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ABSTRACT

Image-based process monitoring has recently attracted increasing attention due to

the advancement of the sensing technologies. However, existing process monitoring

methods fail to fully utilize the spatial information of images due to their complex

characteristics including the high dimensionality and complex spatial structures. Re-

cent advancement of the unsupervised deep models such as generative adversarial

network (GAN) and generative adversarial autoencoder (AAE) have enabled to learn

the complex spatial structures automatically. Inspired by this advancement, we pro-

pose an anomaly detection framework based on the AAE for unsupervised anomaly

detection for images. AAE combines the power of GAN with the variational autoen-

coder, which serves as a nonlinear dimension reduction technique. Based on this,

we propose a monitoring statistic efficiently capturing the change of the data. The

performance of the proposed AAE-based anomaly detection algorithm is validated

through a simulation study and real case study for rolling defect detection.

i



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Methodology Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Review of Generative Adversarial Network . . . . . . . . . . . . . . . . . 4

1.1.2 Adversarial Autoencoder and its Application to Anomaly

Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

APPENDIX

A ORIGINAL MODEL CODES AAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B ORIGINAL MODEL CODES VAAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C ORIGINAL MODEL CODES VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ii



LIST OF TABLES

Table Page

2.1 Mean Shift Accuracy (%) Under δ = 0.06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Detection Power (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



LIST OF FIGURES

Figure Page

1.1 Normal and Abnormal Rolling Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Normal and Abnormal Images with δ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sensitivity Analysis of PCA and AAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Learned 2D Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Original and Reconstructed Images for AAE and PCA with Different

Encoding Dimensions (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Original and Reconstructed Images for AAE and PCA with Different

Encoding Dimensions (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Learned 2D Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Normal and Anomaly images, PCA Reconstructed Images , AAE Re-

constructed Images, and VAAE Reconstructed Images . . . . . . . . . . . . . . . . 18

iv



Chapter 1

INTRODUCTION

Nowadays, image data are widely used in most manufacturing processes and ser-

vice systems to evaluate the process performance and product quality due to the low

implementation cost and rich information it provides. Real-time image-based process

monitoring and online product inspection are among the benefits that can be gained

from this advancement.

For example, in the rolling inspection, a high-speed video camera is set up to

monitor the surface of the rolling bars. We will then extract some areas in the

rolling images, which could be the potential anomaly regions. For example, some

of the detected regions have some vertical line patterns, which are minor or can be

considered as normal as shown in Figure 1.1 (a). Three types of the anomalous images

(i.e. denoted as anomaly 1, 2, and 3) are shown in Figure 1.1 (b), (c), (d), respectively.

For example, anomaly 1 has irregular black patterns. Anomaly 2 has wider white

marks. Anomaly 3 has irregular white-black-white patterns that are not shown in the

normal samples. The goal of this paper is to develop an automatic anomaly detection

algorithm that differs from the normal variation patterns effectively and efficiently.

There are two major challenges regarding the image data: i) high-dimensionality:

high-resolution images may have thousands or even millions of pixels. ii) complex

nonlinear correlation structures. For example, these spatial dimensions are often not

only locally correlated (e.g. nearby pixels normally shared similar values) but also

globally correlated. Therefore, it is often very challenging to model these nonlin-

ear variation patterns. Modeling the complex variation patterns and detecting the

abnormal patterns in real time is a very challenge task.

1



(a) Normal (b) Anomaly 1

(c) Anomaly 2 (d) Anomaly 3

Figure 1.1: Normal and Abnormal Rolling Images

Most of the literature on process monitoring techniques for image data can be

divided into the following three categories: i) Linear dimension reduction techniques:

they treat the image data as a high-dimensional data and utilizing the dimension re-

duction techniques such as principal component analysis (PCA) [17] and independent

component analysis [4] to reduce the dimensionality to a lower dimension. Further-

more, some variants of the dimension reduction techniques are developed including

functional PCA methods [9, 19], and tensor decomposition methods [14, 8]). However,
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these techniques are mostly linear methods and therefore don’t perform well dealing

with complex nonlinear patterns. ii) Functional data analysis: These methods treat

image as continuous functions and analyze the functional features by transforming the

data into certain feature spaces for feature extraction, such as wavelet transformation

[7, 20], B-spline approximation [2], and functional decomposition-based techniques

[15]. Finally, process monitoring techniques focus on monitoring the feature coeffi-

cients or residuals [16]. These techniques typically have very strong assumptions on

the image to be applied. For example, B-spline and kernel methods are designed for

images with smooth background and wavelet is only designed for wave-form types of

spatial structures. Both cases cannot be applied to more complex variation patterns.

iii) Manifold learning techniques: kernel PCA [13] and maximum variance unfolding

projections [12] are proposed to learn the representation of the nonlinear profile for

process monitoring. However, manifold learning is designed for modeling or Phase-I

monitoring. How to efficiently construct the monitoring statistics for different types

of changes remains a nontrivial problem.

Recently, unsupervised deep learning methods such as generative adversarial net-

work (GAN) [5] has been proposed and demonstrated that it can generate very real-

istic images. GAN-based approaches can capture the complex spatial correlation of

the images data recently, therefore has been applied for anomaly detection in medi-

cal imaging [11, 18, 1]. However, these methods lack the ability to directly map the

data into the feature space, which hinder its use for the efficient and real-time pro-

cedure. Recently, generative adversarial autoencoder (AAE) has been proposed [6],

which combines the power of GAN and the variational autoencoder to ensure that

the encoded features follow the normal distribution and the features can be directly

computed by encoders. In this paper, we will propose how to use AAE methods for

efficient and real-time process monitoring.
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1.1 Methodology Development

Before we dive into the proposed methodology for anomaly detection, we would

like to first briefly review the generative adversarial network (GAN), generative ad-

versarial autoencoder (AAE), and how it can be used for efficient anomaly detection

and process monitoring.

1.1.1 Review of Generative Adversarial Network

Generative adversarial networks (GAN) [5] has recently gained much attention

due to its ability to learn the complex high-dimensional distribution by jointly train

a generator G and discriminator D in a zero-sum game. The discriminator D(x) is

normally a trained neural network that computes the probability that a point x is

from the generator G(z) or the set of real samples. The generator uses a function

G(z), which is typically another neural network, to generate the samples from the

prior p(z) (i.e. usually a multivariate normal distribution with identity covariance

matrix) to generate the data. The goal is to maximally confuse the discriminator

D(x) so that it cannot tell the differences between whether the data is generated

from the generator G(z) or from the real samples. In this case, the generator G(z) is

identical to the real data distribution p(x).

To train GAN, the following mini-max problem function is used to train D and

G simultaneously to minimize log(1−D(G(z)). [5]

min
G

max
D

Ex∼pd(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z))] (1.1)

For given G fixed, the optimal discriminator D can be written as

D∗G(x) =
Pdata(x)

Pdata(x) + Pg(x)
(1.2)

For estimating the conditional probability P(Y = y—x), D is trained to maximizing
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the log-likelihood, where Y indicates whether x comes from pdata or from pg. Then,

reform the objective function1.1 as

Ex∼pd(x)[
Pdata(x)

Pdata(x) + Pg(x)
] + Ez∼p(z)[

Pg(x)

Pdata(x) + Pg(x)
] (1.3)

The global optimum of the training is achieved if and only if pg = pdata. If G and D

have enough capacity, as the discriminator D achieved optimum given G, and pg is

updated to approach pdata.

Typically, the training of GAN happens in two stages: (a) train the discriminator

D to distinguish the true samples and the fake samples. (b) train the generator G to

fool the discriminator.

However, the major limitation of GAN is that it lacks an efficient encoder to match

the original data back to its feature. GAN only match the G(z) to the p(x), and

use D to prevent over-fitting the images. We will discuss how generative adversarial

autoencoder (AAE)[6] is able to solve this problem and how it can be used for anomaly

detection in the next subsection.

1.1.2 Adversarial Autoencoder and its Application to Anomaly Detection

Adversarial Autoencoder

In this section, we will discuss how AAE[6] achieve an efficient encoder to match the

original data back to its encoded feature.

Here, we will still use x to represent the high-dimensional data to be monitored

(e.g. signals, images, functional data from different sensors) and introduce z to be

the low-dimensional features that not observable but are inferred x.

p(z) =

∫
x

p(z|x)p(x)dx (1.4)

AAE is designed by introducing another autoencoder function q(z|x) by taking
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the input data x to compute the latent code z. The goal of AAE is to match the

aggregated posterior distribution

q(z) =

∫
x

q(z|x)pd(x)dx (1.5)

to a certain prior distribution p(z), where pd(x) is the data distribution. This can

also act like a regularization so that the method would not over-fit. In order to do

so, an adversarial network is trained to guide the q(z) to match the p(z) which is the

same as how the adversarial training in GAN is used to match the generated data

distribution to the sample data distribution.

In the original papers, the authors propose three different types of encoders for

q(z|x). In this paper, we will just use the deterministic posterior where the q(z|x) is

assumed to be a deterministic function of x since we have not found clear differences

in terms of performance in other types of encoders.

Furthermore, in the AAE method, adversarial training is used to ensure the en-

coded features can match the Gaussian prior distribution by introducing the discrim-

inator.

min
Q

min
G
lrecon + min

Q
max
D

ladversarial (1.6)

Finally, the loss function consists of two components: i) The reconstruction error:

The cost function of the reconstruction error is lrecon. Here, the reconstruction error

lrecon is defined as

lrecon = Ex∼pd(x)l(x,G(Q(z|x)) (1.7)

It worth noting that the data likelihood is derived from the distribution of the data.

ii) The discrimination error: The discriminative error is designed based on the adver-

sarial training, which leads to the loss function ladversarial similar to (1.1) to match

the p(z) and q(z) =
∫
x
q(z|x)pd(x)dx. Here the adversarial loss ladversarial is defined
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as:

ladversarial = Ez∼p(z)[logD(z)]

+Ex∼pd(x)Ez∼Q(z|x)[log(1−D(z))]

(1.8)

The adversarial loss ladversarial is to ensure that the latent code would match the

aggregated posterior distribution and prior distribution p(z). After the generator G

and the discriminator D are trained, we would like to discuss the way to monitor the

data in the next subsection.

Phase I and Phase II Analysis

We propose to use the reconstruction error lrecon(x) = l(x,G(Q(z|x)) as the monitor-

ing statistics. Here, l(x,G(Q(z|x)) is the likelihood function, which depends on the

probability distribution of the original data x. For example, if the data is Gaussian

distributed, we can use the sum of squared error between the input image and the

reconstruction image ‖x−G(Q(z|x))‖2. If the data is Bernoulli distributed, the cross

entropy loss can be used, which is defined as ‖x log(G(Q(z|x))) + (1 − x) log(1 −

G(Q(z|x)))‖1.

In the phase I analysis, we would like to sample a set of validation data set which

belongs to the normal (in-control) samples but not in the training data set to estimate

the distribution of the lrecon(x) and the control limit c0. If the number of the normal

samples is large, using the quantile is normally good enough of one validation data

set is often good enough. However, if the number of the normal samples is limited,

we can also use the cross-validation to compute the quantile of multiple validation

data set as the control limit c0. Finally, c0 is often selected such that the type I error

is as a certain number. In this paper, we will set up the control limit c0 based on

the 5% false positive rate. Finally, in the Phase II analysis, we propose to use the

lrecon(x) > c0 to detect the anomalies.
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Chapter 2

RESULTS

2.1 Simulation Study

2.1.1 Simulation Setup

In this section, we generate 32 × 32 2D images containing a circle with different

locations and shapes for normal samples from the following formula:

y =
√

1− ((x1 − x10)/a)2 − ((x2 − x20)/b)2,

where x10, x20 ∼ N(0.5, 0.052) , a, b ∼ N(0.2, 0.052) denote pixel locations on an

image.

To validate the Phase II process monitoring performance, we generate four types

of abnormal data for performance evaluation by the following formula:

• Mean Shift:

y = δ +
√

1− ((x1 − x10)/a)2 − ((x2 − x20)/b)2,

• Magnitude Change:

y = (1 + δ)
√

1− ((x1 − x10)/a)2 − ((x2 − x20)/b)2,

• Width Change:

y =
√

1− ((x1 − x10)/(a+ δ))2 − ((x2 − x20)/b)2,

• Location Change:

y =
√

1− ((x1 − x10)/a)2 − ((x2 − x20)/(b+ δ))2.
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Here δ represent the change magnitude, x10, x20 denote pixel locations on an image,

and a, b denote the widths of the circle. Examples of these generated normal images

and abnormal images (δ = 0.3) are shown in Figure 2.1.

Normal Magnitude Mean

Width Location

Figure 2.1: Normal and Abnormal Images with δ = 0.3

2.1.2 Simulation Results

For the proposed AAE anomaly detection method, we proposed to use the latest

DCGAN architectures [10] for the encoder and decoder, which combined a set of

convolutional layers, batch normalization, and ReLU activation. We will compare

the different latent dimensions such as 6 and 10 for the AAE method. Furthermore,

in order to balance the generator and discriminator, the generator learning rate is set

to 0.002 whereas the discriminator learning rate is 0.0002. Both use Adam optimizer

for the best result. For the benchmark methods, we propose to compare with the
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widely used PCA-based methods with different principal components (PCs) and the

unsupervised methods combination of AAE and VAE (VAAE).

For AAE, we will use the reconstruction error as the monitoring statistics. For

PCA methods, we propose to combine the Q-chart and T2 chart for better perfor-

mance [3]. Furthermore, to identify the anomaly, we would like to use the 5% false

positive rate for all methods. For the combination model VAAE, we adopted Q-chart

and T2 chart for monitoring statistics.

For the evaluation, we propose to use the detection power of Phase II analysis,

defined as the percentage of samples that are correctly detected as anomalies by the

algorithms over the number of anomalous samples. Finally, the detection power of

AAE, VAAE, and PCA with different encoding dimensions and PC dimensions are

shown in Table 2.1, respectively. From Table 2.1, we can conclude that AAE is more

powerful than PCA and VAAE in all cases that we tested.

For examples, in the non-linear change such as width and location change, AAE

has a very clear advantage over PCA since PCA is not able to represent these non-

linear change patterns. In the linear change such as mean-shift, AAE still has some

advantage over PCA. We can also conclude that simply adding the number of PCs only

helps on the linear change patterns such as mean shift, but doesn’t help too much on

the complex nonlinear change patterns such as the width change and location change.

Also, VAAE able to detect well in linear change patterns but not in nonlinear change

patterns.

Furthermore, adding the number of PCs from 50 to 200 may also reduce the

performance of PCA methods on the Width change (i.e. decrease from 18.78 to

18.35). However, AAE is much more robust to the selection of the latent dimensions.

For example, the performance of AAE with 6 or 10 latent dimensions are similar, and

AAE with 6 latent dimensions works slightly better.

10



Furthermore, we also plot the detection power with different change magnitudes δ

in Figure 2.2. From Figure 2.2, we can observe that PCA is sensitive to the number of

PCs chosen. Magnitude change is challenging to both models since it doesn’t change

the shape of the original images. We found PCA can hardly detect the change even

when δ = 0.3 whereas, AAE is able to reach about 100% accuracy. For the nonlin-

ear changes such location change and width change, using AAE with 6 dimensions

outperforms PCA with even up to 200 dimensions.

Methods Dimension Mean Magnitude Width Location

PCA 6 18.30 37.07 19.54 19.72

10 22.54 34.85 19.75 19.95

50 96.90 32.77 18.78 19.51

200 97.66 32.31 18.53 19.77

Tucker PCA 6 34.02 33.48 7.17 17.52

10 94.28 35.5 7.21 18.54

Parafac PCA 6 11.24 29.38 11.99 16.88

10 9.84 17.1 9.57 11.73

VAE 6 100.0 97.05 12.65 23.57

10 100.0 99.34 13.10 23.01

AAE 6 100.0 97.97 96.44 96.58

10 100.0 97.47 90.98 91.31

VAAE 6 99.99 95.99 15.25 17.28

10 99.7 93.83 14.15 22.5

Table 2.1: Mean Shift Accuracy (%) Under δ = 0.06

To understand how AAE detect the change, we would like to plot the real and

11



(a) Mean Shift (b) Magnitude Change

(c) Width Change (d) Location Change

Figure 2.2: Sensitivity Analysis of PCA and AAE

reconstructed images in Figure 2.5. From this figure, we can conclude that AAE is

able to generate accurate reconstruction images for the normal samples in Figure 2.5

(a). PCA with 10 PCs (i.e. PCA 10) cannot get the clear reconstruction of the original

images. Furthermore, PCA with 200 PCs (i.e. PCA 200) can reconstruct the original

images, but it generates a much noisy result. For the mean shift in Figure 2.5 (b),

AAE is able to recover the darker circle and background. The reconstructed images of

PCA with 10 and 200 PCs is largely affected by the background mean shift. For the

magnitude change in Figure 2.5 (c), the AAE generates much darker reconstruction

images than PCA, which shows that AAE actually learned the right magnitude for

12



Figure 2.3: Learned 2D Manifold

the normal samples, compared to the PCA methods. Finally, for width change and

location change, the AAE reconstructed images are not affected by the out-of-control

samples, which make the reconstruction error a great monitoring statistics. However,

PCA with 10 PCs generates very blurry images and PCA with 200 PCs tend to

reconstruct the original images, which makes the Q-chart (i.e. control chard designed

based on residual) not as effective.

Finally, to understand how AAE represent the complex nonlinear variational pat-

terns, we also plot the 2D manifold reconstructed from the 2D lattice from a slice

of 6-D latent space z in Figure 2.3. Each row of the image represent a dimension

corresponding to a latent space. As shown in the figure, first and third rows rep-

resent the magnitude change, second row shows width change, forth and fifth rows

reveal the vertical location change, and the six correspond to the horizontal shape

change. This demonstrates latent variables learned the feature space distribution and

13



the smoothness of the generated samples from the latent feature z.

(a) Normal Images (b) Mean Shift (c) Magnitude Change

Figure 2.4: Original and Reconstructed Images for AAE and PCA with Different

Encoding Dimensions (1)

2.2 Case Study

In this section, we will use real images from the quality inspection in the rolling

manufacturing to illustrate the performance of the proposed AAE anomaly detection

procedure. The dataset is made of metal rolling inspection images that are potentially

defect. The domain engineers have labeled the images as normal or abnormal samples.

Training data is made of 879 normal images and 294 abnormal images in 3 different

14



(a) Width Change (b) Location Change

Figure 2.5: Original and Reconstructed Images for AAE and PCA with Different

Encoding Dimensions (2)

types of abnormal conditions: Anomaly 1, Anomaly 2, and Anomaly 3. The regular

images feature vertical texture or some minor overfills with black or white lines. The

examples of normal images, Anomaly 1, Anomaly 2, and Anomaly 3 are shown in

Figure 2.7 (a), (e), (i), (m), respectively.

We will compare AAE with PCA and VAAE on the detection power (percentage of

detected samples) with a fixed 5% false positive rate. We will use the same architec-

ture and optimizer for the case study. We will use 6 or 10 latent space dimensions for

the AAE method. For PCA, we will investigate to use 2, 10, 50, 200 PCs for anomaly

15



detection.

As shown in table 2.2, PCA with 2 PCs works the best for Anomaly 1. The reason

is that the change of Anomaly 1 is quite obvious and the shape looks completely

different than the normal vertical texture and can be fully detected via PCA with

6 PCs and AAE with 6 latent dimensions. However, for Anomaly 2 and Anomaly

3, both are much harder to detect since the anomaly patterns also feature vertical

textures. For AAE, in Anomaly 2 and 3, increasing the latent dimension to 10 will

increase the detection accuracy to 100%. This is because AAE put the adversarial

regularization so it can control the model complexity. However, for Anomaly 2, PCA

with 50 PCs is optimal and achieves detection accuracy around 60%. For Anomaly

3, PCA with 2 PCs works the best. Further increasing the number of PCs decreases

the detection power. This shows that simply increasing the number of PCs may lead

to over-fitting problems. VAAE shows descent power of detection, this is because

VAAE also has strong adversarial regularization enable the model control the model

complexity.

Finally, we also plot the normal images, anomaly images, AAE-reconstructed

images, and PCA reconstructed images with 6 PCs (i.e. PCA 6) and 200 PCs (i.e.

PCA 200) in Figure 2.7. From Figure 2.7, we can conclude that AAE can reconstruct

very realistic images with texture details. PCA with 6 PCs tends to create blurry

images without enough details. On the other hand, PCA with 200 PCs will overfit

and generate exactly the original images. VAAE can reconstruct clearance and details

of images; however, comparing to AAE, it seems affected by the input data, which

show the model could overfit the data.

Finally, we also plot the AAE learned manifold in Figure2.6. This figure is gen-

erated in a 2D lattice slice of a 10-D latent space z by the decoder q(z|x). This map

shows that AAE actually learns a smooth manifold of all the rolling images. Each

16



row of the image represent a dimension corresponding to a latent space. As shown

in the figure, first row corresponded to the background marks, second and third rows

represented diagonal patterns, forth and fifth reveal the marks horizontal position,

and sixth row is for the marks vertical changes. his demonstrates latent variables

learned the feature space distribution .

Figure 2.6: Learned 2D Manifold

17



(a) Normal (b) AAE (c) PCA 6 (d) VAAE

(e) Change 1 (f) AAE (g) PCA 6 (h) VAAE

(i) Change 2 (j) AAE (k) PCA 6 (l) VAAE

(m) Change 3 (n) AAE (o) PCA 6 (p) VAAE

Figure 2.7: Normal and Anomaly images, PCA Reconstructed Images , AAE Recon-

structed Images, and VAAE Reconstructed Images

18



Methods Dimension Change 1 Change 2 Change 3

PCA 6 100.0 43.05 20.22

50 99.25 59.72 20.22

200 99.25 47.22 23.59

Tucker PCA 2 94.22 47.22 14.60

6 97.76 2.78 12.36

10 97.76 2.78 12.36

Parafac PCA 2 100.0 62.5 17.97

6 36.56 2.78 1.15

10 12.68 1.39 0.00

VAE 2 35.07 45.83 33.70

6 62.68 58.33 33.70

10 96.26 68.05 30.33

AAE 2 94.02 54.16 51.68

6 100.0 86.11 78.65

10 100.0 100.0 100.0

VAAE 2 99.25 37.50 35.95

6 100.0 63.88 33.71

10 100.0 54.16 29.21

Table 2.2: Detection Power (%)
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Chapter 3

CONCLUSION

Image-based process monitoring and anomaly detection often deal with com-

plex nonlinear spatial correlation structures. In this paper, we propose a nonlin-

ear anomaly detection algorithm based on generative adversarial autoencoder. The

proposed method has shown a largely improved accuracy over the traditional linear

process monitoring method such as PCA. A simulation study and a real case study

from rolling manufacturing have been added to the original paper to demonstrate the

advantage of the proposed AAE-based anomaly detection methods.
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[11] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-
Erfurth, and Georg Langs. Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery. In International Conference on
Information Processing in Medical Imaging, pages 146–157. Springer, 2017.

[12] Ji-Dong Shao and Gang Rong. Nonlinear process monitoring based on maximum
variance unfolding projections. Expert Systems with Applications, 36(8):11332–
11340, 2009.

21



[13] Zhenyu Shi, Daniel W Apley, and George C Runger. Discovering the nature of
variation in nonlinear profile data. Technometrics, 58(3):371–382, 2016.

[14] Hao Yan, Kamran Paynabar, and Jianjun Shi. Image-based process monitoring
using low-rank tensor decomposition. IEEE Transactions on Automation Science
and Engineering, 12(1):216–227, 2015.

[15] Hao Yan, Kamran Paynabar, and Jianjun Shi. Anomaly detection in images with
smooth background via smooth-sparse decomposition. Technometrics, 59(1):102–
114, 2017.

[16] Hao Yan, Kamran Paynabar, and Jianjun Shi. Real-time monitoring of high-
dimensional functional data streams via spatio-temporal smooth sparse decom-
position. Technometrics, (just-accepted), 2017.

[17] Guan Yu, Changliang Zou, and Zhaojun Wang. Outlier detection in functional
observations with applications to profile monitoring. Technometrics, 54(3):308–
318, 2012.

[18] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek, and Vi-
jay Ramaseshan Chandrasekhar. Efficient gan-based anomaly detection. arXiv
preprint arXiv:1802.06222, 2018.

[19] Chen Zhang, Hao Yan, Seungho Lee, and Jianjun Shi. Weakly correlated pro-
file monitoring based on sparse multi-channel functional principal component
analysis. IISE Transactions, 50(10):878–891, 2018.

[20] Shiyu Zhou, Baocheng Sun, and Jianjun Shi. An spc monitoring system for cycle-
based waveform signals using haar transform. IEEE Transactions on Automation
Science and Engineering, 3(1):60–72, 2006.

22



APPENDIX A

ORIGINAL MODEL CODES AAE
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The AAE model Architecture:

import numpy as np

def createnetwork ( encoding dims ) :
network = {

’ g ene ra to r ’ : {
’name ’ : Adversar ia lAutoencoderGenerator ,
’ a rgs ’ : {

’ encoding dims ’ : encoding dims ,
’ i n p u t s i z e ’ : 32 ,
’ i nput channe l s ’ : 1

} ,
’ opt imize r ’ : {

’name ’ : Adam,
’ args ’ : {

’ l r ’ : 0 . 002 ,
’ betas ’ : ( 0 . 5 , 0 . 999 )

}
}

} ,
’ d i s c r i m i n a t o r ’ : {

’name ’ : Adversar ia lAutoencoderDiscr iminator ,
’ a rgs ’ : {

’ input dims ’ : encoding dims ,
} ,
’ opt imize r ’ : {

’name ’ : Adam,
’ args ’ : {

’ l r ’ : 0 . 0002 ,
’ betas ’ : ( 0 . 5 , 0 . 999 )

}
}

}
}
return network
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APPENDIX B

ORIGINAL MODEL CODES VAAE
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The VAAE model Architecture:

VAAEAutoencoder (
( encoder ) : Sequent i a l (

( 0 ) : Conv2d (1 , 32 , k e r n e l s i z e =(4 , 4 ) , s t r i d e =(2 , 2 ) ,
padding =(1 , 1 ) )
( 1 ) : BatchNorm2d (32 , eps=1e−05, momentum=0.1 , a f f i n e=True ,
t r a c k r u n n i n g s t a t s=True )
( 2 ) : LeakyReLU( n e g a t i v e s l o p e =0.2 , i n p l a c e )
( 3 ) : Conv2d (32 , 64 , k e r n e l s i z e =(4 , 4 ) , s t r i d e =(2 , 2)
, padding =(1 , 1 ) )
( 4 ) : BatchNorm2d (64 , eps=1e−05, momentum=0.1 , a f f i n e=True
, t r a c k r u n n i n g s t a t s=True )
( 5 ) : LeakyReLU( n e g a t i v e s l o p e =0.2 , i n p l a c e )
( 6 ) : Conv2d (64 , 128 , k e r n e l s i z e =(4 , 4 ) , s t r i d e =(2 , 2)
, padding =(1 , 1 ) )
( 7 ) : BatchNorm2d (128 , eps=1e−05, momentum=0.1 , a f f i n e=True
, t r a c k r u n n i n g s t a t s=True )
( 8 ) : LeakyReLU( n e g a t i v e s l o p e =0.2 , i n p l a c e )
( 9 ) : View ( ) )

( dense mu ) : Linear ( i n f e a t u r e s =2048 , o u t f e a t u r e s =10)
( dens e l ogva r ) : L inear ( i n f e a t u r e s =2048 , o u t f e a t u r e s =10)
( decoder ) : Sequent i a l (

( 0 ) : L inear ( i n f e a t u r e s =10, o u t f e a t u r e s =2048
, b i a s=True )
( 1 ) : BatchNorm1d (2048 , eps=1e−05, momentum=0.1
, a f f i n e=True , t r a c k r u n n i n g s t a t s=True )
( 2 ) : LeakyReLU( n e g a t i v e s l o p e =0.2 , i n p l a c e )
( 3 ) : View ( )
( 4 ) : ConvTranspose2d (128 , 64 , k e r n e l s i z e =(4 , 4 ) ,
s t r i d e =(2 , 2 ) , padding =(1 , 1 ) )
( 5 ) : BatchNorm2d (64 , eps=1e−05, momentum=0.1 ,
a f f i n e=True , t r a c k r u n n i n g s t a t s=True )
( 6 ) : LeakyReLU( n e g a t i v e s l o p e =0.2 , i n p l a c e )
( 7 ) : ConvTranspose2d (64 , 32 , k e r n e l s i z e =(4 , 4 ) ,
s t r i d e =(2 , 2 ) , padding =(1 , 1 ) )
( 8 ) : BatchNorm2d (32 , eps=1e−05, momentum=0.1 ,
a f f i n e=True , t r a c k r u n n i n g s t a t s=True )
( 9 ) : LeakyReLU( n e g a t i v e s l o p e =0.2 , i n p l a c e )
( 1 0 ) : ConvTranspose2d (32 , 1 , k e r n e l s i z e =(4 , 4 ) ,
s t r i d e =(2 , 2 ) , padding =(1 , 1 ) )
( 1 1 ) : Tanh ( ) ) )
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APPENDIX C

ORIGINAL MODEL CODES VAE
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The VAE model Architecture:

VAE(
( vaeencode ) : Sequent i a l (

( 0 ) : Conv2d (1 , 4 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) ,
padding =(1 , 1 ) )
( 1 ) : ReLU( i n p l a c e )
( 2 ) : Conv2d (4 , 4 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(2 , 2 ) ,
padding =(1 , 1 ) )
( 3 ) : ReLU( i n p l a c e )
( 4 ) : Conv2d (4 , 8 , k e r n e l s i z e =(3 , 3 ) , s t r i d e =(1 , 1 ) ,
padding =(1 , 1 ) )
( 5 ) : ReLU( i n p l a c e )
( 6 ) : Conv2d (8 , 8 , k e r n e l s i z e =(4 , 4 ) , s t r i d e =(2 , 2 ) ,
padding =(1 , 1 ) )
( 7 ) : ReLU( i n p l a c e )

)
( conv mu ) : Conv2d (8 , 6 , k e r n e l s i z e =(8 , 8 ) ,
s t r i d e =(1 , 1 ) )
( conv logvar ) : Conv2d (8 , 6 , k e r n e l s i z e =(8 , 8 ) ,
s t r i d e =(1 , 1 ) )
( vaedecode ) : Sequent i a l (

( 0 ) : ConvTranspose2d (6 , 8 , k e r n e l s i z e =(8 , 8 ) ,
s t r i d e =(1 , 1 ) )
( 1 ) : ReLU( i n p l a c e )
( 2 ) : ConvTranspose2d (8 , 8 , k e r n e l s i z e =(4 , 4 ) ,
s t r i d e =(2 , 2 ) , padding =(1 , 1 ) )
( 3 ) : ReLU( i n p l a c e )
( 4 ) : ConvTranspose2d (8 , 4 , k e r n e l s i z e =(3 , 3 ) ,
s t r i d e =(1 , 1 ) , padding =(1 , 1 ) )
( 5 ) : ReLU( i n p l a c e )
( 6 ) : ConvTranspose2d (4 , 4 , k e r n e l s i z e =(3 , 3 ) ,
s t r i d e =(2 , 2 ) , padding =(1 , 1 ) )
( 7 ) : ReLU( i n p l a c e )
( 8 ) : ConvTranspose2d (4 , 1 , k e r n e l s i z e =(4 , 4 ) ,
s t r i d e =(1 , 1 ) , padding =(1 , 1 ) ) ) )
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