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ABSTRACT

The goal of this paper was to do an analysis of two-dimensional unsplit mass and mo-

mentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields

with interfaces and validating their rates of convergence. Specifically three unsplit

transport methods and one split transport method was amalgamated individually

with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian

Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection

(ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and

Zaleski (2003) and Unsplit Averaged Eulerian Lagrangian Advection (UAELA) with

two Finite Difference Methods by Parker and Youngs (1992) and two Error Minimiza-

tion Methods by Pilliod Jr and Puckett (2004). The observed order of accuracy was

first order in all cases except when unsplit methods and error minimization methods

were used consecutively in each iteration, which resulted in second order accuracy on

the shape error convergence. The Averaged Unsplit Eulerian Lagrangian Advection

(AUELA) did produce first order accuracy but that was due to temporal error in

the numerical setup. The main unsplit methods, Unsplit Eulerian Advection (UEA)

and Unsplit Lagrangian Advection (ULA), preserve mass and momentum and require

geometric clipping to solve two-phase fluid flows. The Unsplit Lagrangian Advection

(ULA) can allow for small divergence in the velocity field perhaps saving time on the

iterative solver of the variable coefficient Poisson System.
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PREFACE

This paper deals with the a fundamental aspect of fluid simulation i.e. transport

equation which is a Hyperbolic Partial Differential Equation. The basis for this

paper stems from innate passion in me to ascertain efficient methods to solve

deterministic physics problems on my decrepit laptop.

The topic of Geometric Fluxing has made satisfactory progress over the years and in

this paper we will look at a few methods that can transport fluid volumes in a

conservative fashion across cells while preserving an immiscible interface. The

methods discussed in this paper can be extended to the third dimension with enough

work. However, this paper only deals with the 2-dimensional projection of those

methods.

ix



Chapter 1

INTRODUCTION

1.1 Navier-Stokes Equation

Transient incompressible multi-phase flow can be described by a specific simplifi-

cation of the general Navier-Stokes fluid formulation as described in Equation 1.1.

∂ρ~u

∂t
+∇ · (ρ~u~u) = −∇p+∇ · (µ(∇~u+∇T~u)) + ρ~g + Tσ (1.1)

The incompressibility constraint is enforced by Equation 1.2 by ensuring a diver-

gence free velocity field.

∇ · ~u = 0 (1.2)

The density scalar field of two or more immiscible species transported along the

velocity field is described by a conservative formulation of scalar advection i.e. Equa-

tion 1.3.

∂ρ

∂t
+∇ · (ρ~u) = 0 (1.3)

Expanding Equation 1.3 with product rule of partial derivatives results in Equa-

tion 1.4.

∂ρ

∂t
+ ~u · ∇ρ+ ρ(∇ · ~u) = 0 (1.4)

Substituting divergence of velocity with zero as per Equation 1.2 results in the final

form of the transport equation as described by Equation 1.5, which is one of the most

elementary aspect of fluid dynamics: material derivatives.

Dρ

Dt
≡ ∂ρ

∂t
+ ~u · ∇ρ = 0 (1.5)

1



Apart from that, given sharp interfaces, molecular configurations near interfaces

result in additional forces such as surface tension which can be computed as a function

of the interface normal vector using Equation 1.6.

Tσ = γκn̂ = γ(∇ · n̂)n̂ (1.6)

1.2 Literature Review

In two-phase computational fluid dynamics, there is an elementary requirement

of tracking the immiscible interface such that the overall phase density field includ-

ing the interface obeys Equation 1.5. There are many choices of methods that can

satisfy said requirement. Finite difference methods are not one of them because their

stability is entirely dependent on the addition of numerical diffusion, and retaining

interfaces can be challenging if the interface keeps numerically diffusing by a small

amount every time step. Level-set methods provide an alternative approach, whereby

instead of transporting the phase field, a signed distance scalar function is transported

along the velocity field with the isoline of zero representing the interface. However,

this method causes a loss or gain in phase area surrounded by the isoline of zero

on the level-set field i.e. these class of methods arent conservative as per Sussman

et al. (1999). In order to keep track of the interface and keep the volume conser-

vative, Geometric fluxing can be used on phase fields called Volume of Fluids with

information of interface as seen in Figure 1.1. This information of interface requires

interface reconstruction every temporal iteration. For that reason and many more,

geometric fluxing can be challenging. In this paper, a very specific framework is

set whereby the normal fluxes in each cell add up to zero implying divergence free

velocities in every cell which is a fundamental constraint of incompressibility as per

Equation 1.2. In this conservative framework, the obvious way of advection would

be using flux velocity to compute gradients for transport i.e. using horizontal and

2



Figure 1.1: Volume of Fluid (VOF) Field and Corresponding Interface on the right

vertical velocities to flux the phase distribution field horizontally and vertically as

proposed by Scardovelli and Zaleski (2003). However, overlapping fluxes prevent the

ability to do this simultaneously. Depending on the split lagrangian or split eulerian

methodology mentioned in said paper, one can either preserve monotonicity or total

volume of fluid but not both. In the eulerian framework, monotonicity is not pre-

served and further correction is required to preserve interface as unphysical interfaces

are generated practically everywhere. This might lead to loss or gain in volume of

fluid, and worse, an extreme gain in compute times. Similarly the Split Lagrangian

Advection (SLA) does preserve monotonicity by stretching its contents based on flux

velocities and projecting it on neighbouring cells, but when repeated in the next di-

mension, the shift from the divergence free cell caused the whole method to not be

conservative. A paper by Yang et al. (2010) uses flux velocities to create a transfor-

mation to project the fluid and interface on neighbouring cells to compute the flux.

The method is conservative and monotone, but it fails to obey the velocity fluxes

to second order accuracy as it only relies on information from a local cell and hence

doesn’t conserve momentum. The work done by Owkes and Desjardins (2014) pro-

3



poses a solution that solves all the aforementioned problems by means of using corner

velocities ascertained from averages of fluxes of local and neigbouring cells in addition

to corrections to ensure conservativeness. An additional paper by Comminal et al.

(2015) takes this concept and attempts to apply Runge-Kutta steps to the corner

velocities to the point where ’geometrical errors are dominated by Piece-wise Linear

Interface Reconstruction (PLIC) errors’.

There are four primary methods of PLIC reconstruction explored in this paper

and they work hand in hand with the VOF advection procedures. They are finite dif-

ference method (FDM) approach as well as center of mass method (FDM (COMM))

by Parker and Youngs (1992) and Least squares volume-of-fluid interface reconstruc-

tion algorithm (LVIRA) as well as efficient Least squares volume-of-fluid interface

reconstruction algorithm (ELVIRA) by Pilliod Jr and Puckett (2004).

In this paper, the goal is to compare three unsplit-methods and one directionally

split method and analyse the details of their performance and inner-workings. This

paper also attempts to combine and average eulerian and lagrangian methods by

geometrically averaging them in time.
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Chapter 2

METHODS

2.1 Initialization

To generate an accurate volume of fluid (VOF) field, there is a need to find

accurate intersections with the initial condition shape for every individual cells. One

efficient way of doing that is using recursive quad-tree area resolution of the VOF

field by means of the level-set field function. A known analytical level-set field is

used to figure out whether any point is greater or less than zero. Greater than zero

constitutes and liquid while less than constitutes the gas. As such to resolve the mass

fraction within the cell, a quad-tree recursive algorithm is used zoom in further into

sub-grid cells that have the interface going through it. In the smallest possible square

one can use linear simplifications of interface using level set functions. See Figure

2.1 for visualization. This algorithm is significantly more efficient than a naive grid

search within a cell.

Figure 2.1: Quadtree Recursion

5



2.2 PLIC Reconstruction

Typically, the PLIC geometry of interface and the side containing the liquid is

expressed as Equation 2.1.

n̂ · ~x ≥ α (2.1)

This is represented on a normalized cell of unit length one, extending from −1/2 to 1/2

in both dimensions. ψ, which is amount of fraction of the cell that is liquid, can be

computed using Equation 2.2 and Equation 2.3.

ψ′ (n̂, α) =
1

2
+

∑4
k=1

(
d3k
|dk|

)
4nxny

(2.2)

dk = (−1)k
(
αn2

x + αn2
y

)
− (−1)b

k
2c
(nx

2

)
+ (−1)d

k
2e
(nx

2

)
(2.3)

Vice-versa, α can be computed using Algorithm 1 with inputs of α and interface

normal.

2.2.1 Finite Difference Method (FDM)

At a given interface location, the interface normal can be ascertained as Equation

2.4.

n̂ =
∇ψ
|∇ψ|

(2.4)

Taking naive simple central finite differences between neighboring cells could lead

to incorrect interface reconstruction as they skip the information from the central

cell. Hence the solution is to use every neighboring cell as shown in the Equation 2.5

and Equation 2.6 to allow for a apposite generalization of the interface normal.

mxi,j =
1∑

k=−1

ck (ψi+1,j+k − ψi−1,j+k) (2.5)

myi,j =
1∑

k=−1

ck (ψi+k,j+1 − ψi+k,j−1) (2.6)
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Algorithm 1: Ascertaining α from n̂ and ψ

1: s←| nx | + | ny |

2: mx ← nx/s

3: my ← ny/s

4: if ψ is between 0 and 1 then

5: m1 ← min(| my |, | my |)

6: ψ1 ← m1/2(1−m1)

7: χ← min(ψ, 1− ψ)

8: if χ ≤ ψ1 then

9: α←
√

(2m1(1−m1)χ)

10: end if

11: if χ ≥ ψ1 & χ ≤ 0.5 then

12: α← (1−m1)χ+ 0.5m1

13: end if

14: if ψ ≥ 0.5 then

15: α← 1− α

16: end if

17: α← α +min(0,mx) +min(0,my)

18: α← (α− 0.5(mx +my))/
√
m2
x +m2

y

19: end if

7



Figure 2.2: Normal computed using Center of Mass of center and neighboring cells.

It should be noted that ck is 2 for k = 0, else it is 1. This methodology was proposed

by Parker and Youngs (1992).

2.2.2 Center of Mass Method (FDM (COMM))

This method attempts to find the approximate center mass of 9 cell stencil based

on the fractional volume being considered as a mass centered at the respective cell as

described in Equation 2.7 and Equation 2.8. The resulting position of center of mass

with respect to the origin of 9-cell-stencil is the direction of the interface as seen in

figure 2.2.

mxi,j =

∑1
l=−1

∑1
k=−1 k (ψi+k,j+l)∑1

l=−1

∑1
k=−1 (ψi+k,j+l)

(2.7)

myi,j =

∑1
l=−1

∑1
k=−1 l (ψi+k,j+l)∑1

l=−1

∑1
k=−1 (ψi+k,j+l)

(2.8)

Upon closer analysis it is evident that is merely another finite difference method by

Parker and Youngs (1992) without ck in Equation 2.5 and Equation 2.6. In both

cases, these normals have to be normalized to n̂ to be compatible with many other

routines such as Algorithm 1 and Algorithm 2.
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Figure 2.3: LVIRA Error Minimization

2.2.3 Least squares volume-of-fluid interface reconstruction algorithm (LVIRA)

Method

Short form for Least Squares volume-of-fluid interface reconstruction algorithm,

the motivation for this method by Pilliod Jr and Puckett (2004) is to minimize the

squared error between 3 by 3 cell of a given discrete fields specific interface region and

sample 3 by 3 cell with straight line interface with the center cell having the same

volume fraction in both configurations. In two dimensions, the error is minimized

along a single dimension θ.

ε (θ) =
1∑

l=−1

1∑
k=−1

(ψi+k,j+l − ψ′ (〈cos (θ), sin (θ)〉 ,−αi,j + k sin (θ) + l cos (θ)))
2

(2.9)

The θ at which the error is the least possible ends up being the PLIC reconstruction

normal. The minimization can be done using nelder-mead simplex or parabolic search.

Since parabolic search can fail, simplex search was the choice for this paper. Nelder

and Mead (1965) At each iteration, the error function needs to be evaluated. Having

a good initial guess is crucial to avoiding unnecessary computations. One can use

previously mentioned methods for an initial guess for the normal. Since LVIRA is

computationally very expensive a set of guesses can be used to compute the normals.

9



2.2.4 Efficient Least squares volume-of-fluid interface reconstruction algorithm

(ELVIRA) Method

This method also uses the squared shape error in a 3x3 cell stencil but instead

of finding a minimum using a heuristic approach, this method only requires going

through a criteria of 6 possible normal reconstructions on the basis of slope compu-

tations. The first procedure is to compute sums of rows and columns as described in

Equation 2.10 and Equation 2.11.

Chk =
1∑

k=−1

ψi+k,j (2.10)

Cvk =
1∑

k=−1

ψi,j+k (2.11)

It should be noted that these normal candidates also depend on overall distribution of

liquid on all quadrants and as such the sign function of the complimentary derivative

is used to find the complimentary direction as described in Equation 2.12, Equation

2.13 and Equation 2.14.

~mcandidates =

(
sv,

Ch1 − Ch0

∆x

)
,

(
sv,

Ch1 − Ch−1

2∆x

)
,

(
sv,

Ch0 − Ch−1

∆x

)
,(

Cv1 − Cv0

∆y
, sh

)
,

(
Cv1 − Cv−1

2∆y
, sh

)
,

(
Cv0 − Cv−1

∆y
, sh

)
(2.12)

sv = sgn (Cv1 − Cv−1) (2.13)

sh = sgn (Ch1 − Ch−1) (2.14)

2.3 Geometric Advection

PLIC reconstruction enables us to get a profile and approximate distribution of

fluid within a cell with the interface parameters. However, a fluxing scheme is needed
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Figure 2.4: ELVIRA candidates

transport fluid material across cells while obeying certain conditions. Before going

into the fluxing scheme, one has to consider the layout of the staggered velocity field.

On a uniform grid, In-compressible velocity field implies said field is divergence free.

Numerically speaking Equation 2.15 is a discretized version of Equation 1.2.(
ui+ 1

2
,j − ui− 1

2
,j

)
∆x

+

(
vi,j+ 1

2
− vi,j− 1

2

)
∆y

= 0 (2.15)

This is advantageous as it implies that the sum of volume of liquid and gas over

every cell remains constant if these fluxes are obeyed. However, if flux volumes are

constructed, the underlying problems of overlapping fluxes become visible. The key
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Figure 2.5: Conservative Fluxing on Staggered Grid

is to use corner velocities as they are consistent with all neighboring cells as seen in

Figure 2.5.

2.3.1 Unsplit Eulerian Advection (UEA)

The problem of overlapping fluxes problem can be solved by using corner velocities.

However, in order to ensure conservative fluxing, one has to add consistent volume

on top of flux volume generated by corner velocities to match it with the flux volume

generated from wall flux velocities. Owkes and Desjardins (2014). The resulting flux

correction volume can be computed by the Equation 2.16

Acorrection = ui− 1
2
,j

∆x

∆t
− 1

2

∆x

∆t
(ui− 1

2
,j− 1

2
+ ui− 1

2
,j+ 1

2

−∆x

∆t
ui− 1

2
,j− 1

2
vi− 1

2
,j+ 1

2
+

∆x

∆t
ui− 1

2
,j+ 1

2
vi− 1

2
,j− 1

2
)

(2.16)

One can compute a point approximately between corner projections such that the

area of the flux pentagon equals the flux near the wall flux velocity. The point is

12



Figure 2.6: Eulerian Model for flux based on Owkes and Desjardins (2014)

normal to the line between corner projections emanating the from the midpoint of the

projections. In this paper, the said method was modified in such a way that instead of

computing flux volumes across cell walls, an octagon was projected backwards in space

and time as per the velocity field that consistently obeys the flux. The intersection

area between neighbouring cells and the octagon tells the amount of fluid present in

the specific cell after transport. This can be seen in Figure 2.6. This method was

used as a starting point in Comminal et al. (2015). This method works extremely

well, but if the numerical divergence property is not satisfied as per Equation 2.15

for various reasons, a situation with cells away from the interface having values above

and below zero and one arises. This could create numerical bubbles and damage the

interface tracking procedure and waste valuable time doing interface reconstruction

at locations where it isn’t really needed.

2.3.2 Split Lagrangian Advection (SLA)

This is a method that simplifies advection to individual dimensions with interface

reconstruction after individual dimensional transport. In simple terms, it is stretching

and squeezing of the fluid distribution polygon within the cell as per left and right

flux velocities and intersecting it with center and neighboring cells as show in Figure

13



Figure 2.7: Horizontal Split Lagrange Advection

2.7. In said figure, the orange polygon represents the state of liquid clipped by the

interface while the purple polygon is an extension computed from horizontal flux

velocities shown by black arrows. This method has the advantage of not requiring a

clipping algorithm as analytical function from Equation 2.2 is sufficient.

2.3.3 Unsplit Lagrangian Advection (ULA)

The Unsplit Lagrangian Advection (ULA) method by Yang et al. (2010) was

modified slightly for this section as said method didn’t preserve momentum. One can

take the idea of Unsplit Eulerian Flux (UEA) and reverse it. Instead of extending the

volume backwards and capturing the contents geometrically, one can also take the

contents of current cell and distribute it over neighboring cells as described by velocity

vectors. The first step is to construct an octagon forward in time with velocity that is

a result of transformation due to transport. Starting from bottom-left and numbering

the vertices 0 to 7, one can ascertain the even numbered vertices i.e. corner velocity

projections using Equation 2.17 and Equation 2.18.

~xk = ~pk +
∆t

∆h
~u(i,j)+~pk : ∀k ∈ 0, 2, 4, 6 (2.17)

~pk = 0.5
[
− (−1)b

k
4c, (−1)d

k
4e
]>

(2.18)
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The odd numbered vertices are equated as a correction of flux using Equation 2.19

and Equation 2.20.

Area (~pk−1, ~pk+1, ~xk+1, ~xk, ~xk−1) = Φbk/2c : ∀k ∈ 1, 3, 5, 7 (2.19)

Φk =
∆t

∆x

{
vi,j− 1

2
, ui+ 1

2
,j,−vi,j+ 1

2
,−ui− 1

2
,j

}
(2.20)

Since Equation 2.19 is an under-determined system we use the Equation 2.21 to close

the equation and solve for the odd numbered vertices. All these points culminate to

form the Projected Octagon (PO) as seen in Figure 2.8.

(~xk+1 − ~xk−1) · (~xk−1 − 2~xk + ~xk+1) = 0 : ∀k ∈ 1, 3, 5, 7 (2.21)

When all corner velocities of a cell equal each other, the odd-numbered ~xk becomes

the midpoint of ~xk+1 and ~xk−1. If the cell volume fraction before advection i.e.

ψni,j was one then our projection polygon is the octagon itself. However, if the cell

has an interface, one takes the points at which the interface intersects the cell wall

using a line clipping algorithm and then computes their appropriate location on the

projected octagon (PO) as described in Algorithm 2. This appropriate location on the

projection can be computed using an 8-point shape-function described in Equation

2.22 and used in Equation 2.23.

N(x, y) =



(|x| − x)(|y| − y)

(−2|x|+ 1)(|y| − y)

(|x|+ x)(|y| − y)

(|x|+ x)(−2|y|+ 1)

(|x|+ x)(|y|+ y)

(−2|x|+ 1)(|y|+ y)

(|x| − x)(|y|+ y)

(|x| − x)(−2|y|+ 1)



(2.22)
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Figure 2.8: Interface Cell Lagrangian Projection

x′n
y′n

 =

x0 x1 · · · x7

y0 y1 · · · y7

N(xn, yn) (2.23)

This shape function preserves distance ratio between points upon projection. Now

that an approximately reconstructed version of the interface is reconstructed in the

octagon, the projected polygon needs to be constructed that has the same area as the

volume of fraction of the parent cell. This can be done simply by adding a correction

triangle similar to flux correction shown in the eulerian framework in Figure 2.5.

The point ~xe ensures that the polygon TCF equals Area(PO)ψni,j which would

essentially be ψni,j if the net flux is zero in the cell. As per Algorithm 2, there are

protocols set in place to ensure prevention of anomalous geometry. Specifically, the

point ~xe is extended in such a way that it is snapped to horizontal, vertical or diagonal

rails of the projected octagon as long as both the interface points before projection,

(~xn), are not in the same quadrant.
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Figure 2.9: Unsplit Lagrangian Advection (ULA)

Figure 2.10: Unsplit Averaged Eulerian Lagrangian Advection (UAELA)

Once the projected polygon has been constructed, one can intersect it with all

neighboring cells including itself and accumulate the area of the intersected polygon

on the respective cell of ψn+1
i,j . With information of the bounding box of said polygon

one can do 3 to 8 intersections instead of 9 with majority of cases being 3 especially

when all corner velocities point in the same quadrant.

2.3.4 Unsplit Average of Eulerian and Lagrangian Advection (UAELA)

This method is a mere geometric mean of Unsplit Eulerian Advection (UEA)

Method and Unsplit Lagrangian Advection (ULA) Method. Taking the aforemen-
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tioned Unsplit Lagrangian Advection (ULA) but projecting it only as far as ∆t/2 on

deformed cells advected backwards ∆t/2 gives the geometrically averaged version as

shown in Figure 2.10. This method can work with a single velocity in time, ~un, but

giving it two velocities, i.e. ~un+1 and ~un or ~un+ 1
2 can give it second order accuracy.

2.4 Clipping

In this paper, the most commonly used clipping algorithm is Sutherland-Hodgeman

clipping algorithm if Equation 2.2 was not used. This algorithm can clip convex and

concave polygons as long as the clipping polygon is convex as described by Sutherland

and Hodgman (1974). Another algorithm used here is line clipping algorithm for as-

certaining the intersections of walls and interface in an efficient fashion. Specifically,

Sutherland-Cohen line clipping algorithm was used although, there have been many

other algorithms that have been significantly more optimized over the years to do

the same task. In theory, a generic line-clipping algorithm with a rectangular clipper

could be used in Unsplit Lagrangian Advection (ULA) method as long as the grid is

cartesian likely speeding up the routines.
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Algorithm 2: Ascertaining Polygon TCF from α, n̂ and ψ

1: ~xnk
← α~n+ (−1)k[ny,−nx]>∀k = 0, 1

2: ~xn0,1 ← CohenSutherlandLineClip(~xn0,1 ,−.5, .5,−.5, .5)

3: Append

[
~x0 · · · ~x7

]
N(~xn0) to TCF

4: Append all ~xn that are in fluid in counter-clockwise order of pre-projection

state to TCF.

5: Append

[
~x0 · · · ~x7

]
N(~xn1) to TCF

6: ncase ← 2nxny

7: if ncase > 0.9 or ~xn0,1 are on the same quadrants then

8: xr0 ← x0, yr0 ← y0, xr1 ← x4, yr1 ← y4

9: else if ncase < −0.9 or ~xn0,1 are on different quadrants then

10: xr0 ← x2, yr0 ← y2, xr1 ← x6, yr1 ← y6

11: else

12: if |nx| > |ny| then

13: xr0 ← x7, yr0 ← y7, xr1 ← x3, yr1 ← y3

14: else

15: xr0 ← x1, yr0 ← y1, xr1 ← x5, yr1 ← y5

16: end if

17: end if

18: A←

y′n0 − y′n1 x′n0 − x′n1

yr0 − yr1 xr0 − xr1


19: ~b←

x′n1y
′
n0 − x′n0 + 2 (ψi,jArea(PO)− Area(TCF ))

− (xr0 − xr1) yr0 − (−yr0 − yr1)xr0


20: ~xe ← A−1b.

21: Append ~xe to TCF
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Chapter 3

RESULTS

3.1 Convergence of Shape Error

The shape Error is described as the absolute value of difference in Volume of Fluid

(VOF) fields as described in Equation 3.1.

εshape = ∆x∆y
N∑
j=0

M∑
i=0

|ψt=0
i,j − ψ

t=tf
i,j | (3.1)

It is expected that post transport, the final state of the VOF field will produce shape

errors convergent to zero in two test cases evaluated ahead.

3.1.1 Zalesak’s Disk on a Circular Velocity Field

In this benchmark, a specific VOF field known as zalesak’s disk is advected. Said

field results from a level-set field shown in Listing 3.1.

double za l e s ak ( double x , double y ){

double R = s q r t (pow(x−0.5 ,2)+pow(y−0.75 ,2) ) ;

double phi = 0.15−R;

double bottom = 0.75−0.15∗ cos ( a s in ( 0 . 0 2 5 / 0 . 1 5 ) ) ;

double d fc = phi ;

i f ( ( y > 0 . 85 ) && (R < 0 . 15 ) )

phi = min ( dfc , y−0.85) ;

i f ( ( y < 0 . 85 ) && ( x < 0 .475 ) && (R < 0 . 15 ) )

phi = min ( dfc ,0.475−x ) ;

i f ( ( y > 0 . 85 ) && ( x < 0 .475 ) && (R < 0 . 15 ) )
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phi = min ( dfc , s q r t (pow(0.475−x , 2 )+pow(y−0.85 ,2) ) ) ;

i f ( ( y < 0 . 85 ) && ( x > 0 .525 ) && (R < 0 . 15 ) )

phi = min ( dfc , x−0.525) ;

i f ( ( y > 0 . 85 ) && ( x > 0 .525 ) && (R < 0 . 15 ) )

phi = min ( dfc , s q r t (pow(0.525−x , 2 )+pow(y−0.85 ,2) ) ) ;

i f ( ( y < 0 . 85 ) && ( x > 0 .525 ) && (R < 0 . 15 ) )

phi = min ( dfc , x−0.525) ;

i f ( ( x > 0 .475 ) && ( x < 0 .525 ) && ( y < 0 . 85 ) && ( y > bottom

) )

phi = min(0.85−y , min(0.525−x , x−0.475) ) ;

i f ( ( x > 0 .475 ) && ( x < 0 .525 ) && ( y < bottom ) )

phi = min (norm( bottom−y , x−0.475) ,norm( bottom−y , x−0.525) ) ;

double sgn = (R<0.15) ;

i f ( ( x>0.475) && (x<0.525) && (y<0.85) )

sgn = 0 ;

sgn = 2.0∗ sgn −1.0;

phi = fabs ( phi )∗ sgn ;

r e turn phi ;

}
Listing 3.1: Level-Set description of Zalesak’s Disk.

The field is advected on a velocity field as described by Equation 3.2 on domain ex-

tending between 0 and 1 on both dimensions and 0 and 2π in the temporal dimension.

This test shows the effect of one whole rotation on zalesak’s disk.

~u =

y − 0.5

0.5− x

 (3.2)

For the sake of consistency, a ∆t of 3∆x
4π

was used every iteration to have a stable and
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Figure 3.1: Convergence for FDM

irrational time step until the t = 2π whereby an appropriate ∆t was computed to

stop at precisely t = 2π.

Finite Difference Method (FDM)

All advection methods give more or less the same results which make sense since

the velocity field components don’t change along their respective dimension. The

unsplit methods effectively and practically end up reproducing the Split Largrangian

Advection (SLA). The shape error reduces with only first order accuracy as seen in

Table 3.1 and Figure 3.1. This is partly due to sharp interface bends on the initial

condition and the fact that PLIC reconstructions of the cells are not restricted to the

center of the cell while the central difference is restricted to that location, incapable
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Table 3.1:
Shape Error for FDM

∆x UEA ULA SLA UAELA

1/64 4.10e-03 Ratio 4.11e-03 Ratio 4.23e-03 Ratio 4.11e-03 Ratio

1/128 1.37e-03 3.00 1.37e-03 3.00 1.41e-03 3.01 1.37e-03 3.00

1/256 6.21e-04 2.20 6.22e-04 2.20 6.32e-04 2.22 6.22e-04 2.20

1/512 3.05e-04 2.03 3.05e-04 2.04 3.13e-04 2.02 3.05e-04 2.04

1/1024 1.31e-04 2.34 1.31e-04 2.34 1.34e-04 2.33 1.31e-04 2.34

Table 3.2:
Shape Error for FDM (COMM)

∆x UEA ULA SLA UAELA

1/64 5.45e-03 Ratio 5.46e-03 Ratio 5.66e-03 Ratio 5.46e-03 Ratio

1/128 2.35e-03 2.32 2.35e-03 2.32 2.43e-03 2.33 2.35e-03 2.32

1/256 1.13e-03 2.09 1.13e-03 2.09 1.17e-03 2.07 1.13e-03 2.09

1/512 6.57e-04 1.72 6.57e-04 1.72 6.79e-04 1.73 6.57e-04 1.72

1/1024 3.79e-04 1.73 3.79e-04 1.73 4.00e-04 1.70 3.79e-04 1.73

of achieving second order accuracy. Figure 3.2 shows the end result of advection with

various transport methods combined with the optimal finite difference reconstruction

for multiple resolutions.

Center of Mass Method (FDM (COMM))

All advection methods give more or less the same results just like the previous PLIC

method. The shape errors are systematically higher as seen in Table 3.2 and Figure

3.3 which is symptomatic of the method itself. There are visible oscillations on

interface clearly implying this reconstruction method is not ideal. Nevertheless, it

is a viable option since a first order convergence is seen. Figure 3.4 shows the end
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Figure 3.2: Results at t = 2π for FDM

result of advection with various transport methods combined with center of mass

reconstruction for multiple resolutions.

ELVIRA

Again, in this case all advection methods give more or less the same results. With

ELVIRA method, a marginal improvement is seen in comparison to the first FDM

method as shown in Table 3.3 and Figure 3.5. Figure 3.6 shows the end result of

advection with various transport methods and ELVIRA for multiple resolutions.
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Figure 3.3: Convergence for FDM (COMM)

Table 3.3:
Shape Error for ELVIRA

∆x UEA ULA SLA UAELA

1/64 4.01e-03 Ratio 4.02e-03 Ratio 4.12e-03 Ratio 4.01e-03 Ratio

1/128 1.29e-03 3.11 1.29e-03 3.11 1.32e-03 3.12 1.29e-03 3.11

1/256 5.47e-04 2.35 5.48e-04 2.36 5.55e-04 2.38 5.48e-04 2.36

1/512 2.51e-04 2.18 2.51e-04 2.18 2.56e-04 2.17 2.51e-04 2.18

1/1024 9.86e-05 2.54 9.86e-05 2.54 1.01e-04 2.54 9.86e-05 2.54
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Figure 3.4: Results at t = 2π for FDM (COMM)

Table 3.4:
Shape Error for LVIRA

∆x UEA ULA SLA UAELA

1/64 4.15e-03 Ratio 4.16e-03 Ratio 4.25e-03 Ratio 4.15e-03 Ratio

1/128 1.31e-03 3.16 1.32e-03 3.16 1.35e-03 3.16 1.31e-03 3.16

1/256 5.59e-04 2.35 5.59e-04 2.35 5.67e-04 2.38 5.59e-04 2.35

1/512 2.57e-04 2.17 2.57e-04 2.17 2.62e-04 2.16 2.57e-04 2.17

1/1024 1.01e-04 2.55 1.01e-04 2.55 1.03e-04 2.55 1.01e-04 2.55

26



Figure 3.5: Convergence for ELVIRA

LVIRA

Just like the previous method, all advection methods give more or less the same results

as seen Table 3.4 and Figure 3.7. With LVIRA method there is no visible improvement

over ELVIRA. Figure 3.8 shows the end result of advection with various transport

methods combined with LVIRA reconstruction for multiple resolutions.

3.1.2 Deformation Feild

In this benchmark, a specific VOF field that represents a circular concentration of

fluid with a radius of 0.15 at location x = 0.5 and y = 0.75 is transported. The field

is transported on a velocity field of Equation 3.3 on domain extending from 0 to 1 on
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Figure 3.6: Results at t = 2π for ELVIRA

both spatial dimensions and t = 0 and t = 8 in the temporal dimension. This test

shows the effect of a sheared velocity field on a circular disk. The analytical solution

of this transport is identical to the initial condition.

~u(x, y, t) =

− sin2 (πx) sin (2πy) cos
(
πt
8

)
+sin (2πx) sin2 (2πy) cos

(
πt
8

)
 (3.3)

For the sake of consistency, a ∆t of 3∆x
4π

was used every iteration to have a stable

and irrational time step until the t = 8 whereby an appropriate ∆t was computed to

stop at precisely t = 8. The velocity used at each time step is ~u(x, y, t+ ∆t
2

) which is

one of the requirements to get second order accuracy. In the absence of an analytical
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Figure 3.7: Convergence for LVIRA

velocity field, one would approximate it with Equation 3.4.

~u(x, y, t+
∆t

2
) ≈ 4

3
~u(x, y, t)− 1

3
~u(x, y, t−∆t) +O(∆t2) (3.4)

It should be noted that for the Unsplit Averaged Eulerian Lagrangian Advection

(UAELA) method, the velocity used at each time-step used is ~u(x, y, t).

Finite Difference Method (FDM)

In the case of deformation field, it was observed that Split Lagrangian Advection

(SLA) produces the most error as seen in Figure 3.10. Also, the Unsplit Lagrangian

Advection (ULA) and Unsplit Eulerian Advection (UEA) methods converge with

practically the same results as seen in Table 3.5 and Figure 3.9. Compared to SLA,
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Figure 3.8: Results at t = 2π for LVIRA

Table 3.5:
Shape Error for FDM

∆x UEA ULA SLA UAELA

1/64 1.49e-02 Ratio 1.47e-02 Ratio 1.99e-02 Ratio 1.51e-02 Ratio

1/128 2.34e-03 6.37 2.35e-03 6.25 1.01e-02 1.97 2.94e-03 5.15

1/256 6.76e-04 3.46 6.75e-04 3.47 4.80e-03 2.11 9.44e-04 3.11

1/512 2.26e-04 2.99 2.26e-04 2.99 2.37e-03 2.03 3.38e-04 2.79

1/1024 9.45e-05 2.39 9.45e-05 2.39 1.18e-03 2.00 1.50e-04 2.26
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Figure 3.9: Convergence for FDM

they have approximately 10 times less error. The convergence order is second at

lower resolutions but settles down to first as the resolution is increased. The Unsplit

Averaged Eulerian Lagrangian Advection (UAELA) methods in theory would have

produced the same results as the Unsplit Lagrangian and Eulerian Advection methods

if the 2 velocities used for each iteration was at ~v(x, y, t + ∆t
2

) or averaged to that

which it wasn’t.

Center of Mass Method (FDM (COMM))

Just like Zalesak’s Disk, numerical oscillatory artifacts are seen, which again is symp-

tomatic of the unweighted finite difference method itself. However like the previous

finite difference method, Unsplit Eulerian Advection (UEA) and Unsplit Lagrangian
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Figure 3.10: Results at t = 8 for FDM

Table 3.6:
Shape Error for FDM (COMM)

∆x UEA ULA SLA UAELA

1/64 2.14e-02 Ratio 2.11e-02 Ratio 2.10e-02 Ratio 2.17e-02 Ratio

1/128 3.40e-03 6.29 3.40e-03 6.21 1.10e-02 1.92 3.87e-03 5.60

1/256 1.33e-03 2.55 1.33e-03 2.55 4.96e-03 2.21 1.46e-03 2.64

1/512 7.25e-04 1.84 7.25e-04 1.84 2.49e-03 2.00 7.56e-04 1.94

1/1024 3.68e-04 1.97 3.68e-04 1.97 1.27e-03 1.96 3.84e-04 1.97
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Figure 3.11: Convergence for FDM (COMM)

Advection (ULA) approaches produce practically the same result as seen in Table

3.6, Figure 3.11 and Figure 3.12.

ELVIRA

With ELVIRA, an order of accuracy of second is observed for the unsplit methods as

seen in Table 3.7 and Figure 3.13. The Unsplit Lagrangian Advection (ULA) method

again replicates the Unsplit Eulerian Advection (UEA) method. The Unsplit Aver-

aged Eulerian Lagrangian Adevtion (UAELA) method lags in shape error reduction

due to temporal location in the timestep. The Split Lagrangian Advection (SLA) re-

tains first order accuracy. Figure 3.14 shows the final result of deformation complying

to the initial condition as a function of resolution and geometric transport method
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Figure 3.12: Results at t = 8 for FDM (COMM)

Table 3.7:
Shape Error for ELVIRA

∆x UEA ULA SLA UAELA

1/64 1.08e-02 Ratio 1.09e-02 Ratio 1.98e-02 Ratio 1.28e-02 Ratio

1/128 2.12e-03 5.12 2.13e-03 5.11 9.84e-03 2.01 2.76e-03 4.64

1/256 4.16e-04 5.09 4.19e-04 5.08 4.78e-03 2.06 8.26e-04 3.34

1/512 8.35e-05 4.98 8.36e-05 5.01 2.38e-03 2.01 3.05e-04 2.70

1/1024 2.18e-05 3.82 2.19e-05 3.82 1.18e-03 2.02 1.37e-04 2.23
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Figure 3.13: Convergence for ELVIRA

for PLIC method of ELVIRA.

LVIRA

The LVIRA method is marginally better at producing more or less the same results

as ELVIRA for all advection methods as seen in Table 3.8 and Figure 3.15. Figure

3.16 shows the final result of transport mimicking the initial condition as a function

of resolution and geometric transport method for PLIC method of LVIRA.

When velocity chosen for advecting ψ(t) to ψ(t + ∆t) is at ~u(t + ∆t
2

) instead

of ~u(t) for Unsplit Averaged Eulerian Lagrangian Advection (UAELA), the rate of

convergence of shape error ends up increasing to an order of two as shown in Figure

3.17 as opposed to one as shown in Figure 3.13.
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Figure 3.14: Results at t = 8 for ELVIRA

Table 3.8:
Shape Error for LVIRA

∆x UEA ULA SLA UAELA

1/64 1.06e-02 Ratio 1.07e-02 Ratio 2.20e-02 Ratio 1.14e-02 Ratio

1/128 1.81e-03 5.85 1.81e-03 5.89 1.02e-02 2.16 2.53e-03 4.51

1/256 3.05e-04 5.95 3.05e-04 5.94 4.81e-03 2.12 7.18e-04 3.53

1/512 8.43e-05 3.62 8.44e-05 3.62 2.38e-03 2.02 3.06e-04 2.34

1/1024 2.22e-05 3.80 2.22e-05 3.80 1.18e-03 2.01 1.37e-04 2.24
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Figure 3.15: Convergence for LVIRA

3.2 Volume Error

The volume Error can be described as the loss or gain in the overall fluid volume

and the complimentary gas volume as described in Equation 3.5.

εvolume = ∆x∆y

(
N∑
j=0

M∑
i=0

ψt=0
i,j −

N∑
j=0

M∑
i=0

ψ
t=tf
i,j

)
(3.5)

It is safe to assume that the magnitude of volume error would always be less than or

equal to shape error.

3.2.1 Zalesak’s Disk

For the all the unsplit methods tested, a volume error of zero is seen with only

precision errors. The Split Lagrangian Advection (SLA) method does produce near-
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Figure 3.16: Results at t = 8 for LVIRA

precision errors as well in the case of Zalesak’s Disk as seen in Figure 3.18. Although

the nature of discrepancy across reconstruction methods is most likely due to Equation

2.2 failing when the normal is extremely close to a cardinal direction.

3.2.2 Deformation Field

In the deformation feild, again the unsplit methods produce precision error zeros

as the shape error. The SLA method produces first order convergent Volume Error

which is nearly equal to shape error itself. Figure 3.19 shows the volume error for all

methods and resolution for the case of circular disk on a deformation field.
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Figure 3.17: Shape Error Convergence for Unsplit Averaged Eulerian Lagrangian
Advection (UAELA) with time-step centered velocity

3.2.3 Fluid Simulation

A simple setup was established whereby a circular drop akin to the one used in the

deformation field example is used as the initial condition. The domain is scaled to a

one centimeter scale. The density (ρ) of the liquid and gas is 1000 kg
m3 and 100 kg

m3 . The

viscosity of said phases are 8.9e-4 N ·s
m2 and 1.81e-5 N ·s

m2 . A surface tension Coefficient

of 0.07 N
m

was used. The gravity is established as 1 m
s2

. The PLIC method used for

interface reconstruction was ELVIRA. The multi-phase’s field’s transient evolution

was done using velocity ascertained from incompressible 2-phase Navier Stokes Partial

Differential Equation coupled with the phase field advection as described in Harlow

and Welch (1965) on a staggered grid. The variable density pressure poisson system
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Figure 3.18: Volume Error at t = 2π for Case Zalesak’s Disk on Circular Velocity
Field

was solved using a direct QR solver. The method used to compute curvature as

part surface tension forces computation was computed by using height functions as

described in a paper by Cummins et al. (2005). Two simulations were done with

resolution of 64x64 and 128x128 cells respectively as seen in Figure 3.20. In Figure

3.20 the coarser mesh is above the finer mesh.

It was seen that the Split Lagrangian Advection (SLA) method does not conserve

the total amount of fluid and hence the volume error is not constant. It is not

constant for the split methods either, but the volume error changes by extremely

small values which are at the edge of precision limit. There are tiny jumps in the

volume error most likely due to cells that end up having so little volume fraction of
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Figure 3.19: Volume Error at t = 8

liquid after advection that they get disregarded due to the small positive non-zero

threshold required to establish and flag the presence of liquid in any specific cell.

3.3 Compute Times

The compute times for each advection method is timed for the Zalesak’s Disk

on a circular field and circular disk on a deformation field as shown in Figure 3.21.

This timing was ascertained independently of the previous shape and volume errors.

Specifically, for the first 10 times steps, the advection times only were summed up. As

such we can see that deformation field case computes slightly faster than the Zalesak’s

disk case which makes sense since its perimeter is smaller. The main thing to see here
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Figure 3.20: Volume Error on a 2D Fluid Simulation with M = 64 and 128 in order

is that the Unsplit Eulerian Advection (UEA) method performs slightly slower than

the Unsplit Lagrangian Advection (ULA) Method. However, this does not mean

anything partially because both approaches aren’t optimized and hence it hard to

say which one would be faster if optimized to its fullest extent. The initial method

proposed by Owkes and Desjardins (2014) is fairly optimized and original version

of Unsplit Eulerian Advection (UEA) method coded for this paper. Another factor

that might impact computation time is the clipping method itself. The Sutherland-

Hodgeman Clipping algorithm used is a general approach but it is not necessarily an

optimal approach. Especially, in the Unsplit Lagrangian Advection (ULA) method,
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Figure 3.21: Compute Times for Advection Method at all Resolutions

one could use line-clipping algorithms which are optimized for rectanglular clippers

to attain superior performance. At the same time, computing the Polygon TCF also

takes a significant amount of time and that might count against this approach. The

Unsplit Averaged Eulerian Lagrangian Adevtion (UAELA) method ends up being the

slowest since it has to do a large number of intersections, about six times as many

clippings as the Unsplit Lagrangian Advection (ULA) method. Despite that, it is only

3 times slower implying the construction of polygon TCF has a descent overhead.

Typically the computational time of a transient solution of a hyperbolic PDE on

Cartesian grids scale up by a factor of 8 when the resolution is doubled. However

a factor of 5 was noticed in all unsplit methods. This is because, the code only

operates near the interface, specifically interface cells and neighbours and neighbours

of neighbours of interface cells. This would theoretically scale by a factor of 4 but

due to unknown overheads it scales by a factor of 5.
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Chapter 4

CONCLUSION

It is evident from the testing that all PLIC methods and geometric fluxing methods

converge with varying orders of accuracy. Specifically, the order of convergence is first

order for all cases except when the fluxing methods are unsplit and the reconstruc-

tion method is a variant of the sum of error squared minimization variety in which

case a superior second order rate of convergence is achieved. It was established that

the Unsplit Lagrangian Advection (ULA) method described in this paper is practi-

cally analogous to any conservative Unsplit Eulerian Advection (UEA) method. It

was also demonstrated the ULA method can be combined with UEA method; the

computational cost did render said geometrically averaged method impractical. The

computational cost analysis of the fluxing methods is not conclusive due to lack of

optimization. The Unsplit Lagrangian Advection (ULA) can allow for small diver-

gence in the velocity field which would would typically come from incomplete solving

of the variable density Poisson system to machine precision. Ultimately, that choice

of advection method would be trade-off between accuracy and compute times.
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APPENDIX A

RAW DATA
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Table A.1 contains all the data ascertained from 2 cases, 4 PLIC Methods for each
case, 4 Transport Methods for PLIC Method and 5 Resolutions for each Transport
Method.

Table A.1: Shape Error and Volume Error Raw Data

Case PLIC Method Transport
Method

Size Shape Er-
ror

Volume
Error

Zalesak’s Disk FDM UEA 64 4.099E-03 4.262E-12
Zalesak’s Disk FDM UEA 128 1.368E-03 4.359E-12
Zalesak’s Disk FDM UEA 256 6.215E-04 2.466E-12
Zalesak’s Disk FDM UEA 512 3.054E-04 1.006E-13
Zalesak’s Disk FDM UEA 1024 1.308E-04 3.159E-13
Zalesak’s Disk FDM UEA 64 5.453E-03 5.771E-12
Zalesak’s Disk FDM UEA 128 2.353E-03 2.752E-12
Zalesak’s Disk FDM UEA 256 1.127E-03 1.371E-12
Zalesak’s Disk FDM UEA 512 6.570E-04 3.404E-14
Zalesak’s Disk FDM UEA 1024 3.789E-04 3.205E-13
Zalesak’s Disk FDM UEA 64 4.005E-03 5.812E-12
Zalesak’s Disk FDM UEA 128 1.289E-03 8.116E-13
Zalesak’s Disk FDM UEA 256 5.473E-04 1.220E-12
Zalesak’s Disk FDM UEA 512 2.509E-04 9.027E-13
Zalesak’s Disk FDM UEA 1024 9.860E-05 1.398E-13
Zalesak’s Disk FDM UEA 64 4.147E-03 2.069E-12
Zalesak’s Disk FDM UEA 128 1.313E-03 4.916E-13
Zalesak’s Disk FDM UEA 256 5.588E-04 1.118E-12
Zalesak’s Disk FDM UEA 512 2.572E-04 5.356E-14
Zalesak’s Disk FDM UEA 1024 1.011E-04 1.768E-13
Zalesak’s Disk FDM (COMM) ULA 64 4.113E-03 3.510E-12
Zalesak’s Disk FDM (COMM) ULA 128 1.370E-03 3.129E-13
Zalesak’s Disk FDM (COMM) ULA 256 6.216E-04 1.849E-12
Zalesak’s Disk FDM (COMM) ULA 512 3.054E-04 1.128E-13
Zalesak’s Disk FDM (COMM) ULA 1024 1.308E-04 3.084E-13
Zalesak’s Disk FDM (COMM) ULA 64 5.458E-03 8.151E-13
Zalesak’s Disk FDM (COMM) ULA 128 2.354E-03 9.497E-13
Zalesak’s Disk FDM (COMM) ULA 256 1.128E-03 2.246E-13
Zalesak’s Disk FDM (COMM) ULA 512 6.570E-04 2.116E-13
Zalesak’s Disk FDM (COMM) ULA 1024 3.789E-04 1.541E-13
Zalesak’s Disk FDM (COMM) ULA 64 4.017E-03 2.993E-12
Zalesak’s Disk FDM (COMM) ULA 128 1.292E-03 7.415E-12
Zalesak’s Disk FDM (COMM) ULA 256 5.479E-04 4.500E-13
Zalesak’s Disk FDM (COMM) ULA 512 2.510E-04 8.472E-13
Zalesak’s Disk FDM (COMM) ULA 1024 9.864E-05 3.273E-13
Zalesak’s Disk FDM (COMM) ULA 64 4.157E-03 3.455E-12
Zalesak’s Disk FDM (COMM) ULA 128 1.316E-03 2.024E-12
Zalesak’s Disk FDM (COMM) ULA 256 5.594E-04 8.164E-13
Zalesak’s Disk FDM (COMM) ULA 512 2.573E-04 3.368E-13
Zalesak’s Disk FDM (COMM) ULA 1024 1.011E-04 1.497E-13
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Zalesak’s Disk ELVIRA SLA 64 4.231E-03 2.568E-09
Zalesak’s Disk ELVIRA SLA 128 1.405E-03 4.844E-09
Zalesak’s Disk ELVIRA SLA 256 6.319E-04 2.791E-09
Zalesak’s Disk ELVIRA SLA 512 3.128E-04 7.321E-10
Zalesak’s Disk ELVIRA SLA 1024 1.342E-04 9.142E-10
Zalesak’s Disk ELVIRA SLA 64 5.656E-03 2.568E-09
Zalesak’s Disk ELVIRA SLA 128 2.426E-03 4.841E-09
Zalesak’s Disk ELVIRA SLA 256 1.172E-03 1.547E-09
Zalesak’s Disk ELVIRA SLA 512 6.793E-04 7.341E-10
Zalesak’s Disk ELVIRA SLA 1024 4.004E-04 8.778E-10
Zalesak’s Disk ELVIRA SLA 64 4.119E-03 2.580E-09
Zalesak’s Disk ELVIRA SLA 128 1.320E-03 4.842E-09
Zalesak’s Disk ELVIRA SLA 256 5.555E-04 2.792E-09
Zalesak’s Disk ELVIRA SLA 512 2.559E-04 7.331E-10
Zalesak’s Disk ELVIRA SLA 1024 1.006E-04 9.148E-10
Zalesak’s Disk ELVIRA SLA 64 4.249E-03 6.064E-12
Zalesak’s Disk ELVIRA SLA 128 1.346E-03 1.260E-12
Zalesak’s Disk ELVIRA SLA 256 5.665E-04 1.553E-13
Zalesak’s Disk ELVIRA SLA 512 2.622E-04 1.598E-12
Zalesak’s Disk ELVIRA SLA 1024 1.030E-04 7.521E-13
Zalesak’s Disk LVIRA UAELA 64 4.107E-03 6.600E-12
Zalesak’s Disk LVIRA UAELA 128 1.369E-03 3.971E-13
Zalesak’s Disk LVIRA UAELA 256 6.215E-04 3.279E-12
Zalesak’s Disk LVIRA UAELA 512 3.054E-04 3.308E-13
Zalesak’s Disk LVIRA UAELA 1024 1.308E-04 1.125E-13
Zalesak’s Disk LVIRA UAELA 64 5.456E-03 1.769E-12
Zalesak’s Disk LVIRA UAELA 128 2.354E-03 3.198E-13
Zalesak’s Disk LVIRA UAELA 256 1.128E-03 9.143E-13
Zalesak’s Disk LVIRA UAELA 512 6.570E-04 1.874E-14
Zalesak’s Disk LVIRA UAELA 1024 3.789E-04 1.691E-13
Zalesak’s Disk LVIRA UAELA 64 4.013E-03 8.164E-13
Zalesak’s Disk LVIRA UAELA 128 1.291E-03 5.501E-12
Zalesak’s Disk LVIRA UAELA 256 5.477E-04 2.967E-12
Zalesak’s Disk LVIRA UAELA 512 2.509E-04 3.504E-13
Zalesak’s Disk LVIRA UAELA 1024 9.862E-05 6.949E-14
Zalesak’s Disk LVIRA UAELA 64 4.154E-03 1.355E-12
Zalesak’s Disk LVIRA UAELA 128 1.315E-03 7.203E-13
Zalesak’s Disk LVIRA UAELA 256 5.592E-04 1.445E-12
Zalesak’s Disk LVIRA UAELA 512 2.573E-04 1.448E-13
Zalesak’s Disk LVIRA UAELA 1024 1.011E-04 6.409E-14
Deformation Field FDM UEA 64 1.490E-02 2.421E-12
Deformation Field FDM UEA 128 2.340E-03 4.848E-13
Deformation Field FDM UEA 256 6.756E-04 3.882E-12
Deformation Field FDM UEA 512 2.258E-04 9.146E-13
Deformation Field FDM UEA 1024 9.449E-05 1.738E-13
Deformation Field FDM UEA 64 2.140E-02 4.139E-12
Deformation Field FDM UEA 128 3.402E-03 8.854E-12
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Deformation Field FDM UEA 256 1.334E-03 5.130E-12
Deformation Field FDM UEA 512 7.247E-04 6.526E-13
Deformation Field FDM UEA 1024 3.679E-04 2.543E-13
Deformation Field FDM UEA 64 1.084E-02 9.948E-12
Deformation Field FDM UEA 128 2.117E-03 5.928E-12
Deformation Field FDM UEA 256 4.160E-04 2.713E-12
Deformation Field FDM UEA 512 8.354E-05 1.787E-12
Deformation Field FDM UEA 1024 2.184E-05 2.698E-14
Deformation Field FDM UEA 64 1.061E-02 5.134E-12
Deformation Field FDM UEA 128 1.815E-03 6.636E-12
Deformation Field FDM UEA 256 3.049E-04 2.794E-13
Deformation Field FDM UEA 512 8.429E-05 1.844E-12
Deformation Field FDM UEA 1024 2.218E-05 3.509E-13
Deformation Field FDM (COMM) ULA 64 1.467E-02 3.001E-11
Deformation Field FDM (COMM) ULA 128 2.346E-03 8.864E-12
Deformation Field FDM (COMM) ULA 256 6.754E-04 5.788E-13
Deformation Field FDM (COMM) ULA 512 2.258E-04 2.784E-13
Deformation Field FDM (COMM) ULA 1024 9.449E-05 1.211E-13
Deformation Field FDM (COMM) ULA 64 2.114E-02 2.103E-11
Deformation Field FDM (COMM) ULA 128 3.404E-03 9.846E-12
Deformation Field FDM (COMM) ULA 256 1.332E-03 1.573E-12
Deformation Field FDM (COMM) ULA 512 7.245E-04 1.491E-12
Deformation Field FDM (COMM) ULA 1024 3.678E-04 1.388E-13
Deformation Field FDM (COMM) ULA 64 1.087E-02 1.074E-11
Deformation Field FDM (COMM) ULA 128 2.126E-03 1.361E-12
Deformation Field FDM (COMM) ULA 256 4.189E-04 4.671E-12
Deformation Field FDM (COMM) ULA 512 8.358E-05 1.278E-12
Deformation Field FDM (COMM) ULA 1024 2.186E-05 8.220E-14
Deformation Field FDM (COMM) ULA 64 1.068E-02 3.226E-12
Deformation Field FDM (COMM) ULA 128 1.813E-03 1.357E-11
Deformation Field FDM (COMM) ULA 256 3.052E-04 2.507E-12
Deformation Field FDM (COMM) ULA 512 8.438E-05 1.157E-12
Deformation Field FDM (COMM) ULA 1024 2.218E-05 3.415E-14
Deformation Field ELVIRA SLA 64 1.990E-02 2.425E-03
Deformation Field ELVIRA SLA 128 1.011E-02 1.189E-03
Deformation Field ELVIRA SLA 256 4.800E-03 6.016E-04
Deformation Field ELVIRA SLA 512 2.367E-03 3.029E-04
Deformation Field ELVIRA SLA 1024 1.182E-03 1.520E-04
Deformation Field ELVIRA SLA 64 2.101E-02 2.446E-03
Deformation Field ELVIRA SLA 128 1.095E-02 1.191E-03
Deformation Field ELVIRA SLA 256 4.964E-03 6.017E-04
Deformation Field ELVIRA SLA 512 2.487E-03 3.029E-04
Deformation Field ELVIRA SLA 1024 1.266E-03 1.520E-04
Deformation Field ELVIRA SLA 64 1.976E-02 2.364E-03
Deformation Field ELVIRA SLA 128 9.838E-03 1.189E-03
Deformation Field ELVIRA SLA 256 4.784E-03 6.016E-04
Deformation Field ELVIRA SLA 512 2.378E-03 3.029E-04
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Deformation Field ELVIRA SLA 1024 1.180E-03 1.520E-04
Deformation Field ELVIRA SLA 64 2.198E-02 2.357E-03
Deformation Field ELVIRA SLA 128 1.019E-02 1.188E-03
Deformation Field ELVIRA SLA 256 4.806E-03 6.015E-04
Deformation Field ELVIRA SLA 512 2.376E-03 3.029E-04
Deformation Field ELVIRA SLA 1024 1.179E-03 1.520E-04
Deformation Field LVIRA UAELA 64 1.512E-02 2.499E-11
Deformation Field LVIRA UAELA 128 2.938E-03 1.932E-12
Deformation Field LVIRA UAELA 256 9.439E-04 1.332E-12
Deformation Field LVIRA UAELA 512 3.382E-04 1.861E-13
Deformation Field LVIRA UAELA 1024 1.496E-04 4.663E-13
Deformation Field LVIRA UAELA 64 2.170E-02 1.755E-11
Deformation Field LVIRA UAELA 128 3.871E-03 1.422E-12
Deformation Field LVIRA UAELA 256 1.464E-03 8.065E-12
Deformation Field LVIRA UAELA 512 7.564E-04 1.489E-12
Deformation Field LVIRA UAELA 1024 3.841E-04 2.879E-13
Deformation Field LVIRA UAELA 64 1.279E-02 2.924E-12
Deformation Field LVIRA UAELA 128 2.757E-03 5.043E-12
Deformation Field LVIRA UAELA 256 8.258E-04 2.929E-13
Deformation Field LVIRA UAELA 512 3.055E-04 1.329E-13
Deformation Field LVIRA UAELA 1024 1.368E-04 2.034E-12
Deformation Field LVIRA UAELA 64 1.143E-02 7.302E-12
Deformation Field LVIRA UAELA 128 2.533E-03 3.302E-13
Deformation Field LVIRA UAELA 256 7.183E-04 2.410E-13
Deformation Field LVIRA UAELA 512 3.065E-04 1.476E-12
Deformation Field LVIRA UAELA 1024 1.371E-04 3.856E-13

Note: This simulation was coded on MATLAB (2018) as an entry point but
most of the methods discussed in this thesis were subroutined to a machine level
using C by Kernighan and Ritchie (1978). The code is available on Github at
https://github.com/aansari2/Master-s-Thesis.git.
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APPENDIX B

MAXIMUM DEFORMATION PLOTS

52



Figure B.1: Maximum Deformation for Deformation Field for PLIC Method FDM
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Figure B.2: Maximum Deformation for Deformation Field for PLIC Method FDM
(COMM) 54



Figure B.3: Maximum Deformation for Deformation Field for PLIC Method
ELVIRA 55



Figure B.4: Maximum Deformation for Deformation Field for PLIC Method LVIRA
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