrates

that TB easily persists in hunter-gatherer populations, and may have evolved charac-

teristics which facilitate spread in such a population. This suggests an ancient origin

to TB in humans. Both of these projects illustrate the potential that mathematical

tools can bring to understanding the causes and consequences of human variation,

particular in social network structure.

This dissertation is an illustration of the unique role that an anthropologist can

play in uncovering the dynamics of infectious disease transmission (DiGiacomo, 1999;

Trostle and Sommerfeld, 1996). Social networks, firmly rooted in the study of human

behavior, are an integral part of identifying the epidemic potential of an infectious

pathogen and potentially an important influence on the evolution of a pathogen. Mod-

els of this sort have been used in a similar manner before; Khanna et al. (2014) and

Rothenberg et al. (1998), for example, both investigate HIV dynamics using network

models. Anthropologists contributed to both works, demonstrating the importance

of this intersection between infectious disease epidemiology and social anthropology.
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This dissertation is, in the same vein, a demonstration of the power that mathe-

matical models of infectious disease can have in the investigation of the causes and

consequences of social phenomena. Chapter 2 illustrates one of the consequences by

demonstrating the social network can give rise to the superspreading phenomenon,

which in turn can create relatively large subcritical epidemics. Chapter 3 by contrast

shows that evolution of an infectious agent on a particular social network can result

in a particular signature. In the case of TB, that signature appears to show evolution

on a hunter-gatherer social network.

Broadly these projects demonstrate the wealth of knowledge which can be gained

from an examination of infectious disease transmission in an anthropological context.

4.1 Anthropological Conclusions

Investigation into the spread of infectious disease, absent an understanding of

social networks, may have some problems. Chapter 2 demonstrates that estimates of

R0 which ignore superspreading may be in error, and thus epidemiological data not

be able to distinguish between a supercritical and subcritical epidemics. The main

result in chapter 3 demonstrates that the structure of a social network can influence

the evolution of an infectious disease. This can, then, be used as a signature to

identify the social network on which a pathogen evolved. Both of these illustrate how

social networks, mediated through mathematical models, cause important changes to

the dynamics of infectious disease transmission.

Understanding the impact of social phenomena such as infectious disease contact

networks is not new to anthropology (Inhorn and Brown, 1990; Klovdahl, 1985). Su-

perspreading is one possibility for a social network structure. Superspreading is a

particular pattern of heterogeneity in contacts or transmission rates in which a rel-

atively few infected individuals account for a disproportionate number of secondary
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cases (Paull et al., 2012). The consequences for this pattern can be subcritical epi-

demics which appear to be supercritical. It is apparent from this work that epidemi-

ological practice is dependent on understanding the anthropological phenomenon of

social network structure.

The impact of social networks can also be seen in the evolution of infectious disease

(Leventhal et al., 2015). The timing of the introduction of tuberculosis to the human

population is not well understood (Bos et al., 2014). However this project adds a line

of evidence showing that TB seems to have evolved properties which are conducive

to transmission on hunter-gatherer social networks, suggesting a long period of co-

evolution with humans and thus an early introduction.

These two projects underscore the importance of heterogeneity in social networks

has for disease transmission dynamics. As anthropology understands the causes and

consequences of human diversity, this project highlights the causes and consequences

of specific types of social network diversity.

4.2 Infectious Disease Conclusions

Superspreading events force epidemiologists to think about the structure of net-

works and the context of those networks. The first project in this dissertation demon-

strates that a social network can complicate the identification of supercritical and

subcritical epidemics. In many epidemics, the goal of public health officials is to im-

plement policies which force R0 < 1, that is make the epidemic subcritical (WHO,

2003a). However the results of the SARS portion of this dissertation cast doubt on

whether distinguishing between a supercritical and subcritical epidemic is achievable.

The project examining TB also demonstrates the importance of social networks

to epidemiologists. The assumption that diseases might evolve toward a higher R0

is demonstrably untrue. In hunter-gatherer social networks, it is the result of this
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project that a TB can evolve toward lower R0. This is interesting as a question about

the evolution of disease in the past, but also opens the question of how other social

networks can influence the evolutionary trajectory of modern infectious diseases.

4.3 Discussion

Broadly this dissertation is descriptive of the influence of social networks on dis-

ease transmission. This alone is not a new field of investigation (Inhorn and Brown,

1990; Zelner et al., 2012; Keeling and Eames, 2005; Getz et al., 2006). This project

looks separately at the phenomenon of superspreading and disease evolution, both

of which have been investigated before (Antia et al., 2003; Lloyd-Smith et al., 2005).

However this dissertation is the first quantitative examination of subcritical super-

spreading, demonstrating the importance of social network structure to the evaluation

of infectious disease epidemics. This is also the first attempt to find a signature a

social network leaves on the transmission parameters of tuberculosis. This project

demonstrates TB likely was introduced to the human population in the distant past,

to provide it with a long co-evolutionary history. This is in contrast to some recent

results such as Bos et al. (2014) which found a recent ancestry, but consistent with

the qualitative conclusions of Gagneux (2012) and the timeline set out in Comas

et al. (2013). Both of these projects add important information to their respective

questions, but also have important limitations.

This project fits into a broader field of anthropological research. Medical anthro-

pology has a long history at the intersection of medicine and anthropology (McElroy

and Townsend, 1996), however some anthropologists have criticized epidemiologists

specifically for under-utilizing anthropological insights (Inhorn, 1995; Ashan, 2016).

DiGiacomo (1999) in particular draws a distinction between the intensively quan-

titative field of epidemiology and the often-qualitative field of social anthropology.

75



This project, which discusses a social phenomenon in quantitative terms and derives

from them quantitative conclusions, is a contribution to a literature which is at that

interface. The goal is not, of course, to devalue qualitative research, however by de-

scribing social phenomena in quantitative terms, it is possible to derive quantitative

conclusions which are of interest to both anthropologists and epidemiologists.

4.3.1 Limitations

Although this dissertation provides insight into several questions, it is important

to recognize the limitations of the work. The first project, investigating the subcritical

superspreading phenomenon, demonstrates that differentiating between supercritical

and subcritical epidemics is challenging given data on the size of epidemics. It is

possible that some other data may be used to clearly delineate the difference between

supercritical and subcritical epidemics, although such data has not been identified

(Guttorp and Perlman, 2015).

Inhorn (1995) points to the richness and depth that anthropologists can bring to

epidemiological questions. Traditional epidemiology quantifies humans extensively–

from behaviors to risk factors–to better make predictions. While this is an important

part of science, Inhorn points to a wealth of data that can be had through anthropo-

logical research. While the questions investigated in this dissertation are anthropo-

logical, it can certainly be argued that the approach was similar to the reductionist

viewpoint Inhorn criticizes in epidemiology.

Specifically on the project related to the evolution of tuberculosis, the results found

in chapter 3 are similar to those predicted qualitatively by Gagneux (2012). However

the results should be considered in a constellation of evidence–paleopathological, ge-

netic, genomic, and others–to draw a conclusion. Although the results shown here

indicate an early introduction of TB to humans, it is possible that such a result will
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be overturned by subsequent lines of more direct evidence.

4.4 Conclusion

The lessons that can be drawn from this dissertation are several. The first are the

two results of the research, discussed above. However more broadly this dissertation

can be seen as an example of how mathematical models can be used to connect

epidemiology and anthropology. As with any inquiry into anthropology, it is an

investigation into the causes of diversity and their consequences. Here that diversity

is in social networks. Social networks remain an important area for research in both

anthropology and epidemiology.
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