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ABSTRACT 

 
Rapid development of new technology has significantly disrupted the way radiotherapy is 

planned and delivered. These processes involve delivering high radiation doses to the target 

tumor while minimizing dose to the surrounding healthy tissue. However, with rapid 

implementation of these new technologies, there is a need for the detection of prescribed 

ionizing radiation for radioprotection of the patient and quality assurance of the technique 

employed. Most available clinical sensors are subjected to various limitations including 

requirement of extensive training, loss of readout with sequential measurements, sensitivity to 

light and post-irradiation wait time prior to analysis. Considering these disadvantages, there is 

still a need for a sensor that can be fabricated with ease and still operate effectively in predicting 

the delivered radiation dose. 

  

The dissertation discusses the development of a sensor that changes color upon exposure to 

therapeutic levels of ionizing radiation used during routine radiotherapy. The underlying 

principle behind the sensor is based on the formation of gold nanoparticles from its colorless 

precursor salt solution upon exposure to ionizing radiation. Exposure to ionizing radiation 

generates free radicals which reduce ionic gold to its zerovalent gold form which further 

nucleate and mature into nanoparticles. The generation of these nanoparticles render a change 

in color from colorless to a maroon/pink depending on the intensity of incident ionizing 

radiation. The shade and the intensity of the color developed is used to quantitatively and 

qualitatively predict the prescribed radiation dose.  

 



ii 
 

The dissertation further describes the applicability of sensor to detect a wide range of ionizing 

radiation including high energy photons, protons, electrons and emissions from radioactive 

isotopes while remaining insensitive to non-ionizing radiation. The sensor was further 

augmented with a capability to differentiate regions that are irradiated and non-irradiated in 

two dimensions. The dissertation further describes the ability of the sensor to predict dose 

deposition in all three dimensions. The efficacy of the sensor to predict the prescribed dose 

delivered to canine patients undergoing radiotherapy was also demonstrated. All these taken 

together demonstrate the potential of this technology to be translatable to the clinic to ensure 

patient safety during routine radiotherapy. 

 

 

 

 

  



iii 
 

ACKNOWLEDGMENTS 

I would like to start by thanking my mentor Dr. Kaushal Rege, for all the support and 

guidance he has given me during my time at Arizona State University. I know that his 

advice has been a crucial part of my success for which I am truly grateful.  

I would also like to give a very special thanks to Dr. Stephen Sapareto, Dr. Brent Nannenga, 

Dr. Matthew Green and Dr. Bin Mu for their willingness to work on my committee. I am 

grateful to Dr. David Taylor, Dr. James Ramos, Dr. Matthew Christensen, Dr. Sai Pavan 

Gandhi, Candace Rae Walker, Beatrice Tamakloe, Dr. Thrimoorthy Potta, Dr. Jacob 

Elmer, Dr. Bhavani Miryala, Dr. Sudhakar Godeshala, Dr. Sheba Goklany, Russell Urie, 

Rajeshwar Nitiyanandan, Subhadeep Dutta, Inam Ridha, Deepanjan Ghosh, Amar Thaker, 

Sanjitarani Santra, Brian Thompson and Bohan Shan with whom I have had the pleasure 

of working with. I would like to acknowledge the excellent students that I have had the 

pleasure of working with during my research including Caesario Sutiyoso, Eshwaran 

Narayanan and Sahil Inamdar.  

I would like to give a very special thanks to the physicists and clinicians at Banner-MD 

Anderson Cancer Center for their continued support of the research and guiding me all the 

way. These individuals include Tomasz Bista, Thaddeus Sokolowski, Chelsea Page, Alek 

Rapchak and Dr. John Chang. I would like to thank Dr. Eric Boshoven for working with 

us and facilitating the canine studies conducted as part of the research.  

Lastly, I am truly grateful to my family for their continued support and encouragement 

during my stay at Arizona State University.  

  



iv 

 

TABLE OF CONTENTS 

        
 Page 

 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER  

 1 INTRODUCTION .......................................................................................................... 1 

1.1 Molecular Systems .................................................................................................... 3 

1.1.1 Small Molecule Systems ........................................................................................ 3 

1.1.2 Polymer-Based Systems ......................................................................................... 7 

1.1.3 Single-Crystal Systems ........................................................................................ 10 

1.2 Nanoparticle Systems .............................................................................................. 12 

1.2.1 Quantum Dot (QD) Systems ................................................................................ 12 

1.2.2 Plasmonic Nanoparticles ...................................................................................... 16 

1.2.3 Carbon Nanotubes ................................................................................................ 17 

1.2.4 Metal Organic Frameworks .................................................................................. 19 

1.3 Conclusions ............................................................................................................. 21 

 2 POLYPEPTIDE-FACILITATED FORMATION OF BIMETALLIC PLASMONIC 

NANOPARTICLES IN PRESENCE OF IONIZING RADIATION ............................... 22 

2.1 Introduction ............................................................................................................. 22 



v 

 

CHAPTER              Page  

2.2 Materials and Methods ............................................................................................ 23 

2.3 Results and Discussion ............................................................................................ 26 

2.4 Conclusions ............................................................................................................. 39 

 3 A COLORIMETRIC PLASMONIC NANOSENSOR FOR DOSIMETRY OF 

THERAPEUTIC LEVELS OF IONIZING RADIATION ............................................... 41 

3.1 Introduction ............................................................................................................. 41 

3.2 Materials and Methods ............................................................................................ 44 

3.3 Results and Discussion ............................................................................................ 47 

3.4 Conclusions ............................................................................................................. 86 

 4 DETECTION OF THERAPEUTIC LEVELS OF IONIZING RADIATION USING 

PLASMONIC NANOSENSOR GELS ............................................................................ 88 

4.1 Introduction ............................................................................................................. 88 

4.2 Materials and Methods ............................................................................................ 90 

4.3 Results and Discussion ............................................................................................ 93 

4.4 Conclusions ........................................................................................................... 120 

 5 HYDROGEL NANOSENSORS FOR COLORIMETRIC DETECTION AND 

DOSIMETRY IN PROTON BEAM THERAPY ........................................................... 122 

5.1 Introduction ........................................................................................................... 122 

5.2 Materials and Methods .......................................................................................... 125 

5.3 Results and Discussion .......................................................................................... 129 



vi 
 

CHAPTER              Page  

5.4 Conclusions ........................................................................................................... 160 

 6 ELECTRON BEAM DOSIMETRY USING PLASMONIC HYDROGEL 

NANOSENSOR .............................................................................................................. 162 

6.1 Introduction ........................................................................................................... 162 

6.2 Materials and Methods .......................................................................................... 164 

6.3 Results and Discussion .......................................................................................... 168 

6.4 Conclusions ........................................................................................................... 184 

 7 DETERMINATION OF TOPOGRAPHICAL RADIATION DOSE PROFILES 

USING GEL NANOSENSORS ..................................................................................... 185 

7.1 Introduction ........................................................................................................... 185 

7.2 Materials and Methods .......................................................................................... 187 

7.3 Results and Discussion .......................................................................................... 193 

7.4 Conclusions ........................................................................................................... 220 

 8 MOLECULAR ENGINEERING OF AN AMINO ACID DOSIMETER FOR 

CLINICAL RADIOTHERAPY ...................................................................................... 221 

8.1 Introduction ........................................................................................................... 221 

8.2 Materials and Methods .......................................................................................... 223 

8.3 Results and Discussion .......................................................................................... 229 

8.4 Conclusions ........................................................................................................... 252 

 9 CONCLUSION AND FUTURE PERSPECTIVES ................................................... 253 



vii 
 

CHAPTER              Page  

9.1 Conclusion ............................................................................................................. 253 

9.2 Future Perspectives ............................................................................................... 254 

REFERENCES ............................................................................................................... 267 

 

  



viii 
 

LIST OF TABLES 

Table               Page  

           

3.1 Average Hydrodynamic Diameters of Gold Nanoparticles Formed after Irradiation 

along with Their Corresponding Polydispersity Indices. .................................................. 81 

3.2 Absorbance Values Measured 7 Hours Following Exposure of Endorectal Balloons 

with the Plasmonic Nanosensor (20 mM C16TAB Concentration) Following Exposure to 

Different Doses of Ionizing Radiation .............................................................................. 83 

3.3 X-ray Radiation Dose Determined Using the Plasmonic Nanosensor Placed on an 

Endorectal Balloon in a Prostate Phantom........................................................................ 85 

4.1 The Table Indicates the Dose Delivered According to the Treatment Plan and the 

Radiation Dose Estimated by the Gel Based Plasmonic Nanosensor ............................. 120 

5.1 The Table Indicates the Dose Delivered to Each of the Surfactants Employed in the 

Experiments and the Average Dose Calculated Using the C12TAB and C14TAB-based 

Hydrogel Nanosensors. ................................................................................................... 160 

6.1 Table Indicating the Efficacy of the Hydrogel Nanosensor in Predicting the Dose 

Delivered ......................................................................................................................... 180 

  



ix 

 

LIST OF FIGURES 

Figure               Page  

 

2.1 Skeleton Reaction That Shows Radiolysis of Water Followed by Reduction of Metal 

Salts by H* and e- Resulting in the Formation of Zerovalent Metal Atoms .................... 26 

2.2 Average (N=3) Absorbance Spectra of C2ELP (1 mg/ml) and Gold-silver Bimetallic 

Solutions When Exposed to Varying Concentrations of Silver Salt at 0 Gy at a pH 5-6. 28 

2.3 Average (N=3) Absorbance Spectra of C2ELP and Gold-silver Bimetallic Solutions 

When Exposed to Varying Concentrations of C2ELP at 0 Gy at pH 5-6 ......................... 29 

2.4 Average (N=3) Absorbance Spectra of C2ELP (1 mg/ml) and Gold-silver Bimetallic 

Solutions When Exposed to Acidic and Basic pH Conditions at 0 Gy (No Irradiation). . 30 

2.5 Visible, Colorimetric Detection of Ionizing Radiation as Reported by the Formation 

of Plasmonic Bimetallic Nanoparticles. ............................................................................ 31 

2.6 (A) Average Absorbance Spectra (N = 9) of C2ELP and Gold-silver Bimetallic 

Solutions in Presence of C2ELP and (B) Average Absorbance Spectra (N = 3) of Gold-

silver Bimetallic Solutions Irradiated in Absence of C2ELP with 0 Gy (Control), 25 Gy, 

50 Gy, and 100 Gy ............................................................................................................ 33 

2.7 Hydrodynamic Diameters, Determined by Dynamic Light Scattering (DlS), of 

Nanoparticles Formed as a Function of Radiation Dose (N=3). ....................................... 34 

2.8 Transmission Electron Microscopy (TEM) Images of Plasmonic Nanoparticles 

Formed under Irradiation .................................................................................................. 36 

 

 

 



x 

 

Figure               Page  

 

2.9 Elemental Analyses of Plasmonic Nanoparticles (N ≥ 3) Indicates Presence of Both 

Gold and Silver ................................................................................................................. 37 

2.10 Schematic of Bimetallic Nanoparticle Formation During Radiolysis Involving Inter-

metal Electron Transfer..................................................................................................... 38 

2.11 Average Values of Peak Absorbance (N = 3) Observed after C2ELP and 

Monometallic (Au or Ag) / Bimetallic (Au and Ag) Solutions Were Irradiated with 0 Gy 

(Control), 25 Gy, 50 Gy, and 100 Gy X-ray Radiation .................................................... 39 

3.1 Schematic Depicting the Reaction Progress after Addition of Various Components in 

the Plasmonic Nanosensor for Ionizing Radiation............................................................ 49 

3.2 UV-Visible Spectral Profiles of (a) HAuCl4 (Circles) (B) HAuCl4 + C16TAB 

(Diamonds), (C) HAuCl4 + C16TAB + Ascorbic Acid (Squares) and (D) HAuCl4 + 

Ascorbic Acid (AA) (Triangles) ....................................................................................... 50 

3.3 (A) UV-Vis Spectra of Varying Ascorbic Acid Volumes along with Gold and 

C16TAB Irradiated at 47 Gy. (B) Maximum Absorbance Values of Samples Containing 

Varying Concentrations of Ascorbic Acid ........................................................................ 52 

3.4 Absorbance Spectra of (a) Gold Salt (.196 Mm) (B) Gold Salt (.196 mM) + C16TAB 

(20 mM) (C) Gold Salt (.196 mM) + C12TAB (20 mM) .................................................. 54 

3.5 UV-Vis Absorption Spectra of the Control (0 Gy) and X-ray Irradiated Samples 

Containing (a) C16TAB, (B) C12TAB and (C) C8TAB after 7 Hours ............................... 57 

 

 

 



xi 
 

Figure               Page  

 

3.6 Optical Images of Samples Containing Different C16TAB and C12TAB 

Concentrations Irradiated with a Range of X-ray Doses (Gy) (a) 2 mM C16TAB, (B) 

4mM C16TAB, (C) 10mM C16TAB, (D) 20mM C16TAB and (E) 20mm C12TAB 2 Hours 

Post X-ray Irradiation ....................................................................................................... 60 

3.7 Kinetics of Gold Nanoparticle Formation Following Exposure to Different Doses of 

Ionizing Radiation (0-47 Gy) For (A) C16TAB, (B) C12TAB and (C) C8TAB. ............... 62 

3.8 Maximum Absorbance Vs. Radiation Dose (Gy) after 2 Hours of X-ray Irradiation. 

C16TAB (Red Filled Squares, Solid Line) and C12TAB (Orange Open Circles, Dotted 

Line) Surfactants. C8TAB (Green Triangles, Dotted Line) Does Not Show Any Response 

to Radiation ....................................................................................................................... 63 

3.9 Determination of the Critical Micelle Concentration (CMC) Value for C16TAB in the 

Nanosensor Precursor Solution (‘C16TAB + Au + AA’ in the Legend) and DI Water 

(‘C16TAB’ in the Legend) Using the Pyrene Fluorescence Assay ................................... 65 

Figure 3.10 Absorbance Spectra of Precursor Monovalent Gold Salt Solutions under 

Conditions of No Radiation (i.e 0 Gy) in Presence of Different Concentrations Of (A) 

C16TAB and (B) C12TAB (C) C8TAB Recorded after 10 Minutes of Incubation ............ 68 

3.11 Maximum Absorbance Vs. Wavelength for Different Concentrations of C16TAB 

after a Duration of 2 Hours Post Irradiation with Different Doses of X-rays. (A) 2mM (B) 

4mM (C) 10mM (D) 20mM C16TAB. .............................................................................. 70 

3.12 Maximum Absorbance Vs. Radiation Dose for Varying Concentrations of C16TAB 2 

Hours Post X-ray Irradiation ............................................................................................. 71 

 



xii 
 

Figure               Page  

 

3.13 (A) Nanoparticle Hydrodynamic Diameter Vs. Radiation Dose Evaluated Using 

Dynamic Light Scattering. ................................................................................................ 75 

3.14 Transmission Electron Microscopy (Tem) Images of Nanoparticles after Exposure to 

Ionizing (X-ray) Radiation ................................................................................................ 76 

3.15 Transmission Electron Microscopy (TEM) Images of Anisotropic Nanostructures 

(A) Dendritic and (C) Nanowire-like Structures Formed in Case of C12TAB at 5 Gy X-

ray Radiation Dose. ........................................................................................................... 77 

3.16 Transmission Electron Microscopy (TEM) Images of Gold Nanoparticles Formed 

after Exposure to Ionizing (X-ray) Radiation Using the Following Conditions Of 

C16TAB. (A) 10 mM and 5 Gy, (B) 10 mM and 47 Gy, (C) 4 mM and 5 Gy, (D) 4 mM 

and 15 Gy, (E) 2 mM and 0.5 Gy, (F) Magnified Image of Highlighted Area of E 

Showing Smaller Particles, and (G) 2 mM and 2.5 Gy. ................................................... 79 

3.17 (A) An Endorectal Balloon with Precursor Solution Not Subjected to Irradiation 

with X-rays (B) Endorectal Balloon Post Irradiation With 10.5 Gy X-rays. .................... 82 

3.18 (A) Digital Image Showing the Nanoscale Precursor Solution (200 µl) in 

Microcentrifuge Tubes Placed along the Stem Outside of an Endorectal Balloon. (B). X-

ray Contrast Image of the Phantom Which Shows the Dose Treatment Plan, Prostate 

Tissue, the Endorectal Balloon, and the Microcentrifuge Tube / Nanosensor Location 

below the Prostate Tissue and on the Endorectal Balloon. (C). Digital Image of the 

Plasmonic Nanosensor 2 h Following Treatment with X-rays in the Prostate Phantom. . 84 

4.1 (A) Schematic of the Hydrogel Nanosensors for the Detection of Therapeutic Levels 

of Ionizing Radiation (e.g. X-rays). .................................................................................. 94 



xiii 
 

Figure               Page  

 

4.2 Images of the Precursor Nanosensor Agarose Gels Not Subjected to X-rays. Images 

Were Acquired 1 Hr Following Formulation. ................................................................... 97 

4.3 Absorbance Spectra of Agarose Gels Containing (A) 10 mM Au3+ (i.e. HAuCl4), (B) 

10 mM Au3+ + 50 mM C16TAB, (C) 10 mM Au3+ + 50 mM C12TAB, (D) 10 mM Au + 

C16TAB + 10 mM Ascorbic Acid (AA), and (E) 10 mM Au3+ + 50 mM C12TAB + 10 

mM AA. These Spectra Were Acquired 1h Following Preparation of the Individual Gel 

Formulations. .................................................................................................................... 99 

4.4 Images of Control Agarose Gels Acquired after 1hr and 2 Gy Radiation; Ascorbic 

Acid Was Not Used in These Formulations (a) Agarose Gels Consisting of Only 10 mM 

HAuCl4, (B) Agarose Gel Formulated with 10 mM HAuCl4 and 50 mM C12TAB, (C) 

Agarose Gel Formulated with 10 mM HAuCl4 and 50 mM C16TAB. Columns (I), (II) and 

(III) Correspond to 5%, 7.5% and 10% (w/v) Agarose Respectively. ............................ 100 

4.5 Absorbance Spectra of Different Control Formulations Irradiated with 2 Gy X-ray 

Dose Dose (A) 10 mM Au3+ (i.e. HAuCl4) (B) 10 mM Au3+ + 50 mM C16TAB (C) 10 

mM Au3+ + 50 mM C12TAB. The Spectra Were Acquired 1hr Following Irradiation .. 101 

Figure 4.6 Images of 5% (w/v) Agarose Gel Containing (a) 50 mM C12TAB and (B) 50 

mM C16TAB Surfactants Following Exposure to Different Doses of Ionizing (X-ray) 

Radiation. ........................................................................................................................ 102 

4.7 Images of 7.5% (w/v) Agarose Nanosensor Gel with (a) C16TAB and (B) C12TAB 

Following Irradiation with Different Radiation Doses. Images Were Acquired 1 h after 

Irradiation. ....................................................................................................................... 104 

 



xiv 

 

Figure               Page  

 

4.8 Images of 10% (w/v) Agarose Nanosensor Gel Containing (a) C16TAB and (B) 

C12TAB Following Irradiation with Different Radiation Doses. Images Were Acquired 1 

h after Irradiation ............................................................................................................ 105 

4.9 Absorbance Spectra of 5% (W/V) Agarose Nanosensor Gels Containing (a) C12tab 

and (B) C16tab Irradiated with Different X-ray Doses .................................................. 106 

Figure 4.10 Absorbance Spectra of (A) 10 mM HAuCl4 + 50 mM C16TAB + 7.5% (w/v) 

agarose + 10 mM ascorbic acid (B) 10 mM HAuCl4 + 50 mM C12TAB + 7.5% (w/v) 

agarose + 10 mM ascorbic acid (C) 10 mM HAuCl4 + 50 mM C16TAB + 10% (w/v) 

agarose + 10 mM ascorbic acid (D) 10 mM HAuCl4 + 50 mM C12TAB + 10% (w/v) 

agarose + 10 mM Ascorbic Acid, Subjected to Various Doses of X-ray Radiation. ...... 108 

4.11 Kinetics of Gold Nanoparticle Formation in 5% (w/v) Agarose Nanosensor Gels 

with (a) C12TAB and (B) C16TAB Following Irradiation with Different Doses of X-rays.

......................................................................................................................................... 109 

Figure 4.12 Sem Image Showing Gold Nanoparticles Formed in a 5% (w/v) Agarose 

Nanosensor with C12TAB as Surfactant Post 2 Gy Irradiation. ...................................... 109 

4.13 Efficacy of Nanosensor Gels Formulated in 96 Well Plates, Which Led to Gels with 

Smaller Dimensions. (A) Absorbance Spectra of 5% (w/v) Agarose Nanosensor Gels 

Containing C12TAB. (B) Calibration of Maximum Absorbance Vs. Radiation Dose 1hr 

Post Radiation ................................................................................................................. 111 

4.14 Absorbance Response of the Plasmonic Nanosensor Gel Following Irradiation with 

X-rays; Maximum Absorbance Vs. Radiation Dose 1h Post X-ray Irradiation Is Shown in 

the Plot ............................................................................................................................ 113 



xv 

 

Figure               Page  

 

4.15 Absorbance Response of the Plasmonic Nanosensor Gel Following Irradiation with 

X-rays .............................................................................................................................. 114 

4.16 Absorbance Response of the Plasmonic Nanosensor Gel Following Irradiation with 

X-rays .............................................................................................................................. 114 

4.17 (A) Calibration Curve of Gel Absorbance Vs. Radiation Dose (0 – 3 Gy). This 

Curve Used for Nanosensor Gel-based Dosimetry of Fractionated Radiotherapy Doses in 

Absence of an Anthropomorphic Thorax Phantom. (B) Calibration Curve of Gel 

Absorbance Vs. Radiation Dose (0 – 3 Gy). This Curve Used for Nanosensor Gel-based 

Dosimetry of Fractionated Radiotherapy Doses at the Isocenter (100 cm SSD) Delivered 

to the Anthropomorphic Thorax Phantom. ..................................................................... 115 

4.18 (A). Maximum Absorbance of the Agarose Nanosensor Gels Irradiated with 2 Gy at 

Different Dose Rates and Energy (6 MV and 15 MV). No Significant Differences in 

Absorbance Were Observed under These Conditions Employed Indicating Dose Rate and 

Energy Independence of the Nanosensor Gel System (DS Indicates the Dose Rate in 

Monitor Units/Min) (B). Ion Chamber Dosimeter Is Placed below the Agarose Hydrogel 

(a) Molded to the Shape of a 4 Inch Petri Dish (PD) to Measure Heavy Metal (Au) 

Induced Radiation Attenuation. Even in the Presence of Heavy Metal (Au) and Ascorbic 

Acid (AA) There Is No Significant Dose Attenuation Observed. .................................. 117 

 

 

 

 

 



xvi 
 

Figure               Page  

 

4.19 (A) Image of the Anthropomorphic Thorax Phantom Used in the Current Radiation 

Dosimetry Studies (B) an X-ray Computed Tomography (Ct) Scan Image of the Thorax 

Phantom Used in the Experiments, Showing the Radiation Dose Treatment Plan. The 

Inside of the Phantom Is Irradiated with a 2 Gy Dose While the Skin Was Irradiated with 

3 Gy Dose ....................................................................................................................... 119 

5.1 Schematic of Nanosensor Gel Dosimeters for Proton Beam Therapy. ..................... 130 

5.2 Absorbance Spectra of the Hydrogel Nanosensor Following Irradiation with Proton 

Beam Therapy ................................................................................................................. 132 

5.3 Images of Nanosensor Gel of Thickness 1 mm Containing C12TAB or C14TAB 

Surfactants....................................................................................................................... 133 

5.4 Images of Nanosensor Gel of Thickness 2 mm Containing C12TAB or C14TAB 

Surfactants....................................................................................................................... 134 

5.5 Absorbance Values of 3 mm Agarose Gels at Different Locations on the Hydrogel 

Measured 2 Hours Post Irradiation. ................................................................................ 135 

5.6 Images of Nanosensor Gels Containing (A) 50 mM C12TAB and (B) 50 mM C14TAB 

Surfactants, Irradiated with Different Doses of Proton Beams as Indicated .................. 136 

5.7 Images of Controls of Agarose Gels Acquired 2 Hours Post a 2 GyRBE Radiation Dose 

Containing (A) 10 mM HAuCl4 and 50 mM Cx=10,12,14&16TAB Surfactant (From Left to 

Right), but No Ascorbic Acid (B) Only 10 mM HAuCl4, and No Cx=10,12,14&16TAB or 

Ascorbic Acid. ................................................................................................................. 138 

 

 



xvii 
 

Figure               Page  

 

5.8 Images of Nanosensor Gel Samples Composed of (a) 50 mM C10TAB and (B) 50 mM 

C16TAB Surfactants. All Gels Contain 10 mM HAuCl4 and 10 mM Ascorbic Acid. .... 139 

5.9 Images of Nanosensor Gels Formulated with 50 mM C12TAB and C14TAB 

Surfactants. Gels Were Irradiated with a 2 GyRBE Dose of Proton Beams, and Images 

Were Taken at (a) t = 0 Mins, (B) t = 5 Mins, (C) t = 10 Mins and (D) t = 15 Mins Post 

Irradiation. ....................................................................................................................... 141 

5.10 Transmission Electron Microscopy (TEM) Micrographs of Gold Nanoparticles 

Generated Within the Nanosensor Gel Formulated with C12TAB as Surfactant and 

Irradiated with 2 GyRBE Proton Radiation Dose. ............................................................ 141 

5.11 Absorbance Spectra of Nanosensor Gels Containing (a) C10TAB, (B) C12TAB, (C) 

C14TAB and (D) C16TAB as Surfactants Post Irradiation with Proton Beams at Different 

Doses. .............................................................................................................................. 144 

5.12 Absorbance of Gold Nanoparticles Formed in Agarose Hydrogels Formulated With 

(A) C10TAB, (B) C12TAB, (C) C14TAB and (D) C16TAB Following Irradiation with 

Different Proton Doses. .................................................................................................. 147 

5.13 The Stability of the Colorimetric Response of the Hydrogel Nanosensor Was 

Studied for up to One-week (1 w) Post Irradiation of the Gel Samples with Protons. ... 148 

5.14 Images of Nanosensor Gels Containing Irradiated With (i) 0 GyRBE (Control) and (ii) 

2 GyRBE. .......................................................................................................................... 149 

5.15 Material Hardness of the Nanosensor Gels Was Measured Using a TA.XT Texture 

Analyzer. ......................................................................................................................... 150 

 



xviii 
 

Figure               Page  

 

5.16 Absorbance Spectra of the Nanosensor Gel Following Irradiation with Proton 

Beams. ............................................................................................................................. 151 

5.17 Absorbance Spectra of the Nanosensor Gel Following Irradiation with Proton 

Beams. ............................................................................................................................. 152 

5.18 Absorbance Spectra of the Nanosensor Gel Following Irradiation with Proton Beam 

Therapy. .......................................................................................................................... 152 

5.19 Images of Nanosensor Gels Containing (a) 100 mM and (B) 150 mM C12TAB 

Surfactant Irradiated with Different Doses of Proton Beams as Indicated. .................... 153 

5.20 Three Possible Scenarios of the Decay of Generated Hydrated Electron Post 

Irradiation with Protons. (A) Formation of Peroxides and Other Secondary Products, (B) 

Electron Hopping from an Empty Micellar Site of the Generated Hydrated Electron to 

Reduce a Nearby Au(I) Ion, and (C) Direct Reduction by the Generated Electron of Au(I) 

Ion to Au(0)..................................................................................................................... 155 

5.21 Calibration Curve for C12TAB (Blue Dotted Line) and C14TAB (Orange Dotted 

Line) Using Maximum Absorbance Vs Proton Dose from 0 - 3 GyRBE, 2 h Post 

Irradiation. ....................................................................................................................... 157 

5.22 (A) Evaluation of the Predictive Ability of Hydrogel Nanosensors Using an 

Anthropomorphic Child Phantom Placed on the Irradiation Table and Subjected to Proton 

Therapy. (B) an X-ray Computed Tomography (Ct) Scan Image of the Phantom Used in 

the Experiments. The Spinal Cord of the Phantom Is Irradiated With 1.8 GyRBE. ......... 159 

 

 



xix 

 

Figure               Page  

 

6.1 UV-Visible Spectra and Digital Images Illustrating the Presence and Absence of 

Spontaneous Gold Nanoparticle Formation with Three Distinctly Charged Surfactants.

......................................................................................................................................... 169 

6.2 Image of Hydrogel Nanosensor Contain (Top) 50 mM C16TAB, (Middle) 50 mM 

C14TAB and (Bottom) 50 mM C12TAB Surfactants, Irradiated with Different Doses of 

Electron Beam as Indicated ............................................................................................ 171 

6.3 Absorbance Spectra of Hydrogel Nanosensor Containing 50 mM (A) C12TAB, (B) 

C14TAB and (C) C16TAB As Surfactant Post Irradiation as a Function of Radiation Dose

......................................................................................................................................... 174 

6.4 Absorbance at 540nm as a Function of Radiation Dose ........................................... 175 

6.5 Transmission Electron Microscopy (TEM) Micrographs of Gold Nanoparticles with 

C14TAB as Surfactant Irradiated with a 4 Gy Electron Beam Dose. .............................. 176 

6.6 Images of the Hydrogel Nanosensor Incubated with No Glutathione (Left) and with 

25mM Glutathione for 10 Minutes (30 Minutes Post-irradiation).................................. 177 

6.7 Images of Hydrogel Nanosensor Irradiated with Different Doses of Electron Beam 

Irradiation. ....................................................................................................................... 179 

6.8 (A) Absorbance at 540nm as a Function of Radiation Dose. The Linear Range in the 

Therapeutic Window of the Hydrogel Nanosensor (0-5 Gy) Is Indicated. (B) Calibration 

Curve for C14TAB Using Absorbance at 540nm as a Function of Radiation Dose Between 

0 and 5 Gy. The Hydrogel Nanosensor Contained C14TAB at a Concentration of 75mM. 

Absorbance of the Hydrogel Nanosensor Was Measured 2 Hours Post Irradiation. ...... 180 

 



xx 

 

Figure               Page  

 

6.9 (A) Image Depicting the Colorimetric Response of the Hydrogel Nanosensor 

Irradiated on Half with a 3 Gy Dose. The Appearance of a Pink/Maroon Color Illustrates 

the Capability of the Hydrogel Nanosensor to Qualitatively Distinguish the Irradiated and 

the Non-irradiated Regions. (B) Dose Fall Off-profiles Comparing the Simulated Dose 

(Blue Triangles) with the Predicted Dose (Orange Circles) Indicating the Efficacy of the 

Hydrogel Nanosensor to Quantitatively Determine the Topographical Dose Profiles. .. 181 

6.10 Absorbance at 540nm as a Function of Dose Rate. Three Different Dose Rates 

(100,600 and 1000 Mu/Minute) Were Employed in the Study. ..................................... 182 

6.11 Setup Depicting the Anthropomorphic Thorax Phantom and (Right) Image of the 

Hydrogel Nanosensor after Exposure to 2.5 Gy. ............................................................ 183 

7.1 Images of Gel Nanosensors Containing Various Concentrations of C14TAB (50-

150mM) Following Exposure to Various Doses of Ionizing Radiation (0-10 Gy). ....... 196 

7.2 Schematic Illustration of the Proposed Mechanism. At Low Surfactant 

Concentrations, Most Gold Ions Are Likely Free in Solution (Unbound to Micelles). With 

Increasing Surfactant Concentration, the Equilibrium Shifts to the Right with a Decrease 

in Free Gold Ions. Upon Irradiation, the Number of Au0 Atoms Formed Due to Reduction 

at Low Surfactant Concentration Is Higher Due to the Presence of a Higher Number of 

Free Gold Ions When Compared to the System at High Surfactant Concentration. The 

Higher Number of Free Gold Atoms Lead to Increased Yield of Gold Nanoparticles Due 

to Surface Assisted Reduction with Unreacted Gold Ions. ............................................. 196 

7.3 From Top to Bottom; Absorbance Spectra of Gel Nanosensor Containing (A) 50mM, 

(B) 62.5mM, (C) 75mM, (D)100mM, (E)150mM.......................................................... 199 



xxi 
 

Figure               Page  

 

7.4 Peak Absorbance Spectra at 540nm Plotted Versus Radiation Dose Post Irradiation

......................................................................................................................................... 200 

7.5 (A) Image of Agarose Gel (Left) Prior to Irradiation, (Middle) Top Half Irradiated 

with 4 Gy and Image Acquired 2 Minutes Post Irradiation, and (Right) Image Acquired 1 

Hour Post Irradiation. A Visible Increase in Intensity of Color in the Non-irradiated 

Region Leads to Loss of Topographical Information. (B) I. Image of 3 w/v % Agarose 

Gel (Left) 2 Minutes Post Irradiation and (Right) 1 Hour Post Irradiation; II. Image of 4 

w/v % Agarose Gel (Left) 2 Minutes Post Irradiation and (Right) 1 Hour Post Irradiation 

Indicates That Increase in Agarose Weight Percentage Does Not Preserve Topographical 

Dose Information (C) Images of Gel Nanosensor Incubated with 5 Mm Sodium Sulfide 

and Various Sodium Halides for 10 Minutes and Imaged after 1 Hour. No Loss of 

Topographical Information Observed upon Incubation with Sodium Sulfide. ............... 203 

7.6 Schematic Illustration of the Proposed Mechanism Used for Detecting Spatial Dose 

Distribution. Early Addition of Na2S Leads to the Reduction of Unreacted Gold Ions to 

Gold Sulfide Particles, Which Obviate Further Reaction and Color Bleed Over. These 

Ions Wound Have Otherwise Likely Contributed to the Growth of Radiolytically 

Generated Gold Nanoparticle Resulting in Bleed over of the Color to Non-irradiated 

Regions. Upon Delayed Addition of Na2S, Most of the Radiation-generated Gold 

Nanoparticles Have Matured and Further Addition of the Quenching Agent Does Not 

Affect the Final Yield of Gold Nanoparticles in the Gel Nanosensor. This Results in an 

Increase in Absorbance in the Gel Nanosensor as a Function of Time of Addition of Na2S 

Post-irradiation. ............................................................................................................... 203 



xxii 
 

Figure               Page  

 

7.7 Elemental Analysis of Nanoparticles after Incubation with Na2S in the (a) Irradiated 

Region and the (B) Non-irradiated Region. The Presence of a Broadened Peak in a 

Indicates the Presence of Gold Sulfide Nanoparticles. ................................................... 206 

7.8 Tem Image Showing Presence of Nanoparticles (a) after Incubation with Sodium 

Sulfide (Nanoparticle Dimensions: 5.6 ± 1.7 Nm) and (B) Without Incubation with 

Sodium Sulfide (Nanoparticle Dimensions: 52.7 ± 23.4 Nm). ....................................... 207 

7.9 (A) Representative Image of a Petridish Containing the Gel Nanosensor (3mm Thick 

and ≈10cm Diameter) Irradiated by a 1cm X 1cm Square Field of X-ray Radiation. From 

Left Each Square Indicates Increasing Radiation Dose From .5 Gy (Red Box), 1 Gy, 1.5 

Gy, 2 Gy, 2.5 Gy, 3 Gy, 3.5 Gy, 4 Gy, 4.5 Gy and 5 Gy; The Black Box in the Middle 

Image Shows 0 Gy. (B) Representative Image of a Complex Topographical Dose Pattern 

(ASU Letters) Generated Using a 2Gy X-ray Dose. The Petridish Has a Diameter of 

10cm. All Gel Nanosensors  Contain 50mM C14TAB and Na2S Was Added 30 Minutes 

Post Irradiation. ............................................................................................................... 209 

7.10 (A) Images and (B) Absorbance Spectra of Gels Containing 75 mM C14TAB 

Following Exposure to Different Doses of Ionizing Radiation. Characteristic Peaks 

Between 500 and 600 nm Are Indicative of Gold Nanoparticle Formation. (C) 

Absorbance at 540nm as a Function of Radiation Dose Is Used as a Calibration Curve to 

Determine Unknown Doses. ........................................................................................... 211 

 

 

 



xxiii 
 

Figure               Page  

 

7.11 (Left) Colorimetric Response of the Gel Nanosenor Irradiated on One Half with a 2 

Gy Dose. A Visible Appearance of Maroon Color in the Irradiated Region Illustrates the 

Ability of the Gel Nanosensor to Predict Topographical Dose Profiles. (Right) Dose Fall-

off Profile for Half a Gel Nanosensor Irradiated by 2 Gy. The Delivered Radiation Dose 

and the Predicted Are Comparable Indicating the Efficacy of the Gel Nanosensor in 

Determining Topographical Information. In All Cases, Na2S Was Added 30 Min Post 

Irradiation. ....................................................................................................................... 211 

7.12 (A) Image of an Anthropomorphic Head and Neck Phantom Treated with an 

Irregularly Shaped Radiation Field below the Left Eye. (B) Image of the Gel Nanosensor 

Positioned on the Anthropomorphic Phantom in the Radiation Field Mimicking a 

Conventional Radiotherapy Session. (C and D) Treatment Planning Images Representing 

an Irregularly Shaped Radiation Field Used to Deliver a Complex Radiation Pattern 

under the Eye of the Phantom. (E) Visual Image of the Irradiated Pattern on the Gel 

Nanosensor. Only the Irradiated Region Develops a Maroon Color While the Non-

irradiated Region Remains Colorless. (F) Topographical Dose Profile of the Delivered 

Radiation to the Anthropomorphic Phantom. The Profile Is Generated from the Treatment 

Plan Used During the Actual Irradiation of the Head and Neck Phantom. (G) Absorbance 

along the Irradiated Gel Nanosensor in ≈2mm X 2mm Grids Was Quantified Using a 

Calibration Curve to Quantify a Topographical Dose Profile. The Core Dose Received by 

the Crescent-shaped Profile (2.3 Gy) Is Comparable to the Predicted Dose Profile from 

the Gel Nanosensor (2.3 Gy) .......................................................................................... 214 

 



xxiv 

 

Figure               Page  

 

7.13 Representative Image of (a) Half the Gel Nanosensor and (B) Half the Radiographic 

Film Positioned in the Radiation Field on Patient A. (C) Treatment Planning Software 

Depicting the Delivery of a 2 Gy Dose Delivered to the Surface of Patient A. (D) the 

Expected Dose Fall-off Profile of 2 Gy Inside the Radiation Field and a Minimal 

Radiation (.1 Gy) Outside the Field. A Color Change Is Visible Clearly in Both the (E) 

Gel Nansensor Whose Color Changes to Maroon and (F) Radiographic Film Whose 

Color Changes to Dark Green Post-irradiation. The Dose Map of the Predicted Dose for 

Both the Gel Nanosensor and Radiographic Film Is Depicted below Each Corresponding 

Sensor (Please See the Experimental Section). The Dose Profiles Are Similar Indicating 

the Efficacy of the Gel Nanosensor for Clinical Dosimetry. The Time for Readout of the 

Gel Nanosensor Was 1 Hour While the Radiochromic Film Required >24 Hours Prior to 

Readout. The Experiments Were Performed 3 times Independently for the Gel 

Nanosensor and the Radiographic Film. ......................................................................... 217 

7.14 (A) Representative Image of the Final Setup of Patient B. Half the Gel Nanosensor 

and the Gafchromic EBT3™ Film Is Placed on the Radiation Field on Top of the Bolus 

Which Was Delivered a Radiation Dose of 1.5Gy (Image Does Not Contain the Gel 

Nanosensor and the Gafchromic EBT3™). (B) Representative Image of the Gel 

Nanosensor Placed on the Treated Region Which Was Delivered a Radiation Dose of 

3Gy. (C) Treatment Planning Software Depicting the Delivery of a 3Gy Dose Delivered 

to the Skin of Patient B. (D) the Expected Dose Delivered to the Skin of the Patient and 

(E) Surface Dose 

 



xxv 

 

 

Figure               Page  

 

(1.5cm above the Bolus). A Color Change Is Visible Clearly in Both the (F) Gel 

Nansensor to Pink/Maroon (G) Radiographic Film to Dark Green Post-irradiation. The 

Heat Map of the Predicted Dose for Both the Gel Nanosensor and Radiographic Film Is 

Depicted below Each Corresponding Sensor(See Experimental Section). The Dose 

Profiles Are Similar in All Cases Indicating the Efficacy of the Gel Nansensor to Clinical 

Dosimetry. The Time for Readout of the Gel Nanosensor Was 1 Hour While the 

Radiochromic Film Required >24 Hours Prior to Readout. The Experiments Were 

Performed 3 times Independently for the Gel Nanosensor and the Radiographic Film. 219 

8.1 Maximum Absorbance Proportional to Concentration of Gold Nanoparticles 

Following Irradiation of 325 Gy Measured at Discrete Time Intervals.......................... 232 

8.2 (A). Maximum Absorbance as a Function of Radiation Dose for the Lead Amino 

Acids. Gold Stripes: Valine (V), Gold Solid: Leucine (L), Black Wavy: Phenylalanine 

(F), Black Brick: Aspartic Acid (D), Black Diagonal: Threonine. (B). Maximum 

Absorbance as a Function of Radiation Dose. Amino Acids Employed for the Study 

Phenylalanine (F), Aspartic Acid (D), Valine (V), Leucine (L), Threonine and Aspartame 

(Fd). All Absorbance Measurements Were Carried out 2 Hours Post Irradiation. ......... 235 

8.3 Representative Images of the Agarose Hydrogel Containing Various Combinations of 

Au3+, L-phenylalanine and Tryptophan Following Irradiation with 0 Gy and 7.5 Gy. .. 236 

8.4 Optical Images of Agarose Hydrogel Containing Mixtures of Chloroauric Acid with 

(a) No Additive, (B) Glycine, (C) Alanine, (D) D-phenylalanine, and (E) L-

phenylalanine. ................................................................................................................. 238 



xxvi 
 

Figure               Page  

 

8.5 1H NMR Spectra Between Pure Amino Acids and a Mixture of Amino Acid and 

Chloroauric Acid. ............................................................................................................ 240 

8.6 Absorbance Profiles of the Hydrogel Nanosensor as a Function of Time (a) Without 

and (B) with Glutathione Incubation. Significant Differences Were Observed after One 

Day in All Cases Indicating the Need of Glutathione Supplementation for Inhibiting Gold 

Nanoparticle Growth. (C) Optical Images Are Shown Illustrating the Increase in Intensity 

of the Developed Maroon Color over Time in the Absence of Glutathione Incubation (D) 

No Such Increase in Intensity of the Radiation-induced Maroon Color Was Observed 

after Incubation with Glutathione. A Two-way Paired Student’s t-test Was Performed and 

P-values < .05, Considered Statistically Significant, Are Denoted with an Asterisk (*) on 

the Respective Column. .................................................................................................. 241 

8.7 Effect of Radiation Post Glutathione Addition. ........................................................ 242 

8.8 Optical Images of Hydrogels Irradiated Radiation Doses Used Routinely in Clinical 

Fractionated Radiotherapy. ............................................................................................. 244 

8.9 Representative Transmission Electron Microscopy (Tem) Images of Gold 

Nanoparticles Formed at (a) 0 Gy (Left, Scale Bar of 5 nm), (B) 2 Gy (Middle, Scale Bar 

of 50 nm) and (C) 7.5 Gy (Right, Scale Bar of 100 nm). The Average Nanoparticle Size 

Varies from 1.8 ± 1.5 for 0 Gy, 34.2 ± 9.7 for 2 Gy and 21.6 ± 3.6 for 7.5 Gy. ............ 246 

8.10 (A) UV-Vis Absorption Spectra of the Control (0 Gy) Gels and Gels Irradiated with 

Different Doses of X-ray Radiation. (B) Maximum Absorbance Vs. Radiation Dose 

Which Serves as the Calibration Curve for the Sensor at Various Therapeutic Doses of 

Radiation Between 0 Gy and 6 Gy. ................................................................................ 248 



xxvii 
 

Figure               Page  

 

8.11 Post Irradiation Stability of the Hydrogel Sensor Irradiated with 5 Gy. ................ 248 

8.12 (A) Digital Image of the Hydrogel Sensor (Positioned in the Intersection of the 

Green Lasers) on Top of an Anthropomorphic Thorax Phantom. The Phantom Was 

Treated with a Dose of 3 Gy, Optical Image of the Hydrogel Sensor on the Surface of the 

Phantom Prior to Irradiation (0 Gy) and Post Irradiation. .............................................. 249 

8.13 Live/Dead® Cell Viability Assay Showing Live Bj5ta Human Fibroblast Cell Line 

Stained with Calcein-am (Green) and Dead Cells with Ethd-1(Red). Cells Were Seeded 

on the 0 Gy and  5 Gy Hydrogel Post Irradiation (≈2hours). Absence of Significant Dead 

Cells When Compared to the (a) Agarose Control Indicate the Biocompatibility of the 

Functional Components of the Sensor. All Images Have Scale Bar of 400 µm.  Cell 

Viability Was Quantified Using Xtt and No Significant Changes Were Observed. ...... 251 

8.14 (A). Representative Image of the Experimental Setup for the Radiotherapy 

Treatment of Canine Patient, (B). Images of Nanodot™ OSLD and the Hydrogel Sensor 

Placed on the Canine Patient (Top Right) Show the Gel Prior to Irradiation (0 Gy) and 

Post Irradiation with 1.34 Gy (Bottom Right). The Change in Color Was Quantified 

Using UV-Vis Spectrophotometer and the Gel Nanosensor Calibration Predicted a Dose 

of 1.25 ± .34 Gy, Which Was an Error of 6.7% Compared to the Planned Dose. .......... 252 

9.1 Schematic Illustrating the Fabrication Technique and Potential Applicability of the 

Valencia Applicator ........................................................................................................ 258 

9.2 Images of the Hydrogel Nanosensor Following Exposure to Various Levels of 

Ionizing Radiation from an 192Ir Source. Images Were Acquired 1-hour Post-irradiation.

......................................................................................................................................... 259 



xxviii 
 

Figure               Page  

 

9.3 (A) Plot of Absorbance as a Function of Radiation Dose and (B) Maximum 

Absorbance Response Between 500 and 600nm Versus Radiation Dose 1-hour Post-

irradiation. ....................................................................................................................... 260 

9.4 Digital Images of Hydrogel Nanosensor Exposed to Four Different Radiation 

Conditions. From Left. 0 Gy (No Radiation Control), Half the Hydrogel Nanosensor 

Exposed to 2 Gy Horizontally, Half the Hydrogel Nanosensor Exposed to 5 Gy 

Horizontally, Top One Third Exposed to 2 Gy and the Bottom One Third Exposed to 5 

Gy While the Middle Section Remains Not Exposed to Radiation and 5 Gy Radiation 

Delivered Vertically. These Images Illustrate Minimal Post-irradiation Fadeout Diffusion 

over the Course of 72 Hours ........................................................................................... 266 

  



1 

 

Chapter 1 INTRODUCTION 

 

Radiation therapy or Radiotherapy (RT), using ionizing radiation (X-rays and gamma 

rays), is a first line of treatment for several types of cancer diseases, although protons and 

low atomic weight ions are also used (Hardon therapy).1 External-beam radiotherapy 

(EBRT) is commonly employed in the clinic, although other methods including 

brachytherapy, intra-operatory radiation therapy (IORT) and metabolic radiation therapy 

are also used.1 The cumulative dose delivered depends on the type of cancer and often 

ranges between 20 and 70 Gy (1 Gy = 1 Joule of radiation energy absorbed / kg of matter). 

In conventional procedures, the cumulative dose is delivered over several fractions with a 

typical dose close to 2 Gy. The entire treatment lasts several weeks, with up to five fractions 

delivered every week. Several variations of fractionated radiotherapy have been explored 

in order to maximize the efficiency of treatment and facilitate patient tolerance. A dose 

range of 0.5-1.8 Gy is employed in hyperfractionated radiotherapy2, 3. In hypofractionated 

radiotherapy, doses ranging from 3-10 Gy, which are higher than the conventional 2 Gy 

dose, are delivered4. This has been made possible by advanced methods including 

volumetric-modulated arc therapy (VMAT). In addition, stereotactic RT, which is a kind 

of EBRT, has been employed in conjunction with imaging to deliver higher radiation doses, 

between 6 and 25 Gy1, specifically to well-defined small tumors in a single treatment or 

smaller number of fractions.5  

  

Although radiotherapy possesses several advantages for cancer treatment, radiation-

induced toxicity and tissue damage are causes for concern. For example, radiation-induced 
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fatigue, skin problems, proctitis6, esophagitis7, osteonecrosis8 and other complications 

have been reported. Clinical cases of accidental overdose9 and inaccurate dosing10  due to 

errors in machine calibration have been reported. In addition, cases of overdose due to error 

have also been known to occur11. These issues highlight the importance of appropriately 

dosing cancerous tumors so as to avert any adverse effects of radiation-induced toxicity.  

 

Several technologies have been investigated for monitoring and quantifying ionizing 

radiation in order to potentially facilitate accurate dosing in patients. For example, small 

ionization chambers, silicon diodes, metal-oxide semiconductor field effect transistors 

(MOSFETs), thermo-luminescent dosimeters (TLDs), optically stimulated luminescence 

dosimeters (OSLDs), diamonds and films are used for radiation dose determination. 

Existing dosimeters can be classified into non-implantable devices for in vivo 

measurements and implantable devices for measurements inside the target in the body. 

Non-implantable systems find application in procedures using standard fractions of ≈2 Gy 

per session of fractionated radiotherapy. Diodes, TLDs, films and some MOSFETs are the 

most commonly used non-implantable systems, and are often used for entry dose 

measurement. On the other hand, implantable dosimeters are introduced into the body via 

natural cavities or less commonly, directly into target tissues12; the reader is referred to 

other excellent papers on this for a more detailed discussion1. Most of these devices require 

electrical or optical connections for readout and are often cumbersome to use. Even in case 

of optical fibers, there is a need to shield optical connections as a result of the Cherenkov 

light produced13. In light of the above limitations, there is an urgent need to develop simple 

yet robust systems that can address existing challenges with radiation sensing and 
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dosimetry for clinical applications. Here, we review the latest developments in molecular 

and nanoscale systems for sensing ionizing radiation, with a particular focus on use in 

cancer radiotherapy applications. To our knowledge, this is the first comprehensive review 

on molecular and nanoscale dosimeters for application in clinical radiotherapy. 

 

1.1 Molecular Systems  

 

1.1.1 Small Molecule Systems 

 

Emission of light from fluorescent molecules depends on the chemistry of the molecules 

and their local environment.14. Radio-fluorogenic co-polymerization is a process in which 

a non-fluorescent active monomer is incorporated into a growing polymer chain resulting 

in fluorescence of the long chain. The polymerization itself is triggered by the free radicals 

generated upon irradiation with ionizing radiation. Warman et al. described a two-

component monomer system which includes an acrylate-based supporting molecule and a 

functional non-fluorescent active molecule, N-(1-pyrenyl)maleimide (MPy), for radiation 

sensing.15 The supporting non-fluorescent medium (methyl methacrylate/tertiary-butyl 

acrylate) polymerizes, incorporating the active molecule MPy into the growing polymer 

chain, in turn making it fluorescent.16 This incorporation of the active molecule in the 

polymer chain prevents diffusion and can render information on the spatial distribution of 

the dose. Limited diffusion of the active probe reduces false positives post-irradiation 

which can help define complex radiation profiles delivered. This approach of radio-

fluorogenic co-polymerization (RFCP) has been shown to be applicable to a wide range of 
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ionizing radiation sources including 192Ir radioisotope, cobalt gamma ray source, electron 

beam and proton beams.17-20 The fluorescence signal reached a steady state after three 

minutes and was reported to be stable for at least three hours. However, approximately 

60 % loss in signal was seen after a period of 28 days. This loss was attributed to the 

diffusion of air into the dosimeter, which was responsible for quenching the pyrene 

fluorescence; diffusion of the fluorescent product out of the irradiated region was not 

deemed to be a cause for this loss.20 Even though RFCP-based dosimeters measure doses 

as low 2 Gy, the need to carefully handle toxic and flammable acrylates can be a limitation 

of these systems. In addition, it is difficult to obtain real time information, which may limit 

the ultimate application of such systems during routine radiotherapy.20   

 

Benevides et al. used the principle of degradation of fluorescent molecules as a “turn-off” 

sensor for detecting radiation. Briefly, rhodamine 6G and fluorescein dyes were embedded 

in water-containing agarose hydrogels.21 Upon irradiation, water molecules release free 

radicals which have oxidizing and reducing properties.22 Upon reaction with free radicals, 

the dyes lose their fluorescence properties and act as an indicator of applied radiation 

dose21.  Radiolytic species generated in water have short lifespans, which decreases the 

probability of interaction between the free radical and the fluorophore. To achieve 

enhanced sensitivities, the lifetime of radiolytic species was increased by the addition of 

NaCl. Cl2− radicals generated through high energy irradiation have longer life times which 

led to the detection of radiation doses between 40 and 200 Gy with a resolution of 20 Gy.21 

Han et al. improved upon these fluorescence systems by developing a sensor that can detect 

radiation levels down to 0.01 Gy by using 4,4′-di(1H-phenanthro[9,10-d]imidazol-2-
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yl)biphenyl (DPI-BP).23 This detection capability can be relevant in a clinical setting in 

order to accurately target cancerous tumors with γ-radiation during therapy. DPI-BP, when 

solubilized in either chloroform or dichloromethane, demonstrated a strong fluorescence 

signal; iodinated and brominated solvents were not useful since DPI-BP did not fluoresce 

in them. These chlorine-based solvents result in the formation of HCl upon irradiation with 

ionizing radiation. This, in turn, is thought to enhance aggregation of DPI-BP due to 

intermolecular π–π stacking, leading to detectable quenching of the original fluorescence 

signal. This signal decay was used as a measure of radiation dose. A 5 % decrease in the 

emission of DPI-BP was seen for a radiation dose as small as 0.1 Gy and complete 

quenching was observed at a dose of 3 Gy. The strong quenching indicates the capability 

of the system for sensing low doses of ionizing radiation. Additionally, the original signal 

could be recovered by the addition of a strong base like NaOH which deprotonates HCl. In 

order to verify the need of HCl, other solvents including DMF, DMSO, THF and toluene 

were used without detectable changes in fluorescence even at a dose of 100 Gy. Further 

investigations may be necessary to determine the toxicity of these molecules for in vivo 

settings, particularly given the need for chlorinated solvents and formation of HCl.  

 

A novel fluorescence technique that is based on aggregation-induced fluorescence 

emission of silole compounds was recently developed for the detection of gamma ray 

radiation.24  In this system, the silole compound, containing a positively charged 

ammonium group, shows minimal emission in aqueous solutions. The solution however 

becomes strongly emissive upon mixing with either polymers or amphiphilic molecules 

that contain negatively charged moieties, which can induce the aggregation of the silole. 
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In one version, the silole molecule was mixed with a polyelectrolyte containing sulfone 

groups (−SO2−) in the main chain and −COONa groups in the side chain. Upon exposure 

to gamma ray radiation, the polymer degrades by the release of SO2 due to the relative 

weakness of C−S bonds in the main chain. The electrostatic and hydrophobic interactions 

between silole and polymer in turn weaken, inhibiting the aggregation of the silole 

compound. As a result, the solution containing the silole compound and polymer is weakly 

emissive after gamma-ray exposure. The decrease in intensity is used as a measure of 

radiation dose. The fluorescent complex did not lose its intensity for up to two days. In this 

case, a minimum dose of 130 Gy was needed for the sensor to work effectively. A “turn-

on” fluorescence sensor was subsequently developed by the same group due to the 

relatively high radiation dose required to observe a detectable change in the previous 

version.25  The synthesized molecular sensor consists of a 3,3′-dimethyl-3H-indole 

functional group on a tetraphenylethylene derivative dissolved in halogenated solvents 

including CHCl3 or CH2Cl2. This system is weakly emissive in chloroform and 

dichloromethane. Following irradiation with gamma rays, these solvents produce HCl, 

which results in protonation of the molecular sensor. This protonated molecule 

demonstrates poor solubility in the solvents used, which results in its aggregation and a 

concomitant increase in fluorescence (“turn-on”). The limit of detection of this system was 

shown to be as low 0.023 Gy. A different molecular sensor with a dual-band emissive 

response was developed by dissolving 4-(1H-phenanthro[9,10-d]imidazol-2-yl)-N,N-

diphenylaniline (PI-DPA) in chloroform.26 PI-DPA tends to self-assemble into fibers upon 

interaction with HCl that is generated upon irradiation. Formation of these fibers quenches 

the existing fluorescence intensity and brings about a new fluorescence band at a longer 
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wavelength. These two signals, along with the photoconductive property of the nanofibers, 

were predicted to assist in developing a multimodal sensor in the detection of ionizing 

radiation. The sensor was projected to detect radiation doses as low as 0.006 Gy. These 

stimuli-responsive small molecules could potentially be applied for routine ex vivo (skin) 

radiotherapy due to their sensitivity and fast response. However, potential toxicity issues 

of these small-molecule sensors as well as the solvent will have to be determined prior to 

in vivo dosimetry.  

 

1.1.2 Polymer-Based Systems 

 

Most polymer systems used for the purpose of radiation sensing are based on the principle 

of modification of the polymer structure / chain length either through cross-linking or by 

scission of the backbone by ionizing radiation27. This, in turn, results in changes in the 

physicochemical properties (e.g. color changes or change in electrical conductivity) of the 

polymer used28. Initial studies on polymer thin films were based on poly(p-phenylene 

vinylene)28; changes in electrical conductivity, optical density and photoluminescence 

were observed upon exposure to X-ray irradiation. However, these changes in polymer 

properties were typically observed at high radiation doses (>1 kGy), which necessitated 

the need for polymer-based systems that were responsive to lower radiation doses. Poly (2-

methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) is one of the most 

widely studied polymer systems for detecting lower doses of ionizing radiation29. Two sets 

of formulations, MEH-PPV dissolved in chloroform and spin-coated MEH-PPV on a glass 

substrate as a thin film, were investigated. Upon gamma irradiation using a 1.25 MeV 60Co 

source, MEH-PPV in chloroform showed significant spectral shifts at 38 Gy, while MEH-
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PPV films were insensitive to doses as high as 114 Gy. The enhanced response could be 

attributed to the release of .Cl radicals in solution which degrade the polymer leading to a 

loss of conjugation. Further investigation into free radical-based polymer degradation was 

carried out using Fukui indices. 30  The .Cl radicals attack the vinyl bonds in the polymer 

backbone leading to chain scission and eventual loss of electronic conjugation. The effect 

of different halogenated solvents and their role in degradation of MEH-PPV was also 

investigated.31 At doses as low as 1 Gy, the polymer, dissolved in bromoform and 

diiodomethane/dichloromethane, showed blue shifts in absorbance spectra compared to the 

0 Gy condition. Significant shifts were obtained when the solvent contained higher 

amounts of halogen atoms. Studies with the polymer dissolved in toluene solvent showed 

no significant response at 30 Gy, which indicated the need for halogenated solvents in this 

system. Lower concentrations of the polymer were deemed to enhance the sensitivity of 

the dosimeter. This could be explained by the fact that at lower concentrations, the polymer 

is better solvated increasing the probability of reaction between the free radical and the 

polymer backbone. However, at higher concentrations, polymer aggregation can hinder the 

reaction between the radicals and the polymer, which lowers the efficacy of the detection 

performance. In addition to gamma radiation MEH-PPV also was shown to be responsive 

to a proton flux of 1013 ions cm−2 irradiation which can make this a versatile system for 

radiation sensing.32 As with previous systems, biocompatibility of the polymers, solvents, 

and by-products of the sensing reaction will need to be elucidated before considering 

translation to human applications.  
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High Z (atomic number) elements are known to enhance the sensitivity to lower radiation 

doses. 33, 34  Based on this background, composites containing inorganic compounds within 

polymer hosts were studied for gamma scintillation. Upon irradiation, the high Z material 

attenuates high-energy photons resulting in the formation of an electron-hole pair. These 

pairs are transferred to the polymers where radiative decay occurs.35  A luminescent 

polymer P-PPV and high Z materials including 1,3-diiodobenzene (DIB) and BiI3 were 

blended together with a solid polymer matrix consisting of poly(trimethylolpropane 

trimethylacrylate) (TMPTMA).35 The scintillation lifetimes of the nanocomposites were 

comparable to commonly employed scintillants LaCl3 and LaBr3 36 even though the 

scintillation efficiencies were found to be lower with the current formulation. A similar 

nanocomposite for detecting radiation using fluorescence resonance energy transfer 

(FRET)37 was developed. Poly[9-hexyl-9-(20-ethylhexyl)-fluorene] (HEH-PF), a blue 

light-emitting polymer, was mixed with red light emitting polymer DCM (4-

(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran). DIB was added to 

this mixture in order to enhance radiation absorption efficiency; the mixture was 

subsequently formulated into a thin film. This ternary composite showed radiation 

sensitivity for doses lower than 50 Gy based on photoluminescence readout.  

 

An unavoidable effect of photon beam radiotherapy is the potential scattering of the dose 

outside the treatment beam.38 These scattered doses of magnitudes lower than 1 Gy can 

induce unintended secondary effects in patients39. However, MEH-PPV based dosimeters 

do not typically respond to doses lower than 1 Gy40. Detection limits were improved by 

using an organometallic polymer 1,1’-bis(ethynyl)-4,4’–biphenyl (DEBP) with a platinum 
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metal center as a potential radiation dosimeter41. Pt-DEBP dissolved in chloroform was 

used further for dosimetry studies. Structural changes in Pt-DEBP arise due to Cl. free 

radical attack on the triple bond on the polymer chain and increase in molecular weight due 

to recombination of the oligomeric fragments42. A concomitant change in the absorbance 

spectra is detected above 1 Gy as a result of structural modification on the polymer. The 

polymer system displayed fluorescence properties due to its conjugated nature and π→π* 

absorption41.  The presence of a transition metal (Pt) renders unique structural, optical and 

electronic properties to the polymer. An importance feature is the presence of a delocalized 

π-conjugated electron cloud which extends and reaches the metal center from the polymeric 

backbone40. Chlorine incorporation reduces the spin density on Pt, thereby increasing the 

output fluorescence signal. This system, which uses the photoluminescence emission ratio 

at 420 nm and 398 nm, could detect doses between 0.1-1 Gy.  

1.1.3 Single-Crystal Systems 

 

Dielectric and wide-band gap semiconductor materials have been traditionally employed 

as scintillator materials43 and in radiation detection 44. Thermalized electrons and holes are 

generated in the scintillator lattice upon irradiation with a high-energy photon beam. 

Recombination of these electron-hole pairs lead to luminescence which is converted into 

an electrical signal through a photodetector.43 The use of room-temperature synthesis 

protocols has made organic molecules attractive alternatives to inorganic scintillators45. 

Organic semiconducting single crystals (OSSCs) including 4-hydroxycyanobenzene 

(4HCB) and 1,8-naphthaleneimide (NTI) demonstrate tissue equivalent properties, and are 

attractive as direct X ray detectors46. These crystals, along with organic polymers (PDMS, 
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poly(dimethylsiloxane) and PEDOT:PSS, 

poly(ethylenedioxythiophene):poly(styrenesulfonate)) as substrates, were able to convert 

incoming 35 kV photons from an X-ray source directly to an electrical signal. The 

longevity of 4HCB crystals was investigated by (1) irradiation to a total dose of 2.1 kGy 

and (2) aging for a month. The electrical response of the sensor was reliable despite this 

significant strain. Anisotropic crystals of 4HCB require alignment of the crystal and 

electrode in order to manipulate charge carrier transport properties. However, 1D crystals 

are of practical interest because they possess only one single crystallographic direction that 

can be electrically accessed. Needle-shaped crystals (1D) of 1,5-dinitronaphthalene (DNN) 

were studied for their electrical response under irradiation.45 Rubrene crystals were used 

based on the hypothesis that charge mobility might affect the sensitivity of the crystals to 

X-ray irradiation 47; charge mobility of rubrene crystals is higher than that of DNN crystals 

by approximately two orders of magnitude. However, rubrene crystals showed lower 

sensitivities and slower response times for detecting ionizing radiation compared to 

DNN47. DNN could detect doses as low as 20 mGy s−1 while rubrene had to be irradiated 

with 120 mGy s−1 in order to achieve a similar electrical output. This demonstrated that the 

higher charge mobility might not be sufficient to achieve enhanced performance for 

radiation detection.  

 

With flexible devices and wearable technology drawing a lot of attention, a wearable 

flexible detector with poly (ethylene terephthalate) (PET) as substrate and 4HCB crystals 

as the active ingredient was fabricated.48 Repeated bending did not seem to affect the 

electrical performance of the device making them feasible for active-wear radiation 
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detectors. A minimum dose of 50 μGy s−1 was able to trigger detection. The sensitivity of 

the above flexible device is comparable to an existing amorphous selenium detector. Such 

flexible detectors could be useful in routine entry and exit dose measurements during 

radiotherapy.  

 

1.2 Nanoparticle Systems 

  

1.2.1 Quantum Dot (QD) Systems 

 

Quantum dots are semiconductor nanoparticles (1–100 nm and demonstrate strong light 

absorption and luminescence properties).49 The electronic and optical characteristics of 

quantum dots are determined by their size and shape; larger sized dots are known to emit 

longer wavelengths while smaller dots emit shorter wavelengths. Quantum dots based on 

CdSe/ZnS have been investigated as neutron detectors.50 However, commercially available 

inorganic compounds possess low solubilities in organic and polymeric matrices, which 

can limit their use. Their preparation in inorganic matrices, including sol-gels, results in 

the formation of non-transparent materials, which can lower their efficiency as scintillating 

devices. Colloidal quantum dots (cQDs), which are dispersible in aqueous media, were 

subsequently mixed with lithiated gels to form a transparent QD gel composite and tested 

with a Po-210 alpha source. The scintillation pulse detected upon comparison with 

background radiation signal showed a performance similar to existing inorganic 

scintillators. Withers et al. reported the effect of 137Cs gamma irradiation on 

photoluminescence properties of CdSe/ZnS colloidal quantum dots.51, 52 Upon gamma 
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irradiation using 1.17 and 1.33 MeV energy photon beams, a decrease in fluorescence of 

the composite was observed at a dose as low as 0.1 Gy. At higher doses (10 Gy) the 

fluorescence intensity is halved with respect to the 0 Gy control sample. Based on this, the 

authors proposed that cQDs could be used as sensors to report for cumulative radiation 

doses. Colloidal quantum dots were subjected to a cumulative dose of 140 krad (1.4 kGy) 

using a 0.662 MeV beam; it was found that 50 % of the original optical output was lost 

after an exposure of 11.5 krad (115 Gy). The dose at which cQDs lost their signal was 

significantly higher than conventional NaI:Tl scintillator crystals, which lose their light 

output after an exposure to 5 Gy. Hypothetically, radiation hardness of cQDs can make 

them versatile for longer-term use in clinical applications without having to replace the 

dosimeter after every treatment. Using hexane as the solvent for cQD synthesis resulted in 

aggregation during prolonged storage.52 Water-dispersible CdSe-CdS-Cd0.5Zn0.5S-ZnS 

core-shell colloidal quantum dots were therefore developed in order to potentially eliminate 

limitations with other cQD systems.53 A linear emission behavior with radiation was 

observed between 0.05–3 Gy, making this system a potential candidate for detecting doses 

used in fractionated radiotherapy.  

 

Colloidal quantum dots can suffer from irreversible aggregation leading to loss in 

fluorescence properties54. In order to overcome this challenge, cQDs were cast in a polymer 

matrix and the resulting composites were used as scintillators. Dispersion in a polymeric 

matrix also serves the purpose of maintaining the efficiency of cQDs while potentially 

lowering the costs of synthesis by using lower amounts of the inorganic scintillator55. A 

dosimeter in which CdSe/ZnS QDs were impregnated in a porous glass matrix was 
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fabricated; etching with hydrofluoric acid resulted in in an increase in pore size of the 

matrix. In addition to being sturdy and transparent, the matrix contained cavities to hold 

guest molecules that were also kept apart in order to prevent self-quenching56. Scintillation 

output of the nanocomposite was compared to that of rhodamine B laser dye under alpha 

irradiation (243-244Cm as radiation source). Colloidal QDs were able to convert the incoming 

alpha radiation (243-244Cm) to visible photons, but their scintillation output was lower than 

that seen with conventional rhodamine B laser dye. The output variation between the two 

systems was attributed to the photon transport efficiency described by their Stokes shift; 

the laser dye has an inherent Stokes shift while cQDs do not exhibit such a phenomenon57. 

Thus, engineering the Stokes shift in quantum dots can likely lead to more sensitive 

dosimeters. Radiotherapy involves photon beams with various energies ranging from keV 

to MeV. This warrants the development of dosimeters that can function at both ends of the 

energy spectrum58. The above cQD nanocomposites demonstrated an improvement in 

energy resolution by a factor of 2 when compared to standard NaI crystal (irradiation with 

a 59 keV Americium or 241Am source) 56. 

 

Size effects of CdSe/ZnS quantum dots were studied using a 1 MeV gamma radiation 

source59. Colloidal quantum dots (3.3 nm) showed a degradation of up to 30 % in original 

fluorescence emission, while larger particles showed complete recovery of their original 

emission properties 24 h after exposure to 5 Gy dose.60 In a system developed by Crone 

and coworkers, CdSe-ZnSe cQDs were dispersed in an organic scintillator (poly[2-

methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]61 Ionizing radiation generates 

excitations in the cQDs and these excitations are transferred to the organic host by FRET. 
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Cathode luminescence (CL) experiments were carried out on a composite spin-coated on 

gold-coated sapphire substrates in order to probe scintillation performance. At a volume 

fraction of 0.15, the cQD showed twice the CL intensity compared to pure MEH-PPV. 

Interestingly, further increase to 0.21 volume fraction led to a significant decrease in CL 

intensity. Aggregation of the cQDs at higher volume fractions can lead to an increase in 

non-radiative recombination and poor performance of the sensor, which indicates the need 

for uniform dispersion of cQDs in the matrix.  

 

In addition to CdSe quantum dots, CdTe QDs have also been investigated for x-ray 

scintillation and imaging62. A lower cost reusable detector was recently developed by Gaur 

et.al in which CdTe/CdS quantum dots were impregnated within porous silica63. The high 

surface area of the silica allows for larger entrapment of the colloidal particles. Upon 

irradiation, the QDs are oxidized and lose their emission intensity. X-ray radiation doses 

as high as 1 Mrad (10 kGy) were required to decrease the peak emission intensity by half. 

The nanoparticles show a near-complete recovery of peak intensity when treated with a 

thiol-rich solution for 25 min post X-ray irradiation, while partial recovery was observed 

post γ-irradiation, indicating differential mechanisms by which the quantum dots interact 

with radiation of different energies.  

 

Detailed studies on the mechanisms behind radiation-induced scintillation, and 

energy/dose rate dependency will be necessary to investigate the potential use of QDs in 

clinical radiation dosimetry. The relatively high cost associated with the use of such 
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systems and toxicity of quantum dots may also limit their use as implantable dosimeters in 

vivo. 64 

 

1.2.2 Plasmonic Nanoparticles 

 

Surface plasmon resonance (SPR) properties of plasmonic nanoparticles including gold 

and silver nanoparticles, have made them attractive in a number of biomedical applications 

65-67. Nanoparticles ranging in size from 1 to 100 nm have been found to preferentially 

accumulate at the tumor site and are widely employed as imaging agents in oncology 67. 

Very recently Dou et al demonstrated that optimally sized gold nanoparticles enhances 

real-time CT imaging and radiotherapy68. Oscillating surface plasmons in these 

nanoparticles can enhance surface-enhanced Raman scattering (SERS), resulting in 

increased efficiencies for chemical and biological sensing69. Alanine powder and alanine 

blended with polymeric binders have been investigated as dosimeters for ionizing 

radiation70, which induces the formation of stable free radicals in the amino acid. These 

free radicals are detected using electron spin resonance (ESR)71. The intensity of the ESR 

signal is proportional to the amount of free radicals generated, and this measure is used as 

a reporter for radiation dose 70, 72. Such systems are widely used in biological dosimetry 

applications and also serve as a reference system for other commercial dosimeters73. 

However, alanine dosimeters typically demonstrate reduced sensitivities when beam 

energies of the order of keV are employed. The sensitivity of alanine systems to X-rays 

can be enhanced by doping with high Z micro-scale materials74. Incorporating plasmonic 

nanoparticles within the matrix improved the dose enhancement factor, which is the ratio 
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between the mass absorption coefficient of the nanocomposite to that of pure alanine75, 76. 

Upon exposure to X-rays, metallic nanoparticles contribute to enhanced generation of free 

radicals within the alanine matrix75. Pre-synthesized silver nanoparticles were added to an 

aqueous solution of alanine before drying at 40oC to yield nanocomposite powders75. These 

nanocomposites, when irradiated with a 90 keV beam, displayed enhanced peak-to-peak 

amplitude of the ESR spectra when compared with a pure alanine dosimeter. Interestingly, 

increasing the nanoparticle concentration from 0.01% Ag NPs to 1% Ag NPs decreased 

the DEF which could be attributed to particle agglomeration at higher concentrations. 

Similar responses were observed when gold nanoparticles were employed76. These 

nanocomposites exhibit homogeneity, nanoparticle size stability and improved sensitivity 

with a linear response between 1-50 Gy. However, ESR is a sophisticated detection method 

that requires trained professionals. This can be a limitation in translating this technology 

towards clinical radiotherapy.      

1.2.3 Carbon Nanotubes 

 

Carbon nanotubes (CNTs) were first investigated for detecting ionizing radiation as part of 

field effect transistors (FETs)77. Shifts in threshold voltage upon irradiation of these 

CNTFETs were used as a measure of ionizing irradiation. CNTFETs had similar dosimetry 

characteristics to already existing MOSFETs and showed longevity upon repeated 

exposure to radiation. Thickness of the silicon dioxide layer in the CNTFETs affects the 

sensitivity of the device, which is similar to that seen in conventional MOSFETs. A parallel 

plate ionization chamber using CNTs was developed in order to overcome this drawback 

78; the parallel plate orientation allows for the insertion of CNTs into the working chamber. 
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The sensor demonstrated a near linear response from 2 - 600 MU (1 MU = 1 cGy in water), 

when both 6 and 15 MV photon beams were employed.  

 

A system using low density carbon fiber sheets sandwiched in between 

polymethylmethacrylate (PMMA) holders 79 was developed in order to potentially 

overcome attenuation of radiation dose by the sensor; copper electrodes were used as 

electrical contacts to complete the circuit. Absorption of ionizing radiation by the carbon 

fiber film generates electron pairs, which move in opposite directions under the influence 

of an initial current and reinforces the current. The change in current is used as an indirect 

measure of the radiation dose. A linear response between 100 and 600 MU (1–6 Gy) dose 

range indicates potential utility for dosimetry in fractionated radiotherapy.  

 

SCNTs have also been shown to be responsive to proton irradiation80. Proton irradiation 

(1011 protons/cm2) induces trapped charges in SiO2 on which the CNTs are deposited. 

These charges in turn affect the resistivity of the CNTs which is used as a measure of 

radiation dose. A polymer composite containing multiwalled carbon nanotubes (MCNTs) 

was recently developed for detecting γ radiation81.  Conductive MCNTs were dispersed in 

a non-conductive poly(olefin sulfone) matrix (Figure 4). Upon irradiation, the polymer 

network depolymerizes leading to a better contact between the MCNTs. This leads to 

enhanced electrical conductivity which is detected by amperometry. Doses as low as 50 

Gy were detected using this method. An advantage of CNT based dosimeters for radiation 

sensing applications includes real time dose response unlike passive sensors (TLDs) which 
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have to be processed and analyzed. Subsequent generations of CNT devices may possess 

the versatility required for clinical dosimetry.  

 

1.2.4 Metal Organic Frameworks 

 

Metal organic frameworks (MOFs) are crystalline materials that contain metal clusters 

linked by coordinating organic groups; these organic groups are fluorescent and are often 

excellent scintillators. This imparts fluorescence properties to MOFs upon exposure to 

ionizing radiation, and the change in luminescence can be used as a measure of the radiation 

dose. Flexibility of synthesis and ability to modulate the scintillation properties make 

MOFs attractive materials for radiation dosimetry.  

 

Several MOFs with zinc (Zn) have been evaluated for radioluminescence82. These MOFs 

were synthesized using solvothermal reaction of ZnII metal ion and stilbene dicarboxylic 

acid (SDCH2) in either N,N-dimethylformamide (DMF)/N,N-diethylformamide (DEF). 

The synthesized powdered MOFs were exposed to high-energy protons and alpha particles 

and characterized using ion-beam-induced luminescence spectroscopy (IBIL). The 

observed luminescence was similar to that seen in case of existing commercial scintillators. 

The Stokes shifts relative to the fluorescence excitation maxima for the MOFs were 

significantly large, minimizing an overlap between optical absorption and IBIL emission. 

This limited self-absorption resulting from the large Stokes shifts can lead to a new class 

of scintillators. These crystalline materials displayed enhanced radiation hardness and 

could potentially be stable for routine use with minimal concerns over radiation-induced 
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degradation. IBIL spectra were significantly different for MOFs with two different linkers: 

4,4′-biphenyldicarboxylic acid (H2BPDC) and 2,6-naphthalenedicarboxylic acid 

(H2NDC).83 BPDC2- displays a superimposable photoluminescence/IBIL emission spectra 

while a new 476nm IBIL emission peak was observed for NDC2-. BPDC2- upon excitation 

conforms to a planar geometry inhibiting formation of a dimeric species. NDC2-, on the 

other hand, readily forms excimer species in both ground and excited states due to 

intermolecular interaction.  

 

X-ray induced scintillation was also demonstrated using MOFs with Hf/Zr as the nodes 

and anthracene as the connecting ligand (Figure 5A)84; high atomic numbers metal ions 

were chosen because of their ability to absorb X-ray irradiation. These MOFs when 

exposed to X-ray radiation in the 20-200keV range resulted in the ejection of fast electrons 

following absorption of high energy photons (Figure 5B). These electrons interact with the 

anthracene linker leading to the generation of luminescence from their excited states, which 

is used as a measure of ionizing radiation. Doses as low as 0.25 μGy could be sensed by 

these materials dispersed in aqueous media. Hf-MOF displayed enhanced 

radioluminescence signal due to higher X ray scattering cross section as compared to that 

of the Zr-MOF.   

 

MOFs may be interesting candidates for a new class of radiation sensing materials because 

of their tenability. The availability of a large library of metal ions and organic linkers 

indicates the possibility of several combinations. Although very low doses can be sensed, 

linearity in the radio-therapeutic range has to be demonstrated before they could be further 
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used for real time dosimetry in the clinic. Factors including biocompatibility and 

stability/performance in biological solutions have to be studied before any potential 

application in vivo.  

 

1.3 Conclusions 

 

 
Several molecules and nanoscale systems are being investigated as radiation dosimeters 

with potential applications in fractionated radiotherapy. Some nano- and molecular scale 

sensors may demonstrate potential for clinical translation including for implantable 

applications, but additional studies on stability, sensitivity, reproducibility, toxicity, and/or 

biocompatibility are necessary. Most studies so far have typically been carried out with 

systems wherein the dosimeter does not come in direct contact with tissues and only the 

peripheral dose delivered is measured. Subsequent generations of dosimeters should be 

non-toxic, deliverable to the site of interest, be able to detect radiation doses in real time, 

and be able to provide a simple and quick readout. These advances have the potential to 

greatly improve treatment tolerance, safety and potentially, outcomes for patients 

undergoing radiotherapy.  

 

In this thesis, a dosimeter based on the formation of colored dispersions of plasmonic (gold) 

nanoparticles from colorless solutions of gold ions upon exposure to ionizing radiation is 

demonstrated.  
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Chapter 2 POLYPEPTIDE-FACILITATED FORMATION OF BIMETALLIC 

PLASMONIC NANOPARTICLES IN PRESENCE OF IONIZING RADIATION  

2.1 Introduction 

 

Ionizing radiation has widespread application that ranges from medical application in the 

form of diagnostic imaging and cancer therapy to military uses85-87. A critical aspect of 

these applications is the level of exposure which determines the acute response of 

incidentally exposed organs (in therapy) or of personnel (in warfare or nuclear energy 

industry). A wide variety of dosimeters are available to detect radiation exposure, including 

one-dimensional ion-chambers and three-dimensional polymer gels88, 89. Portability and 

conformability make potential liquid-phase dosimeters attractive, although development of 

effective liquid dosimeters has been limited to embedding dyes in a polymer-rich matrix90. 

These systems however tend to fade over time leading to a loss of signal91.  

 

Engineered systems that undergo a clearly visible color change in response to ionizing 

radiation can be employed as rapid, portable detectors, since they do not require 

sophisticated secondary analyses. In particular, plasmonic nanoparticles are attractive as 

indicators since they demonstrate a range of colors, depending on concentration and 

yield92. We previously demonstrated that irradiating gold salt solutions (in absence of 

silver), together with C2ELP molecules, resulted in the formation of gold nanoparticles93. 

In this system, high energy X-ray radiation results in the formation of both oxidizing (OH°) 

as well as reducing species (e-
aq, H°) following radiolysis of water94. Reducing free radicals 

facilitate reduction of metal ions (Mn+, where n is the valency) to zero-valent metal ions 
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(M0) which then nucleate and grow into nanoparticles. C2ELP likely aids these processes 

by means of spontaneous metal ion reduction, nanoparticle stabilization, and nanoparticle 

templating due to the presence of cysteines95, 96. Although this approach is promising, gold 

nanoparticle formation was seen for doses in the 175-1000 Gy range. Here, we report that 

plasmonic nanoparticles can be generated from gold-silver bimetallic precursor solutions 

in presence of significantly lower doses (25-100 Gy), and can therefore be used as 

colorimetric reporters of elevated levels ionizing radiation.  

 

2.2 Materials and Methods 

 

Materials.  Gold(III) chloride trihydrate (HAuCl4·3H2O) was purchased from Sigma-

Aldrich. Isopropyl alcohol (IPA) (99.5%) was purchased from EMD. Silver Nitrate 

(AgNO3) and dithiothreitol (DTT) were purchased from Fisher Scientific. All chemicals 

were used as received from the respective manufacturers without any additional 

purification. 

 

Synthesis, Expression, and Purification of Cysteine containing Elastin-Like 

Polypeptides (ELPs). The elastin-like polypeptide used in the study, MVSACRGPG-(VG 

VPGVGVPGVGVPGVGVPGVGVPG)8-(VGVPGVG VPGVG VPGCG VPGVG 

VPG)2-WP, was generated using recursive directional ligation97, 98. This ELP contains two 

cysteines in the polypeptide repeat sequence and is labeled as C2ELP. The oligonucleotide 

encoding the ELP was cloned in a pUC19 plasmid. Further cloning in pET25b+ expression 
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vector at the sfiI site was carried out. The polypeptide was expressed in Escherichia coli 

BLR(DE3) (Novagen), purified, lyophilized, and stored at 4°C using methods described 

previously98. 

 

Preparation of C2ELP Samples for Irradiation with Ionizing Radiation. Lyophilized 

C2ELP was dissolved in nanopure water (18.2 MΩ cm resistivity) in order to form 1 mg / 

mL solutions. DTT was then added to the C2ELP solution (equal weight ratio of DTT to 

C2ELP) in order to reduce the cysteines in the polypeptide chain. The solution was mixed 

for 1 hour under constant rotation at 4°C after which, the DTT was removed from the 

dissolved ELP via dialysis through a 10 kDa molecular weight cut off (MWCO) membrane. 

Dialysis was carried out for a maximum of 20 hours under constant rotation at 4°C. 

Reduced C2ELP samples were stored at 4°C prior to use.  

 

Sample Preparation and Irradiation with Ionizing Radiation. Samples for irradiation 

were comprised of HAuCl4 (50 µL of 1 × 10−2 M), AgNO3 (15 µL of 1 × 10−2 M), C2ELP 

(200 µL of 1 mg/ml), and isopropyl alcohol (IPA) (600 µL of 0.4 M). In all cases, samples 

were mixed immediately prior to irradiation. All ionizing irradiation experiments were 

conducted at Banner-MD Anderson Cancer Center in Gilbert, AZ. A Truebeam linear 

accelerator was used to irradiate the samples with different doses at a dose rate of 15 

Gy/minute. The radiation beam is a 6 MeV photon beam produced by the linear accelerator. 

The solutions were irradiated with doses of 25, 50 and 100 Gy. After irradiation, all samples 
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were transported back to ASU in Tempe, AZ (approximately 15 miles; 20-30 minutes 

travel time) and characterized at 72 h after irradiation to allow for nanoparticle formation. 

 

Absorbance Spectroscopy. Absorbance values of the control (0 Gy) and irradiated 

samples were measured using a BioTek Synergy 2 plate reader in concert with Gen5 

software. The absorbance spectrum was determined from 300 to 995 nm, with a step size 

of 5 nm, using 150 μL sample in each well of a 96-well plate. Absorbance measurements 

were carried out at 72 hours following X-ray irradiation. Nanopure water was used as the 

blank in all cases, and the presence of an absorbance peak between 500-600 nm was used 

as an indicator of nanoparticle formation. 

 

Particle Size Determination. Hydrodynamic sizes of the irradiated samples were 

determined using dynamic light scattering (DLS), which was carried out with a DLS 

Particle Sizer (Corrvus Advanced Optical Instruments) in concert with a Zetasizer Nano 

instrument. Samples (40 μL) were pipetted into a square 1 mL cuvette and placed into the 

instrument for analysis.  

 

Transmission Electron Microscopy (TEM) and Elemental Analyses (EDX). 

Transmission electron microscopy (TEM) visualization was carried out using a JEOL-

2010F instrument. Specimen samples for TEM were prepared by casting a drop of the 

nanoparticle dispersion onto a carbon film on a copper mesh grid, followed by drying in 
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air, and air-dried samples were visualized by TEM. EDX analysis was performed on the 

nanoparticles using a JEOL-JEM-2000FX instrument.  

 

2.3 Results and Discussion 

 

In this study, we investigated polypeptide-mediated formation of bimetallic gold-silver (i.e. 

bimetallic) plasmonic nanoparticles as a colorimetric (visual) reporter of ionizing radiation 

(X-Rays). Radiation-induced hydrolysis results in the formation of free radicals which can 

reduce metal ions to form metal nanoparticles from their corresponding salt solutions93 

(Figure 2.1). Formation of bimetallic gold-silver nanoparticle dispersions is a simple, 

colorimetric (visual) indicator of ionizing radiation, since plasmonic nanoparticles absorb 

light in the visual region of the light absorption spectrum.  

 

 

 

 

 

Ionizing 

Radiation 
H2

M

C2ELP 

M

e
-
 

H° 
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Figure 2.1 Skeleton reaction that shows radiolysis of water followed by reduction of metal 
salts by H* and e- resulting in the formation of zerovalent metal atoms. The metal atoms 
nucleate and grow to form bimetallic nanoparticles under the current conditions employed.
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The reporter system investigated in the current study consists of three components, namely, 

isopropyl alcohol, metal salts, and a biomimetic polypeptide (C2ELP). Isopropyl alcohol 

enhances metal nanoparticle yield in three ways: (1) it converts oxidizing hydroxyl radicals 

into isopropyl radicals which are reducing in nature and facilitate the reduction of metal 

ions (i.e. Mn+) to metal nanoparticles, (2) it scavenges oxidizing agents and therefore 

prevents re-oxidation of M0 (zerovalent metal ion) to Mn+ (metal ions), and (3) it consumes 

hydroxyl radicals, and reduces the reaction between hydroxyl radicals and other free radical 

species99, 100. C2ELPs101, 102 were employed since thiols present in cysteines can facilitate 

metal nanoparticle formation and / or capping98. In addition, amide bonds, which are an 

integral part of the polypeptide backbone, can also stabilize nanoparticles through N-H 

bonds103.  

 

In order to establish conditions for colorimetric detection / reporting of ionizing radiation, 

we investigated conditions under which spontaneous nanoparticle formation could not be 

observed. We first investigated varying concentrations of silver salt and C2ELP at a fixed 

gold salt concentration of 0.57 mM. A silver salt concentration of 0.173 mM was deemed 

as an optimal condition at which spontaneous nanoparticle formation was not visually 

observed for a period of 72 h. Increasing the silver salt concentration beyond this condition 

resulted in spontaneous nanoparticle formation in the absence of radiation as seen from the 

characteristic spectral peaks in Figure 2.2.   
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Figure 2.2 Average (n=3) absorbance spectra of C2ELP (1 mg/ml) and gold-silver 
bimetallic solutions when exposed to varying concentrations of silver salt at 0 Gy at a pH 
5-6. A silver salt concentration of 0.173 mM was used for further experiments due to 
observation of only a very weak spectral band compared to higher concentrations.      

 

Increasing the polypeptide concentration above 1 mg / ml resulted in a concomitant 

increase in the dispersion color intensity indicating the formation of plasmonic 

nanoparticles (Figure 2.3). It is likely that increasing the polypeptide concentration 

increases the reducing activity and favors spontaneous nucleation and growth. In addition 

to silver salt and C2ELP concentrations, we investigated the role of solution pH, since pH 
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has been shown to be an important factor determining nanoparticle synthesis104. Figure 2.4 

indicates that spontaneous nanoparticle formation is observed under conditions of basic 

pH. This is consistent with previous findings, which indicate that higher pH conditions can 

result in rapid reduction, likely due to the higher concentrations of OH- ions under these 

conditions105, 106. Spontaneous nanoparticle formation was not seen under conditions of 

lower pH i.e. pH = 5-6. This pH condition was therefore chosen for subsequent studies.  

 

 

Figure 2.3 Average (n=3) absorbance spectra of C2ELP and gold-silver bimetallic 
solutions when exposed to varying concentrations of C2ELP at 0 Gy at pH 5-6. A C2ELP 
concentration of 1 mg/ml was used for further experiments due to observation of a minimal 
spectral band compared to higher concentrations.      
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Figure 2.4 Average (n=3) absorbance spectra of C2ELP (1 mg/ml) and gold-silver 
bimetallic solutions when exposed to acidic and basic pH conditions at 0 Gy (no 
irradiation). Absorbance spectra indicate spontaneous nanoparticle formation under 
conditions of basic pH, while nanoparticle formation is not seen for pH ranges of 2-6.     

 

Following identification of operating conditions that did not result in spontaneous 

nanoparticle formation, the metal salt-C2ELP solution was subjected to different doses of 

ionizing radiation in order to determine the minimum dose required for inducing a visible 

color change. No change in color was observed in samples not subjected to X-Ray radiation 

(Figure 2.5A). In addition, color change was not seen in samples irradiated with X-ray 

doses in the 0-20 Gy range. The minimum dose required for inducing a visual color change 

with the gold-silver bimetallic system was 25 Gy (Figure 2.5 B). Higher radiation doses 

of 100 Gy resulted in further intensification of the color in the liquid nanoparticle 
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dispersions (Figure 2.5 C & D), while no significant change in the intensity of color was 

observed for the system irradiated with a dose of 50 Gy. This is likely due to generation of 

higher number of reducing species at higher radiation doses (i.e. 100 Gy) which, in turn, 

lead to greater reduction of metal ions to their respective zerovalent metal forms. In these 

cases, the color change was seen three days after X-Ray irradiation. The peak absorbance 

value was maximum in the 100 Gy case, which is consistent with high yields that may be 

expected at higher radiation doses. This is also a reflection of the color intensity, which 

was highest for the 100 Gy case.  

 

 

Figure 2.5 Visible, colorimetric detection of ionizing radiation as reported by the 
formation of plasmonic bimetallic nanoparticles. Formation of bimetallic nanoparticles 
was facilitated by C2ELP (1 mg/mL; pH 5-6) at different radiation doses. (A) 0 Gy, (B) 25 
Gy, (C) 50 Gy and (D) 100 Gy. A visible change in color can be seen for samples irradiated 
with 25, 50, and 100 Gy. 

 

Optical density is a straightforward method for detection and quantification of plasmonic 

nanoparticle dispersions, and is often used as a surrogate for concentration. Pure gold and 

silver nanoparticles demonstrate absorbance peaks at 510-570 and 400-530 nm, 

respectively107, 108. In the absence of X-ray radiation, C2ELP molecules were not able to 

A B D C 



32 

 

reduce metal salts to the extent that a significant plasmonic peak could be observed in the 

absorption spectrum (Figure 2.6A). However, in presence of 25, 50 and 100 Gy X-ray 

radiation doses, absorbance peaks were seen between 500-600 nm three days after 

irradiation, indicating formation of plasmonic nanoparticles. These spectra are consistent 

with those for bimetallic gold-silver dispersions observed previously in the literature109. A 

reduction in the width of the absorption peak was observed with increasing radiation dose. 

This narrowing is likely an indication of lower nanoparticle polydispersity at higher 

radiation doses110.  
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Figure 2.6 (A) Average absorbance spectra (n = 9) of C2ELP and gold-silver bimetallic 
solutions in presence of C2ELP and (B) Average absorbance spectra (n = 3) of gold-silver 
bimetallic solutions irradiated in absence of C2ELP with 0 Gy (control), 25 Gy, 50 Gy, and 
100 Gy. X-ray radiation indicate nanoparticle formation in case of irradiated samples in 
presence of C2ELP. Absence of absorbance peak indicates no stable nanoparticles formed 
verifying the need for C2ELP. 

 

Dynamic light scattering (DLS) measurements indicated that nanoparticles with 

hydrodynamic diameters ranging from 80-110 nm were formed in these studies (Figure 

2.7). Previous studies, including ours, indicate that higher radiation doses lead to the 

formation of smaller sized particles 93, 99, 111. At higher radiation doses, the ratio of the 

unreduced metal ions to the reduced zerovalent metal is likely low, due to higher efficacy 

of free radical formation. The concentrations of the reduced zerovalent metal ions, and 

subsequently nanoclusters (nucleus for metal nanoparticle formation), tend to be higher 

than the unreduced metal ions in solution. Further aggregation is likely inhibited due to the 

presence of the capping agent. At lower doses of X-Ray radiation, the number (or 

concentration) of unreduced metal ions is higher than the number of metallic nuclei formed. 
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Thus, the unreduced ions likely tend to aggregate with the nucleus formed and result in 

larger sized particles on an average. 

 

 

Figure 2.7 Hydrodynamic diameters, determined by dynamic light scattering (DLS), of 
nanoparticles formed as a function of radiation dose (n=3). Data indicate mean absorbance 
values from n = 3 readings ± one standard deviation. Average hydrodynamic diameter is 
seen to decrease modestly with increasing radiation dose. The line connecting individual 
data points is included for visualization alone.  

 

X-ray irradiated and non-irradiated control samples were imaged using transmission 

electron microscopy (TEM) in order to visualize the bimetallic nanoparticles formed under 

different conditions. The core sizes of nanoparticles, as visualized using TEM, ranged from 

15 to 90 nm in the different cases studied (Figure 2.8), while the average core sizes 

typically range from 10-20 nm. The control (0 Gy) did result in the formation of 
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nanoparticles, indicating that the C2ELP molecules were capable of reducing metal ions 

and thereby templating nanoparticles in absence of radiation as seen previously93. This is 

likely due to the presence of the amide backbone in the ELP chain, along with the presence 

of arginine (A), which contains an amine moiety. These moieties can stabilize the 

nanoparticles formed due to the reduction of metal salts in the presence of tryptophan (W) 

residues which is known to be a powerful reducing agent for metal salts112, 113. However, it 

is important to note that neither peaks in the absorption spectrum (Figure 2.6A), nor 

significant color changes (Figure 2.5A) were observed in the case of C2ELP-bimetallic 

metal solutions not subjected to X-Ray radiation. These observations indicate that in 

absence of radiation, C2ELP did not result in high enough yields of nanoparticles to be 

identified visually and / or spectroscopically. Irradiating aqueous solutions of gold-silver 

bimetallic metal salts in presence of C2ELP resulted in formation of plasmonic 

nanoparticles due to the additional reducing activity following radiolysis of water. These 

higher nanoparticle yields could be identified visually due to the color change (Figure 2.5) 

as well as the characteristic UV-visible absorbance spectra (Figure 2.6). A precipitate was 

visually observed when the metal salts were irradiated in absence of C2ELP while the 

solution remained colorless and no peaks were seen in the the UV-Vis light absorption 

between 300 and 990 nm (Figure 2.6B). This confirms that C2ELP is necessary as a 

stabilizing agent for overcoming aggregation of the metal atoms formed during radiolysis.  
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Figure 2.8 Transmission electron microscopy (TEM) images of plasmonic nanoparticles 
formed under irradiation. (A) control (0 Gy) and samples irradiated with (B) 25 Gy, (C) 50 
Gy and (D) 100 Gy X-Ray radiation. Scale bar = 20 nm for (A) and (B), and 50 nm for (C) 
and (D). 

 

Elemental analyses were carried out in order to determine the composition of the plasmonic 

nanoparticles formed. Heterogeneity in the elemental composition was observed among 

different nanoparticles investigated (n ≥ 3 nanoparticles), and nanoparticles individually 

enriched in either gold or silver were seen (Figure 2.9A-B). The synthesis of such 

bimetallic clusters has been shown to proceed by a progressive reduction of metal ions 

during radiolysis and growth of the nanoparticles (Figure 2.10). During radiolysis the 

reducing free radicals react with gold and silver metal ions and reduce them to their 

zerovalent states114. The lesser noble metal (silver in this case) transfers electrons to the 



37 

 

more noble metal (gold in this case) which results in reduction of the latter from Au3+ to 

Au0 species. Electron transfer is made possible due to the differences in electronegativity 

as Au is more electronegative than Ag. The electron relay from Ag to Au is also possible 

between the different valence states of the gold ions (i.e. +1 and +3)111.  

 

 

 

 

Figure 2.9 Elemental analyses of plasmonic nanoparticles (n ≥ 3) indicates presence of 
both gold and silver. Heterogeneity among nanoparticles is observed with some particles 
being enriched in silver (A) and others rich in gold (B).      
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Figure 2.10 Schematic of bimetallic nanoparticle formation during radiolysis involving 
inter-metal electron transfer. 

 

To further verify the need for a bimetallic system, solutions containing either silver alone 

or gold alone were irradiated separately (Figure 2.11). The maximum absorbance values 

were similar to the bimetallic condition (between 500-600 nm for Au salt and 400-500 nm 

for Ag salt). Following baseline and offset corrections (i.e. maximum absorbance at the 

corresponding wavelengths – absorbance at 900 nm), it was observed that the yields of the 

bimetallic nanoparticles were higher than those for the individual metal (Au or Ag) 

nanoparticles alone. This further provides support to our hypothesis that the presence of a 

small amount of silver ions facilitates nanoparticle formation at lower doses as those 

required for gold salt alone (≥ 175 Gy).  
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Figure 2.11 Average values of peak absorbance (n = 3) observed after C2ELP and 
monometallic (Au or Ag) / bimetallic (Au and Ag) solutions were irradiated with 0 Gy 
(control), 25 Gy, 50 Gy, and 100 Gy X-ray radiation. Error bars indicate standard deviation. 
Overall increase in the average absorbance values likely indicate higher yields of bimetallic 
nanoparticles formed for a given radiation dose. Asterisks (*) indicate p-values < 0.05 for 
Au-Ag system compared to Au/Ag alone control systems, as determined using Student’s t-
test; p-values < 0.05 are considered statistically significant. 

 

2.4 Conclusions 

In conclusion, we report that radiation-induced nanoparticle formation from a mixture of 

gold-silver metal salts, scavenging agents, and cysteine-containing elastin-like 

polypeptides can be employed as a reporter for elevated doses of ionizing radiation, 25 Gy 

and higher. Even though nanoparticle formation was observed using TEM for non-

irradiated (0 Gy) samples, visible color changes was observed only in case of irradiated 

samples, indicating a colorimetric response to radiation. Future work will involve an 

investigation into engineering the polypeptide, as well as optimizing operating conditions 

in order to further enhance the sensitivity of this simple detection system. It is anticipated 
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that these studies can advance the field of conformable and portable radiation detectors for 

various applications in healthcare, defense and space exploration.  
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Chapter 3 A COLORIMETRIC PLASMONIC NANOSENSOR FOR DOSIMETRY 

OF THERAPEUTIC LEVELS OF IONIZING RADIATION 

3.1 Introduction 

Radiation therapy is a common primary treatment modality for multiple malignancies, 

including cancers of the head and neck, breast, lung, prostate, and rectum.115 Depending 

on the disease, cumulative radiation doses ranging from 20 and 70 Gy are often employed 

for therapeutic use. Diseased tissue and normal organ radiation sensitivities also vary.116 In 

order to maximize disease treatment relative to radiation-induced side-effects, various 

methods of delivery including hyperfractionation (0.5-1.8 Gy), conventional fractionation 

(1.8-2.2 Gy), and hypofractionation (3-10 Gy)115 have been explored. These delivery 

methods explore different regimes of radiation sensitivity in order to maximize tumor cell 

killing while optimizing treatment times.115  

 

Despite obvious advantages with radiotherapy, there can be significant radiation-induced 

toxicity in tissues.117 For example, radiation-induced proctitis can be of significant 

morbidity for patients undergoing prostate or endometrial cancer treatment. For centrally 

located lung cancer radiotherapy, the esophagus can be incidentally irradiated during 

treatments, resulting in esophagitis. In head and neck treatments, radiation of salivary gland 

or pharyngeal tumors can induce radiation-induced osteonecrosis. Another concern during 

radiotherapy is the motion of the patient as well as the natural peristalsis of internal organs. 

These issues highlight the importance of appropriately dosing cancerous tumors while 

sparing the normal tissue in order to prevent significant morbidity that arises from radiation 

toxicity.   
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Following several transformative advances since its inception in the late 19th century,118 

radiation therapy has become a complex process aimed at maximizing the dose delivered 

to the tumor environment while sparing normal tissue of unnecessary radiation. This has 

led to the development of image-guided and intensity-modulated radiation therapy.119 The 

process of treatment planning requires initial simulation followed by verification of dose 

delivery with anthropomorphic phantoms which simulate human tissue with more or less 

homogeneous, polymeric materials.120 The accuracy of the planning is determined using 

either anthropomorphic phantoms or 3D dosimeters.119,121,122 During treatment, actual dose 

delivery can be verified with a combination of entry, exit or luminal dose 

measurements,120,123,124 in a process called in vivo dosimetry. Administered in vivo doses 

can be measured with diodes (surface or implantable), thermoluminescent detectors 

(TLDs), or other scintillating detectors.120,123,124 However, these detectors are either 

invasive, difficult to handle (due to fragility or sensitivity to heat and light), require 

separate read-out device, or measure surface doses only.  TLDs are typically laborious to 

use and require repeated calibration, while diodes suffer from angular, energy and dose 

rate-dependent responses.125 Although MOSFETs can overcome some of these limitations, 

they typically require highly stable power supplies.126 In addition, these dosimeters require 

sophisticated and expensive fabrication processes in many cases. In light of these 

considerations, there is still a need for the development of robust and simple sensors in 

order to assist / replace existing dosimeters that can be employed during sessions of 

fractionated radiotherapy.127, 128 
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Unique optical properties associated with plasmonic nanoparticles129 have led to 

investigation of different metal nanoparticles in imaging, hyperthermia, drug delivery, and 

sensing applications.67, 130, 131 Of particular relevance to imaging and sensing is the 

observation that dispersions of plasmonic nanoparticles display different colors depending 

on the size of the particles. Metallic nanoparticles are synthesized using a wide range of 

wet chemistry66, 132 and radiation133 based techniques. Current radiation-based methods 

require high doses, use of complex polymers / polypeptides, scavengers and / or inert 

atmospheres to engender nanoparticle synthesis.93, 134, 135 To our knowledge, none of these 

methods are based on dose ranges employed in fractionated radiotherapies.  

 

In this work, we exploited lipid surfactant-templated formation of colored dispersions of 

gold nanoparticles from colorless metal salts as a facile, visual and quantitative indicator 

of therapeutic levels of ionizing radiation (X-rays) for application in radiation dosimetry. 

This plasmonic nanosensor can detect radiation doses as low as 0.5 Gy, and exhibit a linear 

response for doses relevant in therapeutic administration of fractionated radiotherapy (0.5 

– 2 Gy). Modulating the concentration and chemistry of the templating lipid surfactant 

results in linear response in different dose ranges, which demonstrates the versatility of the 

plasmonic radiation nanosensor in a variety of radiotherapy applications. 
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3.2 Materials and Methods  

Materials. Gold(III) chloride trihydrate (HAuCl4·3H2O), trimethyloctylammonium 

bromide (C8TAB) (≥ 98%), dodecyltrimethylammonium bromide (C12TAB) (≥ 98%) and 

L-Ascorbic acid (AA) were purchased from Sigma-Aldrich. Cetyl trimethylammonium 

bromide (C16TAB) was purchased from MP chemicals. All chemicals were used as 

received from the manufacturer without any additional purification. 

  

Sample Preparation for Irradiation. First, 30µL of 0.01 M HAuCl4 were mixed with 600 

µL of 0.05 M Cx=8,12,16TAB. Upon addition of 30 µL (0.196 mM), 300 µL (1.96 mM), 600 

µL (3.92 mM approximated as 4mM) and 900 µL (5.88 mM or ~5.9 mM) of 0.01 M L-

Ascorbic acid, the solution turned colorless after shaking; the concentrations of ascorbic 

acid were thus varied in order to examine its effect on nanoparticle formation. Unless 

specifically mentioned, the volume of AA used is 900 µL. The measured pH of the 

precursor solution was typically between 2.9 and 3.1. Samples were prepared at Banner-

MD Anderson Cancer Center, Gilbert, AZ prior to radiation. 

  

Radiation Conditions. A Varian TrueBeam linear accelerator was used to irradiate 

samples at a dose rate of 15.6 Gy/min. The samples containing surfactant at a concentration 

of 20 mM and 10 mM were radiated at doses of 0 (control), 1.1, 3.2, 5.3, 10.5, 15.8, 26.3, 

36.9 and 47.4 Gy. These are reported as 0, 1, 3, 5, 10, 16, 26, 37 and 47 Gy respectively in 

the article. The samples containing surfactant at a concentration 2 mM and 4 mM were 

irradiated with 0 (control), 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10, 12.5 and 15 Gy. After irradiation 
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the samples were transported back to Arizona State University in Tempe, AZ (one-way 

travel time of approximately 20-30 minutes). At a dose rate of 15.6 Gy / min, most doses 

take seconds to administer to a sample, and the highest dose (47 Gy) takes a little over 3 

minutes. 

  

Absorbance Spectroscopy. Absorbance profiles of the radiated and the control samples 

were measured using a BioTek Synergy 2 plate reader. Absorbance values from 150 µL of 

sample were measured from 300 to 900 nm with a step size of 10 nm in a 96 well plate. 

Nanopure water (18.2 MΩcm) was used as a blank in all cases. The absorbance was 

corrected for offset by subtracting A900 nm and the presence of a peak (or peaks) between 

500 and 700 nm was used as an indicator for gold nanoparticle formation. 

 

Determination of Critical Micellar Concentration (CMC). Pyrene (60 µL of 2 x 10-5M) 

in acetone was added to 20 ml glass vials. Upon acetone evaporation, 2ml of C16TAB of 

varying concentrations was added and stirred for 6 hours at room temperature. To achieve 

the similar conditions as the irradiation experiments, 30µL of 10mM gold salt + 600µL of 

the above prepared C16TAB + 900µL of 10mM ascorbic acid were mixed. A fluorescence 

spectrophotometer with an excitation scan range of 300 – 360 nm and an emission 

wavelength of 390 nm was used. Ratio of I337/I334 determined as a function of the surfactant 

concentration was used to calculate the CMC using pyrene as the probe based on methods 

described in the literature136. 
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Dynamic Light Scattering (DLS) Measurements. 50 μL of the sample was transferred 

into a cuvette and placed into a Zetasizer Nano instrument. The software was set up to carry 

out measurements with autocorrelation. Thereafter, the average diameter values, along with 

the polydispersity index (PDI), were recorded based on the software readout. 

 

Transmission Electron Microscopy (TEM). Samples for TEM were prepared by casting 

a drop of the solution onto a carbon film on a copper mesh grid. The samples were then 

dried in air. The above process was repeated several times to ensure good coverage. Dried 

samples were visualized using a CM200-FEG instrument operating at 200 kV. 

 

Endorectal Balloon Studies. Prostate immobilization treatment (endorectal) balloon 

device kit was purchased from Radiadyne. The nanosensor (1.503 mL) containing 20mM 

C16TAB was introduced into the inflatable balloon through the stem using a syringe. After 

irradiation with the corresponding dose, the liquid was drawn out and the absorbance was 

measured using a UV-visible spectrometer. 

 

Prostate Phantom Experiments. CIRS tissue equivalent prostate phantom was aligned at 

the center of the prostate volume on the Philips RT CT table with CT room aligning lasers. 

Three radio opaque markers were placed at the isocenter of the radiation beams. The 

endorectal balloon was inflated to a known volume of 50 ml following insertion into the 

phantom. CT scan imaging was executed on the phantom with 1 mm image thickness and 

1 mm spacing to total of 150 images. After scanning, they were exported to a Philips 
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Pinnacle treatment planning system. The prostate, rectum and the capsules were contoured 

and a treatment plan was generated for a 6MV radiation beam. A prescribed dose of 1 Gy 

to a 95% isodose encompassing the entire prostate was simulated. Pinnacle’s Collapsed 

Cone Convolution Superposition (CCCS) algorithm was used to compute the dose to the 

prostate in the phantom. 

 

3.3 Results and Discussion 

Facile radiation sensors have the potential to transform treatment methods and planning in 

clinical radiotherapy by verifying the precise delivery of doses to the intended site of action 

with minimal damage to surrounding tissues. Here, we report studies on a simple 

colorimetric, liquid-phase plasmonic nanosensor that can detect therapeutic levels of 

ionizing radiation. X-rays, in concert with templating lipid micelles, induced the formation 

of colored dispersions of gold nanoparticles from a colorless gold salt solution, thereby 

resulting in a visible indicator of ionizing radiation.  

 

Several molecular design considerations were employed in order to develop the plasmonic 

nanosensor for detecting therapeutic doses (broadly 0.5 -10 Gy) of ionizing radiation. The 

basic working principle behind the plasmonic nanosensor involves reduction of colorless 

gold ions to gold nanoparticles (colored) by generating zerovalent (Au(0)) ions in order to 

facilitate nanoparticle nucleation and growth. Gold ions typically exist in a trivalent state 

(Au(III)) in metal salts, and we first sought to convert these ions to monovalent gold ions 

(Au(I)). This is because the reduction of Au(I) to Au(0) is thermodynamically favored over 
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the reduction of Au(III) to Au(0) due to the higher standard reduction potential of the 

former.137 Au(I) has an electronic configuration of 4f145d10 and requires a single electron 

for conversion (reduction) to Au(0),138 which then grow to form nanoparticles. 

 

In the current plasmonic nanosensor, the electron transfer required for reducing Au(I) to 

Au(0) is facilitated by splitting water into free radicals following exposure to ionizing 

radiation (X-rays). Water splitting by ionizing radiation generates three key free radicals, 

two of which, e- and H., are reducing, and the other (˙OH.) is oxidizing in nature.93 Ascorbic 

acid is an antioxidant and is capable of removing the oxidizing OH. radicals, which can 

inhibit nanoparticle formation. Finally, CxTAB (x=8, 12, 16) surfactants were employed 

for their ability to template gold nanoparticles.139 Taken together, a colorless metal salt 

precursor solution consisting of a mixture of auric chloride (HAuCl4), L-ascorbic acid (AA) 

and cetyl (C16), dodecyl (C12), or octyl (C8) trimethylammonium bromide (Cx; x=16/12/8TAB) 

surfactant molecules (Figure 3.1; please see the Experimental Section for more details),140, 

141 form the key constituents of the novel plasmonic nanosensor for detecting ionizing 

radiation as described in the following sections. 
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Figure 3.1 Schematic depicting the reaction progress after addition of various components 
in the plasmonic nanosensor for ionizing radiation. The concept for this figure was adapted 
from [142]. HAuCl4 salt solution is yellow in color, but changes to orange upon addition of 
CxTAB. Addition to ascorbic acid results in the formation of a colorless solution forming 
the precursor solution for the plasmonic nanosensor. Irradiation with ionizing radiation 
(e.g. X-rays shown as hν) results in the formation of colored dispersions of gold 
nanoparticle. The color of gold nanoparticle dispersions (AuNPs) can vary in color 
depending on the size of the nanoparticles. 

 

CxTAB and HAuCl4 (gold salt) were first mixed leading to the formation of AuIIIBr4
-. 

HAuCl4 (Au(III)) shows a prominent light absorption peak at 340 nm, which shifts to 400 

nm after addition of C16TAB, likely due to the exchange of a weaker chloride ion by a 

stronger bromide ion (Figures 3.2 A and B, Figure 3.1).138 The shift in the absorption 

peak can also be seen visually as a color change from yellow to orange. Ascorbic acid 

reduces Au(III) to Au(I) in a two-electron, step-reduction reaction,138 and addition of the 

acid to an orange-colored solution of HAuCl4 and C16TAB renders it colorless with no 

observable peaks between 300 and 999 nm (Figure 3.2 C, Figure 3.1). This mixture of 

CxTAB, ascorbic acid, and HAuCl4 is employed as the precursor solution of the plasmonic 

radiation nanosensor. It has been shown that addition of up to 5 molar equivalent excess 

ascorbic acid does not result in the formation of zerovalent gold or Au(0) species, which 

can be partly attributed to the lower oxidation potential of the acid in presence of 
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Figure 3.2 UV-Visible spectral profiles of (A) HAuCl4 (Circles) (B) HAuCl4 + C16TAB 
(Diamonds), (C) HAuCl4 + C16TAB + Ascorbic Acid (Squares) and (D) HAuCl4 + Ascorbic 
Acid (AA) (Triangles). 

C16TAB.143 However, a characteristic peak in the range of 500-600 nm corresponding to 

gold nanoparticles is observed if ascorbic acid is directly reacted with the gold salt in the 

absence of C16TAB (Figure 3.2 D),138 indicating spontaneous formation of nanoparticles 

in absence of the lipid surfactant under the conditions employed.  

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

We next optimized the concentration of ascorbic acid (AA) in the presence of the surfactant 

(C16TAB) and gold salt employed in the precursor solution for the plasmonic nanosensor; 

the maximal dose of 47 Gy was delivered in order to study the effect of ascorbic acid on 

nanoparticle formation (Figure 3.3). A marked increase in nanoparticle formation is 
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observed when excess AA is used, and the effect saturates at 600 µL of 0.01 M (4 mM AA) 

(Figure 3.3). Although saturation was observed when 4 mM AA were used, we used ~5.9 

mM AA for all subsequent experiments in order to ensure adequate quenching of OH. 

radicals which can reduce the yield of nanoparticles generated. Control experiments with 

(1) gold salt (HAuCl4) alone, (2) gold salt + C16TAB and (3) gold salt + C12TAB were also 

carried out in presence of different X-ray doses, but in absence of ascorbic acid. 

Absorbance profiles of the samples were measured after 7 hours, and the absence of peaks 

from 500-900 nm indicated the absence of plasmonic (gold) nanoparticles (Figure 3.4). 
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Figure 3.3 (A) UV-Vis spectra of varying ascorbic acid volumes along with gold and 
C16TAB irradiated at 47 Gy. (B) Maximum absorbance values of samples containing 
varying concentrations of ascorbic acid. A significant increase in the absorbance peak 
intensity is observed at ~ 520 nm when the amount of ascorbic acid is increased, indicating 
an increase in the formation of gold nanoparticles.  
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Figure 3.4 Absorbance spectra of (A) gold salt (0.196 mM) (B) gold salt (0.196 mM) + 
C16TAB (20 mM) (C) gold salt (0.196 mM) + C12TAB (20 mM). Nanoparticle formation 
is not observed in the absence of ascorbic acid signifying its importance in the plasmonic 
nanosensor system.   

 

Next, we investigated the efficacy of three cationic surfactants, C8TAB, C12TAB, and 

C16TAB, for inducing nanoparticle formation in presence of different doses of ionizing 

radiation (Figure 3.5). All three surfactants have trimethyl ammonium moieties as the head 

group and bromide as the counter ions; only the lipid chain length was varied as C8, C12, 

and C16 in these molecules and a concentration of 20 mM was employed for each lipid. As 

stated previously, a large number of e-
aq and H. radicals are generated following exposure 

of the solution to X-rays which facilitate the conversion of Au+ ions to their zerovalent Au0 

state.99 The Au0 species act as seeds upon which further nucleation and coalescence occurs. 
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This, in turn, leads to an increase in size and eventual formation of nanoparticles, which 

are stabilized by surfactant molecules. Formation of these plasmonic nanoparticles imparts 

a burgundy / maroon color to the dispersion; the intensity of the color increases with an 

increase in radiation dose applied (Figure 3.6).  
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Figure 3.5 UV-Vis absorption spectra of the control (0 Gy) and X-ray irradiated samples 
containing (A) C16TAB, (B) C12TAB and (C) C8TAB after 7 hours. The concentration of 
each lipid surfactant was 20 mM. 
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Nanoparticle formation was seen as early as 1 h following irradiation in many cases, 

although 2 h were required for samples irradiated with lower doses (1, 3 and 5 Gy) (Figure 

3.7). No significant differences in absorbance intensity were observed thereafter until a 

period of 7 hours, which was the maximum duration investigated in these cases. 

Nanoparticle formation was observed at radiation doses as low as 1 Gy, which is well 

within the range of doses employed for radiotherapy.144 While C16TAB or C12TAB were 

effective at templating nanoparticle formation even at low doses (1-5 Gy), C8TAB did not 

show any propensity for templating nanoparticle formation even at the highest radiation 

dose (47 Gy) employed. C12TAB-templated gold nanoparticles exhibited unique spectral 

profiles under ionizing radiation; two spectral peaks - one between 500 and 550 nm and 

    0                1               3               5              10             16             26              37             47 

E 

 

Figure 3.6 Optical images of samples containing different C16TAB and C12TAB 
concentrations irradiated with a range of X-ray doses (Gy) (A) 2 mM C16TAB, (B) 4mM 
C16TAB, (C) 10mM C16TAB, (D) 20mM C16TAB and (E) 20mM C12TAB 2 hours post X-
ray irradiation. The corresponding X-ray radiation dose leading to the observed visual 
color change is indicated below each sample in Gray (Gy).  
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another between 650 and 800 nm - were seen (Figure 3.5 B). This is in contrast to C16TAB 

which exhibited only a single peak between 500 and 600 nm (Figure 3.5 A). The linear 

response of absorbance due to nanoparticle formation, seen between 5-37 Gy, was 

significantly more pronounced for C16TAB than that for C12TAB (Figure 3.8). Although 

nanoparticle formation was seen in the 1-5 Gy range, the absorbance of the dispersions 

under these conditions did not fall in the linear range (5-37 Gy), which indicated that the 

nanosensor was not sensitive at these lower doses. Given these findings, we focused our 

subsequent studies mainly on the C16TAB lipid surfactant in order to further optimize the 

nanosensor. 
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Figure 3.7 Kinetics of gold nanoparticle formation following exposure to different doses 
of ionizing radiation (0-47 Gy) for (A) C16TAB, (B) C12TAB and (C) C8TAB. Maximum 
(peak) absorbance values, typically between 450 nm and 650 nm, are plotted as a function 
of time following irradiation. The maximal value is reached at 1 h in most cases, but 
requires up to 2 h for lower doses. The value remains unchanged over a period of 7 h.  
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The critical micelle concentration (CMC) of C16TAB is reported to be approximately 1 

mM.145 Using the pyrene fluorescence assay, we determined the CMC of C16TAB in the 

nanosensor precursor solution (i.e. gold salt and ascorbic acid in deionized water) to be 

~0.39 mM, which was slightly lower than ~0.88 mM determined in deionized (DI) water 

(Figure 3.9). Pre-micellar aggregates are thought to exist when C16TAB concentration is 

lower than 7.4 mM, while stable micelles are observed at higher concentrations of the lipid 

Figure 3.8 Maximum absorbance vs. radiation dose (Gy) after 2 hours of X-ray irradiation. 
C16TAB (red filled squares, solid line) and C12TAB (orange open circles, dotted line) 
surfactants. C8TAB (green triangles, dotted line) does not show any response to radiation.
The lipid concentration was 20 mM in all cases. 
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surfactant.146 It has been previously suggested that smaller, pre-micellar aggregates can 

facilitate enhanced catalytic activity of Fe(III) and promote oxidation of sulphanilic acid 

compared to fully matured micelles, likely due to the increased ratio of the reactant species 

to the surfactant molecules.147 We therefore hypothesized that increasing the ratio of the 

metallic species (Au+) to the aggregate (pre-micellar / micellar) C16TAB species will lead 

to greater propensity for nanoparticle formation upon exposure to ionizing radiation and 

therefore increased sensitivity of the resulting nanosensor at lower radiation doses. Based 

on the assumption that the number of aggregate species increases with lipid 

concentration,146 we next investigated different concentrations of C16TAB (0.7 mM, 2 mM, 

4 mM and 10 mM) in the nanosensor, while keeping the concentrations of gold ions and 

ascorbic acid constant. 
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Use of C16TAB concentrations below its CMC in the nanosensor precursor solution 

resulted in spontaneous formation of gold nanoparticles in absence of ionizing radiation; 

gold nanoparticle formation can be seen from the characteristic absorbance peak of the 

dispersion in Figures 3.9 and 3.10. However, the propensity for spontaneous nanoparticle 

formation is significantly reduced or lost at concentrations well above the CMC. A distinct 

color change can be observed for radiation doses as low as 0.5 Gy at a C16TAB 

concentration of 2mM, which is above the CMC of the lipid surfactant (Figures 3.6A and 

3.11). A linear response was observed for radiation doses ranging from 0.5 to 2 Gy under 

these conditions (Figure 3.12). As the concentration of C16TAB increases (4, 10, 20 mM), 

the radiation dose required to template nanoparticle formation also increases (Figures 3.6 

and 3.11). Furthermore, the color of the nanoparticle dispersion formed is significantly 

different in cases of 2mM C16TAB (blue-violet) compared to that observed in cases of 4 

mM (bluish-red), 10 mM (red / pink) and 20 mM (burgundy / maroon) C16TAB, likely 

indicating different sizes of nanoparticles formed under these conditions. An increase in 

color intensity is observed with increasing radiation dose (Figures 3.5 and 3.6), which 

allows for dose quantification using absorbance measurements. While it is most desired 

that the nanosensor is sensitive to therapeutic doses used in conventional and 

Figure 3.9 Determination of the critical micelle concentration (CMC) value for C16TAB 
in the nanosensor precursor solution (‘C16TAB + Au + AA’ in the legend) and DI Water 
(‘C16TAB’ in the legend) using the pyrene fluorescence assay. The intensity ratio of I337/I334

was plotted as a function of the lipid surfactant concentration and the CMC value was 
determined from the mid-point as shown in the figure. The dashed lines are for 
visualization alone. n = 2 independent experiments. Spontaneous nanoparticle formation 
was seen with the nanosensor precursor solution at 0.1 mM resulting in increased 
fluorescence intensity at this condition. As seen in the figure, the CMC of C16TAB was 
~0.88 mM and that for C16TAB in the nanosensor precursor solution was ~0.39 mM.  
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hyperfractionated radiotherapy (~0.5-2.0 Gy) as seen in the case of 2mM C16TAB, results 

with different concentrations of the lipid surfactant indicate that the response of the 

plasmonic nanosensor can be tuned by simply modifying the concentration of the lipid 

surfactant. Such visual colorimetric sensors possess significant advantages of convenience 

and likely, cost, over those that employ fluorescence changes or electron spin resonance 

measurements for detecting ionizing radiation. 
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Figure 3.10 Absorbance spectra of precursor monovalent gold salt solutions under 
conditions of no radiation (i.e. 0 Gy) in presence of different concentrations of (A) C16TAB 
and (B) C12TAB (C) C8TAB recorded after 10 minutes of incubation. Spontaneous 
nanoparticle formation was seen at 0.2 mM for all lipid surfactants, as indicated by the 
characteristic absorbance peak of gold nanoparticles at ~520 nm. In contrast, no 
nanoparticle formation was observed at a lipid concentration of 20 mM for up to 7 h. 
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Figure 3.11 Maximum absorbance vs. wavelength for different concentrations of C16TAB 
after a duration of 2 hours post irradiation with different doses of X-rays. (A) 2mM (B) 
4mM (C) 10mM (D) 20mM C16TAB.  
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Figure 3.12 Maximum absorbance vs. radiation dose for varying concentrations of C16TAB 
2 hours post X-ray irradiation. Red filled diamonds, solid line: 2 mM C16TAB, Orange 
filled circles, dashed line: 4 mM C16TAB, Green filled triangles, solid line: 10 mM 
C16TAB, and Blue filled squares, dashed line: 20mM C16TAB.  

 

 

Free radicals generated upon radiolysis of water are thought to be localized in finite 

volumes called spurs.148 These spurs can expand, diffuse, and simultaneously, react, 

leading to the formation of molecular products. These highly reactive free radicals have 

very short lifetimes of  ~10-7 – 10-6 s at 25oC.148 Reaction volumes consisting of nanoscale 

features can facilitate enhanced reaction kinetics and ensure efficient utilization of these 

free radicals for the formation of nanoparticles.149 In case of the current plasmonic 

nanosensor, this was achieved by the use of amphiphilic molecules that self-assemble into 

micelles above their respective critical micellar concentrations (CMCs). A strong 

interaction is possible between the positively charged head group of the lipid surfactant 

micelles and the negatively charged AuCl4
- ions (Figure 3.1).150 This interaction can lead 
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to incorporation of AuCl4
- ions in the water-rich Stern layer leading to the formation of a 

‘nanoreactor’.149, 150 However, spontaneous formation of nanoparticles (i.e. in absence of 

ionizing radiation) was seen when concentrations of C16TAB were lower than the CMC 

(Figure 3.10). We hypothesize that spontaneous nanoparticle formation observed at lower 

concentrations of the surfactant is likely due to negligible steric hindrance between the 

surfactant and ascorbic acid;22 absence of these barriers results in nanoparticle growth 

which can be observed spectroscopically.151 It is only when the concentrations of C12TAB 

and C16TAB are higher than the CMC, that no spontaneous formation of gold nanoparticles 

is seen in the precursor solution, and ionizing radiation is required to induce nanoparticle 

formation. Of the three lipid surfactants, only the concentration of C8TAB was significantly 

below its CMC value (130 mM),152 while the concentrations employed were significantly 

higher than the CMCs of C12TAB (CMC ~15 mM145) and C16TAB (CMC ~1 mM145). In 

the case of C8TAB, there is an absence of these “nanoreactors”, which may explain lack of 

nanoparticle formation under these conditions. The self-assembly of C12TAB and C16TAB 

lipid surfactants to nanoscale micelles above their respective CMCs is therefore key for the 

functioning of the plasmonic nanosensor.  

 

Key features of gold nanoparticle absorbance spectra include the shape of the surface 

plasmon resonance band and the position of the maximal (peak) absorption wavelength. 

While C16TAB-templated nanoparticles showed a single maximal absorption peak (at ca. 

520 nm), C12TAB-templated nanoparticles showed two peaks: one at ca. 520 nm (visual 

region) and another at ca. 700 nm (near infrared or NIR region; Figure 3.5 B), particularly 

at higher doses of ionizing radiation. The width of the spectral profiles at lower doses 
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signifies a somewhat polydisperse population of the nanoparticles (Figures 3.5 A, B and 

11)153. The absorbance peaks are red-shifted with decreasing radiation doses, suggesting 

an increase in particle size under these conditions compared to those obtained at higher 

doses.  

 

Nanoparticles formed in presence and absence of ionizing radiation were further 

characterized for their hydrodynamic diameters and morphology using dynamic light 

scattering (Figure 3.13) and transmission electron microscopy (TEM; Figure 3.14, 3.15 

and 3.16), respectively. TEM images indicated that a mixture of spherical and rod-shaped 

nanoparticles was observed at the higher radiation doses (47 Gy) in case of C12TAB as the 

templating surfactant (Figure 3.14 D). This can explain the absorption spectral profile with 

peaks in both, the visual and near infrared range of the spectrum in case of nanoparticles 

templated using 20 mM C12TAB (Figure 3.5 B). A significant decrease in the near infrared 

absorption peak is observed at lower X-ray doses. Although the spectral profile indicates 

formation of gold nanospheres, we observed an ensemble of unique anisotropic (dendritic 

and nanowire) structures (Figure 3.15). Such structures were not observed at similar X-

ray doses when 20 mM C16TAB was used as the templating surfactant. A strong interaction 

energy (U) between C12TAB and Au (111) has been previously described154. This strong 

affinity for the Au (111) crystal plane is thought to favor slower desorption of the surfactant 

along Au (111) leading to growth along other available crystal planes. This can allow for 

the formation of rod-shaped and other anisotropic nanostructures. Although C16TAB has 

been used to synthesize nanowires and nanorods previously, these methods typically 

involve the use of additional chemicals including NaOH or AgNO3 .102,155 In the current 
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case, it is likely that the gold nanoparticles aggregate more rapidly in situ due to the strong 

hydrophobic nature of the long of C16TAB chains, leading to the formation of quasi-

spherical nanoparticles and not anisotropic nanostructures.154     
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Figure 3.13 (A) Nanoparticle hydrodynamic diameter vs. radiation dose evaluated using 
dynamic light scattering. An increase in average particle diameter is observed with a 
decrease in radiation dose for both 20 mM C16TAB (red circles) and 20 mM C12TAB (blue 
triangles). (B) Hydrodynamic diameter vs. radiation dose for different concentrations of 
C16TAB (plotted on a log10 scale on the X-axis). An increase in average particle diameter 
is observed with a decrease in radiation dose for all four different concentration of C16TAB 
employed. Blue circles: 2mM; green diamonds: 4mM; orange circles: 10mM and yellow 
circles: 20mM C16TAB.  
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B D 

Figure 3.14 Transmission Electron Microscopy (TEM) images of nanoparticles after 
exposure to ionizing (X-ray) radiation using two different lipid surfactants, 20 mM C16TAB 
(left) and 20 mM C12TAB (right). (A) 1 Gy, (B) 47 Gy, (C) 5 Gy and (D) 47 Gy. 
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C D 

Figure 3.15 Transmission electron microscopy (TEM) images of anisotropic 
nanostructures (A) dendritic and (C) nanowire-like structures formed in case of C12TAB at 
5 Gy X-ray radiation dose. Images on the right show magnified images of the highlighted 
regions inside red box from Figures (A) and (C).   
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TEM images indicated a reduction in the size of the metal nanoparticles with increasing 

radiation dose. Dynamic light scattering (DLS) studies on irradiated samples (Figure 3.13 

and Table 3.1) also indicated a decrease in nanoparticle hydrodynamic diameters with 

increases in X-ray dose, which is in good agreement with information from TEM images. 

High radiation doses generate a larger number of free radicals in comparison to lower 

radiation doses, which can lead to the reaction with and therefore, consumption of a higher 

number of metal ions. This leads to the formation of a higher concentration of zerovalent 

gold species in comparison to samples irradiated at lower doses. These unstable Au(0) 

seeds grow and can be capped by the cationic lipid surfactant resulting in smaller sized 

nanoparticles.99 In contrast, at lower doses of ionizing radiation, the ratio of concentration 

of Au(0) to Au(I) is likely smaller. It is possible that unreacted metal ions coalesce with 

the smaller population of gold seeds and in turn lead to the formation of nanoparticles with 

larger diameters.99  

G 

Figure 3.16 Transmission Electron Microscopy (TEM) images of gold nanoparticles 
formed after exposure to ionizing (X-ray) radiation using the following conditions of 
C16TAB. (A) 10 mM and 5 Gy, (B) 10 mM and 47 Gy, (C) 4 mM and 5 Gy, (D) 4 mM and 
15 Gy, (E) 2 mM and 0.5 Gy, (F) Magnified image of highlighted area of E showing smaller 
particles, and (G) 2 mM and 2.5 Gy. 
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Surfactant Dose 

Average 

Diameter 

(nm) 

Standard 

Deviation 

Diameter (nm) 

Average Polydispersity 

Index(PDI) 

C16 20mM 1 Gy 138.4 5.3 0.2 
  3 Gy 122.8 1.9 0.2 
  5 Gy 121.1 20.7 0.3 
  10 Gy 102.3 13.2 0.2 
  16 Gy 88.5 12.1 0.2 
  26 Gy 72.6 4.7 0.2 
  37 Gy 57.3 4.0 0.3 
  47 Gy 45.5 3.4 0.3 
C16 2mM 0.5 Gy 81.9 8.9 0.3 
  1 Gy 60.2 6.1 0.3 
  1.5 Gy 48.2 7.3 0.4 
  2 Gy 42.9 3.8 0.4 
  2.5 Gy 39.8 3.6 0.4 
C16 4mM 1 Gy 133.4 10.4 0.2 
  3 Gy 124.2 5.2 0.2 
  5 Gy 105.3 6.3 0.2 
  7.5 Gy 88.6 8.1 0.3 
  10 Gy 92.6 8.6 0.3 
  12.5 Gy 81.3 6.9 0.3 
  15 Gy 74.2 5.5 0.3 
  26 Gy 57.4 2.4 0.3 
  37 Gy 32.0 0.4 0.5 
  47 Gy 22.1 1.3 0.6 
C16 10mM 1 Gy 126.4 1.5 0.2 
  3 Gy 127.1 1.6 0.2 
  5 Gy 124.8 2.1 0.2 
  10 Gy 124.9 5.0 0.2 
  16 Gy 106.2 5.4 0.2 
  26 Gy 72.2 7.1 0.2 
  37 Gy 59.4 3.3 0.3 
  47 Gy 50.9 2.3 0.2 
C12 20mM 1 Gy 141.6 32.2 0.5 
  3 Gy 112.2 5.3 0.2 
  5 Gy 75.2 5.0 0.3 
  10 Gy 40.4 1.0 0.5 
  16 Gy 23.9 1.1 0.6 
  26 Gy 15.7 0.8 0.6 
  37 Gy 17.9 0.7 0.6 
  47 Gy 21.6 2.7 0.6 

Table 3.1 Average hydrodynamic diameters of gold nanoparticles formed after irradiation 
along with their corresponding polydispersity indices.  
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We next investigated the translational potential of our plasmonic nanosensor for detecting 

X-ray radiation under conditions that simulate those employed in human prostate 

radiotherapy in the clinic. While radiotherapy is common in the treatment of prostate 

cancer patients, exposure of normal tissues (e.g. underlying rectal wall) to radiation is a 

cause for concern. Information on the dose delivered during a particular stage of a 

fractionated radiotherapy regimen can help plan the subsequent stage in order to achieve 

better patient outcomes. However, to our knowledge, there is no available method for 

determining the actual dose received by the rectal wall during prostate radiotherapy. 

Endorectal balloons are typically used for holding the prostate in place and for protecting 

the rectal wall during radiotherapy treatments in humans.156 We therefore used the 

endorectal balloon as means to administer the plasmonic nanosensor, and used this set-up 

to determine the dose received at different points along the rectal wall. In all cases, the 

efficacy of the plasmonic nanosensor was evaluated in endorectal balloons ex vivo; no 

studies on human patients were carried out. 

 

We first incorporated 1.5 ml of the precursor solution (20 mM C16TAB  + AA + HAuCl4) 

into endorectal balloons as shown in Figure 3.17A in order to investigate the efficacy of 

the plasmonic sensor using this potential method of delivery. The nanosensor precursor 

solution was subjected to two relatively high, but clinically relevant doses of 7.9 and 10.5 

Gy (n=3). These relatively high doses were used in order to establish proof-of-concept 

efficacy of the nanosensor in the endorectal balloon. The absorbance of the plasmonic 

nanosensor, which changes color inside the balloon itself (light pink color seen in Figure 

3.17B for a balloon subjected to a radiation dose of 10.5 Gy), was employed to determine 
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the radiation dose delivered to the balloon. A calibration curve between 5 and 37 Gy from 

the plot between maximum absorbance and radiation dose after 7 hours was employed to 

determine the radiation dose delivered. Doses of ~8.5 ± 1.7 Gy and ~7.9 ± 2.0 Gy were 

calculated from the calibration curve for delivered doses of 10.5 Gy and 7.9 Gy, 

respectively (Table 3.2). Due to the nonlinearity of the curve below 5.3 Gy, the control (0 

Gy) showed a value ~4.4 ± 0.41 Gy (n = 3) when the calibration equation was employed, 

indicating that the operating region of the plasmonic nanosensor, with a CTAB 

concentration of 20 mM, is between 5 Gy and 37 Gy and is not reliable for lower doses of 

radiation for CTAB concentrations of 20 mM.  

 

Figure 3.17 (A) An endorectal balloon with precursor solution not subjected to irradiation 
with X-rays (B) Endorectal balloon post irradiation with 10.5 Gy X-rays. The dashed 
rectangle shows a light pink colored dispersion following exposure to X-ray radiation.  

 

 

 

 

 

Delivered Dose 

(Gy) 

Measured 

Absorbance 

(A.U) 

Calculated Dose 

from the calibration 

curve  

Average Radiation 

Dose Delivered ± 

S.D 



83 

 

(Gy) (Gy) 

0 0.003, 0.002, 0.009 4.19, 4.09, 4.85 4.38 ± 0.41 

7.9 0.05, 0.015, 0.045 9.30, 5.50, 8.76 7.85 ± 2.05 

10.5 0.061, 0.035, 0.032 10.50, 7.67, 7.35 8.51 ± 1.73 

 

Table 3.2 Absorbance values measured 7 hours following exposure of endorectal balloons 
with the plasmonic nanosensor (20 mM C16TAB concentration) following exposure to 
different doses of ionizing radiation. The calibration equation used was Absorbance = 
0.0092*Dose - 0.0356. The 0 Gy data point is outside the linear range (5 – 37 Gy) of the 
plasmonic nanosensor. 

Based on the above findings, we next investigated the detection efficacy of the plasmonic 

nanosensor in an anthropomorphic phantom that is employed to simulate prostate 

radiotherapy treatments in the clinic. In these studies, 200 µL of the precursor solution 

(C16TAB (2mM) + AA + HAuCl4) was filled in microcentrifuge tubes, which were then 

taped to the outside surface of an endorectal balloon such that they were aligned along the 

stem (Figure 3.18A). We used a lower concentration of C16TAB (2 mM) in these studies, 

since this concentration can detect doses between 0.5 – 2 Gy, which are directly relevant 

to conventional radiotherapy. The phantom, with the endorectal balloon placed under the 

simulated prostate tissue, was irradiated based on a treatment plan described in the 

Experimental section and shown in Figures 3.18B. The treatment plan was designed such 

that the prostate and the rectal wall were irradiated with 1 Gy (dark blue line in Figure 

3.18B), while the dose fall-off at the end was 0.5 Gy (yellow line in Figure 3.18B). Thus, 

two microcentrifuge tubes (capsules 1 and 2) placed on the stem of the balloon just below 

the prostate were subjected to 1 Gy, while the third one (capsule 3) outside the balloon was 

subjected to 0.5 Gy (Figure 3.7B). This set up was employed in order to obtain spatial 

information on the delivered dose along the rectal wall in the tissue phantom. 

A 
C 

0.5 Gy  

(capsule 3) 

1 Gy  

(capsule 1) 

1 Gy 

B 

Prostate 
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Figure 3.18 (A) Digital image showing the nanoscale precursor solution (200 µL) in 
microcentrifuge tubes placed along the stem outside of an endorectal balloon. (B). X-Ray 
contrast image of the phantom which shows the dose treatment plan, prostate tissue, the 
endorectal balloon, and the microcentrifuge tube / nanosensor location below the prostate 
tissue and on the endorectal balloon. (C). Digital image of the plasmonic nanosensor 2 h 
following treatment with X-rays in the prostate phantom. 
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Capsule No. 

(Actual Dose 

Delivered in 

Gy) 

Measured 

Absorbance 

(A.U) 

Calculated Dose 

from the calibration 

curve  

(Gy) 

Average Radiation 

Dose Delivered ± 

S.D 

(Gy) 

1 (1) 0.12, 0.138, 0.154 1.09, 1.20, 1.30 1.20 ±0.11 

2 (1) 0.105, 0.154, 0.137 1.00, 1.30, 1.20 1.17± 0.16  

   3 (0.5) 0.016, 0.03, 0.025 0.44, 0.53, 0.50 0.49 ± 0.04 

 

 

Table 3.3 X-ray Radiation dose determined using the plasmonic nanosensor placed on an 
endorectal balloon in a prostate phantom as shown in Figure 3.18. The absorbance was 
determined 2 h after radiation exposure using the equation Absorbance = 0.1597*Dose – 
0.0542. The linear range for this condition ranged from 0.5 Gy to 1.5 Gy. A C16TAB 
concentration of 2mM was used in these studies.  

 

Optical images (Figure 3.18C) clearly indicate the formation of blue-violet colored 

dispersions for capsules 1 and 2, while a dispersion of lighter intensity can be seen in 

capsule 3. The absorbance of the dispersions were measured 2 h following exposure to 

radiation, and a calibration curve was employed to estimate the radiation dose as indicated 

by the radiation sensor. Table 3.3 shows a comparison of the actual dose delivered and the 

dose estimated from the calibration of the plasmonic nanosensor.  Data from the plasmonic 

nanosensor indicates that capsules 1 and 2 received doses of ~1.2 ± 0.1 Gy (actual dose = 

1 Gy) and ~1.2 ± 0.2 Gy (actual dose = 1 Gy), respectively, while capsule 3 received a dose 

of ~0.5 ± 0.04 Gy (actual dose = 0.5 Gy) (Table 3.3). These are excellent estimates of the 

actual doses received by the capsules in the tissue phantom, and more importantly, can be 

employed to obtain spatial information on the radiation dose delivered to the rectal wall 
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below the prostate. Taken together, our results indicate the utility of the plasmonic 

nanosensor as a simple detection system in simulated clinical settings. These results 

demonstrate a potential clinical application of the plasmonic nanosensor in prostate cancer 

radiotherapy. It is very likely that different formulation methods and / or fabricated devices 

will be necessary in translating this technology to different clinical applications. 

3.4 Conclusions  

 

We have demonstrated a simple, versatile and powerful nanosensor platform for dosimetry 

of therapeutically relevant doses of ionizing radiation for potential use in cancer 

radiotherapy. This is a unique method since it (1) is easy to formulate and visualize due to 

the colorimetric response, and (2) does not need expensive equipment for detection. While 

a ‘yes / no’ determination may be made simply by observation using the naked eye, only 

an absorbance spectrophotometer is required for quantifying the radiation dose. A visible 

color change also ensures the ease of detecting the radiation dose with the naked eye. It 

was found that both, C12TAB and C16TAB were able to function as templating molecules 

in the plasmonic nanosensor at concentrations above their critical micelle concentration 

(CMC), while spontaneous nanoparticle formation was observed at lipid surfactant 

concentrations below the CMC. The toxicity of C16TAB can be a limitation, although 

appropriate formulation and administration methods (e.g. endorectal balloons) may obviate 

these concerns to some extent.157 We were able to enhance the sensitivity of the nanosensor 

to lower radiation doses by modifying the concentration of C16TAB, thus making this a 

highly versatile platform for a variety of applications. Furthermore, these observations 

suggest that interplay between surfactant chemistry and aggregation state determine the 
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extent of nanoparticle formation by lipid-based surfactant molecules. Nanoparticles formed 

during the radiation sensing operation were characterized by UV-Vis spectroscopy, 

dynamic light scattering and transmission electron microscopy in order to obtain detailed 

information on particle size and morphology. Different nanostructures, including spheres, 

rods, and dendrites were obtained depending on the cationic surfactant employed. Finally, 

we demonstrated the utility of the current technology in translational applications; the 

plasmonic nanosensor was able to detect the delivered radiation dose with satisfactory 

accuracy when placed in an endorectal balloon ex vivo. The plasmonic nanosensor was able 

to detect doses as low as 0.5 Gy, and was able to report on the spatial distribution of 

radiation dose delivered in the vicinity of the rectal wall when investigated using an 

endorectal balloon placed in the prostate phantom. The translational application of such a 

dosimeter can help therapists with treatment planning and potentially enhance selectivity 

and efficacy of treatment leading to improved patient outcomes. Future work will involve 

investigations into engineering new generations of templating molecules that improve the 

sensitivity of detection with lower potential toxicities, formulation methods for improving 

the versatility of this technology, and appropriate pre-clinical models in order to facilitate 

translation of this technology in clinical radiotherapy applications.  
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Chapter 4 DETECTION OF THERAPEUTIC LEVELS OF IONIZING 

RADIATION USING PLASMONIC NANOSENSOR GELS 

4.1 Introduction 

Radiotherapy and chemotherapy are among the most widely administered treatment 

modalities in cancer158. Radiotherapy is typically administered in fractions of 2 Gy dose / 

day leading to a cumulative dose of 20-70 Gy over the course of the treatment; 1 Gy is 1 

joule of energy absorbed by a mass of 1 kg. Clinical radiotherapy utilizes advanced 

methods including image-guided delivery, intensity-modulated radiation therapy (IMRT), 

stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT)159. Treatment 

planning in these approaches involves numerous processes and individuals, which can 

increase the probability of error127. The ability to determine the actual dose delivered to 

target disease sites and / or adjoining healthy tissue can lead to significant reduction in 

error and may show correlations with response and morbidity leading to more effective 

treatment planning.   

  

Current dosimeters include semiconductor diodes and thermoluminescent dosimeters 

(TLDs)160. TLD operation is time consuming and requires a specialist operator, and 

semiconductor diodes are energy and dose rate dependent. Currently available dosimeters 

cannot be molded into different shapes that can conform to tissues during clinical 

radiotherapy. Polymer gel dosimeters were developed in order to overcome these 

limitations, and have been explored in IMRT and SRS treatments. However, a key 

limitation in using polymer gel based dosimeters is the use of magnetic resonance imaging 

(MRI) for determining the delivered dose, which makes their routine use very challenging. 
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Taking these factors into consideration, there is a strong requirement for the development 

of a simple gel-based dosimeter which can detect therapeutic doses of ionizing radiation. 

In particular, advances in molecular and nanoscale systems can lead to simple and effective 

approaches for detecting therapeutic doses of ionizing radiation161.  

 

Gold nanoparticles have attracted great interest in biomedical diagnostics and chemical 

sensing owing to unique optical properties associated with the size and shape of these 

nanoparticles66, 67.  We recently developed a liquid-phase sensor that is based on the 

formation of gold nanoparticles from a colorless metal salt solution upon exposure to 

therapeutic levels of ionizing radiation162. Although this is a powerful and simple approach 

for detecting ionizing radiation, a liquid-phase system has limitations in cases where 

detecting doses over a two-dimensional surface area may be necessary. In the current study, 

we report a simple colorimetric gel-based plasmonic nanosensor that can detect ionizing 

radiation in the dose range that is conventionally employed in fractionated clinical 

radiotherapy (i.e. 0.5 - 10 Gy). In this system, gold nanoparticles are generated in 

translucent gels upon irradiation with ionizing (X-ray) radiation levels employed in 

fractionated radiotherapy. Formation of gold nanoparticles renders color to the originally 

colorless and translucent gel, which facilitates visual detection as well as quantitative 

colorimetric dose determination. To our knowledge, these colorimetric gel-based 

plasmonic nanosensors are first of their kind, and can potentially be translated to clinical 

use in radiotherapy.  
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4.2 Materials and Methods 

Materials. Gold(III) chloride trihydrate (HAuCl4.3H2O), dodecyltrimethylammonium 

bromide (C12TAB) (≥98%) and L-ascorbic acid (AA) were purchased from Sigma-Aldrich. 

Cetyltrimethylammonium bromide (C16TAB) was purchased from MP chemicals. All 

chemicals were used as received from the manufacturer without additional purification. 

MilliQ water, at a resistivity of 18.2 MΩ.cm, was used as solvent for all experiments.    

 

Hydrogel Preparation for Irradiation. Cx=12,16TAB (600 µL of 50 mM solution in MilliQ 

water) was mixed with 30 µL of 10 mM HAuCl4 in MilliQ water. Different amounts of 

agarose were dissolved in DI water and heated until a clear solution of 5%, 7.5% or 10% 

w/v agarose were formed. Liquid agarose (500 µL) was then mixed with the gold-surfactant 

mixture. This liquid mixture (650 µL) was allowed to set in prefabricated molds, which 

results in agarose discs of ~1.5 cm diameter. Ascorbic acid (650 µL of 10 mM in MilliQ 

water) was allowed to diffuse into the gel for 10 minutes leading to the formation of the 

hydrogel nanosensor precursor. These translucent hydrogel discs were used subsequently 

for irradiation studies.  

 

X-Ray Irradiation. A Varian Truebeam linear accelerator radiation therapy system at the 

Banner-M.D. Anderson Cancer Center in Gilbert, AZ (one-way travel time of 

approximately 20 min from ASU) delivering a 6 MV photon beam was used to irradiate 

the translucent hydrogel at a dose rate of 15.6 Gy/min. The samples are irradiated at doses 

of 0, 1, 2, 3, 5, 7.5 and 10 Gy. 
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Nanosensor Gel Dosimetry in an Anthropomorphic Thorax Phantom. All phantom 

experiments were carried out at the Banner-M.D. Anderson Cancer Center in Gilbert, AZ 

(one-way travel time of approximately 20 min from ASU). A CIRS tissue equivalent thorax 

phantom was aligned on a Philips RT CT table with CT room aligning lasers. A total of 

150 CT scan images were acquired with a 1 mm image thickness and 1 mm image spacing 

which were then exported to a Philips Pinnacle treatment planning system. The thorax 

phantom was then contoured and a treatment plan was generated for a 6 MV radiation 

beam. Pinnacle’s Collapsed Cone Convolution Superposition (CCCS) algorithm was used 

to calculate the dose in the thorax phantom. A 3 Gy dose was delivered to the skin of the 

phantom while a 2 Gy dose was delivered to the second mediastinum (6 cm from the top) 

of the thorax phantom. Post irradiation analyses (e.g. absorbance) were performed at 

Arizona State University in Tempe, AZ. A calibration curve was developed for doses 

ranging from 0-3 Gy by irradiating the gel nanosensor samples at 100 cm source-to-surface 

distance or SSD with a standard uniform beam.  

 

Absorbance Spectroscopy. A BioTek Synergy 2 plate reader was used to determine the 

absorbance profiles of the irradiated and control samples. Absorbance values of gel 

samples in a 24 well plate were measured from 300 to 990 nm with a step size of 10 nm. 

Nanopure water was used as blank for the study. The characteristic plasmonic absorption 

peak between 500-600 nm was used as an indicator of gold nanoparticle formation. This 

absorbance value was offset by subtracting absorbance value at 990 nm (A990) from the 

peak (maximum) value. A curve was plotted with the maximum values obtained against 
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their corresponding doses for C12TAB and C16TAB for nanosensor gel samples. To 

maintain consistency a different calibration curve was generated for the phantom studies 

since the source to surface distance (SSD) was different for this set up compared to gels 

not used in the phantom. The calibration equations obtained were subsequently used to 

calculate the dose delivered in the phantom.  

 

Scanning Electron Microscopy. Following X-ray irradiation, the gel nanosensor samples 

were dried by exposing them to air at room temperature. The gel was sputter-coated with 

a thin film of gold-palladium prior to microscopy. SEM analyses were carried out in an XL 

30 Environmental instrument in order to visualize the presence of gold nanoparticles in the 

agarose hydrogel.  

 

Image Processing. All images were acquired using a Canon EOS 1100D camera under 

suitable lighting. The images were cropped to the desired size in the Fotor Photo Editor 

application. No further editing was carried out on the pictures reported in this article.  

 

Statistical Analyses. All irradiation experiments were carried out a minimum of three 

times independently unless otherwise stated. The results are expressed as mean ± one 

standard deviation. These calculations were carried out using Microsoft Excel. 
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4.3 Results and Discussion  

The working principle of the agarose gel-based nanosensor is based on the reduction of 

gold ions to gold nanoparticles following exposure to ionizing radiation (Figure 4.1). 

Agarose gels containing gold ions are colorless and translucent, and the gel changes color 

to maroon due to the formation of gold nanoparticles upon exposure to therapeutic levels 

of ionizing (X-ray) radiation. Zerovalent gold ions Au(0) generated in this process 

ultimately lead to nanoparticle nucleation and growth163. Originally existing in a trivalent 

state Au(III) in metal salts, the gold salt was first reduced to its monovalent Au(I) form 

using ascorbic acid. This was carried out in order to increase the thermodynamic 

favorability towards the formation of Au(0) species, because the reduction potential of 

Au(I) is higher than that of Au(III); only one electron is required to reduce Au(I) to 

Au(0)137, 138. Irradiation with ionizing radiation (X-rays) engenders splitting of water 

molecules in the gel, which, in turn, leads to the formation of ionizing radicals. Radiation-

induced free radicals, e- and H., are reducing in nature, and OH. is an oxidizing agent. These 

OH. radicals impede nanoparticle formation but can be removed by ascorbic acid, which 

acts as an antioxidant134.  

A 
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In addition to the gel and gold ions, we employed Cx (x=12,16)TAB surfactants in this study 

in order to facilitate the formation of gold nanoparticles139. The agarose polysaccharide 

contains functional moieties which can simultaneously assist in reduction of gold salt and 

templating of gold nanoparticles164. Altogether, a colorless metal salt precursor solution 

comprising of a mixture of auric chloride (HAuCl4), L-ascorbic acid (AA) and cetyl (C16) 

or dodecyl (C12) trimethylammonium bromide (Cx; x=16, 12TAB) surfactant molecules and 

agarose140, 141, form the key constituents of the novel gel based plasmonic nanosensor for 

detecting therapeutic levels of ionizing radiation. Key factors which influenced our current 

selection of the agarose hydrogel include (1) low toxicity / biocompatibility, (2) water 

solubility of the gel constituent material, (3) ease of generation, and (4) ease of mechanical 

property modulation. Agarose-based hydrogels have been investigated as scaffolds for 

Figure 4.1 (A) Schematic of the hydrogel nanosensors for the detection of therapeutic 
levels of ionizing radiation (e.g. X-rays). A mixture of 10 mM HAuCl4 and 50 mM CxTAB 
(x=12, 16) is mixed with liquid agarose and allowed to set in a circular mold to form a disc 
(16 mm in diameter and 3 mm in thickness). Ascorbic acid (10 mM) is allowed to diffuse 
into the gel from the top for 10 minutes immediately prior to subjecting the disc to different 
doses of ionizing radiation. Irradiation of this colorless hydrogel with ionizing radiation 
(X-rays) results in the formation of gold nanoparticles in the hydrogel, which results in a 
visible change in color of the gel from colorless to maroon. (B) Chemical reactions 
involved in the current hydrogel-based nanosensor. HAuCl4 solution, which is yellow in 
color, changes to orange upon addition of the surfactant (CxTAB). Subsequent addition of 
ascorbic acid (C6H8O6) led to reduction of Au(III) to Au(I), which renders the gel colorless 
and translucent. Irradiation with ionizing radiation (X-rays) results in the formation of gold 
nanoparticles (AuNPs), which render a burgundy color to the gel due to the plasmonic 
properties of these nanoparticles. 
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regenerating damaged tissues or as platforms for controlled drug release owing to their low 

toxicities165, 166.  

  

We first carried out several control experiments in order to investigate the suitability of the 

current agarose-based plasmonic nanosensor system. Wang et.al demonstrated that mixing 

HAuCl4 with heated agarose164 induced the spontaneous formation of gold nanoparticles. 

However, in absence of ionizing radiation, we did not observe the formation of a red / 

maroon-colored hydrogel (Figure 4.2A); a concomitant absorbance peak between 500-600 

nm, which is indicative of gold nanoparticles, was also not seen (Figure 4.3A). Formation 

of an intense yellow-colored liquid was seen when a mixture of HAuCl4 and CxTAB (x = 

12 or 16) was mixed with heated agarose, likely due to the replacement of chloride ions by 

bromide ions from CxTAB (Figure 4.2B and C)138, 167. This ligand transfer leads to a new 

absorbance peak at ~370 nm (Figures 4.3B and C), and subsequent cooling led to the 

formation of pale yellow-colored gels. Addition of ascorbic acid to this gel formulation 

reduces the gold salt from Au(III) to Au(I)168 rendering the gel colorless (Figures 4.2D 

and E), which is consistent with previous observations138, 162; the loss in color is also 

indicated by the loss or absence of peaks in the UV-vis spectrum (Figure 4.3D and E). 

This colorless formulation is used as the plasmonic nanosensor gel in all subsequent 

radiation detection studies. In the absence of ionizing radiation, this precursor gel (i.e. 

agarose containing ascorbic acid, HAuCl4 and CxTAB) remained colorless due to minimal, 

if any, formation of gold nanoparticles; no absorbance peak was seen at ca. 520 nm. In the 

absence of CxTAB surfactant molecules, direct addition of ascorbic acid to agarose gels 

containing HAuCl4 resulted in the spontaneous formation of gold nanoparticles169. In the 
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absence of ascorbic acid, irradiation of agarose gels containing CxTAB and HAuCl4 with 

X-rays did not induce a change in the yellow color of the gels (Figure 4.4), although a 

small peak at 520 nm was observed in case of 10% agarose (Figure 4.5 A). Taken together, 

these results indicate that all components i.e. agarose, HAuCl4, CxTAB, and ascorbic acid 

(AA) are necessary to form the colorless precursor gel formulation of the plasmonic 

radiation nanosensor. 
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Figure 4.2 Images of the precursor nanosensor agarose gels not subjected to X-rays. 
Images were acquired 1 hr following formulation. (A) Agarose gels containing only 10mM 
HAuCl4, (B) Agarose gel formulated with 10 mM HAuCl4 and 50 mM C12TAB (no 
ascorbic acid), (C) Agarose gel formulated with 10 mM HAuCl4 and 50 mM C16TAB (no 
ascorbic acid) (D) Agarose gel formulated with 10 mM HAuCl4, 50 mM C12TAB and 10 
mM ascorbic acid, (E) Agarose gel formulated with 10 mM HAuCl4, 50 mM C16TAB and 
10 mM Ascorbic Acid. Columns (I), (II) and (III) correspond to 5%, 7.5% and 10% (w/v) 
agarose respectively.  
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(E) 

 

 

Figure 4.3 Absorbance spectra of agarose gels containing (A) 10 mM Au3+ (i.e. HAuCl4), 
(B) 10 mM Au3+ + 50 mM C16TAB, (C) 10 mM Au3+ + 50 mM C12TAB, (D) 10 mM Au 
+ C16TAB + 10 mM ascorbic acid (AA), and (E) 10 mM Au3+ + 50 mM C12TAB + 10 mM 
AA. These spectra were acquired 1h following preparation of the individual gel 
formulations. 
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Figure 4.4 Images of control agarose gels acquired after 1hr and 2 Gy radiation; ascorbic 
acid was not used in these formulations (A) agarose gels consisting of only 10 mM HAuCl4, 
(B) agarose gel formulated with 10 mM HAuCl4 and 50 mM C12TAB, (C) agarose gel 
formulated with 10 mM HAuCl4 and 50 mM C16TAB. Columns (I), (II) and (III) 
correspond to 5%, 7.5% and 10% (w/v) agarose respectively. 
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(C) 

 

 

Figure 4.5 Absorbance spectra of different control formulations irradiated with 2 Gy X-
ray dose dose (A) 10 mM Au3+ (i.e. HAuCl4) (B) 10 mM Au3+ + 50 mM C16TAB (C) 10 
mM Au3+ + 50 mM C12TAB. The spectra were acquired 1hr following irradiation. Note: 
ascorbic acid was not used in these control gel formulations. 

 

Irradiation of the precursor gel formulation with different doses of ionizing radiation 

resulted in the formation of gold nanoparticles, which rendered a maroon color to the gel 

(Figure 4.6). Exposure of hydrogel to ionizing radiation results in the formation of e-
aq and 

H. radicals upon water splitting, which facilitates the reduction of monovalent gold Au(I) 

ions to its zerovalent Au(0) state170. Further nucleation and coalescence of the Au(0) 

species (seeds) leads to the formation of gold nanoparticles171; the gold nanoparticles are 

likely stabilized by the CxTAB surfactant molecules present in the gel172. The intensity of 

the maroon color depends on the concentration of gold nanoparticles in the gel, which, in 

turn, is dependent on the radiation dose delivered to the gel. This increase in color intensity 

is eventually a direct result of the increase in the number of free radicals generated at higher 
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radiation doses173, which can reach a saturation level at a particular dose beyond which the 

colorimetric response stays invariant.  
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Figure 4.6 Images of 5% (w/v) agarose gel containing (A) 50 mM C12TAB and (B) 50 mM 
C16TAB surfactants following exposure to different doses of ionizing (X-ray) radiation.
Formation of gold nanoparticles renders a maroon color to the gel. Images were acquired 
1 h after subjecting the gels to X-ray irradiation. All samples contain 10 mM HAuCl4 and 
10 mM ascorbic acid.  
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The color change of gels, from colorless to maroon, was visible to the naked eye as early 

as 10 minutes following exposure X-rays (Figures 4.6, 4.7 and 4.8), although lower doses 

(0.5 and 1 Gy) required 15-20 mins for a visible change in color. The change in color was 

quantified using UV-vis absorbance spectroscopy 1 h following irradiation, since this was 

the earliest when we could determine absorbance due to travel time between the radiation 

center and ASU (absorbance analysis). A characteristic spectral peak in the range of 500-

600 nm (Figure 4.9 and 4.10) was indicative of gold nanoparticle formation in the gel. No 

significant difference in the absorbance intensity was observed over a period of four hours 

once the color was formed (Figure 4.11).  Longer durations were not investigated, but we 

do not anticipate fading or bleaching since the colorimetric response is based on formation 

of nanoparticles, which are more stable than dyes. Formation of nanoparticles in the gel 

was further verified using field-emission scanning electron microscopy (Figure 4.12). 

Image analysis indicated that the average size of gold nanoparticles formed in the gel was 

~ 35 nm. 

(A) 

 

 

 

 

 

 

0 Gy 0.5 Gy 1 Gy 2 Gy 

3 Gy 5 Gy 7.5 Gy 10 Gy 



104 

 

 (B) 

 

 

 

 

 

 

 

 

  

(A) 

 

 

 

 

 

 

 

 

0 Gy 0.5 Gy 1 Gy 2 Gy 

3 Gy 5 Gy 7.5 Gy 10 Gy 

0 Gy 0.5 Gy 1 Gy 2 Gy 

3 Gy 5 Gy 7.5 Gy 10 Gy 

Figure 4.7 Images of 7.5% (w/v) agarose nanosensor gel with (A) C16TAB and (B) 
C12TAB following irradiation with different radiation doses. Images were acquired 1 h 
after irradiation. 
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Figure 4.8 Images of 10% (w/v) agarose nanosensor gel containing (A) C16TAB and (B) 
C12TAB following irradiation with different radiation doses. Images were acquired 1 h 
after irradiation. 
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(B) 

 

 

Figure 4.9 Absorbance spectra of 5% (w/v) agarose nanosensor gels containing (A) 
C12TAB and (B) C16TAB irradiated with different X-ray doses. Characteristic absorbance 
peaks between 500 – 600 nm wavelength are indicative of gold nanoparticle formation. 
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(D) 

 

Figure 4.10 Absorbance spectra of (A) 10 mM HAuCl4 + 50 mM C16TAB + 7.5% (w/v) 
agarose + 10 mM ascorbic acid (B) 10 mM HAuCl4 + 50 mM C12TAB + 7.5% (w/v) 
agarose + 10 mM ascorbic acid (C) 10 mM HAuCl4 + 50 mM C16TAB + 10% (w/v) agarose 
+ 10 mM ascorbic acid (D) 10 mM HAuCl4 + 50 mM C12TAB + 10% (w/v) agarose + 10 
mM ascorbic acid, subjected to various doses of X-ray radiation.  
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(B) 

 

Figure 4.11 Kinetics of gold nanoparticle formation in 5% (w/v) agarose nanosensor gels 
with (A) C12TAB and (B) C16TAB following irradiation with different doses of X-rays. 
Absorbance spectra of the gels were acquired from 300 – 900 nm and the peak value of the 
absorbance (typically ca. 530 nm) at every time point was used to generate this plot. 
Earliest determination of the absorbance values was at 1 h due to travel time between the 
Banner-M.D. Anderson Cancer Center (radiation treatment) and ASU (absorbance 
analyses). 

 

Figure 4.12 SEM image showing gold nanoparticles formed in a 5% (w/v) agarose 
nanosensor with C12TAB as surfactant post 2 Gy irradiation. Note the location of the SEM 
in the gel inset is approximate. 
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Both C12TAB and C16TAB surfactant species were successful in facilitating the formation 

of gold nanoparticles in the therapeutic radiotherapy dose range, although C12TAB 

demonstrated a higher efficacy for the formation of nanoparticles at lower doses (e.g. 0.5 

Gy). Following reduction of gold ions to zerovalent gold, nanoparticle growth occurs due 

to collisions among Au(0) seeds or between Au(0) seeds and unreacted Au3+ ions; 

surfactant molecules eventually cap the nanoparticles formed. We hypothesize that 

C12TAB possesses a higher diffusion coefficient compared to C16TAB due to its smaller 

size. This, in turn, is likely responsible for its effective transport through the gel network, 

which facilitates nanoparticle formation at lower doses. Increasing the agarose content (w/v 

ratio) can limit the diffusion of molecules and nanoparticles through the gel matrix. Indeed, 

a decrease in the intensity of the maroon color formed was seen following 1 Gy irradiation 

when 10% agarose was used as compared to 5% agarose (Figures 4.6B and 4.8B). The 

absorbance value decreased from 0.1066 to 0.04, indicating that increasing the agarose 

concentration decreased nanoparticle yields likely as a result of diffusion limited growth. 

We also observed that the size of the nanosensor gel did not significantly influence the 

qualitative colorimetric response; gels formulated in 96 well plates (~7 mm in diameter 

and ~3 mm in thickness) also demonstrated a characteristic linear response to those 

formulated above (i.e. gels generated in 24 well plates, ~1.5 cm in diameter and ~3 mm in 

thickness) despite their smaller diameters (Figures 4.13A and 4.13B). 
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(A) 

 

(B) 

 

Figure 4.13 Efficacy of nanosensor gels formulated in 96 well plates, which led to gels 
with smaller dimensions. (A) Absorbance spectra of 5% (w/v) agarose nanosensor gels 
containing C12TAB. (B) Calibration of maximum absorbance vs. radiation dose 1hr post 
radiation. 
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Following irradiation, nanosensor gels were investigated using UV-spectroscopy in order 

to obtain a quantitative correlation between nanoparticle formation and the delivered 

radiation dose. The maximum absorbance value was plotted as a function of X-ray 

radiation dose ranging from 0.5-10 Gy (Figures 4.14, 4.15 and 4.16), which is used for 

conventional and hypo fractionated radiotherapy in the clinic. As seen in Figure 4.14, the 

C12TAB surfactant was more effective at templating the formation of gold nanoparticles 

compared to C16TAB; a more intense maroon color of the nanosensor gels was seen in the 

case of C12TAB compared to that obtained using C16TAB. A linear range of gel absorbance 

was obtained between X-ray doses of 0 – 3 Gy using C12TAB as the templating surfactant 

and a calibration curve was generated (Figures 4.17A). This is very much within the dose 

range used in conventional fractionated radiotherapy in the clinic. Higher radiation doses 

did not enhance gold nanoparticle formation as seen by the invariant absorbance at doses 

≥ 5 Gy. The efficacy of the nanosensor gel was determined by delivering an actual dose 

of 1.5 Gy (not used for generating the calibration curve). The color change at 1h was 

quantified using absorbance analysis, and use of the calibration curve resulted in a dose 

estimation of 1.61 ± 0.16 Gy for the actually delivered dose of 1.5 Gy, which indicates the 

utility of this approach for dosimetry in fractionated radiotherapy. Clinically available 

NanoDots OSLDs™ resulted in a final dose of 1.63 ± 0.007 Gy (n=3). Clinical error 

percentages for dosimeters are approximately 3.9% for MOSFETs and 5.1% for TLDs174, 

respectively. Our colormetric gel nanosensor has an error of 7%, which is comparable to 

that observed with NanoDots OSLDs™ and are in the range of those reported for 

MOSFETs and TLDs, which can be more cumbersome to use.  
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Figure 4.14 Absorbance response of the plasmonic nanosensor gel following irradiation 
with X-rays; maximum absorbance vs. radiation dose 1h post X-ray irradiation is shown in 
the plot. Circles indicate the nanosensor response for C12TAB, and triangles indicate the 
response for C16TAB formulated with 10 mM HAuCl4 in a 5% (w/v) agarose gel. 
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Figure 4.15 Absorbance response of the plasmonic nanosensor gel following irradiation 
with X-rays. Maximum absorbance vs. radiation dose 1h post irradiation is shown in the 
plot. Solid line indicates response with C12TAB and dashed line indicates the response with 
C16TAB for 7.5% (w/v) agarose gel. 

 

 

Figure 4.16 Absorbance response of the plasmonic nanosensor gel following irradiation 
with X-rays. Maximum absorbance vs. radiation dose 1h post irradiation is shown in the 
plot. Solid line indicates response with C12TAB and dashed line indicates the response with 
C16TAB for 10% (w/v) agarose gel. 
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A 

 

 

Figure 4.17 (A) Calibration curve of gel absorbance vs. radiation dose (0 – 3 Gy). This 
curve used for nanosensor gel-based dosimetry of fractionated radiotherapy doses in 
absence of an anthropomorphic thorax phantom. (B) Calibration curve of gel absorbance 
vs. radiation dose (0 – 3 Gy). This curve used for nanosensor gel-based dosimetry of 
fractionated radiotherapy doses at the isocenter (100 cm SSD) delivered to the 
anthropomorphic thorax phantom.  
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Radiation dosimeters for in vivo / ex vivo applications should exhibit energy independence, 

dose rate independence, and minimal attenuation of the incoming ionizing radiation 

energy175. The nanosensor gel showed no significant differences in the optical response 

(i.e. color change / absorbance) when different dose rates and energies were employed 

(Figure 4.18A). This can be expected since the minimum energy required to ionize water 

is ≈11 eV176, which is substantially lower than the energy delivered in these systems. 

Sources that deliver energy above the required minimum photon energy can ionize water 

molecules leading to formation of free radicals that can reduce metal ions to nanoparticles. 

Decreasing the dose rate to 1 Gy/min from 6 Gy/min also did not significantly affect the 

final absorbance of the nanosensor gel, likely because they both generate approximately 

the same number of free radicals. Radiolysis products are a function of radiation type (α , 

β  and γ radiation) and independent of dose rate since the energy deposited remains constant 

irrespective of the rate at which the dose is being generated173. The reduction of metal ions 

by the hydrated electron is completed in a short time (order of 10-7 – 10-6 s) compared to 

the longer time scales of nucleation and crystal growth of the nanoparticles (order of 

minutes)148. We hypothesize that since the metal ions reduced by the hydrated electrons 

are similar in both cases, the final concentration of nanoparticles is independent of dose 

rate. The relatively low concentration of heavy metal ions (Au3+) in the agarose hydrogel 

does not alter the incident radiation dose of 1 Gy (Figure 4.18B), which is another key 

requirement of an effective dosimeter. Our results demonstrate that the response of the 

nanosensor gel is independent of the dose rate delivered and does not attenuate the dose 

delivered (i.e. no absorption of the incoming energy), all of which are desirable 

characteristics for in vivo / ex vivo dosimetry.        
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(A) 

 

(B) 

 

Figure 4.18 (A). Maximum absorbance of the agarose nanosensor gels irradiated with 2 
Gy at different dose rates and energy (6 MV and 15 MV). No significant differences in 
absorbance were observed under these conditions employed indicating dose rate and 
energy independence of the nanosensor gel system (DS indicates the dose rate in Monitor 
Units/min) (B). Ion chamber dosimeter is placed below the agarose hydrogel (A) molded 
to the shape of a 4 inch petri dish (PD) to measure heavy metal (Au) induced radiation 
attenuation. Even in the presence of heavy metal (Au) and ascorbic acid (AA) there is no 
significant dose attenuation observed.  

 

We further investigated the translational capabilities of the nanosensor gel using an 

anthropomorphic thorax phantom (Figure 4.19A) which allows the determination of 
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radiation dose at the skin and mediastinum. The lower half of the mediastinum was 

subjected to a dose of 2 Gy while the skin was irradiated with 3 Gy as shown by the 

treatment plan in Figure 4.19B. Hydrogel discs containing C12TAB as surfactant were 

formulated into similar shapes and sizes as those used for calibration (carried out outside 

the phantom), and placed at the site in the phantom in order to monitor the radiation dose 

delivered. A linear curve between 0 Gy and 3 Gy was used to quantify the radiation dose 

delivered to the phantom. Based on the calibration (Figure 4.17 B), a dose of 2.15 ± 0.18 

Gy was estimated for a delivered dose of 2 Gy, and a dose of 3.27 ± 0.35 Gy was estimated 

for the 3 Gy delivered to the skin. The distinct visual color change, coupled with a simple 

quantitative measurement (UV-Vis absorbance), indicates the potential of this approach 

for detecting clinically relevant radiotherapy doses.  

(A) 
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3 Gy 

2 Gy 

Figure 4.19 (A) Image of the anthropomorphic thorax phantom used in the current 
radiation dosimetry studies (B) An X-ray computed tomography (CT) scan image of the 
thorax phantom used in the experiments, showing the radiation dose treatment plan. The 
inside of the phantom is irradiated with a 2 Gy dose while the skin was irradiated with 3 
Gy dose. 
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Delivered  Dose  

(Gy) 

Average radiation Dose 

Delivered ± one S.D. (Gy) 

 Gel Nanosensor  

(n=3) 

3 3.27 ± 0.35 

2 2.15 ± 0.18 

 

Table 4.1 The table indicates the dose delivered according to the treatment plan and the 
radiation dose estimated by the gel based plasmonic nanosensor. 

  

 

4.4 Conclusions  

 

To our knowledge, this is the first demonstration of a colorimetric gel dosimeter for 

detecting therapeutically relevant doses of ionizing radiation currently employed in 

individual fractions in fractionated radiotherapy. The nanosensor gel was able to detect 

doses as low as 0.5 Gy, demonstrated a linear response in the range of 0 – 3 Gy, and was 

effective when placed in an anthropomorphic thorax phantom, all of which indicate the 

suitability of this approach in detecting radiation doses delivered during an individual 

fraction (typically 2 Gy) in fractionated radiotherapy. Use of hydrogels can facilitate 

adaptation to different anatomical shapes (e.g. skin, breast, etc.), and the ease of detection 

and quantification of this approach can facilitate easy translation to clinical use. Although 

agarose was used as a model for biocompatible hydrogels, several gel systems, including 

poly(lactic-co-glycolic acid) or PLGA, could also be investigated for this application. 

Ascorbic acid is an FDA-approved GRAS (generally recognized as safe) compound. One 

potential concern of the current gel nanosensor system is the toxicity of C16TAB and 
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C12TAB as templating surfactants, especially at higher concentrations. However, this can 

be mitigated by the use of lower concentrations and more effective formulation methods 

(e.g. secondary containment in a device)177. However, further biocompatibility studies 

using animal (e.g. mouse) models will be necessary to determine this. In addition, 

identification of biocompatible templating molecules can further obviate potential toxicity 

concerns. We anticipate that these new developments will accelerate the translation of 

nanosensor gels for detecting radiation doses in the clinic. 
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Chapter 5 HYDROGEL NANOSENSORS FOR COLORIMETRIC DETECTION 

AND DOSIMETRY IN PROTON BEAM THERAPY 

5.1 Introduction 

 

Radiation therapy is one of the primary treatment modalities employed for the ablation of 

various tumors in a clinical setting178. Ideally, one can enhance therapeutic outcomes of 

ionizing radiation by maximizing the sparing of the volume of healthy tissues that 

otherwise get exposed to XRT. At present, most external beam radiotherapy (EBRT) is 

administered using high-energy photons (e.g. X-rays), which characteristically deliver exit 

doses. This results in the delivery of significant amounts of radiation to normal tissues lying 

either adjacent or towards the distal end of the target (e.g. tumor). This can lead to side 

effects, including radiation-induced toxicity, in healthy tissues.  

 

Proton beam therapy is an alternate form of radiation therapy in which particles (protons), 

instead of high-energy photons, are delivered to the tumor, potentially leading to greater 

control and precision over dose deposition at the disease site179. This can lead to decreased 

damage to the surrounding tissue and cause fewer side effects post radiation treatment. This 

is primarily due to the unique dose deposition characteristics of protons known as the Bragg 

peak180. As the protons enter a patient’s body they lose their kinetic energy following 

collisions with electrons in tissues. As the protons slow down, their interaction cross 

section with electrons increases steadily until it reaches a sharp maximum shortly before 

the protons come to rest. This sharp maximum gives rise to the dosimetric Bragg peak181 

of maximal dose at the target site.  
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Radiation doses are typically delivered in fractions of 2 Gy dose/day (conventional 

fractionated radiotherapy) leading to a cumulative dose in the range of 20 - 70 Gy for the 

entire treatment course (1 Gy = 1 Joule energy absorbed by 1 kg mass). Typically, patients 

are treated daily once a day, 5 days per week, and over a period of 8-9 weeks. Following 

the development of sophisticated imaging techniques and beam delivery modalities, 

hypofractionated proton beam therapy in which, higher doses are delivered per treatment 

fraction (e.g. 4 Gy dose/day), has also found increased application in the treatment of 

cancer. This modality of treatment has been employed for aggressive tumor sites including 

in the liver, prostate and lung where high radiation doses are required in order to allow for 

a high rate of local control with minimal toxicity to the surrounding tissue182-184.  

 

The complexity of precisely delivering radiation doses to tumor sites has increased 

dramatically over the last decade. The rapid development of these advances has led to some 

imbalance in the development of verification technologies (dosimeters) for detecting 

potential sources of error during treatment. Clearly, detection of excess or deficient 

radiation levels delivered to patients will lead to improved safety and efficacy of the 

treatment185. Solid-state dosimeters, including p-type semiconductor diodes and diamond 

detectors, are among those employed in the clinic186. These detectors require specialized 

equipment for reading output (i.e. radiation dose), exhibit energy dependence, can require 

expensive fabrication processes, and do not conform to human anatomical features. These 

difficulties partially motivated the use of radiochromic films in clinical settings. The 

response of these films to radiation is typically measured at up to 24 hours post irradiation 

until relative stability of response is achieved187. A faster response is required to determine 
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the delivered radiation dose in order to administer any modifications to the treatment plan 

in order to ensure the safety of the patient. Polymer gel dosimeters require the use of 

sophisticated and expensive visualization modalities including magnetic resonance 

imaging (MRI)161, 186, which limits their practical use in the clinic. There is a need for a 

novel dosimeter that can overcome these limitations, demonstrate a rapid and robust 

performance (e.g. response time less than 24 hours), result in safe and effective monitoring 

radiation doses in proton therapy, potentially leading to improved patient outcomes. 

 

Gold nanoparticles have been used in a wide range of applications including catalysis, 

imaging, diagnostics and molecular delivery66, 67, 188. Of particular relevance, colorimetric 

assays using gold nanoparticles have been employed as sensors for the detection of analytes 

including toxic metal ions and biological enzymes189, 190. Gold nanoparticles are easy to 

synthesize, inert, functionalizable, and demonstrate tunable size and shape dependent 

properties (including colorimetric responses)191, all of which make them attractive for 

sensor development.  

 

Advances in molecular and nanoscale systems offer new options for effective radiation 

dosimetry192. Ionizing radiation causes formation of free radicals in water following 

hydrolysis. We employed this phenomenon in concert with effective templating molecules 

(e.g. aliphatic surfactants) in order to engender the formation of plasmonic (gold and gold-

silver) nanoparticles from their respective metal ion formulations93, 162, 193-195. The 

formation of plasmonic nanoparticles in liquid or gel formulations is accompanied by a 

visible color change which is distinct from the original metal ion formulation, which is 
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colorless. Here, we report, for the first time, a colorimetric approach for the rapid detection 

of therapeutic levels (0-3 GyRBE) of proton irradiation (Relative Biological Effectiveness 

or RBE is defined as the ratio of doses required to reach the same level of biological 

effectiveness when comparing two ionizing radiation treatment modalities)196. The extent 

of the color intensity depends on the dose of protons delivered to the gel and can be used 

for quantitative dose determination. To our knowledge, this is the first colorimetric 

nanosensor for detecting and predicting proton doses and has high potential for translation 

to clinical proton beam radiotherapy. 

5.2 Materials and Methods 

 

Materials. Gold(III) chloride trihydrate (HAuCl4.3H2O), decyltrimethylammonium 

bromide (C10TAB) (≥98.0%; non-aqueous titration grade), dodoceyltrimethylammonium 

bromide (C12TAB) (≥98%), myristyltrimethylammonium bromide (C14TAB) (≥99%), L-

ascorbic acid  and agarose were purchased from Sigma-Aldrich. Cetyltrimethylammonium 

bromide (C16TAB) was procured from MP Chemicals. The chemicals received from the 

vendors were not purified further. MilliQ water (18.2 MΩ.cm) was used as solvent for all 

experiments.  

 

Preparation of the Precursor Hydrogel. HAuCl4 (30 µL of 10 mM solution) was mixed 

with 600 µL of 50 mM solution of Cx=10,12,14,16TAB aliphatic surfactants, and 100 µL of 

the above mixture were discarded. Heated aqueous agarose (500 µL of 5% v (ml) /w (mg)) 

was added to the gold-surfactant solution. 24 well plates (diameter ~16 mm) were used to 

set the liquid mixture (200µL, 400µL and 650 µL) and form gels with a thickness of ~1, 2 

and 3 mm respectively. 10mM ascorbic acid (200µL for a 1mm gel, 400µL for a 2mm gel 
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and 650 µL for a 3mm gel) was allowed to diffuse into the gel for 10 minutes, resulting in 

the formation of translucent gel discs. These discs were used for irradiation studies as 

precursor hydrogels. 

 

Proton Beam Irradiation. All CT simulations of the phantom based setup and proton 

beam irradiations were conducted at the Proton Beam Therapy Center at Mayo Clinic 

Hospital, Phoenix, AZ. CT simulations were performed using the SOMATOM Definition 

AS (Siemens Healthcare, Erlangen, Germany), and spot-scanning based proton treatment 

plans were created using the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment 

planning system (version PCS 13.7) (TPS). Proton irradiations were delivered using the 

PROBEAT-V Proton Beam Therapy System (Hitachi, Ltd., Tokyo, Japan). Proton beam 

therapy doses are customarily prescribed and reported in relative biological effectiveness 

(RBE) - weighted absorbed dose (DRBE). In this work, in order to obtain physical dose 

D_RBE values may simply be divided by a constant factor of 1.1.  

 

Gel samples were placed in the inner wells of a 24-well plate, which was placed on the 

table with 5 cm-thick acrylic blocks placed above and below it. A CT simulation of the 

phantom was performed with slice thicknesses of 2 mm. A single Field Uniform Dose 

based treatment plan was designed in order to deliver 0.5 GyRBE uniformly across the 

central wells. The treatment was optimized such that the 99% of the dose reporting 

reference volume received 100% of the dose. In order to deliver larger doses to these gel 

samples, sequential treatment plans were generated by simply scaling the doses to higher 

DRBE levels: 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 and 5.0 GyRBE. These doses delivered to our samples 



127 

 

were validated with another reference film dosimeter. A piece of Gafchromic EBT3 film 

(Ashland, Bridgewater, NJ) was placed directly below the well plate during irradiation of 

the gel with 2.0 GyRBE.  Reference dosimetry using these calibrated gafchromic films 

matched the TPS calculated doses to within +/- 2.5%. While the irradiation times ranged 

between 41 seconds for the 0.5 GyRBE dose and 86 seconds for the 5.0 GyRBE dose, dose 

rate dependence of these dosimeters has not been investigated in this particular study. 

 

Plasmonic Gel Dosimetry on an Anthropomorphic Child Phantom. A CT simulation, 

using a slice thickness of 1 mm and a pitch of 1.0, was performed on an ATOM 704 

anthropomorphic phantom (CIRS Inc., Norfolk, VA), which models a 1-year-old infant. 

Three radio-opaque markers were placed at isocenter, and two more were placed at the 

head and foot to ensure a reproducible setup. A plan was created whereby a posterior-

anterior field was used to deliver a prescription DRBE of 1.8 GyRBE to a target encompassing 

the spine. The phantom was irradiated with gel samples placed on the table at various points 

beneath it, providing a measurement of the skin dose to the phantom.  

 

Absorbance Spectroscopy. Following irradiation with different proton doses, the 

absorbance spectra of the gel samples were measured for wavelengths ranging from 300 to 

990 nm with a step size of 10 nm using a BioTek Synergy 2 plate reader. All absorbance 

measurements were carried out at 2 hours following irradiation, because the travel time 

from the Mayo Clinic to ASU can vary. However, the color change was seen as early as 15 

minutes post irradiation in most cases. The absorbance values obtained were offset by 

subtracting the wavelength at 990 nm. The peak between 500-600 nm was used as an 
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indicator for the formation of gold nanoparticles. A maximum absorbance value between 

500-600 nm vs. proton dose was plotted for all surfactants.  

 

Compression Testing. Force under compression for failure was recorded using a TA.XT 

Plus Texture Analyzer (Texture Technologies Corp., Hamilton, MA) equipped with 

Exponent (Stable Microsystems) software. The hydrogels were placed between the 

stationary plate and the moving accessory (TA-8; 1/4" spherical ball). The accessory 

movement speed used was 2mm/sec and a trigger force of 0.049N was set. The maximum 

compressive force force required was measured through the force vs distance curve 

generated.  

 

Image Processing. A Canon EOS 1100D camera was used to acquire all gel images. The 

Fotor Photo Editor application was used to crop the images to the desired size, but no 

further editing was carried out. All pictures reported in this article were acquired for 

visualization alone and not used for quantification of the dose response, which was carried 

out using absorbance analysis.  

 

Transmission Electron Microscopy. The irradiated sample was kept at room temperature 

overnight for air drying. The dried sample was soaked in epoxy resin. Thin slices of the 

cured epoxy-containing sample were sectioned using an ultramicrotome. These thin 

samples were imaged using a Philips CM 12 Transmission electron microscope.  
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Statistical Analyses. All experiments were carried out in triplicate unless otherwise stated. 

Statistical analysis calculations were carried out using Microsoft Excel and data are 

expressed as the mean of these independent experiments ± one standard deviation. 

 

5.3 Results and Discussion 

 

The ability to detect proton doses administered to tissues can have significant implications 

for improving treatment outcomes in cancer radiotherapy. To this end, a robust nanosensor 

that can reliably detect doses at the intended target and / or at nearby tissues can enhance 

the efficacy of radiotherapy, which can lead to improved patient outcomes. Here, we report 

our studies on a gel-based colorimetric nanosensor that can detect doses employed for 

fractionated proton radiotherapy in the clinic. The nanosensor works on the principle that 

exposure of a precursor hydrogel to high-energy radiation (e.g. photons) or particles (e.g. 

protons) results in the formation of free radicals upon hydrolysis (water splitting), which, 

in turn, reduce the encapsulated gold ions to gold nanoparticles within the gel matrix 

(Figure 5.1)162, 193. The plasmonic properties of these gold nanoparticles renders a color 

(typically maroon) to the gel. The intensity of the color is governed by amount 

nanoparticles formed, which, in turn, is dependent on the dose of protons absorbed.  
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Initially, gold exists as trivalent Au(III) ions along with the cationic surfactant molecules 

within the heated agarose solution. These Au(III) metal ions are first reduced to 

monovalent Au(I) ions using ascorbic acid as the reducing agent194. The reduction potential 

of Au(I) is higher than that of Au(III), which increases the thermodynamic favorability of 

zerovalent gold ion or Au(0) formation138, 197. These Au(0) ions are thought to nucleate and 

grow to form gold nanoparticles; the cationic surfactant used in the formulation (CxTAB; 

x=10, 12, 14, or 16) likely stabilizes the gold nanoparticles formed and may also play a 

role in templating the nanoparticles.  

 

Agarose 
gel 

Nanosensor 
precursor 

Gel dosimeter 
post irradiation 

10 min 
incubation  

Ascorbic 
Acid 

During 
Irradiation 

Proton 

Gantry 

Figure 5.1 Schematic of nanosensor gel dosimeters for proton beam therapy. Cylindrical 
hydrogel discs, 16 mm diameter and 3 mm height, are formulated with 10 mM HAuCl4, 
50 mM CxTAB (x=10, 12, 14 or 16) and 5% (w/v) agarose. Just prior to irradiation, 10 
mM ascorbic acid is added from the top and allowed to diffuse into the gel for 10 minutes. 
A characteristic maroon color is seen post irradiation due to formation of gold 
nanoparticles within the gel matrix.  
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Irradiation of Au(I)-containing agarose gels with high-energy proton particles can facilitate 

splitting of water molecules in the hydrogel, which, in turn, can result in the formation of 

e-, H. and OH. free radicals198. Of these, e- and H. are reducing in nature and help reduce 

Au(I) ions to zerovalent Au(0) ions. Ascorbic acid, an antioxidant, is thought to help 

quench the oxidizing OH. radicals formed in the process199, which can further enhance the 

efficacy of nanoparticle formation. The agarose hydrogels are initially translucent and 

colorless prior to irradiation, but change color to maroon once exposed to protons due to 

formation of gold nanoparticles within the matrix, resulting in a visible indicator of proton 

therapy doses. Surfactants of different chain lengths (Cx, where x=10, 12, 14, or 16TAB) were 

employed to facilitate the formation of gold nanoparticles. Water solubility, 

biocompatibility and ease in formulation of hydrogels were the key factors influencing the 

selection of agarose as the gel matrix in these studies.  

 

We fabricated agarose gels with thicknesses of 1, 2 or 3 mm loaded with C12TAB and 

C14TAB surfactants and investigated them for a colorimetric response following irradiation 

with protons (2 Gy). An increase in the absorbance was observed with an increase in the 

gel thickness following irradiation (Figure 5.2). It was observed that the 1mm and 2mm 

thick gels formed a higher meniscus curvature making the gels non-homogenous. This led 

to the formation of a non homogenous distribution of gold nanoparticles in the gel, which 

could even be visually observed (Figures 5.3A, 5.3B, 5.4A and 5.4B).  However, the 

distribution of gold nanoparticles was visually homogeneous in gels that were ~3 mm in 

thickness (Figures 5.6A and 5.6B). Absorbance values, used to quantify gold nanoparticle 

formation, were similar at different points along the diameter, which further indicated a 
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uniform distribution of nanoparticles formed in the 3 mm thick agarose matrix (Figure 

5.5).  This uniform distribution of nanoparticles and the ease of handling of the 3 mm 

hydrogels made this formulation an excellent choice for further radiation experiments. 

 

 

 

Figure 5.2 Absorbance spectra of the hydrogel nanosensor following irradiation with 
proton beam therapy. A plot depicting maximum absorbance vs radiation dose 2 hours post 
irradiation is shown. Gels containing 50 mM C12TAB surfactant irradiated with 0 GyRBE 
(depicted by blue diamonds) and 2 GyRBE (depicted by grey triangles), and 50 mM C14TAB 
surfactant irradiated with 0 GyRBE (depicted by orange squares) and 2 GyRBE (depicted by 
yellow circles) with varying thickness are shown in the plot.  In the figure, GyRBE is denoted 
as only as Gy. 
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Figure 5.3 Images of nanosensor gel of thickness 1 mm containing C12TAB or C14TAB 
surfactants. (A) Control gels irradiated with 0 GyRBE (B) nanosensor gels irradiated with 2 
GyRBE radiation dose using proton beams. All gels contain 10 mM HAuCl4 and 10 mM 
ascorbic acid. All images were taken 2 hours after irradiation of gels with protons. 
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Figure 5.4 Images of nanosensor gel of thickness 2mm containing C12TAB or C14TAB 
surfactants. (A) Control gels irradiated with with 0 GyRBE and (B) nanosensor gels 
irradiatied with 2 GyRBE radiation dose using proton beams. All gels contain 10 mM 
HAuCl4 and 10 mM ascorbic acid. All images were taken 2 hours after irradiation of gels 
with protons. 

 

  

      C12TAB
  

      C14TAB
  

      C12TAB
  

      C14TAB
  



135 

 

 

(A) 

            

        

  
 

(B) 

 

 

 
 

 

 

 

 

 

 

Figure 5.5 Absorbance values of 3mm Agarose gels at different locations on the hydrogel 
measured 2 hours post irradiation. Gels containing (A) C12TAB and (B) C14TAB 
surfactants were irradiated with 2 GyRBE radiation dose using proton beams. All gels 
contain 10 mM HAuCl4 and 10 mM ascorbic acid.  
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A number of control experiments were carried out in order to investigate the performance 

of the gel nanosensor system. An intense yellow color of the hydrogel was observed 

0 GyRBE 0.5 GyRBE 1 GyRBE 

2 GyRBE 3 GyRBE 4 GyRBE 5 GyRBE 

0 GyRBE 0.5 GyRBE 1 GyRBE 

2 GyRBE 3 GyRBE 4 GyRBE 5 GyRBE 

Figure 5.6 Images of nanosensor gels containing (A) 50 mM C12TAB and (B) 50 mM 
C14TAB surfactants, irradiated with different doses of proton beams as indicated. All gels 
contain 10 mM HAuCl4 and 10 mM ascorbic acid. All images were taken 2 hours after 
irradiation of gels with protons.  
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following the mixture of HAuCl4 and CxTAB (x=10,12,14 or 16) with heated agarose. The 

observed color is caused by the ligand exchange of Cl- in AuCl4- to Br- present in CxTAB138. 

It is likely that AuBr4
- exists as stable CTA-AuBr4

- metallomicelles within the agarose 

matrix138. Ascorbic acid reduces AuBr4
- to AuBr2

-, which indicates conversion of gold ions 

from the trivalent Au(III) state to the monovalent Au(I) state200. Ascorbic acid is a weak 

reducing agent and thus, only partial reduction of the gold (from Au(III) to Au(I)) is likely 

possible in the presence of a high concentration of the surfactant. This is because the 

oxidation potential of the ascorbic acid reduces in micellar environments201. The yellow-

colored hydrogels turn colorless once ascorbic acid is added to the hydrogel, which is the 

precursor hydrogel used in all proton irradiation studies. We suggest that the presence of 

micelles in our hydrogel system leads to enhanced shielding between Au+ ions and ascorbic 

acid, which retards spontaneous nanoparticle formation.  

 

Irradiation of ~3 mm agarose hydrogels containing HAuCl4 and CxTAB with protons but 

in the absence of ascorbic acid did not induce any color change to the hydrogel (Figure 

5.7). Similarly, irradiation of gels containing a mixture of HAuCl4 and agarose alone (no 

ascorbic acid or CxTAB) did not result in a change in color (Figure 5.7). These results 

indicate that all components - HAuCl4, CxTAB, ascorbic acid  and agarose - play a key role 

in the formulation of the plasmonic hydrogel based nanosensor for detecting proton doses. 

Interestingly, we observed that C10TAB shows a slight development of color, which 

indicates spontaneous nanoparticle formation even in absence of radiation. C10TAB (CMC 

~65mM) does not form micelles at concentrations employed (~25mM) in the current 
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system202. This likely leads to low steric hindrance and allows for spontaneous nanoparticle 

formation, which can be visually observed (Figure 5.8).   

(A) 

 

 

 
  
 
 

(B) 

 
 

 

Figure 5.7 Images of controls of agarose gels acquired 2 hours post a 2 GyRBE radiation 
dose containing (A) 10 mM HAuCl4 and 50 mM Cx=10,12,14&16TAB surfactant (From left to 
right), but no ascorbic acid (B) only 10 mM HAuCl4, and no Cx=10,12,14&16TAB or ascorbic 
acid. No change in color was observed post irradiation.  

 

 

 

 

 

 

 

 

 



139 

 

(A) 

 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 GyRBE 0.5 GyRBE 1 GyRBE 

2 GyRBE 3 GyRBE 4 GyRBE 5 GyRBE 

0 GyRBE 0.5 GyRBE 1 GyRBE 

2 GyRBE 3 GyRBE 4 GyRBE 5 GyRBE 

Figure 5.8 Images of nanosensor gel samples composed of (A) 50 mM C10TAB and (B) 
50 mM C16TAB surfactants. All gels contain 10 mM HAuCl4 and 10 mM ascorbic acid.
All images were taken 2 hours after irradiation of samples with protons.  
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All surfactants employed were able to facilitate and template the formation of gold 

nanoparticles when exposed to the therapeutic doses of proton irradiation (0-5 GyRBE). A 

characteristic maroon color of gold nanoparticles was visible post irradiation in the 

hydrogels (Figures 5.6A, 5.6B, 5.8A and 5.8B). The time necessary for the development 

of the color development was dependent on the nature of surfactant used. C12TAB-loaded 

agarose demonstrated the color change as early as ~5 min, but C14TAB-loaded hydrogel 

demonstrated a color change in ~10 minutes following irradiation with a 2 GyRBE dose, 

which is conventionally employed in fractionated radiotherapy (Figures 5.9). Low doses 

(0.5 GyRBE or 1 GyRBE) irradiation required longer times (~15 minutes) for the development 

of the maroon color. Formation of gold nanoparticles was further visualized using 

transmission electron microscopy (TEM; Figure 5.10); non-homogenous particle 

distribution was observed with particles ranging from 20-100 nm in diameter / longest 

dimension. 

(A) 

 
 
 

(B) 

 
 
 

 

(C) 

      C12TAB
  

      C14TAB
  

      C12TAB
  

      C14TAB
  



141 

 

 
 
 

(D) 

 
 
 

(A)       (B) 

 

 

      C12TAB
  

      C14TAB
  

      C12TAB
  

      C14TAB
  

Figure 5.9 Images of nanosensor gels formulated with 50 mM C12TAB and C14TAB 
surfactants. Gels were irradiated with a 2 GyRBE dose of proton beams, and images were 
taken at (A) t = 0 mins, (B) t = 5 mins, (C) t = 10 mins and (D) t = 15 mins post irradiation.
All gels contain 10 mM HAuCl4 and 10 mM ascorbic acid. Images are representative from 
n= 3 experiment. 

 

Figure 5.10 Transmission Electron Microscopy (TEM) micrographs of gold nanoparticles 
generated within the nanosensor gel formulated with C12TAB as surfactant and irradiated 
with 2GyRBE proton radiation dose. (A) Low-magnification image depicting presence of 
gold nanoparticles in the dried hydrogel. Scale bar = 0.5µm (B) High-magnification image 
of the highlighted region in Figure A. Scale bar = 0.1µm 
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The increase in color intensity of the nanosensor gel is directly dependent on the formation 

of gold nanoparticles upon irradiation, which depends on the generation of free radicals. 

Increases in proton dose results in an increase in the formation of free radicals. Thus, 

absorbance of the hydrogel is an indicator of the dose delivered to the gel. Consequently, 

absorbance of the hydrogels was quantified using UV-vis spectroscopy 2 hours post 

irradiation with protons (Figure 5.11) in order to quantify the colorimetric response of the 

nanosensor gels. A characteristic spectral peak corresponding to the presence of gold 

nanoparticles was observed at ~520nm. Once the change in gel changed color occurred, no 

further change in color was observed for up to 4 hours, indicating stability of the generated 

nanoparticles over time (Figure 5.12). We monitored visual and spectroscopic changes in 

the control hydrogel (0 GyRBE) and the hydrogel irradiated with 2 GyRBE for a longer 

duration (Figure 5.13 and 5.14). It was observed that no significant changes in the 

absorbance signal was noticeable even after one week. Gold nanoparticles are known to be 

stable and we do not anticipate change in the color of the gel over longer durations, 

although it is unlikely that the nanosensor gels will be used for longer studies because the 

turnaround between two fractionated radiotherapy sessions is ~24 h. We also determined 

the mechanical integrity (hardness) of pristine agarose hydrogel and compared it to the 

nanosensor hydrogels pre and post proton irradiation (2 GyRBE) (Figure 5.15). The 

hardness of the different gels was studied by measuring the maximum force required to 

indent the hydrogel which was quantified from the force vs distance plot obtained. All 

samples were compared to pure agarose using unpaired two-tailed t-test. The p-values 

obtained were greater than 0.05 indicating no significant changes in the hardness of the 

nanosensor gels compared to that of agarose. These results indicate that proton treatment 
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and concomitant nanoparticle formation do not have a significant effect on the mechanical 

integrity of the gels. 
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(C) 

 

(D)

 

Figure 5.11 Absorbance spectra of nanosensor gels containing (A) C10TAB, (B) C12TAB, 
(C) C14TAB and (D) C16TAB as surfactants post irradiation with proton beams at different 
doses. Gold nanoparticle formation is indicated by a characteristic peak between 500 – 600 
nm. In the figure, GyRBE is denoted as Gy. 
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Figure 5.12 Absorbance of gold nanoparticles formed in agarose hydrogels formulated 
with (A) C10TAB, (B) C12TAB, (C) C14TAB and (D) C16TAB following irradiation with 
different proton doses. Absorbance spectra were measured 2 hours post irradiation with the 
maximum absorbance (typically at a wavelength between 500 – 600 nm) plotted against 
time to generate the plot. In the figure, GyRBE is denoted as Gy. 
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Figure 5.13 The stability of the colorimetric response of the hydrogel nanosensor was 
studied for up to one-week (1 w) post irradiation of the gel samples with protons. 
Absorbance spectra of C12TAB- or C14TAB-loaded nanosensor gels irradiated with 0 
GyRBE and 2 GyRBE were acquired at the indicated time points. Unpaired T-test was 
performed using the function T.TEST in MS Excel for each time point and the absorbance 
value was compared to the absorbance value at 2 h. The p-values were found to be greater 
than 0.05 and hence the change in the absorbance was considered to be insignificant, 
indicating stability of the colorimetric response of the nanosensor gels. N = 3 independent 
experiments. 
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Figure 5.14 Images of nanosensor gels containing irradiated with (i) 0 GyRBE (control) and 
(ii) 2 GyRBE. In each image, C12TAB-loaded gels are on the left and C14TAB-loaded gels 
are on the right. Images were obtained after (A) 2 hours (B) 1 day and (C) 1 week post 
irradiation with protons (or not in case of the control or GyRBE images). Representative 
images from n=3 independent experiments. 
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Figure 5.15 Material hardness of the nanosensor gels was measured using a TA.XT 
Texture Analyzer. The above plot shows the maximum force required by each gel sample 
to completely indent the nanosensor. All the samples were compared to pure agarose using 
unpaired 2-tailed t-test, indicating no significant changes in the hardness of the gel. 

 

A correlation between the administered proton radiation dose and maximum absorbance at 

2 h was plotted between 0 - 5 GyRBE (Figure 5.16 and 5.17), which is a range commonly 

used in conventional fractionated proton beam therapy. It is desirable to have a sensor that 

functions in the conventional therapeutic range (1-2 Gy). However, recent developments 

in radiotherapy require a sensor that can also be adapted with ease to detect higher radiation 

doses typically used in hypofractionated regimes (i.e. > 2Gy / fraction). The range of the 

gel nanosensor can be tuned by simply modifying the concentration of the surfactant 

C12TAB (Figure 5.18A, 5.18B, 5.19A and 5.19B). Such ease in modulating the sensitivity 

of the nanosensor offers a significant advantage over existing conventional dosimeters.  
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Figure 5.16 Absorbance spectra of the nanosensor gel following irradiation with proton 
beams. A plot depicting maximum absorbance vs radiation dose 2 hours post irradiation is 
shown. (A) yellow squares represent C10TAB surfactant-loaded gels and while (B) grey 
diamonds representing C16TAB with 10 mM HAuCl4 and 10 mM ascorbic acid with 5% 
agarose is shown in the plot. 
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Figure 5.17 Absorbance spectra of the nanosensor gel following irradiation with proton 
beams. A plot depicting maximum absorbance vs radiation dose 2 hours post irradiation is 
shown. (A) blue circles represent C12TAB surfactant-loaded nanosensor gels and (B) 
orange triangles represent C14TAB-loaded nanosensor gels. Agarose gels (5%) were 
formulated with 10 mM HAuCl4 and 10 mM ascorbic acid in all cases. 

 

Figure 5.18 Absorbance spectra of the nanosensor gel following irradiation with proton 
beam therapy. A plot depicting maximum absorbance vs radiation dose 2 hours post 
irradiation is shown. C12TAB gels formulated with concentrations (A) 100 mM depicted 
with blue diamonds (B) 150 mM depicted with orange squares with 10 mM HAuCl4 and 
10 mM ascorbic acid with 5% agarose is shown in the plot. 
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Figure 5.19 Images of nanosensor gels containing (A) 100 mM and (B) 150 mM C12TAB 
surfactant irradiated with different doses of proton beams as indicated. All gels contain 10 
mM HAuCl4 and 10 mM ascorbic acid. All images were taken 2 hours after irradiation of 
gels with protons. 
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Reaction volumes on the nanoscale can enhance reaction rates of e-
aq generated upon 

radiolysis with [AuBr2]- ions attached to the head group of the micelle. It has been 

previously reported that the efficiency of charge transfer was enhanced in presence of 

cationic micelles (hexadecyltrimethylammonium bromide or CTAB micelles and a mixture 

of CTAB and cetylpyridinium or CP micelles) compared to anionic micelles203. It was 

hypothesized that hydrated electrons were more easily transported in the solvent, possibly 

due to the favorable attractive force between this negatively charged species and cationic 

micelles204. This attractive force can lead to an increased probability of capture of hydrated 

electrons by the micelle and reaction with [AuBr2]-. When these electrons interact with an 

empty site (i.e. no Au+ is present), an electron hopping / migration mechanism can facilitate 

intermicellar reaction between Au+ ions and hydrated electrons leading to the formation of 

Au0 atoms205.  

 

Compared to C10TAB and C16TAB, C12TAB and C14TAB showed higher efficacies of 

nanoparticle formation, as indicated by the maximum absorbance determined for a given 

radiation dose. In our current formulation, C10TAB does not form micelles based on the 

concentration used. In the absence of micelles, hydrated electrons are not influenced by the 

positive field and hence recombine and participate in secondary chemical reactions before 

reacting with Au+ ions. This leads to a reduced yield of Au0 atoms which, in turn, results 

in low yields of gold nanoparticles in case of C10TAB compared to CxTAB (x=12, 14). The 

other three surfactant CxTAB (x=12, 14, 16) do form micelles under the formulation 

conditions employed in the current study. There are three possible outcomes for the decay 

of radiation-generated hydrated electrons as shown schematically in Figures 5.20A-C. The 
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electron is attracted towards the micelle but reacts with other generated free radicals (H. 

and OH.) to form secondary products like hydrogen before reaching the micelle / gold 

ions206. The second possibility is that the electron reaches an empty site of the micelle and 

undergoes migration/hopping to reduce the gold ion present in the nearby Au1+ occupied 

site. The third and final decay mechanism involves direct interaction of the electron with a 

gold ion in the micelle resulting in the conversion of Au1+ to Au0. We hypothesize that the 

maximum reduction occurs when a micelle of sufficient charge is present with the optimal 

aggregation number of the surfactants leading to micelle formation. 

(A) 

 
(B) 

 
(C) 

 

Figure 5.20 Three possible scenarios of the decay of generated hydrated electron post 
irradiation with protons. (A) Formation of peroxides and other secondary products, (B) 
Electron hopping from an empty micellar site of the generated hydrated electron to reduce 
a nearby Au(I) ion, and (C) Direct reduction by the generated electron of Au(I) ion to 
Au(0). 
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C16TAB has a stronger positive electrostatic field compared to the other surfactants 

employed in the study due to the higher aggregation number of monomers required to form 

a self-assembled micelle207. Due to the high aggregation number of C16TAB (90)208, the 

probability of a hydrated electron directly reducing an [AuBr2]- ion is lower when 

compared to that with C12TAB and C14TAB. The availability of hydrated electron 

migration/hopping for reducing Au+ ions is also significantly reduced under the influence 

of a strong electrostatic field203. This can result in lower yields of zerovalent Au0 ions, 

which, in turn, is responsible for lower yields of gold nanoparticles. Experimentally, this 

is indicated by the lower absorbance values seen in case of C16TAB compared to C12TAB 

or C14TAB under similar irradiation conditions. We suggest that C12TAB and C14TAB with 

aggregation numbers 55 and 75 respectively208, form micellar nanostructures with surface 

charge characteristics that are optimal for facilitating the formation of gold nanoparticles 

in gels in a dose-dependent manner following proton irradiation.   

 

We next evaluated the predictive ability of our nanosensor with C12TAB or C14TAB 

formulated in the agarose gel, leading to their functions as potential dosimeters. A linear 

correlation between gold nanoparticle absorbance and radiation dose was found in the 

range of 0 – 3 GyRBE for both C12TAB and C14TAB (Figure 5.21). The calibration curve 

with C12TAB had a correlation of y=0.069x, while that with C14TAB was y=0.074x, where 

y is the absorbance and x is the dose in GyRBE. A test dose of 1.5 GyRBE was delivered to 

the gel to investigate the predictive ability of the nanosensor gels. The color change of this 

test gel was quantified 2 hours post irradiation using the respective calibrations, which 
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indicated a dose of 1.8 ± 0.44 GyRBE for the C12TAB gels and 2.1 ± 0.1 GyRBE for the 

C14TAB surfactant gels, indicating better predictive ability of the C12TAB gels. 

 

 

Figure 5.21 Calibration curve for C12TAB (blue dotted line) and C14TAB (orange dotted 
line) using maximum absorbance vs proton dose from 0 - 3 GyRBE, 2 h post irradiation. 

 

A simple homogenous phantom, e.g. a cube or cylinder, is not adequate for verifying the 

accuracy of the delivered radiation dose.209 A system that mimics human anatomy as 

closely as possible is therefore necessary for more accurately predicting the efficacy of 

radiotherapy in the clinic. We used an anthropomorphic child phantom for investigating 

the translational potential of the plasmonic nanosensor hydrogel for proton irradiation 

(Figure 5.22A). Gels formulated with C12TAB or C14TAB surfactants were employed in 

the phantom studies, because of the better calibration curves obtained with these surfactants 

compared to the other surfactants. The gels were placed within the defined field under the 
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spine of the phantom (Figure 5.22B) and subjected to a dose of 1.8 GyRBE; the respective 

calibration curves from 0-3 GyRBE were used for estimation of the dose delivered. A 

prediction of 1.6 ± 0.2 GyRBE was made using the calibration curve for C12TAB, and a 

prediction of 1.4 ± 0.4 GyRBE was made using the calibration curve for C14TAB calibration 

curve, respectively. Our nanosensor hydrogel with C12TAB surfactant shows an 11% error 

to the true value of the dose delivered (i.e. 1.8 GyRBE). Clinically used MOSFETs have an 

error percentage of ± 5% which is comparable to our current system210. The performance 

of the sensor can further be improved by fine tuning several key processes during 

fabrication including like preserving uniformity of gel pore size. Pore sizes and 

distributions in hydrogels have been previously shown to control the in situ growth of gold 

nanoparticles211. A control over pore size can be employed to exert better control over 

nanoparticle reduction and growth kinetics which can lead to consistent nanoparticle sizes 

following radiation. The clearly visible color change, simple detection technique using 

absorbance spectroscopy, and the ability to quantitatively predict doses demonstrates the 

potential of the hydrogel nanosensor for dosimetry in fractionated proton beam 

radiotherapy in the clinic. 

 

(A) 
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(B) 

 

Figure 5.22 (A) Evaluation of the predictive ability of hydrogel nanosensors using an 
anthropomorphic child phantom placed on the irradiation table and subjected to proton 
therapy. (B) an X-ray computed tomography (CT) scan image of the phantom used in the 
experiments. The spinal cord of the phantom is irradiated with 1.8 GyRBE. 
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Surfactant 

 

Actual Dose 

Delivered (GyRBE) 

Average Dose 

Delivered ±  

one S.D. (GyRBE) 

 
C12TAB 

 
1.8 

 
1.6 ± 0.2 

 
C14TAB 

 
1.8 

 
1.4 ± 0.4 

Table 5.1 The table indicates the dose delivered to each of the surfactants employed in the 
experiments and the average dose calculated using the C12TAB and C14TAB-based 
hydrogel nanosensors. 

 

5.4 Conclusions 

 

To our knowledge, we have developed the first gel-based colorimetric nanosensor for 

detecting and predicting radiation dose delivered in proton beam therapy. The hydrogel 

nanosensor was able to detect doses as low as 0.5 GyRBE and showed a robust linear 

calibration between a dose range of 0-3 GyRBE. The gel nanosensor was able to predict the 

dose delivered to an anthropomorphic child phantom with significant accuracy, indicating 

promise for translation to the clinic. In addition to the simple, visible, stable and 

quantifiable nature of the readout, the hydrogel system can be contoured for patient 

personalized treatments. Agarose and ascorbic acid are generally regarded as safe, and 

C16TAB is used in antibacterial formulations used on skin212. Although the surfactants used 

in the formulation of the gels can be toxic at elevated concentrations, use of secondary 

containment devices or eventual replacement of the surfactant with biocompatible 

templating molecules will alleviate these concerns. The development of a new generation 

of cationic surfactants that allow for precise control of nanoparticle size and yields can lead 
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to sensors with improved prediction abilities. We believe that this one-of-a-kind 

nanosensor holds high promise for translation to clinical proton beam therapy. 
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Chapter 6 ELECTRON BEAM DOSIMETRY USING PLASMONIC HYDROGEL 

NANOSENSOR 

6.1 Introduction 

 

Radiotherapy is a frequently employed technique for the treatment of cancer.213, 214 

Significant advancements in the control over the gantry rotation and the introduction of 

multileaf collimators have facilitated the improvements in treatment efficacy.215 This 

progress has given rise to development of novel radiation delivery techniques like intensity 

modulated radiotherapy (IMRT), image guided radiotherapy (IGRT), stereotactic 

radiotherapy and radiosurgery (SRS) and conformal radiotherapy. Currently, high energy 

photons are the primary source of radiation in clinical settings. But when administered to 

a tumor site there exists a large exit dose outside the target volume resulting in radiation-

induced toxicity.216, 217 To overcome this, high energy charged particles (electrons) are 

employed in clinical radiotherapy218. Electron beams have an inherent property of 

depositing their maximum dose at the required depth beyond which there is a sharp  

radiation dose fall off219. The high dose gradients result in radiation dose sparing of the 

healthy tissue from undesirable radiation damage. This mandates the use of electron beam 

radiotherapy over high energy photons for skin malignancies. Characteristics such as 

uniform dose deposition, altering dose depth by mere change in beam energy and ease in 

treatment planning make it a viable option for treatment of cancerous lesions.  

 

Precise measurements of the delivered dose are critical for patient safety and treatment 

efficacy. Although there have been rapid advancements in the techniques involved in 
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electron beam treatment, there is a lack in the development in dosimeters to keep up with 

improved techniques. Conventionally used dosimeters include thermoluminescent 

dosimeters (TLDs), radiochromic films and semiconductor diodes have significant 

drawbacks. Measurements using TLDs are very time consuming and labor intensive 

making its routine operation very cumbersome220. Semiconductor diodes with their 

accurate readout are limited due to its dose rate dependence which limits their periodic 

operation.221 Radiochromic films lack the ability to conform and adapt onto patient specific 

anatomy making them prone to positional instability and causing dose inconsistency with 

the delivered and predicted dose.222, 223 There is still a need for a dosimeter that can detect 

doses in the therapeutic window while addressing all the above challenges.  

 

Recent advancements in molecular and nanoscale systems could play a key role in the 

development of a dosimeter for the detection of therapeutic levels of ionizing radiation.224 

Gold nanoparticles with their unique optical and physiochemical properties have found 

application in diagnostics, imaging and drug delivery.224-228 Taking advantage of the 

inherent property of gold nanoparticles, we recently designed a liquid based colorimetric 

sensor dependent on the formation of gold nanoparticles from its colorless precursor salt 

solution upon irradiation162. We further formulated the next generation colorimetric sensor 

by developing a hydrogel-based sensor to facilitate easy handling and minimize application 

concerns229, 230. In this study, we extend the applicability of the hydrogel nanosensor to the 

detection of high energy electrons employed clinically. The system consists of a cationic 

surfactant stabilized gold nanoparticles generated upon exposure to high energy electrons 

rendering a change in color to pink/maroon to the hydrogel. The intensity of color increases 
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with increasing irradiation and is used as a measure to quantify the delivered radiation dose. 

Finally, the ability of the hydrogel nanosensor to capture topographical dose profiles using 

a fixing agent post irradiation is reported. To the best of our knowledge, this colorimetric 

nanosensor for electron beam dosimetry is the first of its kind which could have potential 

translational applications in clinical settings. 

 

6.2 Materials and Methods  

 

Materials. Molecular biology grade agarose, L-ascorbic acid (AA), 

dodoceyltrimethylammonium bromide (C12TAB) (≥98%), L-glutathione reduced (≥98%), 

gold(III) chloride trihydrate (HAuCl4.3H2O) and myristyltrimethylammonium 

bromide(C14TAB)(≥99%) were acquired from Sigma-Aldrich. Cetyltrimethylammonium 

bromide(C16TAB) was obtained from MP Chemicals. Sodium dodecylsulfate was obtained 

from Bio-Rad Laboratories while Tween 20 was purchased from Fisher Scientific. The 

chemicals were employed in the study with no further processing or purification. The 

solvent employed in the study was MilliQ water (18.2 MΩ.cm).  

 

Hydrogel Nanosensor Preparation. To fabricate a hydrogel with a diameter of ~1.5 cm 

and thickness of 3 mm, a 24 well plate is used as a mold. Briefly, 600 µL of a 50 mM  stock 

solution of CxTAB (x = 12,14,16) was prepared and mixed with 30 µL of 10 mM HAuCl4 

in a 1.7 mL microcentrifuge tubes. From this mixture, 100 µL was removed prior to the 

addition of heated 2% liquid agarose (500 µL). From this mixture, 650 µL was removed 
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and poured into the molds of the well plate and allowed to set as gels prior to irradiation 

experiments. The gels were then incubated in 10 mM Ascorbic Acid (650µL) for 10 minute 

resulting in translucent hydrogels.  

 

To fabricate a hydrogel with a diameter of ~3.5 cm and thickness of 3 mm, a 6 well plate 

is used as a mold. Briefly, 1.63mL of a 75 mM stock solution of C14TAB was prepared and 

mixed with 81.6 µL of 10 mM HAuCl4 in a 15 mL microcentrifuge tubes. From this 

mixture, 272 µL was removed prior to the addition of heated 2% liquid agarose (1.44 ml). 

This mixture (2.88mL) was poured into the molds of the well plate and allowed to set as 

gels prior to irradiation experiments. The gels were then incubated in 10 mM Ascorbic 

Acid (2.88 ml) for 10 minutes resulting in translucent hydrogels. 

 

X-ray irradiation. All experiments were conducted at the Banner-MD Anderson Cancer 

Center in Gilbert. The energy and dose rate of the beam were set at 6 MeV and 600 MU/min 

unless otherwise mentioned. A standard field size of 10 cm x 10 cm was maintained 

throughout the study. For spatial dose deposition, only half the gel was placed in the 

irradiation field. Post irradiation, further analysis was carried out at Arizona State 

University in Tempe, AZ (approximate travel time of 30 minutes).  

 

Post-processing of Hydrogel Nanosensor. Glutathione was used as a post processing 

agent to quench nanoparticle formation. Glutathione was added from the top of the gel, 30 

minutes post irradiation and incubated for 10 minutes. The volumes used for incubation 
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were 650 µL for a hydrogel nanosensor with a diameter of 1.5cm and 2.88 mL for a 

hydrogel nanosensor with a diameter of 3.5cm. The residual glutathione from the surface 

of the hydrogel nanosensor was discarded and used for further quantification. 

 

Absorbance Spectroscopy. The absorbance spectra for all samples was obtained using a 

BioTek Synergy™ 2 plate reader. Absorbance values were measured from 300 nm to 990 

nm with a step size of 10 nm. MilliQ water was used as blank for all experiments. Although 

the change in color is observable 15 minutes post irradiation, due to the travel time between 

Banner M.D Anderson Cancer Center, Gilbert and Arizona State University, Tempe 

measurements were quantified 2 hours post irradiation. To normalize the absorbance 

spectra for further analysis, the absorbance at 990nm was subtracted from the absorbance 

of all wavelengths. Absorbance at 540 nm wavelength was plotted as a function of radiation 

dose to generate the calibration curve which is used to determine unknown radiation doses. 

 

Topographical Mapping of Hydrogel Nanosensor. A 1536 well plate set up in a BioTek 

Synergy™ 2 plate reader having a grid size of ≈2mm x 2mm was used. Absorbance values 

at 540 nm and 990 nm were measured along the entire gel surface, leading to a dose map 

of the gel surface. The final absorbance was calculated by subtracting the absorbance 

values of water and 990 nm wavelength from the absorbance value at 540 nm wavelength. 

The calibration curve was used to predict the delivered dose to each cell of the grid 

corresponding to its topographical dose map over the gel surface. 
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Transmission Electron Microscopy (TEM). The gels were dissolved in 1,2-propane diol 

(a chaotropic agent) by gently heating at 80 °C for 15 mins. The resultant liquefied hot 

mixture was centrifuged at 4000 rpm for 10 mins and supernatant agarose-propane diol 

mixture was discarded carefully to isolate the gold nanoparticles pellet. The pellet was 

further dispersed in deionized water. The samples were prepared for imaging by casting a 

drop of this mixture onto a carbon film onto a TEM grid. The samples were dried overnight 

in air. A CM200-FEG instrument operating at 200 kV in the LeRoy Eyring Center for Solid 

State Sciences at ASU was used for imaging of gold nanoparticles in the irradiated gels. 

 

Hydrogel Nanosensor Dosimetry in Anthropomorphic Thorax Phantom. The 

anthropomorphic phantom was positioned on the radiotherapy table and aligned using 

guiding lasers. The hydrogel nanosensor was positioned in the middle of a 10cm x 10cm 

radiation field. A 1.3 cm tissue-equivalent bolus was placed on top of the hydrogel 

nanosensor. Each hydrogel nanosensor received a radiation dose of 2.5 Gy. 

 

Image Acquisition. All images were acquired using a HPLaserJet 3390. Furthermore, 

images were cropped to the required size and no further editing or post processing of the 

images was carried out.  

 

Statistical Analysis. All experiments were performed in quintuples unless otherwise 

specified. Data analysis for all independent experiments was performed using Microsoft 

Excel. Data reported in the manuscript are represented as mean ± one standard deviation. 
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6.3 Results and Discussion 

 

Electron beam therapy is frequently used for the treatment of superficial layers (epidermis 

and dermis) of malignant skin lesions231. Fractionated electron beam therapy involves 

delivering a cumulative dose of 20-70 Gy in fractions of 1-2 Gy per session over a course 

of several weeks232. There is a need to ensure precise and accurate delivery of radiation to 

patients. Current dosimetry devices are complex to fabricate and cumbersome to operate 

thereby limiting its routine use. There is still a critical need for the development of facile 

dosimeters that are robust, easy to fabricate and operate to ensure patient safety during 

radiotherapy.  

 

The principle behind the hydrogel nanosensor is the reduction of gold salt to gold 

nanoparticles following exposure to high energy electrons. Gold (HAuCl4), present 

natively in its trivalent state Au(III) is thermodynamically unfavorable to reduce as 

compared to Au(I)137. To carry out the conversion of Au(III) to Au(I) and retain it in its 

monovalent state without undergoing further reduction, a room temperature reaction using 

ascorbic acid (Vitamin C) was carried out in the presence of three distinctly charged 

(cationic, anionic and non-ionic) surfactants. In the presence of sodium dodecylsulfate 

(anionic) and Tween-20 (non-ionic surfactant), the addition of ascorbic acid results in the 

development of a pink/purple color and a characteristic peak between 500 and 600nm in 

the UV-Visible spectra suggesting spontaneous formation of gold nanoparticles (Figure 

6.1). Interestingly, in the presence of the cationic surfactant, no spontaneous nanoparticle 

formation is observed with lack of color developed (transparent) and the absence of the 
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characteristic peak in the UV-Visible spectra (Figure 6.1). The presence of a transparent 

solution has been attributed to the formation of Au(I) ions138. We hypothesize the favorable 

electrostatic interaction between the negatively charged tetrachloroaurate ions and 

positively charged cationic surfactant leads to enhanced shielding of Au(III) to ascorbic 

acid thereby inhibiting spontaneous gold nanoparticle formation. Based on this rationale, 

we employed cationic surfactants for our studies.  

 

High energy electrons employed in the study for irradiation could be involved in both direct 

and indirect mechanisms of reduction of Au(I) to Au(0). Exposure to ionizing radiation 
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Figure 6.1 UV-Visible spectra and digital images illustrating the presence and absence of 
spontaneous gold nanoparticle formation with three distinctly charged surfactants. Both 
anionic and non-ionic surfactants display spontaneous nanoparticle formation (<2mins) 
with the presence of a spectral peak between 500-600nm while in the presence of cationic 
surfactants no such spectral peaks are observed. The inset displays the presence of a pink 
and purple colored dispersion which are characteristic of gold nanoparticles when anionic 
and non-ionic surfactant are employed while a colorless solution is seen when cationic 
surfactant is employed indicating no spontaneous nanoparticle formation. The surfactants 
used are C16TAB (cationic), SDS (Anionic) and Tween 20 (Non-ionic) at a concentration 
of 20mM. The final gold and ascorbic acid concentrations were 0.2mM and 4mM 
respectively.  
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involves generation of reactive free radicals including hydrated electrons (e-
aq), hydrogen 

free radicals (H.) and hydroxyl free radicals (OH.) through the splitting of water233. The 

generation of reducing species including e-
aq and H. play a vital role in the reduction of 

Au(I) to Au(0). Although OH. is an oxidizing agent and can impede nanoparticle formation 

through dissolution of Au(0), the presence of ascorbic acid (anti-oxidant) could potentially 

minimize these unfavorable side reactions234. High energy electrons irradiation could also 

be potentially involved in direct reduction of Au(I) to Au(0). To facilitate easy handling 

and concerns during application, we have further incorporated the gold salt, cationic 

surfactant and ascorbic acid in an agarose hydrogel. Agarose based hydrogels have 

acquired lot of attention as controlled drug release platforms and as scaffolds for 

regenerative tissues due to their low toxicity235. The selection criteria for agarose as the 

hydrogel base for our nanosensor was based on the following parameters: its 

biocompatibility, ease in modulation of mechanical properties by mere change in 

concentration and ease in generation of the gel235.  

 

Hydrogel nanosensors with a diameter of ≈ 1.5cm and ≈ 3mm thickness were fabricated 

with three different cationic surfactants (CxTAB) with varying chain lengths (x = 12, 14 

and 16) and their response to therapeutic levels of high energy electrons irradiation (0-5Gy) 

were determined. In all cases exposure to high energy electrons rendered a maroon color 

to the hydrogel due to the formation of gold nanoparticles while the non-irradiated control 

remained colorless (Figure 6.2). For any given cationic surfactant, increasing levels of 

exposed high energy electrons resulted in a deepening of the maroon color developed in 

the hydrogel nanosensor. Exposure of hydrogel nanosensor to increasing levels of high 
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energy electrons resulted in a direct increase in the number of reducing species, which, in 

turn, led to a higher probability of reduction of Au(I) to Au(0). Further nucleation and 

growth of Au(0) results in the formation of gold nanoparticles imparting the characteristic 

color (maroon) to the hydrogel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The change in color from colorless to maroon for C12TAB loaded hydrogels were observed 

≈5 minutes post irradiation, while the color change for C14TAB and C16TAB surfactant 

employed hydrogels were seen ~10 minutes and ~15 minutes post irradiation respectively. 

Interestingly, we observe that the varying the chain length of the surfactant affects the 

sensitivity of the hydrogel nanosensor to high energy electrons. Specifically, for a fixed 

radiation dose of 1 Gy decreasing the chain length of the cationic surfactant resulted in an 

increase in the developed color in the hydrogel nanosenosor. At the surfactant 
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Figure 6.2 Image of hydrogel nanosensor contain (top) 50 mM C16TAB, (middle) 50 mM 
C14TAB and (bottom) 50 mM C12TAB surfactants, irradiated with different doses of 
electron beam as indicated. All gels contain 10 mM HAuCl4, ascorbic acid. All images 
were taken 2 hours post irradiation with electrons. No L-glutathione was added to 
hydrogels post irradiation. 
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concentrations employed in the study (final concentration ≈20mM), the cationic surfactants 

in the study form micelles.145 Gold nanoparticle growth is governed by the frequency of 

collisions between cationic micelles containing AuBr2- and with the radiation generated 

zerovalent Au(0) atoms before they are stabilized by the cationic surfactant in the hydrogel 

nanosensor.236 We hypothesize that decreasing chain length results in increasing diffusion 

coefficients of the micelles.237 This increased mobility could potentially result in an 

increased frequency of collision involving cationic surfactant loaded AuBr2- and radiation 

generated Au(0) resulting in higher yields of gold nanoparticles with decreasing order of 

cationic chain length.  

 

The hydrogel nanosensors were further quantified using UV-Visible spectroscopy 2-hour 

post irradiation (Figure 6.3). A characteristic spectral peak between 500 and 600nm 

indicative of gold nanoparticles is observed.238 On further analysis, a clear increase in 

absorbance at 540nm is observed with increasing levels of high energy electrons (Figure 

6.4). This trend corroborates the increase in intensity of pink/maroon that is seen with the 

naked eye. To further visualize the presence of gold nanoparticles, the irradiated hydrogel 

nanosensor was characterized using transmission electron microscopy (Figure 6.5). A non-

homogenous particle distribution was observed with an average particle size ≈ 54 ± 17nm. 

Although both C12TAB and C14TAB surfactant containing hydrogels were capable of 

nanoparticle formation, C14TAB was employed for all further experiments. 
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C 

 

Figure 6.3 Absorbance spectra of hydrogel nanosensor containing 50 mM (A) C12TAB, 
(B) C14TAB and (C) C16TAB as surfactant post irradiation as a function of radiation dose. 
Appearance of the characteristic peak between 500-600nm is indicative of gold 
nanoparticle formation. Absorbance of the hydrogel nanosensor was measured 2 hours post 
irradiation. 
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Figure 6.4 Absorbance at 540nm as a function of radiation dose. The formulation of the 
hydrogel nanosensor with 50mM C12TAB (Blue Circle), 50mM C14TAB (Orange 
Diamond) and 50mM C16TAB (Green Squares). Absorbance at 540nm was measured 2 
hours post irradiation. 
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Clinical radiotherapy involves radiation field sizes larger than 1cm2.239 In order to adapt to 

larger field sizes, hydrogel nanosensors of ≈ 3.5 cm diameter and ≈ 3 mm thickness were 

fabricated with a final concentration of 30mM C14TAB surfactant. These hydrogel 

nanosensors were further investigated to determine their ability to preserve topographical 

radiation information by irradiating one-half of the hydrogel nanosensor with a dose of 

3Gy. We observe a change in color to pink/maroon in one half of the hydrogel nanosensor. 

However, observation of these hydrogel nanosensors over longer durations displayed a 

“bleed-over” of the color to the non-irradiated regions (Figure 6.6). We attribute this 

phenomenon to additional growth of nanoparticles in the non-irradiated regions due to 

collisions between unreacted AuBr2- ions in the non-irradiated region with radiation 

Figure 6.5 Transmission Electron Microscopy (TEM) micrographs of gold nanoparticles 
with C14TAB as surfactant irradiated with a 4 Gy electron beam dose. (Left) Low 
magnification image depicting the presence of gold nanoparticles in the dried hydrogel. 
(Right) High magnification image of the highlighted region (Dashed Red Box).  
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generated gold nanoparticles in the irradiated region. To inhibit this “bleed-over” 

phenomena, we hypothesized that the addition of a quenching agent to complex/react with 

the unreacted AuBr2- will be required to prevent further nucleation and growth in the non-

irradiated regions. Gold-thiol bond has been demonstrated to be similar to the gold-gold 

bond, and in light of this we reasoned the addition of glutathione (thiol containing 

tripeptide) would complex/react with unreacted AuBr2- ions.240 Indeed, incubation with 

glutathione for 10 minutes (30 minutes post radiation) led to the complete arrest of the 

“bleed-over” phenomena. Based on this observation, , further studies were conducted with 

the post addition of glutathione. 
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Figure 6.6 Images of the hydrogel nanosensor incubated with no glutathione (Left) and 
with 25mM glutathione for 10 minutes (30 minutes post-irradiation). Topographical dose 
profile is maintained upon incubation with glutathione.  
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Prior to quantifying the topographical dose profile delivered to the hydrogel nanosensor, 

the hydrogel nanosensors were exposed to various levels of therapeutically relevant high 

energy electrons (Figure 6.7). The absorbance value at 540 nm wavelength is plotted 

against its corresponding administered dose to generate the calibration curve which will be 

used to determine unknown radiation doses (Figure 6.8). While the response saturated 

beyond 5 Gy, a linear trend with an equation y=0.03x (y is the absorbance at 540nm and x 

is the dose in Gy) is observed between 0 – 5 Gy. Three unknown pilot doses were employed 

to verify the efficacy of the hydrogel nanosensor(Table 6.1). These results demonstrate the 

ability of the hydrogel nanosensor to predict the delivered radiation dose. The spatial dose 

distribution capability of the nanosensor was tested by irradiating half of the hydrogel 

nanosensor with a 3 Gy radiation dose (Figure 6.9). Upon completion of the irradiation, a 

visual appearance of maroon/pink is observed in the irradiated region while the non-

irradiated regions remains transparent. Glutathione is added 30 minutes post-irradiation to 

preserve the topographical dose profile. The absorbance at 540nm is measured in finite 

grids of ≈2mm x 2mm along the diameter of the hydrogel nanosensor and is used to predict 

the delivered radiation dose. The line profile predicted along the diameter of the hydrogel 

nanosensor is in agreement with delivered radiation dose fall-off profile. These results 

taken together indicate the potential of the hydrogel nanosensor to qualitatively and 

quantitatively determine topographical dose profiles.   
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Figure 6.7 Images of hydrogel nanosensor irradiated with different doses of electron beam 
irradiation. The hydrogel nanosensor contains 10 mM HAuCl4, 75 mM C14TAB, 2% (w/v) 
agarose and incubation with 10 mM ascorbic acid for 10 minutes. Hydrogel nanosensor 
was further incubated with glutathione (25mM) for 10 minutes 30 minutes post irradiation. 
All images were taken 2 hours post irradiation. 
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Delivered 
Radiation  

Gy 

Predicted 
Radiation  

Gy 

Error % 

1.5 1.23 ± 0.21  18 

2.8 2.85 ± 0.29  1.8 

4.5 4.0 ± 0.24 11 

Table 6.1 Table indicating the efficacy of the hydrogel nanosensor in predicting the dose 
delivered. Error percentages range between 2 to 20%.  
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Figure 6.8 (A) Absorbance at 540nm as a function of radiation dose. The linear range in 
the therapeutic window of the hydrogel nanosensor (0-5 Gy) is indicated. (B) Calibration 
curve for C14TAB using absorbance at 540nm as a function of radiation dose between 0 
and 5 Gy. The hydrogel nanosensor contained C14TAB at a concentration of 75mM. 
Absorbance of the hydrogel nanosensor was measured 2 hours post irradiation. 
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Radiotherapy involves the use of a wide range of dose rates for the effective treatment of 

tumors241. To ensure dose rate independence of the hydrogel nanosensor, they were 

exposed to three different dose rates with a final culminating dose of 3Gy (Figure 6.10). 

No significant differences in the absorbance response was observed emphasizing the dose 

rate independence of the hydrogel nanosensor. This is not surprising as the number of free 

radicals generated for the reduction of Au(I) to Au(0) is independent of dose rate and only 

dependent on the final dose delivered. We further investigate the efficacy of the hydrogel 

nanosensor in predicting the delivered dose to an anthropomorphic thorax phantom (Figure 
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Figure 6.9 (A)Image depicting the colorimetric response of the hydrogel nanosensor 
irradiated on half with a 3 Gy dose. The appearance of a pink/maroon color illustrates the 
capability of the hydrogel nanosensor to qualitatively distinguish the irradiated and the 
non-irradiated regions. (B) Dose fall off-profiles comparing the simulated dose (Blue 
Triangles) with the predicted dose (Orange Circles) indicating the efficacy of the hydrogel 
nanosensor to quantitatively determine the topographical dose profiles.  
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6.11). The hydrogel discs were kept on top of the skin in the center of the radiation field 

on the skin of the phantom while being administered a dose of 2.5 Gy. Based on the 

calibration curve acquired from absorbance spectroscopy, the delivered was calculated to 

be 2.55 ± 0.02 Gy. The percentage error calculated was 2% which is similar to existing 

dosimeters which have an uncertainty less than 10%.230 The distinct visual color change, 

coupled with a simple quantitative measurement (UV–Visible absorbance) indicates the 

translational potential of this approach for detecting clinically relevant radiotherapy doses. 
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Figure 6.10 Absorbance at 540nm as a function of dose rate. Three different dose rates 
(100,600 and 1000 MU/minute) were employed in the study. No significant differences 
were observed indicating dose rate independence. One-way ANOVA with α = 0.05 was 
performed and no significance between all three groups was established.  
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Dose Delivered = 2.5 Gy 
Predicted Dose = 2.55 ± 0.02 Gy 
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Figure 6.11 Setup depicting the anthropomorphic thorax phantom and (Right) Image of 
the hydrogel nanosensor after exposure to 2.5 Gy. The hydrogel nanosensor predicts a 
radiation dose of 2.55 ± 0.02Gy. 
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6.4 Conclusions 

To our knowledge, this is the first colorimetric plasmonic hydrogel nanosensor for the 

detection and prediction of radiation dose delivered in electron beam radiotherapy. The 

hydrogel nanosensor displayed a robust linear calibration between therapeutically relevant 

radiation dose range (0 – 5) using a simple UV-Visible spectrophotometer. The hydrogel 

nanosensor was able to predict the radiation dose administered to the anthropomorphic 

thorax phantom. Finally, we demonstrated the capability of the hydrogel nanosensor to 

qualitatively and quantitatively distinguish regions exposed to radiation and not exposed 

to radiation. To further improve the prediction efficacy of the current hydrogel nanosensor, 

development of novel cationic surfactants and other templating agents is essential. This 

would allow for the realization of superior control in size and yields of nanoparticles which 

directly contributes to the hydrogel nanosensor accuracy. In addition, the use of a hydrogel 

can facilitate adaptations that allows for patient specific dosimetry depending on the patient 

anatomy. Owing to its facile fabrication and ease in quantification, we anticipate that the 

hydrogel nanosensor can potentially be translated to clinical electron beam therapy. 

  



185 

 

Chapter 7 DETERMINATION OF TOPOGRAPHICAL RADIATION DOSE 

PROFILES USING GEL NANOSENSORS 

7.1 Introduction 

 

Rapid development of new technologies has contributed to significant advances in cancer 

radiotherapy. For example, multileaf collimation and sophisticated planning software 

permit the delivery of a higher conformal radiation dose to patients, which has led to 

improved outcomes and quality of life post treatment242. These processes involve 

delivering a high radiation dose to the target tumor while minimizing dose to the 

surrounding healthy tissue243. However, rapid implementation of these new technologies, 

which were intended to reduce the risks of underdosing or overexposing the patient to 

radiation, might counterintuitively induce new sources of error244. For instance, software 

errors in linear accelerators could lead to significant radiation overdosing leading to patient 

morbidity245.  Independent verification of the radiation dose delivered at and / or near the 

target tissue can further advance patient safety246.  

 

Most clinically used sensors including thermoluminescent dosimeters (TLDs), ion 

chambers and silicon diodes are capable of point dose measurements but are unable to 

capture topographical radiation dose profiles247. Radiographic films were developed to 

overcome these limitations and have been explored to provide topographical information 

during radiotherapy. However, their performance is impacted by operating conditions (e.g. 

humidity) that cause post-irradiation artifacts248. The major disadvantage of these 
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radiographic films is the post-irradiation wait time (>24 hours) required prior to 

scanning249, which, in turn, obviates their routine clinical use.  There is a critical need for 

a sensor that can effectively report topographical dose distribution at or near tissues with 

minimal post-irradiation wait times for applications in treatment planning and verification.  

 

Molecular and nanoscale sensors can overcome limitations with conventional systems and 

are practical alternatives as facile radiation sensors161. Quantum dots and metal organic 

frameworks (MOFs) demonstrate an intense scintillating response but provide only point 

dose information limiting their application in the clinic250, 251. Polymer gel dosimeters rely 

on sophisticated readout techniques (e.g. MRI) for post-irradiation analysis, which makes 

their clinical application cumbersome and expensive252. Radiation-triggered conversion of 

a non-fluorescent monomer to a fluorescence-emitting polymer has been investigated for 

dose detection18, but the response was susceptible to decay over time potentially giving 

rise to challenges in measurement. In light of these limitations, there is a need to develop 

robust and facile sensors to qualitatively and quantitatively determine topographical 

(spatial) dose profiles in clinical radiotherapy.  

 

Gold nanoparticles possess unique physical and chemical characteristics that make them 

an excellent platform for the development of sensors66, 253-255. We recently developed a 

colorimetric  sensor in which, ionizing radiation triggers the formation of gold 

nanoparticles from its corresponding colorless salt precursors162. Formulation of a gel-

based nanosensor facilitates easier handling and application in clinical radiotherapy229, 256. 
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Here, we demonstrate the application of a gel nanosensor formulation for the colorimetric 

detection of complex distribution profiles leading to topographical mapping of radiation 

doses along tissues. This approach combines the ease of colorimetric detection and 

quantification with a fast and robust response. To our knowledge, we demonstrate, for the 

first time, the use of a molecular and nanoscale technology for determining topographical 

dose distribution in live canine patients. Taken together, our results demonstrate the 

potential for clinical translation of this technology for treatment planning and dose 

verification in cancer radiotherapy.  

     

7.2 Materials and Methods 

 

Materials. Hydrogen tetrachloroaurate trihydrate (HAuCl4.3H2O), 

myristyltrimethylammonium bromide (C14TAB) (99%), L-ascorbic Acid (AA), Sodium 

Sulfide nonahydrate (Na2S.9H2O), sodium chloride, sodium bromide, sodium bromide and 

molecular biology grade agarose were acquired from Sigma-Aldrich. No further 

purification of the chemicals was carried out. MilliQ water (18.2 MΩ.cm) was used as 

solvent for all experiments conducted. 

  

Preparation of the Precursor Gel Nanosensor. Tetrachloroauric acid (30 µL of 10 mM 

in MilliQ water) was mixed with C14TAB surfactant (600 µL of 75 mM in MilliQ water). 

From the resulting mixture, 100 µL was discarded prior to further use. Agarose was 

dissolved in MilliQ water to obtain a final concentration of 2% w/v and heated until a clear 
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transparent solution was obtained. This heated agarose (500µL) was added to the 

tetrachloroauric and cationic surfactant mixture. The above liquid (650 µL) was poured 

into a 24 well tissue culture well plate to form the gel nanosensor with a thickness of ~3 

mm and a diameter of ~1.5 cm. Ascorbic acid (650 µL of 10 mM in MilliQ water) was 

allowed to diffuse from top of the gel for 10 minutes and excess AA was discarded. The 

gel was washed using MilliQ water to further remove any excess ascorbic acid on the 

surface. Gel nanosensors were also prepared in 6-well tissue culture plates (~3.6 cm 

diameter) using similar procedures in order to investigate larger dimensions. 

 

X-Ray Irradiation. All irradiation experiments were carried out at the Banner-MD 

Anderson Cancer Center in Gilbert, AZ. A Varian TrueBeam Linear Accelerator was used 

to irradiate the samples with X-rays an energy of 6MV at a dose rate of 600MU/min. For 

complete exposure of the samples to irradiation, the gel nanosensors were placed within a 

10 cm x 10 cm irradiation field. For demonstrating spatial dose distribution, only half the 

gel nanosensor was placed within the 10 cm x 10 cm irradiation field while the other half 

was outside the field of irradiation. After irradiation, the samples were analyzed further at 

Arizona State University in Tempe, AZ. (Travel time of approximately 30 minutes)  

 

Post-processing of irradiated Gel Nanosensors. Various quenching agents, Na2S and 

NaX, where X=Cl, Br, or I (650 µL of 5mM), were investigated in order to quench the 

nanoparticle formation reaction. The quenching agents were added on top of the gel 

nanosensor at various times post irradiation (5, 9, 15 and 30 minutes) and incubated for 10 
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minutes. The liquid on the surface was discarded after incubation and the gel nanosensors 

were used for further quantification.  

 

Absorbance Spectroscopy.  A BioTek Synergy 2 plate reader was used to quantify 

absorbance spectra of all the samples for wavelengths ranging from 300 to 990 nm with a 

step size of 10 nm. Absorbance measurements for all samples were obtained 2 hours post 

irradiation although the color formation was seen as early as 5 minutes. The absorbance 

value of MilliQ water at all wavelengths was used as the blank in all corresponding 

measurements. These values were then normalized by subtracting the absorbance value at 

990 nm wavelength for each gel nanosensor  sample. The absorbance value at 540nm was 

measured for all irradiated and non-irradiated gels and was offset by their corresponding 

absorbance value at 990nm. These values were further corrected by subtracting the A540nm-

A990nm value obtained for MilliQ water. To ensure that the absorbance corresponding to the 

non-irradiated gel nanosensor  (0 Gy) is 0, the absorbance of the non-irradiated gel 

nanosensor (0 Gy) is subtracted from itself and the absorbance of the irradiated gel 

nanosensor. These values were plotted as a function of the radiation dose (in Grays or Gy, 

where 1 Gy = 1 Joule energy absorbed / kg) in order to generate a calibration curve.  

 

Transmission Electron Microscopy (TEM). Irradiated gels were dissolved in 1,2-

propane diol (chaotropic agent) in order to facilitate drop casting onto TEM grids and 

heated to 80°C for 15 minutes. This mixture was centrifuged at 4000 rpm for 10 mins. The 

supernatant was removed and was further dispersed in MilliQ water. This solution was 
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further cast onto TEM grids. The samples were dried in air overnight and visualized using 

a CM200-FEG instrument operating at 200 kV in the LeRoy Eyring Center for Solid State 

Sciences at ASU. Elemental analysis was carried out in order to determine the composition 

of the nanoparticles formed. 

 

Topographical Dose Determination in an Anthropomorphic Head and Neck 

Phantom. An anthropomorphic head and neck phantom was used to determine the efficacy 

of topographical dose determination of the gel nanosensor in a clinical setting. CT images 

(1mm) were acquired throughout the head region and transferred to a Philips Pinnacle 

treatment planning system. In order to simulate an actual clinical treatment, an irregularly 

shaped GTV (gross target volume) was generated using several CT images.  The GTV was 

defined superficially above the left maxillary sinus and a single 6MV highly conformal 

photon (X-ray) beam was aimed at a discrete angle at the target in order to avoid nearby 

critical structures such as the left orbit.  A multi leaf collimator (MLC) was used to shape 

and conform the radiation dose to a target field of 2.5 cm x 1.9 cm. Within this target 

region, a crescent shaped beam was delivered using the MLC. A 1.5 cm tissue-equivalent 

bolus material was placed over the target area in order to provide an adequate dose buildup 

and coverage at the skin surface. A 2 Gy single dose was calculated to dmax (1.5cm depth).  

 

Topographical Dose Determination in Canine Cancer Patients Undergoing 

Radiotherapy. Prior to the canine study, the experimental protocol described below was 

documented and approved by ASU’s Institutional Animal Care and Use Committee 
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(IACUC). The pet owner signed a consent form approved by ASU’s IACUC prior to any 

study.  

 

Irradiation set up for Canine patients. Prior to irradiation, both canine patients, called A 

and B here, were anaesthetized to assist immobilization during treatment. Patient A’s skin 

received a radiation dose of 2 Gy within a field size of 4 cm x 4 cm and patient B’s skin 

received a radiation dose of 3 Gy within a field size of 6 cm x 14 cm. To achieve maximum 

dose deposition and to enable a dose buildup to the skin, a 1.5 cm bolus was wrapped 

around the leg of patient B. The gel nanosensor (≈3.5 cm diameter) and a Gafchromic 

EBT3™ film (≈3.5 cm diameter) were wrapped in a plastic bag in order to prevent direct 

contact with the skin of the patient. One half of the gel nanosensor and the Gafchromic 

EBT3™ film were placed on the region which was exposed to radiation while the other 

half of each was placed outside the field of irradiation. For patient A, the gel nanosensor 

and the Gafchromic EBT3™ film were placed on the skin while for patient B they were 

placed on top of the bolus. In addition, in the case of patient B, a separate gel nanosensor 

and Gafchromic EBT3™ film were placed entirely within the radiation field underneath 

the bolus to validate the delivery of the 3 Gy dose. Following radiation treatment, the gel 

nanosensor and Gafchromic EBT3™ films were removed and analyzed as described in the 

following sections. 

  

Topgraphical Mapping of Gafchromic EBT3™ films. Following irradiation with X-

rays, an EPSON Expression 10000XL Graphic Arts Scanner was used to scan films prior 
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to analysis, consistent with clinical practice257. After scanning, the RIT dosimetry software 

(RIT113 Classic V6.0) was used to analyze digitized image of the films. Pixel values at 

discrete points with a 2 mm spacing between each point were measured along the digitized 

films. Each pixel value is correlated to the predicted dose using clinical standard calibration 

curve and a corresponding topographical dose map is acquired. The regions receiving a 

high radiation dose are depicted in red and those receiving a low irradiation dose are 

depicted in blue.  

 

Topographical Mapping of Gel Nanosensors. Absorbance values at 540 nm and 990 nm 

were determined along the surface of the entire gel (diameter of ~1.5 cm) using a 1536 well 

plate setup in a BioTek Synergy 2 plate reader. Each grid has a finite size of ≈2 mm x 2 

mm, which results in approximately 110 grids along the entire gel for which the absorbance 

values are obtained, leading to a dose map on the gel surface. The final absorbance value 

at a given grid was calculated based on the method described for generating the calibration 

curve. The calibration curve was used to predict the radiation dose delivered to each point 

on the grid and a corresponding topographical dose map over the entire gel surface is 

obtained. The regions that received high doses of radiation are depicted in red and those 

receiving low radiation doses are depicted in blue.  

 

Image Acquisition. All images were acquired using an iPhone 7 camera under ambient 

lighting and automatic settings which were maintained throughout the course of the study. 

The images were cropped to the desired size for representation. No further editing or post-
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processing was carried out. These images were not used for quantification of the dose but 

only for visualization of the gels. 

 

Statistical Analyses. All irradiation experiments were carried out a minimum of three 

times independently unless otherwise mentioned. The results are expressed as mean ± one 

standard deviation. All calculations were carried out using Microsoft Excel 2016. 

 

7.3 Results and Discussion  

In conventional fractionated cancer radiotherapy, a patient is administered doses in 

fractions ranging from 1-5 Gy every day leading to a cumulative dose of 20-90 Gy258. 

However, there are no in-built dosimeters in radiotherapy systems and existing dosimeters 

lack the ability to report topographical dose distribution along tissues. Facile radiation 

sensors that are predictive, easy to operate, robust, and cost-effective can lead to the 

development of wearable detectors and enable clinicians to effectively deliver radiation to 

target tissues, leading to increased safety and improved patient outcomes.  

 

Here, we demonstrate the efficacious detection of topographical dose distribution of 

ionizing radiation (e.g. X-rays) using a novel gel-based colorimetric nanosensor. In its 

original form, gold ion exists in a trivalent (+3) state which is reduced to a metastable +1 

valence state via a room temperature reaction with ascorbic acid (vitamin C)138. Irradiation 

of these gels leads to splitting of water molecules (radiolysis) into highly reactive free 

radicals including hydrated electrons (e-
aq), hydrogen free radicals (H.) and hydroxyl free 



194 

 

radicals(OH.)259. The generated hydrated electrons reduce the monovalent gold to its 

zerovalent state leading to the formation of gold atoms. These atoms nucleate and mature 

into gold nanoparticles, which engender a change in color from colorless to red/maroon 

color in the gel. The increase in color intensity of the gel nanosensor with increasing 

radiation dose is directly proportional to the formation of gold nanoparticles upon 

irradiation, and is used for calibrating the response of the gel nanosensor. A quenching 

agent (Na2S) is further supplemented in order to preserve dose distribution profiles and 

generate topographical dose maps. 

 

We first determined the response of the fully irradiated gel in order to establish a calibration 

of absorbance with dose. The time required for the development of color in the gels (Figure 

7.1) was dependent on the concentration of the surfactant used and the radiation dose 

delivered. For a fixed radiation dose (10 Gy), the time required for the development of 

color increases with an increase in concentration of the surfactant; for concentrations from 

50 to 100 mM, the maximum time required for change in color increased from 5 to 15 

minutes. However, at the highest surfactant concentration (150 mM) employed in the study, 

no visible color change was observed even after 30 minutes. We also observed an increase 

in intensity of color in the gel nanosensor  with decreasing surfactant concentration for a 

fixed radiation dose. We summarize these phenomena using illustrations for low and high 

concentrations of surfactant as shown in Figure 7.2. At all concentrations of C14TAB 

employed in the study (50-150 mM), the surfactant exists in the form of micelles (CMC ≈ 

5mM)260. We reason that at any given time there are three distinct species, (1) free gold 

ions, (2) C14TAB micelles and (3) gold ions bound to C14TAB micelles and that there exists 
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an equilibrium between them261. At low surfactant concentrations, some Au1+ are free in 

solution and others are electrostatically bound to the micelles142. With increasing surfactant 

concentration, there is an increase in the number of C14TAB micelles in the system which 

drives the formation of more gold ion-bound C14TAB micelles261. Consequently, the 

number of free Au1+ decreases with a simultaneous increase in the gold micelle complex. 

We hypothesize that radiolysis leads to reduction of only free Au1+ ions. We reason that 

this likely leads to a higher yield of nanoparticles with an increased rate of formation at 

low surfactant concentrations due to the reduction of a higher number of free Au1+ ions to 

Au0 when compared to the system at high surfactant concentration. These Au0 atoms 

mature into gold nanoparticles through surface-assisted reduction of unreacted free Au1+ 

ions262.  
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Following irradiation, a quantitative correlation between the intensity of the color formed 

in the gels and the delivered dose was determined using absorbance spectroscopy (Figure 

7.3). Radiation resulted in the formation quasi-spherical gold nanoparticles that exhibited 

a characteristic light absorption spectral peak between 500 and 600 nm253. A decrease in 

the width of the spectral profile is observed with increasing radiation dose indicating a 

Figure 7.1 Images of gel nanosensors containing various concentrations of C14TAB (50-
150mM) following exposure to various doses of ionizing radiation (0-10 Gy). A visible 
increase in intensity in the maroon color is observed with increasing dose of ionizing 
radiation for all C14TAB concentrations employed.  

 

Figure 7.2 Schematic illustration of the proposed mechanism. At low surfactant 
concentrations, most gold ions are likely free in solution (unbound to micelles). With 
increasing surfactant concentration, the equilibrium shifts to the right with a decrease in 
free gold ions. Upon irradiation, the number of Au0 atoms formed due to reduction at low 
surfactant concentration is higher due to the presence of a higher number of free gold ions 
when compared to the system at high surfactant concentration. The higher number of free 
gold atoms lead to increased yield of gold nanoparticles due to surface assisted reduction 
with unreacted gold ions. 
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decrease in polydispersity of the nanoparticles formed. A blue-shift in the absorbance peaks 

with increasing radiation dose suggests a decrease in particle size compared to those 

obtained at lower radiation doses162. The peak absorbance intensity increases with 

increasing radiation dose corroborating the observed increase in color intensity. A decrease 

in the peak absorbance at 540 nm with increase in concentration of the cationic surfactant 

is observed likely due to micellar inhibition of the reduction of Au(I) to Au(0)142. We 

previously observed similar trends in spectral width changes, blue shifts and peak 

absorbance changes with different levels of ionizing radiation162, 229, 256. The maximum 

peak absorbance at 540 nm was plotted as a function of the delivered radiation dose in 

order to quantify the gel nanosensor response (Figure 7.4). A linear response was observed 

with increasing radiation dose for all concentrations of the surfactant.  
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Figure 7.3 From Top to Bottom; Absorbance spectra of gel nanosensor containing (A) 
50mM, (B) 62.5mM, (C) 75mM, (D)100mM, (E)150mM. The gels were irradiated with 0, 
2, 4, 6, 8 and10 Gy. Characteristic absorbance peaks between 500 and 600nm are 
indicative of gold nanoparticles. The corresponding radiation dose are mentioned in the 
legend with increasing radiation dose (top to bottom).  
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Figure 7.4 Peak absorbance spectra at 540nm plotted versus radiation dose post irradiation. 
(A) The plot indicates the gel nanosensor response as a function of concentration of 
C14TAB with a fixed Na2S addition time of 5 minutes. (B) The plot indicates the gel 
nanosensor response as a function of time of addition of Na2S with a fixed C14TAB of 
50mM. These results indicate the adaptability of the sensor to measure various radiation 
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dose range through simple fine tuning of C14TAB concentration or/and time of addition of 
sodium sulfide.   

 

We next determined the ability of the gel nanosensor to detect topographical distribution 

of radiation dose by irradiating one-half of the gel nanosensor with a 4 Gy dose. The near 

immediate (~2 min) visual appearance of maroon color only in the irradiated region 

indicates the presence of gold nanoparticles following radiation (Figure 7.5). However, 

the color was observed to “bleed over” to the non-irradiated region 1 h post irradiation 

(Figure 7.5A), which indicated a loss of topographical information in the gel over time. 

Increasing the weight percent of agarose from 3% to 4%, in order to decrease the pore 

size263, did not help preserve topographical integrity of dose distribution (Figure 7.5B). 

 

As an approach for maintaining topographical information of the delivered dose, we 

hypothesized that radiolytically generated gold nanoparticles act as seeds for unreacted 

gold ions on the non-irradiated region leading to the formation of additional gold 

nanoparticles143. These additional gold nanoparticles, in turn, impart color to non-irradiated 

regions and drive the bleed over phenomena, which leads to loss of topographical dose 

information. Incubation for 10 minutes (5 minutes post irradiation) with sodium sulfide 

(Na2S) led to complete suppression of the bleed over of color (Figure 7.5C); sodium 

halides (NaX, X = Cl, Br, I), however, were ineffective for this purpose.  In the absence of 

sodium sulfide, growth of gold nanoparticles is a result of two distinct steps262. The first 

step involves the reduction of Au1+ to Au0 atoms, which nucleate and develop into small 

nanoclusters. The second step determines the overall size and the number of particles 
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formed. This step involves the growth and maturation of nanoparticles induced due to 

attachment and reduction of free gold ions on existing nanoclusters. We reason that 

quenching of the unreacted gold ions in the non-irradiated region is a critical step in 

preserving topographical dose information. Therefore addition of sodium sulfide, which 

reduces the unreacted free gold ions to gold sulfide nanoparticles264 inhibits the bleed over 

phenomena and retains the topographical dose information required for modern 

dosimetry(Figure 7.6).  
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Figure 7.6 Schematic illustration of the proposed mechanism used for detecting spatial 
dose distribution. Early addition of Na2S leads to the reduction of unreacted gold ions to 

NaCl NaBr NaI Na2S Control 

Figure 7.5 (A) Image of agarose gel (left) prior to irradiation, (middle) Top half irradiated 
with 4 Gy and image acquired 2 minutes post irradiation, and (right) Image acquired 1 hour 
post irradiation. A visible increase in intensity of color in the non-irradiated region leads 
to loss of topographical information. (B) i. Image of 3 w/v % agarose gel (left) 2 minutes 
post irradiation and (right) 1 hour post irradiation; ii. Image of 4 w/v % agarose gel (left) 
2 minutes post irradiation and (right) 1 hour post irradiation indicates that increase in 
agarose weight percentage does not preserve topographical dose information (C) Images 
of gel nanosensor incubated with 5 mM sodium sulfide and various sodium halides for 10 
minutes and imaged after 1 hour. No loss of topographical information observed upon 
incubation with sodium sulfide.  
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gold sulfide particles, which obviate further reaction and color bleed over. These ions 
wound have otherwise likely contributed to the growth of radiolytically generated gold 
nanoparticle resulting in bleed over of the color to non-irradiated regions. Upon delayed 
addition of Na2S, most of the radiation-generated gold nanoparticles have matured and 
further addition of the quenching agent does not affect the final yield of gold nanoparticles 
in the gel nanosensor. This results in an increase in absorbance in the gel nanosensor as a 
function of time of addition of Na2S post-irradiation. 

 

Increasing the wait time post irradiation before incubation with sodium sulfide led to an 

increase in absorbance for a fixed radiation dose (Figure 7.4 B). Specifically, for a fixed 

radiation dose of 6 Gy, the average absorbance increased from 0.07 to 0.17 with increasing 

the wait time prior to addition of sodium sulfide post irradiation from 2 to 9 minutes. 

Addition of Na2S immediately (i.e. 2 min post irradiation) likely leads to the reduction of 

unreacted gold ions to gold sulfide particles. This can reduce the growth of radiolytically 

generated gold nanoparticles, which in turn, can result in lower absorbance values observed 

for the shorter wait times (Figure 7.6). With a delayed addition of Na2S (i.e. 9 min post 

irradiation), we hypothesize that most of the radiation-generated gold nanoparticles have 

matured and further addition of the quenching agent does not affect the final yield of gold 

nanoparticles. This results in an increase in absorbance as a function of wait time post 

irradiation before the addition of Na2S for a given radiation dose (Figure 7.4 B). Although 

it is important that the gel nanosensor detects doses used in conventional fractionated 

radiotherapy (i.e. 1-2 Gy per fraction), the sensor can be adopted for a wider dose range 

(2-8 Gy) used in modern radiotherapy by simply fine tuning the concentration of the 

cationic surfactant and/or modulating the time of addition of sodium sulfide.  This level of 

flexibility is not available in existing dose detection systems, which typically have a fixed 

linear response.  
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Upon addition of sodium sulfide, both the irradiated and non-irradiated regions of the same 

gel were independently visualized using transmission electron microscopy (TEM; please 

see Experimental Section). Elemental analysis using energy-dispersive X-ray (EDX) 

spectroscopy indicated two overlapping peaks in the non-irradiated region, (1) M-shell 

peak at 2.12 keV corresponding to gold and (2) K-shell peak at 2.3 keV likely due to the 

presence of sulfur (Figure 7.7 A)265. The irradiated region contains a higher yield of gold 

nanoparticles and displays a sharp peak corresponding to only the M-shell of gold (Figure 

7.7 B). Comparison of both spectra indicates the formation of gold sulfide nanoparticles in 

the presence of Na2S in the non-irradiated region. The mean diameter of nanoparticles in 

the non-irradiated region was between 5.6 ± 1.7nm (Figure 7.8 A). The irradiated region 

consists of nanoparticles with a size range of 52.7 ± 23.4nm (Figure 7.8 B). The presence 

of a higher number of nanoparticles with a diameter greater than 2 nm lead to the 

development of the characteristic color of gold nanoparticles (maroon/pink) observed in 

the irradiated regions266.   
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Figure 7.7 Elemental analysis of nanoparticles after incubation with Na2S in the (A) 
irradiated region and the (B) non-irradiated region. The presence of a broadened peak in A 
indicates the presence of gold sulfide nanoparticles. The peak attributions are done based 
on those in the literature265.  
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Figure 7.8 TEM image showing presence of nanoparticles (A) after incubation with 
sodium sulfide (nanoparticle dimensions: 5.6 ± 1.7 nm) and (B) without incubation with 
sodium sulfide (nanoparticle dimensions: 52.7 ± 23.4 nm). Corresponding magnified 
images of the highlighted region are shown on the right. A total of 15 particles were used 
for quantification of nanoparticle dimensions.  

 

We further investigated the capability of the gel nanosensor for visualizing diverse 

topographical radiation dose patterns (Figure 7.9). The gel nanosensor was irradiated with 



208 

 

a square field (1 cm x1 cm) with a 1 cm non-irradiated spacing between each field. Each 

sequential square was irradiated with incremental doses resulting in multiple squares within 

the gel nanosensor. The increase in intensity of the color is indicative of the increasing 

dose, while preserving the topographical integrity. Regions that are not irradiated do not 

demonstrate a change in color (Figure 7.9A). We also demonstrated the capability of the 

gel nanosensor for detecting complex radiation patterns as shown by the model dose that 

read “ASU” (Figure 7.9B). In these studies, the radiation dose was delivered sequentially 

which results in delayed appearance of the last two letters, viz. “S” and “U” compared to 

appearance of “A”. 
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Clinical radiotherapy for skin and breast cancer lesions commonly employs radiation field 

sizes that are larger than 3 cm x 3 cm in area267-269. In order to accommodate larger radiation 

fields, we fabricated a gel nanosensor with the same thickness (~3 mm) but a larger 

diameter (~3.5 cm). The gel nanosensors were loaded with a surfactant concentration of 75 

mM, irradiated over the whole area with doses ranging from 0-4 Gy and treated with 5 mM 

Na2S 30 minutes post-irradiation (Figure 7.10 A). Following irradiation, peak absorbances 

at 540 nm of the irradiated and the non-irradiated gel nanosensors were plotted as a function 

of radiation dose in order to obtain a linear calibration curve between 0-4 Gy (Figures 7.10 

B, C). The predictive efficacy of the sensor was determined using a dose of 1.5 Gy, which 

was not used for generating the calibration curve. The change in color was quantified using 

the previously generated calibration curve and the dose was estimated to be 1.28 ± 0.1 Gy 

which is comparable to the delivered dose indicating the predictive ability of the gel 

nanosensor. In order to investigate the ability to detect topographical dose distribution, one-

half of the gel was irradiated with 2 Gy by positioning it at the edge of the radiation field 

and the other half was not irradiated. The absorbance at 540 nm was recorded in finite grids 

(≈2x2 mm) along the diameter of the gel nanosensor and the radiation dose was predicted 

using the previously established calibration curve. The topographical radiation dose profile 

predicted by the gel nanosensor is in excellent agreement with the delivered dose profile 

Figure 7.9 (A) Representative image of a petridish containing the gel nanosensor (3mm 
thick and ≈10cm diameter) irradiated by a 1cm x 1cm square field of X-ray radiation. From 
left each square indicates increasing radiation dose from 0.5 Gy (Red Box), 1 Gy, 1.5 Gy, 
2 Gy, 2.5 Gy, 3 Gy, 3.5 Gy, 4 Gy, 4.5 Gy and 5 Gy; the black box in the middle image 
shows 0 Gy. (B) Representative image of a complex topographical dose pattern (ASU 
letters) generated using a 2Gy X-ray dose. The petridish has a diameter of 10cm. All gel 
nanosensors  contain 50mM C14TAB and Na2S was added 30 minutes post irradiation.   
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(Figure 7.11). These results indicate the potential of the gel nanosenor for qualitatively 

and quantitatively detecting regions irradiated with ionizing radiation and distinguishing 

them from those that are not irradiated.   
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Accidental exposure to radiation can cause significant tissue injury and skin is the first 

organ exposed to radiation damage; radiation-induced skin injuries range from erythema 

to necrosis270. We investigated the translational capability of the gel nanosensor for 

predicting radiation doses delivered to a head and neck phantom (Figures 7.12 A and 7.12 

Figure 7.10 (A) Images and (B) absorbance spectra of gels containing 75 mM C14TAB 
following exposure to different doses of ionizing radiation. Characteristic peaks between 
500 and 600 nm are indicative of gold nanoparticle formation. (C) Absorbance at 540nm 
as a function of radiation dose is used as a calibration curve to determine unknown doses. 

 

0

0.5

1

1.5

2

2.5

-1.5 -0.5 0.5 1.5

R
ad

ia
to

in
 D

os
e 

(G
y)

Distance along diameter of gel (cm)

Delivered

Predicted

 2Gy       0Gy 

1   2   3   4   5    6   7   8   9  10  11 

Figure 7.11 (Left) Colorimetric response of the gel nanosenor irradiated on one half with 
a 2 Gy dose. A visible appearance of maroon color in the irradiated region illustrates the 
ability of the gel nanosensor to predict topographical dose profiles. (Right) Dose fall-off 
profile for half a gel nanosensor irradiated by 2 Gy. The delivered radiation dose and the 
predicted are comparable indicating the efficacy of the gel nanosensor in determining 
topographical information. In all cases, Na2S was added 30 min post irradiation. 
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B). An irregular crescent-shaped radiation dose field was delivered to the phantom in order 

to mimic clinically administered radiotherapy (Figures 7.12 C and 7.12 D). The distinct 

visual change in color is a qualitative indicator of the radiation delivered to the gel 

nanosensor (Figure 7.12 E). The previously generated calibration curve was employed to 

predict the dose based on the intensity of the color developed (please see the Experimental 

section). The predicted absorbance dose is highest in the middle (bright red) of the pattern 

and decreases in intensity towards the edge (light red) of the field. Specifically, the core of 

the pattern receives an average dose of 2.3 Gy as determined by the treatment planning 

system and the gel nanosensor predictions were in excellent agreement with the planned 

dose profile (Figures 7.12 F and 7.12 G). These results suggest the ability of the gel 

nanosensor for detecting and predicting complex radiation patterns employed during actual 

clinical human radiotherapy.  
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Although mice and rats are widely employed and inexpensive, their small anatomy relative 

to that of humans can lead to significant differences in dosimetry271 and can limit  the 

extrapolation of these findings to human patients. Canine patients circumvent these 

challenges because of their larger size, and similarity in contours and treatment methods to 

that of human patients. We investigated the gel nanosensors as independent radiation 

dosimeters for verifying the dose delivered to two canine patients undergoing radiotherapy; 

the patients are henceforth referred to as “Patient A” and “Patient B”. The efficacy of the 

gel nanosensor was also compared with conventional radiochromic films used in the clinic. 

To our knowledge, this is first time a nanoscale based dosimeter has been employed in the 

detection of radiation dose delivered to live canine patients undergoing clinical treatments.  

 

The surface of patient A was administered a dose of 2 Gy to the skin (Figures 7.13). The 

gel nanosensor was positioned at the edge of the radiation field and the ability to measure 

Figure 7.12 (A) Image of an anthropomorphic head and neck phantom treated with an 
irregularly shaped radiation field below the left eye. (B) Image of the gel nanosensor 
positioned on the anthropomorphic phantom in the radiation field mimicking a 
conventional radiotherapy session. (C and D) Treatment planning images representing an 
irregularly shaped radiation field used to deliver a complex radiation pattern under the eye 
of the phantom. (E) Visual image of the irradiated pattern on the gel nanosensor. Only the 
irradiated region develops a maroon color while the non-irradiated region remains 
colorless. (F) Topographical dose profile of the delivered radiation to the anthropomorphic 
phantom. The profile is generated from the treatment plan used during the actual irradiation 
of the head and neck phantom. (G) Absorbance along the irradiated gel nanosensor in 
≈2mm x 2mm grids was quantified using a calibration curve to quantify a topographical 
dose profile. The core dose received by the crescent-shaped profile (2.3 Gy) is comparable 
to the predicted dose profile from the gel nanosensor (2.3 Gy). This suggests the capability 
of the gel nanosensor to qualitatively and quantitatively predict the complex topographical 
dose profiles. Colors indicate the intensity of color with red being the highest dose and 
blue indicating a lower radiation dose. The experiments were performed 3 times 
independently.   
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topographical dose information was evaluated (Figures 7.13). Upon completion of the 

treatment, a maroon color on one-half of the gel was clearly seen while the non-irradiated 

region remained colorless (Figure 7.13 E). The previously generated calibration curve was 

used to predict the delivered dose. Unsurprisingly, the dose delivered is highest in the 

irradiated region (denoted by red squares). As expected the intensity decreases from left to 

right (dark red to light red to blue) indicating a decrease in the intensity of the delivered 

radiation dose. Specifically, the predictions made by the gel nanosensor of ≈2Gy in the 

irradiated region were in excellent agreement with the treatment planning system and the 

radiochromic film. The gel nanosensor also predicts minimal radiation dose (≈0.1Gy) 

outside the irradiation region illustrating its capability it predicting topographical dose 

profiles. The gel nanosensor predicts the irradiated and the non-irradiated region 

effectively and the performance is comparable to the predictions of a conventional 

radiochromic film (Figures 7.13 E and 7.13 F).  
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Patient B received a fractionated dose of 3 Gy at the target tumor site on the surface of skin 

(Figures 7.14) and 1.5 Gy on the surface above the bolus.  A visible change in color was 

observed over the entire gel, which was placed underneath the bolus (Figure 7.14 F). The 

gel nanosensor estimates a core uniform dose of ≈2.8 Gy, which closely matches the 

estimate made by the radiochromic film (≈3.2Gy). It is important to note that the time 

required for color development and evaluation of the radiochromic film was >24hours, 

which contrasts to that for the gel nanosensor which was only ~1 hour. In addition, it is 

possible to generate tissue-conformal formulations with the gel nanosensor, which is 

difficult with the more rigid radiographic films. To capture the topographical profile of the 

administered dose, half the gel nanosensor was placed on top of the bolus and exposed to 

radiation. As expected, the irradiated region turned maroon while the non-irradiated area 

remained colorless (Figure 7.14 H). The core of the irradiated region was estimated to 

receive a dose of ≈1.7 Gy as is closely predicted by the radiochromic film (≈1.4Gy). The 

regions outside the irradiated region received minimal dose (≈0 Gy) as predicted by the gel 

nanosensor, which closely matches the predictions of the radiochromic film. Using the gel 

Figure 7.13 Representative image of (A) half the gel nanosensor and (B) half the 
radiographic film positioned in the radiation field on patient A. (C) Treatment planning 
software depicting the delivery of a 2 Gy dose delivered to the surface of patient A. (D)

The expected dose fall-off profile of 2 Gy inside the radiation field and a minimal radiation 
(0.1 Gy) outside the field. A color change is visible clearly in both the (E) gel nansensor 
whose color changes to maroon and (F) radiographic film whose color changes to dark 
green post-irradiation. The dose map of the predicted dose for both the gel nanosensor and 
radiographic film is depicted below each corresponding sensor (please see the 
Experimental section). The dose profiles are similar indicating the efficacy of the gel 
nanosensor for clinical dosimetry. The time for readout of the gel nanosensor was 1 hour 
while the radiochromic film required >24 hours prior to readout. The experiments were 
performed 3 times independently for the gel nanosensor and the radiographic film. 
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nanosensor, we were able to independently corroborate the efficacy of the treatment plan 

used to treat Patient B. All these results taken together, along with the simplicity in 

fabrication with minimal equipment requirement, operation, readout and cost effectiveness 

(≈5 cents per gel; only material cost considered) demonstrates the translational potential of 

the colorimetric gel nanosensor for detecting and predicting topographical radiation doses 

in clinical radiotherapy.  
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Figure 7.14 (A) Representative image of the final setup of Patient B. Half the gel 
nanosensor and the Gafchromic EBT3™ film is placed on the radiation field on top of the 
bolus which was delivered a radiation dose of 1.5Gy (Image does not contain the gel 
nanosensor and the Gafchromic EBT3™). (B) Representative image of the gel nanosensor 
placed on the treated region which was delivered a radiation dose of 3Gy. (C) Treatment 
planning software depicting the delivery of a 3Gy dose delivered to the skin of patient B. 
(D) The expected dose delivered to the skin of the patient and (E) surface dose (1.5cm 
above the bolus). A color change is visible clearly in both the (F) gel nansensor to 
pink/maroon (G) radiographic film to dark green post-irradiation. The heat map of the 
predicted dose for both the gel nanosensor and radiographic film is depicted below each 
corresponding sensor(See experimental section). The dose profiles are similar in all cases 
indicating the efficacy of the gel nansensor to clinical dosimetry. The time for readout of 
the gel nanosensor was 1 hour while the radiochromic film required >24 hours prior to 
readout. The experiments were performed 3 times independently for the gel nanosensor 
and the radiographic film. 
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7.4 Conclusions  

To our knowledge, this is the first demonstration of a colorimetric gel nanosensor for 

detecting and distinguishing regions exposed to irradiation. The addition of a chemical 

quenching agent, sodium sulfide, reveals topographical dose distribution obtained during 

clinical radiotherapy. We also demonstrated the ability of the gel nanosensor to respond to 

varying levels of ionizing radiation by tuning the concentration of the surfactant used and 

time of addition of the quenching agent. Various simple and complex motifs were patterned 

on the gel nanosensor illustrating the ability of the sensor to capture dose profiles obtained 

in fractionated clinical radiotherapy. The effectiveness of the sensor was evaluated for 

predicting complex topographical dose profiles delivered to an anthropomorphic head and 

neck phantom. The efficacy of the colorimetric gel nanosensor was demonstrated for 

visualizing and quantifying topographical dose distribution in live canine patients. The 

effectiveness of the gel nanosensor was comparable to Gafchromic EBT3™ films, which 

required more than 24 hours before readout, indicating significant advantages of the 

former. The ease of fabrication, simple operation procedures that require only a 

spectrophotometer without any sophisticated training, rapid and stable readout, possibility 

of formulating tissue-conformal geometries and relatively low cost (≈$0.50 per gel 

nanosensor only material cost considered) indicate the high disruptive and translational 

potential of the gel nanosensor technology for determining complex topographical dose 

distribution profiles in clinical radiotherapy. It is anticipated that clinical adoption of the 

gel nanosensor technology for determining topographical dose distributions in tissues will 

lead to improved patient safety and outcomes.  
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Chapter 8 MOLECULAR ENGINEERING OF AN AMINO ACID DOSIMETER 

FOR CLINICAL RADIOTHERAPY 

8.1 Introduction  

Approximately three new cases and one mortality are reported due to cancer every minute 

in the US272. Despite promising advances in therapeutic interventions, radiotherapy 

remains a mainstay of clinical intervention for several cancers. Nearly two-thirds of 

patients receive some form of radiation as treatment273. The primary intention of curative 

radiotherapy is twofold: to deliver a high and uniform dose to the target lesion to achieve 

local tumor control while simultaneously minimizing the dose to normal tissue to avoid 

long term complications to the patient243. To manage safe and accurate dose delivery to the 

patient, radiotherapy relies on dosimetry for optimization of prescribed dose during 

treatment. Human error, equipment failures and faulty operating procedures could 

potentially lead to inaccurate dosing leading to morbidity in patients. Dynamically 

changing radiation fields and smaller beam sizes, have introduced new challenges for 

routine dosimetry and quality assurance274. A change in paradigm in accurate dosimetry is 

necessary not only for treatment optimization but also for radiation protection of the 

patient.  

 

The available dosimeters are not sufficient for many clinical applications especially to 

provide accurate radiation dose information with minimal post processing. 

Thermoluminescent dosimeters have attracted attention but their routine use is challenging 

due to its labor intensive operation and extensive training required prior to their 

operation220. Silicon diode detectors response are subject to design and the operating 
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environment making them unreliable for periodic operation275. In addition, current 

dosimeters are not compliant to conform to the human anatomy routinely encountered 

during radiotherapy. Polymer gel dosimeters have a much better tissue conformity, but 

toxic components involved in fabricating the sensor and the requirement of sophisticated 

readout techniques like MRI have prevented their clinical translation252. Due to the 

limitations of existing sensors, there is an unmet need to develop a new and effective 

dosimeter that ensures accurate predictions of prescribed dose along with ease of operation. 

 

Molecular and nanoscale systems offer unrealized potential for the development of 

dosimeters that could lead to simple yet effective approaches for detecting therapeutic 

levels of ionizing radiation161. Quantum dots have demonstrated a strong scintillation 

response upon exposure to ionizing radiation but current synthesis techniques result in 

batch-to-batch variations making them unreliable as a dosimetry standard276. Investigation 

of carbon nanotubes as active transducers for the detection of gamma-ray radiation lack the 

sensitivity towards therapeutic levels of ionizing radiation restricting their applicability in 

the clinic277. Metal organic framework as scintillators have limited applicability due to the 

toxicity of metal ions used during development and fabrication278. In light of these 

disadvantages, there is still a need to develop a robust yet simple dosimeter that is easy to 

fabricate which could potentially provide additional safeguards during clinical 

radiotherapy. 
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The unique properties associated with the size and shape of gold nanoparticles has 

facilitated its widespread use in chemical and biological sensing253. We have recently 

pioneered the development of a sensor based on the formation of gold nanoparticles from 

its colorless precursor salt solution upon exposure to therapeutic levels of radiation162, 229, 

256. Although this is a powerful approach, it is limited in its translational due to the use of 

toxic functional components like cationic surfactants279. In order to relieve concerns 

regarding potential toxicity during handling and application over a patient, we have 

developed the first biocompatible sensor to detect radiation by employing amino acids to 

perform a similar function as that of the cationic surfactant. We have also employed the 

developed sensor to detect prescribed dose delivered to a canine patient which is a first 

based on our understanding of the literature.  

8.2 Materials and Methods 

 

Materials. Gold (III) chloride trihydrate (HAuCl4, 3H2O), 20 natural amino acids, 

glutathione, β-alanine, m-Fluoro-DL-phenylalanine, 5-aminovaleric acid, L-ornithine 

monohydrochloride were purchased from Sigma-Aldrich. N-Acetyl-L-cysteine was 

purchased from Fisher chemicals. 4-aminobutyric acid was purchased from Acros 

organics. D-Valine, D-Aspartic acid, D-Leucine, D-Threonine, D-Aspartame and D-

Phenylalanine were purchased from Alfa-Aesar. All chemicals were used as received from 

the manufacturer without additional purification. MilliQ water (18.2 MΩ-cm) was used as 

a solvent unless otherwise specified.  
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Sample Preparation for Primary Screening. For the primary screening, 30µL of 10 mM 

amino acids were mixed with 30µL of 1 mM HAuCl4·3H2O. To this mixture 940µL MilliQ 

water (18.2 MΩ-cm) was added and the final pH of the precursor solution was around ~6. 

Samples were prepared at Banner-MD Anderson Cancer Center, Gilbert, AZ prior to 

radiation. 

 

Irradiation of Samples. A Varian TrueBeam linear accelerator was used to irradiate 

samples at a dose rate of 600 MU/min with a 6MeV photon energy at Banner-MD 

Anderson Cancer Center, Gilbert, AZ. The final delivered dose to samples are mentioned 

in the manuscript and in their respective figure captions. After irradiation the samples were 

transported back to Arizona State University in Tempe, AZ for analysis.  

 

Absorbance Spectroscopy to Evaluate the Primary Screen. UV-Visible absorbance 

profiles of the samples were measured using a BioTek Synergy 2 plate reader. Absorbance 

values from 150 µL of each sample were measured from 300 to 900 nm with a step size of 

10 nm in a 96 well plate. Nanopure water (18.2 MΩcm) was used as a blank in all cases. 

The absorbance value was further offset by subtracting A900. The maximum absorbance 

between 500 and 600nm was used to determine the as a pseudo indicator to characterize 

the yield of nanoparticles.  
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Hydrogel synthesis for radiation experiments. L-(-)-Phenylalanine (25 µL of 25 mM) 

was incubated with gold (III) chloride trihydrate (30 µL of 10 mM) for 15 mins in 

Eppendorf tubes. In the meantime, a clear solution of 1 % w/v agarose is prepared through 

heating. This heated liquid agarose (750 µL) was mixed with the gold-phenylalanine 

mixture. From this resulting mixture, 700 µL was allowed to set in prefabricated circular 

molds (~1.5 cm diameter & ~3 mm thickness). Prior to irradiation, 400 µL of 10 mM L-(-

)-Tryptophan is incubated on the preformed hydrogel to diffuse into the gel for five mins. 

These transparent hydrogel discs were used for subsequent irradiation studies. Glutathione 

(700 µL of 5 mM) was incubated on the irradiated gels after 10mins upon completion of 

radiation. Absorbance was recorded 1 hour after radiation exposure. 

 

Irradiation of Hydrogels. A Varian Truebeam linear accelerator radiation therapy system 

at the Banner M.D. Anderson Cancer Center in Gilbert, AZ delivering a 6 MeV photon 

beam was used for irradiation at a dose rate of 600 MU/min. The samples were irradiated 

with doses of 1, 2, 3, 4, 5, 6 and 7.5 Gy.  

 

Absorbance Spectroscopy to Evaluate the Hydrogel Nanosensor. A BioTek Synergy 2 

plate reader was used to measure the absorbance profiles for all irradiated and control gel 

samples. Absorbance was recorded between 300 nm and 990 nm with a step size of 10 nm. 

The characteristic plasmonic absorption peak observed at 530 nm is used to identify the 

presence of gold nanoparticles.  
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Generation of Calibration Curve using UV-Visible Absorbance. To generate the 

calibration curve, the absorbance at 530nm is subtracted from the absorbance at 990nm 

from the previously generated UV-Visible spectrum. The final absorbance of the non-

irradiated hydrogel (0Gy) is further offset from itself and the absorbance of the irradiated 

hydrogels. These final absorbance values are plotted as a function of radiation dose and is 

used to generate the calibration curve.  

 

NMR Spectroscopy. NMR samples were prepared by dissolving the corresponding amino 

acid (L-alanine, L-phenylalanine, D-phenylalanine) and Gold (III) chloride trihydrate salt 

in 1:1 DMSO-D6 and D2O mixture. Final concentration of the pure amino acid solution 

used for 1H NMR spectra was 0.78 mM. The final concentration used for 1H NMR for the 

mixture of amino acid and chloroauric acid was 0.78 mM and 0.37 mM respectively. A 

Varian 500 MHz NMR instrument was employed in these studies to collect 1H NMR data.  

 

Sample preparation for Transmission Electron Microscopy. 1,2-propane diol 

(chaotropic agent) was added to the hydrogels and dissolved by heating to 80 °C for 15 

minutes. This mixture was centrifuged at 4000 rpm for 10 mins. The supernatant was 

removed and was further dispersed in MilliQ water. The transmission electron microscopy 

samples were prepared by drop casting this solution onto the TEM grids. The samples were 

air dried overnight and visualized using a CM200-FEG instrument operating at 200 kV in 

the LeRoy Eyring Center for Solid State Sciences at ASU. 
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Cell culture using BJ5ta Human fibroblast cell line. BJ5ta human fibroblast cells were 

used to assess the toxicity levels of the irradiated and non-irradiated gel sensors. Cells were 

sub-cultured in DMEM containing 10% fetal calf serum from a cryo-stock, until they were 

at least 70%–80% confluent. 3 mL trypsin was added to detach the cells from the surface 

of the culture flask. Culture flasks were further incubated at 37 °C for five minutes and cell 

detachment was verified under the microscope. Once the cells were detached, 7 mL DMEM 

was added to dilute trypsin and were transferred to a sterile centrifuge tube. The tube was 

centrifuged at 800 rpm for 5 minutes followed by dilution with culture medium to attain a 

desired cell density. Quantification was achieved using a hemocytometer. 24-well plates 

containing non-irradiated and irradiated (at 5 Gy) gels were seeded with above cell 

suspension, resulting in 100,000 cells in each well. Pure agarose gels were used as a control 

for determining the toxicity of our nanosensor. The plates with cells were incubated at 37 

°C in a humidified atmosphere (5% CO2/95% O2) for 24 hours. After 24 hours standard 

procedures for live-dead assay and XTT assay were followed to quantify the cytotoxicity.  

 

Evaluation of Hydrogel Toxicity Using Live-Dead Assay. 5µL calcein and 20µL 

ethidium homodimer-1 to 10ml of cell culture media. After 24 hours of cell seeding, the 

cell culture media from the well plate is removed and replaced with 1ml of the Live/Dead 

assay mixture. The cells were incubated for 1 hour.  After staining, samples were washed 

and observed using Evos FL Auto Live Cell Imaging System.  

.  
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 Evaluation of Hydrogel Toxicity Using XTT Assay. After 24 hours, the cells were 

transferred to a sterile tube. The tube was centrifuged at 800 rpm for 5 minutes and the 

culture medium was removed and replaced with serum free media. XTT labeling mixture 

was added to the serum free media and incubated for 4 hours prior to analysis. The 

absorbance at 475 and 660nm was determined using a plate reader (Bio-Tek Synergy 2). 

The value of A475 – A660 was evaluated. The relative cell viability was calculated from 

test/control x 100% where test and control are the offset absorbance values of the agarose 

hydrogel containing the gold-amino acid mixture and pure agarose hydrogel.    

 

Gel Dosimetry in an Anthropomorphic Thorax Phantom. All phantom experiments 

were carried out at the Banner M.D. Anderson Cancer Center in Gilbert, AZ. A CIRS tissue 

equivalent thorax phantom was aligned on a Philips RT CT table with aligning lasers. The 

hydrogel nanosensor is positioned in the middle of the radiation field and a known dose of 

3 Gy dose was delivered to the skin of the phantom. The change in color post-irradiation 

is evaluated using UV-Visible spectroscopy. The final absorbance values are calculated as 

previously mentioned and the radiation delivered is predicted using the calibration curve.  

 

Institutional Animal Care and Use Committee (IACUC). Prior to canine experiments, 

the experimental protocol that would be performed on the canine patient was documented 

and approved by ASU’s IACUC. A consent form approved by ASU’s IACUC was signed 

by the pet owner prior to any experiment conducted.  
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Canine experiments. A canine patient being treated using radiotherapy was selected in the 

pilot study. A fractional dose of 3 Gy was delivered each day to the region being treated. 

A 1.5cm bolus is placed on top of the patient. Our gel nanosensor was placed on top of the 

bolus and exposed to the prescribed ionizing radiation dose from a Varian Trilogy linear 

accelerator radiation therapy system. All canine experiments were performed at the 

Arizona Veterinary Oncology Center in Gilbert, AZ (approx. 14 miles distance from ASU) 

with owner’s approval. Similar to the placement of the hydrogel nanosensor, a 

NanoDOT™ was also placed on top of the bolus. The NanoDOT™ was used to evaluate 

the performance of our hydrogel sensor. The change in color post-irradiation is evaluated 

using UV-Visible spectroscopy. The final absorbance values are calculated as previously 

mentioned and the radiation delivered is predicted using the calibration curve.  

 

Image Processing. All images were acquired using an Iphone 7S plus camera under 

suitable lighting and automatic settings. The images were cropped to the desired size for 

representation. No further editing was carried out on the pictures reported here. 

 

Statistical Analyses. All irradiation experiments were carried out a minimum of three 

times independently unless otherwise mentioned. The results are expressed as mean ± 

standard deviation. All the calculations were carried out using Microsoft Excel 2016. 

8.3 Results and Discussion 
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Facile radiation sensors are required to ensure the accurate delivery of high radiation dose 

to the target region whilst minimizing radiation to the healthy surrounding tissue. Here, we 

show the development of a biocompatible plasmonic hydrogel based nanosensor as a 

simple colorimetric reporter for therapeutic levels of ionizing radiation. Prior to the 

development of the hydrogel nanosensor, a library of 32 amino acids and their derivatives 

were screened for their gold nanoparticle formation efficacy in order to identify the lead 

amino acid which would then be later used to develop the nanosensor. The preliminary 

screen was carried out with HAuCl4: amino acid (Molar ratio of 1:10) at a radiation dose 

325 Gy (Figure 8.1). In the current system reduction of Au3+
 ions to Au0 occurs through a 

free radical mechanism. Ionizing radiation (X-Rays) splits water into three major free 

radical components namely H., OH. and e-
aq. These short-lived solvated electrons and 

hydrogen free radicals facilitate the reduction processes to Au0. Successful reduction to 

Au0 followed by nucleation and growth leads to mature nanoparticles stabilized by amino 

acids. Upon exposure to irradiation, the nanoparticle yields were measured 2 hours and 6 

hours post irradiation and were compared with control experiments (0Gy) to establish 

increased nanoparticle formation.  
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Among the screened amino acids, tryptophan readily reduces chloroaurate ions to gold 

nanoparticles in the absence of irradiation. The reduction propensity of tryptophan involves 

oxidation of the indole moiety leading to spontaneous reduction of metal ions280. A 

significant increase in absorbance is not observed upon incidence of ionizing radiation 

suggesting that the bulk of the reduction is carried out by tryptophan. Cysteine, methionine, 

N-acetyl cysteine and glutathione form an important class of amino acids containing a thiol 

or thioether functional group in the side chain281. Choloroaurate ions being soft lewis acids 

show high affinity towards ligands containing a sulfur donor atom. This allows for the 

Figure 8.1 Maximum absorbance proportional to concentration of gold nanoparticles 
following irradiation of 325 Gy measured at discrete time intervals. Black: 0 Gy and 2 
hours post irradiation, Black diagonal stripes: 325 Gy and 2 hours post irradiation, Dark 
Yellow: 0 Gy and 6 hours post irradiation, Dark Yellow Horizontal stripes 325 Gy and 6 
hours post irradiation.   
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formation of a stable metal complex. Histidine similarly forms a stable metal complex 

through their α-amino nitrogen282. We expect the complexation of these amino acids with 

choloraurate ions to decrease the redox potential making the metallo-complex inactive 

towards the radiolysis generated reducing species112. Positively charged amino acids 

(arginine and lysine) do not exhibit nanoparticle formation tendency in the presence of 

ionizing radiation. We hypothesize that these positively charged ligands do not effectively 

chelate the metal center due to charge repulsion and a certain degree of complexation is 

required to initiate the reduction process in the presence of ionizing radiation112.  

 

Radiotherapy involves complex treatment plans to deliver curative levels of radiation to 

the target (2-5Gy) and simultaneously reduce radiation induced toxicity to healthy tissues. 

The potential benefit of these are improvement in survival rates and quality of life post 

treatment. Poor treatment planning and delivery could lead to an opposite adverse outcome. 

There is a need for a robust dose verification system, which can be fabricated in house 

requiring minimal training to operate. Towards this effort, we propose a sensor that changes 

color upon exposure to ionizing radiation and the intensity of color developed will 

qualitatively and quantitatively report for the intensity of radiation dose. Five amino acids 

including phenylalanine, aspartic acid, valine, leucine and threonine were identified as lead 

candidates from the screen and were evaluated for their ability to template gold 

nanoparticles at lower radiation levels (0, 5, 25, 50, 100 and 200Gy) (Figure 8.2 A). 

Among these five lead amino acid candidates, phenylalanine exhibited the highest 

nanoparticle templating efficacy and synergistic effects were not observed when 

phenylalanine was employed in concert with other leads amino acids or as a dipeptide 
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(aspartame) (Figure 8.2 B). Phenylalanine was chosen as the lead candidate to facilitate 

the development of the hydrogel nanosensor. To facilitate handling and application 

concerns associated with liquid sensor systems, phenylalanine was integrated in an agarose 

hydrogel matrix prior to irradiation. Irradiation of the gold alone hydrogel or the gold-

phenylalanine hydrogel with 7.5Gy displayed minimal tendency to form gold nanoparticles 

based on the absence of the characteristic maroon/pink color associated with gold 

nanoparticles (Figure 8.3). To facilitate reduction in the presence of ionizing radiation, 

tryptophan that could reduce and template gold nanoparticles spontaneously was 

supplemented externally to the gold-phenylalanine hydrogel. Interestingly, in the presence 

of phenylalanine, gold nanoparticle formation tendency is hindered when compared to the 

only gold hydrogel control. We deliberate that in such quasi-equilibrium conditions, 

therapeutic levels of ionizing radiation would be sufficient to reduce chloroauric acid to 

gold nanoparticles. Indeed, the appearance of the maroon/pink color associated with gold 

nanoparticles upon exposure to 7.5Gy suggests the use of the hydrogel as a colorimetric 

sensor for detection of therapeutic levels of ionizing radiation. All these results taken 

together, we rationalize the need for Au (III), phenylalanine and tryptophan. 
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A 

 

B 

 

Figure 8.2 (A). Maximum absorbance as a function of radiation dose for the lead amino 
acids. Gold stripes: valine (V), Gold solid: leucine (L), black wavy: phenylalanine (F), 
black brick: aspartic acid (D), black diagonal: threonine. (B). Maximum absorbance as a 
function of radiation dose. Amino acids employed for the study Phenylalanine (F), aspartic 
acid (D), valine (V), leucine (L), threonine and Aspartame (FD). All absorbance 
measurements were carried out 2 hours post irradiation. 
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We carried out experiments to investigate delayed nanoparticle kinetics in the presence of 

phenylalanine. We hypothesized that the electron rich phenyl side chain of phenylalanine 

is involved in electrostatic interaction with the indole moiety of tryptophan, responsible for 

the spontaneous reduction of chloroaurate ions. To evaluate the role of the phenyl ring in 

protecting gold ions against spontaneous reduction in the presence of tryptophan glycine, 

(L)-phenylalanine, (D)-phenylalanine and (L)-alanine were incorporated in an agarose 

matrix along with chloroauric acid. In the presence of chloroauric acid alone and hydrogels 

 

0 Gy 7.5 Gy 

Figure 8.3 Representative images of the agarose hydrogel containing various combinations 
of Au3+, L-Phenylalanine and Tryptophan following irradiation with 0 Gy and 7.5 Gy. Each 
hydrogel has the following combination, Au3+ + Tryptophan (Top Left), Au3+ + 
Phenylalanine (Top Right), Only Au (Bottom Left) and Au3+ + Phenylalanine + Tryptophan 
(Bottom Right). There is a clear visual change in the system containing all three 
components in case of 7.5 Gy and no change in color in the absence of radiation. These 
indicate the requirement of tryptophan for irradiation induced gold nanoparticles 
formation. The Au3+ tryptophan system forms gold nanoparticles spontaneously in the 
absence of radiation (0Gy). 

 



237 

 

containing glycine-chloroauric acid and (L)-alanine-chloroauric acid, tryptophan was 

adequate to reduce Au(III) to nanoparticles within 10 minutes (Figure 8.4). This is can be 

visually observed through the development of a pink color from the previously colorless 

hydrogel. However in the presence of a phenyl ring containing amino acids there is a 

noticeable delay in color development (20 mins). To investigate further the presence of a 

free phenyl ring in the presence of chloroaurate ions, we probed L-phenylalanine and a 

mixture of L-phenylalanine and chloroaurate ions through 1H NMR. (Figure 8.5 A and 

8.5 B). The absence of peak shifts in the side chain phenyl protons coupled with downfield 

shifts in the chiral proton(H-α) and CH2 protons(H-β) indicate minimal interaction between 

the phenyl ring and chloroaurate ions. Similar peak shifts were observed in structurally 

similar molecules to phenylalanine including alanine and D-phenylalanine (Figure 8.5 C-

8.5 F). These results taken together suggest the presence of a free phenyl ring, which could 

potentially inhibit spontaneous nanoparticle formation in the presence of tryptophan. 

Additionally, the gold-phenylalanine-tryptophan hydrogel was incubated with glutathione 

post-irradiation to sequester the unreacted gold ions through the formation of stable-metal 

complex inhibiting spontaneous nanoparticle formation in the absence of radiation (Figure 

8.6, 8.7). This formulation would constitute the plasmonic nanosensor for further 

experiments. 
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0 min  

 

   

2 min 
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30 min 

Figure 8.4 Optical images of agarose hydrogel containing mixtures of chloroauric acid 
with (A) no additive, (B) glycine, (C) alanine, (D) D-phenylalanine, and (E) L-
phenylalanine. After addition of tryptophan, a visual change in color is observed within 4 
minutes in case of hydrogels containing no amino acid and amino acids without a phenyl 
ring i.e. in A, B, C. In the presence of amino acids containing the phenyl ring, a faint visual 
change in color is observed after 20 minutes (D and E).  
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(A) L-Phenylalanine 

(B) Chloroauric acid + L-Phenylalanine 

(D) Chloroauric acid + D-Phenylalanine 

(C) D-Phenylalanine 



240 

 

 

Figure 8.5 1HNMR spectra between pure amino acids and a mixture of amino acid and 
chloroauric acid. 1H NMR spectra of (A) pure (L)-phenylalanine, which indicates a 
multiplet peak at ∂7.22 ppm for phenyl ring protons; a doublet of doublet peak at ∂3.68 

ppm for the chiral proton (H-α) and two doublet of doublet peaks at ∂3.10 ppm & ∂2.89 

ppm for the diastereotopic CH2 protons (H-β), (B) a mixture of L-phenylalanine with 

chloroauric acid, which shows a downfield shift in the chiral proton (H-α) to ∂3.95 ppm as 

a triplet and CH2 proton (H-β) peaks appear at ∂3.11 & ∂3.01 ppm merged with each other. 
Minimal peak shifts is observed for the side chain phenyl ring protons (at ∂7.22 ppm),  (C) 

pure D-phenylalanine, which indicates a multiplet peak at ∂7.22 ppm for phenyl ring 

protons; a doublet of doublet peak at ∂3.66 ppm for the chiral proton (H-α) and two doublet 

of doublet peaks at ∂3.11 ppm & ∂2.89 ppm for the diastereotopic CH2 protons (H-β), (D) 
a mixture of D-phenylalanine with chloroauric acid, which indicates a downfield shift in 

the chiral proton (H-α) to ∂4.01 ppm as a triplet and CH2 proton (H-β) peaks appear at ∂3.11 
& ∂3.04 ppm merged with each other. Minimal peak shifts are observed for the side chain 
phenyl ring protons (at ∂7.23 ppm), (E) pure L-alanine, which indicates a quartet peak at 

∂3.47 ppm for the chiral proton (H-α) and a doublet peak at ∂1.28 ppm for the methyl 
protons,  (F) a mixture of L-alanine with chloroauric acid, which indicates a downfield 

shift in the chiral proton (H-α) and the methyl proton peak to ∂3.78 ppm and ∂1.35 ppm are 
observed respectively. These results indicate preferential interaction to the amine and 
carboxylate moieties and minimal interaction of chloroaurate ions with the phenyl ring. 

 

 

(E) L-Alanine 

(F) Chloroauric acid + L-Alanine 
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Figure 8.6 Absorbance profiles of the hydrogel nanosensor as a function of time (A) 
without and (B) with glutathione incubation. Significant differences were observed after 
one day in all cases indicating the need of glutathione supplementation for inhibiting gold 
nanoparticle growth. (C) Optical images are shown illustrating the increase in intensity of 
the developed maroon color over time in the absence of glutathione incubation (D) No such 
increase in intensity of the radiation-induced maroon color was observed after incubation 
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with glutathione. A two-way paired Student’s t-test was performed and p-values < 0.05, 
considered statistically significant, are denoted with an asterisk (*) on the respective 
column.  

 

 

 

Figure 8.7 Effect of radiation post glutathione addition. Hydrogel nanosensors exposed to 
0Gy and 5Gy were incubated with glutathione prior to an additional exposure of 10Gy. 
The absorbance exposed to a single treatment of radiation (solid gold bars), absorbance 
value after 1hour post irradiation with 10 Gy (bars with horizontal gold stripes) and 
absorbance value after 24 hours post irradiation with 10Gy (bars with diagonal gold 

stripes). Visually, no changes in the hydrogel nanosensor were observed and no 
significant differences were detected when comparing the mean absorbance values 
indicating the sequestering of unreacted gold ions by glutathione inhibiting further gold 
nanoparticle growth. A two-way paired Student’s t-test was performed and p-values < 
0.05, considered statistically significant, are denoted with an asterisk (*) on the respective 
column.  
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The precursor nanosensor hydrogel were irradiated with various levels of therapeutically 

relevant radiation doses. This resulted in the formation of gold nanoparticles rendering a 

pink color to the hydrogel (Figure 8.8). Exposure to ionizing radiation results in the 

formation of free radicals including e-
aq and H. which aids in the reduction of Au(III) to 

Au(0). Further nucleation and growth leads to formation of clusters which over time mature 

and lead to the formation of gold nanoparticles. Gold nanoparticles generated upon 

radiolysis are likely to be stabilized by amino acids in the system. The intensity of color 

developed in the hydrogel is dependent on the concentration of the gold nanoparticles 

which is directly associated with the intensity of the prescribed radiation dose. The increase 

in color is directly proportional to the increased generation of free radicals at higher doses. 

Morphology and size of the nanoparticles generated in the hydrogel sensor irradiated with 

2 and 7.5 Gy were evaluated through transmission electron microscopy (Figure 8.9). 

Quasi-spherical nanoparticles were observed in both the 2 and 7.5 Gy condition with an 

average size of 34.2 ± 9.7 nm and 21.6 ± 3.6 nm correspondingly. Interestingly we also 

noticed the presence of smaller nanoparticles in the non-irradiated control (1.8 ± 1.5 nm). 

The small size of nanoparticles is in agreement with the absence of a plasmon peak in the 

absorbance spectrum266.  
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    4 Gy               5 Gy              6 Gy           7.5 Gy 

Figure 8.8 Optical images of hydrogels irradiated radiation doses used routinely in clinical 
fractionated radiotherapy. The radiation dose corresponding to the visual color change is 
indicated below each image in gray (Gy).  
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The change in color of the irradiated hydrogels was visible to the naked eye as early as 10 

minutes while higher levels of radiation (4-7.5 Gy) required only <5 mins.  This increase 

in color in the irradiated hydrogels were quantified based on a simple, bench top UV-vis 

spectrophotometer (Figure 8.10 A). The earliest time point where we quantified the change 

in color was 1 hr. A typical spectral peak between 500 nm and 600 nm is used as an index 

to demonstrate the existence of gold nanoparticles. To further quantify the nanoparticle 

concentration with different radiation dose levels, the peak absorbance at 530 nm was 

plotted as a function of radiation dose (Figure 8.10 B). A linear calibration curve was 

obtained between 1-6 Gy. These radiation levels are employed during conventional and 

hypofractionated radiation therapy. Post-irradiation stability over a period of 7 days was 

monitored under natural lighting and at room temperature (Figure 8.11). No significant 

differences in absorbance were observed after a week demonstrating post-irradiation 

stability unlike conventional dosimeters where fading of the output over time and during 

readout is observed.  

 

Figure 8.9 Representative transmission electron microscopy (TEM) images of gold 
nanoparticles formed at (A) 0 Gy (left, scale bar of 5 nm), (B) 2 Gy (middle, scale bar of 
50 nm) and (C) 7.5 Gy (right, scale bar of 100 nm). The average nanoparticle size varies 
from 1.8 ± 1.5 for 0 Gy, 34.2 ± 9.7 for 2 Gy and 21.6 ± 3.6 for 7.5 Gy. 
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The efficacy of our sensor was determined by delivering a dose of 5 Gy (not used to 

generate the calibration curve). The color change was quantified and based on the 

calibration curve, the predicted dose was 5.32 ± 0.24 Gy with an error percentage of 6.4%. 

With the increase in complexity of radiation delivery techniques, localized radiation 
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Figure 8.10 (A) UV-Vis absorption spectra of the control (0 Gy) gels and gels irradiated 
with different doses of X-ray radiation. (B) Maximum absorbance vs. radiation dose which 
serves as the calibration curve for the sensor at various therapeutic doses of radiation
between 0 Gy and 6 Gy. 

 

Figure 8.11 Post irradiation stability of the hydrogel sensor irradiated with 5 Gy. No 
significant changes in the absorbance profile observed for at least a week. Insets display 
demonstrate no significant visual change over time corroborating the stability of the 
absorbance profile.   
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injuries are common and the skin is the first organ affected due to ionizing radiation. There 

is a need to monitor the dose prescribed to the skin. To demonstrate the efficacy of our 

biocompatible hydrogel nanosensor, we placed the hydrogel nanosensor disc on the surface 

of an anthropomorphic phantom mimicking the thorax of an adult human (Figure 8.12). A 

prescribed dose of 3 Gy was delivered the skin surface and the change in color was 

recorded. Based on the calibration curve, our nanosensor hydrogel discs predicted a dose 

of 3.03 ± 0.47 Gy with an error percentage of 1%.   

 

 

 

 

 

 

 

 

 

To demonstrate feasibility and applicability for potential clinical use, we used a live canine 

patient as a model to verify the efficacy of the sensor. Ahead of the use on live canine 

patients, we ensured the biocompatibility of the sensor by carrying out XTT and live dead 

assay (Figure 8.13). We found no change in cell viability when compared to the pure 

Figure 8.12 (A) Digital image of the hydrogel sensor (positioned in the intersection of the 
green lasers) on top of an anthropomorphic thorax phantom. The phantom was treated with 
a dose of 3 Gy, Optical image of the hydrogel sensor on the surface of the phantom prior 
to irradiation (0 Gy) and post irradiation. 
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agarose hydrogel. The use of low concentration gold salt and biocompatible templating 

agents provide strong support to the biocompatible nature of the functional components of 

the hydrogel nanosensor. We further investigated the translational capability of our 

biocompatible hydrogel nanosensor to verify the dose delivered to a canine patient. The 

prescribed surface dose to the canine was 1.34 Gy (Figure 18). Hydrogel nanosensor discs 

were placed on the surface of the bolus to record the surface dose. Upon execution of the 

treatment plan the hydrogel discs were removed and the absorbance relating to the distinct 

color change was recorded. Based on the previously generated calibration curve, the dose 

was estimated to be 1.25 ± 0.34 Gy. Clinically prevalent nanoDot™ reported a prescribed 

dose of 1.29 ± 0.02 Gy with an error percentage of 3.7%. Other clinical dosimeters like 

TLDs have a 5% error which is comparable to the 6.7% error of the hydrogel nanosensor. 

NanoDOT™ and the TLDs are prone to loss of readout signal and more cumbersome to 

operate making the hydrogel nanosensor an easier adaption into the clinic. As far we know, 

this is the first reported molecular and nanoscale sensor that has been used to verify the 

dose delivered to an actual patient. The ease of production, operation and measurement of 

its distinct color change along with its radiation dose resolution, indicates tremendous 

potential of the nanosensor to be widely used in the clinic. 
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Pure agarose Sensor with 0 Gy Sensor with 5 Gy 

100% 135 ± 15 % 133 ± 8 % 

Figure 8.13 Live/Dead® cell viability assay showing live BJ5ta human fibroblast cell line 
stained with calcein-AM (green) and dead cells with EthD-1(red). Cells were seeded on 
the 0 Gy and  5 Gy hydrogel post irradiation (≈2hours). Absence of significant dead cells 
when compared to the (A) agarose control indicate the biocompatibility of the functional 
components of the sensor. All images have scale bar of 400 µm.  Cell viability was 
quantified using XTT and no significant changes were observed. 
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8.4 Conclusions 

To our knowledge, this is the first demonstration of a colorimetric biocompatible molecular 

and nanoscale radiation sensor. The formation of gold nanoparticles in response to ionizing 

radiation is qualitatively visualized through a distinct color change and quantitatively 

measured using a simple UV-vis spectrophotometer. The developed sensor demonstrated 

the ability to detect therapeutic levels of ionizing radiation and present a linear response 

between 1-6 Gy commonly used during conventional and hypofractionated radiotherapy. 

The nanosensor was accurately able to predict the prescribed radiation dose to an 

anthropomorphic phantom and a live canine patient. The efficacy of the hydrogel 

nanosensor was comparable to clinical dosimeters. The fabrication of a hydrogel-based 

sensor would facilitate adaptation into various shapes, which could potentially result in 

personalized dosimetry based on anatomical variation on the patient. We anticipate that 

this new sensor could accelerate and lead to development of next generation radiation 

sensors assisting physicists and clinicians in providing valuable information regarding the 

prescribed dose to the patient. 

  

Figure 8.14 (A). Representative image of the experimental setup for the radiotherapy 
treatment of canine patient, (B). Images of NanodotTM OSLD and the hydrogel sensor 
placed on the canine patient (top right) show the gel prior to irradiation (0 Gy) and post 
irradiation with 1.34 Gy (bottom right). The change in color was quantified using UV-Vis 
spectrophotometer and the gel nanosensor calibration predicted a dose of 1.25 ± 0.34 Gy, 
which was an error of 6.7% compared to the planned dose. 
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Chapter 9 CONCLUSION AND FUTURE PERSPECTIVES 

 

9.1 Conclusion  

 

The purpose of the research conducted upto this point has revolved around the development 

of a novel plasmonic nanosensor that can be effectively be employed in the clinic to 

qualitatively and quantitatively predict the radiation dose delivered to patients undergoing 

radiotherapy. To this end we have: 1) developed the first gold nanoparticle based sensor to 

detect therapeutic levels of ionizing radiation, 2) to enable safe handling, the second 

generation gold nanoparticle based sensor was developed in a biocompatible hydrogel, 3) 

the applicability to detect high energy photons, protons and electrons was demonstrated, 4) 

improved the capability of the hydrogel sensor to qualitatively and quantitively predict 

dose in a two-dimensional space, 5) Finally, to reduce the toxicity of the hydrogel 

nanosensor, a completely novel amino acid based nanosensor was developed. The 

following framework represents the work that I believe is required for the evolution in the 

technology.  
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9.2 Future Perspectives  

Future Direction 1. A Proof of Concept Nanotechnology Based Gel Dosimeter for In 

Vivo Use in Brachytherapy 

 

Introduction  

Brachytherapy is a procedure that involves the use of radioactive isotopes to treat cancer.283 

The radioactive source is generally placed temporarily or permanently inside the patient to 

induce radiation damage to cancerous cells while maintaining the viability of healthy 

cells.284 The current technology employed is to use 3D imaging-based dose calculations to 

predict the dose delivered to organs at risk(OAR)285 However, organ movement between 

imaging and treatment and dose calculation uncertainties result in unpredictability 

requiring the need for in vivo dosimetry.285 The motivation will be to assess the radiation 

dose delivered to organs at risk (OAR) by direct measurements using the hydrogel 

nanosensor as described previously. As a proof of concept, the capability of the hydrogel 

nanosensor in detecting and predicting radiation dose delivered through a radioactive 

isotope, an 192Ir source is shown.  

Experimental  

 

Materials. Molecular biology grade agarose, L-ascorbic acid (AA), gold(III) chloride 

trihydrate (HAuCl4.3H2O) and myristyltrimethylammonium bromide(C14TAB)(≥99%) 

were acquired from Sigma-Aldrich. The chemicals were employed in the study with no 

further processing or purification. The solvent employed in the study was MilliQ water 

(18.2 MΩ.cm).  
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Hydrogel Nanosensor Preparation for Valencia Applicator. To fabricate a hydrogel 

nanosensor a petri dish with a glass bottom mold with a diameter of ≈1 cm and thickness 

of 0.5 mm is used. Briefly, 600 µL of a 50 mM stock solution of C14TAB was prepared 

and mixed with 30 µL of 10 mM HAuCl4 in a 1.7 mL microcentrifuge tubes. From this 

mixture, 100 µL was removed prior to the addition of heated 2% (w/v) liquid molecular 

grade agarose (500 µL). From this mixture, 500 µL was removed and poured into the 

molds. The excess liquid was removed from the sides before the setting of the gel (10-

15secs). The gels were then incubated in 10 mM Ascorbic Acid (500µL) for 1 minute on 

the hydrogel nanosensor resulting in translucent hydrogels.  

 

X-ray irradiation. Experiments for irradiations related to the Valencia applicator were 

conducted at the Banner-MD Anderson Cancer Center in Gilbert. The radiation source 

employed was an 192Ir source.  

 

Absorbance Spectroscopy. The absorbance spectra for the non-irradiated and the 

irradiated hydrogel nanosensor were obtained using a BioTek Synergy™ 2 plate reader. 

Absorbance values were measured from 300 nm to 990 nm with a step size of 10 nm. 

MilliQ water was used as blank for all experiments. To normalize the absorbance spectra 

for further analysis, the absorbance at 990nm was subtracted from the absorbance of all 

wavelengths. The maximum absorbance between 500 and 600nm wavelength is used as a 

measure of intensity in the change in color. To ensure that the 0 Gy absorbance is 0, the 

absorbance value corresponding to 0 Gy is subtracted from all the irradiated absorbance 
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values. This is plotted as a function of radiation dose to generate the calibration curve which 

is used to determine unknown radiation doses. 

 

Image Acquisition. All images were acquired using an iPhone 8. Furthermore, images 

were cropped to the required size and no further editing or post processing of the images 

was carried out.  

 

Statistical Analysis. All experiments were performed in quintuples unless otherwise 

specified. Data analysis for all independent experiments was performed using Microsoft 

Excel. Data reported in the manuscript are represented as mean ± one standard deviation. 

 

RESULTS AND DISCUSSION 

 

High dose rate brachytherapy is operated widely in the treatment of skin lesions. Several 

applicator designs including the Valencia applicator have been introduced in order to 

deliver a homogenous absorbed radiation dose to the cancerous lesion and avoid radiation 

leakage to the healthy tissue.286 As a proof of concept, we have developed an accessory to 

the Valencia applicator that could be mounted instead of the cap and could potentially be 

used to monitor the delivered radiation dose (Figure 1). Irradiation of the hydrogel 

nanosensor with different doses of ionizing radiation with a 192Ir source resulted in the 

formation of gold nanoparticles rendering a change in color from translucent to 

pink/maroon. The intensity of color developed is dependent on the yield of gold 

nanoparticles, which in turn is directly proportional to the intensity of ionizing radiation. 
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Increasing the intensity of ionizing radiation results in an increased generation of reducing 

free radical species which can further facilitate additional reduction of Au(I) to Au(0). The 

change in color in the hydrogel nanosensor after exposure to ionizing radiation was visible 

as early as 10 minutes. The change in color was further quantified using UV-Visible 

spectroscopy 1-hour post-irradiation. A characteristic spectral peak between 500 and 

600nm is observed for all the irradiated hydrogel nanosensors. The maximum absorbance 

was plotted as a function of the radiation dose from 0-4 Gy to obtain a linear calibration 

curve with an equation (y= 0.012 x X; y = maximum absorbance between 500-600nm and 

X = radiation dose in Gy). An known radiation dose of 2.25Gy (not employed in generating 

the calibration curve) is employed to determine the efficacy of the hydrogel nanosensor in 

predicting the radiation dose. The use of the calibration curve resulted in a prediction of 

1.96 ± 0.23Gy for a dose of 2.25 Gy.  

 

In the future, the effect of various dose rates due to radioactive decay of the isotope on the 

signal (absorbance) of the hydrogel nanosensor has to be verified. The technology can be 

extended to other applicators (Leipzig) and other applicators designed to treat other organs 

of interest (prostate).    
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Figure 9.1 Schematic illustrating the fabrication technique and potential applicability of 
the Valencia applicator.  
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Figure 9.2 Images of the hydrogel nanosensor following exposure to various levels of 
ionizing radiation from an 192Ir source. Images were acquired 1-hour post-irradiation. 
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Figure 9.3 (A) Plot of absorbance as a function of radiation dose and (B) Maximum 
absorbance response between 500 and 600nm versus radiation dose 1-hour post-irradiation.  
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Future Direction 2. Three-dimensional radiation dosimetry using plasmonic hydrogel 

nanosensors 

 

Introduction 

 

Modern radiotherapy involves delivery of high levels of ionizing radiation to the target 

volume while simultaneously minimizing the dose delivered to the surrounding healthy 

tissue287. With the introduction of sophisticated treatment delivery modalities like intensity 

modulated radiation therapy(IMRT), volumetrically modulated arc therapy(VMAT) and 

stereotactic radiosurgery (SRS), control over the total dose distributed in an ideal three-

dimensional (3D) shape is conceivable288. These treatment techniques involve delivery of 

high levels of ionizing radiation with steep dose gradients near the target volume making 

them highly susceptible to errors289. In addition, any deviation during the complex 

movement of the multileaf collimator and gantry will affect the accuracy of the delivered 

treatment plan289. To accommodate these new treatment modalities, quality assurance of 

the patient’s treatment plan is recommended, and verification of the treatment plan is 

essential prior to treating patients. There is still a pressing need for a practical 3D dosimetry 

system, convenient for clinical use, and with the accuracy and resolution to enable 

comprehensive verification of the complex dose distributions typical of modern radiation 

therapy.  

 

To aid in the measurement of 3D dose distributions, various 3D gels have been fabricated 

as a potential solution to this challenge. Fricke ferrous sulfate dosimeters are easy to 

fabricate and use but suffer from poor post-irradiation stability post due to ion diffusion 
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which eventually erases topographical dose profiles290. Polymer gel dosimetry were 

developed to overcome post-irradiation instability but requires upwards of 40 hours from 

fabrication to imaging making routine employment labor intensive and time-consuming291. 

The fabrication and the diffusion concerns were overcome with the development of solid 

radiochromic dosimeters292. These dosimeters are easy to handle and mold into various 

shapes depending on the application. But current dyes incorporated within the solid 

radiochromic dosimeters are prone to post-irradiation photo bleaching293. These limitations 

within existing systems warrant further development of a simple yet robust 3D dosimeters 

that can potentially assist physicists and clinicians in generating safe and effective 

treatment plans to improve patient safety and post quality of life.  

 

Nanotechnology-enabled sensors provide new solutions towards detection of ionizing 

radiation with increased selectivity and sensitivity224. We have previously developed a 

colorimetric sensor wherein ionizing radiation facilitates the generation of gold 

nanoparticles from its ionic precursor solutions. To achieve easy handling and to overcome 

any application concerns, we incorporated the precursor solution in agarose hydrogels. 

Furthermore, we illustrate the robust performance of the hydrogel nanosensor to 

qualitatively and quantitatively determine topographical radiation dose profiles and its 

clinical translation by demonstrating its efficacy in determining radiation dose delivered to 

live canine patients. Here, we illustrate the capability of the hydrogel nanosensor to detect 

radiation dose profiles in 3D which represents a significant step forward in the field of 3D 

dosimetry. To our knowledge, no such nanoscale technologies exist which can detect 

radiation dose profiles in all three dimensions.  
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Experimental  

Materials. Hydrogen tetrachloroaurate trihydrate (HAuCl4.3H2O), 

myristyltrimethylammonium bromide (C14TAB) (99%), L-ascorbic Acid and molecular 

biology grade agarose were acquired from Sigma-Aldrich. No further purification of the 

chemicals was carried out. MilliQ water (18.2 MΩ.cm) was used as solvent for all 

experiments conducted. 

Preparation of three-dimensional (3D) Hydrogel Nanosensor. Stock solutions of 

C14TAB (75mM), Ascorbic acid (10mM) and hydrogen tetrachloroaurate (10mM) was 

prepared. This constitutes Part A of the hydrogel nanosensor mixture. Simultaneously 1% 

w/v agarose was heated in a microwave until a clear solution was observed. This constitutes 

Part B of the hydrogel nanosensor mixture. Equal parts by volume of both Part A and Part 

B are mixed to fabricate the final 3D hydrogel nanosensor. For example, to prepare a 3D 

hydrogel nanosensor with a final volume of 30ml, the volumes of each the individual 

components in part A are determined by the following equation.   

30uL of 10mM HAuCl4 x C + 600uL of 75mM C14TAB x C + 60uL of AA x C = 15 mL 

C = 21.7 

The surfactant is added to hydrogen tetrachloroaurate initially and left undisturbed for 5 

minutes prior to the addition of ascorbic acid. To this mixture the liquid agarose (Part B) 

at 40°C is added and allowed to gel at room temperature prior to irradiation experiments.  
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Irradiation Experiments. Experiments for irradiations were carried out at Banner-MD 

Anderson Cancer Center in Gilbert. The radiation source employed was a 6MV photon 

beam at a dose rate of 100MU per minute.  

 

 Results and Discussion  

Here, we demonstrate the ability of the hydrogel nanosensor to qualitatively and 

quantitatively determine radiation dose delivery in 3D. As a proof of concept, we verified 

the ability of the 3D hydrogel nanosensor to qualitatively retain spatial dose information 

post-irradiation. 30mL of the hydrogel nanosensor was allowed in set in 50 ml centrifuge 

tubes prior to irradiation (Figure 1). A clear translucent hydrogel is observed when the 

tubes are not exposed to radiation and remains stable over the course of 3 days. Exposing 

the tubes to 2 and 5Gy results in the hydrogel nanosensor displaying colors with varying 

intensity of maroon/pink. This increment in color is likely due to the increase in the number 

of free radicals with increasing radiation dose resulting in a higher yield of nanoparticles. 

To visualize post irradiation diffusion and/or photo bleaching, one of the tubes was 

irradiated with both 2 and 5Gy transversely with minimal diffusion or post-irradiation 

photobleaching observed over time. To ensure no diffusion arises over time along the 

sagittal plane, one of the tubes was exposed to a 5 Gy dose. Similar stability profile is 

observed indicating post-irradiation stability of the hydrogel nanosensor.   

 

In the future, the change in color in these three-dimensional hydrogel nanosensors will be 

required to be quantifiable. We propose the use of an Optical Computed Tomography 
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(OCT) scanner. This technique will involve the use of data obtained from the transmitted 

and attenuated light beams to reconstruct a volumetric model of the irradiated regions. The 

development of 3D dosimeters which are easy to fabricate and use simple optical scanning 

measurements would better assist clinicians during patient treatment to determine the 

effectiveness of the treatment plan and ensure patient safety. 
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t = 2 hours      t = 1 day 

 

t = 3 days   

 

Figure 9.4 Digital images of hydrogel nanosensor exposed to four different radiation 
conditions. From Left. 0 Gy (No Radiation Control), Half the hydrogel nanosensor exposed 
to 2 Gy horizontally, Half the hydrogel nanosensor exposed to 5 Gy horizontally, Top one 
third exposed to 2 Gy and the bottom one third exposed to 5 Gy while the middle section 
remains not exposed to radiation and 5 Gy radiation delivered vertically. These images 
illustrate minimal post-irradiation fadeout diffusion over the course of 72 hours.  
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