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ABSTRACT  

Capturing the information in an image into a natural language sentence is 

considered a difficult problem to be solved by computers. Image captioning involves not 

just detecting objects from images but understanding the interactions between the objects 

to be translated into relevant captions. So, expertise in the fields of computer vision 

paired with natural language processing are supposed to be crucial for this purpose. The 

sequence to sequence modelling strategy of deep neural networks is the traditional 

approach to generate a sequential list of words which are combined to represent the 

image. But these models suffer from the problem of high variance by not being able to 

generalize well on the training data.  

 

The main focus of this thesis is to reduce the variance factor which will help in 

generating better captions. To achieve this, Ensemble Learning techniques have been 

explored, which have the reputation of solving the high variance problem that occurs in 

machine learning algorithms. Three different ensemble techniques namely, k-fold 

ensemble, bootstrap aggregation ensemble and boosting ensemble have been evaluated in 

this thesis. For each of these techniques, three output combination approaches have been 

analyzed. Extensive experiments have been conducted on the Flickr8k dataset which has 

a collection of 8000 images and 5 different captions for every image. The bleu score 

performance metric, which is considered to be the standard for evaluating natural 

language processing (NLP) problems, is used to evaluate the predictions. Based on this 

metric, the analysis shows that ensemble learning performs significantly better and 

generates more meaningful captions compared to any of the individual models used.    
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The emergence of the field of deep learning has helped in solving an enormous 

number of problems for some time now. One among these problems, is the problem of 

automatic image caption generation by computers, which has many applications in 

different domains. Some of the applications of image captioning include helping visually 

impaired people understand what the images contain by providing short descriptions, 

communicate to clinical experts regarding potential disease conditions found in medical 

images and to convert images to text, which can be used in certain applications where 

inferences are made only from textual data. With all the advantages of image captioning 

mentioned, it is crucial to develop state-of-the-art algorithms that can solve this problem 

and generate captions with acceptable accuracy. 

 

As the problem deals with image processing, it can be classified as a computer vision 

problem, but including an additional step of generating textual sentences. So, a solution 

to this problem will have two phases, 1. A feature extraction phase, where features 

present in the image will be extracted and represented in the form of a feature vector, 2. 

A sentence generation phase, which takes as input the feature vector and a sequence of 

words are generated one after another which when combined together gives a meaningful 

description of the image. While the fundamental approach to solving this problem is 

established, there is still scope for research in this area, towards designing new models 

that can improve the accuracy of predictions. 
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The main focus of this thesis is to explore the effects of ensemble learning techniques 

on the problem of image captioning, which have long been proven to be very efficient in 

making better predictions when compared to single model settings. 

 

1.2 Problem Statement 

The main problem in image captioning is that of high variance, which occurs with the 

use of deep learning models as the models try to learn the specifics of training data. This 

means that the models used to solve image captioning have a lower tendency of 

generalizing on features from the training dataset and hence cannot give good predictions 

on new data. This thesis identifies the problem of high variance in image captioning and 

proposes an approach to solve it. 

 

Though there are already existing sequence-to-sequence deep learning models for this 

purpose, this thesis proposes the use of ensemble learning techniques on these models. 

Deep learning neural networks can learn nonlinear complex relations in the data because 

of their deep structure and very large number of weights which get modified to represent 

these relations. But this nonlinearity gets reflected in the fact that the models tend to have 

a high variance, i.e. overfitting on the training data and not being able to generalize very 

well. One solution to reduce variance in deep models is to use the benefits of ensemble 

learning techniques which have been proven to solve the same. 

 

These ensemble techniques explore the predictions of different good models and 

combine them to get one single better prediction. Not just implementing ensemble 
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learning on the problem but answering why and how the use of these techniques 

improves the performance over using a single model is the main goal. This thesis also 

explores the various ensemble techniques that are available out there and analyzes the 

best ones suitable for the image captioning problem. 
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CHAPTER 2 

BACKGROUND LITERATURE 

2.1 Image Captioning 

It is common to write short textual descriptions for images to represent and understand 

the objects and actions in the images by humans. This task when performed automatically 

by a computer is known as image captioning. It is a significant problem which needs to 

be solved because of its potential applications in real life. The application can help 

visually impaired people understand the content in images through the descriptions [1]. 

These captions can also be saved for later use i.e. when there is a need to retrieve images 

solely based on this textual description. Image captioning in medical field can help 

doctors comprehend the disease or infection based on the descriptions of medical images. 

These benefits of using an image captioning system clearly provide a reason for further 

research in this domain to increase the accuracy of generating captions. 

 

It is pretty easy for humans to produce a short caption while looking at the image as 

humans have the ability to easily understand the objects in the image, the interactions 

between these objects and combine them to form meaningful sentences. This ability of 

humans has been achieved over time with lots of experience by observing and learning. 

So, it is not very easy to replicate this behavior into machines and expect them to match 

human level accuracy. But it is not impossible either. A computer can also be trained to 

learn from different images, gain experience and understand the relations between objects 

to convert them into meaningful descriptions in a similar way that humans have gained 

experience. But the human brain is far more intelligent as it can learn quickly and draw 
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relations easily with little experience when compared to a machine’s intelligence. Hence, 

there is a need to develop state-of-the art systems which will be capable of performing 

this task with at least close to human level intelligence. Figure 1 provides examples of 

captions describing two images. 

 

 

“A brown dog is playing with football in a park” 

 

 

“A boy in white shirt is playing basketball in the court. 

 

Figure 1. Examples of Image Captioning. Source: https://www.analyticsvidhya.com/blog/ 

20 18/04/ solving-an-image-captioning-task-using-deep-learning/ 
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2.2 The Role of Deep Learning  

Deep learning is a subfield of machine learning put forward in 2006, which is inspired 

from the functionality of neurons in the human brain. Another name this field has is deep 

neural networks which means it is an extension to the neural network architecture. The 

invention of neural networks has entirely changed the approach to problem solving. 

Neural networks are a replica of the neurons in the brain, the way they are connected and 

the way in which they transfer information among themselves. They learn from 

experience, experience here is the data that is fed into the network. They learn the trends 

or patterns in data, so that they can predict the same when they see similar or entirely new 

data as well. The greater the amount of data available to train the network, the greater 

experience the networks can gain, and the greater will be the accuracy of predictions. The 

smallest unit that makes up a neural network is a neuron in which most of the 

computation takes place i.e. neurons store within them different features that make up the 

data by changing weights on them to align to the patterns in the data. These features are 

combined together to predict the necessary. So, there is an input layer to the network, 

multiple hidden layers which comprise of these neurons stacked together and finally an 

output layer for predicting the output as shown in Figure 2. The greater the number of 

hidden layers the deeper the network. 
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Figure 2. Standard Neural Network Architecture. Source: https://en.wikipedia.org/wiki/A 

rtifi cial_neural_network 

 

Deep learning involves very deep neural networks i.e. a large number of hidden layers 

and a greater number of neurons in each layer to learn deeper relations in data. The 

output from lower layers on which simple computations are performed is regarded as an 

input to the higher layers [2]. The increase in the network size demands an increase in 

processing speed and an increase in the size of data to take advantage of the deep 

structure. With the expansion in computational capacity and explosion of the amount of 

data available, neither of them is a problem. One main advantage of deep learning is that 

the models tend to get better and better by being trained on more and more data, unlike 

usual machine learning algorithms like decision trees, Bayesian networks, etc. as depicted 

in the graph in Figure 3. It can be clearly understood from the graph that the performance 

of traditional machine learning algorithms reaches a constant with increase in data size 

after a certain point. But the performance of deep learning algorithms keeps increasing as 

the amount of data increases. 
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Figure 3. Performance Comparison of Deep Learning v/s Older Learning Algorithms 

with Increase in Data Size. Source: https://www.slideshare.net/ExtractConf 

 

One problem that deep learning algorithms can solve efficiently is computer vision 

problems. Computer vision is a field that deals with computers handling and analyzing 

digital data such as images or videos. With the deep structure they have, deep networks 

can extract intricate features from images and videos to solve various problems such as 

image classification, object identification, etc. With the propagation into deeper layers of 

the network, it understands information from the low-level to high-level details of the 

digital content in that order, which is different from the usual neural networks. Figure 4 

explains the differences in how different machine learning approaches solve the problem 

of feature extraction. A lot of research has been done in the deep learning domain and a 

lot of algorithms developed to solve distinct problems. Since, image captioning involves 

analyzing images to extract features from them, it can be classified as a computer vision 

problem and hence the use of deep neural networks. 
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Figure 4. Feature Visualization of Deep Neural Networks. Source: https://slideplayer.co 

m/slide/10202369/ 

 

Apart from computer vision, Natural Language Processing (NLP) also plays a very 

crucial role in the phase of generating captions from image features. NLP is the domain 

which deals with building computational algorithms that can automatically analyze and 

represent human language. The recent trends in the representation of natural language 

and the new algorithms that have been developed to generate natural language words and 

sentences have shown scope for solving problems like image captioning. The inception of 

Recurrent Neural Networks (RNNs) helped in handling situations where the next output 

in the sequence depends on the previous output. This is best suited for this thesis problem 

as there is a need to generate words in the caption in a sequential manner. The concept of 

distributed representation of data in deep learning, to understand the context of word 
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occurrences, has also been designed. All these advantages of deep learning combined 

give it an edge over other fields to be used to solve the problem at hand. 

 

2.3 Basic Control Flow 

The fundamental procedure to solve the problem of image captioning consists of two 

phases. The first involves extracting salient features of the objects and actions in the 

image and representing them in the form of a feature vector. The second phase includes 

understanding the relations between the features and generating a sequence of words one 

after another. The next word to be generated depends on the previous word that has been 

generated in the previous time step. Solving each of these phases requires special 

algorithms provided by the deep learning domain. It also requires the use of a special 

model known as the sequence-to-sequence model. The sequence-to-sequence model is a 

state-of-the-art single end-to-end model that is used to solve problems where sequence of 

inputs is to be converted into a sequence of outputs, instead of the tedious work of 

requiring a pipeline of models. It can be viewed as comprising of two individual steps. 1. 

The encoder, 2. The decoder [3], the architecture of which is represented in Figure 5. The 

encoder stage is where features from images that are input to the model will be encoded 

into a vector and in the decoder stage, the model decodes the vector to represent an 

understanding of the relation between the features in the form of a sentence. An 

interesting characteristic of the decoder is that it has the ability to understand the context 

and the effect of the previous word generated in the network on the next word.  
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           Output 

 

       

    State 

 

 

 

             Input 

Figure 5. Sequence-to-Sequence Model Architecture.  

 

2.3.1 Image Representation 

The basic building block of an image is pixels. It is the color or light value that occupies 

a specific place in the image. In computer vision, images are usually represented as their 

RGB values or grayscale values. If represented as grayscale, each pixel will only have 

one value i.e. light value and the image can be represented as a 2-D matrix of pixel values 

which is the size of the image. Whereas, if the image is represented with its RGB values, 

then a 3-D matrix is required to represent the pixel values with one 2-D array for each 

color. If an image is of size 64 * 64, then it will be represented by a 3-D matrix of size 64 

* 64 * 3 in RGB. One can imagine how computationally intensive it can be to process 

thousands of images of this size and hence Convolutional Neural Networks (CNNs) are 

used as they have the tendency to reduce the size of images by generating a compact 

representation which encodes the complex features in them. Figure 6 depicts the 

representation of a 4 * 4 pixel image in RGB. 

ENCODER DECODER 
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Figure 6. Representation of an Image with RGB Values. Source: https://towardsdatascien 

ce.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5way3bd2b1164 

a53 

 

2.3.2 Convolutional Neural Networks (CNNs) 

One particular algorithm that has helped bridge the gap between the capabilities of 

humans and machines is the CNN which is one of the deep learning algorithms. The main 

goal of CNNs is to work with images and understand the complex features that combine 

to form up the picture. CNN is designed in a way that they can take an input image, work 

with it, assign importance to objects in the image and differentiate one from another. 

There are three main layers that contribute to these extraordinary benefits of CNNs. 1. A 

convolution layer, 2. A Pooling layer and 3. A fully connected layer [4]. An entity called 

kernel/filter is used in the convolution layer to create a composed representation of the 

input image. Matrix multiplication is performed between the kernel and every portion of 

the image matrix of size same as the kernel, moving one step at a time as shown in Figure 

7. If the image is represented as multiple channels, the depth of the kernel will be the 
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same as that of the image. This way the low-level features of the image such as horizontal 

and vertical edges are saved in a compact representation for faster processing. Initially, 

the convolution layers capture the low-level features of the image but with increasing 

number of layers, they capture the high-level features as well. 

 

 

Figure 7. Initial Convolutional Operation on Input Image. Source: https://adventuresinm 

achinelearning.com/convolutional-neural-networks-tutorial-tensorflow/ 

 

Next in line is the pooling layer, serving the same purpose as the convolution layer i.e., 

reducing the size of the convolved feature. But it has the ability to extract more dominant 

features than the convolution layer. Max pooling and average pooling are the two kinds 

of pooling that can be performed on the convolved features to reduce the dimension even 

further. In max pooling, the maximum value from the portion covered by the kernel is 

returned whereas in average pooling the average of all the values covered by the kernel is 

returned. Max pooling is considered to be a better approach as it can act as a de-noising 

component and can discard noise activations completely. With a combination of 
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convolution layers and pooling layers, the features of the image can be clearly 

understood. The operation performed by a pooling layer can be observed in Figure 8. 

 

 

Figure 8. Max Pooling Layer Computation in CNN. Source: https://computersciencewiki. 

org/index.php/Max-pooling_/_Pooling 

 

After the extraction of features, the final step is to flatten out all the features and feed it to 

a neural network for classification. So, the final layer is called a fully-connected layer 

which can learn the non-linear relations between the high-level features. This is finally 

fed to the usual fully connected neural network with backpropagation and to classify 

images using the softmax classification. Softmax classification is where an un-

normalized input vector is normalized into a probability distribution, so the image is 

classified into the class with highest probability. This algorithm takes several epochs to 

differentiate between the salient and unimportant features in the images and finally 

perform a good classification. Figure 9 depicts the entire data flow that occurs in a CNN 

from input to classification.  
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Figure 9. Convolutional Neural Network Architecture. Source: https://towardsdatascienc 

e.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5way3bd2b1164a 

53 

 

Since the CNN is an efficient way to extract the features of an image, the first phase in 

image captioning takes advantage of this to extract features into a vector form. Although 

it takes considerable amount of time to train the CNN, with the high computational 

capacity available today, time taken can be reduced significantly. There are several pre-

trained CNN models which have been trained on large datasets and the weights of these 

models are available as open-source. Using these models can help reduce the burden of 

weeks of training. These weights can directly be used to extract features from new 

images which can be very efficient and time saving. Some of the pre-trained models 

available are VGG, ResNet, InceptionV3, AlexNet, etc.  

 

2.3.3 Recurrent Neural Networks (RNNs) 

RNNs are a modified version of the traditional feedforward neural networks. In 

feedforward networks, at every timestep only the current input to the network is 

considered to classify it. It does not take into account the prediction on the previous input 

nor the next input in line, it is only concerned with the current input that is fed to the 
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network at that timestep. RNN is the exact opposite of this, which means in every step the 

input to the network will be the current input along with the output of the previous step as 

demonstrated in Figure 10. This special feature of RNNs is used to solve problems which 

the feedforward algorithms cannot. To facilitate this functionality, RNNs are said to have 

memory to save the previous output. This is often known as the hidden state. So, in each 

cell of the RNN network, the hidden state from the previous cell is combined with the 

input to the current cell over an activation function such as tanh. This will generate a new 

hidden state to be passed on to the next cell. So, RNNs can be used to solve the image 

captioning problem to generate a sequence of words describing the image using the 

vector of image features. But, the traditional RNN networks often suffer from short-term 

memory problems, i.e. while handling long sequences, they tend to forget the important 

information that has been acquired at the beginning of the network. This occurs because 

of the gradient vanishing problem present in RNNs. Gradient vanishing is a problem in 

which gradients in the network that are important to change the weights of the network 

tend to shrink as they backpropagate over time. This leads to gradients becoming so small 

that they do not contribute to the network at all and hence the short-term memory 

problem. Two variants of RNNs that have been proven to be better methods at solving 

sequence to sequence problems are Long Short-Term Memory model (LSTM) and Gated 

Recurrent Units model (GRU) which have a very similar structure as the RNN. 
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Figure 10. Architecture of a Simple RNN Model. Source: https://www.easytensorflow.co 

m/tf-tutorials/install/cuda-cudnn?view=category&id=95 

 

2.3.4 Long Short-Term Memory Model (LSTM) 

Similar to an RNN, the LSTM stores the output from the previous cell in a hidden state 

and uses it to generate the next hidden state. In LSTM, information can be carried all the 

way from the beginning of the sequence to the current state and not only the previous 

state. This helps avoid the short-term memory problem. They also differ in the operations 

carried out inside each cell. LSTM comprises of two core components, i.e. the cell state 

and different gates [5]. A cell state is basically the memory of the network which can 

transfer information down to the present sequence state. This is how the short-term 

memory effect is reduced. Coming to the gates, they are also neural networks that decide 

whether information is to be added or removed in a current state. Three types of gates 

mainly form a cell in an LSTM [5]. First is the forget gate, which decides which 

information from the previous hidden state is to be kept and which is to be forgot. The 

information from hidden state and the current input is passed through a sigmoid function 

which restricts values to be between 0 and 1. Values which get closer to 0 are to be forgot 

and those which are closer to 1 are kept. Second is the input gate which is used to 

regulate the values from the hidden state along with the current input data. The regulation 

occurs by passing them through a tanh function which restricts the values to be between   
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-1 and 1 and multiplying these values with the values obtained from the forget gate. This 

way, only the information that is to be kept is finally generated. The final gate is the 

output gate where the values obtained from combining the outputs of forget and input 

gates comprise of the new hidden state which is carried forward to the next cell. Along 

with the hidden state, a new cell state is also sent to the next cell which is obtained by 

first multiplying the previous cell state with the forget vector so it can drop values in the 

cell state that are multiplied with values closer to 0. Pointwise adding values of the input 

gate with the cell state, thus generates new essential values of the cell state. The sequence 

of operations carried out by the gates in a single cell are described in Figure 11 and are 

formulated as: 

𝑖𝑡 = 𝜎( 𝑊𝑥𝑖𝑥𝑡 +  𝑊ℎ𝑖ℎ𝑡−1 +  𝑏𝑖) 

𝑓𝑡 =  𝜎( 𝑊𝑥𝑓𝑥𝑡 +  𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 =  𝜎( 𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑐𝑡
~ = tanh ( 𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 =  𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡
~ 

ℎ𝑡 = tanh( 𝑜𝑡 ⊙ 𝑐𝑡) 

Here, 𝜎 represents the sigmoid function and ⊙ represents the Hadamard product. Wi, Wf, 

Wo, Wc represent the recurrent weight matrices of the network, bi, bf, bo, bc represent the 

bias vectors. ht, it, ft, ot, 𝑐𝑡
~and 𝑐𝑡 are the hidden state, input gate, forget gate, output gate, 

input modulation gate and the cell state respectively. 



  19 

 

Figure 11. Operations Carried Out in a Single LSTM Cell. Source: [6] 

 

2.3.5 Gated Recurrent Unit (GRU) 

The GRU is very similar to an LSTM with the difference that the GRU does not have a 

cell state but instead uses a hidden state to transfer information. Also, it only has two 

gates namely, a reset gate and an update gate. The update gate has a similar functionality 

to the forget and input gates of an LSTM. It alone decides what information has to be 

kept for the next step and what information can be thrown away. The reset gate is where 

the decision of how much past information to be carried forward is decided. Since, GRUs 

have lesser operations they are comparatively faster than LSTMs. The sequence of 

operations carried out by the gates in a single cell of GRU are described in Figure 12 and 

are formulated as: 

𝑧𝑡 =  𝜎( 𝑊𝑧 .  [ℎ𝑡−1, 𝑥𝑡] ) 

𝑟𝑡 =  𝜎( 𝑊𝑟 .  [ℎ𝑡−1, 𝑥𝑡] ) 

ℎ𝑡
~ = tanh( 𝑊 .  [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] ) 
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ℎ𝑡 = ( 1 − 𝑧𝑡 ) ∗  ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡
~ 

In the equations, r represents the reset gate and z the update gate.  

 

Figure 12. Operation Carried Out in a Single GRU Cell. Source: http://sqlml.azurewebsit 

es.net/2017/08/12/recurrent-neural-network/ 
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CHAPTER 3 

RELATED WORK 

There has been done a significant amount of research in generating captions for images 

using deep learning algorithms and this section discusses the same. Though the basic 

architecture of solving this problem is consistent, there have been attempts to modify the 

architecture in a way that gives better prediction accuracy. The scope for improvement 

lies in either developing better models to extract the significant features from images or 

in modifying the architecture of models that generate the sequence of words.  

 

A series of CNN architectures have been designed to solve the image classification 

problem where objects in the images are classified into different classes. These CNNs are 

pre-trained on large image datasets which can be used directly without any further 

training for extracting features of images. But since these models are trained for 

classification, the outputs from the last second layer are used as feature vectors because 

the last layer gives a classification output, which is not necessary for this problem. Using 

these pre-trained models to extract image representations significantly reduces training 

time and are thus used widely. Several modifications have also been proposed to the 

sentence generation phase. Using the LSTM model with a copying mechanism for 

describing the novel objects in the captions is one approach which helps in selecting 

words from novel objects at correct places in the sentence. Another approach used to 

boost the prediction accuracy is using high-level image attributes in addition to the usual 

image representations. The relations between these attributes and image representations 

are explored to generate better captions. Attention mechanism is another important 
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technique where different regions of the image can be weighed differently and depending 

on these weights, captions are generated. This section gives a detailed description of each 

of the works mentioned above. 

 

3.1 Feature Extraction Models 

CNN is currently the state-of-the-art architecture for solving visual recognition problems. 

The core problem solved by them is the classification problem where objects in images 

are classified according to their class. A set of architectures have been trained on 

immensely large datasets of images which are the current top-notch architectures for 

classifying images. A very widely used dataset for solving computer vision problems is 

the ImageNet dataset containing over 14 million images and all of the pre-trained 

networks are trained on the same dataset to classify as many as 1000 objects. This section 

discusses three of the architectures that have been proposed and considered to be the best 

at what they do.  

 

First is the VGG16 model proposed in [5] which achieves 92.7% top-5 test accuracy on 

ImageNet. The architecture of the model can be understood from Figure 13. The 

dimensions of the input image should be of a fixed size i.e. 224 x 224 RGB. The input is 

then passed to a series of convolution layers followed by max pool and fully-connected 

layers. The different configurations of the generic model with the number of total weights 

are clearly specified in Figure 14. The configurations from A to E vary in the number of 

weight layers in the network. VGG19 is also considered a potential candidate for feature 

extraction. Thus, features of the image captioning dataset images can be extracted using 
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the pre-trained VGG without the last softmax layer, so as to take advantage of the feature 

vector evaluated in the last second fully-connected layer. This model outperformed the 

GoogLeNet architecture existing at the time, crossing its error rate by a value of 0.9%. 

But there are two major drawbacks in the VGG network i.e. slow training process and the 

large values of the network weights which slow down the process are pertained in the 

network. 

 

 

 

Figure 13. Architecture of the VGG16 Network. Source: https://neurohive.io/en/popular-

networks/vgg16/ 

 

https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
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Figure 14. Configurations of the Different Layers in a VGG Network. Source: [7] 

 

InceptionV3 is another model as proposed in [8] which has been proven to achieve an 

error rate of 4.2% which is less than the previously developed VGG networks. The 

architecture of InceptionV3 as shown in Figure 15 comprises of a combination of 

convolution layers, max pool layers and fully-connected layers. But, an advantage of 

InceptionV3 is that it performs a concatenation of multiple convolution outputs to 

incorporate a more precise representation of features in the network. This network also 
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has a lower computational cost as compared to VGG which allows it to be used to work 

with large amounts of data. 

 

Figure 15. Architecture of the InceptionV3 Network. Source: [8] 

 

The most recently developed pre-trained model is the ResNet50 model which allows for 

even better learning in deep networks when compared to InceptionV3 and VGG. Similar 

to both these architectures, a ResNet50 also is comprised of a series of convolution layers 

followed by fully-connected layers as shown in Figure 16. But it is different from them in 

a way that it has a special component called residual networks in the architecture. With 

architectures like VGG, it would result in a problem of vanishing gradients if the network 

is just extended in the number of layers because, the deeper the network the lesser the 

chance for gradients to get updated. So, this results in a vanishing gradient problem as the 

networks get deeper. To resolve this problem, a residual network has been introduced and 

used in ResNet50. A residual network typically stacks multiple layers into residual blocks 

and applies an identity function so that the gradient is preserved [18]. This way multiple 

layers can be stacked together so the images can be trained on much deeper networks. 



  26 

 

Figure 16. Architecture of a Single ResNet50 Block. Source: https://towardsdatascience.c 

om/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec 

 

 

3.2 Sentence Generation Architectures 

Along with feature extraction, research has also been done in the way sentences can be 

generated from the extracted features. This section talks about different strategies that 

have been used to generate accurate captions.  

 

A copy mechanism has been proposed in [1] where the architecture of the model is 

designed in a way to detect the novel objects in an image. The detected objects are then 

directly be introduced in the generated sentence. Initially, an image is input to a CNN 

which potentially extracts the features representing the image. These features will then be 

fed to an LSTM which generates a sequence of words. While LSTM is in the process of 

generating words, objects in the image are also detected using any one of the pre-trained 

models available out there. A copy layer is introduced on top of the entire architecture to 

combine the LSTM network with the copying mechanism so that novel objects detected 

from copying can be directly included in the sentence generated by the LSTM. This 
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approach towards generating captions helps in accommodating words in the sentence 

which closely relate to the objects in the images. In Figure 17(a), the vocabularies of the 

image-sentence dataset and the separate object detection dataset are represented, while 

Figure 17(b) depicts the architecture of copying the words generated from image 

recognition directly into the sentence being generated by the LSTM from the feature 

representations injected by CNN. 

 

 

Figure 17. Architecture of Long Short-Term Memory Model with Copying Mechanism 

(LSTM-C). Source: [1] 

 

Another model worth describing is image captioning with attributes proposed in [10]. In 

this approach, a series of variant CNN and RNN architectures are constructed by feeding 

the image representation along with attributes to the network in different ways to explore 

the relationships between them. Here, attributes are the properties seen in images which 

highly contribute to the salient objects in them. A variety of architectures are used to 

understand the impact of using both representation of images by feeding them to the 

networks at different times. Five variants of architectures have been proposed in the 
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paper as shown in Figure 18. In the first one of the architectures, only attributes are fed 

into the LSTM network. Both image representations and attributes are fed one after 

another in the second architecture. In the third, the order of feeding image representation 

and attributes is revered to that of network 2. In both fourth and fifth architectures, 

attributes and image representation are fed into the network together, but the orders are 

reversed. 

 

 

Figure 18. 5 Variants of the LSTM-A Architecture. Source: [10] 

 

Another very important model that has been proposed to solve image captioning with 

greater accuracy is the use of attention mechanism in the model as proposed in [11]. The 

reason that humans can generate captions with the greatest accuracy is because their 

brains work by giving attention to the important things and less to the ones that are not 

very important. This way it can capture the important aspects of what the eyes see and 

thus will be able to generate sentences by focusing more on the important aspects. This 

capability when introduced into a machine is known as attention mechanism. The 

encoder-decoder models often tend to not perform very well as the length of the sequence 
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increases. Attention also helps in addressing this limitation of handling long sequences 

and also in speeding up the learning process. Two approaches towards using attention 

mechanism in image captioning have been proposed: 1. A soft deterministic mechanism 

that can be trained using standard back-propagation and 2. A hard stochastic model 

trained by maximizing an approximate variational lower bound. Using this mechanism 

has achieved state-of-the-art accuracy on the image captioning problem. Figure 19 

represents how attention mechanism allows an additional computation of salient as well 

as non-salient regions of the image and include them in the final caption. 

 

 

Figure 19. Architecture of Solving Image Captioning Problem with Attention. Source: 

[11] 
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CHAPTER 4 

IMAGE CAPTIONING SYSTEM ARCHITECTURE 

This section discusses about the structure into which input data has to be transformed to 

prepare it to train the model and defines the fundamental model to be used. First it is 

crucial to gather a good dataset to use for training. The Flickr8K dataset has been used in 

this thesis as it is relatively small compared to other available datasets and hence 

computations can be done faster. But it is also realistic and includes a good set of samples 

sufficient to learn good patterns from them. The dataset is available as open source. This 

dataset has a total of 8000 images with 6000 for training, 1000 for development and 1000 

for testing. Every image in the dataset is associated with five different captions all of 

which can be used for training the model. One folder contains all of the 8000 images with 

unique identifiers as file names. Another folder contains four text files, where three of 

them have identifiers of the train, development and test images, and the fourth file has 

image identifiers associated with all five different captions for every image in the dataset. 

 

4.1 Feature Extraction 

These images and image descriptions have to be pre-processed and prepared before they 

can be used to train the models. Apart from preprocessing the images in the dataset, they 

have to also be converted into vector representations as machine learning models only 

accept vector inputs. These vector representations extract the critical features from 

images and represent them as float values. The size of the vector depends on the output 

layer size of the model being used for the purpose. As explained in section 2.3.2, CNNs 

are the best models available to extract feature vectors from images. It has also been 
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mentioned that a number of pre-trained models exist for image classification which can 

also be used to extract the features from images in the dataset. Since, highly tested and 

accurate pre-trained models already exist, the burden of training a new model to extract 

features from images has been avoided in this thesis. The Resnet50 pre-trained model has 

been used for this purpose as it is currently the most accurate model for image 

classification. Though this model is pre-trained for image classification, it can be used for 

extracting a feature vector for all of the images by removing the last layer of the model 

which performs the classification task. The layer before the last layer known as the 

convolutional base, outputs a vector representation of a particular image which can be 

used to train the image captioning model. This model can be used in combination with 

the image captioning model, but generating image features every time a new model is 

tried will be computationally expensive. Hence, feature vectors are extracted for all of the 

8000 images in the dataset and saved to a pickle file. This file can later be loaded into the 

application and fed to the model whenever a new model is interpreted. The Resnet50 

model requires the input image size to be a 3 channel 224 x 224-pixel image. So, before 

the images can be input to the model, they have to be reshaped to match the model 

specifications. Also, the model outputs a 1-dimensional vector of size 2048 for every 

image in the dataset. This concludes the process of generating a feature vector 

representation of images to be used by the problem model. Figure 20 represents how an 

image of a specific size is given as input to a pre-trained network and the feature vectors 

are generated, also of a pre-defined size. 
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Input image of                         Feature vector of size (1, 2048)  

shape 224 x 224 x 3 

 

Figure 20. The Feature Extraction Process Using the Resnet50 Pre-trained Model. 

 

4.2 Cleaning Description Text 

The next phase would be to prepare a vocabulary and preprocess it from the set of 

descriptions in the dataset. First, the text from descriptions is extracted and it is cleaned 

to prepare a concise list of vocabulary. Cleaning of text includes converting all words 

into lower case, removing any alpha numeric content, removing all punctuations and 

remove words that are less than 2 characters in length. After performing cleaning on the 

text data, a set of vocabulary can be generated, and the descriptions can be stored in a 

separate text file so that it can be retrieved whenever required.  

 

4.3 Defining the Model 

The next phase is to define the structure of the fundamental model that is used in this 

thesis to generate captions. The model that will be defined has to generate a sequence of 

words those when combined form a meaningful sentence explaining something about the 

input image. So, first the previously generated feature vectors of all images and the saved 

descriptions are loaded into the model for the purpose of training. The caption generation 

phase is carried out by a recurrent neural network which generates words one after 

Pre-trained 

Resnet50 

Network 

Feature Vector  
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another. So, to train the model, a list of previously generated words has to be input, and 

the next word should be the output. To do this there has to be a start word to start caption 

generation and an end word to notify that the sequence has reached end of the caption. To 

incorporate this, two tokens are appended to the beginning and end of every description 

present in the dataset, namely <startword> and <endword>. This is done when the 

descriptions are loaded into the model. As text cannot be directly input to a model for 

training, every word in the vocabulary is converted into an integer representation along 

with the start and end tokens. So, now every description is represented as a string of 

integer values where each integer uniquely identifies one word.  

 

When the model is trained, every image is used to train the model for the number of times 

as the length of the image description. The model will first be provided with the image 

features and the first word in the sequence as input and the next word as the output. Then 

the first two words along with the image features go as input while the third word is the 

output. This is repeated until the <endword> is reached for that image description. An 

example of this combinations of input-output pairs is shown in Table 1: 
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For example, consider the input sequence “Dog is running on beach” 

I1 I2 y 

image_features startword,  dog 

image_features startword, dog,  is 

image_features startword, dog, is, running 

image_features startword, dog, is, running, on 

image_features startword, dog, is, running, on,  beach 

image_features startword, dog, is, running, on, beach,  endword 

 

Table 1. Input and Output Pairs for One Data Point in the Dataset. 

 

I1, I2 represent the two inputs to the model and y represents the output word. A list of 

these input-output pairs will be generated prior to training the model. So, the input to the 

model will be in the form of two arrays, one is the image feature vector and the second is 

sequence of tokenized words, while the output is only one word that is next in line. The 

output of the model is not the exact next word, but a probability distribution over all the 

words in the vocabulary. This means the output is represented in the form of one-hot 

encoding which is how a word is represented in the model, i.e. the position of the word 

which is chosen as output is represented with a 1 and all the other words are represented 

with a 0. Also, the maximum sentence length of all the descriptions in the dataset is 

calculated as it is required to append 0 values to the sentences which are shorter than the 

longest sentence. This is essential to make sure that all sequence of words input to the 

recurrent model are of the same length. This means a series of sequence of words are 
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generated with pairs of image features and all sequence inputs along with single word 

outputs before training the model. 

 

The final step is to design the model to incorporate the goal of generating a sequence of 

words given the image features and all previous words generated so far. To achieve this, 

it is necessary to merge the image features generated from the pre-trained Resnet50 

model and the sequence of words that the recurrent neural networks handles. So, the 

outputs from these two layers which are of fixed length are merged together by the 

decoder to make the final prediction. But, before inputs can be passed to the recurrent 

layer, the words in the vocabulary are embedded. With a total of 40000 descriptions, i.e. 

5 descriptions for every image, the vocabulary is very huge, up to 8000 words. Since 

every word is represented by one-hot encoding, every word will be a very sparse vector 

representation. The process of converting these sparse vector representations into a dense 

continuous representation of vectors is the role of word embeddings. This representation 

helps in identifying relations between different words [15]. For example, the words ‘hot’ 

and ‘oven’ often occur together though they are represented with different vectors. 

Converting the word representations into dense vectors provides capabilities to compare 

the correlations among words. So, if ‘hot’ and ‘oven’ appear in the same context, they are 

closer to each other and this is what is represented by the word embeddings layer. In 

Figure 21, the word embeddings for a vocabulary of 9 words is given, where the 

advantages of embeddings can be observed. It can be understood from the figure that 

similar words have similar vector values and the embeddings are dense. Hence, it is 
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crucial to convert the words in the vocabulary into a dense embedding before going to the 

recurrent layer. 

 

 

Figure 21. Word Embedding Representation for a Vocabulary of 9 words. Source: https:/ 

/www.shanelynn.ie/get-busy-with-word-embeddings-introduction/ 

 

After a word embedding is generated for all words in the vocabulary, the output from this 

layer is input the recurrent neural network layer [17]. This layer can be a simple RNN 

layer, an LSTM or a GRU layer. In this thesis, all three networks have been explored and 

used to generate a distinct set of ensembles. Finally, both the input models are merged 

together, which is then connected to a dense layer with a softmax activation function to 

predict the next word in sequence. Figure 22 illustrates the control flow from when the 

image is input to a pre-trained CNN, the image feature vector is generated which is input 

to the recurrent layer along with word embeddings and the network outputs the sequence 

of words one after another. The weights of every model that is trained is saved to an 

HDF5 every time the loss on validation dataset decreases. This step is essential because 
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the same model can later be used to evaluate its performance or make predictions on new 

data. This ends the description of the primary model structure used in this thesis.  

 

Figure 22. Model Architecture for Image Captioning. Source: https://towardsdatascience 

.com/image-captioning-in-deep-learning-9cd23fb4d8d2 

 

4.4 Model Evaluation 

Evaluating the model that has been trained is pretty straight forward. Since, the weight of 

all models at all epochs are saved, they can be used to evaluate the performance on the 

test dataset. There is a need for a special evaluation metric to calculate the performance 

of the model. Since the output of this problem is a sequence of words, evaluation metrics 

used in evaluated NLP problems has to be used. One such metric that is most widely used 

for evaluating image captioning is the Bleu score (Bilingual evaluation understudy) [16]. 

This score was initially put forward to evaluate the performance of machine translation 

systems, to understand how close the translated sentence is to a human translated 

sentence. Later, it found use in many potential applications. One of them is image 

captioning as the evaluation purpose is the same. The machine generated caption has to 

be compared to a human generated caption i.e. the refence caption available in the 
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dataset. Hence, in this thesis all model evaluations are performed using the Bleu score 

evaluation metric.  

 

Blue scores range from 0.0 to 1.0 where 1.0 represents a perfect match but a 0.0 

represents a perfect mismatch. Blue score works by calculating the n-grams in a predicted 

sentence against n-grams in the reference sentences. The higher the match count, the 

higher will be the bleu score. N-grams are the number of words that are chosen for 

comparison each time. An example of bleu score calculation is shown in Table 2: 

 

One predicted sentence is compared with two references and the 1-gram, 2-gram, 3-gram 

and 4-gram bleu scores are explained. 

Predicted Sentence: A boy playing in park football. 

Reference 1: A boy is playing football in park. 

Reference 2: A boy is playing in park with football. 

 

N-grams Reference-1 Reference-2 

1-gram 6/6 5/6 

2-gram 2/5 2/5 

3-gram 0/4 1/4 

4-gram 0/3 0/3 

 

Table 2. Bleu Score Calculations for an Example Sentence. 
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It can be understood from the table that the predicted sentence has no 4-gram overlaps 

with either of the references, but has 1-gram, 2-gram and 3-gram overlaps with at least 

one of the references. Since the dataset has 5 reference captions for each of the images in 

the entire dataset, the bleu scores can be calculated for each predicted sentence with each 

of the reference captions. Generally, bleu scores up to 4-grams are calculated to 

understand the quality of the generated captions.  

 

So, in order to evaluate every model, the model is loaded and used to generate a 

probability of occurrence for every word in the vocabulary. The word which has the 

highest of these probabilities is chosen as the next word in the sequence. This process 

continues until the <endword> character is reached. All words generated are then 

combined to generate a meaningful caption. Each of these predicted captions are 

evaluated with all 5 reference captions in the dataset to generate their respective bleu 

scores. A combined bleu score for all the predictions in the test set is generated using the 

corpus_bleu method available in the Natural Language Toolkit (NLTK). 
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CHAPTER 5 

ENSEMBLE LEARNING ON IMAGE CAPTIONING 

5.1 Introduction to Ensemble Learning 

A lot of approaches have been adopted to increase the accuracy of predictions on the 

image captioning problem. In this thesis, ensemble learning, an approach which has been 

proven to be very useful towards solving machine learning problems is tested on the 

problem. Most of the machine learning algorithms suffer from the problem of high 

variance, which ensemble learning techniques are considered to be very good at solving. 

Every algorithm in the field of machine learning is associated with two very important 

factors called bias and variance. An algorithm can go wrong in two ways. It either makes 

false assumptions and misses to capture the relevant relations between features and 

outputs or mislead by noise and outliers in data, resulting in capturing the noisy patterns 

[12]. The former feature is bias while the latter is called variance of the algorithm. 

Models with high bias are said to underfit, whereas those with high variance are said to 

overfit the training data. In, Figure 23 three variations of an algorithm when it overfits, 

underfits and has a good balance over the dataset can be seen to understand the trade-off 

that bias, and variance should have. It is important to find a balance between bias and 

variance so that the model gives good predictions. A good algorithm will always try to 

achieve low bias and low variance to build a balance between predictions in future.  
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Figure 23. A Representation of Three Hypothesis that Overfit, Underfit and Have a Good 

Balanced Fitting over Data. Source: https://towardsdatascience.com/understanding-the-

bias-variance-tradeoff-165e6942b229 

 

Deep neural networks are considered very flexible and to be able to scale to large 

amounts of data. But, a disadvantage of this flexibility is that they tend to get sensitive 

with every data point, i.e. they generate a new set of weights which produces different 

predictions every time they are trained and hence suffer from high variance [19]. 

Ensemble learning thus comes into picture to solve the problem of low variance faced by 

deep networks. Ensemble learning is the practice of training multiple good but different 

models instead of a single model and finally combining the predictions of all the models 

in a way suitable to the problem definition. This way, the predictions from ensemble 

learning can be better than the predictions from a single model itself [20]. In Figure 24, 

ensemble learning technique is applied on a classification problem, i.e. multiple 

classifiers are trained on the entire dataset or subsets of the dataset. A combined 

prediction of these classifiers is given as the final output which will be better than the 

output from a single classifier.  

 

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
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Figure 24. Basic Structure of Applying Ensemble Learning to a Classification Problem. 

Source: [13] 

  

Since, image captioning is a problem which involves the use of deep learning techniques 

and involves dealing with long sequences of sentences, it also suffers from the problem 

of high variance. Every time a model is trained, it learns a different set of weights thus 

leading to differences in predictions. So, using ensemble learning on image captioning 

with multiple models and finally combining the predictions would result in better 

prediction accuracy over the problem. There are a variety of techniques that can be 

applied, and the results can be analyzed to find the right technique that can work well on 

the image captioning problem. Different elements of a deep network can be varied to 

result in different ensemble techniques. These variables include the training data, the 

model and the combination of predictions [14]. The number of models used in an 

ensemble on deep networks is often limited to a small number because of the increase in 

computational cost with increase in models and also drastic variations that can exist 

between a large set of models.  
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5.1.1 Varying Training Data 

The training data used for training each model in the ensemble can be varied, i.e. varying 

the size of training data for every member. A very simple approach is the k-fold cross-

validation where k different models are trained on k different subsets of the training data. 

The predictions from all the models combined can be used as the final prediction. 

Another very famous approach known as bootstrap aggregation or bagging which 

involves resampling the training dataset with replacement and using them to train 

different models. This approach allows the models to have a different density of training 

data which allows for the models to grow. 

 

5.1.2 Varying Models 

Using a single model on the same dataset with different initial conditions can itself result 

in good and different models, but the errors made by the model may still be corelated as 

they all learn from the same mapping function [14]. A good alternative to this would be 

to generate a set of differently configured models by varying the hyperparameters used in 

the model. Training these models with the given dataset would result in a better 

combination of models. Using different configurations would allow the models to learn 

differently and hence give different predictions which can be combined. Alternatively, 

for models that may take weeks to train, the best models called snapshots or checkpoints 

can be saved while training which can be used as ensemble members. This gives the 

advantage of using multiple models to be part of an ensemble along with the benefit of 

collecting them during a single training process. A variation of this snapshot ensemble is 

to save models from a series of epochs by reviewing the model performance on validation 
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dataset during training itself and using them as members of the ensemble. These set of 

models are known as horizontal ensembles. A vertical ensemble technique is also 

available which involves saving the outputs from the intermediate hidden layers as they 

contribute to the low level learned representations in data. The outputs from multiple 

hidden layers of different models can be combined to be used as input to a new model. 

 

5.1.3 Varying Output Combinations 

Generating a combined prediction from the predictions of multiple models used in an 

ensemble depends on the problem specification. Generally, an average of the predictions 

from different models is used as the final prediction. Different models in the ensemble 

can be assigned different weights if we know that one model gives a better prediction 

compared to the others. Based on these assigned weights, the prediction from every 

model is weighed accordingly and combined to give a weighted average prediction. A 

widely used approach to combine predictions is using a non-linear model to learn the best 

way to combine them, which takes into account the input data along with the predictions 

from each model in the ensemble. One of the best and sophisticated approaches to solve 

this is stacking, where a new classifier is developed that can take the outputs from each of 

the ensembled members as inputs and estimate the best output. Another approach to this 

is boosting, where every model tries to correct the mistakes of the previous models in 

generating predictions on the training data. Initially, a model is trained with all of the data 

having equal weights. This model is used for prediction on the training dataset and the 

data points which have been misclassified are given higher weight. So, while resampling 

the dataset the next time, more weight is given to these data points. The next model runs 
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on this newly resampled dataset and this process continues until there is no change in 

weights or all of the models present in the ensemble have been exhausted. One last 

method is to combine or average the weights generated for each of the models at the end 

of training and using the combined weights for performing predictions.   

 

So, there are different combinations of ensembles available to be used on the image 

captioning dataset and this thesis aims at analyzing the consequences of using some of 

these methods and comparing the results with the ones obtained on using a single model. 

 

5.2 Ensemble Learning Applied on Image Captioning 

Based on the different types of ensemble learning techniques explained in section 5.1, a 

few of these techniques have been chosen to experiment with on the image captioning 

problem in this thesis. This section describes each of these techniques in detail and 

explains how they have been applied on the defined problem.  

 

5.2.1 k-fold Cross Validation Ensemble 

This type of ensemble is generated when using different sets of training data to train 

different members of the ensemble. K-fold cross validation is the process used to 

understand how the machine learning algorithm responds on new data. The entire dataset 

is split into k-folds where k can be any integer value. If k is chosen to be 5, then the entire 

dataset is divided into 5-folds. Now, one of the folds is chosen to be a hold-out or test-

dataset and all the remaining folds are considered as training data. The model is trained 

on this data and tested on the holdout dataset. This process is repeated for k-times where 
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each fold gets a chance to act as a hold-out dataset. This approach can be used to generate 

an ensemble of models to achieve better results. As shown in Figure 25, the training 

dataset is split into k-folds and one of the folds is chosen as a validation fold. All the 

other folds are considered as training folds and a different model is used to train on each 

of these folds. The predictions from each of these folds are then combined for a final 

prediction. This process is repeated until each of the folds in the dataset act as a hold-out 

dataset. This gives the benefit of allowing different models to learn from different parts 

of the dataset so they can learn different patterns and finally the predictions combined to 

give a final more accurate prediction. 

 

Figure 25. Representation of k-fold Cross Validation Ensemble Process. Source: http://ra 

sbt.github.io/mlxtend/user_guide/regressor/StackingCVRegressor/ 

 

This approach has been applied on the image captioning problem. There are 7000 images 

available for training in the Flickr8k dataset. So, a k-fold cross validation dataset has 
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been generated on this set of 7000 images. Different sizes of cross validation datasets 

have been used to analyze the performance of all combinations of k-folds over image 

captioning.  

 

5.2.2 Bootstrap Aggregation Ensemble 

Bootstrap aggregation also comes under the category of ensemble learning by varying the 

training data size or composition for training different models. In this technique, a subset 

of the entire training dataset is chosen with replacement to train the model network. This 

approach is beneficial because it allows the models to expect a different density of 

samples in the training dataset when they are trained so they can reduce the 

generalization error. Figure 26 represents how the training data is resampled into           

m-subsets with replacement and used to train m different models to finally combine their 

predictions for a higher prediction accuracy. 
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Figure 26. Representation of Bootstrap Aggregation Ensemble Process. Source: Python 

machine learning by Sebastian Raschaka 

 

Implementing the bootstrap aggregation technique on the image captioning dataset has 

been pretty straight forward. Different number of samples have been generated from the 

training dataset with replacement and these samples are used to train different models 

based on the sample size. Finally, the predictions from each of the models have been 

combined to generate a final prediction. 

 

5.2.3 Hyperparameter Tuning 

This is not a separate ensemble technique but a way to generate various models that can 

be used with varying training data or whose predictions can be combined in different 

ways for better results. Hyperparameter tuning is a very important word used in the deep 

learning field. Every deep learning model involves the use of different parameters which 
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can be tuned to make it suitable to solve a particular problem. This can also be used to 

generate different models that will be part of the ensemble. So, by varying the different 

configurations of the different hyperparameters present in the model, a series of models 

that can perform well on the training dataset can be generated. Examples of these 

hyperparameters are number of layers in the network, number of neurons in each layer, 

activation function, learning rate, etc. This will generate a group of ensemble models 

which will have the capability of having minimal overlap of predictions among 

themselves.  

 

There are a few hyperparameters present in the image captioning model. They include, 

the feature extraction model, the number of layers in caption generation model, the 

activation function, learning rate, normalization factor, dropout layers and dropout rate. 

Different combinations of these parameters and the effect they have on prediction 

accuracy are explained in chapter 6.  

 

5.2.4 Boosting Ensemble 

Boosting is a technique more complicated than stacking. In this approach, every data 

point in the training dataset is assigned a weight value and a subset of it is sampled based 

on the weights to be used to train a model. Initially all data points are given equal 

weights. The error in prediction on the training dataset is calculated after training every 

model. The weights of these wrongly predicted data points are increased based on the 

error rate, so that they have a higher chance of being sampled in the next subset as shown 

in Figure 27. This process is repeated until all the ensemble members are trained. All 
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these models are used to predict on a new image and these predictions are combined 

using one of the output combination techniques mentioned in the next section. This way 

data points that have not been learned correctly are learned by the next model. Hence a 

combination of predictions from all models can be guaranteed to give better predictions 

than a single model as every model learns from different data points and patterns.  

 

 

Figure 27. Representation of Boosting Ensemble Process. Source: https: //hacker.co 

m/how-to-develop-a-robust-algorithm-c38e08f32201 

 

5.2.5 Output Prediction Combination Variations 

The process of making new predictions using the saved models and evaluating those 

predictions has been explained in section 4.4. This process is easy when there is only one 

model available to make predictions. But, when an ensemble of models is available, the 

process of prediction becomes complicated. The predictions of all ensemble model 

members have to be considered at every step so they can be combined in a form that can 

give better results. The ensembles on basic machine learning algorithms are combined 

using different techniques based on the problem being solved. This thesis explores three 

different approaches to combine predictions from each model. 
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It has been explained that every model predicts a probability of next occurrence values 

for every word in the vocabulary. One approach that has been used to combine these 

probabilities is to save the probabilities of the word which has the maximum probability 

according to every model. Then the word which has the highest probability among these 

chosen probabilities is selected as the final output. This combination metric name is 

abbreviated as MMP (Maximum of maximum probabilities) for the sake of easy 

representation. A code snippet of this method is shown in Figure 28. A second approach 

is to select one word from each of the predictions with highest probabilities and choose 

the word which has been selected by the largest number of models. This combination 

metric is abbreviated as MP (Maximum voting). A code snippet of this method is shown 

in Figure 29. The third approach is to average all probabilities generated by every 

ensemble member for a word and then pick the word with the highest averaged 

probability. This combination metric is abbreviated as AP (Average probability). A code 

snippet of this method is shown in Figure 30. 

 

Figure 28. Code Snippet of Maximum of Maximum Probabilities method. 
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Figure 29. Code Snippet of Maximum Voting Method 

 

 

Figure 30. Code Snippet of Average Probability Method 
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CHAPTER 6 

ANALYSIS 

This section gives a detailed analysis of the different ensemble learning techniques used 

on image captioning and the performance variations that each of these techniques have 

shown. It shows how an ensemble of models is better in making predictions when 

compared to a single model trained on the entire dataset. Not just their benefits over a 

single model, but a comparison among these models to define the best ensemble 

technique that can be used to make predictions for image caption generation.  

 

During analysis, feature extraction for all types of ensemble learning has been performed 

using the Resnet50 pre-trained model as it has shown to provide the best prediction 

results during experimentation in this thesis. Every ensemble of models and their results 

are shown in a single table representing the parameter combinations used in the model 

and the prediction accuracies. Since the model predictions are combined in three different 

approaches in this thesis, those figures are also shown in the same table. These tables are 

shown for all of the ensemble models that have been tested out in this thesis and finally a 

conclusion is made based on these analytics so as to say which combination of ensemble 

model techniques are best suitable for image captioning. 

 

6.1 Analysis of k-fold Cross Validation Ensemble 

Different combinations of k-fold cross validation datasets have been chosen to 

experiment with different model architectures to understand the effects of ensemble 

learning on these datasets. The tables show the parameters of these combinations of 
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models used and their individual bleu score accuracies along with the bleu scores of the 

whole ensemble. 

 

6.1.1 K-fold Ensemble Member Combination-1 

For this ensemble, the dataset is divided into 4-folds which requires 4 ensemble models 

to be trained on the 4 samples of datasets. Different combinations of two hyperparameters 

have been used in building the ensemble and shown in Table 3. Other hyperparameters 

namely the number of layers, number of neurons, learning rate and batches remain 

constant with values 6, 256, 0.001 and 256 respectively. 

 

Model RNN type Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM Rmsprop 0.558 0.336 0.243 0.123 

M-2 GRU Adam 0.593 0.370 0.280 0.156 

M-3 LSTM Adam 0.607 0.382 0.286 0.156 

M-4 GRU Rmsprop 0.597 0.360 0.258 0.133 

MMP N/A N/A 0.610 0.386 0.292 0.162 

MV N/A N/A 0.611 0.388 0.292 0.160 

AP N/A N/A 0.621 0.397 0.300 0.167 

 

Table 3. Model Types and the Corresponding Bleu Scores for k-fold Cross Validation  
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Figure 31. Bleu Score Comparision for k-fold Cross Validation Ensemble-1. 

It can be observed from Figure 31 that using ensemble-1 showed a significant increase in 

prediction accuracies over any of the individual models with all three combination 

methods. This shows that using combinations of LSTM and GRU model with different 

activations gives good results on image captioning. 

  

6.1.2 K-fold Ensemble Member Combination-2 

For this ensemble, the dataset is divided into 4-folds which requires 4 ensemble models 

to be trained on the 4 samples of datasets. Different combinations of two hyperparameters 

have been used in building the ensemble and shown in Table 4. Other hyperparameters 

namely the number of neurons, activation function, learning rate and batches remain 

constant with values 256, Adam, 0.001 and 256 respectively. 
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Model RNN type No. of 

layers 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM 6 0.590 0.374 0.280 0.153 

M-2 GRU 6 0.600 0.375 0.280 0.150 

M-3 SimpleRNN 6 0.603 0.378 0.282 0.157 

M-4 LSTM 8 0.584 0.363 0.270 0.145 

MMP N/A N/A 0.628 0.403 0.302 0.166 

MV N/A N/A 0.614 0.391 0.290 0.158 

AP N/A N/A 0.625 0.406 0.306 0.170 

 

Table 4. Model Types and the Corresponding Bleu Scores for k-fold Cross Validation 

Ensemble-2 

 

 

Figure 32. Bleu Score Comparision for k-fold Cross Validation Ensemble-2. 

It can be observed from Figure 32 that using ensemble-2 also showed a significant 

increase in prediction accuracies over any of the individual models with all three 
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combination methods. This shows that using a combination of different RNN models 

gives better results as they can capture different trends in the data. 

 

6.1.3 K-fold Ensemble Member Combination-3 

For this ensemble, the dataset is divided into 3-folds which requires 3 ensemble models 

to be trained on the 3 samples of datasets. Different combinations of two hyperparameters 

have been used in building the ensemble and shown in Table 5. Other hyperparameters 

namely the RNN type, number of neurons, learning rate and batches remain constant with 

values LSTM, 256, 0.001 and 256 respectively. 

 

Model No. of layers Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 8 Adagrad 0.472 0.211 0.098 0.020 

M-2 6 Adam 0.613 0.382 0.280 0.150 

M-3 6 Adagrad 0.595 0.357 0.257 0.129 

MMP N/A N/A 0.614 0.375 0.271 0.143 

MV N/A N/A 0.624 0.388 0.284 0.154 

AP N/A N/A 0.626 0.388 0.280 0.147 

 

Table 5. Model Types and the Corresponding Bleu Scores for k-fold Cross Validation 

Ensemble-3 
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Figure 33. Bleu Score Comparision for k-fold Cross Validation Ensemble-3. 

It can be observed from Figure 33 that using ensemble-3 showed very less increase in 

prediction accuracy with MV and AP methods over the individual models. But, using 

MMP in this case provided less accurate results in than Model-2. The reason for this 

could be the use of Adagrad activation function. This states that Adagrad might not be a 

good function to use for image captioning. Another reason could be the number of 

ensembles used. Using only 3 ensemble members leads to capturing less trend variations 

in data. 

 

Performing ensemble learning on k-folds of datasets has shown considerable amount of 

increase in accuracies when compared to the individual models. It can be understood 

from the charts provided that the first two ensembles performed better than any of their 

individual members by an amount of 1.6% in bleu-1 scores on an average. But, 
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ensemble-3 did not show significant increase in accuracy. The reason for this is the 

number of k-folds chosen to perform ensemble learning. While the first 2 ensembles have 

datasets divided into 4-folds, the last ensemble has dataset split into 3-folds. This shows 

that small number of ensemble members will not be able to capture the different trends in 

the dataset. Hence, chosen a mediocre number of models to participate as ensemble 

members would provide better results for the problem as can be seen from the charts 

provided. Other ensemble member combination tested out have been explained in 

Appendix A. 

 

6.2 Analysis of Bootstrap Aggregation Ensemble 

Bootstrap aggregation technique has been used to create subset samples from the dataset 

with replacements and used to train different models. The experimental results of 

applying bootstrap aggregation on image captioning have been presented in the tables 

below. The bleu score of the individual models and those of the combinations of these 

models have also be presented. 

 

6.2.1 Bootstrap Aggregation Ensemble Member Combination-1 

For this ensemble, the dataset is sampled 8 times with each sample having a size of 3000 

data points. Different combinations of three hyperparameters have been used in building 

the ensemble and shown in Table 6. Other hyperparameters namely the number of 

neurons, learning rate and batches remain constant with values 256, 0.001 and 256 

respectively. 
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Model RNN type No. of 

layers 

Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM 6 Adagrad 0.462 0.203 0.060 0.091 

M-2 LSTM 6 Adam 0.576 0.346 0.244 0.116 

M-3 GRU 6 Adam 0.594 0.360 0.260 0.131 

M-4 SimpleRNN 6 Adam 0.589 0.357 0.261 0.137 

M-5 LSTM 8 Adam 0.583 0.338 0.240 0.122 

M-6 GRU 8 Adam 0.583 0.350 0.256 0.134 

M-7 GRU 6 Rmsprop 0.603 0.362 0.259 0.134 

M-8 LSTM 6 Rmsprop 0.580 0.342 0.236 0.113 

MMP N/A N/A N/A 0.616 0.380 0.277 0.147 

MV N/A N/A N/A 0.626 0.383 0.276 0.143 

AP N/A N/A N/A 0.626 0.387 0.280 0.147 

 

Table 6. Model Types and the Corresponding Bleu Scores for Bootstrap Aggregation 

Ensemble-1 
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Figure 34. Bleu Score Comparision for Bootstrap Aggregation Ensemble-1. 

It can be observed from Figure 34 that using ensemble-1 showed a good increase in 

prediction accuracies over all of the individual models using all combination methods. 

From this first ensemble, a lot cannot be inferred but it can definitely be considered that 

bootstrap aggregation works well with image captioning. 

 

6.2.2 Bootstrap Aggregation Ensemble Member Combination-2 

For this ensemble, the dataset is sampled 8 times with each sample having a size of 3000 

data points. Different combinations of three hyperparameters have been used in building 

the ensemble and shown in Table 7. Other hyperparameters namely the number of 

neurons, learning rate and batches remain constant with values 256, 0.001 and 256 

respectively. 



  62 

 

Model RNN type No. of 

layers 

Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM 8 Adam 0.465 0.212 0.073 0.016 

M-2 LSTM 6 Adam 0.595 0.337 0.233 0.111 

M-3 GRU 6 Adam 0.601 0.368 0.270 0.143 

M-4 SimpleRNN 6 Adam 0.600 0.352 0.247 0.121 

M-5 LSTM 8 Rmsprop 0.565 0.312 0.215 0.101 

M-6 GRU 8 Rmsprop 0.587 0.334 0.232 0.111 

M-7 GRU 6 Rmsprop 0.574 0.338 0.240 0.119 

M-8 LSTM 6 Rmsprop 0.611 0.380 0.273 0.140 

MMP N/A N/A N/A 0.623 0.376 0.266 0.134 

MV N/A N/A N/A 0.623 0.373 0.267 0.139 

AP N/A N/A N/A 0.623 0.375 0.266 0.134 

 

Table 7. Model Types and the Corresponding Bleu Scores for Bootstrap Aggregation 

Ensemble-2 
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Figure 35. Bleu Score Comparision for Bootstrap Aggregation Ensemble-2. 

It can be observed from Figure 35 that using ensemble-2 showed an increase in prediction 

accuracies over all of the individual models using all combination methods. From the 

hyperparameters used in this ensemble it can be understood that using greater number of 

layers is affecting the combination prediction. 

 

6.2.3 Bootstrap Aggregation Ensemble Member Combination-3 

For this ensemble, the dataset is sampled 6 times with each sample having a size of 4000 

data points. Different combinations of three hyperparameters have been used in building 

the ensemble and shown in Table 8. Other hyperparameters namely the number of layers, 

number of neurons, learning rate and batches remain constant with values 6, 256, 0.001 

and 256 respectively. 
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Model RNN type Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM Adam 0.616 0.377 0.273 0.144 

M-2 GRU Adam 0.602 0.371 0.274 0.147 

M-3 SimpleRNN Adam 0.607 0.371 0.268 0.139 

M-4 LSTM Rmsprop 0.599 0.354 0.253 0.127 

M-5 GRU Rmsprop 0.596 0.361 0.260 0.135 

M-6 SimpleRNN Rmsprop 0.609 0.356 0.244 0.117 

MMP N/A N/A 0.631 0.390 0.280 0.146 

MV N/A N/A 0.620 0.384 0.282 0.151 

AP N/A N/A 0.626 0.388 0.282 0.148 

 

Table 8. Model Types and the Corresponding Bleu Scores for Bootstrap Aggregation 

Ensemble-3 
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Figure 36. Bleu Score Comparision for Bootstrap Aggregation Ensemble-3. 

It can be observed from Figure 36 that using ensemble-3 showed good increase in 

prediction accuracies over all of the individual models using all combination methods. It 

can be inferred from the result that using combinations of different RNN models with the 

adam and rmsprop activations improves the performance of image captioning. 

 

It can be concluded that using bootstrap aggregation ensemble technique will show 

significant increase in prediction accuracies with using the right combination of models. 

But, using a greater number of layers would affect the performance of the overall 

ensemble. Hence, a right combination of RNN models with activations having a smaller 

number of layers would give an increase in accuracy in the blue-1 score. The three 

models tested in this section showed an average increase of 1.7% in the bleu-1 score. 
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6.3 Analysis of Boosting 

As explained in section 5.2.4, in boosting weights are assigned to each data point and the 

weights keep changing as more models are trained on them and error in predictions 

calculated. A series of ensemble combinations have been tested out with the bleu scores 

of all of the ensembles presented in this section. 

 

6.3.1 Boosting Ensemble Member Combination-1  

For this ensemble, the dataset is sampled 4 times with each sample having a size of 3000 

data points. Different combinations of three hyperparameters have been used in building 

the ensemble and shown in Table 9. Other hyperparameters namely the RNN type, 

number of neurons and batches remain constant with values LSTM, 256 and 256 

respectively. 

 

Model No. of 

layers 

Activation 

function 

Learning 

rate 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 6 Adam 0.001 0.612 0.373 0.275 0.142 

M-2 6 Adam 0.0001 0.510 0.314 0.224 0.108 

M-3 10 Rmsprop 0.001 0.568 0.298 0.194 0.084 

M-4 6 Rmsprop 0.001 0.610 0.368 0.261 0.128 

MMP N/A N/A N/A 0.630 0.390 0.280 0.143 

MV N/A N/A N/A 0.621 0.378 0.272 0.140 

AP N/A N/A N/A 0.625 0.386 0.278 0.143 

 

Table 9. Model Types and the Corresponding Bleu Scores for Boosting Ensemble-1. 
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Figure 37. Bleu Score Comparision for Boosting Ensemble-1. 

It can be observed from Figure 37 that using ensemble-1 showed an increase in prediction 

accuracies over all of the individual models using all combination methods. A lot cannot 

be inferred from this ensemble as it few ensemble members with random variations in 

hyperparameters. 

 

6.3.2 Boosting Ensemble Member Combination-2 

For this ensemble, the dataset is sampled 6 times with each sample having a size of 4000 

data points. Different combinations of three hyperparameters have been used in building 

the ensemble and shown in Table 10. Other hyperparameters namely the number of 

neurons and batches remain constant with values 256 and 256 respectively. 
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Model RNN 

type 

No. of 

layers 

Activation 

function 

Learnin

g rate 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 Simple 

RNN 

6 Adam 0.001 0.593 0.358 0.260 0.135 

M-2 LSTM 6 Adam 0.001 0.611 0.363 0.255 0.130 

M-3 GRU 6 Adam 0.001 0.595 0.365 0.270 0.143 

M-4 LSTM 6 Adam 0.0001 0.455 0.201 0.064 0.012 

M-5 LSTM 10 Rmsprop 0.001 0.576 0.270 0.184 0.072 

M-6 LSTM 6 Rmsprop 0.001 0.594 0.354 0.255 0.130 

MMP N/A N/A N/A N/A 0.628 0.380 0.271 0.140 

MV N/A N/A N/A N/A 0.618 0.380 0.275 0.146 

AP N/A N/A N/A N/A 0.593 0.358 0.260 0.135 

 

Table 10. Model Types and the Corresponding Bleu Scores for Boosting Ensemble-2. 

 

 

Figure 38. Bleu Score Comparision for Boosting Ensemble-2. 
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It can be observed from Figure 38 that using ensemble-2 showed an increase in prediction 

accuracies over all of the individual models using all combination methods. This shows 

that using different combinations of activations and learning rates with the same RNN 

type could result in the models capturing different trends in data. 

 

6.3.3 Boosting Ensemble Member Combination-3 

For this ensemble, the dataset is sampled 7 times with each sample having a size of 4000 

data points. Different combinations of four hyperparameters have been used in building 

the ensemble and shown in Table 11. Other hyperparameters namely the number of 

layers, number of neurons, learning rate and batches remain constant with values 6, 256, 

0.001 and 256 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 



  70 

Model RNN type Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 SimpleRNN Adam 0.607 0.380 0.278 0.148 

M-2 LSTM Adam 0.591 0.366 0.270 0.140 

M-3 GRU Adam 0.599 0.367 0.266 0.140 

M-4 GRU Adam  0.511 0.213 0.122 0.044 

M-5 LSTM Adam 0.532 0.234 0.134 0.043 

M-6 LSTM Rmsprop 0.561 0.335 0.240 0.120 

M-7 LSTM Adam 0.542 0.244 0.144 0.057 

MMP N/A N/A 0.618 0.374 0.273 0.142 

MV N/A N/A 0.629 0.391 0.284 0.151 

AP N/A N/A 0.634 0.400 0.287 0.151 

 

Table 11. Model Types and the Corresponding Bleu Scores for Boosting Ensemble-3. 

 

 

Figure 39. Bleu Score Comparision for Boosting Ensemble-3. 
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It can be observed from Figure 39 that using ensemble-3 showed an increase in prediction 

accuracies over all of the individual models using all combination methods. This shows 

that using different combinations of activations with the different RNN types would also 

result in higher prediction accuracies. 

 

The boosting ensemble technique has shown the best results among the three techniques 

that have been analyzed out in this thesis. All combinations methods have shown better 

performance than the individual models by 2.1% increase in bleu-1 scores on an average. 

But, one thing can be inferred from the models used for boosting. Using a constant 

learning rate of 0.001 for all ensemble members has shown better results with a 100% 

guarantee.  

 

6.4 Sample Captions Generated for Images in Test Dataset 

Example - 1 

 

Figure 40. Sample Image in Test Dataset-1 

Best Model – “two young boys are playing on the grass.” 

k-fold Ensemble – “boy in blue shirt is running in the grass.” 

Bootstrap Aggregation Ensemble – “boy in red shirt is running on the grass.” 
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Boosting Ensemble – “boy in blue shirt is running on the grass.” 

 

Example – 2 

 

Figure 41. Sample Image in Test Dataset-2 

Best Model – “skier is walking through the snow.” 

k-fold Ensemble – “skier is skiing down snowy hill.” 

Bootstrap Aggregation Ensemble – “skier is in the snow.” 

Boosting Ensemble – “man in red jacket is skiing down snowy hill.” 

 

Example – 3 

 

Figure 42. Sample Image in Test Dataset-3 
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Best Model – “man in red shirt is jumping down ramp.” 

k-fold Ensemble – “skateboarder is jumping off of the railing.” 

Bootstrap Aggregation Ensemble – “man is jumping down the wall.” 

Boosting Ensemble – “skateboarder is jumping off ramp.” 

 

Example – 4 

 

Figure 43. Sample Image in Test Dataset-4 

Best Model – “man in yellow helmet is riding bike on the road.” 

k-fold Ensemble – “motorcycle racer is riding motorcycle.” 

Bootstrap Aggregation Ensemble – “man in red helmet is riding the bike.” 

Boosting Ensemble – “man in red and white helmet is riding bike on the track.” 
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Example – 5 

 

Figure 44. Sample Image in Test Dataset-5 

Best Model – “man with sunglasses and sunglasses.” 

k-fold Ensemble – “man in black shirt and black hat is standing in front of an old 

building.” 

Bootstrap Aggregation Ensemble – “man in black shirt and black shirt is standing on the 

street.” 

Boosting Ensemble – “man in black shirt is standing on the street.” 
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6.5 Combined Analysis 

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 

Best Model 0.616 0.377 0.273 0.144 

k-fold 0.628 0.403 0.302 0.166 

Bootstrap 
Aggregation 

0.631 0.390 0.280 0.146 

Boosting 0.634 0.400 0.287 0.151 

 

Table 12. Comparison of all Ensemble Methods with the Best Individual Model. 

 

It can be observed from Table 12 that all three ensemble techniques have clearly shown 

improvements in prediction accuracies over the best individual model. Among these 

ensembles, boosting has shown the highest increase. The captions generated for images in 

the training dataset by the ensemble models also clearly show the generation of better 

captions. 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

The idea of using ensemble learning techniques on the image captioning problem has 

been proven to be advantageous over using a single model. With the results presented in 

the analysis section, it can be clearly understood that forming an ensemble with the right 

combination of models would show significant improvements in performance. As the 

traditional technique followed to solve image captioning has been established, there is a 

lot of research going on in making improvements to this existing technique. But, using 

ensemble learning is an already existing and efficient technique that is demonstrated to 

work well with deep learning models. Hence, this justifies the results obtained with the 

use of ensemble learning on image captioning. 

 

All the three ensemble learning techniques used in this thesis promised better predictions 

in almost every case. On an average all the techniques showed an increase in overall 

accuracy of 2.2% over the best individual model in the ensemble. An increase in 

accuracies by 2.2% is considered very crucial for deep learning models. Though training 

many models is computationally expensive when compared to training just one model, 

the use of a sampled dataset for training each model reduces this expense by a huge 

amount. Hence, the compute cost would be very close to that of training a single model 

on the entire dataset. Also, using sampled datasets is a crucial part of ensemble learning 

which would result in faster training of the models. Choosing the right number of 

ensemble members to balance the computational cost with increase in accuracies is 

critical in this case. From the analysis done in this thesis, using 4-5 ensemble members 
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and training each of the members with 25% of the entire dataset would be sufficient to 

attain significant increase in prediction accuracies. 

 

Ensemble learning thus helped in solving the problem of high variance occurring in deep 

neural networks. Different models used as ensemble members learned different patterns 

from the training dataset. Though each of them individually could not generalize well on 

the data, when combined together had the advantage of knowing diverse patterns in data 

learned by each of them. Another advantage here is using a sampled dataset. All models 

could observe only subsets of the training data and so each of them would generate varied 

predictions. These diverse predictions when combined in a standard way generated the 

desired results, thus decreasing the problem of high variance. 

 

For the future, different variations to the traditional model for solving image captioning 

can be used as model members for the ensemble. This way a more differing set of 

patterns can be learned by different models which when combined would result in giving 

even better predictions. Another improvement could be using a larger dataset and training 

the ensemble models with sampled datasets of the training set. This would help the 

different models to learn and capture different patterns from subsets and together make 

stronger predictions. Also, image captioning is a sequence to sequence modeling 

problem, and it has been proved that ensemble learning works well on this problem. This 

gives scope for trying out ensemble learning on other sequence to sequence problems like 

speech recognition, language translation, video captioning, etc. 
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APPENDIX A 

ADDITIONAL ENSEMBLE MEMBER COMBINATIONS 
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I. K-fold Ensemble Member Combination-4 

For this ensemble, the dataset is divided into 3-folds which requires 3 

ensemble models to be trained on the 3 samples of datasets. Different 

combinations of RNN types have been used in building the ensemble and 

shown in Table 13. Other hyperparameters namely the number of layers, 

number of neurons, activation function, learning rate and batches remain 

constant with values 8, 256, Rmsprop, 0.001 and 256 respectively. 

Model RNN type Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM 0.571 0.319 0.212 0.098 

M-2 GRU 0.600 0.337 0.227 0.105 

M-3 SimpleRNN 0.586 0.338 0.233 0.111 

MMP N/A 0.598 0.339 0.228 0.108 

MV N/A 0.599 0.345 0.237 0.113 

AP N/A 0.600 0.343 0.234 0.109 

 

Table 13. Model Types and the Corresponding Bleu Scores for k-fold Cross 
Validation Ensemble-4 
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Figure 45. Bleu Score Comparision for k-fold Cross Validation Ensemble-4. 

It can be observed from Figure 45 that using ensemble-4 showed an 

overall increase in prediction accuracies over any of the individual models 

with all three combination methods. But this increase is not very 

significant and the reason for this could be that only a different RNN 

model is used with all other hyperparameter remaining constant. The 

other reason is the same as for ensemble-3 i.e. the number of ensemble 

members being very small. 

 

II. K-fold Ensemble Member Combination-5 

For this ensemble, the dataset is divided into 3-folds which requires 3 

ensemble models to be trained on the 3 samples of datasets. Different 
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combinations of the RNN types have been used in building the ensemble 

and shown in Table 14. Other hyperparameters namely the number of 

layers, number of neurons, activation function, learning rate and batches 

remain constant with values 8, 256, Adam, 0.001 and 256 respectively. 

 

Model RNN type Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 LSTM 0.598 0.341 0.230 0.108 

M-2 GRU 0.566 0.326 0.233 0.117 

M-3 SimpleRNN 0.593 0.359 0.264 0.142 

MMP N/A 0.614 0.368 0.267 0.143 

MV N/A 0.605 0.350 0.243 0.120 

AP N/A 0.608 0.364 0.260 0.135 

 
Table 14. Model Types and the Corresponding Bleu Scores for k-fold Cross 
Validation Ensemble-5 
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Figure 46. Bleu Score Comparision for k-fold Cross Validation Ensemble-5. 

It can be observed from Figure 46 that using ensemble-5 showed an 

increase in prediction accuracies using only MMP and AP over any of the 

individual models. But this increase is not very significant and the reasons 

for this could be the same as the reasons mentioned for ensemble-4 i.e. 

varying only the RNN models and using less ensemble members. 

 

III. Bootstrap Aggregation Ensemble Member Combination-4 

For this ensemble, the dataset is sampled 5 times with each sample 

having a size of 3000 data points. Different combinations of three 

hyperparameters have been used in building the ensemble and shown in 

Table 15. Other hyperparameters namely the RNN type, number of 
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neurons, learning rate and batches remain constant with values LSTM, 

256, 0.001 and 256 respectively. 

 

Model No. of 

layers 

Activation 

function 

Bleu-1 Bleu-2 Bleu-3 Bleu-4 

M-1 6 Adagrad 0.474 0.205 0.060 0.092 

M-2 8 Adagrad 0.463 0.204 0.085 0.020 

M-3 6 Adam 0.580 0.351 0.257 0.133 

M-4 6 Rmsprop 0.600 0.364 0.263 0.136 

M-5 8 Adam 0.581 0.344 0.247 0.124 

MMP N/A N/A 0.597 0.356 0.254 0.130 

MV N/A N/A 0.607 0.369 0.270 0.139 

AP N/A N/A 0.605 0.371 0.268 0.137 

 
Table 15. Model Types and the Corresponding Bleu Scores for Bootstrap 
Aggregation Ensemble-4 
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Figure 47. Bleu Score Comparision for Bootstrap Aggregation Ensemble-4. 

It can be observed from Figure 47 that using ensemble-4 showed an 

increase in prediction accuracies with MV and AP over the individual 

models. But, using MMP gave bad result when compared to Model 4. 

Since Adagrad is used for activations in this ensemble as well, the 

prediction accuracies have gone down for the same reasons as 

mentioned in k-fold ensemble. 

 

IV. Bootstrap Aggregation Ensemble Member Combination-5  

For this ensemble, the dataset is sampled 6 times with each sample 

having a size of 4000 data points. Different combinations of three 

hyperparameters have been used in building the ensemble and shown in 

Table 16. Other hyperparameters namely the number of layers, number 
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of neurons, learning rate and batches remain constant with values 8, 256, 

0.001 and 256 respectively. 

Model RNN type Activation 

function 

Bleu-1 Bleu-

2 

Bleu-

3 

Bleu-4 

M-1 LSTM Adam 0.577 0.331 0.235 0.117 

M-2 GRU Adam 0.588 0.324 0.215 0.095 

M-3 SimpleRNN Adam 0.560 0.334 0.245 0.130 

M-4 LSTM Rmsprop 0.598 0.343 0.236 0.112 

M-5 GRU Rmsprop 0.575 0.327 0.228 0.105 

M-6 SimpleRNN Rmsprop 0.585 0.329 0.227 0.110 

MMP N/A N/A 0.583 0.339 0.243 0.123 

MV N/A N/A 0.603 0.351 0.246 0.121 

AP N/A N/A 0.603 0.356 0.253 0.127 

 
Table 16. Model Types and the Corresponding Bleu Scores for Bootstrap 
Aggregation Ensemble-5 
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Figure 48. Bleu Score Comparision for Bootstrap Aggregation Ensemble-5. 

It can be observed from Figure 48 that using ensemble-5 showed an 

increase in prediction accuracies over all of the individual models using all 

combination methods. It can be inferred from the result that using 

combinations of different RNN models with the adam and rmsprop 

activations improves the performance of image captioning. But using a 

greater number of layers effected the performance of bootstrap 

aggregation as opposed to using a smaller number of layers. 

 

V. Boosting Ensemble Member Combination-4 

For this ensemble, the dataset is sampled 7 times with each sample 

having a size of 3000 data points. Different combinations of three 

hyperparameters have been used in building the ensemble and shown in 
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Table 17. Other hyperparameters namely the RNN type, number of 

neurons and batches remain constant with values LSTM, 256 and 256 

respectively. 

Model No. 

of 

layers 

Activati-

on 

function 

Learn-

ing 

rate 

Bleu-

1 

Bleu-

2 

Bleu-

3 

Bleu-

4 

M-1 6 Adagrad 0.001 0.450 0.207 0.104 0.028 

M-2 6 Rmspro

p 

0.001 0.603 0.356 0.250 0.120 

M-3 8 Rmspro

p 

0.0001 0.488 0.233 0.123 0.034 

M-4 6 Adam 0.0001 0.500 0.313 0.227 0.111 

M-5 10 Rmspro

p 

0.001 0.564 0.315 0.219 0.101 

M-6 8 Adam 0.001 0.582 0.352 0.256 0.132 

M-7 8 Adagrad 0.001 0.458 0.206 0.096 0.022 

MMP N/A N/A N/A 0.624 0.373 0.260 0.130 

MV N/A N/A N/A 0.583 0.357 0.258 0.134 

AP N/A N/A N/A 0.560 0.340 0.243 0.121 

 
Table 17. Model Types and the Corresponding Bleu Scores for Boosting 
Ensemble-4. 
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Fig 49. Bleu Score Comparision for Boosting Ensemble-4. 

It can be observed from Figure 49 that using ensemble-4 showed an 

increase in prediction accuracies with MMP and MV over the individual 

models. But there is a significant decrease in prediction accuracy with AP 

when compared to models 2 and 6. The reason for this is again the use of 

adagrad activation. 

 

VI. Boosting Ensemble Member Combination-5 

For this ensemble, the dataset is sampled 8 times with each sample 

having a size of 3000 data points. Different combinations of three 

hyperparameters have been used in building the ensemble and shown in 

Table 18. Other hyperparameters namely the RNN type, number of 
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neurons and batches remain constant with values LSTM, 256 and 256 

respectively. 

 

Model No. of 

layers 

Activat-

ion 

function 

Learn-

ing rate 

Bleu-

1 

Bleu-

2 

Bleu-

3 

Bleu-

4 

M-1 6 Adagrad 0.001 0.460 0.213 0.100 0.026 

M-2 6 Adam 0.001 0.585 0.355 0.255 0.130 

M-3 5 Rmspro

p 

0.0001 0.433 0.191 0.093 0.137 

M-4 6 Adam 0.001 0.573 0.364 0.266 0.137 

M-5 10 Rmspro

p 

0.001 0.593 0.318 0.201 0.083 

M-6 6 Rmspro

p 

0.001 0.581 0.350 0.253 0.131 

M-7 5 Adagrad 0.001 0.461 0.208 0.083 0.017 

M-8 6 Rmspro

p 

0.001 0.596 0.351 0.250 0.123 

MMP N/A N/A N/A 0.617 0.366 0.255 0.126 

MV N/A N/A N/A 0.613 0.376 0.273 0.140 

AP N/A N/A N/A 0.600 0.368 0.262 0.133 

 
Table 18. Model Types and the Corresponding Bleu Scores for Boosting 
Ensemble-5. 
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Fig 50. Bleu Score Comparision for Boosting Ensemble-5. 

It can be observed from Figure 50 that using ensemble-5 showed an 

increase in prediction accuracies over all of the individual models using all 

combination methods. This shows that using different combinations of 

activations with the same RNN type could also result in the models 

capturing different trends in data. 
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APPENDIX B 

APPLICATION SOURCE CODE  



  94 

I. Preparing Text (Python source code) 

def clean_descriptions(descriptions): 

    translationTable = string.maketrans('', '') 

    for key, desc_list in descriptions.items(): 

        for i in range(len(desc_list)): 

            desc = desc_list[i] 

            desc = desc.split() 

            desc = [word.lower() for word in desc] 

            desc = [w.translate(translationTable) for w in desc] 

            desc = [word for word in desc if len(word)>1] 

            desc = [word for word in desc if word.isalpha()] 

            desc_list[i] =  ' '.join(desc) 

    return desc_list 

 

II. Feature Extraction (Python source code) 

# Extract features vectors from a pre-trained model 

def extract_features(directory): 

    model = ResNet50() 

    model.layers.pop() 

    model = Model(inputs=model.inputs, outputs=model.layers[-1].output) 

    features = dict() 

    for image_name in listdir(directory): 
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        filename = directory + '/' + image_name 

        image = load_img(filename, target_size=(224, 224)) 

        image = img_to_array(image) 

        image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) 

        image = preprocess_input(image) 

        feature_vector = model.predict(image, verbose=0) 

        image_id = image_name.split('.')[0] 

        features[image_id] = feature_vector 

    return features 

 

# Extract feature vectors for every image and dump into a pickle file 

directory = 'Flicker8k_Dataset' 

extracted_features = extract_features(directory) 

dump(extracted_features, open('resnetfeatures.pkl', 'wb')) 

 

III. K-fold Ensemble (Python source code) 

# load a file into memory 

def load_file(filename): 

    file = open(filename, 'r') 

    text = file.read() 

    file.close() 

    return text 
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# load a pre-defined list of photo identifiers of training set 

def load_trainset(filename): 

    doc = load_file(filename) 

    identifier_list = list() 

    for l in doc.split('\n'): 

        if len(l) < 1: 

            continue 

        identifier = l.split('.')[0] 

        identifier_list.append(identifier) 

    return (identifier_list) 

 

# load all descriptions into memory 

def load_descriptions(filename, identifiers): 

    doc = load_file(filename) 

    descriptions = dict() 

    for l in doc.split('\n'): 

        tokens = l.split() 

        image_id, image_desc = tokens[0], tokens[1:] 

        if image_id in identifiers: 

            if image_id not in descriptions: 

                descriptions[image_id] = list() 

            desc = 'startword ' + ' '.join(image_desc) + ' endword' 

            descriptions[image_id].append(desc) 
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    return descriptions 

 

# load features of images 

def load_image_features(filename, identifiers): 

    features = load(open(filename, 'rb')) 

    all_features = {k: features[k] for k in identifiers} 

    return all_features 

 

# covert a dictionary of descriptions to list of descriptions 

def convert_to_lines(descriptions): 

    desc_list = list() 

    for key in descriptions.keys(): 

        [desc_list.append(d) for d in descriptions[key]] 

    return desc_list 

 

# fit a tokenizer for the caption descriptions 

def create_tokenizer(descriptions): 

    lines = convert_to_lines(descriptions) 

    tokenizer = Tokenizer() 

    tokenizer.fit_on_texts(lines) 

    return tokenizer 

 

# create input output sequences for training 
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def create_sequences(tokenizer, max_length, descriptions, photos): 

    X1, X2, y = list(), list(), list() 

    for key, desc_list in descriptions.items(): 

        for desc in desc_list: 

            seq = tokenizer.texts_to_sequences([desc])[0] 

            for i in range(1, len(seq)): 

                in_seq, out_seq = seq[:i], seq[i] 

                in_seq = pad_sequences([in_seq], maxlen=max_length)[0] 

                out_seq = to_categorical([out_seq], num_classes=vocab_size)[0] 

                X1.append(photos[key][0]) 

                X2.append(in_seq) 

                y.append(out_seq) 

    return array(X1), array(X2), array(y) 

 

# define the captioning model 

def define_model0(vocab_size, max_length): 

    adam = optimizers.Adam(lr = 0.001, decay = 0.0, clipnorm = 1.) 

    inputs1 = Input(shape=(2048,)) 

    l1 = Dropout(0.5)(inputs1) 

    l2 = Dense(256, activation='relu')(l1) 

    l3 = Dense(256, activation='relu')(l2) 

    inputs2 = Input(shape=(max_length,)) 

    l4 = Embedding(vocab_size, 256, mask_zero=True)(inputs2) 
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    l5 = Dropout(0.5)(l4) 

    l6 = SimpleRNN(256)(l5) 

    #se4 = Activation('softmax')(se3) 

    decoder1 = add([l3 , l6]) 

    decoder2 = Dense(256, activation='relu')(decoder1) 

    outputs = Dense(vocab_size, activation='softmax')(decoder2) 

    model = Model(inputs=[inputs1, inputs2], outputs=outputs) 

    model.compile(loss='categorical_crossentropy', optimizer = adam, metrics = 

['accuracy']) 

    print(model.summary()) 

    return model 

 

# define the captioning model 

def define_model1(vocab_size, max_length): 

    adam = optimizers.Adam(lr = 0.001, decay = 0.0, clipnorm = 1.) 

    inputs1 = Input(shape=(2048,)) 

    l1 = Dropout(0.5)(inputs1) 

    l2 = Dense(256, activation='relu')(l1) 

    l3 = Dense(256, activation='relu')(l2) 

    inputs2 = Input(shape=(max_length,)) 

    l4 = Embedding(vocab_size, 256, mask_zero=True)(inputs2) 

    l5 = Dropout(0.5)(l4) 

    l6 = LSTM(256)(l5) 
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    decoder1 = add([l3 , l6]) 

    decoder2 = Dense(256, activation='relu')(decoder1) 

    outputs = Dense(vocab_size, activation='softmax')(decoder2) 

    model = Model(inputs=[inputs1, inputs2], outputs=outputs) 

    model.compile(loss='categorical_crossentropy', optimizer = adam, metrics = 

['accuracy']) 

    print(model.summary()) 

    #plot_model(model, to_file='model.png', show_shapes=True) 

    return model 

 

# define the captioning model 

def define_model2(vocab_size, max_length): 

    adam = optimizers.Adam(lr = 0.001, decay = 0.0, clipnorm = 1.) 

    inputs1 = Input(shape=(2048,)) 

    l1 = Dropout(0.5)(inputs1) 

    l2 = Dense(256, activation='relu')(l1) 

    l3 = Dense(256, activation='relu')(l2) 

    inputs2 = Input(shape=(max_length,)) 

    l4 = Embedding(vocab_size, 256, mask_zero=True)(inputs2) 

    l5 = Dropout(0.5)(l4) 

    l6 = GRU(256)(l5) 

    decoder1 = add([l3 , l6]) 

    decoder2 = Dense(256, activation='relu')(decoder1) 
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    outputs = Dense(vocab_size, activation='softmax')(decoder2) 

    model = Model(inputs=[inputs1, inputs2], outputs=outputs) 

    model.compile(loss='categorical_crossentropy', optimizer = adam, metrics = 

['accuracy']) 

    print(model.summary()) 

    #plot_model(model, to_file='model.png', show_shapes=True) 

    return model 

 

# train dataset 

filename = 'Flickr8k_text/Flickr_8k.trainImages.txt' 

train = load_trainset(filename) 

train = np.array(train) 

train_descriptions = load_descriptions('descriptions.txt', train) 

tokenizer = create_tokenizer(train_descriptions) 

vocab_size = len(tokenizer.word_index) + 1 

# determine the maximum sequence length 

max_length = 34 

print('Description Length: %d' % max_length) 

 

kfolds = KFold(3, True) 

count = 0 

for train_x, test_x in kfolds.split(train): 

    train_x, test_x = train[train_x], train[test_x] 
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    train_descriptions = load_descriptions('descriptions.txt', train_x) 

    train_features = load_image_features('featuresresnet.pkl', train_x) 

    X1train, X2train, ytrain = create_sequences(tokenizer, max_length, 

train_descriptions, train_features) 

     

    test_descriptions = load_descriptions('descriptions.txt', test_x) 

    test_features = load_image_features('featuresresnet.pkl', test_x) 

    X1test, X2test, ytest = create_sequences(tokenizer, max_length, 

test_descriptions, test_features) 

     

    if(count == 0): 

        model = define_model0(vocab_size, max_length) 

        filepath = 'model-kfold-' + str(count) + '.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, 

verbose=2, callbacks=[checkpoint], validation_data=([X1test, X2test], ytest), 

shuffle=True) 

        

    if(count == 1): 

        model = define_model1(vocab_size, max_length) 

        filepath = 'model-kfold-' + str(count) + '.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 
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        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, 

verbose=2, callbacks=[checkpoint], validation_data=([X1test, X2test], ytest), 

shuffle=True) 

     

    if(count == 2): 

        model = define_model2(vocab_size, max_length) 

        filepath = 'model-kfold-' + str(count) + '.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, 

verbose=2, callbacks=[checkpoint], validation_data=([X1test, X2test], ytest), 

shuffle=True) 

         

    count = count + 1 

 

IV. Bootstrap Aggregation Ensemble (Python source code) 

def random_sampling(identifiers): 

    identifiers = array(list(identifiers)) 

    p = np.random.choice(identifiers, 4000, replace = True) 

    return p 

  

 # train dataset 

filename = 'Flickr8k_text/Flickr_8k.trainImages.txt' 

train = load_trainset(filename) 
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train = np.array(train) 

train_descriptions = load_descriptions('descriptions.txt', train) 

tokenizer = create_tokenizer(train_descriptions) 

vocab_size = len(tokenizer.word_index) + 1 

# determine the maximum sequence length 

max_length = 34 

print('Description Length: %d' % max_length) 

 

#load validation dataset 

filename = 'Flickr8k_text/Flickr_8k.devImages.txt' 

val = load_testset(filename) 

val_descriptions = load_descriptions('descriptions.txt', val) 

val_features = load_image_features('featuresresnet.pkl', val) 

X1val, X2val, yval = create_sequences(tokenizer, max_length, val_descriptions, 

val_features) 

 

for i in range(3): 

    train_sampled = random_sampling(train) 

    train_descriptions = load_descriptions('descriptions.txt', train_sampled) 

    train_features = load_image_features('featuresresnet.pkl', train_sampled) 

    print('Photos: train=%d' % len(train_features)) 

    X1train, X2train, ytrain = create_sequences(tokenizer, max_length, train_descriptions, 

train_features) 



  105 

     

    # define the model 

    if(i == 0): 

        model = define_model0(vocab_size, max_length) 

        filepath = 'model-batches200-' + str(i) + '-ep{epoch:03d}-loss{loss:.3f}-

val_loss{val_loss:.3f}.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        # fit model 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, verbose=2, 

callbacks=[checkpoint], validation_data=([X1val, X2val], yval), shuffle=True) 

         

    elif(i == 1): 

        model = define_model1(vocab_size, max_length) 

        filepath = 'model-batches200-' + str(i) + '-ep{epoch:03d}-loss{loss:.3f}-

val_loss{val_loss:.3f}.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        # fit model 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, verbose=2, 

callbacks=[checkpoint], validation_data=([X1val, X2val], yval), shuffle=True) 

         

    elif(i == 2): 

        model = define_model2(vocab_size, max_length) 
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        filepath = 'model-batches200-' + str(i) + '-ep{epoch:03d}-loss{loss:.3f}-

val_loss{val_loss:.3f}.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        # fit model 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, verbose=2, 

callbacks=[checkpoint], validation_data=([X1val, X2val], yval), shuffle=True) 

         

V. Boosting Ensemble (Python source code) 

# load a file into memory 

def load_file(filename): 

    file = open(filename, 'r') 

    text = file.read() 

    file.close() 

    return text 

# load a pre-defined list of photo identifiers of training set amd define weights 

def load_trainset(filename): 

    doc = load_file(filename) 

    identifier_list = list() 

    for l in doc.split('\n'): 

        if len(l) < 1: 

            continue 

        identifier = l.split('.')[0] 
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        identifier_list.append(identifier) 

    norm = len(identifier_list) 

    train_weights  = dict() 

    for i in range(len(identifier_list)): 

        train_weights[identifier_list[i]] = 1.0 / norm 

    return (set(identifier_list), train_weights) 

 

#Sampling the dataset based on weights 

def weight_sampling(identifiers, train_weights): 

    identifiers = array(list(identifiers)) 

    train_weights = list(train_weights.values()) 

    p = np.random.choice(identifiers, 3000, p = train_weights, replace = False) 

    return p 

 

# generate a description for an image 

def generate_desc(model, tokenizer, photo, max_length): 

    word_seq = 'startword' 

    for i in range(max_length): 

        sequence = tokenizer.texts_to_sequences([word_seq])[0] 

        sequence = pad_sequences([sequence], maxlen=34) 

        yhat = model.predict([photo,sequence], verbose=0) 

        yhat = argmax(yhat) 
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        word = word_for_id(yhat, tokenizer) 

        if word is None: 

            break 

        word_seq += ' ' + word 

        if word == 'endword': 

            break 

    return in_text 

 

# evaluate the model 

def evaluate_model(model, descriptions, photos, tokenizer, max_length): 

    actual, inference = list(), list() 

    reference, predicted = dict(), dict() 

    for key, desc_list in descriptions.items(): 

        yhat = generate_desc(model, tokenizer, photos[key], max_length) 

        references = [d.split() for d in desc_list] 

        actual.append(references) 

        inference.append(yhat.split()) 

        for d in desc_list: 

            reference[key] = d 

        predicted[key] = yhat 

    with open("reference.txt", "w") as output: 

        for key, item in reference.items(): 
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            output.write("%s\t%s\n" % (key, item)) 

    with open("predicted.txt", "w") as output: 

        for key, item in predicted.items(): 

            output.write("%s\t%s\n" % (key, item)) 

    print('BLEU-1: %f' % corpus_bleu(actual, inference, weights=(1.0, 0, 0, 0))) 

    print('BLEU-2: %f' % corpus_bleu(actual, inference, weights=(0.5, 0.5, 0, 0))) 

    print('BLEU-3: %f' % corpus_bleu(actual, inference, weights=(0.3, 0.3, 0.3, 0))) 

    print('BLEU-4: %f' % corpus_bleu(actual, inference, weights=(0.25, 0.25, 0.25, 

0.25))) 

    return (reference, predicted) 

 

def change_weights(train, train_weights, references, predicted): 

    bleu_scores = dict() 

    for key, item in references.items(): 

        bleu = sentence_bleu(list(references[key]), list(predicted[key]), weights = 

(0.25, 0.25, 0.25, 0.25), smoothing_function = SmoothingFunction().method1) 

        new_weight = train_weights[key] + 1 - bleu 

        train_weights[key] = new_weight 

        bleu_scores[key] = bleu 

    with open("bleuscores.txt", "w") as output: 

        for key, item in bleu_scores.items(): 

            output.write("%s\t%s\n" % (key, item)) 
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    norm = sum(train_weights.values()) 

    for key, item in train_weights.items(): 

        train_weights[key] = item / norm  

    return train_weights 

 

# train dataset 

filename = 'Flickr8k_text/Flickr_8k.trainImages.txt' 

train, train_weights = load_trainset(filename) 

train_sampled = weight_sampling(train, train_weights) 

train_descriptions = load_descriptions('descriptions.txt', train) 

train_features = load_image_features('featuresresnet.pkl', train) 

tokenizer = create_tokenizer(train_descriptions) 

vocab_size = len(tokenizer.word_index) + 1 

# determine the maximum sequence length 

max_length = 34 

 

#load validation dataset 

filename = 'Flickr8k_text/Flickr_8k.devImages.txt' 

val = load_testset(filename) 

val_descriptions = load_descriptions('descriptions.txt', val) 

val_features = load_image_features('featuresresnet.pkl', val) 
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X1val, X2val, yval = create_sequences(tokenizer, max_length, val_descriptions, 

val_features) 

 

for i in range(6): 

    train_descriptions = load_descriptions('descriptions.txt', train_sampled) 

    # define the models 

    if(i == 0): 

        model = define_model0(vocab_size, max_length) 

        train_features = load_image_features('featuresresnet.pkl', train_sampled) 

        print('Photos: train=%d' % len(train_features)) 

        X1train, X2train, ytrain = create_sequences(tokenizer, max_length, 

train_descriptions, train_features) 

        filepath = 'model-batches200-' + str(i) + '-BestWeights.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        # fit model 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, verbose=2, 

callbacks=[checkpoint], validation_data=([X1val, X2val], yval), shuffle=True) 

        model = load_model(filepath) 

        # evaluate model 

        reference, predicted = evaluate_model(model, train_descriptions, 

train_features, tokenizer, max_length) 

    elif(i == 1): 
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        model = define_model0(vocab_size, max_length) 

        train_features = load_image_features('featuresresnet.pkl', train_sampled) 

        print('Photos: train=%d' % len(train_features)) 

        X1train, X2train, ytrain = create_sequences(tokenizer, max_length, 

train_descriptions, train_features) 

        filepath = 'model-batches200-' + str(i) + '-BestWeights.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 

        # fit model 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, verbose=2, 

callbacks=[checkpoint], validation_data=([X1val, X2val], yval), shuffle=True) 

        model = load_model(filepath) 

        # evaluate model 

        reference, predicted = evaluate_model(model, train_descriptions, 

train_features, tokenizer, max_length) 

    elif(i == 2): 

        model = define_model0(vocab_size, max_length) 

        train_features = load_image_features('featuresresnet.pkl', train_sampled) 

        print('Photos: train=%d' % len(train_features)) 

        X1train, X2train, ytrain = create_sequences(tokenizer, max_length, 

train_descriptions, train_features) 

        filepath = 'model-batches200-' + str(i) + '-BestWeights.h5' 

        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1) 
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        # fit model 

        model.fit([X1train, X2train], ytrain, batch_size = 256, epochs=20, verbose=2, 

callbacks=[checkpoint], validation_data=([X1val, X2val], yval), shuffle=True) 

        model = load_model(filepath) 

        # evaluate model 

        reference, predicted = evaluate_model(model, train_descriptions, 

train_features, tokenizer, max_length) 

     

    train_weights = change_weights(train, train_weights, reference, predicted) 

    train_sampled = weight_sampling(train, train_weights) 

 

VI. Evaluate Model (Python source code) 

# generate a description for an image 

def generate_desc(models, comb_method, tokenizer, photo, max_length): 

    word_seq = 'startword' 

    if(comb_method == 'MMP'): 

        for i in range(max_length): 

            pred = [] 

            max_value = [] 

            for each_model in model: 

                sequence = tokenizer.texts_to_sequences([word_seq])[0] 

                sequence = pad_sequences([sequence], maxlen = max_length) 
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                yhat = each_model.predict([photo,sequence], verbose=0) 

                max_value.append(amax(yhat)) 

                pred.append(argmax(yhat)) 

            yhat = max(max_value) 

            max_index = max_value.index(yhat) 

            yhat = pred[max_index] 

            word = word_for_id(yhat, tokenizer) 

            if word is None: 

                break 

            word_seq += ' ' + word 

            if word == 'endword': 

                break 

    elif(comb_method == 'MV'): 

        for i in range(max_length): 

            pred = [] 

            max_value = [] 

            for each_model in model: 

                sequence = tokenizer.texts_to_sequences([word_seq])[0] 

                sequence = pad_sequences([sequence], maxlen = max_length) 

                yhat = each_model.predict([photo,sequence], verbose=0) 

                pred.append(argmax(yhat)) 

            yhat = max(pred, key = pred.count) 

            word = word_for_id(yhat, tokenizer) 
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            if word is None: 

                break 

            word_seq += ' ' + word 

            if word == 'endword': 

                break 

    else: 

        for i in range(max_length): 

            pred = [] 

            max_value = [] 

            sequence = tokenizer.texts_to_sequences([word_seq])[0] 

            sequence = pad_sequences([sequence], maxlen = max_length) 

            yhats = [model.predict([photo, sequence], verbose=0) for model in 

models] 

            summed = np.sum(yhats, axis=0) 

            yhat = argmax(summed, axis=1) 

            word = word_for_id(yhat, tokenizer) 

            if word is None: 

                break 

            word_seq += ' ' + word 

            if word == 'endword': 

                break 

    return word_seq 
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# evaluate the model 

def evaluate_model(model, comb_method, descriptions, photos, tokenizer, 

max_length): 

    actual, inference = list(), list() 

    reference, predicted = dict(), dict() 

    for key, desc_list in descriptions.items(): 

        yhat = generate_desc(model, comb_method, tokenizer, photos[key], 

max_length) 

        references = [d.split() for d in desc_list] 

        actual.append(references) 

        inference.append(yhat.split()) 

        for d in desc_list: 

            reference[key] = d 

        predicted[key] = yhat 

    with open("reference.txt", "w") as output: 

        for key, item in reference.items(): 

            output.write("%s\t%s\n" % (key, item)) 

    with open("predicted.txt", "w") as output: 

        for key, item in predicted.items(): 

            output.write("%s\t%s\n" % (key, item)) 

    print('BLEU-1: %f' % corpus_bleu(actual, inference, weights=(1.0, 0, 0, 0))) 

    print('BLEU-2: %f' % corpus_bleu(actual, inference, weights=(0.5, 0.5, 0, 0))) 
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    print('BLEU-3: %f' % corpus_bleu(actual, inference, weights=(0.3, 0.3, 0.3, 

0))) 

    print('BLEU-4: %f' % corpus_bleu(actual, inference, weights=(0.25, 0.25, 0.25, 

0.25))) 

    return (reference, predicted) 

 

# prepare train set 

filename = 'Flickr8k_text/Flickr_8k.trainImages.txt' 

train = load_document(filename) 

train_descriptions = load_descriptions('descriptions.txt', train) 

tokenizer = create_tokenizer(train_descriptions) 

vocab_size = len(tokenizer.word_index) + 1 

# determine the maximum sequence length 

max_length = 34 

  

# prepare test set 

filename = 'Flickr8k_text/Flickr_8k.testImages.txt' 

test = load_document(filename) 

test_descriptions = load_descriptions('descriptions.txt', test) 

test_features = load_image_features('featuresresnet.pkl', test) 

print('Photos: test=%d' % len(test_features)) 

filename1 = 'model-kfold-0-5.h5' 

filename2 = 'model-kfold-1-5.h5' 
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filename3 = 'model-kfold-2-4.h5' 

model1 = load_model(filename1) 

model2 = load_model(filename2) 

model3 = load_model(filename3) 

model = [model1, model2, model3] 

combination_method = 'AV' 

# evaluate model 

evaluate_model(model, combination_method, test_descriptions, test_features, 

tokenizer, max_length) 118 118 


