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ABSTRACT

Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample

error. This thesis studies a modified version of BART called Accelerated Bayesian

Additive Regression Trees (XBART). The study consists of simulation and real data

experiments comparing XBART to other leading algorithms, including BART. The

results show that XBART maintains BART’s predictive power while reducing its

computation time. The thesis also describes the development of a Python package

implementing XBART.
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Chapter 1

BACKGROUND OF STUDY

1.1 Introduction to Function Estimation

In many applications one would like to predict the value of an unobserved quantity

based on some observed measurements. For example, one might like to predict

the credit–worthiness of an individual based on that individual’s financial records.

Mathematically, a prediction problem of this type can be regarded as a function

estimation problem, where the function of interest is the expected value of the

response variable — probability of defaulting on a loan. We will denote the response

variable of interest (loan default) by yi where i denotes an individual, and we will

let xi denote a vector of attributes, or features, upon which we want to base our

prediction. The relationship we want to learn can be defined as:

yi = f(xi) + εi

E(εi) = 0 and εi is not εi(xi)

.

Due to the generality of the functional form, there are many ways to estimate f .

The success of a method varies greatly by the form of the underlying function f and

the distribution of xi’s and εi.

This thesis assumes familiarity with supervised learning, as covered in Chapter

2.6 of Elements of Statistical Learning (Hastie, Tibshirani, and Friedman 2009), and

will use vocabulary from that area without explicit definition. Examples of such
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terms include: training data, test data, overfitting, underfitting, in–sample error,

generalization error, and cross validation.

In supervised learning, the estimator is a mapping from our training data {xi, yi}

into a class of functions F . Each f ∈ F is a mappings from X → R. The estimate is

f̂ ∈ F – which given data x yields prediction ŷi = f̂(xi). To assess the performance of

our estimate, we use loss function L(yi, ŷi). In particular, we check generalization error

which uses unseen data {x̃i, ỹi} to evaluate L(ỹi, f̂(x̃i)). In the case where we know

the true underlying function f (i.e simulation study), we can evaluate L(f(x̃i), f̂(x̃i)).

To reflect the fact that we do not know the true underlying form of f (linear,

polynomial, single index, etc.), modern statistics uses non–parametric methods to

estimate f flexibly. Multivariate Adaptive Regression Splines (Friedman 1991) and

Support Vector Machines (Cortes and Vapnik 1995) achieve flexibility by basis expan-

sion. Neural networks achieve flexibility by introducing non–linearities. This thesis

will focus on tree based methods. Tree based methods achieve flexibility by making

recursive partitions on X using its covariates. Predictions are made using summary

statistics from the final partitions.

The methods described above are expressive enough to represent complicated

functions. This is both a blessing and curse. The blessing is that these methods can

learn non–linear functions. The curse is that they can overfit to noise in the data and

produce non–generalizable results. Therefore, when assessing the performance of an

estimator it is helpful to frame the problem in terms of the Bias Variance tradeoff.

2



1.2 Bias Variance Tradeoff

In regression problems, our estimate f̂ is a mapping from X → R. Since f̂ ’s

co–domain is R, we can measure its success by applying the Mean Squared Error

(MSE) loss function to its prediction f̂(x):

MSEY |x = E
[
(Y − f̂(x)

)2
]

.

This term conveniently decomposes into:

E
[
Y − f̂(x)

]2
=
[
f(x)− E(f̂(x))

]2
+ Var(f̂(x)) + Var(Y |x)

= Bias(f̂(x))2 + Var(f̂(x)) + σ2

.

This decomposition represents the dichotomy of accuracy and stability in prediction.

One can get a very accurate but unstable predictions — low bias high variance. Such a

model is said to overfit the data. Conversely, one can get a very stable but inaccurate

prediction — low variance high bias. Such a model is said to underfit the data.

The ideal compromise between bias and variance, by construction, is the (unknown)

combination that minimize Mean Squared Error. The goal of Cross Validation is to

find the right combination of these two using data (Hastie, Tibshirani, and Friedman

2009).
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1.3 Regression Trees

The most well–known of decision tree models is Classification and Regression Trees

— CART (Breiman et al. 1984). Breiman generalized the decision tree model to handle

both classification and regression problems. The loss function used to find the optimal

tree in the regression case, is

SSE =
N∑
i=1

(yi − f̂(xi))
2

. Thus, given data partitions Pi, P2, ..., PM , the estimate is:

f̂(x) =
M∑
m=1

µmI(x ∈ Pm)

. For each m we want:

arg min
µ̂m

{
N∑
i=1

(yi −
M∑
m=1

µ̂mI(x ∈ Pm))2

}
=

1

Nm

∑
xi∈Pm

yi

Nm = {# of observations in Pm}

.

To find partitions P1, P2, ..., Pm, CART recursively and greedly finds binary parti-

tion of the data on variable j and cutpoint c such that: Pleft(j, c) = X|Xj ≤ c and

Pright(j, c) = X|Xj > c which minimize:

arg min
j,c

{ ∑
xi∈Pleft(j,c)

(yi − µleft)2 +
∑

xi∈Pright(j,c)

(yi − µright)2
}

.

Then, given the fully grown tree, CART prunes the tree using cost-complexity

pruning. That is, it finds the subtree Tα of the full tree Tfull that minimizes:

Cα(T ) =

|T |∑
m=1

=
∑
Xi∈Pm

(yi − µm)2 + α|T |

4



|T | = {# of Terminal Nodes}

.

Individual decision trees are high in variance — small perturbations in data can

lead to big changes to the final model and prediction. Furthermore, due to their

discrete fitting process, tree predictions are not smooth functions. In particular, they

there are only 2d possible values for any given tree where d = max depth. Thanks to

the pruning above, d is kept to be fairly low.

1.4 Random Forests

In order to reduce the variance of individual trees, Brieman proposed Random

Forest (Breiman 2001). Random Forest achieves this by using Bootstrap Aggregation

(Bagging) and, at each node, only allowing a subset of features to be considered at

each split.

Algorithm 1 Random Forest (Hastie, Tibshirani, and Friedman 2009)
1: procedure Random Forest
2: for b = 1 to B do
3: Draw boostrap sample χ∗ of size n
4: Fit Decision Tree on χ∗

5: Before each split, consider random mtry <= p variables
6: f̂rf = 1

B

∑B
b=1 Tb.

If each tree is identically distributed with some variance σ2 and with positive

pairwise correlation ρ, then:

Var(f̂rf ) = ρσ2 + σ2 (1− ρ)

B

. Thus, the variance reduces as B increases and as ρ→ 0. By only considering mtry
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out of p variables, we reduce the pairwise correlation of the trees. The assumptions

above are not assumed — they are used to motivate the variance reduction given by

mtry and Bagging. (Hastie, Tibshirani, and Friedman 2009)

By reducing the prediction variance, Random Forest avoids overfitting. In fact, it

is common practice when using Random Forests to grow large unpruned trees (high

variance trees) in comparison to individual CART trees. The variance reduction

provides a protection net to overfitting while simultaneously allowing the trees to

learn more intricate interactions in the data.

1.5 Gradient Boosted Trees

Adaptive Boosting (AdaBoost) (Freund and Schapire 1997) is an ensemble tech-

nique which iteratively fits weak learners — learners which perform slightly better

than random. In Boosting, the weak learner is typically a decision tree. AdaBoost was

originally made for classification problems but has since been generalized to Gradient

Boosting (Friedman 2001) which works on arbitrary differentiable loss functions. Gra-

dient Boosted Trees, sequentially refits decision trees to the residuals of the previous

trees. By using the residual, the model forces the next tree to learn variations of

the data not explained by previous trees. This process reduces the overall bias of

prediction.

The individual trees are dependent on each other via the residual and are thus

not easy to parallelize. However, the trees grown in Gradient Boosting are typically

smaller than the ones grown in Random Forests. Furthermore, fast and scalable

implementation of gradient boosting such as open source XGBoost (Chen and Guestrin

2016), Microsoft’s open source LightGBM (Ke et al. 2017), and Yandex’s open source
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Algorithm 2 Gradient Boosted Trees (Hastie, Tibshirani, and Friedman 2009)
1: Initialize f0(x) = arg minγ

∑n
i=1 L(yi, γ)

2: for m = 1 to M do
3: For i = 1, 2, ..., N compute the psuedo residual:

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

4: Fit tree with rim as target get partitions Pj,m, j = 1, 2, .., Jm
5: For j = 1, 2, .., Jm compute:

γjm = argminγ
∑

xi∈Pjm

L(yi, fm−1(xi) + γ)

6: Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Pjm)

7: f̂boost(x) = fM(x).

Catboost (Prokhorenkova et al. 2018) have found ways to make other aspects of the

computation parallelizable. Currently, these are the state of the art algorithms used to

win many online machine learning competitions and to solve difficult business problems.

Their popularity comes from their fast fitting and prediction times, great results on

heterogenous data, and their relative transparency in comparison to black–box models

like neural networks.

Boosting algorithms have inspired Bayesian Additive Regression Trees and Accel-

erated Bayesian Additive Regression Trees.
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Chapter 2

THE BAYESIAN APPROACH

2.1 Bayesian CART

Bayesian CART (Chipman, George, and McCulloch 1998) presents a Bayesian

approach to finding good CART models. It first specifies a prior for the tree structure

and a prior on the terminal nodes conditional on the tree structure. Then, given the

prior, it defines a Metroplis Hasting algorithm to sample trees from the posterior

distribution.

2.1.1 Prior

The CART model is defined by Θ = µ1, ...µM and the tree structure T as well as

a residual variance parameter σ2. We can define the prior compositionally:

p(Θ, T ) = p(Θ|T )p(T )

.

The prior for the tree p(T ) is defined as random process which generates individual

trees. Each tree output is considered a draw from p(T ).

The split prior finds the probability of a split. It is defined as psplit(η, T ) =

α(1 + dη)
−β where dη is the depth of node η. The values of α and β are modeling

parameters which are analogous to the max depth modeling parameter seen in most

decision tree implementations. These values can be set using cross validation.
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Algorithm 3 Tree Prior Generation Process
1: Begin with a tree T with a single terminal node η
2: procedure GROW(η, T )
3: Split terminal node η with probability psplit(η, T ).
4: if SPLIT then
5: Assign rule ρ from prule(ρ|η, T ) which creates new tree T with new left and

right nodes ηl and ηl.
6: GROW (ηl, t) and GROW (ηr, t)
7: else
8: return

Variables to split on and cut–points to split at are selected with probability prule. A

common choice is to pick a predictor xi uniformly at random, then, to pick a cut–point

c uniformly at random from the realized values of xi.

In practice we center and scale the data and use the following zero–centered priors:

µj | T
iid∼N(0, τ)

σ2 ∼ IG(ν/2, νλ/2)

.

2.1.2 Metropolis–Hasting Algorithm

The Metropolis–Hasting algorithm is used to generate draws from the tree posterior

T0, T1, T2, ...

q(T, T ∗) is defined by creating a new tree T ∗ from current tree T by randomly

making one of these four local changes:

1) GROW: Randomly pick a terminal node. Grow to children by randomly picking

splitting rule from prule .

9



Algorithm 4 MCMC
1: Generate candidate tree T ∗ via q(T i, T ∗)
2: Set T i+1 = T ∗ with probability

min

{
q(T ∗, T i)

q(T i, T ∗)

p(Y |X,T ∗)p(T ∗)
p(Y |X,T i)p(T i)

, 1

}
3: Otherwise, set T i+1 = T i

2) PRUNE: Randomly pick a parent node, and collapse its children — make it a

terminal node.

3) CHANGE: Randomly pick an internal node and randomly change its splitting

rule via prule.

4) SWAP: Randomly pick parent–child pair that are internal nodes and swap their

splitting rules. If they have the same rule, swap with both children nodes.

Notice, GROW and PRUNE counter act each other where CHANGE and SWAP

are their own counterparts. That is, if the chain is stuck in a local minima, the

algorithm allows it to backtrack and explore other options. However, the Markov

Chain tends to be sticky once a decent tree is found. Even with this problem, the

trees grown from the Bayesian CART procedure outperform the trees grown in a

typical CART procedure.

2.2 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees — BART (Chipman, George, McCulloch,

et al. 2010) defines an ensemble of Bayesian CART trees that is influenced from

Gradient Boosting. In particular, the BART model is a sum of tree model which work

by defining a prior for the trees and then drawing trees from posterior defined by a

Bayesian Backfitting MCMC algorithm that regress on residual trees. This algorithm

10



mixes a lot better than Bayesian CART and, in most use cases, leads superior results

in comparison to Gradient Boosting and Random Forests. The BART model is defined

as:

Y =
m∑
j=1

g(x|Tj,Mj) + ε; ε ∼ N(0, σ2)

.

Each g(x|Tj,Mj) is a single tree drawn from the Bayesian CART algorithm. Tj

is the tree structure and µ1,j, , ..., µb,j = Mj’s are the summary estimates for each

terminal node.

2.2.1 Prior

The prior of BART is similar to the prior used for Bayesian Trees, but extended

to multiple trees. It is used to regularize the trees to produce weak learners. This

forces each tree to learn smaller aspects of the function at hand.

The regularization prior is defined as:

p((T1,M1), (T2,M2), ...(Tm,Mm, σ) =

[∏
j

p(Tj,Mj)

]
p(σ)

.

Similarly to the formulation of Bayesian Tree, it is convenient to represent the

prior as:

[∏
j

p(Mj|Tj)p(Tj)
]
p(σ) where p(Mj|Tj) =

∏
i

p(µij|Tj)

.

The priors for each Tj , p(Tj), and Mj|Tj , p(Mj|Tj) are defined in the same way as

in Bayesian CART.
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2.2.2 A Bayesian Backfitting MCMC Algorithm

The Bayesian Backfitting MCMC algorithm defines a process to sample trees from

p((T1,M1), ..., (Tm,Mm), σ|y)

. It defines m trees and sequentially makes local changes to individual trees by using

the residual given all other trees.

Define T(j) to be all trees in fit other than the Tj’th tree consisting of m-1 trees,

define M(j) in the same fashion. To fit on the residual, the draws are defined by:

(Tj,Mj)|T(j)M(j), σ, y

σ|T1, ..., Tm, y

.

σ is drawn from the usual inverse gamma conjugate. To get the m draws of trees,

we first define the residual in given sweep k + 1:

R
(k+1)
j ≡ y −

∑
j′<j

g(X;Tj′ , µj′)
(k+1) −

∑
j′>j

g(X;Tj′ , µj′)
(k)

.

By doing so, we can more compactly represent the tree posterior as:

(Tj,Mj)|Rj, σ

.

Since Mj uses a conjugate prior, it is convenient to express the model as:

Tj|Rj, σ

12



Mj|Tj, Rj, σ

. Then, Tj is drawn via the Metropolis–Hasting Searching Algorithm defined for

Bayesian CART. Mj is drawn using the typical Gaussian conjugate for each µij.

This backfitting algorithm is ergotic and converges in distribution to the true

posterior p(f |y). To sample from the posterior, one can use posterior sample mean

after burn–in f̂1, f̂2, .., f̂k:
1

K

K∑
k=1

f̂ ∗k (x)

.

The solution is not limited to the mean of the posterior distribution. As in all

Bayesian analysis, any function of interest can be applied to the posterior. One can

extract the median or credible intervals from the posterior. This is one of the great

benefits of this algorithm in contrast with other traditional ensemble methods.

BART dominates Gradient Boosting, Random Forest, Neural Networks and many

other machine learning algorithms in terms of performance across simulated and real

data experiments. However, BART fits rather slowly and, by modern standards,

is infeasible to fit on large data sets. One reason for this, is that in the Bayesian

Backfitting MCMC BART makes local changes to each tree in each sweep. For each

tree BART keeps the location of all samples in the tree. This means that BART

must maintain at least m copies of the data at any given time. This computational

burden is what inspired Accelerated Bayesian Additive Regression Trees (He, Yalov,

and Hahn 2019).
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2.3 Accelerated Bayesian Additive Regression Trees

Accelerated Bayesian Additive Regression Trees (XBART) present modifications

to the existing BART algorithm which are more computationally efficient while still

maintaining similar performance to BART. In particular they are, a grow–from–root

strategy, using adaptive cut–points for likelihood evaluation, presorting the features,

and using a sparse proposal distribution for features.

2.3.1 Bayesian Boosting — A Grow–From–Root Backfitting Strategy

Instead of making local changes to existing tree, XBART grows an entirely new

tree for each Tj at iteration k. This removes the burden of keeping copies of the

data without decreasing the performance of the model. However, this does require

modifications to the Metropolis Hasting algorithm. The tree is grown recursively by

evaluating the integrated likelihood criterion at all possible cut–points (see subsection

2) for each variable via:

π(v, c) =
exp (`(c, v))κ(c)∑V

v′=1

∑C
c′=0 exp (`(c′, v′))κ(c′)

(2.1)

where

`(v, c) =
1

2

{
log

(
σ2

σ2 + τn(≤, v, c)

)
+

τ

σ2(σ2 + τn(≤, v, c))
s(≤, v, c)2

}
+

1

2

{
log

(
σ2

σ2 + τn(>, v, c)

)
+

τ

σ2(σ2 + τn(>, v, c))
s(>, v, c)2

}
Here n(≤, v, c) is the number of observations in the current leaf node that have

xv ≤ c and s(≤, v, c) is the sum of the residual r(k)l of those same observations;

n(>, v, c) and s(>, v, c) are defined analogously. Also, κ(c 6= 0) = 1.
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With the Bayesian Boosting strategy it is recommended to grow relatively deeper

trees with fewer sweeps. The default choices are β = 1.25 and 40 MCMC iterations

(sweeps). An important regularization parameter is τ is the prior variance of for each

µ1, µ2, ...µb in M . The choice of τ is the apriori guess for the amount of variation of y

explained by the data. Ideally, a choice for this value will be set by a domain expert.

Otherwise, although not directly inline with the Bayesian approach, one can use Cross

Validation to find a proper choice of τ .

2.3.2 Recursively Defined Cut–Points

When evaluating possible split values, the Bayes Rule calculation defined in (1)

is time consuming. To expatiate the fitting process, in each possible split, only C

possible cut–points are considered. At each step of the recursion, a cut–point cj is

given by cj = floor(nb−2
C

) where nb is the number of nodes in the current partition. A

default choice for C is max{
√
n, 100}.

2.3.3 Index Pre–Sorting Features

Since the likelihood evaluation depends on partitioned cumulative sums (1):

s(≤, v, c) =
∑
h≤c

rovh (2.2)

and

s(>, v, c) =
n∑
h=1

rlh − s(≤, v, c). (2.3)

It is convenient to sort the features so that the cumulative sums can be computed via

single sweeps of the data.
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To do so, we define a matrix O with elements ovh denoting the index of hth largest

observation of the xthv variable in the original data matrix. That way, we can sort any

column of our data by a particular variable. This will be used to evaluate s(≤, v, c).

Once a variable v and cut–point c are selected, the algorithm partitions O into two

matrices O≤ and O>. These matrices are populated by evaluating xj[xv < c]. By

doing so, the order preserved for the next step of the recursion.

2.3.4 Sparse Proposal Distribution

Another modification, which is influenced by Random Forests, is to sample ran-

domly and without replacement m < P candidate variables at each split. This

contrasts from BART that randomly picks only one variable to split on. The m

variables selected are drawn with probability proportional to w. w is given a Dirichlet

prior with hyper parameter w̄ = 1. This value is incremented after a variable has split.

The split counts are then updated:

w̄ ← w̄ − w̄(k−1)
l + w̄

(k)
l (2.4)

where w̄(k)
l denotes the length–V vector recording the number of splits on each variable

in tree l at iteration k. The weight parameter is then sampled as w ∼ Dirichlet(w̄).

Variables that improve the likelihood will be chosen more frequently than uninformative

variables. This has two benefits. The first is that the algorithm is more likely to pick

better candidate splits. The second is that the algorithm less frequently computes

likelihood for unimportant variables.
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2.3.5 Final Estimation

Similarly to BART, we can define an estimator as the mean of all sweeps. It is

important to note that given the current formulation, the output of this model is not

a true posterior distribution of the trees. However, the sum of all estimates past the

burn–in yields good predictions. More formally, the default parameters are K = 40

sweeps and I = 15 burn–in rounds. The final estimator is given by:

X̄ =
1

K − I

K∑
k>I

f (k)(X)

.

Algorithm 5 Grow From Root
procedure grow_from_root(y, X, C, m, w). Fit a tree using data y and X
by recursion.
output A tree Tl and a vector of split counts wl.

N ← number of rows of y, x
Sample m variables use weight w as shown in section 2.3.4.
Select C cut–points as shown in section ??.
Evaluate C ×m + 1 candidate cut–points and no-split option with equation

(2.1).
Sample one cut–point proportional to equation (2.1).
if sample no-split option then return
else

wl[j] = wl[j] + 1, add count of selected split variable.
Split data to left and right node.
GROW_FROM_ROOT(yleft,Xleft, C, m, w)
GROW_FROM_ROOT(yright,Xright, C, m, w)
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Algorithm 6 Accelerated Bayesian Additive Regression Trees (XBART)
procedure ABARTH(y,X,C,m,L, I,K, α, η) . (α, η are prior parameter of σ2)
output Samples of forest

V ← number of columns of X
N ← number of rows of X
Initialize r(0)l = y/L.
for k in 1 to K do

for l in 1 to L do
Calculate residual r(k)l as shown in section 2.2.2.
if k < I then

GROW_FROM_ROOT(r(k)l ,X, C, V , w) . use all variables in
burnin iterations

else
GROW_FROM_ROOT(r(k)l ,X, C, m, w)

w̄ ← w̄ − w̄(k−1)
l + w̄kl . update w̄ with split counts of current tree

w ∼ Dirichlet(w̄)

σ2 ∼ Inverse-Gamma(N + α, r
(k)t
l r

(k)
l + η)

return
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Chapter 3

EXPERIMENTS

3.1 Simulation Study

3.1.1 Data Generating Process

To demonstrate XBART’s performance we estimate function evaluations with a

hold–out set that is a quarter of the training sample size and judge accuracy according

to root mean squared error (RMSE). We consider four different challenging functions,

f , as defined in Table 1. In all cases, xj
iid∼N(0, 1) for j = 1, . . . , d = 30. The data is

generated according to

yi = f(xi) + σεi

for εi
iid∼N(0, 1). We consider σ = κVar(f) for κ ∈ {1, 10}.

Table 1. Four true f functions
Name Function
Linear xtγ; γj = −2 + 4(j−1)

d−1

Single index
10
√
a+sin (5a); a =

∑10
j=1(xj−

γj)
2; γj = −1.5 + j−1

3
.

Trig + poly 5 sin(3x1) + 2x22 + 3x3x4
Max max(x1, x2, x3)
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3.1.2 Methods

We compare to leading machine learning algorithms: random forests, gradient

boosting machines, neural networks, and BART MCMC. All implementations had an

R interface and were the current fastest implementations to our knowledge: ranger

(Wright and Ziegler 2015), xgboost (Chen and Guestrin 2016), and keras (Chollet

2015),and dbarts, respectively. For ranger and dbarts we use the software defaults. For

keras we used a single strong architecture but varied epochs depending on the noise

in the problem. For xgboost we consider two specifications, one using the software

defaults and another determined by 5–fold cross–validated grid optimization (see

Table 2); a reduced grid of parameter values was used at sample sizes n > 10, 000.

Table 2. Hyperparameter Grid for XGBoost
Parameter name N = 10K N > 10K
eta {0.1, 0.3} {0.1, 0.3}
max_depth {4, 8, 12} {4, 12}
colsample_bytree {0.7, 1} {0.7, 1}
min_child_weight {1, 10, 15} 10
subsample 0.8 0.8
gamma 0.1 0.1

3.1.3 Computation

The simulations were computed on Ubuntu 18.04.1 LTS with Intel i7–8700K

Hexa–core 3.7GHz 12MB Cache–64–bit processing , 4.3GHz overclocking speed.

The software used was R version 3.4.4 with xgboost 0.71.2, dbarts version 0.9.1 ,

ranger 0.10.1, and keras 2.2.0. The default hyperparameters for XGBoost are eta

= 0.3, colsample_bytree = 1,min_child_weight = 1, and max_depth = 6. Ranger was
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fit with num.trees = 500 and mtry = 5 ≈
√
d. BART, with the package dbarts, was

fit with the defaults of ntrees = 200, alpha = 0.95, beta = 2, with a burn–in of 5,000

samples (nskip = 5000) and 2,000 retrained posterior samples (ndpost = 2000). The

default dbarts algorithm uses an evenly spaced grid of 100 cut–point candidates along

the observed range of each variable (numcuts = 100, usequants = FALSE). For keras

we build a network with two hidden layers (15 nodes each) using ReLU activation

function, `1 regularization at 0.01, and with 50/20 epochs depending on the signal to

noise ratio.

3.1.4 The Procedure

The development of the simulation study was a slow and iterative process. The

code is composed of two main files, a simulation script and a helper function file. The

helper functions file contains functions of the main repeated procedures in the code.

The simulation script uses these functions in the simulation. This was done in order

to organize the code to make it easy to iterate and debug.

For each algorithm there were two helper functions — a get hyperparameter

function and a fit function. The hyperparameter function takes in data information

such as number of observations and returns an R list of the parameters. The fit function

takes the hyperparameter R list along with the data, it then fits the model and returns

RMSE and time of the fit. This information was all stored in R DataFrame. After

each round of the simulation, I would save the files with a specific naming convention.

At the end of the simulations, the files were read to generate the final aggregations.

XGBoost tuned required an additional function, the tuning function. Initially we

experimented with Bayesian Optimization to pick the hyperparameters. The process
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was slow and didn’t yield great results. We then switched to a simple grid search

which performed well and was substantially faster. At the end of each optimization

process the hyperparameters were saved in a JSON file for reference.

3.1.5 Results

The performance of the new XBART algorithm was even better than anticipated,

showing superior speed and performance relative to all the considered alternatives

on essentially every data generating processes. The full results, averaged across five

Monte Carlo replications, are reported at the end of this chapter where XB, cv, xgb,

NN are results of XBART and XGBoost with and without turning parameter by cross

validation, and Neural Networks respectively. Neural networks perform as well as

XBART in the low noise settings under the Max and Linear functions. To no surprise,

neural networks outperform XBART under the linear function with low noise. Across

all data generating processes and sample sizes, XBART was 31% more accurate than

the cross–validated XGBoost method and typically faster. The XBART method was

slower than the untuned default XGBoost method, but was 3.5 times more accurate.

This pattern points to one of the main benefits of the proposed method, which is

that it has excellent performance using the same hyperparameter settings across all

data generating processes. Importantly, these default hyperparameter settings were

decided on the basis of prior elicitation experiments using different true functions

than were used in the reported simulations. While XGBoost is quite fast, the tuning

processes is left to the user and can increase the total computational burden by orders

of magnitude.

Random forests and traditional MCMC BART were prohibitively slow at larger
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sample sizes. However, at n = 10, 000 several notable patterns did emerge. First was

that BART and XBART typically gave very similar results, as would be expected.

BART performed slightly better in the low noise setting and quite a bit worse in the

high noise setting (likely due to inadequate burn–in period). Similarly, random forests

do well in higher noise settings, while XGBoost and neural networks performs better

in lower noise settings.

3.2 BART Data Sets

To compare the performance on real data we recreated the data experiment used

in the original BART paper. We used 40 datasets (Table 4) of varying sizes. For each

dataset, 20 random train test splits were made, yielding a total of 800 experiments.

In each experiment we fit XBART, BART, Random Forest, XGBoost with default

feature, and a tuned XGBoost model with the same tuning parameters choices as in

the simulation studies. Then, to fairly evaluate the results across all experiments, we

use Relative RMSE (RRMSE) which is defined for experiment i and model m ∈M a

is defined as

RRMSEi,m =
RMSEi,m

min{RMSEi,j|j ∈M}

To adjust for the smaller datasets, we made slight modifications to the XGBoost

and XBART hyper–parameter. We forced L = max{(log n)log logn, 100} to allow

more trees at each iteration — we set L = nrounds for xgboost. Secondly, we set

nsweeps = 200, max depth = 200, and burnin = 80 to allow for more flexible models.

Following BART, XBART performs the best in terms of RRMSE. Furthermore,

the study reaffirms that for XGBoost to be competitive, it needs to be sufficiently

23



Table 3. Results
BART XBART XGB_TUNED RF XGB

RRMSE 1.067 1.128 1.137 1.139 1.170
Average Time 16.930 5.680 6.207 0.385 0.117

tuned. As seen in the simulation studies, for larger datasets, the tuning becomes very

computationally expensive.

Table 4. Data Sets
Name n Name n Name n Name n Name n

Abalone 4177 Budget 1729 Diamond 308 Labor 2953 Rate 144
Ais 202 Cane 3775 Edu 1400 Laheart 200 Rice 171
Alcohol 2462 Cardio 375 Enroll 258 Medical 4406 Scenic 113
Amenity 3044 College 694 Fame 1318 Mpg 392 Servo 167
Attend 838 Cps 534 Fat 252 Mumps 1523 Smsa 141
Baseball 263 Cpu 209 Fishery 6806 Mussels 201 Strike 625
Baskball 96 Deer 654 Hatco 100 Ozone 330 Tecator 215
Boston 506 Diabetes 375 Insur 2182 Price 159 Tree 100

3.3 Elo Merchant Category Recommendation – Kaggle

As a way to test XBART’s capabilities, I decided to participate in the Elo Kaggle

competition. Elo is a Brazilian payment and credit company. Their goal with this

competition, is to predict customer loyalty using historical transactional data. The

best model is one which has the lowest RMSE on the private dataset — a holdout set

which is revealed only after the competition ends.

The training data contained 201917 unique IDs while the holdout set contained

123623. For each unique id, there is a one to many relationship with transactional

data. That is, each credit card has many transactions. To create features which can

be used in machine learning models, the transactional information is aggregated via
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summary statistics. For example, an important feature in this model was the number

of months the card was active.

An important nuance in this competition was outliers. Although most of the

loyalty scores was symmetrically distributed around 0, there were roughly 2207 values

that were around -33. An outlier was defined to be any value less than -15.

To handle this, for each of the two sets of feature I built 3 sub–models. The

first sub–model is a naiive model which was built on the full dataset using LGBM.

The second sub–model is a LGBM classification model used to predict whether an

observation is an outlier or not. The third sub–model is an XBART model that is

used on all values that are not outliers. If an observation was sub–model two’s top

25,000 predictions, it was given the score from sub–model 1, other wise it was given

the score from sub–model 3.

For the first sub–model I used LGBM because XBART did not perform well on

the highly unsymmetric data. This model was not particularly helpful or important

in the final prediction since it only involved 20% of the observations. Furthermore,

the winning models for the competition just used a simple point estimate rather than

a model for all the outlying observations. The second sub–model used LGBM as well

since it was a classification problem.

For each submodel above I used Backwards Feature selection to pick the best

subset of features. To do so I fit an XGBoost baseline model, and recursively dropped

the worst features. The set of features with the lowest performance error was picked.

To get a more robust model, I used two sets of features and developed a model,

defined by the three sub–models, on each. The features sets are combinations of

features taken from publicly available kernels. The final model is an average of the

two model predictions. The XBART model has an RMSE of 3.61276 which scored
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303 out 4,129 teams which is in the top 8% of models in the competition. This gave

me my first bronze medal on Kaggle.

3.4 Simulation Result Tables
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Table 5. Simulation Comparison with XGBoost and Keras Neural Networks
RMSE Seconds

Linear
n k XB CV XGB NN XB CV XGB NN

10K 1 1.74 2.63 3.23 1.39 20 64 <1 26
10K 10 5.07 8.04 21.25 7.39 16 61 <1 12

50K 1 1.04 1.99 2.56 0.66 180 142 4 28
50K 10 3.16 5.47 16.17 3.62 135 140 4 14

250K 1 0.67 1.50 2.00 0.28 1774 1399 55 40
250K 10 2.03 3.15 11.49 1.89 1228 1473 54 19

Max
n k XB CV XGB NN XB CV XGB NN

10K 1 0.39 0.42 0.79 0.40 16 62 <1 30
10K 10 1.94 2.76 7.18 2.98 16 60 <1 15

50K 1 0.25 0.29 0.58 0.20 134 140 4 32
50K 10 1.22 1.85 5.49 1.63 133 139 4 16

250K 1 0.14 0.21 0.41 0.16 1188 1554 60 44
250K 10 0.75 1.05 3.85 0.85 1196 1485 54 22

Single Index
n k XB CV XGB NN XB CV XGB NN

10K 1 2.27 2.65 3.65 2.76 17 61 <1 28
10K 10 7.13 10.61 28.68 9.43 16 61 <1 14

50K 1 1.54 1.61 2.81 1.93 153 141 4 31
50K 10 4.51 6.91 21.18 6.42 133 139 4 16

250K 1 1.14 1.18 2.16 1.67 1484 1424 55 41
250K 10 3.06 4.10 14.82 4.72 1214 1547 54 21

Trig + Poly
n k XB CV XGB NN XB CV XGB NN

10K 1 1.31 2.08 2.70 3.96 17 61 <1 26
10K 10 4.94 7.16 17.97 8.20 16 61 <1 13

50K 1 0.74 1.29 1.67 3.33 147 141 4 29
50K 10 3.01 4.92 13.30 5.53 132 139 4 14

250K 1 0.45 0.82 1.11 2.56 1324 1474 59 41
250K 10 1.87 3.17 9.37 4.13 1216 1462 49 20
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Table 6. κ = 1 and n = 10K

Function Method RMSE Seconds

Linear XBART 1.74 20
Linear XGBoost Tuned 2.63 64
Linear XGBoost Untuned 3.23 <1
Linear Random Forest 3.56 6
Linear BART 1.50 117
Linear Neural Network 1.39 26

Trig + Poly XBART 1.31 17
Trig + Poly XGBoost Tuned 2.08 61
Trig + Poly XGBoost Untuned 2.70 <1
Trig + Poly Random Forest 3.04 6
Trig + Poly BART 1.30 115
Trig + Poly Neural Network 3.96 26

Max XBART 0.39 16
Max XGBoost Tuned 0.42 62
Max XGBoost Untuned 0.79 <1
Max Random Forest 0.41 6
Max BART 0.44 114
Max Neural Network 0.40 30

Single Index XBART 2.27 17
Single Index XGBoost Tuned 2.65 61
Single Index XGBoost Untuned 3.65 <1
Single Index Random Forest 3.45 6
Single Index BART 2.03 116
Single Index Neural Network 2.76 28
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Table 7. κ = 10 and n = 10K

Function Method RMSE Seconds

Linear XBART 5.07 16
Linear XGBoost Tuned 8.04 61
Linear XGBoost Untuned 21.25 <1
Linear Random Forest 6.52 6
Linear BART 6.64 111
Linear Neural Network 7.39 12

Trig + Poly XBART 4.94 16
Trig + Poly XGBoost Tuned 7.16 61
Trig + Poly XGBoost Untuned 17.97 <1
Trig + Poly Random Forest 6.34 7
Trig + Poly BART 6.15 110
Trig + Poly Neural Network 8.20 13

Max XBART 1.94 16
Max XGBoost Tuned 2.76 60
Max XGBoost Untuned 7.18 <1
Max Random Forest 2.30 6
Max BART 2.46 111
Max Neural Network 2.98 15

Single Index XBART 7.13 16
Single Index XGBoost Tuned 10.61 61
Single Index XGBoost Untuned 28.68 <1
Single Index Random Forest 8.99 6
Single Index BART 8.69 111
Single Index Neural Network 9.43 14
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Chapter 4

XBART PYTHON PACKAGE

4.1 Creating Standalone C++ XBART

The original implementation of the XBART package was written using C++ with

RCPP and RCPPArmadillo dependencies. In order to develop a python package,

it was important remove all of the RCPP dependencies so that the source code is

standalone C++ library. By doing so, users do not need to have R or the RCPP

library installed to run the code. The main difficulties in this process were changing to

a C++ random number generator, handling the input output stage, changing RCPP

numeric matrix and Armadillo matrices to C++ standard library vectors or double

arrays. A particularly important change was to create a standalone MCMC loop

function that is independent of RCPP.

4.2 Simplified Wrapper and Interface Generator – SWIG

After removing the RCPP dependencies, I used SWIG to bridge between the C++

code base and python. SWIG (Beazley 1996) is an interface compiler that uses C/C++

header files along with interface files to wrap C/C++ code into various scripting

languages. Here is a simple example to showcase how to use SWIG to wrap C++

code to python:

1 /∗ F i l e : example . h ∗/
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2 double i d e n t i t y ( double x ) ;

Listing 4.1. Header File

1 /∗ F i l e : example . cpp ∗/

2 #inc lude "example . h"

3

4 double i d e n t i t y ( double x ) {

5 re turn x ;

6 }

Listing 4.2. .cpp File

1 /∗ F i l e : example . i ∗/

2 %module example

3

4 %{

5 #de f i n e SWIG_FILE_WITH_INIT

6 #inc lude "example . h" // Which Header f i l e s to look at

7 %}

8

9 double i d e n t i t y ( double x ) ; // Function to wrap in to python

Listing 4.3. Swig Interface File

One can compile the code manually, but in python it is much easier to write a

setup.py file which complies and takes care of a lot of the headaches.

1 # setup . py F i l e

2 from d i s t u t i l s . core import setup , Extension

3

4 example_module = Extension ( '_example ' ,# . so w i l l be c rea ted during

compi la t ion

5 # Spec i f y a l l f i l e s to look at :
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6 sou r c e s =[ ' example_wrap . cxx ' , ' example . cpp ' ] ,

7 )

8 setup (name = ' example ' ,

9 ve r s i on = ' 0 .1 ' ,

10 author = "Saar Yalov" ,

11 d e s c r i p t i o n = """SWIG example """ ,

12 ext_modules = [ example_module ] ,

13 py_modules = [ "example" ] ,

14 )

Listing 4.4. setup.py

Then from the command line run:

1 swig −c++ −python −py3 example . i ### Create wrappers us ing SWIG

2 python setup . py setup . py bui ld_ext −−i np l a c e ### Create python package

Listing 4.5. Command Line

The previous script created the wrappers and a python package called example.

We can now import it and use it in python in the following way:

1 >>> import example

2 >>> example . i d e n t i t y ( 3 . 0 )

3 3 .0

4 >>> example . i d e n t i t y (11)

5 11 .0

Listing 4.6. show.py

Furthermore, SWIG provides a numpy interface which makes it easy to pass in

and retrieve numpy arrays from python to cpp. The numpy data gets converted to

a row major C++ double arrays. The C++ double arrays are then converted to
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column major, since the algorithm works on column major arrays (RCPP and RCPP

Armadillo are both column major double arrays under the hood).

4.3 Python Package

To handle the I/O between python and C++, I created a C++ class which handles

all of the necessary conversion. The class keeps track of important information

throughout fits and has the functionality to convert the numpy arrays inputs to fit into

the standalone loop function. For example, one of the private member of this class

is a matrix of trees. The fit function takes in a reference to the trees and populates

them during the fitting process. By keeping these trees locally, I can call a separate

predict function which traverses the trees in order to make prediction.

The Python XBART API is simple and is heavily influenced from Scikit Learn

(Pedregosa et al. 2011) and XGBoost (Chen and Guestrin 2016). There are three

main components — object instantiation, model fit, and model predict.

The object instancation takes in a dictionary of hyperparameters as an optional

argument and returns an instance of class XBART. The fit function takes in a numpy

array of data and response as well as integer specifying the number of categorical

features. The predict function takes in a numpy array of data and returns an n×nsweep

numpy array of predictions. Here is a use case example:

1 from xbart import XBART

2 import pandas as pd

3 # Read Data

4 t r a i n = pd . read_csv ( " t r a i n . csv " )

5 t ra in_targe t = pd . read_csv ( " t ra in_targe t . csv " )

6 t e s t = pd . read_csv ( " t e s t . csv " )
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7 t e s t_targe t = pd . read_csv ( " t e s t_ta rge t . csv " )

8

9 # Build XBART model

10 xbart = XBART( num_trees = 100 ,num_sweeps =50, tau = 0 . 01 ) # Create Object

11 xbart . f i t ( t r a i n . values , t ra in_targe t . values , p_cat = 5)

12 yhat_test = xbart . p r ed i c t ( t e s t . va lue s )

13

14 # Build XBART model us ing f i t_p r ed i c t

15 xbart_2 = XBART( num_trees = 100 ,num_sweeps =50, tau = 0 . 01 ) # Create

Object

16 yhat_train=xbart_2 . f i t_p r ed i c t ( t r a i n . va lues , t ra in_targe t . values , p_cat =

5)

17 yhat_test = xbart_2 . p r ed i c t ( t e s t . va lue s )
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Chapter 5

DISCUSSION

The simulation study and real data experiments show that XBART outperforms

leading machine learning models excluding BART in terms of holdout error. Further-

more, it is clear that XBART is faster than BART while still maintaining comparable

holdout error performance. Although the benefits of XBART are clear, the reason

for its predictive performance is not fully understood. This leads to many interesting

questions:

1) Is the reason for XBART’s superior performance rooted in BART’s likelihood

criteria? If this were the case, then fitting traditional boosting models with the BART

spiting criteria would perform similarly to BART and XBART.

2) Is the reason for XBART’s superior performance due to sampling rather than

maximizing? If this were the case, then one can randomly sample from likelihood

instead of maximizing in a boosting algorithm.

3) Is the reason for XBART’s superior only because it builds many additive tree

models and averages between? If this were the case, then bagging boosted trees will

yield similar results to XBART.

There is still more work to be done to the XBART code base. In particular, the

extension of XBART to the multinomial case is based on the BART multinomial

extension (Murray 2017). Also, to better compete with the leading Gradient Boosting

implementations, we need to add multi-threaded and GPU capabilities to XBART.

Furthermore, we need to develop a predict function to the R version, improve some
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issues with the categorical and continuous cut-point evaluation, and make both R and

python packages more user friendly.
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