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ABSTRACT

Extremal graph theory results often provide minimum degree conditions which guaran-

tee a copy of one graph exists within another. A perfect F -tiling of a graphG is a collection

F of subgraphs of G such that every element of F is isomorphic to F and such that every

vertex in G is in exactly one element of F . Let C3
t denote the loose cycle on t = 2s ver-

tices, the 3-uniform hypergraph obtained by replacing the edges e = {u, v} of a graph

cycle C on s vertices with edge triples {u, xe, v}, where xe is uniquely assigned to e. This

dissertation proves for even t ≥ 6, that any sufficiently large 3-uniform hypergraph H on

n ∈ tZ vertices with minimum 1-degree δ1(H) ≥
(
n−1
2

)
−

(
n−⌈ t

4
⌉n
t

2

)
+ c(t, n) + 1, where

c(t, n) ∈ {0, 1, 3}, contains a perfect C3
t -tiling. The result is tight, generalizing previous

results on C3
4 by Han and Zhao. For an edge colored graph G, let the minimum color de-

gree δc(G) be the minimum number of distinctly colored edges incident to a vertex. Call

G rainbow if every edge has a unique color. For ℓ ≥ 5, this dissertation proves that any

sufficiently large edge colored graphG on n vertices with δc(G) ≥ n+1
2

contains a rainbow

cycle on ℓ vertices. The result is tight for odd ℓ and extends previous results for ℓ = 3. In

addition, for even ℓ ≥ 4, this dissertation proves that any sufficiently large edge colored

graph G on n vertices with δc(G) ≥ n+c(ℓ)
3

, where c(ℓ) ∈ {5, 7}, contains a rainbow cycle

on ℓ vertices. The result is tight when 6 ∤ ℓ. As a related result, this dissertation proves

for all ℓ ≥ 4, that any sufficiently large oriented graph D on n vertices with δ+(D) ≥ n+1
3

contains a directed cycle on ℓ vertices. This partially generalizes a result by Kelly, Kühn,

and Osthus that uses minimum semidegree rather than minimum out degree.
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Chapter 1

INTRODUCTION

Since the advent of computers, the NP-complete class of problems has been of interest

as there is no known fast solution, and yet no proof that a solution must be slow. These

problems are often encountered and provide major limitations on what is computable in

practice. As a result, it is common to search for solutions that work effectively on a restric-

tion of NP-complete problems.

The NP-complete problem of interest to us is the subgraph isomorphism problem: given

hypergraphs F and G, is F isomorphic to a subgraph of G? Many problems in extremal

graph theory attack a variant of the subgraph isomorphism problem: given hypergraphs

F and G, does G have enough edges to guarantee F is isomorphic to a subgraph of G?

Answering questions of this form provides a condition where the subgraph isomorphism

problemmay be easily answered, and additionally, the proofsmay reveal fast algorithms that

apply to a significant restriction of the subgraph isomorphism problem. In this dissertation,

we continue work on this problem by attempting to answer questions of the form: if F is a

collection of vertex disjoint loose 3-cycles on t vertices, what vertex degree conditions on

a 3-graph G guarantee that F is isomorphic to a subgraph of G? In particular, we focus on

two different minimum degree conditions.

The first minimum degree condition we consider is a minimum 1-degree condition. In

Theorem 1.2.12, we prove a tight minimum 1-degree bound δ1(n) for which all sufficiently

large 3-graphs H on n ∈ tZ vertices with δ1(H) ≥ δ1(n) contain a perfect tiling with the

loose cycles on t ≥ 6 vertices. The introductory material for this result is contained in

Section 1.2 and the proof in Chapter 2.

The second minimum degree condition we consider interprets finding a loose 3-cycle as
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finding a rainbow cycle, a cycle in which every edge has a unique color, in an edge colored

graph. From Theorems 1.3.4 and 1.3.5, we obtain a minimum color degree bound δc(n)

for which a sufficiently large edge colored graph G on n vertices with a minimum color

degree at least δc(n) must contain a rainbow cycle. The bound we obtain is tight for all

cycles with an odd number of vertices and cycles with an even number of vertices when the

number of vertices is not divisible by three. Using the result on rainbow even length cycles,

we obtain in Theorem 1.3.6 a minimum out degree condition on sufficiently large oriented

graphs for the existence of directed cycles on at least 4 vertices. The directed graph result

is tight for any directed cycle whose length is not divisible by 3 as well. The introductory

material for these results is contained in Section 1.3. The proof for Theorem 1.3.4, which

provides a color degree bound that is tight for odd length cycles, is contained in Chapter 3.

The remaining results are proved in Chapter 4.

1.1 Definitions and Notation

This section gives an overview of the standard notation used throughout this dissertation.

It is intended as a concise reference for when the reader encounters unfamiliar notation.

1.1.1 Standard Notation Paradigm

The notation we use is standard. We define [n] := {1, . . . , n} and for a set V we

define
(
V
k

)
as all subset of V of size k. For convenience, indices which run from 1 to ℓ

are always considered modulo ℓ, e.g., if we have a sequence v1, . . . , vℓ, then v1 = vℓ+1 and

v0 = vℓ = v−ℓ. In addition, when a set V = {v} has size one, we may refer to V as its

element v instead. Throughout the dissertation, we write 0 < α ≪ β ≪ γ to mean that we

can choose the constants α, β, and γ from right to left. More precisely, there are increasing

functions f and g such that, given γ, whenever we choose β ≤ f(γ) and α ≤ g(β), all

calculations needed in our proof are valid. Longer hierarchies are defined in the obvious
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way.

1.1.2 Definitions of Various Graph Types

A hypergraph is a pairH = (V,E) of vertices V and edgesE where for all edges e ∈ E,

e ⊆ V . A k-graph is a hypergraph where E ⊆
(
V
k

)
. We refer to 2-graphs as graphs in this

dissertation. Most results in this dissertation focus on graphs and 3-graphs. A multigraph is

a graph whereE is a multiset which allows duplicate edges. If a multigraph has no duplicate

edges, then the graph is called simple. In particular, all graphs are simple multigraphs. A

directed graph (digraph) is a graph with the additional restriction that there is an ordering

associated with each edge e ∈ E. An oriented graph is a digraph such that there is no

directed edge uv for which the directed edge vu also exists.

1.1.3 Graph Notation Transcending Graph Type

For all hypergraph/digraphs/multigraphs H = (V,E) we define the following. Let

V (H) = V , |H| = |V |, E(H) = E, and ||H|| = |E|. If M is a collection of subgraphs

of H , we use V (M) and E(M) to denote
∪

M∈M V (M) and
∪

M∈ME(M) respectively.

The graphH is called k-partite if there exists a partition of V (H) into k sets V1 · · ·Vk such

that for all edges e ∈ E(H), |e∩Vi| ≤ 1 for i ∈ [k]. Alternatively when k = 2,H is called

bipartite. The notation H[V ] denotes the subgraph induced by edges of H contained in V ,

and if H is a graph, H[V1, V2] denotes the bipartite subgraph induced in H with bipartition

(V1, V2). Let E(V ) = E(H[V ]). An edge e ∈ E(H) is incident to a vertex v if v ∈ e. IfH ′

is a subgraphH , also denotedH ′ ⊆ H , we say that the graphH ′ spansH if V (H ′) = V (H).

1.1.4 Hypergraph Notation

In addition, we define the following if H is a k-graph. An edge e = {x1, . . . , xk} ∈ H

has form (X1, . . . , Xk) if xi ∈ Xi for all i ∈ [k]. Define EH(X1, . . . , Xk) = {e | e ∈
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E(H) has form (X1, . . . , Xk)}. For a set S ⊆ V (H), define the neighborhood of S to

be NH(S) = {e \ S |e ∈ EH(S, V (H), . . . , V (H))} and the neighborhood of S in U as

NH(S, U) = {e \ S |e ∈ EH(S, U, . . . , U)}. Define the degree of S in H as dH(S) =

|NH(S)|. When the graph H is obvious the H subscripts may be dropped. Define the

minimum t-degree, δt(H) = min
S⊆(V (H)

t ) d(S). Similarly we define the maximum t-degree

as, ∆t(H) = max
S∈(V (H)

t ) d(S). One result of these definitions is that ||H|| = δ0(H) =

δ0(H). Throughout this dissertation, we may drop the superscript t when t = 1. For a

k-graph F , define ext(F, n) to be the smallest integer such that ifH is a k-graph satisfying

δt(H) > ext(F, n), then F is a subgraph of H . Finally, if H is a bipartite 2-graph with

bipartition (A,B) and minimum vertex cover W , the type of W is (a, b) if |W ∩ A| = a

and |W ∩B| = b.

1.1.5 Edge Colored Graph Notation

Let G be a graph. We call a function c from E(G) to another set an edge-coloring of

G. For a graph G with edge coloring c, let the color degree of a vertex dc(v) = |c(EG(v))|

denote the number of distinct edge colors among edges incident to v. Define the minimum

andmaximum color degree ofG, δc(G) and∆c(G) respectively, as the minimum/maximum

over all vertices in G. An edge colored graph is called rainbow if all edges have a unique

color. An edge-coloring c is proper if dG(v) = dcG(v) for every v ∈ V (G).

1.1.6 Directed Graph Notation

Let D be a digraph. The simple underlying graph G is the graph formed by removing

the orientation from the edges of D, i.e., V (D) = V (G) and E(G) = {{u, v} : (u, v) ∈

E(D)}. For a vertex v ∈ D, let the out neighborhood of v beN+
D (v) = {u ∈ V (D) : vu ∈

E(D)}, the out degree of v be d+(v) = |ND(v)|, the in neighborhood of v be N−
D (v) =

{u ∈ V (D) : uv ∈ E(D)}, and the in degree of v be d−(v) = |ND(v)|. In addition, let
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N+
D (v, U) = {u ∈ U | vu ∈ E(D)} and N−

D (v, U) = {u ∈ U | uv ∈ E(D)}. When the

directed graphD is obvious, the subscripts may be dropped. Define the semidegree of v to

be d0(v) = min(d−(v), d+(v)). Similar to above, define the minimum out degree δ+(D),

the minimum in degree δ−(D), and the minimum semidegree δ0(D) as the minimum value

of d+(v), d−(v), and d0(v) over all vertices v respectively. Also, define the maximum out

degree ∆+(D), the maximum in degree ∆−(D), and the maximum semidegree ∆0(D) as

the maximum value of d+(v), d−(v), and d0(v) over all vertices v respectively.

1.1.7 Commonly Used Graphs

Along with the above graph properties we use the following notation for certain hy-

pergraphs and digraphs that show up throughout this dissertation. A (di)graph G is a

(directed) path on i vertices if there exists a sequence of distinct vertices v1v2 · · · vt, and

E(G) = {vivi+1|i ∈ [t− 1]}. A (di)graphG is (directed) cycles on t vertices if there exists

a sequence of distinct vertices v1v2 · · · vt such that E(G) = {vivi+1|i ∈ [t]}. We use (di-

rected) Pt and (directed) Ct to denote the (directed) path and (directed) cycle on t vertices

respectively. We call a 3-graph H loose if it can be constructed from a multigraph G by

replacing each edge e = {u, v} ∈ G with an edge triple {u,we, v}, where we /∈ V (G) is

uniquely assigned to e. Let P 3
t andC3

t denote the loose 3-graphs on t vertices obtained from

a path and a cycle respectively. We refer to the graphs P 3
t as loose paths and the graphs

C3
t as loose cycles. In particular, we define C3

4 which is obtained from the multigraph C2,

the multigraph on two vertices with exactly two edges. Because of the construction of P 3
t

and C3
t , t must be odd for P 3

t and t must be even for C3
t . A graph is called complete if

all possible edges exist and we use Kk
n to denote the complete k-graph on n vertices, Kn

to denote K2
n, Ka,b the complete bipartite graph with partitions of size a and b, and finally

K3
a,b,c the complete 3-partite 3-graph with partitions of size a, b, and c.

The n-vertex blow-up of a directed ℓ-cycle is the directed graph on n vertices for which

5



(a) C3
6 (b) C3

8 (c) P 3
5

Figure 1.1: Examples of Loose 3-Graphs

there exists a partition V1, . . . , Vℓ such that, for i ∈ ℓ, |Vi| ∈ {
⌊
n
ℓ

⌋
,
⌈
n
ℓ

⌉
}, |E(Vi)| = 0,

and E(Vi, Vi+1) = {(u, v) : u ∈ Vi and v ∈ Vi+1}. An ℓ-walk in a directed graph G is a

sequence v1, . . . , vℓ of not necessarily unique vertices such that vivi+1 ∈ E(G) for every

i ∈ [ℓ−1], and it is a closed ℓ-walk if v1 = vℓ. We use analogous terminology for paths and

cycles in simple graphs. We call a 3-cycle a directed triangle, and a three vertex digraph

with vertex set {u, v, w} and edge set {uv, uw, vw} is called a transitive triangle.

1.2 Previous Results on Hypergraph Tilings

For a k-graph F , an F -tiling of a k-graphH = (V,E) is a partition of a setW ⊆ V into

q := |W |
|F | setsW1, . . . ,Wq, each of size |F |, so that for every i ∈ [q],H[Wi] contains F . We

say that a vertex v ∈ V (H) is covered by an F -tiling if v is contained in one of the setsWi.

We say that H has a perfect F -tiling (or is F -tileable) if H has an F -tiling for W = V , in

particular a perfect F -tiling corresponds to spanning subgraph composed of vertex disjoint

copies of F .

Questions on graph tilings are central questions in extremal graph theory. Some of the

simplest results deal with finding K2-tilings, also known as matchings. Two fundamental

results, a theorem by Hall [11] characterizing K2-tilings on bipartite graphs and a theorem

by Tutte [29] characterizingK2-tilings on all graphs, are especially notable in this case.
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Theorem 1.2.1 (Hall, 1935). A bipartite graph with bipartition (A,B) has a K2-tiling

covering all vertices in A if and only if |N(S)| ≥ |S| for all S ⊆ A.

Theorem 1.2.2 (Tutte, 1947). A graph G has a 1-factor if and only if q(G − S) ≤ |S| for

all S ⊆ V (G), where the function q(G) counts the number of connected components on an

odd number of vertices.

An exact minimum degree condition is known forK2-tilings as well.

Theorem 1.2.3. If G is a graph with |G| ∈ 2Z and δ(G) ≥ n
2
, then G has a perfect K2-

tiling.

The proof of Theorem 1.2.3 is often derived from a theorem of Dirac [7] which provides a

minimum degree condition forG to contain a spanning cycle, also known as a Hamiltonian

cycle.

Theorem 1.2.4 (Dirac, 1952). If G is a graph on n ≥ 3 vertices and δ(G) ≥ n
2
, then G

contains a Hamiltonian cycle.

Theorem 1.2.3 then follows from noting that if |G| is even, a Hamiltonian cycle contains

a perfect K2-tiling. Generalizations to other graphs are often considered, but these prob-

lems are fundamentally harder. There are efficient polynomial time algorithms for finding

maximum K2-tilings [8], but finding maximum tilings of larger graphs is NP-hard [20].

This fact has major implications as proving a useful characterization for tilings becomes

more difficult. In addition, when a characterization exists, it is difficult to use since identi-

fying a graph that satisfies the characterization is an NP-hard problem as well. Because of

this, most research on larger graph tilings focuses on finding sufficient conditions, similar

to the minimum degree condition in Theorem 1.2.3. One such example on larger graphs is

the Corrádi-Hajnal theorem [4] which gives an exact bound for cycles on 3 vertices.

7



Theorem 1.2.5 (Corrádi & Hajnal, 1963). If G is a graph on n ∈ 3Z vertices such that

δ(G) ≥ 2n
3
, then G has a perfect C3-tiling.

Generalizations to tilings in hypergraphs are also being researched. One result by Rödl,

Ruciński, and Szemerédi [26] gives a tight generalization of Theorem 1.2.3 to hypergraphs.

Theorem 1.2.6 (Rödl, Ruciński & Szemerédi, 2009). If H is sufficiently large k-graph on

n ∈ kZ vertices with δk−1(H) ≥ n
2
− k + C, where C ∈ {3, 5

2
, 3
2
, 2} and depends on the

divisibility of n and k, then H contains a perfect Kk
k -tiling.

Generalizations to other degree conditions also exist. One result by Treglow and Zhao

[27] determines an exact condition δ(n, 4r, ℓ)which is asymptotically close to (1
2
+o(1))

(
n

k−ℓ

)
for which the following applies:

Theorem 1.2.7 (Treglow & Zhao, 2012). Let r, ℓ ∈ N such that 2r ≤ ℓ ≤ 4r− 1. IfH is a

sufficiently large 4r-graph on n ∈ 4rZ vertices with δℓ(H) > δ(n, 4r, ℓ), then H contains

a perfect Kk
k -tiling.

The problem for determining an exact minimum ℓ-degree with ℓ < k − 1 for which

all k-graphsH satisfying the minimum ℓ-degree contain a perfectKk
k -tiling is still an open

problem in many cases, although some other approximate results exist. The fact that the

general ℓ-degree problem is still open, but that the k − 1-degree has been solved is a com-

mon situation for tiling problems in k-graphs as smaller degree bounds appear to be harder

problems.

Generalizations of problems similar to Theorem 1.2.5 have also been considered. In the

case of loose cycles on four vertices, Kühn and Osthus [21] prove the following asymptotic

result.

Theorem 1.2.8 (Kühn&Osthus, 2006). LetH be a 3-graph on n ∈ 4Z vertices. If δ2(H) ≥

(1
4
+ o(1))n, then H has a perfect C3

4 -tiling

8



This was improved by Czygrinow, DeBiasio, and Nagle [6] who got rid of the o(1) term

and showed the following tight result:

Theorem 1.2.9 (Czygrinow, DeBiasio, & Nagle, 2014). There is an integer n0 such that if

H is a 3-graph on n vertices with n ∈ 4Z, n ≥ n0, and

δ2(H) ≥


n

4
if n

4
is odd

n

4
+ 1 if n

4
is even

,

then H has a perfect C3
4 -tiling.

A more general tight result is also known and was proved in [5] (and independently by

Mycroft in [25] with an o(n) error term in the degree condition.)

Theorem 1.2.10 (Czygrinow, 2016). For every even integer t ≥ 6, there is an integer n0

such that if H is a 3-graph on n vertices with n ∈ tZ, n ≥ n0, and δ2(H) ≥ ⌈ t
4
⌉

t
n, then H

has a perfect C3
t tiling.

Analogous statements which involve δ1(H) rather than δ2(H) can be more difficult to

prove similar to the Kk
k case. Han and Zhao [13] (and independently [6]) proved a best

possible analog of Theorem 1.2.9 with δ1 in lieu of δ2.

Theorem 1.2.11 (Han & Zhao, 2015). There is an integer n0 such that ifH is a 3-graph on

n vertices with n ∈ 4Z, n ≥ n0, and δ1(H) ≥
(
n−1
2

)
−
( 3n

4
2

)
+ 3n

8
+ 1

2
, thenH has a perfect

C3
4 -tiling.

Recently Han, Zang, and Zhao also proved an asymptotic minimum 1-degree bound for

a perfect Ka,b,c-tiling [12]. A loose cycle is a 3-partite 3-graph, so this result implies a

bound on C3
t which is also the asymptotic bound for C3

t . In this dissertation we prove an

analog of Theorem 1.2.10, we give an exact minimum degree condition for the existence of

a C3
t -tiling. For t ∈ 2Z and n ∈ tZ, define the functions

9



c(t, n) =


0 if 4 ∤ t

1 if 4 | t and 4 ∤ 3
4
n+ 1

3 if 4 | t and 4 | 3
4
n+ 1

and

δ(n) =

(
n− 1

2

)
−

(
n− ⌈ t

4
⌉n
t

2

)
+ c(t, n) + 1.

The main result of Chapter 2 is the following theorem.

Theorem 1.2.12 (Czygrinow & Oursler). For every even integer t ≥ 6, there is an integer

n0 such that if H is a 3-graph on n vertices with n ∈ tZ, n ≥ n0, and δ1(H) ≥ δ(n), then

H has a perfect C3
t -tiling.

Proposition 1.2.13. Theorem 1.2.12 is best possible for sufficiently large n.

Proof. Consider the following construction.

Construction 1.2.14. Let H = (V,E) be a 3-graph where |V | = n. Let V1 and V2 be a

partition of H such that |V1| = ⌈ t
4
⌉n
t
− 1 and |V2| = n − |V1|. Let H contain all edges

e ∈
(
V
3

)
such that e ∩ V1 ̸= ∅. Additionally let H[V2] contain edges as follows:

• If 4 ∤ t, let H[V2] be the empty 3-graph.

• If 4 | t and 4 ∤ |V2|, letH[V2] contain v1, v2 ∈ V2 and all edges of the form (v1, v2, V2).

• If 4 | t and 4 | |V2|, let H[V2] be a perfect tiling of K3
4 .

The minimum degree in the construction is achieved by a vertex v in V2. Since v can

be in at most
(
n−1
2

)
edges and at most

(
n−⌈ t

4
⌉n
t

2

)
edges are contained in V2, we get that

δ1(H) =

(
n− 1

2

)
−
(
n− ⌈ t

4
⌉n
t

2

)
+ δ1(H[V2]) = δ(n)− 1.

10



A minimum vertex cover of C3
t has size ⌈ t

4
⌉. When 4 ∤ t,H[V2] is empty so every C3

t inH

contains at least ⌈ t
4
⌉ vertices in V1. Additionally when 4 | t, the deletion of any matching

from C3
t does not change the size of a minimum vertex cover. SinceH[V2] contains no P 3

5 ,

every C3
t in H still contains at least ⌈ t

4
⌉ vertices in V1. Thus a perfect C3

t -tiling would use

at least ⌈ t
4
⌉n
t
> |V1| vertices in V1, a contradiction.

The proof of Theorem 1.2.12 uses the so-called absorbing method which usually con-

sists of three components: finding a large tiling in a 3-graph which is non-extremal, proving

an absorbing lemma, and finding a perfect tiling in the extremal case. The extremal case

occurs whenH is close to the graph in Construction 1.2.14. It is the first component of the

proof, finding a large tiling, which requires the most substantial argument. The proof of

these results is contained in Chapter 2.

1.3 Previous Results on Rainbow Cycles and Digraphs

Let H and F be k-graphs. We say that H is F -free if H does not contain a copy of

F . Another central problem in extremal graph theory poses the question: if F is a fixed k-

graph, under what conditions isH not F -free? One common example of this is calculating

the value of ext(F, n), which is the maximum t-degree such that H can be F -free. In

particular if δt(H) > ext(F, n), then H contains a copy of F .

SinceF is a fixed graph, this problem does not have the same algorithmic issues as tiling

problems. A brute force polynomial time algorithm can be used to find F by iterating over(
V (H)
|F |

)
and search for a copy of F in each subset of V (H). Determining these results is still

necessary as they appear often in other proofs. An example of this occurs in the proof of

Theorem 1.2.12 on loose cycle tilings as knowing the value of ex1(P
3
5 , n) is required in the

proof. This occurs since the H[V2] in Construction 1.2.14 must be a P 3
5 -free 3-graph when

4 divides t. A seminal result in this line of research is a theorem by Turán [28] determining

11



the value of ex0(Kr, n).

Theorem 1.3.1 (Turán, 1941). If G is a Kr+1-free graph on n vertices, then ||G|| ≤ (1 −
1
r
)n

2

2
.

In regards to this dissertation, the following result by Erdős [9] implies that C3
t -free

3-graphs H on n vertices have o(n3) edges as C3
t is a 3-partite 3-graph.

Theorem 1.3.2 (Erdős, 1964). LetKℓ
a,··· ,a denote the complete k-partite k-graph with parts

of size a. For a k-graph H on n vertices with n sufficiently large, if ||H|| ≥ nk− 1

ak−1 , then

H contains Kℓ
a,··· ,a.

We consider a degree condition differing from ext(F, n). Let H be a 3-graph with a

partition of the vertices of H into sets V and C such that all edges in H are of the form

(V, V, C). We can reinterpret the process of finding a copy of C3
t as follows: let G be a

graph with vertex set V and edges vv′ if there exists an edge of the form (v, v′, C) in H .

Associate with each edge vv′ in G a list of colors with value NH({v, v′}) ⊆ C. Then H

contains C3
t if and only if there is an edge coloring c of G, where every edge vv′ is colored

with c(vv′) ∈ NH({v, v′}), such that G contains a rainbow Cℓ, a cycle where every edge is

colored uniquely, for t = 2ℓ. We are focusing on the question: given an edge coloring of a

graph G, what is the minimum color degree such that G contains a rainbow Cℓ?

Work on rainbow subgraph problems has a very long and rich history through its connec-

tion to transversals of Latin squares. A transversal of a givenn×nLatin square is equivalent

to a rainbow perfect matching in a particular proper edge-coloring of the complete bipartite

graph with parts of size n that uses n colors, and a Latin square has an orthogonal mate

if and only if it can be decomposed into disjoint transversals. There has been substantial

recent breakthrough work on closely related questions (see [1], [10], and [19]). There has

also been work related to the rainbow Turán number of various graphs H (first considered

in [16]), which, for n ∈ N, is defined to be the maximum number r for which there exists

12



an n-vertex graph G with r edges and a proper edge-coloring of G such that G does not

contain a rainbow copy of H .

Our focus is different as we consider edge-colorings that may be far from proper. One

of our motivations is the following result which was proved independently, by Li [24] and

Li, Ning, Xu, & Zhang [23].

Theorem 1.3.3 (Li, 2013 and Li, Ning, Xu & Zhang, 2014). If G is a graph on n vertices,

c is an edge-coloring of G, and δc(G) ≥ n+1
2
, then G contains a rainbow 3-cycle.

In fact, in [23], it was proved that G contains a rainbow triangle when only the weaker

condition
∑

v∈V (G) d
c
G(v) ≥

n(n+1)
2

holds, and also thatG contains a rainbow triangle when

δc(G) ≥ n
2
unless either G is a complete bipartite graph with parts of size n

2
, G isK4, or G

is K4 minus an edge.

In Chapter 3 we extend Theorem 1.3.3 with large n to the following theorem.

Theorem 1.3.4 (Czygrinow, Molla, Nagle, & Oursler). For every ℓ ≥ 5 and n ≥ 200ℓ, if

G is an edge-colored graph on n vertices with δc(G) ≥ n+1
2
, then G contains a rainbow

cycle of length ℓ.

By considering the complete bipartite graph and an edge-coloring in which every edge is

given a unique color, Theorems 1.3.3 and 1.3.4 prove a tight bound in the minimum degree

condition for all cycles with odd length. The following related theorem on even length

cycles is our main result in Chapter 4.

Theorem 1.3.5 (Czygrinow, Molla, Nagle, & Oursler). For every even ℓ ≥ 4, there exists

α > 0 and n0 such that for every n ≥ n0 the following holds. If G is a graph on n vertices
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and c is an edge-coloring of G such that

δc(G) ≥


(1
3
− α)n if ℓ = 0 (mod 3)

n+ 5

3
if ℓ = 1 (mod 3)

n+ 7

3
if ℓ = 2 (mod 3),

(1.1)

then G contains a rainbow ℓ-cycle.

Theorem 1.3.5 is sharp in the minimum color degree condition when ℓ is not divisible

by 3. (See Subsection 1.3.1 for further discussion.) Previously, Čada, Kaneko,. Ryjáček,

and Yoshimoto [30] proved that if G is triangle-free and δc(G) ≥ n
3
+ 1, then G contains a

rainbow 4-cycle.

As we describe in detail in Subsection 1.3.1, problems of this type have a close con-

nection to similar results on directed graphs. In fact, with a proof that shares many of its

arguments with our proof of Theorem 1.3.5, we also have the following result in Chapter 4.

Theorem 1.3.6 (Czygrinow, Molla, Nagle, & Oursler). For every ℓ ≥ 4, there exists n0

such that for every n ≥ n0 the following holds. If G is an oriented graph on n vertices and

δ+(G) ≥ n+1
3
, then G contains a directed ℓ-cycle.

By considering the blow-up of a directed triangle, Theorem 1.3.6 is sharp for every ℓ ≥ 4

that is not divisible by 3. For sufficiently large n, Theorem 1.3.6 is a partial generalization

of the following theorem of Kelly, Kühn & Osthus.

Theorem 1.3.7 (Kelly, Kühn & Osthus, 2010 [18]). For every ℓ ≥ 4 and every n ≥ 1010ℓ

the following holds, if G is an oriented graph on n vertices and δ0(G) ≥ n+1
3
, then G

contains an ℓ-cycle. Moreover, for every vertex u ∈ V (G), there exists an ℓ-cycle that

contains u.

14



Note that the statement of the famous triangle case of the Caccetta-Häggkvist conjecture

[3] is the same as the statement of Theorem 1.3.6 with ℓ = 3 and no lower bound on n. The

following theorem of Hladký, Král’ & Norin gives the current best lower bound on the

minimum out-degree that implies the existence of a directed triangle in an oriented graph.

Theorem 1.3.8 (Hladký, Král’ & Norin, 2017 [14]). IfG is an oriented graph on n vertices

and δ+(G) ≥ 0.3465n, then G contains a directed triangle.

Combining Theorem 1.3.8 with Theorem 1.3.6 implies that, for every ℓ ≥ 3, if G is an

oriented graph on n vertices, n is sufficiently large, and δ+(G) ≥ 0.3465n, thenG contains

an ℓ-cycle.

The following conjecture of Kelly, Kühn, & Osthus is also of interest, because, by ar-

guments described in Section 1.3.1, an asymptotic proof of the conjecture with minimum

semidegree replaced by minimum out-degree would immediately imply an asymptotically

best possible result for rainbow cycles in edge-colored graphs. The conjecture has been

proved asymptotically when ℓ is sufficiently large compared to k (for k ≤ 6, by Kelly,

Kühn, & Osthus [18] and, for k ≥ 7, by Kühn, Osthus, & Piguet [22]).

Conjecture 1.3.9 (Kelly, Kühn, & Osthus, 2010 [18]). Let ℓ ≥ 4 be a positive integer and

let k be the smallest integer that is greater than 2 and does not divide ℓ. Then there exists

an integer n0 such that for every n ≥ n0 the following holds. If G is an oriented graph on

n vertices and δ0(G) ≥
⌈
n
k

⌉
+ 1, then G contains an ℓ-cycle.

1.3.1 Relationship Between Digraphs and Rainbow Subgraphs

It turns out there is a major connection between directed graphs and rainbow subgraphs.

To begin with, consider the following coloring, which is a slight modification of a coloring

used by Li [24] for rainbow cycles. Let G′ be a directed graph, let G be the simple graph

underlying G′, and let c be the edge-coloring of G defined as follows. For every edge
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uv ∈ E(G) with uv a directed edge in G′, define c(uv) = v if vu is not a directed edge in

G′ and define c(uv) = uv when vu ∈ E(G) is also a directed edge. We call the pair (G, c)

the simple edge-colored graph determined by G′.

Additionally for a graph F , let F ′ be a directed graph with F the simple underlying

graph of F ′ such that for every vertex v ∈ V (F ), |N−
F ′(v) \N+

F ′(v)| ≤ 1. We call F ′ a 1-in

direction of F . Note that a directed cycle is an example of a 1-in direction of a graph cycle.

Proposition 1.3.10. Let F be a graph and let (G, c) be the simple edge-colored graph

determined by a directed graph G′ on n vertices. Then G′ contains a 1-in direction of F if

and only if G has a rainbow (or properly colored) copy of F .

Proof. Let uv and u′v′ be distinct edges in G. If w = c({u, v}) = c({u′, v′}), then it must

be that w ∈ {u, v} and w ∈ {u′, v′}, so without loss of generality we may assume that

w = v = v′. Then uv and u′v′ = u′v are both directed edges in G′. Therefore every

properly colored subgraph of G is a rainbow subgraph of G. The conclusion follows since

a subdigraph F ′ of G′ has |N−
F ′(v) \ N+

F ′(v)| ≤ 1 if and only if the graph underlying F ′ is

properly colored in G.

If (G, c) is the simple edge colored graph determined by a directed graph G′, then for

every v ∈ V (G),

dcG(v) =


d+G′(v) + 1 if |N−

G′(v) \N+
G′(v)| > 0

d+G′(v) otherwise.

Therefore, when 3 ≤ ℓ ≤ n, k is the largest positive integer that does not divide ℓ, and

G′ is the n-vertex blow-up of a directed k-cycle, for the simple edge colored graph (G, c)

determined byG′ we have that δc(G) ≥
⌊
n
k

⌋
+1 for k ≥ 3 and δc(G) ≥

⌊
n
2

⌋
for k = 2. The

construction ofG′ implies that all directed cycles inG′ must have length that is a multiple of

k. Since k does not divide ℓ, Proposition 1.3.10 implies that (G, c) does not have a rainbow

16



ℓ-cycle. This yields a sharpness example for Theorem 1.3.4 along with Theorem 1.3.5 when

ℓ ≡ 1 (mod 3) and n (mod 3) ∈ {0, 1}. With slight modification for other cases we get

the following.

Proposition 1.3.11. Theorem 1.3.5 is the best possible for sufficiently large n when 3 does

not divide ℓ.

As the actual construction contains a number of small modifications on (G, c), the proof

of Proposition 1.3.11 is delayed to Section 4.2.

If F is a graph and F ′ is a 1-in direction of F , with Proposition 1.3.10, results on F ′-free

digraphs can be used to deduce lower bound results for rainbow F graphs. In addition, we

get that certain rainbow F -free edge colored graphs can be used to deduce lower bounds

for F ′-free digraphs. In fact, there is a stronger result which is that the minimum out degree

condition for digraphs to contain a 1-in direction of F is asymptotically equivalent to the

minimum degree bound for an edge colored graph to contain a rainbow F . For this we use

the following definition. Let G an n-vertex graph and c an edge-coloring of G, we say a

directed graph G′ is associated with with the pair (G, c) if

• V (G′) = V (G);

• uv ∈ E(G′) implies that {u, v} ∈ E(G);

• for every v ∈ V (G), we have that d+G′(v) = dcG(v); and

• the edge set EG(v,N
+
G′(v)) is rainbow.

We can always construct a directed graph associated with the pair (G, c) by making the

out-neighborhood of every vertex v ∈ V (G) some subset U ⊆ V (G) of order dcG(v) such

that E(v, U) is rainbow. Note that there can be many different directed graphs G′ that are

associated with a particular pair (G, c), and thatG′ may contain 2-cycles and therefore may
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not be an oriented graph. The following proposition provides a connection between results

on 1-in directions on directed graphs and results on rainbow subgraphs in edge-colored

graphs.

Proposition 1.3.12. For every graph F and α > 0, there exists n0 such that for every

n ≥ n0 the following holds. Let G be a graph on n vertices, let c be an edge-coloring of G

and let G′ be a directed graph associated with (G, c). If F ′ is a 1-in direction of F and G′

contains at least αn|F | copies of F ′, then G contains a rainbow F .

The proof of Proposition 1.3.12 is delayed to Section 4.2. Let f(n) denote the minimum

out degree condition such that a directed graph G′ satisfying d+(G′) ≥ f(|G′|) contains a

1-in direction of a graph F . Similarly, let g(n) denote the minimum color degree condition

such that an edge colored graph G with δc(G) ≥ g(|G|) contains a rainbow F . From

Proposition 1.3.10, we know that f(n) ≤ g(n), as a directed graph with no 1-in direction

of F can be used to generate an edge colored graph with no rainbow F . On the other hand,

standard arguments give that if a directed graph G′ on n vertices has minimum degree

f(n)+ϵn for ϵ > 0, thenG′ contains at least αn|F ′| 1-in directions F ′ for some α > 0when

n is sufficiently large. Proposition 1.3.12 then proves that for sufficiently large graphs

f(n) ≤ g(n) ≤ f(n) + ϵ(n), giving that g(n) = f(n) + o(n).
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Chapter 2

LOOSE CYCLE TILINGS

2.1 Proof of Theorem 1.2.12

We prove Theorem 1.2.12 with the absorbing method which consists of three compo-

nents: finding a large tiling if the graph is not extremal, finding an absorbing set, and finding

a perfect tiling if the graph is extremal. In this chapter, we give the following definition for

β-extremal.

Definition 2.1.1. A 3-graphH on n vertices is β-extremal if V (H) can be partitioned into

sets A and B so that |B| = n− ⌈ t
4
⌉n
t
and ||H[B]|| ≤ β|V |3.

For convenience, define the following 3 functions which are used throughout the rest

of this chapter in the computation of minimum degree conditions.

c(t, n) =


0 if 4 ∤ t

1 if 4 | t and 4 ∤ 3
4
n+ 1

3 if 4 | t and 4 | 3
4
n+ 1

δ(n) =

(
n− 1

2

)
−

(
n− ⌈ t

4
⌉n
t

2

)
+ c(t, n) + 1,

δϵ(n) =
(2t− ⌈ t

4
⌉)⌈ t

4
⌉

t2

(
n

2

)
− ϵn2.

and note that one can show

δϵ(n) < δ(n)− ϵ

2
n2

We prove the following three lemmas to accomplish the components of the absorbing

method.
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Lemma 2.1.2. (Large Tiling) For all β > 0, there exists ϵ0 > 0 such that for all 0 < ϵ < ϵ0,

there exists n0 such that ifH is a 3-graph, |H| ≥ n0, δ(H) ≥ δϵ(|H|), andM is a maximum

C3
t -tiling, then |V (H) \ V (M)| ≤ n0 or H is β-extremal.

Lemma 2.1.3. (Extremal) There exists a β0 > 0 such that if β < β0 andH is a β-extremal

3-graph satisfying δ(H) ≥ δ(|H|), then H has a perfect C3
t -tiling.

Lemma 2.1.4. (Absorbing) For every integer t ≥ 6 and ν > 0, there is ξ > 0 and n0 such

that the following holds. IfH is a 3-graph on n ≥ n0 vertices which satisfies δ(H) ≥ δ(n),

then there is a set A ⊂ V (H) with |A| ≤ νn, such that H[A] is C3
t -tileable and for every

set B ⊆ V (H) \ A with |B| ∈ tZ and |B| < ξn, H[A ∪B] is C3
t -tileable.

The proof of Lemmas 2.1.2, 2.1.3, 2.1.4 will be in Sections 2.2, 2.3, and 2.4 respectively.

Of the three proofs, the proof of Lemma 2.1.2 requires the most substantial argument. We

now prove Theorem 1.2.12, the main theorem of this chapter.

Theorem 1.2.12 (Czygrinow & Oursler). For every even integer t ≥ 6, there is an integer

n0 such that if H is a 3-graph on n vertices with n ∈ tZ, n ≥ n0, and δ1(H) ≥ δ(n), then

H has a perfect C3
t -tiling.

Proof. Let H be such that δ(H) ≥ δ(|H|) and |H| ≥ n0. Fix β > 0 small enough so

that it satisfies Lemma 2.1.3 and fix ϵ small enough so that Lemma 2.1.2 is satisfied with

β and ϵ having values β
2
and ϵ respectively. By Lemma 2.1.4, there exists η > 0 and a set

S ⊂ V (H) such that |S| ≤ ϵ|H| and such that S can absorb any set T with |T | ≤ η|H|.

Let H ′ = H[V (H) \ S]. Then

δ(H ′) ≥ δ(|H|)− ϵ

2
|H|2 ≥ δ(H ′)− ϵ

2
|H ′|2 ≥

(2t− ⌈ t
4
⌉)⌈ t

4
⌉

t2

(
|H ′|
2

)
− ϵ|H ′|2

since n ≥ n0. Then by Lemma 2.1.2, either H ′ is β
2
-extremal or H ′ has a C3

t -tiling M

using all but n1 vertices for some constant n1. If H ′ is β
2
extremal, it can be partitioned
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into two sets (A′, B′) such that |B′| = |H ′| − ⌈ t
4
⌉ |H′|

t
and ||H ′[B′]|| ≤ β

2
|H ′|3. Since

|S| ≤ ϵ|H| < β
2
|H|, we can partition the vertices of H into two sets (A,B) such that

|B| = |H| − ⌈ t
4
⌉ |H|

t
and ||H[B]|| ≤ β|H|3. ThusH is β-extremal and by Lemma 2.1.3,H

contains a perfect C3
t -tiling. Otherwise let U be the set of at most n1 vertices not contained

in the tiling M on H ′. Since |H| ≥ n0, |U | ≤ n1 ≤ η|H|. Thus by the choice of S,

S ∪ U is C3
t -tileable with a tilingM′. Therefore H contains a perfect C3

t -tiling consisting

ofM∪M′, completing the proof.

2.2 Large Tiling

The goal of this section is to show that if a 3-graph H satisfies δ(H) ≥ δϵ(|H|) for

ϵ > 0, then there exists a “very large” C3
t -tiling or H is in an extremal configuration. In

particular, we prove Lemma 2.1.2. We accomplish this by determining the characteristics

of maximum C3
t -tilings. Let M be a C3

t -tiling in a 3-graph H and let ϵ > 0. Define the

following structures associated with H ,M, and ϵ:

• Define UM = V (H) \ V (M) to be the vertices not covered byM.

• Let S ⊂ V (H). Define GS to be the graph with V (GS) = V (H) where v1v2 ∈

E(GS) iff |NH(v1, v2) ∩ S| > ϵ|S|.

• Define FM to be the graph with V (FM) = M where the edge C1C2 is in E(FM)

if ||GUM [V (C1), V (C2)]|| ≥ (2t − ⌈ t
4
⌉)⌈ t

4
⌉ and ||GUM [V (C1), V (C2)]|| admits a

minimum vertex cover Y whose type is not (⌈ t
4
⌉, ⌈ t

4
⌉).

• Define GM to be the graph with V (GM) = M where the edge C1C2 is in E(GM)

if ||GUM [V (C1), V (C2)]|| = (2t− ⌈ t
4
⌉)⌈ t

4
⌉ and ||GUM [V (C1), V (C2)]|| only admits

minimum vertex covers Y with type (⌈ t
4
⌉, ⌈ t

4
⌉).

When the C3
t -tilingM is obvious, theM subscripts may be dropped.
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For a maximum C3
t -tiling M on a 3-graph H such that δ(H) ≥ δϵ(|H|), to prove

Lemma 2.1.2 we successively refine where edges can exist. In particular, we show that if

|UM| is larger than a constant n0, then

1. ||FM|| is small(Lemma 2.2.6)

2. |EH(V, UM, UM)| is bounded (Lemma 2.2.7)

3. GM is almost complete (Lemma 2.2.8).

Using the structure in GM, we then deduce that H is in an extremal configuration. The

most demanding part of this proof is item 1.

To prove item 1, we consider a maximum C3
t -tiling M and attempt to extend it by

analyzing GS . When |S| is large enough, each edge xy ∈ C ⊆ S, where C is a graph

cycle on s edges with t = 2s, can be associated with a unique vertex zxy ∈ S − V (C)

with xyzxy ∈ H . These edges form a loose cycle C3
t in H . Using this and a similar,

but more complicated, construction required when s is odd, we show that ||H[UM]|| is

small in Lemma 2.2.3 and that when ||FM|| is large we can construct a C3
t -tiling M′ with

|M′| > |M| in Lemma 2.2.6. To find the required subgraphs we need the following facts:

Fact 2.2.1. For all α > 0 and positive integers s, there exists n0 such that if Q is a graph

with |Q| ≥ n0 and ||Q|| ≥ α|Q|2, then Q contains Ks,s.

Fact 2.2.2. Let α > 0, ϵ > 0, and c be a positive integer. Then there exist n0 and α′ > 0

such that if H is a 3-graph with |H| = n ≥ n0, S ⊆ V (H), |S| = ϵn, and ||GS|| ≥ αn2,

then there exists a set of edges E ⊆ GS and vertices V ⊆ S with |E| ≥ α′n2 and |V | ≥ c

such that for every e ∈ E and v ∈ V , e ∪ {v} ∈ E(H).

Proof. There are exactly
(|S|

c

)
subsets of S of size c. Since every edge in GS intersects at

least ϵ|S| vertices of S, there are at least αn2
(
ϵ|S|
c

)
edges e ∈ GS and subsets T ⊂ S of size
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c such that e ∪ {t} ∈ E(H) for all t ∈ T . Thus on average a set T of size c appears in at

least
αn2

(
ϵ|S|
c

)(|S|
c

) ≥ α′n2

many edges for some α′ with value approximately αϵc. Letting V be one of the subsets T

of at least average size provides the desired set E.

We use Fact 2.2.1 and Fact 2.2.2 in the following lemma.

Lemma 2.2.3. For all α > 0 and ϵ > 0, there exists n0 such that if H is a 3-graph,

S ⊆ V (H), U ⊆ V (H), and H[S ∪ U ] is C3
t -free, then one of the following is true:

|S| < n0, |U | < n0, or ||GU [S]|| < α|S|2.

Proof. Assume to the contrary, that |U | ≥ n0, |S| ≥ n0, and that ||GU [S]|| ≥ α|S|2.

Consider the case when C3
t contains an even number of edges. Then by Fact 2.2.1, GU [S]

contains a complete bipartite graph K||C3
t ||/2,||C3

t ||/2 and thus a cycle on ||C3
t || edges. Since

|U | ≥ n0, this cycle can be extended to create a copy of C3
t in H[S ∪ U ] contradicting that

H[S ∪ U ] is C3
t -free.

OtherwiseC3
t contains an odd number of edges which makes things more difficult since

we cannot guarantee the existence of an odd cycle in GU [S]. Instead we will find a path

P = v1v2 · · · vs in GU [S] which has the same number of edges as C3
t with the restriction

that |NH({v1, v2}, U) ∩ NH({vs−1, vs}, U)| ≥ s + 1. If u is a vertex in NH({v1, v2}, U \

{v1, · · · vs})∩NH({vs−1, vs}, U \{v1, · · · vs}), the path P −v1−vs can the be transformed

into a loose path P ′ inH[S∪U ] by adding a unique vertex from U \{u, v1, · · · , vs} to each

edge in P − v1 − vs. Adding the edges {u, v1, v2} and {u, vs, vs−1} to P ′ forms a copy of

C3
t . From applying Fact 2.2.2 and then Fact 2.2.1, there exists a complete bipartite graph

Ka,a, which contains two disjoint edges e1 and e2 satisfying |NH(e1, U)∩NH(e2, U)| > s.

Thus we can construct such a path P , contradicting that H[S ∪ U ] is C3
t -free.

23



The above lemma immediately implies the following corollary by greedily extending a

tiling on unmatched vertices.

Corollary 2.2.4. For any α > 0 there exist β > 0 and n0 such that if |H| > n0 and

||H|| > α|H|3, then the size of a maximum C3
t -tiling M covers at least β|H| vertices.

From here we will consider subgraphs in FM in an attempt to find a largerC3
t -tiling. By

Corollary 2.2.4, we may assume that |FM| is sufficiently large. Define an ordered bipartite

graph F with ordered bipartition (A,B) to be a bipartite graph such thatA andB are totally

ordered sets. We say that two ordered bipartite graphs F and F ′, with ordered bipartitions

(A,B) and (A′, B′) respectively, are equivalent, denoted F = F ′, if the graphs are isomor-

phic under the isomorphism ϕ that maps A to A′, B to B′, preserves the order between A

and A′, and preserves the order between B and B′. An edge e ∈ E(F ) is equivalent to an

edge e′ ∈ E(F ′) if e is mapped to e′ under ϕ.

Lemma 2.2.5. Fix a total ordering on the vertices ofC for everyC ∈ M. For allα > 0 and

for all positive integers a, b, and c, there exists n0 such that ifH is a 3-graph with |H| > n0,

M is a C3
t -tiling ofH , and FM contains αn2 edges, then FM contains a complete bipartite

subgraph Ka,b with bipartition (A,B) satisfying the following:

(i) There exists an ordered bipartite graph F such that for all C ∈ A and C ′ ∈ B,

F = GUM [V (C), V (C ′)].

(ii) For all e ∈ E(F ), let Ee be the set of edges between cycles in A and cycles in B

which are equivalent to e, and let Ve =
∩

e′∈Ee
N(e′, UM). Then |Ve| ≥ c.

Proof. Orient the edges of FM and color the oriented edges CC ′ with the equivalence class

of ordered bipartite graphs containing GUM [V (C), V (C ′)]. Since there are finitely many

equivalence classes of ordered bipartite graphs on 2t vertices, there must be a set E of at
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least 8α′n2 oriented edges with equivalent color for some α′ > 0. Let F ′
M be the directed

graph with edge set E. Let F ′′
M be the largest bipartite subgraph of F ′

M with bipartition

(A,B), and with edges directed only from A to B. Note that ||F ′′
M|| ≥ 2α′n2. Let F =

GUM [V (C), V (C ′)] for some directed edge CC ′ ∈ F ′′
M and label the edges of F so that

E(F ) = {e1, · · · em}. Construct a sequence of graphs F0, . . . , Fm as follows. Let F0 = F ′′
M

and for every edge ei ∈ E(F ), let Eei be the set of edges e that are equivalent to ei and are

between cycles that form an edge in Fi−1. Let Fi be a subgraph of Fi−1 with the maximum

number of edges such that |
∩

e∈Eei
N(e, UM)| ≥ c. From Fact 2.2.2, we get that each Fi

must contain at least αin
2 edges for some αi > 0. Thus Fm contains at least αmn

2 edges for

some αm > 0. By Fact 2.2.1, we can find a complete bipartite Ka,b ⊆ Fm which satisfies

both conditions (i) and (ii).

We will exploit theKa,b in the previous lemma to find a larger C3
t -tilings in H .

Lemma 2.2.6. For all α > 0, there exist integers n0 and n1 such that ifH is a 3-graph and

M is a maximum C3
t -tiling ofH covering at least n0 vertices, then |UM| < n1 or FM does

not contain α|M|2 edges.

Proof. Assume to the contrary, that M is maximum, |UM| ≥ n1, and FM contains at

least α|M|2 edges. From Lemma 2.2.5 with a, b = 3⌈ t
4
⌉, and c = 6⌈ t

4
⌉(t − 2⌈ t

4
⌉), there

exists K ⊆ FM satisfying conditions (i) and (ii). Let F be the ordered bipartite graph

with bipartition (A,B) found in condition (i). Let W be a minimum vertex cover of F ,

k = |W ∩ A|, and ℓ = |W ∩B|. Without loss of generality assume k > ℓ.

Let K ′ ⊆ K be a graph which duplicates the vertices corresponding to A 3⌈ t
4
⌉ times

and the vertices corresponding to B 2⌈ t
4
⌉ times. Let Ai and Bi refer to the ith copy of the

vertices respectively. Let Aj = {Ai : (j − 1)⌈ t
4
⌉ < i ≤ j⌈ t

4
⌉} for j ∈ [3] and Bj = {Bi :

(j − 1)⌈ t
4
⌉ < i ≤ j⌈ t

4
⌉} for j ∈ [2]. Let M1 be a maximum matching in F , let M2 be a

maximum matching so that V (M1)∩V (M2)∩B = ∅, and letM3 be a maximum matching
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Figure 2.1: Intersection of V (Ai), V (Bi), and the Tilings Tj

so that V (M1)∩V (M3)∩B = ∅ and V (M2)∩V (M3)∩A = ∅. Let pi = |Mi| and note that

k + ℓ = p1 ≥ k ≥ p2 ≥ p3. Since F = GUM [V (C1), V (C2)] for all C1C2 ∈ E(K ′), every

edge e ∈ E(F ) induces aK⌈ t
4
⌉,⌈ t

4
⌉ on edges equivalent to e in GUM [V (Ai), V (Bj)] for any

pair (Ai,Bj). Since M1 is a matching, M1 induces K⌈ t
4
⌉,⌈ t

4
⌉-tilings Ti with p1 elements

in GUM [V (Ai), V (Bi)] for i ∈ [2]. Similarly for i ∈ {2, 3}, Mi induces tilings Ti+1 with

pi elements in GUM [V (A3), V (Bi−1)]. By construction of the matchings, T =
∪4

i=1 Ti

is a K⌈ t
4
⌉,⌈ t

4
⌉-tiling. Since c = 6⌈ t

4
⌉(t − 2⌈ t

4
⌉), condition (ii) on K ′ implies that T can be

extended using vertices of UM to aK⌈ t
4
⌉,⌈ t

4
⌉,t−2⌈ t

4
⌉-tilingM′ ofH with size min(|T |, 6⌈ t

4
⌉).

LetMi be the extension of Ti under the tilingM′. AsC3
t ⊆ K⌈ t

4
⌉,⌈ t

4
⌉,t−2⌈ t

4
⌉, we can create a

C3
t -tiling by replacing the elements of V (K ′) ⊆ Mwhich intersect withC3

t -tilings induced

by some set of the Mi in M. The maximality of M implies that ℓ + k = |T1| ≤ 2⌈ t
4
⌉,

ℓ+k+p2 = |T1|+ |T3| ≤ 3⌈ t
4
⌉, and 2ℓ+2k+p2+p3 = |T | ≤ 5⌈ t

4
⌉. LetB′ = B \V (M1),

then we can bound the number of edges from A to B with

|E(A,B)| ≤ t|W ∩B|+ |W ∩ A|2 + |E(A,B′)| ≤ tℓ+ k2 + |E(A,B′)|,

where the inequality follows by counting the maximum size of the sets E(W ∩ B,A),

E(W ∩ A, V (M1) \ W ), and E(A,B′). We can also bound E(A,B′). Since M2 is of

maximum size and V (M3)∩V (M2)∩A = ∅ by construction, V (M3)∩B′ ⊆ V (M2)∩B′.

Therefore we obtain the bound

|E(A,B′)| ≤ p2|B′|+ p2p3 ≤ p2(t− (k + ℓ)) + p2p3.
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But then |E(A,B)| is maximized when k + ℓ = 2⌈ t
4
⌉, p2 = ⌈ t

4
⌉, and p3 = 0, so

(2t− ⌈ t
4
⌉)⌈ t

4
⌉ ≤ |E(A,B)| ≤ tℓ+ k2 + p2(t− (k + ℓ)) + p2p3

≤ t(2⌈ t
4
⌉ − k) + k2 + ⌈ t

4
⌉(t− 2⌈ t

4
⌉)

= k2 − tk + ⌈ t
4
⌉(3t− 2⌈ t

4
⌉).

Rearranging yields

0 ≤ k2 − tk + ⌈ t
4
⌉(t− ⌈ t

4
⌉) = (k − ⌈ t

4
⌉)(k − (t− ⌈ t

4
⌉)),

which is false for ⌈ t
4
⌉ < k < (t − ⌈ t

4
⌉) and only true when t = 6. But the calculation

is exact, so k = 2⌈ t
4
⌉, ℓ = 0, p2 = ⌈ t

4
⌉, and p3 = 0. Then F [V (M1)] is a K2⌈ t

4
⌉,2⌈ t

4
⌉

and F [V (M2)] is a K⌈ t
4
⌉,⌈ t

4
⌉. Create matchings M ′

1 and M ′
2 by adding the edges in M2

to M1 and removing the conflicting edges from M1 into the matching M ′
2. Under these

matchings, F [A,B \ V (M ′
1)] contains a K2⌈ t

4
⌉,⌈ t

4
⌉. Thus we can find a matching M ′

3 on

F [A \ V (M ′
2), B \ V (M ′

1)] with |M ′
3| = ⌈ t

4
⌉. But the argument above implies that the

matchingsM ′
1,M ′

2, andM ′
3 cannot exists, completing the proof.

Thus we have completed the first step outlined at the beginning of this section, that

if |M| is maximum and |UM| is not bounded by a constant, then ||FM|| must be small.

Therefore when |UM| is unbounded almost all pairsC1, C2 ∈ M have at most (2t−⌈ t
4
⌉)⌈ t

4
⌉

edges, with equality when the minimum vertex cover has the same number of vertices in

C1 as in C2 (which uniquely determines GUM [C1, C2]). Now we move to limit the number

of edges of the form (V (M), UM, UM). Call a cycle C ∈ M α-big if there exist (⌈ t
4
⌉ +

α)
(|UM|

2

)
edges of the form (V (C), UM, UM).

Lemma 2.2.7. For all ϵ, α > 0 there exists n0 such that if H is a 3-graph with M a

maximum C3
t -tiling, then |UM| < n0 or there are fewer than ϵ|M| α-big elements of M.

Proof. LetM be a maximum C3
t -tiling ofH and assume that |UM| ≥ n0. Consider any α-

big element C ∈ M. Then there exists a set of vertices AC ⊆ V (C) such that |AC | = ⌈ t
4
⌉
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and |
∩

v∈AC
N(v, UM)| ≥

(
t

⌈ t
4
⌉

)−1(|UM|
2

)
. To show this count pairs (e, A) with e ∈

(
UM
2

)
,

A ⊆
(V (C)

⌈ t
4
⌉

)
, and e ∈

∩
v∈AN(v). Let s be the minimum possible value of this count

over all possible 3-graphs. Note that if the count s is achieved there cannot exist edges

e1, e2 ∈
(
UM
2

)
such that e1 is in the neighborhood of more than ⌈ t

4
⌉ vertices of C and e2 is

in the neighborhood of fewer than ⌈ t
4
⌉ vertices since transferring a neighbor from e1 to e2

results in a smaller count. From the number of edges of the form (V (C), UM, UM), there

exists an edge in
(
UM
2

)
with at least ⌈ t

4
⌉ + 1 neighbors in C. Combined with the previous

fact, this implies that s >
(|UM|

2

)
. Since there are at most

(
t

⌈ t
4
⌉

)
subsets of size ⌈ t

4
⌉, there

exists a set of ⌈ t
4
⌉ vertices in C with intersection of size at least

(
t

⌈ t
4
⌉

)−1(|UM|
2

)
.

Since |AC | = ⌈ t
4
⌉, there also exists a vertex vC ∈ V (C)\AC such that |N(vC)∩UM| ≥

α
(|UM|

2

)
. Let B = {vC : C ∈ M}. If the number of α-big vertices is at least ϵ|M|, then

there are at least ϵα|M|
(|UM|

2

)
edges on UM ∪ B. Since |UM| ≥ n0 by Lemma 2.2.3 and

Corollary 2.2.4, there exists a copy C ′ of C3
t on UM ∪B. But for each C ∈ M intersecting

with C ′, we can use each AC and its intersection property to find disjoint copies of C3
t as

well, contradicting the maximality of C. Thus there are fewer than ϵ|M| α-big elements of

M.

From this point on we start using assumptions about the minimum degree on a 3-graph

H . As a reminder

δϵ(n) =
(2t− ⌈ t

4
⌉)⌈ t

4
⌉

t2

(
n

2

)
− ϵn2.

Lemma 2.2.8. For all ϵ > 0, there exists n0 such that if H is a 3-graph satisfying δ(H) ≥

δϵ(|H|) and M is a maximum C3
t -tiling, then |UM| ≤ n0 or ||GM|| ≥ (1− 3ϵ)

(|M|
2

)
.

Proof. Assume |UM| ≥ n0, let n = |H|, and let W = V (M). Then it suffices to show

that the claim holds if ||GUM [W ]|| ≥ δϵ(|W |) − ϵ|M|2. To see this, let RM be the graph

with verticesM and edges C1C2 such that ||GUM [V (C1), V (C2)]|| < (2t−⌈ t
4
⌉)⌈ t

4
⌉. From

Lemma 2.2.6 with α = ϵ
4t
, ||FM|| ≤ ϵ

4t
|M|2, so bounding the size of ||GUM [W ]|| based on
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|M|, ||GM||, ||FM||, and ||RM|| we get that

||GUM [W ]|| ≤ ((2t− ⌈ t
4
⌉)⌈ t

4
⌉)
(|M|

2

)
+ t2||FM||+ t2

2
|M| − ||RM||

≤
(2t− ⌈ t

4
⌉)⌈ t

4
⌉

t2
(|W |

2

)
+ 1

2
ϵt|M|2 − ||RM||

≤ δϵ(|W |) + 3
2
ϵt|M|2 − ||RM||.

But ||GUM [W ]|| ≥ δϵ(|W |)− ϵ|M|2 implies that ||RM|| ≤ 5
2
ϵt|M|2. Since FM, GM, and

RM partition
(M

2

)
, we get that ||GM|| ≥ (1− 3ϵ)

(|M|
2

)
.

Consider the degree sum on UM from which we obtain the following inequality

δϵ(n)|UM| ≤ |E(UM,W,W )|+ 2|E(UM, UM,W )|+ 3|E(UM, UM, UM)|.

Because |UM| > n0, by Lemma 2.2.3 we know that |E(UM, UM, UM)| ≤ ϵ |UM|3
3

, and by

Lemma 2.2.7 we know that

|E(UM, UM,W )| ≤ (
⌈ t
4
⌉
t

+ ϵ)
|UM|2

2
|W |.

Finally, we know that |E(UM,W,W )| ≤ |UM|(||GUM [W ]|| + ϵ
t2
|W |2). Using this infor-

mation and rearranging the previous inequality to calculate a bound on ||GUM [W ]|| gives:

1

|UM|
(δϵ(n)|UM| −

⌈ t
4
⌉
t
|UM|2|W | − ϵ

t2
|W |2 − ϵ|UM|2|W | − ϵ|UM|3) ≤ ||GUM [W ]||.

From the definition of δϵ we get that

δϵ(n) =
(2t− ⌈ t

4
⌉)⌈ t

4
⌉

t2
(
n
2

)
− ϵn2

=
(2t− ⌈ t

4
⌉)⌈ t

4
⌉

t2
(
(|W |

2

)
+
(|UM|

2

)
+ |UM||W |)− ϵn2

= δϵ(|W |) + δϵ(|UM|) +
(2t− ⌈ t

4
⌉)⌈ t

4
⌉

t2
|UM||W | − 2ϵ|UM||W |.

Combined with the assumption ||GUM [W ]|| ≤ δϵ(|W |)− ϵ|M|2 = δϵ(|W |)− ϵ
t2
|W |2, and

canceling out like terms yields
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δϵ(|UM|) +
(t− ⌈ t

4
⌉)⌈ t

4
⌉

t2
|UM||W | − 3ϵ|UM||W | − ϵ|UM|2 ≤ 0.

The above inequality if obviously false, giving a contradiction and proving the claim.

From Lemma 2.2.8, we can see that if |UM| is larger than a constant, GM is almost a

complete graph. To exploit this structure for aC3
t -tilingM, call a setS ⊆ V (M) swappable

if for any set T ⊆ S with |T | ≤ t and |T ∩V (C)| ≤ 1 for all C ∈ M, thenH −T contains

a C3
t tiling with at least |M| elements.

Lemma 2.2.9. For all (32
(

t
⌈ t
4
⌉

)
)−1 > ϵ > 0, there exists n0 such that if H is a 3-graph

satisfying δ(H) ≥ δϵ(|H|) and M is a maximum C3
t -tiling, then |UM| ≤ n0 or there exists

a swappable set S such that |S| ≥ (t− ⌈ t
4
⌉)(1− 16

(
t

⌈ t
4
⌉

)
ϵ)|M|.

Proof. Let M be a maximum C3
t -tiling, |UM| ≥ n0, and let s = ||C3

t || = t
2
. As we are

searching for a swappable set, we start by finding cycles on s vertices inGUM that allow us

to generate alternative C3
t -tilings. For an edge C∗C1 ∈ GM, let WC∗,C1 be the minimum

vertex cover of GUM [V (C∗), V (C1)]. When s is even, since every vertex w ∈ WC∗,C1

satisfiesN(w) = V (C1) orN(w) = V (C∗) inGUM [V (C∗), V (C1)] depending on whether

w ∈ V (C∗) or w ∈ V (C1) respectively, GUM [V (C∗), V (C1)] contains two vertex disjoint

cycles on s edges consisting of the s vertices in WC∗,C1 , and any other subset of s vertices

not inWC∗,C1 .

When s is odd, consider the following structure inGM. LetC∗,C1, andCs−1 be vertices

in GM such that Cs−1C
∗C1 is a path in GM and W ∗ = WC∗,C1 ∩ V (C∗) = WC∗,Cs−1 ∩

V (C∗). In addition, let C1C2 · · ·Cs be a cycle in GM that does not contain the vertex C∗.

For the vertices in the cycle, letW+
i = WCi,Ci+1

∩V (Ci) andW−
i = WCi−1,Ci

∩V (Ci). Let

Yi be a set such thatW+
i ∪W−

i ⊆ Yi ⊆ V (Ci) and such that |Yi| = 2⌈ t
4
⌉ for i ∈ [s]. Then

there is a matching of Yi onto Yi+1 inGUM [V (Ci), V (Ci+1)]. To see this, since |Yi \W+
i | =

⌈ t
4
⌉, we can match Yi \W+

i with W−
i+1 ⊆ Yi+1. In addition, since W+

i is in the minimum
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cover, we can match W+
i to the set Yi+1 \ W−

i+1, providing the desired matching. These

matchings provide 2⌈ t
4
⌉ vertex disjoint paths on s − 1 vertices between C1 and Cs−1. Let

Y − ⊆ Ys−1 be the ⌈ t
4
⌉ end points of the paths that start with W−

1 and Y + = Ys−1 \ Y −.

Then there is a matching of Y − into Ys, and by the definition of W−
1 , we can close the

paths starting in W−
1 to form ⌈ t

4
⌉ vertex disjoint cycles on s vertices. Additionally, since

W ∗ = WC∗,Cs−1 ∩ V (C∗), we can match Y + onto W ∗. Since W ∗ = WC∗,C1 ∩ V (C∗) as

well, we can close the ⌈ t
4
⌉ paths starting in Y1 \W−

1 to find ⌈ t
4
⌉more vertex disjoint cycles.

Thus there exist 2⌈ t
4
⌉ vertex disjoint cycles in GUM on the s + 1 = 2⌈ t

4
⌉ loose cycles C∗,

C1, …, Cs in V (GM) which intersect V (C∗) only inW ∗.

Nowwe will use the vertex disjoint cycles we found above to find a large swappable set.

Fix α = (4
(

t
⌈ t
4
⌉

)
)−1 and letX be the set of vertices inGM with degree at least (1−α)|GM|.

Then using Lemma 2.2.8 we get that

2(1− 3ϵ)

(
|GM|
2

)
≤ 2||GM|| ≤ |GM||X|+ (1− α)|GM||V (GM)| \X|.

Solving this relation for |X| yields that

|X| ≥ (1− 4
ϵ

α
)|GM| ≥ (1− 16

(
t

⌈ t
4
⌉

)
ϵ)|GM|.

Then we claim that there exists a swappable set of vertices composed of at least t − ⌈ t
4
⌉

vertices from every element in X . Let C∗ be an element in X . As there are at most
(

t
⌈ t
4
⌉

)
subsets of size t and ϵ ≤ (32

(
t

⌈ t
4
⌉

)
)−1, there exists a setWC∗ such that at least

(
t

⌈ t
4
⌉

)−1
(1−α−

4 ϵ
α
)|GM| ≥ 2α|GM| neighbors C1 ∈ X of C∗ satisfy thatWC∗ = WC∗,C1 ∩ V (C∗). Then

the set S =
∪

C∗∈X V (C∗)\WC∗ is a swappable set. To see this, let T ⊆ S with |T | ≤ t and

|T ∩ V (C∗)| ≤ 1 for all C∗ ∈ X . For each vertex v ∈ T , let C∗
v be the unique loose cycle

with v ∈ V (C∗
v ), then we can associate each loose cycle C∗

v with a loose cycle Cv1 ∈ X

such that C∗
vCv1 is an edge in GM, WC∗

v
= WC∗

v ,Cv1 ∩ V (C∗
v ), and so that Cv1 ̸= Cv′1 and

C∗
v ̸= Cv′1 for all distinct vertices v, v′ ∈ T . When s is even, there exist two vertex disjoint
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cycles on s vertices in GUM [V (C∗
v ), V (Cv1)] that do not contain v for each v ∈ T . Since

|UM| is sufficiently large, these cycles can be used to construct a new C3
t -tiling M′ with

|M′| = |M| and T ∩ V (M′) = ∅, implying that S is swappable. Otherwise assume that s

is odd. Since for x ∈ X we have dGM(x) ≥ (1−α)|GM| and C∗
v has at least 2α|GM| other

neighbors withWC∗
v
the cover in C∗

v , we can additionally associateC∗
v with the loose cycles

Cv2, …, Cvs such that WC∗
v
= WC∗

v ,Cs−1 , such that Cv1 · · ·Cvs is a cycle in GM, and such

thatCvi ̸= Cv′j andC∗
v ̸= Cv′j for all i, j ∈ [s] and distinct v, v′ ∈ T . In this case, there exist

2⌈ t
4
⌉ vertex disjoint cycles on s vertices inGUM which do not intersectT sinceT∩WC∗

v
= ∅.

Since |UM| is sufficiently large, these cycles can be used to construct a new C3
t -tiling M′

with |M′| = |M| and T ∩ V (M′) = ∅, implying that S is swappable. In both cases, we

get that S is a swappable set with |S| ≥ (t−⌈ t
4
⌉)|X| ≥ (t−⌈ t

4
⌉)(1− 16

(
t

⌈ t
4
⌉

)
ϵ)|GM|.

We are now ready to prove Lemma 2.1.2, the main result of this section. For conve-

nience we restate the definition of β-extremal and Lemma 2.1.2.

Definition 2.1.1. A 3-graphH on n vertices is β-extremal if V (H) can be partitioned into

sets A and B so that |B| = n− ⌈ t
4
⌉n
t
and ||H[B]|| ≤ β|V |3.

Lemma 2.1.2. (Large Tiling) For all β > 0, there exists ϵ0 > 0 such that for all 0 < ϵ < ϵ0,

there exists n0 such that ifH is a 3-graph, |H| ≥ n0, δ(H) ≥ δϵ(|H|), andM is a maximum

C3
t -tiling, then |V (H) \ V (M)| ≤ n0 or H is β-extremal.

Proof. Assume that |UM| ≥ n0. From Lemma 2.2.9 there exists a swappable set S with

size at least (1 − 16
(

t
⌈ t
4
⌉

)
ϵ)(t − ⌈ t

4
⌉)|M|. There cannot exist a copy of C3

t on S ∪ UM

which intersects at most 1 vertex of anyM ∈ M, as that copy of C3
t can be used to create

a larger C3
t -tiling. Thus ||H[S ∪ UM]|| ≤ β

2
|H|3. By adding at most 16

(
t

⌈ t
4
⌉

)
ϵ(t− ⌈ t

4
⌉) |H|

t

vertices into S ∪ UM we can find a set B ⊆ S ∪ UM such that |B| = (t − ⌈ t
4
⌉) |H|

t
and

||H[B]|| ≤ β|H|3, implying that H is β-extremal.

32



2.3 Extremal Case

In this section we show that if H is β-extremal and δ(H) ≥ δ(|H|), then H is C3
t -

tileable. The method of proof uses a stability strategy. In Lemma 2.3.5, we show that if a

β-extremal partition of H behaves nicely, then H is C3
t -tileable. Then in the main lemma

of this section, Lemma 2.1.3, we find a small C3
t -tiling M such that H \ V (M) has a β-

extremal partition that behaves nicely, implying H is C3
t -tileable. To construct M we use

the following two lemmas.

Lemma 2.3.1. If H is a 3-graph satisfying |H| = n ≥ 8 and δ(H) ≥
(
n−1
2

)
−

(
n−k
2

)
+ 1

for 0 ≤ k ≤ n
20
, then a maximum matching of edges has size at least k.

Proof. Let A be the maximum sized set of vertices such that the maximum matching in

H ′ = H[V (H) \ A] is exactly |A| less then the maximum matching in H . As A = ∅

satisfies the criteria, such a set exists. Then there is no vertex v ∈ V (H ′) that is in all

maximum matchings as v could be added to A. Let C be a minimum vertex cover of H ′

and let U = V (H ′) \C. LetM be a maximum matching inH ′. If |M|+ |A| ≥ k, thenH

contains a matching of size k.

|M| ≤ k − |A| − 1.

Otherwise there exists a vertex v ∈ C. Fix v with |EH′(v, U, U)|maximum and note we can

assume that v /∈ V (M) by the definition of A. Since M is a maximum matching, V (M)

is a vertex cover implying that

|C| ≤ 3|M|.

Since v /∈ V (M), all edges containing v are of the form (v, V (M), V (H ′)). But then,

|V (M) ∩ U ||U | ≥ |EH′(v, U, U)| ≥ |EH′(C,U, U)|
|C|

.

At the same time every edge has a vertex in C, so

δ(H ′)|U | ≤ 2|EH′(C,U, U)|+ |EH′(C,C, U)|.
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Since every edge has a vertex inM,

|EH′(C,C, U)| ≤ |V (M) ∩ C||C||U |+ |V (M) ∩ U |
(
|C \ V (M)|

2

)
.

Combining the inequalities above yields

δ(H ′) ≤ ((2 +

(|C\V (M)|
2

)
|C||U |

)|V (M) ∩ U |+ |V (M) ∩ C|)|C| ≤ (15 +
4|M|
|U |

)|M|2

since the expression is maximized when |V (M) ∩ C| = |M|, |V (M) ∩ U | = 2|M|, and

|C| = 3|M|. Since n ≥ 6k, this can be further simplified to

δ(H ′) ≤ 16|M|2 ≤ 16(k − |A| − 1)2

At the same time, since deleting a vertex from a 3-graph on n vertices drops the minimum

degree by at most n− 2,

δ(H ′) >

(
n− 1

2

)
−

|A|−1∑
i=0

(n− 2− i)−
(
n− k

2

)
=

(
n− |A| − 1

2

)
−
(
n− k

2

)
.

which is obviously false for sufficiently large n when |A| + 1 < k. One can show that

n ≥ 20k suffices in this case. Therefore |A| = k − 1, but |M| ≥ 1 since δ(H ′) > 0.

Therefore H ′ has a matchingM with |M| > 1 implying H has a matching of size at least

k.

For the purposes of the upcoming results, define a k-star to be a 3-graph where there

exists a set S with |S| = k such that for every pair of edges e1, e2 ∈ H , S ⊆ e1 ∩ e2.

Fact 2.3.2. For all n ≥ 3,

ex1(P
3
5 , n) =

 3 if 4 | n

1 otherwise
,

where P 3
5 is the loose path on 5 vertices.
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Proof. Consider a connected P 3
5 -free 3-graph H . Then H is either a 3-graph on at most

4 vertices or H is a 2-star. Since any P 3
5 -free 3-graph is a tiling of connected P 3

5 -free 3-

graphs and the only connected P 3
5 -free 3-graphs H with δ(H) > 1 satisfy |H| = 4, the

result follows.

Lemma 2.3.3. There exists ϵ0 > 0 such that for all ϵ with 0 < ϵ ≤ ϵ0, there exists an n0

such that ifH is a 3-graph satisfying |H| = n > n0, k < ϵn, and δ(H) ≥
(
n−1
2

)
−
(
n−k
2

)
+

ex1(P
3
5 , n+ 1− k) + 1, then there exists a P 3

5 -tiling of H of size at least k.

Proof. Since δ(H) ≥ ex1(P
3
5 , n) + 1, we may assume that k ≥ 2. But then

δ(H) ≥
(
n−1
2

)
−
(
n−k
2

)
+ 1

= (n−1)(n−2)
2

− (n−k)(n−k−1)
2

+ 1

= (k − 1)n−
(
k+1
2

)
+ 2.

Assume to the contrary and letM be maximum P 3
5 -tiling with |M| ≤ k− 1 < ϵn. Let

U := V (H)− V (M). Define P ∈ M to be acceptable if

|E(P,U, U)| ≥ ϵ

(
|U |
2

)
.

For every acceptable P , there is vP ∈ V (P ) such that |E(vP , U, U)| ≥ ϵ
(|U |

2

)
/5.

Let M0 denote the set of unacceptable P ∈ M, with l := |M| − |M0| and W :=∪
P∈M\M0

V (P ) \ {vP}. We show that M0 must be empty by considering the number of

edges with vertices in U . By the definition of an acceptable path we get that

|E(U,U, V (M0))| ≤ ϵ

(
|U |
2

)
(k − l − 1) < ϵ

|U |2

2
(k − l − 1).

The size of V (M0) andW also implies that

|E(U, V (M0), V (M0))| ≤
(
5(k − l − 1)

2

)
|U | < 25

2
(k − l − 1)2|U |
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and

|E(U,W, V (M0))| ≤ 5|U ||W |(k − l − 1) < 25|U |l(k − l − 1).

Finally, the inequality

|E(U,U ∪W,U ∪W )| ≤ n

is true becauseH[U ∪W ] must be P 3
5 -free. IfH[U ∪W ] contains a copy P of P 3

5 , we can

use P along with disjoint copies of P 3
5 obtained using the vertices vPi

for those Pi ∈ M

with P ∩ Pi ̸= ∅ to obtain a larger family than M. Since all connected P 3
5 -free 3-graphs

are subgraphs of K3
4 or are 2-stars, the upper bound on the number of edges follows.

LetQ :=
∑

u∈U |E(u, V \
∪
{vP | P ∈ M−M0}, V \

∪
{vP | P ∈ M−M0})|. The

above bounds and taking into account how many times an edge can be counted in Q imply

Q < ϵ|U |2(k − l − 1) +
25

2
(k − l − 1)2|U |+ 25|U |l(k − l − 1) + 3n.

On the other hand, we get that

Q ≥ |U |δ(H)− |U |ln

≥ |U |
(
(k − 1)n−

(
k+1
2

)
+ 2− ln

)

= |U |((k − l − 1)n−
(
k+1
2

)
+ 2)

implying

(k − l − 1)n < ϵ|U |(k − l − 1) +
25

2
(k − l − 1)2 + 25l(k − l − 1) +

(
k + 1

2

)
− 2 + 4

because 3n
|U | < 4 when ϵ is small enough. Since k < ϵn, this inequality is false when

k − l − 1 ≥ 1 for sufficiently small ϵ. Thus l = k − 1 and M0 is empty. Also H[U ∪W ]
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does not contain a copy of P , so we get that δ(H[U ∪W ]) ≤ ex1(P
3
5 , |U ∪W |). Thus in

this last case the minimum degree on U implies

δ(H) ≤
(
n−1
2

)
−

(
n−1−|M|

2

)
+ ex1(P

3
5 , |U ∪W |)

≤
(
n−1
2

)
−
(
n−k
2

)
+ ex1(P

3
5 , n+ 1− k)

since k ≥ 2 and ex1(P
3
5 , |U ∪W |) < 4, contradicting the minimum degree ofH . ThusM

contains at least k elements.

We now show that ifH has a β-extremal partitionwhich behaves nicely, then there exists

a perfect C3
t -tiling. We will use the following theorem by Kühn and Osthus to accomplish

this task.

Theorem 2.3.4. For all positive constants d, ν0, η ≤ 1, there is a positive ϵ = ϵ(d, ν0, η)

and an integer N0 = N0(d, ν0, n) such that the following holds for all n ≥ N and all

ν ≥ ν0. LetG = (A,B) be a (d, ϵ)-superregular bipartite graph whose vertex classes both

have size n and let F be a subgraph of G with ||F || = ν||G||. Choose a perfect matching

M uniformly at random in G. Then with probability 1− e−ϵn we have

(1− η)νn ≤ |M ∩ E(F )| ≤ (1 + η)νn.

For a 3-graph H and set S ⊆ V (H), we call a vertex v (γ, S)-good if |N(v) ∩
(
S
2

)
| ≥

(1 − γ)
(|S|

2

)
, and we call a pair of vertices {v1, v2}, (γ, S)-good if |N({v1, v2}) ∩ S| ≥

(1− γ)|S|.

Lemma 2.3.5. There exist γ > 0 and n0 such that if there is a partition (A,B) of a 3-graph

H with |H| = n > n0, n ∈ 2tZ, |A| = ⌈ t
4
⌉n
t
, |B| = n− ⌈ t

4
⌉n
t
, where every vertex in A is

(γ,B)-good, and for all b1 ∈ B all but at most γ|B| vertices b2 ∈ B satisfy that {b1, b2} is

(γ,A)-good, then H is C3
t -tileable.
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Proof. Let d = 1, ν0 = 15
16

and η = 1
16
. Let ϵ be such that Theorem 2.3.4 holds and set γ =

min( ϵ2
3
, 1− (1− η)ν). Let G be a graph on B where E(G) = {bb′ |{b, b′} is (γ,A)-good}.

If 4|t, partition B into 3 sets Bi, for 1 ≤ i ≤ 3, with |Bi| = n
4
. Otherwise partition B into 4

sets Bi, for 1 ≤ i ≤ 4, such that |B1| = |B2| = |B3| = n
4
− n

2t
and |B4| = n

t
. This partition

is possible since 2t|n. Since δ(G) ≥ (1 − γ)|B| ≥ (1 − ϵ2/3)|B|, G[Bi, Bi+1] are all

(1, ϵ)-superregular bipartite graphs. Let F i
a = {bb′ | bb′ ∈ G[Bi, Bi+1] and {a, b, b′} ∈ H}.

From Theorem 2.3.4 applied to all the F i
a, there exists a perfect matchingMi onG from Bi

onto Bi+1 for i ∈ [2] when 4 divides t and i ∈ [3] otherwise. This matching is such that

every vertex in A is in a 3-edge with at least (1− η)ν|Mi| = (1− η)ν|Bi+1| edges of each

Mi. Considered over all edges, every vertex A is a 3-edge with at least (1− η)ν
∑

i |Mi| ≥

(1 − γ)
∑

i |Mi| edges in all the matchings Mi. The set of Mi induce a tiling of B with

paths on 2 edges when 4 | t and with paths on 2 and 3 edges otherwise. Partition the tiling

into families of paths Pi = {Pi0, · · ·Pi(⌈ t
4
⌉−1)} with 0 ≤ i < n

t
where Pi0 is the only path

on 3 edges when 4 ∤ t. Let Pij = eij0eij1 or Pij = eij0eij2eij1 be the representation of Pij

in terms of its edges when the path has two or three edges respectively (note that eij2 is the

middle edge).

LetS be a set of sets of edges of the form {eij1, ei(j+1)0} and {eij2}. Construct a bipartite

graph L with partition (A,S). Let there be an edge from a ∈ A to S ∈ S if for every

edge e ∈ S, a ∪ e ∈ E(H). By the construction, every vertex in A has degree at least

(1 − 2γ)|B| ≥ 1
4
|B| = 1

2
|S|. From the definition of an edge in G, we also get that the

minimum degree of an element of S is at least |A| − 2γ|A| ≥ 1
2
|A| as well. Thus there is

a perfect matching in L using the vertices A. The matchings on L corresponds to a perfect

C3
t -tiling of H because each family Pi and its associated matchings induce a copy of C3

t .

Thus H is C3
t -tileable.

We will now find a small C3
t -tiling which when removed from a β-extremal 3-graphH
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forms a subgraphH ′ on which we can apply Lemma 2.3.5, proving Lemma 2.1.3 which is,

restated below for convenience.

Lemma 2.1.3. (Extremal) There exists a β0 > 0 such that if β < β0 andH is a β-extremal

3-graph satisfying δ(H) ≥ δ(|H|), then H has a perfect C3
t -tiling.

Proof. Let H be a β-extremal 3-graph, let n = |H|, and let σ be sufficiently small. Then

there exists a set B such that |B| = t−⌈ t
4
⌉

t
n and ||H[B]|| ≤ βn3. Let A = V \B. We have

|E(A,B,B)| ≥ 1
2
(δ(n)|B| − |E(A,A,B)| − 3|E(B,B,B)|)

≥ |B|
2
(δ(n)−

(|A|
2

)
)− 3

2
βn3

≥ (1− σ4)|A|
(|B|

2

)
Let A′ be the set of (σ2, B)-good vertices in A and Ā the rest, then

(1− σ4)|A|
(
|B|
2

)
≤ |A′|

(
|B|
2

)
+ (1− σ2)|Ā|

(
|B|
2

)
= (|A| − σ2|Ā|)

(
|B|
2

)
.

Simplifying the above inequality yields that there are few elements in Ā since

|Ā| ≤ σ2|A|.

Similarly, let G be the set of (σ,A)-good pairs in B and Ḡ be the remaining pairs of

vertices in B. Then we get a similar chain of inequalities with

(1− σ4)|A|
(
|B|
2

)
≤ |G′||A|+ (1− σ2)|Ḡ||A|.

Solving this inequality yields

|Ḡ| ≤ σ2

(
|B|
2

)
.

Let B̄ be the set of vertices with degree less than (1 − σ)|B| in G. From the number

of edges in G, |B̄| ≤ σ(|B| − 1). Let B′ = B \ B̄, the set of vertices with degree at least

(1− σ)|B| in G.
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We will now construct new sets A′′ and B′′ from Ā and B̄ which will allow us to

find a perfect tiling. The minimum degree in H implies that for every vertex v ∈ V (H),

|E(v, A,B)| ≥ 3
4
|A||B| or |E(v,B,B)| ≥ 1

16

(|B|
2

)
since

δ(H)−
(
|A|
2

)
≥

(
n− 1

2

)
−

(
|B|
2

)
−

(
|A|
2

)
= |A||B| − (n− 1) ≥ |B|2

4
.

Call a vertex acceptable to A if the first inequality is true, and acceptable to B if the

second is true. Construct a partition of Ā∪ B̄ into the sets A′′ andB′′ where A′′ is the set of

vertices which are acceptable toB, andB′′ the rest. Then A∗ = A′∪A′′ andB∗ = B′∪B′′

is a partition of V (H). We will find C3
t -tilings M1 and M2 with V (M1) ∩ V (M2) = ∅

such that H \ (V (M1) ∪ V (M2)) satisfies the conditions of Lemma 2.3.5. Then H \

(V (M1) ∪ V (M2)) has a perfect C3
t -tiling M3 implying H has a perfect C3

t -tiling M =

M1 ∪M2 ∪M3.

Under the partition (A∗, B∗), note that for any set S of size less than 1
32
n and any pair

of vertices b1, b2 ∈ B∗ ∩ S, there exists a copy of P 3
5 composed of edges of the form

(b1, B
∗ \ S,A∗ \ S) and (b2, B∗ \ S,A∗ \ S) which intersect in A∗ \ S. This follows since

for any b ∈ B∗,

|E(b, B,A)| ≥ δ(n)−
(
|A|
2

)
− 1

16

(
|B|
2

)
≥ |A||B| − |B|2

32
− (n− 1) ≥ 7

8
|A||B|.

Consequently there exist at least 3
4
|A| elements a ∈ A for which |N(a, b) ∩ B| ≥ 1

4
|B|.

Since |S|+ |Ā| < 1
4
|A| and |S|+ |B̄| < 1

8
|B|, there exists an element a ∈ A′ and elements

b′1, b
′
2 ∈ B′ for which such a path can be formed.

Consider the case where k1 = |B∗| − (n− ⌈ t
4
⌉n
t
) > 0. Then we know that

δ(H[B∗]) ≥
(
n−1
2

)
−

(|B∗|−k1
2

)
+ c(t, n) + 1− (

(
n−1
2

)
−
(|B∗|−1

2

)
)

=
(|B∗|−1

2

)
−

(|B∗|−k1
2

)
+ c(t, n) + 1.
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When 4|t, since c(t, n) = ex1(P
3
5 , |B∗| − k1 + 1), by Lemma 2.3.3 we can find k1 disjoint

copies of P 3
5 . Since k1t < 2σn < n

32
, the just noted property on pairs of vertices in B∗

implies that we can greedily construct a C3
t -tilingM1 with |M1| = k1 using the copies of

P 3
5 and edges of the form (A∗, B∗, B∗) intersecting in A∗. Similarly when 4 ∤ t, we get a

matching of size k1 by Lemma 2.3.1 which can be used to construct a C3
t -tiling M1 with

|M1| = k1. Let A∗
1 = A∗ \ V (M1) and B∗

1 = B∗ \ V (M1). Then the size of A∗
1 is

|A∗
1| = ⌈ t

4
⌉n
t
− k1 − k1(⌈

t

4
⌉ − 1) = ⌈ t

4
⌉n− k1t

t
,

the size of B∗
1 is

|B∗
1 | = n− ⌈ t

4
⌉n
t
+ k1 − k1(t− ⌈ t

4
⌉+ 1) = n− k1t− ⌈ t

4
⌉n− k1t

t
.

Otherwise k1 = |A∗| − ⌈ t
4
⌉n
t
≥ 0. Note that for any b ∈ B∗

|E(b, A,A)| ≥ δ(n)− |A||B| − 1

16

(
|B|
2

)
≥

(
|A|
2

)
− |B|2

32
≥ 1

4

(
|A|
2

)
implying that there exist k1 disjoint edges ej = {bj, a1j, a2j} of the form (B∗, A′, A′) for

j ∈ [k1]. In the case of C3
6 , since the aij are (σ2, B)-good, we can greedily choose paths of

length two in N(aij) ∩N(a2j) ∩
(
B
2

)
to create a C3

6 -tilingM1 with |M1| = k1. Otherwise

we can find two disjoint edges {aij, b1ij, b2ij} for i ∈ [2] to get a loose path Pj on 3 edges

for j ∈ [k1]. By the same method as the above case, we can greedily extend each Pj to

a C3
t -tiling M1 with |M1| = k1 using edges of the form (A∗, B∗, B∗) with consecutive

added edges intersecting in A∗. This is possible since fewer than k1t < 2σn < n
32

vertices

are used in this process. Once again let A∗
1 = A∗ \ V (M1) and B∗

1 = B∗ \ V (M1). Once

again, the size of A∗
1 is

|A∗
1| = ⌈ t

4
⌉n
t
+ k1 − k1(⌈

t

4
⌉+ 1) = ⌈ t

4
⌉n− k1t

t
,

the size of B∗
1 is

|B∗
1 | = n− ⌈ t

4
⌉n
t
− k1 − k1(t− ⌈ t

4
⌉ − 1) = n− k1t− ⌈ t

4
⌉n− k1t

t
.
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Let k2 be the smallest integer such that it is larger than the number of remaining non-

good vertices from Ā ∪ B̄ such that n− (k1 + k2)t is divisible by 2t. Then k2 ≤ σn < n
64
.

For all vertices v remaining in Ā ∪ B̄ and up to one additional vertex, we can find disjoint

edges ev = (v, xv, yv) such that |ev ∩ A∗
1| = 1 and |ev ∩ B∗

1 | = 2. We can then greedily

extend these edges with edges of the form (A∗
1, B

∗
1 , B

∗
1)with consecutive edges intersecting

in A∗ to form a C3
t -tiling M2 with |M2| = k2, since fewer than (k1 + k2)t < 2σn < n

32

vertices are used during this process.

Let A∗
2 = A∗

1 \ V (M2) and B∗
2 = B∗

1 \ V (M2). Then since 2t divides n− (k1 + k2)t

|A∗
2| = |A∗

1| − k2⌈
t

4
⌉ = ⌈ t

4
⌉n− (k1 + k2)t

t
,

and

|B∗
2 | = |B∗

1 | − k2(t− ⌈ t
4
⌉) = n− (k1 + k2)t− ⌈ t

4
⌉n− (k1 + k2)t

t

This final partition was constructed by removing (k1 + k2)t < 2σn vertices from A∗ and

B∗, soH[A∗
2 ∪B∗

2 ] contains a perfect C3
t -tilingM3 by Lemma 2.3.5. ThusH has a perfect

C3
t -tilingM = M1 ∪M2 ∪M3.

2.4 Absorption

To prove the absorbing lemma, we use the following facts:

Fact 2.4.1. There exist α > 0 and n0 > 0 such that if H is a 3-graph with |H| = n ≥ n0

and δ(H) ≥ 7
16

(
n
2

)
, then for any two distinct vertices u and v there exist at least αn3 loose

paths uxyzv.

Proof. Consider the graphs Gv = (V (H), N(v)) and Gu = (V (H), N(u)). Let 0 < γ ≤

0.02 and define Av = {x : dGv(x) ≥ γn} and Au = {x : dGu(x) ≥ γn}. Then we get the

inequality:

7

16

(
n

2

)
≤ |Av|2

2
+ γn2
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since there are fewer than γn2 edges containing a vertex in V (H) \ Av. Solving for |Av|

yields:

|Av|2 ≥
7

8

(
n

2

)
− 2γn2 > (

7

16
− 3γ)n2 ≥ 0.35n2

which immediately implies that |Av| ≥ 0.59n. But then |Av ∩ Au| ≥ 0.09n, so there are

more than 0.08γ2n3 vertex triples (x, y, z) such that we get the loose path u, x, y, z, v.

Call a vertex coloring f of a 3-graph H proper if for all edges e ∈ H , there does not

exist a pair of distinct vertices v1, v2 ∈ e with f(v1) = f(v2).

Fact 2.4.2. If ||C3
t || is even, there is a proper vertex coloring f of C3

t with the colors 1, 2,

and 3 such that |f−1(1)| = t
4
+ 1, |f−1(2)| = t

2
− 1, and |f−1(3)| = t

4
.

Proof. Consider a loose cycle

C = v1w1x1w2v2 · · · v t
4
w t

2
−1x t

4
w t

2
v1.

Let f be the proper coloring ofC with f(vi) = 1 and f(xi) = 3 for i = 1, . . . , t
4
−1 and with

f(wj) = 2 for j = 1, . . . , t
2
−3. Finally let f(w t

2
−2) = f(w t

2
−1) = 1, f(v t

4
) = 2, f(w t

2
) =

2 and f(x t
4
) = 3. Then f is a proper coloring of C satisfying the above conditions.

Fact 2.4.3. If ||C3
t || is odd and ||C3

t || ≥ 7, there is a proper vertex coloring f of C3
t with

the colors 1, 2, and 3 such that |f−1(1)| = t+2
4

+ 1, |f−1(2)| = t
2
− 2, and |f−1(3)| = t+2

4
.

Proof. Consider a loose path

P = v1w1x1w2v2 · · · v t−10
4
w t−10

2
−1x t−10

4
w t−10

2
v t−10

4
+1

and color it with function f2 where f2(vi) = 3, f2(xi) = 1, and f2(wi) = 2. Then

|f−1
1 (1)| = t−10

4
, |f−1

1 (2)| = t−10
2
, and |f−1

1 (3)| = t−10
4

+ 1. Now consider the loose

path P ′ = v1u1 · · ·u9v t−10
4

+1 on 11 vertices. Color the vertices of P with function f1 where

the color of the vertices listed in order is 3, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3. Note that |f−1
2 (1)| = 4,
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|f−1
2 (2)| = 3, and |f−1

2 (3)| = 4. Now f1 and f2 form a proper coloring f of the cycle

C = P + P ′ with |f−1(1)| = t+2
4

+ 1, |f−2(2)| = t
2
− 2, and |f−1(3)| = t+2

4
.

We now build to proving the main theorem of this section. We start by showing that for

every pair of vertices u, and v, there are a significant number of sets T of constant size such

that H[u+ T ] and H[v + T ] are C3
t -tileable.

Lemma 2.4.4. There exist δ > 0 and n0 > 0 such that ifH is a 3-graph with |H| = n ≥ n0

and δ(H) ≥ δ(|H|), then for all pairs u, v there exist δn3t−1 sets T with |T | = 3t− 1 such

that H[u+ T ] and H[v + T ] are C3
t -tileable.

Proof. Let 0 < γ ≤ 0.03 and consider Gγ where xy ∈ Gγ if |N(x) ∩ N(y)| ≥ γn2. Let

A = {z | zu ∈ Gγ} and B = {z | zv ∈ Gγ}. If |A ∩ B| ≥ γn, then we can construct

the required set T as follows. Pick a vertex z ∈ A ∩ B and vertices a, b, c, and d such that

avb, cud, azb and czd are all edges in H . From the definition of Gγ and size of |A ∩ B|,

we get that there must be at least αn5 such choices of a, b, c, d, and z for some α > 0. For

some α′ > 0, we can then find at least α′n2(t−3) pairs of loose paths P1 = ax1 · · ·xt−3b and

P2 = cy1 · · · yt−3d on V (H) \ {u, v, z} such that V (P1) ∩ V (P2) = ∅ since such pairs of

loose paths can be constructed by greedily extending loose paths starting at a and c until

there are exactly two edge left to choose. By fact Fact 2.4.1 we can extend the paths so that

that there are α′n2(t−3) pairs of paths. These disjoint paths create cycles C and C ′ such that

z ∈ C, z ∈ C ′, V (C)∩V (C ′) = {z}, u, v /∈ V (C)∪V (C ′), but C − z+ u and C ′ − z+ v

are loose cycles. Since H contains βnt copies of C3
t for some β > 0, for some δ > 0 we

have at least δn3t−1 sets T = V (C) ∪ V (C ′) ∪ V (C ′′) such that H[T + u] and H[T + v]

are C3
t -tileable, where C ′′ is any copy of C3

t vertex disjoint from C and C ′.

Now all that is left is when |A∩B| ≤ γn. To start this case, assume that |N(u)∩N(v)| ≥

γn2 and let xy ∈ N(u)∩N(v). By greedily extending a path and Fact 2.4.1, for some α > 0

we can find αnt−1 loose paths P on t
2
− 1 edges starting at x and ending at y. Once again
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sinceH contains βnt copies of C3
t for some β > 0, for some δ > 0 we have at least δn3t−1

sets T = V (P )∪ V (C)∪ (C ′) for whichH[T + u] andH[T + v] are C3
t -tileable, where C

and C ′ are disjoint copies of C3
t on H[V (H) \ (V (P ) ∪ {u, v})].

Thus we may assume |N(u) ∩ N(v)| ≤ γn2 as well. Note that if 4 ∤ t and t ≤ 10,
(t−⌈ t

4
⌉)2

t2
≤ 1

2
− 3γ. In that case

δ(H) ≥ (n− 2)2

2
−

((t− ⌈ t
4
⌉)n

t
)2

2
≥ (

1

2
+ γ)

(
n

2

)
.

Thus if 4 ∤ t, then t ≥ 14. Also note that for any vertex z, we have that z ∈ A∪B since the

minimum degree forcesN(z)∩N(u) orN(z)∩N(v) to be large. Without loss of generality

we may assume that |A| < (1
2
+ γ)n, so then for z ∈ A, |N(z) ∩

(
A
2

)
| < (1

4
+ 2γ)

(
n
2

)
implying |N(z)∩ (A×B∪

(
B
2

)
)| ≥ ( 3

16
−2γ)

(
n
2

)
. Thus |EH(A,A,B)|+ |EH(A,B,B)| ≥

2γn3. Since there exists η > 0 such that there are ηnt+1 copies K ⊆ H[A,A ∪ B,B] of

K t
4
+1, t

2
−1, t

4
+1 if 4|t orK⌈ t

4
⌉+1, t

2
−2,⌈ t

4
⌉+1 if 4 ∤ t, we can now construct the desired sets T by

the following method. Pick a copyK and then a vertex u′ such that u′ ∈ V (K) ∩A and u′

is in the partition class of size ⌈ t
4
⌉+ 1. Similarly pick v′ ∈ V (K)∩B such that v′ is in the

partition class of size ⌈ t
4
⌉ + 1. Since u′ ∈ A, there are γn2 pairs of vertices xy such that

uxy and u′xy are edges. We can then find α′nt−1 paths P starting at x and ending at y on
t
2
− 1 edges like in the last case. Then for Tu = {x, y} ∪ V (P ), Tu + u′ and Tu + u are

C3
t -tileable. We can repeat this process to find a disjoint set Tv with the same properties.

Let T = V (K) ∪ Tu ∪ Tv. Then H[T + u] contains Tu + u, Tv + v′, and H[V (K) − v′].

Thus H[T + u] is C3
t -tileable since H[V (K) − v′] is C3

t tileable by Facts 2.4.2 and 2.4.3.

Similarly, H[T + v] contains Tu + u′, Tv + v, and H[V (K)− u′] and is C3
t -tileable. Thus

there exist δn3t−1 sets T such that T + u and T + v are C3
t -tileable for some δ > 0.

Lemma 2.4.5. For all sets S with |S| = t, there exists δ > 0 and δnt(3t−1) sets T with

|T | = t(3t− 1) such that H[T ] is C3
t -tileable and H[T ∪ S] is C3

t -tileable.

Proof. Let S = {v1, . . . , vt}. Pick a set of vertices W = {w1, . . . wt} such that H[W ]
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contains a copy of C3
t . By the previous lemma there exist at least δ1n3t−1 sets Ti such that

Ti ⊆ V (H) \ S, |Ti| = 3t − 1, Ti ∪ wi is C3
t -tileable, and Ti ∪ vi is C3

t -tileable. Let

T = T1 ∪ . . .∪ Tt ∪W , where |Ti ∩ Tj| = 0 for all i, j ≤ t with i ̸= j. By the choice of Ti,

T is C3
t -tileable. Since W contains a cycle, we get that T ∪ S is C3

t -tileable as well. Thus

for a fixedW , there are at least δ2n3t−1 such sets T . Since there are least βnt setsW which

contain a copy of C3
t for some β > 0 we get that the number of possible sets T is at least

δnt(3t−1), proving the lemma.

And with the completion of the last proof we are now ready to prove the main lemma

of this section.

Lemma 2.1.4. (Absorbing) For every integer t ≥ 6 and ν > 0, there is ξ > 0 and n0 such

that the following holds. IfH is a 3-graph on n ≥ n0 vertices which satisfies δ(H) ≥ δ(n),

then there is a set A ⊂ V (H) with |A| ≤ νn, such that H[A] is C3
t -tileable and for every

set B ⊆ V (H) \ A with |B| ∈ tZ and |B| < ξn, H[A ∪B] is C3
t -tileable.

Proof. To begin with, we may assume that ν is sufficiently small. For W ∈
(
V (H)

t

)
, let

A(W ) be the family of sets A of size k = t(3t− 1) such that A and A ∪W is C3
t -tileable.

By Lemma 2.4.5, there exists α > 0 such that |A(W )| ≥ α
(
n
k

)
. Let β = min( ν

2k
, α
32k2

) and

letF be obtained by adding every setF ∈
(
V (H)

k

)
independently, at randomwith probability

p = βn
(
n
k

)−1. ThenE(|F|) = p
(
n
k

)
= βn and for allW ∈

(
V (H)

t

)
,E(|A(W )∩F|) ≥ αβn.

Let E be the set of pairs {F, F ′} such that F, F ′ ∈ F and F ∩ F ′ ̸= ∅. Then

E(E) = kp2
(

n

k − 1

)(
n

k

)
=

k2β2n2

n− k + 1
< 2k2β2n.

Therefore, by the Chernoff and Markov inequalities, there exists a family F such that

the following conditions hold: |F| ≤ 2βn, |E| ≤ 4k2β2n, and for every W ∈
(
V (H)

t

)
,

|A(W )∩F| ≥ αβn
2
. LetG be obtained fromF by deleting all setsF which are in intersecting

pairs and all sets F that do not absorb any W . Then |G| ≤ 2βn, for every W ∈
(
V (H)

t

)
,
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|A(W ) ∩ F| ≥ αβn
2

− 8k2β2n ≥ αβn
4
, and for A =

∪
F∈G F , |A| ≤ 2kβn ≤ νn by the

choice of β. Also note thatH[A] isC3
t -tileable with copies ofC3

t since for every set F ∈ G,

there exists W ∈
(
V (H)

t

)
such that F ∈ A(W ). Finally if B ⊆ V (H) \ A is a set with

|B| ≤ kαβn
4

and |B| ∈ tZ, then B can be partitioned into disjoint k-sets Bj and absorbed

by using the fact that |A(Bi) ∩G| ≥ αβn
4
.
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Chapter 3

THE EXISTENCE OF RAINBOW CYCLES WITH ODD LENGTH

3.1 Proof of Theorem 1.3.4

In this chapter we prove a minimum color degree condition under which an edge colored

graph G must contain a rainbow Cℓ, for ℓ ≥ 5, which is tight when ℓ is odd. Call an edge-

colored graph G edge-minimal if, for every edge e ∈ E(G), δc(G) > δc(G − e). Let

N(v, c) denote the neighbors u of v such that c(uv) = c and let ν(G) be the maximum

of |N(v, c)| over all vertices v and colors c. For every v ∈ V (G), let N∗(v) be the set of

vertices u ∈ N(v) such that uv is the only edge incident to v that is given the color c(uv),

i.e., N∗(v) := {u ∈ N(v) : |N(v, c(uv))| = 1}. Let v ∈ V (G) and X ⊆ N(v). When

x ∈ X , xy ∈ E(G), and y ̸= v we say that xy is (X, v)-bad for y if

(B1) the path vxy is rainbow, and

(B2) N(y, c(xy)) ⊆ X .

Lemma 3.1.1. Let G be an edge-minimal edge-colored graph on n vertices, let v ∈ V (G),

and letX ⊆ N(v). If Y ⊆ V (G) \ {v} is a nonempty set such that for every y ∈ Y at most

j different colors are used on the edges that are (X, v)-bad for y, then

n ≥ |X|+ δc(G)− |X ∩N∗(v)|
|Y |

(ν(G)− 1)− j.

Proof. Form a directed graphD on the vertex setX∪Y by settingN+
D (x) = N(x, c(vx))∩

Y for every x ∈ X . Note that, because v /∈ Y , for every x ∈ X , we have d+D(x) ≤

|N(x, c(vx))| − 1 ≤ ν(G)− 1. If x ∈ X \N∗(v), then there exists x′ ∈ V (G) \ {x} such

that c(vx′) = c(vx), so there cannot exist y ∈ N+(v) as otherwise the monochromatic path
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or triangle formed by the edges vx′, vx, and xy would violate the edge-minimality of G.

Therefore,∑
y∈Y

d−D(y) = |E(D)| =
∑
x∈X

d+D(x) =
∑

x∈N∗(x)∩X

d+D(x) ≤ |N∗(x) ∩X|(ν(G)− 1).

Fixing y ∈ Y so that d−D(y) is minimum then gives us that |Y |d−D(y) ≤ |N∗(v)∩X|(ν(G)−

1), so

d−D(y) ≤
|N∗(v) ∩X|

|Y |
(ν(G)− 1). (3.1)

Let x ∈ NG(y,X) and suppose thatN(y, c(xy))∩X = ∅. Then either xy is (X, v)-bad

or, since xy satisfies (B2), c(vx) = c(xy). If c(vx) = c(xy), then x ∈ N−
D (y). Thus the

number of colors used on edges in E(y,X) is at least dc(y)− (d−D(y)+ j). This means that

n− |X| = |X| ≥ dc(y)− d−D(y)− j, and, with (3.1), we have

n ≥ |X|+ δc(G)− d−D(y)− j ≥ |X|+ δc(G)− |N∗(v) ∩X|
|Y |

(ν(G)− 1)− j.

Note that the condition (B2) is not needed for this proof, but with this condition we can

quickly show that δc(G) > n
2
implies a rainbow triangle. To see this, assume that G is an

edge-minimal graph without rainbow triangles and let v be a vertex such that d(v) = ∆(G).

Then |N(v)| ≥ δc(G)+ν(G)−1. The condition δc(G) ≤ n
2
then follows from Lemma 3.1.1

with j = 0 and N(v) and N∗(v) playing the roles of X and Y , respectively, because, for

every y ∈ N∗(v), the fact that G has no rainbow triangles implies that there are no edges

that are (N(v), v)-bad for y.

To apply Lemma 3.1.1 to longer cycles, we need to find a large set Y with a limited

number of colors on the (X, v)-bad edges. By considering certain rainbow paths of length

ℓ−2, the next lemma provides a condition under which a vertex y has few (X, v)-bad edges.

We then use this result to find a large set Y .

Lemma 3.1.2. Let G be an edge-minimal edge-colored graph on n vertices that does not

contain a rainbow cycle of length ℓ. Let v ∈ V (G), let X ⊆ N(v), and let C be the set of
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colors which appear at least twice on the edge set E(v,X). If y ∈ V (G) is such that there

exists a rainbow v, y-path of length ℓ − 2 that avoids the colors in C, then the number of

colors used on the edges yx such that x ∈ X and yxv is rainbow is at most 3ℓ. In particular,

there are at most 3ℓ colors used on the edges that are (X, v)-bad for y.

Proof. Let F be the set of edges yx with x ∈ X such that yxv is rainbow, and let P be a

rainbow v, y-path of length ℓ−2 that avoids the colors inC. Let F1 ⊆ F be the set of edges

xy in F such that x ∈ V (P ), so |F1| ≤ |V (P )\{v}| = ℓ−2. Let F2 ⊆ F be the set of edges

xy in F such that the color c(vx) appears on the path P . Because P avoids the colors in C,

for every e ∈ E(P ), we have that |N(v, c(e))∩X| = 1, so |F2| ≤ |E(P )| = ℓ−2. Because

there does not exist a rainbow cycle of length ℓ in G, for each edge e ∈ F \ (F1 ∪ F2), we

have c(e) ∈ E(P ). Therefore, at most |E(P )| + |F1| + |F2| ≤ 3ℓ colors are used on the

edges in F .

Lemma 3.1.3. Let G be an edge-minimal edge-colored graph on n vertices such that

δc(G) ≥ n
2
that does not contain a rainbow cycle of length ℓ. Let v be a vertex and c a

color such that |N(v, c)| = ν(G). If there exists a non-empty set B such that for every

b ∈ B there exists a rainbow v, b-path of length ℓ− 2 that avoids the color c, then

n

2
≥ δc(G) +

(
1− n+ 1

2|B|

)
(ν(G)− 1)− 3ℓ.

Proof. Let v be a vertex and c a color such that |N(v, c)| = ν(G). Because dc(v) ≥

δc(G) ≥ n
2
, we can select X ′ ⊆ N(v) so that |X ′| =

⌈
n
2

⌉
, the color c appears on the set

E(v,X ′), and E(v,X ′) is rainbow. Let X := X ′ ∪N(v, c). Note that

|X| = |X ′|+ (ν(G)− 1) ≥ n

2
+ (ν(G)− 1).

This with Lemmas 3.1.1 and 3.1.2 plus the fact that |N∗(v) ∩ X| ≤ |X ′| ≤ n+1
2

gives us

that

n ≥ |X|+ δc(G)− |X ′|
|B|

(ν(G)− 1)− 3ℓ ≥ n

2
+ δc(G) +

(
1− n+ 1

2|B|

)
(ν(G)− 1)− 3ℓ,
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which proves the lemma.

Using the inequality from Lemma 3.1.3, we can now restrict the minimum color degree

to be near the desired value of n+1
2
.

Lemma 3.1.4. For ℓ ≥ 3, if G is an edge-minimal edge-colored graph on n vertices such

that δc(G) > n
2
+ 3ℓ, then G contains a rainbow Cℓ.

Proof. Let v be a vertex and c a color such that |N(v, c)| = ν(G). For 0 ≤ j ≤ ℓ − 2, let

Bj be the set of vertices b such that there exists a rainbow v, b-path of length j from v to b

avoiding the color c. For 1 ≤ j ≤ ℓ − 2, there exists b ∈ Bj−1 and a rainbow v, b-path P

of length j − 1, so

|Bj| ≥ dc(b)− |E(P )| − |V (P )| − 1 >
n

2
+ 3ℓ− 2j − 1 ≥ n+ 1

2
.

This with Lemma 3.1.3 implies that

n

2
≥ δc(G) +

(
1− n+ 1

2|Bℓ−2|

)
(ν(G)− 1)− 3ℓ >

n

2
,

a contradiction.

In order to further use Lemma 3.1.3, we provide a condition under which the set B can be

much larger than n
2
.

Lemma 3.1.5. For ℓ ≥ 3, letG be an edge-minimal edge-colored graph on n vertices with

δc(G) ≥ n
2
that does not contain a rainbow Cℓ. Suppose T is a triangle in G, v ∈ V (T ),

and C is a set of colors that is disjoint from the colors used on T . If 3 ≤ k ≤ ℓ and Bk

is the set of vertices for which there exists a rainbow v, b path of length k that avoids the

colors in C, then |Bk| ≥ 3n
4
− 3|C|

2
− 6ℓ.

Proof. By the edge-minimality of G, T is not monochromatic. Therefore we can label the

vertices of T as {v, x1, x2} so that c(vx1) ̸= c(x1x2). For 1 ≤ j ≤ k − 1, let Pj be
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the set of rainbow paths of length j that start with the edge vx1 and avoid the colors in

C ∪ {c(vx2), c(x1x2)} and the vertex x2. Let Aj be the vertices a such that there exists a

v, a-path in Pj . Then, for every 2 ≤ j ≤ k − 1, there exists a ∈ Aj−1 and a v, a-path

P ∈ Pj−1, so

|Aj| ≥ dc(a)− (|C|+ 2 + |E(P )|)− (|V (P )|+ 1) ≥ δc(G)− |C| − 2k. (3.2)

Let A := Ak−1 and note that, because of the rainbow path vx2x1, we have A ⊆ Bk. Fix

a ∈ A so that the color degree of a in G[A] is δc(G[A]), and let P ∈ Pk−1 be a v, a-

path of length k − 1. Let A′ be the set of vertices a′ ∈ N(a) \ A such that a′ /∈ V (P ),

c(aa′) /∈ C, and c(aa′) does not appear on P . Note that A′ ⊆ Bk, and by the selection of a

and Lemma 3.1.4, we have that

|A′| ≥ dc(a)−(
|A|
2

+3ℓ)−|C|−|V (P )|−|E(P )| ≥ δc(G)−(
|A|
2

+3ℓ)−|C|−2k. (3.3)

Recalling that k ≤ ℓ and combining (3.2) and (3.3) gives us that

|Bk| ≥ |A|+ |A′| ≥ |A|
2

+δc(G)−5ℓ−|C| ≥ 3

2
δc(G)− 3

2
|C|−6ℓ ≥ 3n

4
− 3

2
|C|−6ℓ.

We are now ready to prove the main theorem of this chapter.

Theorem 1.3.4 (Czygrinow, Molla, Nagle, & Oursler). For every ℓ ≥ 5 and n ≥ 200ℓ, if

G is an edge-colored graph on n vertices with δc(G) ≥ n+1
2
, then G contains a rainbow

cycle of length ℓ.

Proof. Assume that G is an edge-minimal counterexample. Let v be a vertex and c be a

color such that |N(v, c)| = ν(G). LetX ′ ⊆ N(v) be such that |X ′| = δc(G)− 1, E(v,X ′)

is rainbow, and the color c does not appear on the edges E(v,X ′).

First suppose that for every edge e ∈ E(G[X ′]), we have that c(e) = c. Let Y :=

V (G)\(X ′ ∪ {v}), and note that, for every x ∈ X ′, the only colors that could appear
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on the edges in E(x, Y ) are c and c(vx), so |Y | ≥ δc(G) − 2. This with the fact that

|X ′| ≥ δc(G)− 1, δc(G) ≥ n+1
2

and V (G) = X ′ ∪ Y ∪ {v} implies that

δc(G)− 1 ≥ |Y | ≥ δc(G)− 2 and
n+ 1

2
≥ |X ′| ≥ δc(G)− 1. (3.4)

Let Y ′ ⊆ Y be the vertices y ∈ Y for which there are at least four vertices x ∈ N(y,X ′)

such that c(xy) = c(xv). For every x ∈ X ′, by (3.4), we have that

|N(x, c(vx)) ∩ Y | ≤ |Y | − (dc(x)− 2) ≤ 1,

so |Y ′| ≤ 1
4
|X ′|. Let Y ′′ ⊆ Y be the set of vertices that send less than 3ℓ+3 different colors

into X ′. Then, using (3.4), the minimum color degree of G[Y ′′] is at least

δc(G)− (3ℓ+ 2)− |(Y ∪ {v}) \ Y ′′| ≥ |Y ′′| − (3ℓ+ 2).

Thus, by Lemma 3.1.4, we have |Y ′′| ≤ 12ℓ+ 4. Let Y ′′′ = Y \ (Y ′ ∪ Y ′′), so by (3.4)

|Y ′′′| ≥ |Y | − 1

4
|X ′| − 12ℓ+ 3 ≥ 3

4
|Y | − 12ℓ+ 4 >

3

8
n− 12ℓ.

If ℓ is even, let uℓ−1 be an arbitrarily selected vertex in X ′ and let P0 := vuℓ−1. If ℓ is

odd, let uℓ−1 be a neighbor of v such that c(vuℓ−1) = c. Recall that uℓ−1 is in Y . By (3.4),

|(Y ∪ {v}) \ {uℓ−1}| < δc(G), so there exists a neighbor uℓ−2 of uℓ−1 in X ′ such that

c(uℓ−1uℓ−2) ̸= c. Let P0 := vuℓ−1uℓ−2. Construct a sequence of paths P0 · · ·Pℓ−|P0|. Let

ui denote the final vertex in Pi. If i is even then ui ∈ X ′, so let Pi+1 be the path Pi plus

the edge uiy for some y ∈ Y ′′′ such that y /∈ Pi and c(uiy) is not in Pi. This is possible for

i ≤ ℓ− 4 since n ≥ 40ℓ implies that there are at least

|Y ′′′| − 3i

2
− 3 ≥ 3

8
n− 15ℓ > 0

ways Pi can be extended. Otherwise i is odd and ui ∈ Y ′′′. Because ui /∈ Y ′′, we can select

ui+1 ∈ N(ui) ∩ X ′ so that the vertex ui+1 and the colors c(uiui+1) and c(ui+1v) do not
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appear on the path Pi. Because ui /∈ Y ′, we can also ensure that c(uiui+1) ̸= c(ui+1v). But

then Pℓ−||P || is part of a rainbow Cℓ, a contradiction.

Therefore we can assume that there exists e ∈ E(G[X ′]) such that c(e) ̸= c for the

remainder of the proof. Then there exists a triangle that includes v and avoids the color c.

If we then let B be the set of vertices b such that there exists a v, b-path of length ℓ− 2 that

avoid the color c, by Lemma 3.1.5,

|B| ≥ 3n

4
− 3

2
− 6ℓ ≥ 71(n+ 1)

100
, (3.5)

since n ≥ 200ℓ. By Lemma 3.1.3 and solving for ν(G), we have that

ν(G) ≤ 3ℓ

1− n+1
2|B|

+ 1 ≤ 11ℓ. (3.6)

Claim 3.1.6. For every w ∈ V (G), d(w) < n+1
2

+ 2ν(G) + 3ℓ.

Proof. Assume there existsw ∈ V (G) such that d(w) ≥ n+1
2

+2ν(G)+3ℓ. Let s ∈ N∗(w),

and note that s exist since δc(G) ≥ n+1
2
. Let c be the number of colors incident to w which

are duplicated, then c ≤ d(w)− δc(G). Consider an edge st from s to N(w) which avoids

colors incident to w that are duplicated. Such an edge exists as otherwise,

n ≥ d(w) + δc(s)− c ≥ d(w) + δc(G)− (d(w)− δc(G)) ≥ 2δc(G) > n.

Then the trianglewst is such that c(ws) ̸= c(wt). Since the colors that appear on the triangle

wst occur at most ν(G) + 2 times on the edges incident to w, we can select U ⊆ N(w)

of size
⌈
n
2

⌉
+ ν(G) + 3ℓ such that on the edge set E(w,U) at least δc(G) ≥ n+1

2
different

colors appear and the colors of the edges in the triangle wst each appear at most once. Let

C be the set of colors that appear more than once on the edge set E(w,U). By (3.6),

|C| ≤ |U | − δc(G) ≤ ν(G) + 3ℓ ≤ 14ℓ. (3.7)
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ByLemma 3.1.5, (3.6), and (3.7), ifB is the set of vertices b such that there exists aw, b-path

of length ℓ− 2 that avoids the colors in C, then since n ≥ 50ℓ

|B|+ 2|C| ≥ 3n

4
+

|C|
2

− 6ℓ ≥ 3n

4
+ 2ℓ ≥

⌈n
2

⌉
+ 14ℓ ≥

⌈n
2

⌉
+ ν(G) + 3ℓ ≥ |U |.

Since |U ∩ N∗(w)| ≤ |U | − 2|C|, Lemma 3.1.1 (with w, U , and B playing the roles of v,

X , and Y , respectively, and j = 3ℓ) implies that

n ≥ |U |+δc(G)−|U ∩N∗(w)|
|B|

(ν(G)− 1)−3ℓ ≥ n

2
+ν(G)+3ℓ+

n

2
−(ν(G)−1)−3ℓ > n,

a contradiction.

Let X := X ′ ∪ N(v, c), so |X| ≥ δc(G). Let P be the set of rainbow paths vxu for

some x ∈ X and u ∈ V (G). We have that

|P| ≥ |X|(δc(G)− 1). (3.8)

Note that, by Lemma 3.1.2, every b ∈ B uses at most 3ℓ different colors on edges bx where

x ∈ X and the path bxv is rainbow. By Claim 3.1.6 and (3.6), this means that b appears on

at most

d(b)− (δc(G)− 3ℓ) ≤ 2ν(G) + 6ℓ ≤ 28ℓ

of the paths in P . Therefore, with (3.5), we have that (using |X| ≥ n
2
≥ 100ℓ)

|P| ≤ (n−|B|)|X|+ |B| ·28ℓ = n|X|−(|X|−28ℓ)|B| ≤ n|X|− 5|X|
7

· 71n
100

= |X| · 69n
140

,

but this contradicts (3.8).
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Chapter 4

THE EXISTENCE OF RAINBOW CYCLES WITH EVEN LENGTH

4.1 Proof of Theorems 1.3.5 and 1.3.6

We prove Theorems 1.3.5, and 1.3.6 with the stability method, i.e., the proof contains

two cases: the non-extremal case, where the graph is far from an extremal example, and the

extremal case, where the graph is close to an extremal example. We make the following

definitions to make this precise.

Definition 4.1.1. A directed graph G on n vertices is λ-extremal if there exists a partition

{V1, V2, V3} of V (G) such that eG(Vi, Vi+1) ≥ n2

9
− λn2 for i ∈ [3].

Definition 4.1.2. A graphG with an edge-coloring c is λ-extremal if there exists a digraph

associated with (G, c) that is λ-extremal.

In both cases, a partition {V1, V2, V3} that witnesses that a graph or digraph is λ-extremal

is a λ-extremal partition. The following fact follows from the definition of λ-extremal.

Fact 4.1.3. There existsλ > 0 such that for every ℓ that is amultiple of 3, there existsn0 such

that for every n ≥ n0 the following holds. IfG is a λ-extremal directed graph (respectively,

edge-colored graph) on n vertices, then G contains a directed Cℓ (respectively, rainbow

Cℓ).

When 3 does not divide ℓ, it is more difficult to show that a directed Cℓ exists in a λ-

extremal graph. To this end, we get the following proposition which follows from a standard

application of the degree form of the digraph regularity lemma of Alon & Shapira [2], and

its modification for oriented graphs by Kelly, Kühn, & Osthus (See Lemma 3.2 in [17]).
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This lemma is similar to Lemma 22 in [18] and reduces the problem from finding ℓ-cycles

to finding closed ℓ-walks.

Proposition 4.1.4. For every ℓ ≥ 3, ξ, β, λ > 0 and n′
0, there exists α > 0 and n0 such that

for every n ≥ n0 the following holds. Suppose that every oriented graph G′ on n′ ≥ n′
0

vertices with δ+(G′) ≥ (ξ − β)n′ either has a closed ℓ-walk or is (λ− β)-extremal. Then

both of the following statements are true:

• Every oriented graph G on n vertices such that δ+(G) ≥ ξn either has αnℓ directed

cycles of length ℓ or is λ-extremal.

• If ℓ is even, then every directed graph G on n vertices such that δ+(G) ≥ ξn either

has αnℓ directed cycles of length ℓ or is λ-extremal.

Proof sketch. IfG is an oriented graph, then apply the degree form of the digraph regularity

lemma for oriented graphs (Lemma 3.2 in [17]) to obtain a cluster oriented graph G′ on n′

vertices for some n′ ≥ n′
0 such that d+(G′) ≥ (ξ − β)n′.

If ℓ is even andG is a directed graph, then apply the degree form of the digraph regularity

lemma to obtain a cluster digraph G′ on n′ vertices for some n′ ≥ n′
0 such that d+(G′) ≥

(ξ−β)n′. IfG′ contains a directed C2, then, because ℓ is even,G′ contains a closed ℓ-walk.

Otherwise, G′ is an oriented graph.

In either case, if G′ has a closed ℓ-walk, then, by a standard argument, G has at least

αnℓ directed Cℓ. Otherwise, because G′ is an oriented graph on n′ ≥ n′
0 vertices with

δ+(G′) ≥ (ξ − β)n′, it must be that G′ is (λ − β)-extremal. By a standard argument, this

implies that G is λ-extremal.

We combine Lemma 4.1.4 with the following lemma, Lemma 4.1.5, to prove the non-

extremal case.
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Lemma 4.1.5 (Non-extremal lemma). Suppose λ > 0. For every ℓ ∈ N \ {1, 2, 3, 5} there

exists α > 0 and n0 such that every oriented graph G on n ≥ n0 vertices that does not

contain a closed ℓ-walk and such that δ+(G) ≥ (1
3
− α)n is λ-extremal. Furthermore,

when ℓ = 5 and λ > 0, there exists n0 such that every oriented graphG on n ≥ n0 vertices

that does not contain a closed ℓ-walk and such that δ+(G) ≥ n+1
3

is λ-extremal.

In Lemma 4.1.5, it is necessary to treat the case when ℓ = 5 in a special way, because

the set of extremal examples in this case is more complicated. To see this, consider the

n-vertex blow-up of a directed triangle with parts V1, V2 and V3 and edges going from Vi

to Vi+1 for i ∈ [3]. Now split V2 into two parts, V 1
2 and V 2

2 , and put all possible edges

from V 1
2 to V 2

2 . This modified oriented graph still has no directed C5 and has minimum

out-degree
⌊
n
3

⌋
. Furthermore, for every v ∈ V 1

2 we can remove |V 2
2 | edges directed from v

to V3 and not decrease the minimum out-degree condition. If λ > 0 is small and |V 2
2 | large,

for example |V 2
2 | =

⌊
n
6

⌋
, then digraphs constructed in this way are not λ-extremal.

Combining Proposition 4.1.4 with Lemma 4.1.5 implies the following.

Lemma 4.1.6. Suppose λ > 0. For every ℓ ∈ N \ {1, 2, 3, 5} there exists α > 0 and n0

such that if G is an oriented graph on n ≥ n0 vertices such that δ+(G) ≥ (1
3
− α)n, or ℓ

is even and G is a directed graph on n ≥ n0 vertices such that δ+(G′) ≥ (1
3
− α)n, then

either G′ is λ-extremal or G′ contains at least αnℓ directed Cℓ.

Proof. Let 2λ, 2α, and n′
0 be the values of λ, α and n0 in Lemma 4.1.5 respectively. Let

α, α, and λ be the values of ξ, β, and λ in Proposition 4.1.4 respectively. Then for ev-

ery oriented graph G′ on n′ ≥ n′
0 either has a closed ℓ-walk or is 2α-extremal. But then

Proposition 4.1.4 applies immediately implying the lemma.

To prove the extremal case, we prove the following lemma.

Lemma 4.1.7 (Extremal lemma). For every ℓ ≥ 4 that is not divisible by 3, there exists n0

and λ > 0 such that for every n ≥ n0 the following holds. Suppose that G is a graph on
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n vertices and c is an edge-coloring of G such that (G, c) is λ-extremal. If ℓ ̸= 5 and (1.1)

holds, i.e.,

δc(G) ≥


n+5
3

if ℓ = 1 (mod 3)

n+7
3

if ℓ = 2 (mod 3),

then G contains a rainbow Cℓ. Furthermore, if ℓ ≡ 1 (mod 3) and δc(G) ≥ n+4
3
, then G

contains a properly colored Cℓ. Finally, if ℓ ≡ 2 (mod 3), δc(G) ≥ n+4
3
, and there exists

an oriented graph G′ such that (G, c) is the simple edge-colored graph determined by G′,

then G contains a properly colored Cℓ.

We prove Lemma 4.1.5 in Section 4.3 and we prove Lemma 4.1.7 in Section 4.4. We

now show how the above lemmas and facts along with Propositions 1.3.12 and Fact 1.3.10

from Subsection 1.3.1 imply Theorems 1.3.5 and 1.3.6.

Theorem 1.3.5 (Czygrinow, Molla, Nagle, & Oursler). For every even ℓ ≥ 4, there exists

α > 0 and n0 such that for every n ≥ n0 the following holds. If G is a graph on n vertices

and c is an edge-coloring of G such that

δc(G) ≥


(1
3
− α)n if ℓ = 0 (mod 3)

n+ 5

3
if ℓ = 1 (mod 3)

n+ 7

3
if ℓ = 2 (mod 3),

(1.1)

then G contains a rainbow ℓ-cycle.

Proof. Let ℓ ≥ 4 be even. Fix λ and α so that Lemma 4.1.7, Lemma 4.1.6, and Proposi-

tion 1.3.12 apply. Let n0 be the larger of the values produced by this choice. Let G be a

graph on n > n0 vertices and c an edge-coloring ofG such that (G, c) satisfies (1.1). LetG′

be a directed graph associated with (G, c). We have that δ+(G′) = δc(G) ≥ (1
3
−α)n, so by

Lemma 4.1.6, either G′ is λ-extremal or G′ contains αnℓ directed cycles Cℓ. If G′ contains

αnℓ cycles, then Proposition 1.3.12 implies that G has a rainbow Cℓ. If G′ is λ-extremal,
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then (G, c) is also λ-extremal. If ℓ is divisible by 3, then Fact 4.1.3 implies that G has a

rainbow Cℓ. Otherwise, Lemma 4.1.7 implies that G has a rainbow Cℓ.

Theorem 1.3.6 (Czygrinow, Molla, Nagle, & Oursler). For every ℓ ≥ 4, there exists n0

such that for every n ≥ n0 the following holds. If G is an oriented graph on n vertices and

δ+(G) ≥ n+1
3
, then G contains a directed ℓ-cycle.

Proof. Let ℓ ≥ 4. Fix λ > 0 and n0 such that Lemmas 4.1.5, 4.1.6, and 4.1.7 apply in the

following argument. LetG be an oriented graph on n > n0 vertices such that δ+(G) ≥ n+1
3
.

Assume for contradiction that G does not contain a directed Cℓ. Let

U := {u ∈ V (G) : d−G(u) = 0}.

Note thatG−U does not contain a directed Cℓ and that the minimum out-degree ofG−U

is equal to δ+(G). We also have that(
|G− U |

2

)
≥ |E(G− U)| ≥ |G− U |δ+(G),

so, (|G− U | − 1) ≥ 2δ+(G) ≥ 2n
3
, and |G− U | > 2n

3
.

When ℓ = 5, Lemma 4.1.5 directly implies that G− U is λ-extremal. When ℓ ̸= 5, we

have that G− U is λ-extremal by Lemma 4.1.6.

In either case we have that G− U is λ-extremal. Because δ−(G− U) ≥ 1, if (G′, c) is

the simple edge-colored graph determined by G− U , then

dc(G′) = δ+(G− U) + 1 = δ+(G) + 1 ≥ n+ 4

3
≥ (|G′|+ 4)

3
.

Therefore Lemma 4.1.7 implies that (G′, c) contains a properly colored Cℓ. By Fact 1.3.10,

such a Cℓ corresponds to a directed Cℓ in G− U ⊆ G, which is a contradiction.

4.2 Digraph and Rainbow Subgraph Relationship

In this section we give proofs of the results mentioned in Subsection 1.3.1, that the

minimum degree bound in Theorem 1.3.5 is tight when 3 does not divide ℓ, and that if
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(G, c) is an edge colored graph, G′ an directed graph associated with G with a significant

number of 1-in directions of a graph F , then G contains a rainbow F .

Proposition 1.3.11. Theorem 1.3.5 is the best possible for sufficiently large n when 3 does

not divide ℓ.

Proof. Let G′ be the n-vertex blowup of a directed C3 on [n] and (G, c) the simple edge

colored graph determined by G′. Then G does not contain a rainbow ℓ-cycle, δc(G) ≥⌊
n
3

⌋
+ 1, and when ℓ ≡ 1 (mod 3) and n (mod 3) ∈ {0, 1} this provides a sharp bound

for Theorem 1.3.5. When ℓ ≡ 2 (mod 3) we can modify G to create another sharpness

example for Theorem 1.3.5. This example is created by adding new edges, each of which

are colored with the color n+ 1 which is distinct from any previous edge color on G. The

new edges are added inside each of the three parts so that every vertex is incident to at least

one new edge. Then the minimum color degree is
⌊
n
3

⌋
+ 2 =

⌈
n+4
3

⌉
, but because ℓ ≡ 2

(mod 3) and at most one new edge can appear in a rainbow subgraph, there does not exist

a rainbow ℓ-cycle.

The sharpness example for Theorem 1.3.5 when ℓ ≡ 1 and n ≡ 2 (mod 3) also starts

with (G, c). Let m :=
⌊
n
3

⌋
, so n = 3m + 2 and label the parts V1, V2 and V3 so that edges

in G′ go from Vi to Vi+1 for i ∈ [3]. We can assume that V1 = [m + 1] and V2 = {i ∈

N : m + 2 ≤ i ≤ 2m + 2}. Note that the minimum color degree is m + 1, as witnessed

by vertices in V2, but, for a sharpness example, we want the minimum color degree to be

m + 2 =
⌊
n+6
3

⌋
=

⌈
n+4
3

⌉
. We modify the coloring c to achieve this in the following way:

for every i, j ∈ [m+ 1], we let

c({j,m+ 1 + i}) =


n+ 1 if i = j

i otherwise,

and we leave the color on all other edges unchanged. Now every vertex has color degree

m+2, and we have not created a rainbow ℓ-cycle. To see this, assume, for a contradiction,
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that C = u1, . . . , uℓ is such an ℓ-cycle. Because ℓ is not divisible by 3, without loss of

generality we can assume that there exists j ∈ [3] and i ∈ [ℓ] such that ui ∈ Vj−1, ui+1 ∈ Vj

and ui+2 ∈ Vj−1, i.e., the cycle must change direction at least once and we can assume, by

potentially reversing the labeling of C, that this reversal goes from the forward direction to

the backward direction. Furthermore, the coloring and the fact that C is rainbow imply that

j = 2. Without loss of generality we can assume that i = 1 and that u1 = 2, u2 = (m+1)+1

and u3 = 1, so c(u1u2) = 1 and c(u2u3) = n + 1. Because for every u ∈ N(u3, V3), we

have that c(uu3) = 1 and c(u1u2) = 1, it must be that u4 ∈ V2. Now, because ℓ ≡ 1

(mod 3), and u1 ∈ V1 and u4 ∈ V2 = V4−2, there must exist an index 4 ≤ i ≤ ℓ such that

ui ∈ Vi−2 and ui+1 ∈ Vi−3, i.e., we must move in the backward direction at least one more

time (we could potentially have uℓ ∈ V2 and uℓ+1 = u1 ∈ V1). Let i be the smallest such

index, so we have that ui−1 ∈ Vi−3, ui ∈ Vi−2, and ui+1 ∈ Vi−3. Then either the edge ui−1ui

or uivi+1 must be given the color n+1, a contradiction to the fact that c(u2u3) = n+1.

Proposition 1.3.12. For every graph F and α > 0, there exists n0 such that for every

n ≥ n0 the following holds. Let G be a graph on n vertices, let c be an edge-coloring of G

and let G′ be a directed graph associated with (G, c). If F ′ is a 1-in direction of F and G′

contains at least αn|F | copies of F ′, then G contains a rainbow F .

Proof. Let ℓ = |F |. We can assume that n0 >
ℓ4

α
, so

ℓ4 < αn0 ≤ αn. (4.1)

LetΨ ⊆ V (G′)ℓ be the set of ℓ-tuples (v1, . . . , vℓ) ∈ V (G′)ℓ such that {v1, . . . , vℓ} contains

F ′ so that for some 2 ≤ i ≤ ℓ − 1, we have that c({v1, v2}) = c({vi, vi+1}) and vivi+1

is a directed edge in G′. Call an element (v1, . . . , vℓ) ∈ Ψ an i-repeat if c({v1, v2}) =

c({vi, vi+1}), so every element inΨ is an i-repeat for some 2 ≤ i ≤ ℓ−1. If we assume for a

contradiction thatG has no rainbowF , thenwe canmap every copy ofF ′ inG′ to an element

inΨ. To see why, let F ′ be on vertices {v1, . . . , vℓ} and sinceG does not contain a rainbow
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F , there exist edges {u1, u2} and {u3, u4} with the same color. If {u1, u2} ∩ {u3, u4} = ∅,

then we can obviously order the vertices so that u1u2 and u3u4 are directed edges in G.

Otherwise, without loss of generality assume that u1 = u4. Note that if there exists a

directed path u3u1u2 or u2u1u3 in G′, then we can order the vertices so that u1u2 and u3u4

are directed edges in G as well. Otherwise no such path exists. Note that u1u2 and u1u3

cannot both be directed edges inG′ as the directed edges leaving u1 are rainbow inG. If both

u2u1 and u3u1 are directed edges inG′, since F ′ is a 1-in direction the directed edge u1u2 or

u1u3 must exist. But then F ′ contains a directed path u3u1u2 or u2u1u3, contradicting the

assumption that no such path exists. Thus we can always order the vertices (after possibly

relabeling) so that u1u2 and u3u4 are directed edges in G. Therefore we can map F ′ to an

element inΨ. On the other hand there are at most ℓ! copies ofF ′ on the vertices {v1, . . . , vℓ},

and if we associate each copy of F ′ with a possible starting edge v1v2, there are at least

(ℓ− 3)! ways to map F ′ into Ψ. Thus

|Ψ| ≥ α

ℓ3
nℓ. (4.2)

To get an upper bound on |Ψ|, observe that we can generate every element inΨwith the

following procedure. First pick 2 ≤ i ≤ ℓ− 1 such that there exists an i-repeat in Ψ. Then

for j from 1 to ℓ, pick a vertex vj so that v1, . . . , vj are the initial j vertices of some i-repeat

in Ψ. We clearly have at most n choices for each selection vj . Crucially when j = i + 1,

we have exactly one choice for vj , because there is only one vertex u ∈ N+(vi) such that

c({vi, u}) = c({v1, v2}). Therefore, by (4.1),

|Ψ| ≤ (ℓ− 2)nℓ−1 <
α

ℓ3
nℓ,

which contradicts (4.2).
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4.3 Non-extremal Case

We use the following corollary to the main result of Ji, Wu, & Song in [15] (Corollary

1.5).

Corollary 4.3.1 (Ji, Wu, & Song 2018 [15]). For every n ∈ N, ε < 0.6976 and ℓ such that

4 ≤ ℓ ≤ 1.4334 · εn + 2, the following holds. If G is an oriented graph on n vertices that

does not contain a directed triangle and δ0(G) ≥ (0.3024+ ε)n, then for every u ∈ V (G),

there exists a directed Cℓ which contains u.

We use the following fact several times throughout this section.

Fact 4.3.2. If G is an oriented graph that contains a vertex x such that x is in a directed

triangle and a directed C4, then x is in a closed ℓ-walk for every ℓ ≥ 3 such that ℓ ̸= 5.

We now collect a few simple facts which aid in identifying λ-extremal oriented graphs

in what follows.

Proposition 4.3.3. For every λ > 0, there exists n0 and α > 0 such that for every n ≥ n0

and every oriented graph G on n vertices the following holds:

(1) If G′ ⊆ G, |G′| ≥ (1− α)n, and G′ is (λ− α)-extremal, then G is λ-extremal.

(2) If |E(G)| ≥ (1
3
− α)n2 and G has no transitive triangles, then G is λ-extremal.

(3) If δ0(G) ≥ (1
3
− α)n and V1, V2 ⊆ V (G) are disjoint sets each of order at least

(1
3
− α)n such that |E(V1)|, |E(V2)|, and |E(V2, V1)| are each at most αn2, then G

is λ-extremal.

Proof. To see (1), note that if {V ′
1 , V

′
2 , V

′
3} is a (λ− α)-extremal partition of G′, then if we

define V1 := V ′
1 ∪ V (G−G′), V2 := V ′

2 , and V3 := V ′
3 we have that, for every i ∈ [3],

|E(Vi, Vi+1)| ≥ |E(V ′
i , V

′
i+1)| ≥

(n− α)2

9
− (λ− α)n2 ≥ n2

9
− λn2,
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so {V1, V2, V3} is a λ-extremal partition of G.

To see (2), first note that, because G has no transitive triangles, the graph underlying G

is K4-free. Therefore by the Erdős & Simonovits stability theorem, there exists a partition

{V1, V2, V3} of V (G) such that |Vi| ∈ {
⌊
n
3

⌋
,
⌈
n
3

⌉
} for i ∈ [3], and, for some α ≪ β ≪ λ,

there are at least n2

9
− β2n2 edges between Vi and Vi+1 for every i ∈ [3]. Call a vertex

v ∈ Vi, i-typical if it is adjacent to all but at most βn vertices in Vi−1 and all but at most βn

vertices in Vi+1. Because, for every i ∈ [3],

|Vi||Vi+1| − (
n2

9
− β2n2) < βn · 2βn,

there are fewer than 4βn vertices in Vi that are not i-typical. Therefore we can assume, by

possibly changing the labeling of V1, V2 and V3, that there exists a directed triangle v1v2v3

such that vi is i-typical for every i ∈ [3]. For i ∈ [3], let

Ui := {u ∈ Vi : u is i-typical and u is adjacent to both vi−1 and vi+1}.

Note that |Ui| ≥ |Vi|−6βn ≥ (1
3
−7β)n, and that, because there are no transitive triangles,

every edge between a vertex ui ∈ Ui and ui+1 ∈ Ui+1 must be directed from ui to ui+1.

Therefore

|E(Vi, Vi+1)| ≥ |E(Ui, Ui+1)| ≥
∑
u∈Ui

d+(u, Ui+1) ≥ |Ui|(|Ui+1| − βn) ≥ n2

9
− λn2.

To see (3), let V3 := V (G) \ (V1 ∪ V2). We have that, by the minimum semidegree

condition,

|E(V2, V3)| ≥
∑
v∈V2

d+(v)− |E(V2)| − |E(V2, V1)| ≥
n2

9
− 4αn2,

and similarly |E(V3, V1)| ≥ n2

9
− 4αn2. Since |V2|+ |V3| = n− |V1| ≤ (2

3
+ α)n, we have

that

|V2||V3| ≤
(
(
1

3
+

α

2
)n

)2

≤ n2

9
+

αn2

3
+

α2n2

4
.
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so

|E(V3, V2)| ≤ |V2||V3| − |E(V2, V3)| ≤ 5αn2.

and, by the minimum semidegree condition,

|E(V1, V2)| ≥
∑
v∈V2

d−(v)− |E(V2)| − |E(V3, V2)| ≥
n2

9
− λn2.

The following lemma allows us to convert statements involving minimum semidegree

to analogous statements involving minimum out-degree.

Lemma 4.3.4. For every ℓ ∈ N \ {1, 2, 3, 5} and β > 0, there exists α > 0 and n0 such

that for every n ≥ n0 and ξ ≥ 1
3
− α the following holds, and when ℓ = 5 and β > 0 there

exists n0 such that for every ξ ≥ (n+1)
3n

the following holds. If G is an oriented graph on n

vertices that does not contain a closed ℓ-walk and δ+(G) = ξn, then there exists G′ ⊆ G

such that |G′| ≥ (1− β)n and δ0(G′) ≥ (ξ − β)|G′|.

Proof. Let n0, α, and γ be such that

0 <
1

n0

≪ α ≪ γ ≪ β,
1

ℓ
,

and assume that G is an n-vertex counterexample for some n ≥ n0. Let x ∈ V (G) be such

that it maximizes d−(x), and define η := d−(x)
n

. Then

d−(v) ≤ ηn for every v ∈ V (G). (4.3)

Claim 4.3.5. η > (ξ + γ).

Proof. Assume for contradiction that

η ≤ ξ + γ, (4.4)

and let

V ′ := {v ∈ V (G) : d−(v) < (ξ − β2)n}.
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Then, by (4.3) and (4.4),

n ·ξn ≤
∑

v∈V (G)

d−(v) ≤ (n−|V ′|) ·(ξ+γ)n+ |V ′| ·(ξ−β2)n = (ξ+γ)n2−|V ′|(γ+β2)n,

which implies that

|V ′| ≤ γn2

(γ + β2)n
≤

β3

2

β2
n = β

n

2
.

If we let G′ := G− V ′, then we have that

δ−(G′) ≥ (ξ−β2)n−|V ′| ≥ (ξ−β)|G′| and δ+(G′) ≥ ξn−|V ′| ≥ (ξ−β)|G′|,

which contradicts the assumption that G is a counterexample.

Claim 4.3.6. If U and W are disjoint subsets of V (G) such that |U | ≥ ηn and |W | ≥ ξn,

then there exists a path wvu such that w ∈ W and u ∈ U .

We defer the proof of Claim 4.3.6 so that we can first show how it and Claim 4.3.5

together imply a contradiction. To this end, assume that Claim 4.3.6 holds and note that

Claim 4.3.6, with N−(x) and N+(x) playing the roles of U and W , respectively, implies

that there exists a closed 4-walk containing x. Therefore we can assume that ℓ ≥ 5.

First assume ℓ ≥ 6. If there exists a vertex y ∈ N+(x) such that there is a vertex

z ∈ N+(y) ∩ N−(x), then xyzx is a directed triangle containing x. But by Fact 4.3.2,

there exists a closed ℓ-walk in G, a contradiction. Therefore for every y ∈ N+(x), we can

assume that d+(y,N−(x)) = 0, so by (4.3) and Claim 4.3.5,

d+(y,N+(x)) ≥ d+(y)+|N+(x)|−(n−|N−(x)|) ≥ 2ξn+(ξ+γ)n−n ≥ (γ−3α)n ≥ ℓ.

Therefore there exists a path y1, . . . , yℓ−2 of length (ℓ − 2) in N+(x). Since there is no

closed ℓ-walk, we have that N+(yℓ−2) is disjoint from N−(x), so Claim 4.3.6, with N−(x)

andN+(yℓ−2) playing the roles of U andW , respectively, implies that there existsw, v, u ∈

V (G) such that yℓ−2wvux is a path in G. We then have that xy3 . . . yℓ−2wvux is a closed

ℓ-walk, which is a contradiction.

67



Now assume ℓ = 5. In this case, δ+(G) ≥ (n+1)
3

, so d−(x) ≥ (n+1)
3

. In fact we get

that d−(x) > (n+1)
3

, as otherwise, by the maximality of d−(x), ∆−(x) = δ+(G) implying

d+(v) = d−(v) = (n+1)
3

for all vertices and satisfying the lemma. Assume there exists an

x, x′-path on 3 vertices and an x, x′-path on 4 vertices. ThenN−(x) andN+(x′) are disjoint,

but d−(x) + d+(x) + d+(x′) > n. Then there exists y ∈ N+(x′, N+(x)). Because there

exists an x, x′-path on 3 vertices, there exists an x, y-path on 4 vertices. But then N−(x)

and N+(y) must be disjoint, and Claim 4.3.6, with N−(x) and N+(y) playing the roles of

U and W respectively, implies that there exists w ∈ N+(y), v ∈ V (G), and u ∈ N−(x)

such that xywvux is a directed C5, a contradiction. Thus there exists no vertex x′ in an

x, x′-path on both 3-vertices and 4-vertices.

Therefore N+(x) is an independent set, because if there exists yz in E(G[N+(x)]),

then for every vertex x′ ∈ N+(z)we have the paths xzx′ and xyzx′, a contradiction. So for

every y ∈ N+(x), we have that N+(y) is disjoint from N+(x). We also have that N+(y)

is an independent set, because if there exists zx′ in E(G[N+(y)]), then we have the paths

xyzx′ and xyx′, a contradiction. Because δ+(G) ≥ (n+1)
3

, N+(x) and N+(y) are disjoint,

and N+(y) is an independent set, we can conclude that for every z ∈ N+(y) there exists

w ∈ N+(z,N+(x)). But now since δ+(G) ≥ (n+1)
3

, N+(x) is an independent set, and

d−(x) > (n+1)
3

, there exists u ∈ N+(w,N−(x)). But then xyzwux is a directed C5, a

contradiction.

Proof of Claim 4.3.6. Assume for contradiction that such a path does not exist. Let X1 ⊆

W be such that |X1| = ξn, and letX2 := N+(X1). By our assumption,N+(X2) is disjoint

from U . If we letX3 = N+(X2) \X1, then the setsX3,X1, and U are pairwise disjoint, so

|X3|
n

+ ξ + η − 1 ≤ 0. (4.5)

With (4.3) we have that

|E(X2, X3)| ≤ ηn · |X3|. (4.6)
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Since |X1| = ξn, we also get that |E(X1, X2)| ≥ |X1|δ+(G) = (ξn)2. Therefore

|E(X2, X1)| ≤ |X1||X2| − |E(X1, X2)| ≤ ξn · |X2| − (ξn)2,

so

|E(X2, X3)| ≥ δ+(G) · |X2| − |E(X2, X1)| ≥ (ξn)2. (4.7)

Together (4.6) and (4.7) imply that ηn · |X3| ≥ |E(X2, X3)| ≥ ξ2n2, so

|X3|
n

≥ ξ2

η
,

and, with (4.5) and the fact that ξ ≥ (1
3
− α), we have that

0 ≥ ξ2

η
+ ξ + η − 1 ≥

(1
3
− α)2

η
+ (

1

3
− α) + η − 1.

This implies that η2 − (2
3
+ α)η + (1

3
− α)2 ≤ 0. Solving yields

η ≤
2
3
+ α +

√
4α− 3α2

2
≤ (

1

3
− α) + γ ≤ ξ + γ,

a contradiction to Claim 4.3.5.

The following is a corollary to Theorem 1.3.7 and Lemma 4.3.4.

Corollary 4.3.7. For every ℓ ≥ 4 and α > 0, there exists n0 such that for every n ≥ n0

the following holds. If G is an oriented graph on n vertices that does not contain a closed

ℓ-walk, then there exists x, y ∈ V (G) such that d+(x) < (1
3
+ α)n and d−(y) < (1

3
+ α)n.

Proof. Let n0, β and α be such that

0 <
1

n0

≪ β ≪ α ≪ 1

ℓ
.

Assume for contradiction that δ+(G) ≥ (1
3
+α)n, then Lemma 4.3.4 implies that there exists

a subgraphG′ ofG such that |G′| ≥ (1−β)n and δ0(G′) ≥ (1
3
+α−β)|G′| ≥ (1

3
+ α

2
)|G′|.

By Theorem 1.3.7, |G′| must contain a closed ℓ-walk, a contradiction.
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By reversing the orientation of the edges inG, the previous argument implies that there

exists y ∈ V (G) such that d−(y) < (1
3
+ α)n as well.

Lemma 4.3.8. For every ℓ ≥ 4 and λ > 0, there exists α > 0 and n0 such that for every

n ≥ n0 the following holds. If G is an oriented graph on n vertices that does not contain a

closed ℓ-walk and δ0(G) ≥ (1
3
− α)n, then G is λ-extremal.

Proof. We start the proof with two claims.

Claim 4.3.9. Suppose thatX+, X− ⊆ V (G) such that |X+|, |X−| ≥ (1
3
−α)n and such that

|X+∩X−| ≤ (1
3
−21αn). If there does not exist a path x+yx− with x+ ∈ X+ and x− ∈ X−,

then, for σ ∈ {−,+}, there exists Y σ ⊆ Xσ \ X−σ such that |Y σ| ≥ |Xσ \ X−σ| − 7αn

and Y σ is independent.

Proof. Call a path x+yx− with x+ ∈ X+ and x− ∈ X− a forbidden path, and note that we

are assuming that there are no forbidden paths. For σ ∈ {−,+}, let

Uσ = {u ∈ Xσ \X−σ : d−σ(u,Xσ \X−σ) > 0},

letX := X+∪X−, and let Y σ := Xσ \ (X−σ ∪Uσ). Then Y σ is independent, so we prove

the claim if we show that |Uσ| ≤ 7αn.

DefineW σ := Nσ(Uσ) \X . Since there are no forbidden paths,W− ∩W+ = ∅, so

|X|+ |W+|+ |W−| ≤ n. (4.8)

We first prove the following implication:

|Uσ| ≥ αn ⇒ |W σ| ≥ δ0(G)− (
1

3
+ α)|Uσ|. (4.9)

To see that (4.9) holds, assume that |Uσ| ≥ αn. Because G[Uσ] has no closed ℓ-walk and

αn is sufficiently large, Corollary 4.3.7 implies that there exists u ∈ Uσ such that

dσ(u, Uσ) ≤ (
1

3
+ α)|Uσ|. (4.10)
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Figure 4.1: Relationship Between X+, X−, U+, U−, Y +, Y −,W+, andW−

By the definition of Uσ, there exists w ∈ N−σ(u,Xσ), so because there are no forbidden

paths, we have that dσ(u,X−σ) = 0. Furthermore we have that dσ(u, Uσ) = dσ(u,Xσ),

implying dσ(u,X) = dσ(u, Uσ). By the definition ofW σ,

dσ(u) = dσ(u,W σ) + dσ(u,X) = dσ(u,W σ) + dσ(u, Uσ).

and this with (4.10) gives us that

|W σ| ≥ dσ(u,W σ) ≥ dσ(u)− dσ(u, Uσ) ≥ δ0(G)− (
1

3
+ α)|Uσ|,

proving (4.9).

We now use (4.9) to complete the proof of this claim by showing that |Uσ| < 7αn.

Assume |Uσ| ≥ αn and, for convenience, define Γ := (1
3
− α)n.

If |U−σ| ≥ αn, then by (4.8), (4.9), U−∪U+ ⊆ X\(X+∩X−), |X| ≥ 2Γ−|X+∩X−|,

and |X+ ∩X−| ≤ Γ− 20αn, we have that

n ≥ |X|+ 2Γ− (
1

3
+ α)(|U−|+ |U+|) ≥ |X|+ 2Γ− (

1

3
+ α)(|X| − |X+ ∩X−|)

= (
2

3
− α)|X|+ 2Γ + (

1

3
+ α)|X+ ∩X−|

≥ (
10

3
− 2α)Γ− (

1

3
− 2α)|X+ ∩X−| ≥ 3Γ + (

1

3
− 2α)20αn,

a contradiction.
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Otherwise |U−σ| < αn. Then there exists v ∈ X−σ \U−σ with d−σ(v,X−σ \U−σ) = 0.

To see this, assume the contrary and let v1 ∈ Y −σ. Then there exists v2 ∈ N−(v1, X
−σ \

U−σ). As Y −σ is an independent set, we have that v2 ∈ X+ ∩ X−. There also exists

v3 ∈ N−(v2, X
−σ\U−σ). Since there are no forbidden paths, v3 /∈ Xσ∩X−σ, so v3 ∈ Y −σ.

Similar to v1, there exists v4 ∈ Xσ ∩X−σ inN−(v3, X
−σ \U−σ), but v2v4v3 is a forbidden

path, a contradiction.

So there exists v ∈ X−σ \ U−σ such that d−σ(v,X−σ \ U−σ) = 0. But then the sets

N−σ(v), X−σ \ U−σ,W σ, and Uσ are pairwise disjoint since there are no forbidden paths.

This with (4.9) implies that

|Uσ| ≤ n− (d−σ(v) + (|X−σ| − |U−σ|) + |W σ|) ≤ n− (3Γ− αn− (
1

3
+ α)|Uσ|),

so (2
3
− α)|Uσ| < n− (3Γ− αn) ≤ 4αn. Therefore |Uσ| < 7αn.

Note that for any v ∈ V (G) that is not in a directed C4, Claim 4.3.9, with N−(v) and

N+(v) playing the roles ofX− andX+ respectively, implies that both the out-neighborhood

and the in-neighborhood of v contain large independent sets.

Claim 4.3.10. Suppose xyz is a directed triangle and x and y are not in a directed C4, then

|N−(x) ∩N+(y)| ≥ (
1

3
− 18α)n. (4.11)

Proof. First note that for every vertex v that is not in a directedC4, Claim 4.3.9, withN−(v)

andN+(v) playing the roles ofX− andX+ respectively, implies that there are independent

subsets of N−(v) and N+(v) of order at least

δ0(G)− 7αn ≥ (
1

3
− 8α)n.

Therefore there exists U ⊆ N−(x) andW ⊆ N+(y) such that

|U |, |W | ≥ δ0(G)− 7αn ≥ (
1

3
− 8α)n (4.12)
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Figure 4.2: Relationship Between x, y, z, U , andW

and U andW are independent sets. Suppose for contradiction that

|U ∩W | ≤ |N−(x) ∩N+(y)| < (
1

3
− 18α)n. (4.13)

With (4.12) and (4.13), we have that

|U ∪W | = |U |+ |W | − |U ∩W | ≥ 2 · (1
3
− 8α)n− |U ∩W | > n− 2δ0(G). (4.14)

Then U ∩W = ∅ since for a vertex v ∈ U ∩W , N−(v), N+(v), and U ∪W are pairwise

disjoint because U andW are independent sets. But then

n ≥ |N−(v)|+ |N+(v)|+ |U ∪W | > δ0(G) + δ0(G) + n− 2δ0(G) = n.

Thus we have that

|U ∪W | ≥ (
2

3
− 16α)n. (4.15)

Since there are no directed C4 that contain the edge xy, there are no edges from W to

U . This with (4.15) and the fact U andW are independent sets implies that for every u ∈ U

and w ∈ W ,

|N−(u) ∩N+(w)| ≥ 2 · δ0(G)− (n− |U ∪W |) ≥ (
1

3
− 18α)n.

Therefore if u ∈ U andw ∈ N+(x,W ), there exists v ∈ N−(u)∩N+(w) so that xwvux is a

directedC4, a contradiction. Thus d+(x,W ) = 0, and, by a similar argument, d−(y, U) = 0.

But then N+(x) ∪N−(y) ⊆ V (G) \ (U ∪W ), so with (4.15) we have

|N+(x) ∩N−(y)| ≥ 2 · δ0(G)− (n− |U ∪W |) ≥ (
1

3
− 18α)n.
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But for every v ∈ N+(x) ∩N−(y), yzxvy is a directed C4, a contradiction.

Case 1: ℓ ̸= 5.

We can assume that α < 10−5 · λ, that there exists a triangle v1v2v3 in G, and that vi is

not in a directed C4 for i ∈ [3] by Corollary 4.3.1 and Fact 4.3.2.

Let i ∈ [3] and let Ui := N+(vi−1) ∩N−(vi+1), From Claim 4.3.10, we have that

|Ui| ≥ (
1

3
− 0.001λ)n. (4.16)

Because the sets N+(vi) and N−(vi) are disjoint for every i ∈ [3], the sets U1, U2, U3 are

pairwise disjoint. Then (4.16) implies that

|V (G) \ (U1 ∪ U2 ∪ U3) | ≤ 0.003λn.

To prove thatG is λ-extremal, it suffices to show that for every i ∈ [3] and u ∈ Ui, we have

d+(u, Ui+1) ≥ (1
3
− 0.01λ)n by Proposition 4.3.3(1).

Suppose d−(vi−1) > (1
3
+ 0.001λ)n. Then Claim 4.3.9 and the fact that vi−1 is not

in a directed C4 imply that there exists an independent set Y ⊆ N−(vi−1) with |Y | ≥

n− 2δ0(G), which is a contradiction. Therefore d−(vi−1) ≤ (1
3
+ 0.001λ)n, and, because

Ui+1 ⊆ N−(vi+2) = N−(vi−1), this and (4.16) imply that

|N−(vi−1) \ Ui+1| = d−(vi−1)− |Ui+1| ≤ 0.002λn. (4.17)

But u is in the triangle vi−1uvi+1 for all u ∈ Ui+1. Therefore u is not in aC4 andClaim 4.3.10

implies that d+(u,N−(vi−1)) ≥ (1
3
− 0.001λ)n. With (4.17), we have that

d+(u, Ui+1) = d+(u,N−(vi−1))− d+(u,N−(vi−1) \ Ui+1) ≥ (
1

3
− 0.01λ)n,

which is what we wanted to show. Therefore G is λ-extremal completing this case.

Case 2: ℓ = 5.

We can assume that there exists a transitive triangle since Proposition 4.3.3(2) and the

minimum semidegree condition imply G is λ-extremal otherwise. Therefore there exists
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x ∈ V (G) with uw ∈ E(N+(x)). Let Z := N−(x) ∩ N+(w). Because there are no

directed C5 containing the path xuw, Z is an independent set. We will show that

|Z| ≥ (
1

3
− 21α)n. (4.18)

Suppose that |Z| < (1
3
− 21α)n, then by Claim 4.3.9 with N−(x) and N+(w) playing the

roles ofX− andX+ respectively, there exists Y − ⊆ N−(x)\Z and Y + ⊆ N+(w)\Z such

that Y − and Y + are independent sets that have order at least δ0(G)− |Z| − 7αn. For every

y− ∈ Y − and y+ ∈ Y +, we have that N−(y−) and N+(y+) are disjoint, since there are no

directed C5 containing the path y−xwy+. We also have thatN−(y−) does not intersect Y −,

because Y − is an independent set, and does not intersectZ∪Y +, becauseZ∪Y + ⊆ N+(w)

and there are no directed C5 containing the path y−xuw. By a similar argument, N+(y+)

does not intersect Y + ∪Z ∪ Y −. Therefore the sets N−(y−), N+(y+), Y −, Y +, and Z are

pairwise disjoint, implying that

n ≥ |Z|+ 2δ0(G) + 2(δ0(G)− |Z| − 7αn) = 4δ0(G)− |Z| − 14αn,

and contradicting the assumption that |Z| < (1
3
− 21α)n.

Let z ∈ Z. Note that,

d+(a, Z) = 0 for every a ∈ N+(z), (4.19)

because there are no directed C5 containing the path xwza and Z ⊆ N−(x). To complete

the proof, we only need to show that there exists an independent set B ⊆ N+(z) such that

|B| ≥ (1
3
− 24α)n. This is because |E(B,Z)| = 0, so by Proposition 4.3.3(3) with Z, B,

100α playing the roles of V1, V2, and α, respectively, G is λ-extremal. Therefore we may

assume that N+(z) is not independent and by a similar argument,

if B ⊆ N−(z) and |B| ≥ (
1

3
− 24α)n, then B is not independent. (4.20)
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Suppose there exists ab ∈ E(G[N+(z)]) such that d+(b,N+(z)) = 0. Then with (4.19),

we have that b has no out-neighbors in Z ∪ N+(z), so, with (4.18) and the fact that Z is

independent, if we define B := N+(b,N−(z)) we have that

|B| ≥ d+(b) + d−(z)− (n− |Z| − d+(z)) ≥ (3δ0(G)− n) + |Z| ≥ (
1

3
− 24α)n.

By (4.20), there must exist an edge cd ∈ E(G[B]), but then we have a directed C5 abcdza,

a contradiction. If there is no such edge ab ∈ E(G[N+(z)]), then the set

C := {c ∈ N+(z) : there exists a path abc in G[N+(z)]}

is not empty. By the fact that there is no directed C5 in G[N+(z)], Corollary 4.3.7, and

(4.18), we have that there exists c ∈ C such that

d+(c,N+(z)) = d+(c, C) ≤ (
1

3
+ α)|N+(z)| < |Z| − 3αn.

This with (4.19) and the fact that Z is independent imply that

d+(c,N−(z)) ≥ d+(c, V (G) \N+(z)) + d−(z)− (n− |Z| − d+(z))

= d+(c)− d+(c,N+(z)) + d−(z)− (n− |Z| − d+(z))

≥ (3δ0(G)− n) + (|Z| − d+(c,N+(z)) > 0.

But by the definition ofC, there exists a path abc inG[N+(z)] for every d ∈ N+(c,N−(z)).

Thus zabcdz is a directed C5, a contradiction.

With the proof above completed, we are now ready to prove the main lemma of this

section, restated below.

Lemma 4.1.5 (Non-extremal lemma). Suppose λ > 0. For every ℓ ∈ N \ {1, 2, 3, 5} there

exists α > 0 and n0 such that every oriented graph G on n ≥ n0 vertices that does not

contain a closed ℓ-walk and such that δ+(G) ≥ (1
3
− α)n is λ-extremal. Furthermore,

when ℓ = 5 and λ > 0, there exists n0 such that every oriented graphG on n ≥ n0 vertices

that does not contain a closed ℓ-walk and such that δ+(G) ≥ n+1
3

is λ-extremal.
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Proof. Assume that G does not have a closed ℓ-walk, and let λ′, β, α and n0 be such that

0 <
1

n0

≪ α ≪ β ≪ λ′ ≪ λ.

If ℓ ̸= 5, then Lemma 4.3.4 with 0.9β playing the role of β implies that there existsG′ ⊆ G

such that n′ := |G′| ≥ (1− 0.9β)n ≥ (1− β)n and

δ0(G′) ≥ (
1

3
− α− 0.9β)|G′| ≥ (

1

3
− β)n′.

If ℓ = 5, then we have that δ+(G) ≥ (n+1)
3

, and Lemma 4.3.4 implies that there exist

G′ ⊆ G such that n′ := |G′| ≥ (1− β)n and

δ0(G′) ≥ (
(n+ 1)

3n
− β)n′ ≥ (

1

3
− β)n′.

Lemma 4.3.8, with β and λ′ playing the roles of α and λ, respectively, implies that G′ is

λ′-extremal. By Proposition 4.3.3(1) with min{λ−λ′, β} playing the role of α implies that

G is λ-extremal.

4.4 Extremal Case

In this section we prove the following lemma from Section 4.1.

Lemma 4.1.7 (Extremal lemma). For every ℓ ≥ 4 that is not divisible by 3, there exists n0

and λ > 0 such that for every n ≥ n0 the following holds. Suppose that G is a graph on

n vertices and c is an edge-coloring of G such that (G, c) is λ-extremal. If ℓ ̸= 5 and (1.1)

holds, i.e.,

δc(G) ≥


n+5
3

if ℓ = 1 (mod 3)

n+7
3

if ℓ = 2 (mod 3),

then G contains a rainbow Cℓ. Furthermore, if ℓ ≡ 1 (mod 3) and δc(G) ≥ n+4
3
, then G

contains a properly colored Cℓ. Finally, if ℓ ≡ 2 (mod 3), δc(G) ≥ n+4
3
, and there exists

an oriented graph G′ such that (G, c) is the simple edge-colored graph determined by G′,

then G contains a properly colored Cℓ.
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Proof. To make the proof easier to digest, it is broken into a number of claims. For contra-

diction, assume that (G, c) an edge-minimal counterexample.

Claim 4.4.1. At least one of the following conditions hold:

(I) δc(G) = (n+5)
n

, ℓ ≡ 1 (mod 3) and G does not have a rainbow Cℓ;

(II) δc(G) = (n+4)
n

, ℓ ≡ 1 (mod 3) and G does not have a properly colored Cℓ; or

(III) δc(G) = (n+7)
n

, ℓ ≡ 2 (mod 3) and G does not have a rainbow Cℓ;

(IV) δc(G) = (n+4)
n

, ℓ ≡ 2 (mod 3), G does not have a properly colored Cℓ, and there

exists an oriented graph G′ such that (G, c) is the simple edge-colored graph deter-

mined by G′.

Furthermore, the following condition always holds

(V) δc(G− e) < δc(G) for every e ∈ E(G).

Note that Claim 4.4.1(V) implies thatG does not contain a monochromatic path on four

vertices, a fact that we use multiple times.

Let n0, λ, β and γ be such that

0 <
1

n0

≪ λ ≪ β ≪ γ ≪ 1

ℓ
. (4.21)

Let m :=
⌊
n
3

⌋
, and note that Claim 4.4.1 implies that the following inequality holds

since δc(G) is an integer:

δc(G) ≥
⌈
(n+ 4)

3

⌉
= m+ 2. (4.22)

Let {Y1, Y2, Y3} be an λ-extremal partition of (G, c). For every i ∈ [3], call x ∈ Yi an

i-good vertex if

dc(x, Yi+1) ≥ |Yi+1| − λ
1
2n and d(x, Yi−1) ≥ |Yi−1| − λ

1
2n,
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and let X̃i be the set of i-good vertices. Let X̃ := X̃1 ∪ X̃2 ∪ X̃3 and let Q := V (G) \ X̃ .

Vertices in X̃ are called good vertices. Partition Q into {Q1, Q2, Q3} (with some parts

potentially empty), so that, for every i ∈ [3] and every x ∈ Qi,

dc(x, X̃i+1) = max{dc(x, X̃1), d
c(x, X̃2), d

c(x, X̃3)},

with ties broken arbitrarily. Finally, for each i ∈ [3], let Xi := X̃i ∪Qi, let

X ′′
i := {x ∈ Qi : d

c(x,Xi) ≥ 3},

let X ′
i := Qi \X ′′

i , let X̂i := X̃i ∪X ′
i, and let pi := m− |X̂i|.

Claim 4.4.2. We have that |Q| ≤ 0.5β2n. In particular, this implies that, for every i ∈ [3],

every x ∈ X̃i, and every z ∈ Xi, we have that

(A) (1
3
− β2)n ≤ |Xi| ≤ (1

3
+ β2)n,

(B) |X̃i| ≥ |Xi| − β2n ≥ (1
3
− 2β2)n,

(C) dc(z,Xi+1) ≥ (1
9
− β2)n,

(D) dc(x,Xi+1) ≥ |Xi+1| − β2n,

(E) d(x,Xi−1) ≥ |Xi−1| − β2n,

(F) |p1|+ |p2|+ |p3| ≤ β2n, and

(G)
∑

i∈[3](|X ′
i|+ |X ′′

i |) ≤ β2n.

Proof. This claim follows from the definition of an λ-extremal partition, the preceding

definitions, (4.21) and (4.22). The details are omitted.

For 1 ≤ k < k′, let P = v1 . . . vk be a path and let Q = v1 . . . vkvk+1 . . . vk′ be a path

that begins with the same vertices as P and is such that F := E(Q) \E(P ) is rainbow and

the colors used on F are disjoint from the colors used on the edges of P . In particular, if

P is rainbow, then Q is rainbow and if P is properly colored than Q is properly colored.

We say that Q is an extension of P in the forward direction or that Q is constructed from
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P in the forward direction if, for every k ≤ j ≤ k′ − 1, we have that vj ∈ Xi implies that

vj+1 ∈ Xi+1. Similarly, we say that Q is an extension of P in the backward direction or

thatQ is constructed from P in the backward direction if vj ∈ Xi implies that vj+1 ∈ Xi−1

for every k ≤ j ≤ k′ − 1. By Claim 4.4.2(C), when k < k′ ≤ ℓ, we can always construct a

k′-vertex pathQ from P in the forward direction. With Claim 4.4.2(B), we can also assume

that all of the vertices in V (Q) \ V (P ) are good vertices, or that the colors of edges in

E(Q) \ E(P ) avoid a set C of at most γn colors.

For every i ∈ [3] and x ∈ X̃i, let cx be a color that appears most often on the edge set

E(x,Xi−1) where ties are broken arbitrarily. We say that cx is the primary color of x. Let

{S, T} be a partition (with S potentially empty) of the edge set
∪

i∈[3] E(Xi−1, X̃i) where

T :=
∪
i∈[3]

{yx ∈ E(Xi−1, X̃i) : y ∈ Xi−1, x ∈ X̃i, and c(yx) = cx}.

The edges in T are typical edges and the edges in S are special edges. Let GT and GS

be the spanning subgraphs of G with edge sets T and S respectively. For all U ⊆ V (G)

and v ∈ V (G), let N t(v, U) := NGT
(v, U) and let N s(v, U) := NGS

(v, U) be the set of

typical neighbors and special neighbors of v in U respectively. Let dt(v, U) := |N t(v, U)|

and ds(v, U) := |N s(v, U)|. For every W ⊆ V (G), let es(W,U) :=
∑

v∈W ds(v, U)

and et(W,U) :=
∑

v∈W dt(v, U). Furthermore, let dct(v, U) := dc(v,N t(v, U)) and let

dcs(v, U) := dc(v,N s(v, U)) be the number of colors used on edges from v to its typical

neighbors in U and special neighbors in U respectively. Note that for every x ∈ X̃i, by the

definition of T , dct(x,Xi−1) = 1.

Claim 4.4.3. For every i ∈ [3] and x ∈ X̃i, we have that dt(x,Xi−1) ≥ |Xi−1| − β n
2
, i.e.,

for all but at most β n
2
vertices y ∈ Xi−1, we have that xy ∈ E(G) and c(xy) = cx.

Proof. Suppose for contradiction that dt(x,Xi−1) < |Xi−1| − β n
2
for some x ∈ X̃i. Note
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that dt(x,Xi−1) + ds(x,Xi−1) = d(x,Xi−1), so by Claim 4.4.2(B) and (E),

ds(x, X̃i−1) ≥ ds(x,Xi−1)−0.1βn = d(x,Xi−1)−dt(x,Xi−1)−0.1βn > 0.3βn. (4.23)

The argument is broken into two cases depending on the number of colors on edges

from x to X̃i−1. In both cases the outline of the argument is the same, we construct a

rainbow cycle Cℓ on vertices xv2 . . . vℓ by first constructing a rainbow path P from x in the

backward direction. If ℓ = 2 (mod 3), then v2 ∈ N s(x, X̃i−1) and P is the path xv2. If

ℓ = 1 (mod 3), then v2 ∈ X̃i−1, v3 ∈ X̃i−2, and P = xv2v3 is a rainbow path. We extend

P to a rainbow (ℓ− 1)-path Q in the forward direction so that its final vertex vℓ−1 ∈ X̃i−2.

The construction of P and Q will be such that we can find a vertex in vℓ ∈ X̃i to complete

a rainbow Cℓ.

Case 1: dc(x, X̃i−1) > 0.01βn

Claim 4.4.2(D) implies that dc(x,Xi+1) ≥ (1
3
− β2)n, so

dc(x) ≥ (
1

3
− β2)n+ 0.01βn ≥ n

3
+ 4.

By the edge-minimality of (G, c) (Claim 4.4.1(V)), every 3-vertex path that has x as an

endpoint is rainbow. If we suppose zyx is a path where c(zy) = c(yx), then in G− yx, the

color degree of y is dcG(y) and the color degree of x is still at leastm+ 3, a contradiction.

By (4.23), there exists v2 ∈ N s(x, X̃i−1). If ℓ = 2 (mod 3), then let P be the 2-vertex

path xv2. If ℓ = 1 (mod 3), then, by Claim 4.4.2(B) and (E), there exist v3 ∈ N(v2, X̃i−2)

and let P be a rainbow 3-vertex path xv2v3. We can extend P in the forward direction to

a rainbow path Q = xv2 . . . vℓ−1 such that vℓ−1 ∈ X̃i−2. Because dc(x, X̃i−1) > 0.01βn,

there exists Y ⊆ N(x,Xi−1) such that for every y ∈ Y , we have that c(xy) /∈ c(E(Q)) and

|Y | ≥ 0.01βn− (ℓ− 1) ≥ 0.005βn. (4.24)

Because vℓ−1 ∈ X̃i−2 and Y ⊆ Xi−1, Claim 4.4.2(D) and (4.24) imply that

dc(vℓ−1, Y ) ≥ |Y | − β2n ≥ 0.001βn > ℓ,
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so there exists vℓ ∈ N(vℓ−1, Y ) such that xv2 . . . vℓ−1vℓ is a rainbow path. By the edge-

minimality of (G, c) (Claim 4.4.1(V)) and the selection of Y , the path vℓ−1vℓx is rainbow

path that avoids colors in c(E(Q)). Therefore xv2 . . . vℓx is a rainbow Cℓ.

Case 2: dc(x, X̃i−1) ≤ 0.01βn

First assume that ℓ ≡ 2 (mod 3). By (4.23), there exists v2 ∈ N s(x, X̃i−1). Let P be

the 2-vertex path xv2. Now assume that ℓ ≡ 1 (mod 3). By (4.23) and the case, there exist

at least two distinct vertices y1, y2 ∈ N s(x, X̃i−1) such that both of the edges xy1 and xy2

are assigned the same color ϕ by c. Note that ϕ ̸= cx because xy1 and xy2 are special edges.

Since y1, y2 ∈ X̃i−1, Claim 4.4.2(B) and (E) implies that there exist two distinct vertices z1

and z2 inN(y1, X̃i−2)∩N(y2, X̃i−2). For every j, k ∈ [2], by the edge-minimality of (G, c)

(Claim 4.4.1(V)) the path zjykxy3−k is not monochromatic, so c(zjyk) ̸= ϕ. Furthermore,

again because there does not exists a monochromatic path on 4 vertices, there exist j, k ∈ [2]

such that that c(zjyk) ̸= cx. If we let v2 := yk and v3 := zj , we then have that P := xv2v3

is a monochromatic path that avoids the color cx.

Let

Y := {y ∈ N(x, X̃i−1) : c(xy) /∈ c(E(P ))}.

Let C := c(E(x, Y )) be the set of colors used on the edges from x to Y . Because cx /∈

c(E(P )), we have that cx ∈ C. Since |E(P )| ≤ 2, with Claim 4.4.2(B) and (E), we have

that

|Y | ≥ d(x, X̃i−1)

3
> 0.1n. (4.25)

By the case,

|C| = dc(x, Y ) ≤ dc(x, X̃i−1) ≤ 0.01βn, (4.26)

so, in the forward direction, we can extend P to a rainbow path Q = xv2 . . . vℓ−1 such that

vℓ−1 ∈ X̃i−2 that avoids the colors in C. Because, vℓ−1 is (i − 2)-good and Y ⊆ X̃i−1,

Claim 4.4.2(D), (4.25) and (4.26) imply that dc(vℓ−1, Y ) ≥ |Y |−β2n ≥ |C|+ ℓ. Therefore
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there exists vℓ ∈ N(vℓ−1, Y ) such that xv2v3 . . . vℓ is a rainbow path that avoids the colors in

C. By the definitions of Y andC, we have that xvℓ ∈ E(G) and c(xvℓ) ∈ C, so xv2v3 . . . vℓ

is a rainbow Cℓ.

Claim 4.4.4. For every i ∈ [3] and distinct vertices x, x′ ∈ X̃i, we have that cx ̸= cx′ .

In particular for every y ∈ Xi−1, we have that dt(y, X̃i) = dct(y, X̃i) as the typical edges

from y to X̃i are each given a distinct color.

Proof. By Claim 4.4.3, there exist two distinct vertices y, y′ ∈ N t(x,Xi−1)∩N t(x′, Xi−1).

The edge-minimality of (G, c) (Claim 4.4.1(V)) implies that cx ̸= cx′ .

Call a rainbow (respectively, properly colored)Ck on vertices v1 . . . vk a strong (respec-

tively, properly colored) Ck if for some i ∈ [3], v1 ∈ X̃i and vk ∈ N t(v1, Xi−1).

Claim 4.4.5. Suppose that 1 ≤ k < k′ ≤ ℓ, x ∈ X̃i, and y ∈ Xj . If P is a rainbow

x, y-path on k vertices that avoids the color cx and k′−k ≡ (i−1)−j (mod 3), then there

exists a strong rainbow Ck′ . Similarly, if P is a properly colored x, y-path on k vertices

such that cx is not used on the edge in P that is incident to x and k′ − k ≡ (i − 1) − j

(mod 3), then there exists a strong properly colored Ck′ .

In particular, if there exists a strong rainbow (respectively, properly colored) Ck, then

there exists a strong (respectively, properly colored) rainbowCk′ whenever k′−k is divisible

by 3.

Proof. If P is a properly colored x, y-path such that cx is not used on the edge incident to

x, then we can extend P in the forward direction to a properly colored x, z-pathQ on k′−1

vertices without using the color cx on the new edges. If P is a rainbow x, y-path that avoids

the color cx, then we can extend P in the forward direction to a rainbow x, z-path Q on

k′ − 1 vertices that avoids the color cx. Let x ∈ Xi, and as

j + (k′ − 1)− k ≡ j − 1 + (k′ − k) ≡ i− 2 (mod 3),
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we get that z ∈ Xi−2. By Claims 4.4.2(C) and 4.4.3,

|dc(z,N t(x,Xi−1))| ≥ (
1

9
− β2)n− βn

2
> ℓ,

so there exists w ∈ N(z,Xi−1) ∩ N t(x,Xi−1) so that c(zw) /∈ c(E(Q)) ∪ {cx}. Then

xQzwx is the desired strong properly colored or rainbow Ck′ .

To see the final implications, suppose that v1 . . . vkv1 is a strong rainbow or properly

colored Ck with v1 ∈ X̃i and vk ∈ N t(v1, Xi−1). Then apply the first part of the lemma

with k, k′, i, i − 1, v1, vk and the path v1 . . . vk playing the roles of k, k′, i, j, x, y and P ,

respectively.

Claim 4.4.6. We have that ℓ ≡ 1 (mod 3).

Proof. Assume for contradiction that ℓ ≡ 2 (mod 3), so either conditions Claim 4.4.1(III)

or (IV) holds. We can assume that G has no rainbow Cℓ. Let Φ := δc(G)− (m+ 2). Then

δc(G) = m+ 2 + Φ, (4.27)

and Φ ≥ 0 when δc(G) ≥ (n+4)
3

, and Φ ≥ 1 when δc(G) ≥ (n+7)
3

. We can assume that X1,

X2 and X3 are labeled so that |X3| ≤ m, and, subject to this, |X2| + |X3| is as small as

possible. Therefore

|X3| ≤ m and |X2|+ |X3| ≤ 2m+ 1. (4.28)

as otherwise we get that |X1| ≤ n−|X2|+ |X3| ≤ m and the setX1 would have been fixed

as X3 instead as |X3|+ |X1| < |X2|+ |X3|.

Let i ∈ [3], then the following claims hold.

(a) There does not exists a 2-vertex rainbow x, y-path that avoids cx with x ∈ X̃i and

y ∈ Xi−1, i.e., for every x ∈ X̃i we have that ds(x,Xi−1) = 0.

(b) If xzy is a 3-vertex rainbow path with x ∈ X̃i and y ∈ Xi, then cx ∈ {c(xz), c(zy)}.

Furthermore, if G does not contain a properly colored Cℓ, then c(xz) = cx.
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(c) If ℓ ̸= 5 (so ℓ ≥ 8), then there does not exist a pair of disjoint edges xu and zy in

G[Xi] such that x, z ∈ X̃i and cx, cz, c(xu), and c(zy) are pairwise disjoint.

The first two claims follow directly from Claim 4.4.5. The third claim also follows from

Claim 4.4.5. To see this, note that if there exists such a pair of disjoint edges, then using

Claim 4.4.2(C) and Claim 4.4.3, we can find a rainbow x, y-path xuv3v4zy on 6-vertices

that avoids cx by picking v3 ∈ N(u,Xi+1) and v4 ∈ N(v3, Xi−1) ∩N t(z,Xi−1).

For every i ∈ [3] and x ∈ X̃i, using (a) and (4.27), we can compute that the number of

colors other than cx that are used on edges incident to x in E(G[Xi]) is at least

δc(G)− dc(x,Xi−1)− dc(x,Xi+1) ≥ (m+ 2 + Φ)− 1− |Xi+1| (4.29)

We will now deduce a contradiction.

Case 1: Condition Claim 4.4.1(III) holds. Then G has no rainbow Cℓ and Φ = 1. By

(4.28) and (4.29), we have that

∀x ∈ X̃2, ∃x′, x′′ ∈ N(x,X2) such that c(xx′), c(xx′′) and cx are pairwise distinct.

(4.30)

Now fix x ∈ X̃2. By (4.30), there exist u1, u2 ∈ N(x,X2) such that the colors c(xu1),

c(xu2) and cx are pairwise distinct. By Claim 4.4.2(B) and Claim 4.4.4, there exists z ∈

X̃2 \ {x, u1, u2} such that cz /∈ {c(xu1), c(xu2), cx}. By (4.30) again, there exist y1, y2 ∈

N(z,X2) such that the colors c(zy1), c(zy2) and cz are pairwise distinct. If {x, u1, u2} and

{z, y1, y2} are disjoint sets, then we can pick i ∈ [2] such that c(zyi) ̸= cx and then pick

j ∈ [2] so that c(xuj) ̸= c(zyi). The pair of disjoint edges zyi and xuj contradicts (c). If

there exists i ∈ [2] such that yi = x, then we can pick j ∈ [2] so that c(xuj) ̸= c(zx).

Recall that z was selected so that cz /∈ {c(xu1), c(xu2), cx}, so we have that zxuj is a

rainbow path that avoids cz, which contradicts (b) (with z, x and uj playing the roles of x,

z and y, respectively). Because we selected z so that z /∈ {x, u1, u2}, the final case is when
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there exists i ∈ [2] and j ∈ [2] such that ui = yj . Without loss of generality assume that

i = j = 1. If c(xu1) ̸= c(zy1), then xu1z = xy1z is a rainbow path on 3-vertices that does

not use cz, which contradictions (b). If c(xu1) = c(zy1), then the disjoint pair of edges xu2

and zy1 contradicts (c), because, by the selection of z, c(xu2) ̸= cz, and we also have that

c(xu2) ̸= c(xu1) = c(zy1) and c(zy1) = c(xu1) ̸= cx.

Case 2: Condition Claim 4.4.1(IV) holds. In this case, G has no properly colored Cℓ and

Φ = 0. Let y ∈ X̃1. Suppose that there exists y′ ∈ N(y,X1)) such that c(yy′) ̸= cy.

Then, by Claim 4.4.2(B) and (C), there exists x ∈ N(y′, X̃2) such that c(y′x) ̸= c(yy′). By

(a), we can assume that c(y′x) = cx. Since |X3| ≤ m by (4.28), (4.29) implies that there

exists x′ ∈ N(x,X2) such that c(xx′) ̸= cx. Note that yy′xx′ is a properly colored path and

c(yy′) ̸= cy, so Claim 4.4.5 implies that there exists a properly colored Cℓ, a contradiction.

Therefore, with (a), we have that the only color used on the edges in E(y,X3 ∪X1) is cy.

Define

A := {x′ ∈ N(y,X2) : c(yx
′) ̸= cy}, (4.31)

then |A| ≥ dc(y)− 1 ≥ m+ 1. Let x ∈ X̃2, and define

B := {x′ ∈ N(x,X2) : c(xx
′) ̸= cx}. (4.32)

By (4.29), |B| ≥ m+ 1− |X3|. Then by (4.28),

|A ∩B| ≥ (m+ 1) + (m+ 1− |X3|)− |X2| = 2m+ 2− (|X2|+ |X3|) > 0,

so there exists x′ ∈ A ∩ B. If there exists y′ ∈ N(x′, X1) such that c(y′x′) ̸= c(yx′), then

yx′y′ is rainbow and c(yx′) ̸= cy, which violates (b). Therefore every edge from x′ toX1 is

colored c(yx′), and, using (4.28), the number of neighbors of x′ in X2 that are not colored

c(yx′) is at least

dc(x′)− 1− |X3| ≥ m+ 1− |X3| ≥ 1. (4.33)
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Since Claim 4.4.1(IV) holds, we can assume that there exists G′ such that (G, c) is the

simple edge-colored graph associated with G′. (Because we have now introduced the di-

rected graph G′, we will use set notation for edges in G for the remainder of this proof

to avoid any possible confusion). Therefore for every edge {u, v} in E(G), we have that

c({u, v}) ∈ {u, v}. Therefore if {u, v} and {u′, v} are two distinct edges incident to a ver-

tex v ∈ V (G) and c({u, v}) = c({u′, v}), then c({u, v}) = c({u′, v}) = v. In particular,

cx = x and cy = y. Because c({x, x′}) ̸= cx = x and c({y, x′}) ̸= cy = y, we have that

c({y, x′}) = c({x, x′}) = x′. This, with (4.33), implies that there exists x′′ ∈ NG(x
′, X2)

such that c({x′, x′′}) = x′′. But then the path xx′x′′ violates (b). This contradiction com-

pletes the proof of this claim.

Claim 4.4.7. The following hold:

(i) For every x ∈ X̃i and y ∈ N(x,Xi ∪X ′′
i+1), we have that c(xy) = cx.

(ii) For every x ∈ X̃i, we have that dcs(x,Xi−1) ≥ dc(x)− 1− |X̂i+1| ≥ pi+1 + 1.

(iii) If y ∈ X ′′
i−1 and ds(y, X̃i) ≥ 1, then dc(y,Xi) ≥ (1

6
− β2)n.

(iv) If y ∈ X ′
i−1 and ds(y, X̃i) ≥ 1, then dc(y,Xi) ≥ dc(y)− 3.

(v) If y ∈ X̃i−1 and ds(y, X̃i) ≥ 1, then dc(y, X̂i) ≥ dc(y)− 1.

Proof. Because G has no rainbow Cℓ, Claims 4.4.5 and 4.4.6 imply that

∀x ∈ X̃i and y ∈ N(x) such that c(xy) ̸= cx, c(E(y,Xi+1)) ⊆ {cx, c(xy)}. (4.34)

Note that for every x ∈ X̃i and y ∈ N(x,Xi ∪ X ′′
i+1), by the definition of X ′′

i+1 and

Claim 4.4.2(C), we have that dc(y,Xi+1) ≥ 3. Thus c(E(y,Xi+1)) ̸⊆ {cx, c(xy)}, and by

(4.34), c(xy) = cx. Thus (i) holds. Furthermore,

dcs(x,Xi−1) = dc(x)− 1− dc(x, X̂i+1) ≥ dc(x)− 1− |X̂i+1| ≥ (m− |X̂i+1|) + 1,

so (ii) holds.
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For the remaining implications assume y ∈ Xi−1 and that there exists x ∈ N s(y, X̃i).

By (4.34), the only colors that appear on edges inE(y,Xi+1) are c(yx) and cx. This implies

that

dc(y,Xi ∪Xi−1) ≥ dc(y)− 1. (4.35)

Now suppose that y ∈ X ′′
i−1. By construction ofXi, dc(y, X̃i) ≥ dc(y, X̃i−1). Therefore

Claim 4.4.2(B) and (4.35), imply that

dc(y, X̃i) ≥
dc(y, X̃i ∪ X̃i+1)

2
≥ (dc(y,Xi ∪Xi+1)− 2β2n)

2
≥ (dc(y)− 1− 2β2n)

2
.

With (4.22), we have (iii). To see (iv) recall that if y ∈ X ′
i−1, then dc(y,Xi−1) ≤ 2. So with

(4.35), we have that dc(y,Xi) ≥ dc(y)− 3.

To prove (v), suppose that y ∈ X̃i−1. By (4.34), for every w ∈ N(y,Xi+1) we have

that c(yw) ∈ {cx, c(xy)}. Since there exists w ∈ N t(y,Xi+1), we have that cy = c(yw) ∈

{cx, c(xy)}. Furthermore, for every z ∈ N(y,Xi−1∪X ′′
i ), by (i) with i−1, y and z playing

the roles of i, x and y, respectively, we have that c(yz) = cy. Therefore

c(E(y,Xi−1 ∪X ′′
i ∪Xi+1)) ⊆ {cy, cx, c(xy)} = {cx, c(xy)}.

Since c(xy) ∈ c(E(y, X̂i)) and V (G) \ X̂i = Xi−1 ∪X ′′
i ∪Xi+1, this implies that

c(E(y)) \ c(E(y, X̂i)) ⊆ {cx},

and we have that dc(y, X̂i) ≥ dc(y)− 1.

Claim 4.4.8. For every y ∈ Xi−1, if ds(y, X̃i) ≥ 4, there exists x ∈ N s(y, X̃i) such that

dcs(y, X̃i − x) = 1. This implies that for every y ∈ Xi−1, we have that dcs(y, X̃i) ≤ 3, so

dt(y, X̃i) = dc(y, X̃i) − dcs(y, X̃i) ≥ dc(y, X̃i) − 3. This means that for every y ∈ Xi−1,

we have that dt(y, X̃i) ≥ (1
9
− β)n, and if ds(y, X̃i) ≥ 1, then dt(y, X̃i) ≥ (1

6
− β)n.

Proof. Let x, x′ ∈ N s(y, X̃i) be distinct vertices. We say that (x, x′) is a y-pair if the colors

c(yx), c(yx′), cx and cx′ are distinct. There are no y-pairs, because if (x, x′) is a y-pair, then
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by Claim 4.4.3, there exists z ∈ N t(x,Xi)∩N t(x′, Xi). For every such z, the cycle xyx′z

is a strong rainbow C4, a contradiction by Claim 4.4.5.

For contradiction, assume that ds(y, X̃i) ≥ 4 and that for every x ∈ N s(y, X̃i), we

have that dcs(y, X̃i − x) ≥ 2. If every special edge from y to X̃i is given a unique color,

let {x1, x2, x3, x4} be an arbitrarily selected set of 4 vertices inN s(y, X̃i). Otherwise, there

exists x2, x3 ∈ N s(y, X̃i) such that c(yx2) = c(yx3). Since dcs(y, X̃i) ≥ 2, there exists

x1 ∈ N s(y, X̃i) such that c(yx1) ̸= c(yx2) = c(yx3). Because dcs(y, X̃i − x1) ≥ 2, there

exists x4 ∈ N s(y, X̃i − x1) such that c(yx4) ̸= c(yx2) = c(yx3).

Define a := c(yx1). In all cases, we have that c(yx1) = a, c(yx2) ̸= a, c(yx3) ̸= a, and

c(yx4) /∈ {c(yx2), c(yx3)}. In what follows, we use Claim 4.4.4 implicitly. Since cx2 ̸= cx3

and neither (x1, x2) nor (x1, x3) is a y-pair, one of cx2 or cx3 must be a. We can assume that

cx2 = a. Let b := c(yx3) and note that cx1 = b, since cx3 ̸= cx2 = a, c(yx1) = a ̸= c(yx3)

and (x1, x3) is not a y-pair. Furthermore, c(yx4) = a, because (x1, x4) is not a y-pair,

cx1 = b, c(yx4) ̸= c(yx3) = b, and cx4 ̸= cx2 = a. But then cx4 ̸= cx1 = b = c(yx3) and

cx3 ̸= cx2 = a = c(yx4), so (x3, x4) is a y-pair, a contradiction.

For the remaining implications, the first statement implies that if ds(y, X̃i) ≥ 4, then

dcs(y, X̃i) ≤ 2, and, clearly, if ds(y, X̃i) ≤ 3, we have that dcs(y, X̃i) ≤ 3, so

dt(y, X̃i) = dct(y, X̃i) = dc(y, X̃i)− dcs(y, X̃i) ≥ dc(y, X̃i)− 3.

The remaining implications follow from Claims 4.4.2(C) and 4.4.7(iii),(iv) and (v).

Call a C4 xyx
′y′ a special C4 if there exists i such that x, x′ ∈ X̃i, y, y′ ∈ Xi−1, the

edges xy and x′y′ are special edges, and the edges xy′ and x′y are typical edges.

Claim 4.4.9. Exactly three colors are used on the edges of every special C4 and the same

color is used on the two special edges. In particular, every special C4 is a strong properly

colored C4.
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Proof. Suppose that xyx′y′ is a special C4 with x, x′ ∈ X̃i and y, y′ ∈ Xi−1 for some

i ∈ [3]. Assume that xy and x′y′ are the special edges.

We will first show that the color c(xy′) is used exactly once on the cycle. By the defini-

tion of typical and special edges, we have that c(xy′) = cx ̸= c(xy), and, with Claim 4.4.4,

we have c(xy′) = cx ̸= cx′ = c(x′y). If c(xy′) = c(x′y′), then the color degree of both x

and y′ is the same inG−xy′ as it is inG, and this contradicts the edge-minimality of (G, c)

(Claim 4.4.1(V)). Indeed, this is clearly true for y′ and is true for x because, by Claim 4.4.3,

x has typical neighbors in Xi−1 other than y′.

By symmetry, c(x′y) is used exactly once on the cycle as well. As xyx′y′ is not a strong

C4 by Claim 4.4.6, c(xy) = c(x′y′).

Claim 4.4.10. For every i ∈ [3] and every pair of vertices y, y′ ∈ Xi−1 the following holds.

For any color a, if Z := {x ∈ N s(y,Xi) : c(xy) = a} and Z ′ := {x′ ∈ N s(y′, Xi) :

c(x′y′) ̸= a}, then

|Z ∪ Z ′| < (
1

6
+ γ)n,

Proof. Assume for contradiction that |Z ∪ Z ′| ≥ (1
6
+ γ)n. We can assume that one of Z

or Z ′, say Z, is non-empty. This and Claim 4.4.8 imply that dt(y, X̃i) ≥ (1
6
− β)n, so, by

Claim 4.4.2(A),

|Z| ≤ |X̃i| − dt(y, X̃i) ≤ (
1

3
+ β2)n− (

1

6
− β)n < (1/6 + γ)n ≤ |Z ∪ Z ′|,

so |Z ′| > 0. Therefore by Claim 4.4.8, dt(y′, X̃i) ≥ (1
6
−β)n as well. With Claim 4.4.2(A),

there exists x′ ∈ N t(y, X̃i)∩ (Z ∪Z ′) and x ∈ N t(y′, X̃i)∩ (Z ∪Z ′). Therefore xyx′y′ is

a special C4 with special edges xy and x′y′ such that and c(xy) = a ̸= c(x′y′). Claim 4.4.9

implies that xyx′y′ is a strong rainbow C4, a contradiction.

We now label X1, X2, and X3 in a careful way to make the rest of the proof proceed

more smoothly.
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Claim 4.4.11. We can assume that p3 ≥ 0, |X ′′
1 | ≤ 2p3 and |X2| ≤ m+ 2p3 + 2.

Proof. We need to prove that there exists i ∈ [3] such that pi ≥ 0, |X ′′
i+1| ≤ 2pi and

|Xi−1| ≤ m+ 2pi + 2. First note that for i ∈ [3], because

|Xi−1| −m = |X ′′
i−1|+ |X̂i−1| −m = |X ′′

i−1| − pi−1,

the inequality |Xi−1| ≤ m+ 2pi + 2, is equivalent to

|X ′′
i−1| − pi−1 ≤ 2pi + 2. (4.36)

Also note that

∑
j∈[3]

|X ′′
j | = n−

∑
j∈[3]

|X̂j| = p1 + p2 + p3 + (n− 3m) ≤ p1 + p2 + p3 + 2. (4.37)

For i ∈ [3],

pi = max
j∈[3]

{pj} ⇒ |X ′′
i+1| ≥ 2pi + 1, (4.38)

because then pi ≥ 0, and by (4.37), we have that

|X ′′
i−1| − pi−1 ≤ pi+1 + pi + 2 ≤ 2pi + 2,

so (4.36) holds. If |X ′′
i+1| ≤ 2pi, then we are done, so assume that |X ′′

i+1| > 2pi + 1.

Assume that p3 = maxi∈[3]{pi}, so we have that p3 ≥ 0 and (4.38) gives us that

|X ′′
1 | ≥ 2p3 + 1. (4.39)

This with (4.37) implies that

0 ≤ |X ′′
3 | ≤ p1 + p2 + p3 + 2− |X ′′

1 | ≤ p1 + (p2 − p3) + 1. (4.40)

We have that

p1 ≥ 0, (4.41)
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because if p1 < 0, then, because p2 ≤ p3, (4.40) implies that p1 = −1, p2 = p3 and

|X ′′
3 | = 0. But this contradicts (4.38) (with 2 playing the role of i). Since p3 ≥ max{0, p2},

(4.40) and (4.41) give us that |X ′′
3 | − p3 ≤ |X ′′

3 | ≤ p1 + 1 < 2p1 + 2, so (4.36) is satisfied

with i = 1. This with (4.41) implies that

|X ′′
2 | ≥ 2p1 + 1. (4.42)

By (4.37), (4.39), and (4.42), we have that

2p1 + 2p3 + 2 + |X ′′
3 | ≤

∑
i∈[3]

|X ′′
i | ≤ p1 + p2 + p3 + 2,

so 0 ≤ |X ′′
3 | ≤ (p2 − p3) − p1. With (4.41), we have that p2 = p3 and |X ′′

3 | = 0. This

contradicts (4.38) (again with 2 playing the role of i).

Note that for every i ∈ [3] such that pi ≥ 0, |X ′′
i+1| ≤ 2pi and |Xi−1| ≤ m + 2pi + 2.

All of the following claims are valid with the indices i− 1, i and i+ 1 playing the roles of

2, 3, and 1, respectively.

One of our main goals is to show that that there must exist a special edge between X̃1

and X̃2, which we prove in Claim 4.4.15 To do this, we use Claim 4.4.12 to bound the

number of special edges from X̃2 to X ′
1 and then Claim 4.4.14 provides a bound on the

number of special edges from X̃2 to X ′′
1 .

Claim 4.4.12. If y ∈ X̂1, then ds(y, X̃2) ≤ 2p3 + 5.

Proof. Assume for contradiction that there exists y ∈ X̂1 such that

ds(y, X̃2) ≥ 2p3 + 6. (4.43)

By Claim 4.4.11, p3 ≥ 0, so we can assume ds(y, X̃2) ≥ 6 which with Claim 4.4.8 implies

that

dcs(y, X̃2) ≤ 2. (4.44)
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With Claim 4.4.7(iv) and (v) we have that

dc(y, X̃2) ≥ dc(y)− 3. (4.45)

So (4.43), (4.44), and (4.45) imply that

|X2| ≥ d(y,X2) ≥ dc(y,X2)−dcs(y, X̃2)+ds(y, X̃2) ≥ dc(y)−5+(2p3+6) ≥ m+2p3+3,

which contradicts Claim 4.4.11.

Claim 4.4.13. For every y ∈ X ′′
1 , we have that ds(y, X̃2) ≤ n

10
.

Proof. Suppose for a contradiction that there exists y ∈ X ′′
1 such that ds(y, X̃2) >

n
10
. By

Claim 4.4.8, there exists a color a such that if Z := {x ∈ N s(y, X̃2) : c(xy) = a}, then

|Z| ≥ n

10
− 1 ≥ 0.09n. (4.46)

Let U := N t(y, X̃2), and note that, by Claim 4.4.8,

|U | ≥ (
1

6
− β)n ≥ 0.16n. (4.47)

Let u ∈ U and suppose that there exist w ∈ N s(u, X̂1) such that c(uw) ̸= a. Then, by

Claims 4.4.2(A), 4.4.7((iv),(v)) and 4.4.8, and (4.46),

dt(w,Z) ≥ |Z|+ dt(w, X̃2)− |X̃2| > 0,

so there exists x ∈ N t(w,Z), which implies uwxy is a special C4. This contradicts

Claim 4.4.9, as the special edges, uw and xy, are assigned distinct colors. Therefore using

Claims 4.4.7(ii) and 4.4.11, we have that for every u ∈ U , the number of colors other than

a that are used on special edges from u to vertices in X ′′
1 is at least

dcs(u,X1)− 1 ≥ p3 ≥
|X ′′

1 |
2

.
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By averaging, there exists y′ ∈ X ′′
1 − y such that if we let

Z ′ := {x′ ∈ N s(y′, U) : c(x′y′) ̸= a},

then |Z ′| ≥ |U |
2
. With (4.46) and (4.47), we have that

|Z ∪ Z ′| ≥ |Z|+ |U |
2

≥ 0.17n ≥ (
1

6
+ γ)n,

which contradicts Claim 4.4.10.

Claim 4.4.14. For any p ≥ p3 such that p ≥ 1 the following holds. If U ⊆ X1 such that

|U | ≤ 0.01n, then es(U, X̃2) ≤ 0.3pn.

Proof. Suppose

es(U, X̃2) > 0.3pn.

By Claim 4.4.8, for every vertex in u ∈ U \X ′′
1 , we have that ds(u, X̃2) ≤ 2p3+5 ≤ 2p+5.

Since p ≥ 1 and |U | ≤ 0.01n we have that

es(U ∩X ′′
1 , X̃2) = es(U, X̃2)− es(U \X ′′

1 , X̃2) ≥ 0.3pn− (2p+ 5)0.01n > 0.2pn.

By Claim 4.4.11, we have that |U ∩ X ′′
1 | ≤ |X ′′

1 | ≤ 2p3 ≤ 2p. By averaging, there exists

y ∈ U ∩X ′′
1 such that ds(y, X̃2) >

n
10
, a contradiction to Claim 4.4.13.

Claim 4.4.15. We have p2 ≤ −1, p3 = 0, and n is not congruent to 2 modulo 3.

Proof. LetU := X ′′
1∪X ′

1. ByClaim 4.4.2(G)we have that |U | ≤ 0.01n. ByClaim 4.4.7(ii),

every x ∈ X̃2 sends at least p3 + 1 special edges to X1. By Claim 4.4.2(B), |X̃2| ≥ 0.3n,

Claim 4.4.14 implies that there exists a special edges yxwith y ∈ X1\U = X̃1 and x ∈ X̃2.

Note that Claim 4.4.7(v) implies that

|X̂2| ≥ dc(y, X̂2)− 1 ≥ m+ 1, (4.48)

so p2 ≤ −1. Let a := c(yx).
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Now redefine U := X1 \ N t(x,X1). By Claim 4.4.3, we have that |U | ≤ 0.01n. Let

W := N t(y, X̃2). Note that for every special edge y′x′ with y′ ∈ X1 \ U = N t(x,X1) and

x′ ∈ W , we have the special C4 xyx
′y′. By Claim 4.4.7(v) and Claim 4.4.8, we have that

|W | ≥ dc(y)− 4 ≥ 0.3n. Again, by 4.4.7(ii), for every w ∈ W we have that dcs(w,X1) ≥

p3 + 1. Therefore Claim 4.4.14 implies that there exists a special C4, and Claims 4.4.5 and

4.4.9 imply that G has a properly colored Cℓ. Therefore, with Claim 4.4.6, we can assume

condition Claim 4.4.1(I) holds, so δc(G) = (n+5)
3

.

If n ≡ 2 (mod 3), then δc(G) = m + 3, and Claim 4.4.7(ii) implies that for every

w ∈ W we have dcs(w,X1) ≥ p3 + 2. Therefore, whenever p3 ≥ 1 or n ≡ 2 (mod 3),

there exists p ≥ p3 such that p ≥ 1 and every vertex in W send at least p special edges

to X1 that are not colored a. Claim 4.4.14 implies that there exists an edge y′x′ such that

y′ ∈ X1 \ U = N t(y, X̃2), x′ ∈ W = N t(y, X̃2) and c(y′x′) ̸= a, which contradicts

Claim 4.4.9. Therefore p3 = 0 and n is not congruent to 2 modulo 3.

By Claim 4.4.15, p2 ≤ −1, p3 = 0 and n is not congruent to 2 modulo 3. Therefore

n ≤ 3m+ 1, |X̂2| ≥ m+ 1 and |X̂3| = m. Thus |X̂1| ≤ m, so p1 ≥ 0, and that

|X ′′
2 |+ |X ′′

3 | ≤ |X ′′
1 |+ |X ′′

2 |+ |X ′′
3 | = n−

∑
j∈[3]

|X̂j| ≤ p1 + p2 + p3 + 1 ≤ p1.

Therefore p1 ≥ 0, |X ′′
2 | ≤ 2p1, and |X3| = m−p3+ |X ′′

3 | ≤ m+2p1+2, so Claim 4.4.15 is

valid with the indices 2, 3 and 1 playing the roles of the indices 1, 2, and 3, respectively (see

the text after Claim 4.4.11). This implies that p3 ≤ −1, which contradicts Claim 4.4.15.

This contradiction proves Lemma 4.1.7.
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