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ABSTRACT

This thesis presents a family of adaptive curvature methods for gradient-based stochas-

tic optimization. In particular, a general algorithmic framework is introduced along

with a practical implementation that yields an efficient, adaptive curvature gradient

descent algorithm. To this end, a theoretical and practical link between curvature

matrix estimation and shrinkage methods for covariance matrices is established. The

use of shrinkage improves estimation accuracy of the curvature matrix when data

samples are scarce. This thesis also introduce several insights that result in data- and

computation-efficient update equations. Empirical results suggest that the proposed

method compares favorably with existing second-order techniques based on the Fisher

or Gauss-Newton and with adaptive stochastic gradient descent methods on both

supervised and reinforcement learning tasks.
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Chapter 1

INTRODUCTION

Adaptive gradient descent methods have a long tradition in machine learning (Becker

et al., 1988; Duchi et al., 2011). The basic principle of these methods is to leverage

information from previous iterations of the stochastic optimization process, e.g., the

last t estimates of the gradient, to improve the convergence rate. Adam (Kingma and

Ba, 2014), a particularly popular choice for training deep neural networks (Goodfellow

et al., 2016), is an adaptive gradient descent method that has been shown to yield

superior convergence performance in practice, while also having a number of other

beneficial properties, e.g., intuitively interpretable hyper-parameters, the ability to

cope with online and non-stationary settings, invariability to gradient scaling, and its

applicability to problems with noisy and sparse gradients.

To date, adaptive methods such as Adam or Adagrad (Duchi et al., 2011) mainly

focus on estimating first-order gradients in Euclidean space. An appealing extension

is to estimate the local curvature of the objective function. Examples of curvatures

estimates include the Fisher matrix, F , and the Gauss-Newton matrix, G. The Fisher

defines the transformation from the Euclidean gradient to the natural gradient (Amari,

1998), which is invariant to smooth and invertible reparameterization of a probabilistic

model and is therefore less susceptible to issues regarding scaling of feature dimensions

or parameterizations of a task. The Gauss-Newton is an approximation to the Hessian

matrix and, while equivalent to the Fisher for probabilistic models, is directly applicable

to a wider range of objective functions. In practice, second-order descent methods

often outperform their first-order alternatives. Successful application domains include

reinforcement learning (Kakade, 2002; Peters and Schaal, 2008; Schulman et al., 2015;
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Rajeswaran et al., 2017), blind source separation (Zhang et al., 1999), low-rank matrix

factorization (Buchanan and Fitzgibbon, 2005), and supervised training of deep neural

networks (Pascanu and Bengio, 2013).

In this paper, we investigate whether second-order gradient approaches benefit

from adaptive schemes for the curvature matrix. First, we discuss a general view

of adaptive curvature and discuss interesting theoretical and practical insights and

challenges thereof. Then, we introduce a practical algorithmic framework for data-

and computation-efficient adaptive curvature optimization method, called AdaCurv.

AdaCurv combines the benefits of adaptive methods, such as the ability to handle

sparse gradients, with the benefits of second-order methods, such as invariance to the

model parameterization. AdaCurv is applicable to any optimization problem with a

differentiable model. The main contributions of this paper are:

1. A unified, general view of adaptive curvature gradient descent algorithms and

practical challenges.

2. A practical, efficient algorithmic framework from which a number of different

adaptive natural gradient descent algorithms can be instantiated. The examined

instances compare favorably with existing state-of-the-art second-order and

adaptive approaches.

3. Approximate update rules for adaptive curvature gradient descent that are

computationally efficient with cost equal to a standard, conjugate gradient–

based, Hessian-free-style method.

4. A data-efficient approach to the estimation of curvature matrices that establishes

novel theoretical and practical links to shrinkage of covariance matrices.

We lay the foundations for our discussion of adaptive curvature in Chapter 2,

highlighting theoretical and practical insights. The main contributions of this thesis are

2



in Chapter 3, which describes the AdaCurv framework. The convergence guarantees

for a particular instantiation of our method are described in Chapter 3.6. Chapters 4.1

and 4.2 cover important computational issues related to Hessian-free style optimization

and determining the shrinkage factor. Chapter 5 provides experimental results on a

number of machine learning tasks. Finally, we discuss prior work in Chapter 6.
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Chapter 2

A GENERAL VIEW OF ADAPTIVE CURVATURE

To derive a general version of adaptive curvature gradient descent, we start with

Adam as a representative sample of adaptive methods and introduce abstractions

that allow for a variety of alternative instantiations. Adam maintains an exponential

moving average of the mean and variance of the gradient estimate and adjusts the step

size per parameter based on the variance. An idealized adaptive curvature gradient

algorithm based on the Adam methodology may result in an update step of the form:

mt = β1mt−1 + (1− β1)ĝt

Bt(θt) ≈ ∇2
θft(θt)

Ct = β2Ct−1 + (1− β2)Bt(θt)

θt = θt−1 − ηC−1t mt

where β1 and β2 are scalars in [0, 1), gt ∈ Rp is the gradient, Bt ∈ Rp×p is an

approximation of the local curvature of the objective, such as the Hessian, Gauss-

Newton, or Fisher, and θt ∈ Rp is the parameter vector. The vector mt and matrix

Ct represent the averaged estimates of the gradient and curvature matrix. When clear

we omit the explicit dependence of Bt on θt. A concrete instantiation based on the

Fisher matrix would define the curvature matrix to be Bt(θt) = E[∇θt log p(x,y |

θt)(∇θ log p(x,y | θ))>], while an instantiation based on the Gauss-Newton matrix

would employ, Bt(θt) = ∇θtf(θt)
>He∇θtf(θt), where He is the Hessian of the error

function.

Reddi et al. (2018) observe that the core component that distinguishes adaptive

gradient descent algorithms is the averaging function. Changing the averaging function
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from an exponential moving average to a different update scheme yields algorithms

that are similar to other previously reported adaptive gradient descent methods, e.g.,

Adagrad by Duchi et al. (2011). To extend the definition in Reddi et al. (2018) towards

a more general framework for adaptive curvature gradients, we introduce two abstract

functions φt and ψt, which represent the averaging functions for the gradient mean

and curvature matrix, respectively. These functions take the history of gradients and

curvature matrices up to time t and return a composite estimate, e.g., the average, of

the gradient and curvature matrix through the current time step.

Our general algorithm (Algorithm 1) takes the gradient gt and the curvature

matrix Bt at each time step, generates composite estimates of the gradient mt and

the curvature matrix Ct by applying the averaging functions φ and ψ, and produces a

descent direction from the calculated statistics. While a variety of different averaging

functions can be found in the literature, all of which can be considered as a choice for

φ and ψ, we will focus on three variants. The subsequent definitions describe modified,

“curvature” versions of φ and ψ. The naming follows the original algorithms in which

these averaging functions have been introduced.

a.) Adagrad (Duchi et al., 2011) The averaging functions for a curvature

Adagrad version can be expressed as:

φt(g1, . . . , gt) = gt,

ψt(B1, . . . ,Bt) =

∑t
i=1Bi

t
.

b.) Adam (Kingma and Ba, 2014) The averaging functions for a curvature Adam

version can be expressed as:

φt(g1, . . . , gt) = (1− β1)
t∑
i=1

βt−i1 gi,

ψt(B1, . . . ,Bt) = (1− β2)
t∑
i=1

βt−i2 Bi.
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Algorithm 1 A generalized adaptive curvature gradient descent algorithm. Parame-

ters φ and ψ represent averaging functions.

Require: η: step size

Require: φt: averaging function for gradient

Require: ψt: averaging function for curvature matrix

Require: f(θ): stochastic objective with parameters θ

1: while not converged do

2: t← t+ 1

3: gt ← ∇θft(θt−1)

4: mt ← φt(g1, . . . , gt)

5: Bt(θt) ≈ ∇2
θft(θt)

6: Ct ← ψt(B1, . . . ,Bt)

7: θt ← θt−1 − ηC−1t mt

8: end while

9: return θt

This update can also be expressed as a recursion where mt = β1mt−1 + (1 − βt)gt

and Ct = β2Ct−1 + (1− β2)Bt.

c.) AMSGrad (Reddi et al., 2018) The averaging functions for a curvature

AMSGrad version are expressed most easily as a recursion since a max function is

involved. In this case, mt = β1mt−1 + (1− βt)gt and with Ĉt = β2Ct−1 + (1− β2)Bt,

Ct =


Ĉt if ρ(Ĉt) > ρ(Ct−1)

Ct−1 otherwise.

In AMSGrad the comparison between Ĉt and Ct−1 is based on the spectral norm of

each matrix. Since the eigenvalues of the preconditioning matrix of the gradient control

the magnitude of change in each dimension, this choice ensures that the effective
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learning rate is non-increasing.

While the averaging function over the gradient φt is easily computed, a straight-

forward attempt to implement Algorithm 1 leads to a number of practical challenges

regarding data efficiency and computational costs while computing the averaging

function over the curvature matrix ψt. Note, for example, that Algorithm 1 requires

forming the matrix (and its inverse) explicitly, which may be intractable for some mod-

els, e.g., large neural networks. In such situations, the second-order approximations

are often computed using conjugate gradient descent and Hessian-vector products

(Martens, 2010; Schulman et al., 2015; Rajeswaran et al., 2017).

We employ this style of matrix-free optimization, which reduces the problem

of estimating the descent direction to solving Ctv = g but makes computing the

exponential moving average more difficult, since Ctv is given by

Ctv = (βCt−1 + (1− β)Bt)v

= βCt−1v + (1− β)Btv.

The above approach leads to a number of challenges in practice. While the second

term (1− β)Btv is easily computed using the current model, the first term βCt−1v

depends recursively on all previous iterates and cannot directly be computed without

access to all previous model instances. Addressing the aforementioned challenges is

non-trivial and requires additional theoretical insights and computational tools. In

Sec. 3, we will discuss a practical and efficient framework that eschews these challenges

but is still able to incorporate different averaging functions.

In this chapter, we introduced a generalized view of adaptive curvature gradient

descent and, extending the methodology in Reddi et al. (2018), discussed an algorithm

that allows for different instantiations of the averaging functions. However, to be useful

in practice, important challenges must be resolved, e.g., the recursive dependence on

7



all previous model instances.

8



Chapter 3

A PRACTICAL FRAMEWORK FOR ADAPTIVE CURVATURE GRADIENT

DESCENT

Building upon the preceding discussion, we will now discuss a practical algorithmic

framework that resolves introduced challenges through a combination of theoretical and

computational insights, while still maintaining the beneficial properties discussed so far.

First, we discuss removing the dependence on previous iterations. In turn, we introduce

a theoretical connection between curvature matrix estimation and shrinkage methods

for covariance matrices. Finally, we provide computationally efficient formulations of

the update equations.

3.1 Computing the Curvature-Vector Products

In the natural gradient case, the Fisher can also be interpreted as the expected

Hessian of the log-likelihood,

Bt(θt) = E[∇θt log p(x,y | θt)(∇θt log p(x,y | θt))>]

= −E[Hlog p(x,y|θt)].

Thus, the Fisher-vector product can be computed at the cost of two backpropagations

since ∂2f
∂x
v = ∂

∂x
( ∂f
∂x
v).

Note, however, that ∇θt log p(x,y | θt) = J>∇z log r(y | z) for an output distri-

bution r with z = f(x), so the Fisher can be rewritten as, F = E[J>FrJ ], where

Fr is the Fisher of the distribution r (Martens, 2014; Park et al., 2000). This shows

that the Fisher is, in fact, equivalent to the Gauss-Newton for output distribution

from the exponential family (Martens, 2014). Moreover, in this form, the Fisher of

9



the output distribution and Hessian of the loss are generally tractable and can be

computed directly.

Using these forms, one can obtain improved matrix-vector multiplication per-

formance by combining the R-operator and L-operator (Pearlmutter, 1994), com-

monly known in the machine learning community as forward and reverse-mode auto-

differentiation. The operator Rv(f) computes the Jacobian of f multiplied on the

right by the vector v while the operator Lv(f) computes the Jacobian of f multiplied

on the left by the vector v. Thus one can compute Fv by computing Jv = Rv(f),

directly multiplying by the, now tractable, Fisher or Hessian, FrJv, and finally

computing J>FrJv = LFrJv(f). This gives an algorithm to compute the Fisher or

Gauss-Newton-vector product with one forward and one backward pass through the

model.

3.2 Removing Dependence on Previous Iterations

To remove the dependence on previous iterates, we propose incorporating an inner

optimization that finds parameters, θ−, such that Ct(θ
−)v = (βCt−1 + (1− β)Bt)v.

In general, this is a highly non-linear and ill-posed optimization problem. That is,

there may be several parameter instances that represent the desired curvature. To

simplify this optimization we note a few significant properties, assuming that the

gradient changes smoothly along the parameter space:

1. Given parameters θ1 and θ2 over a small domain, there exists θ− such that

C2(θ
−) = βC1(θ1) + (1− β)B2(θ2), where θ− = αθ1 + (1−α)θ2 with α ∈ [0, 1].

This reduces the problem to a line search between θ1 and θ2.

2. To avoid computing the curvature matrix directly, we continue to operate in the

space of matrix-vector products and solveC2(θ
−)v = (βC1(θ1)+(1−β)B2(θ2))v,

10



with α as defined above and v equal to the estimate descent direction at θ2.

Assuming that the standard gradient g is unique and smooth between θ1 and θ2

(a benign assumption over a small domain), then the matrix C(θ−) is unique in

this domain and, accordingly, the projection C(θ−)v is also unique.

3. Over long distances in parameter space, this optimization need not be convex,

though we assume the optimization is locally convex and that this holds in the

limit of small step sizes. This same step size constraint arises in the theory of

NGD (Amari, 1998).

Our practical implementation of this algorithm incorporates a line search (LS) to

find θ− (Wright and Nocedal, 1999). The resulting adaptive curvature algorithm is

both compute and memory efficient since the gradient is computed without constructing

or inverting the curvature matrix. Also, performing the line search before the CG

optimization minimizes the number of matrix-vector products. In this form, the line

search requires k+ 2 matrix-vector products and the CG optimization will require only

j, where k and j are the number of iterations in the line search and CG, respectively.

A standard CG-based, Hessian-free optimization algorithm requires j matrix-vector

products. The computation necessary to estimate the gradient direction is on the

order of O(j + k) for the adaptive curvature gradient with a line search and O(j) for

a standard Hessian-free method.

Expressions for each of the three studied averaging functions can be found in

Table 3.1. Now, ψ still represents the averaging function over the curvature matrix

though, for computational reasons, it is now defined by θ−t−1 and θt−1. These averaging

functions use a line search to compute θ−t .
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3.3 Damping and Shrinking the Curvature Matrix

Although the Fisher matrix can be computed as the Hessian of the log-likelihood

with respect to the model parameters, the Fisher can also be interpreted as the

covariance of the gradient of the log-likelihood. Likewise, because the Gauss-Newton

matrix is guaranteed to be positive semi-definite, it too can be interpreted as a

covariance matrix. Ensuring positivity is a valuable property of a curvature matrix

and is one reason why the Fisher and Gauss-Newton are often preferred over the

Hessian. Note, that as long as the curvature matrix is guaranteed to be positive

semi-definite that it can be interpreted as a covariance matrix.

The interpretation as a covariance allows one to apply techniques commonly applied

to covariance estimation. One such technique, which has become popular in finance

where one often deals with many more dimensions than data samples, is shrinkage

(Ledoit and Wolf, 2004). Shrunk covariance estimates find the optimal interpolation

between the sample and diagonal covariance. The optimal shrinkage depends on the

number of samples available and potentially some assumed properties of the data

(e.g. Gaussianity) (Chen et al., 2010). It has been shown that, with small data,

the shrunk covariance is a more accurate estimate of the true covariance than the

sample covariance itself. Moreover, the shrunk covariance is often non-singular; some

shrinkage estimators even guarantee this property (Ledoit and Wolf, 2004).

Following the work by Chen et al. (2010), we compute a shrunk curvature matrix

as follows:

Dt =
Tr(Bt)

p
I

ρ = min

(
(1− 2/p) Tr(B2

t ) + Tr2(Bt)

(n+ 1− 2/p)[Tr(B2
t ) + Tr2(Bt)/p]

, 1

)
Bt,shrunk = (1− ρ)Bt + ρDt

12



where Dt is a diagonal covariance estimate, ρ is the shrinkage factor, p is the number

of parameters, and n is the number of samples.

A careful look at the quantities needed to compute the shrinkage factor, ρ, reveals

that both Tr2(Bt) and Tr(Bt)
2 are required. Methods exist to estimate the diagonal

of the Hessian in large models (Martens et al., 2012) but we are not aware of any

method to approximate the diagonal of the square of the Hessian. To approximate

these quantities without forming the curvature matrix explicitly, we note an eigenvalue

relationship between Tr2(A) and Tr(A)2. For a symmetric matrix A, Tr(A2) =∑p
i

∑p
j A

2
ij =

∑p
i λ

2
i . This reduces the problem of computing the shrinkage to an

eigenvalue problem.

To compute eigenvalues, we propose to use Lanczos’ method (Lanczos, 1950). This

method permits computing eigenvalues of Bt while only requiring the matrix-vector

product of Bt with some vector v. Given k eigenvalues of Bt, where often k � p,

Dt is approximated using Tr(Bt) =
∑k

i=1 λi. Once the shrinkage factor, ρ, has

been computed, it can be incorporated as a damping factor during the conjugate

gradient iteration in a straightforward manner since the Fisher vector product becomes

(Bt + εI)v = Gtv + εv where ε is the damping factor.

Moreover, this approach to damping can be combined with adaptive curvature

gradient estimators. Instead of computing the shrinkage factor ρ based on the current

curvatureBt, we instead compute the shrinkage for β2Ct−1+(1−β2)Bt. This generates

the optimal shrinkage for the adaptive curvature estimate.

The outlined shrinkage approach is reminiscent of Tikhonov regularization, which

generally adds a small multiple of the identity to ensure non-degeneracy and is

commonly used by existing gradient-based methods that employ CG optimization. In

previous work, the damping factor is typically either heuristically determined (Martens,

2010) or set at a constant value (Schulman et al., 2015; Rajeswaran et al., 2017).
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Martens (2010) notes that using a constant damping is not desirable as it limits the

algorithm’s ability to “jump” over plateaus. In contrast, our method can be viewed

as an automatic means to estimate the damping factor based on the data available

without resorting to heuristics or constants.

Variant Optimal adaptive update rule Approximate adaptive update rule

AdaCurv-Adagrad ψ∗
t (θ−t−1, θt−1) = ψˆ

t(θ
−
t−1, θt−1) =

LS
[
minθ

∥∥(C(θ)−
(
(t− 1)C(θ−t−1) +B(θt−1)

)
/t
)
νt−1

∥∥] (
(t− 1)θ−t−1 + θt−1

)
/t

AdaCurv-Adam ψ∗
t (θ−t−1, θt−1) = ψˆ

t(θ
−
t−1, θt−1) =

LS
[
minθ

∥∥(C(θ)− β2C(θ−t−1)− (1− β2)B(θt−1)
)
νt−1

∥∥] β2θ
−
t−1 + (1− β2)θt−1

AdaCurv-AMSGrad ψ∗
t (θ−t−1, θt−1) = ψˆ

t(θ
−
t−1, θt−1) =

LS
[
minθ

∥∥(C(θ)− β2C(θ−t−1)− (1− β2)B(θt−1)
)
νt−1

∥∥] β2θ
−
t−1 + (1− β2)θt−1

if ρ(Ct) > ρ(Ct−1) if ρ(Ct) > ρ(Ct−1)

Table 3.1: Optimal and Approximate Adaptive Update Expressions for θ−. The
Optimal Updates Perform a Line Search over θ With the Constraint That θ =
γθ−t−1 + (1 − γ)θt−1 and γ ∈ [0, 1]. The Approximate Update Rule Assumes the
Curvature is Locally Linear Around the Current Parameters. The Comparison
Needed for AMSGrad is Computed by Estimating the Largest Eigenvalues of Ct and
Ct−1 Using Lanczos’ Method and Matrix-Vector Products.

3.4 An Approximate, No-Overhead Adaptive Update Step

One can reduce the computational complexity of our approach further by assuming

that the curvature matrix changes linearly with respect to the parameters in the region

between θ− and θ. Empirically, we observe that for a given β2 the optimal lagged

parameter tends to be approximately β2θ
−+ (1−β2)θ (this implies that the change in

the curvature is locally linear with respect to θ). Making this assumption, we propose

approximate, adaptive curvature gradient update rules with the same complexity as

existing Hessian-free approaches. That is, instead of optimizing the value of θ− at

each iteration we update θ− assuming local linearity as shown in Table 3.1. Using

these approximate updates yields good empirical performance at no additional cost

relative to a standard Hessian-free method.
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Algorithm 2 AdaCurv-{algorithm}∗: a data- and computation-efficient template of

the general adaptive curvature gradient descent framework.

Require: η: step size

Require: φt: averaging function for gradient

Require: ψt: averaging function for curvature matrix

Require: θ0: initial parameter vector

Require: θ−0 : initial lagged parameter vector

Require: f(θ): stochastic objective with parameters θ

1: m0 ← 0

2: t← 0

3: while not converged do

4: t← t+ 1

5: gt ← ∇θft(θt−1)

6: mt ← φt(g1, . . . , gt)

7: θ−t ← ψt(θ
−
t−1,θt−1)

8: Dt, ρ← SHRINKAGE
(
C(θ−t )

)
(optionally, else ρ = constant)

9: νt ← CG
(
((1− ρ)C(θ−t ) + ρDt)ν = mt

)
10: θt ← θt−1 − ηνt

11: end while

12: return θt

3.5 AdaCurv: Adaptive Curvature Gradient Descent

Taking all the above insights together results in a general yet practical framework for

adaptive curvature gradient descent, which can be found in Algorithm 2. The algorithm,

which we will henceforth refer to as Adaptive Curvature gradient descent (AdaCurv),

represents a family of methods and is parameterized by the averaging functions φt
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and ψt. Rather than a specific algorithm it can be regarded as a template from which

different instances can be derived. The mechanics of many existing algorithms for

adaptive gradient descent can be incorporated into AdaCurv by specifying appropriate

functions for φt and ψt. As previously introduced, Table 3.1 describes both optimal

and approximate adaptive rules for the popular choices of φt and ψt. In the remainder

of the paper, we will refer to instantiations of AdaCurv as AdaCurv-{algorithm},

meaning that we perform the adaptive curvature gradient update using the analogous

averaging functions from the designated algorithm. We use superscripts to denote

variations of AdaCurv: ∗ = optimal adaptive update, ˆ = approximate adaptive update,

and (s) = shrinkage.

3.6 Convergence of AdaCurv

We study the convergence of a particular instantiation of AdaCurv in the case of a

strongly convex function. Specifically, we consider averaging functions φ(g1, . . . , gt) =

gt and ψ(H1, . . . ,Ht) = 1−β
1−βt

∑t
i=1 β

t−iHi, where gi = ∇f(xi) and Hi = ∇2f(xi).

Intuitively, this is similar to Newton’s method with bias-corrected Adam-style averaging

only over the Hessian, but not the gradient, which we will denote AdaCurv-Newton.

Our analysis, which mirrors that of Boyd and Vandenberghe (2004, Chap. 9.5),

shows that AdaCurv-Newton enjoys the same convergence guarantees as Newton’s

method. Analogous to classical Newton’s method, AdaCurv-Newton converges in

two phases, traditionally referred to as the damped and true Newton phases. The

true Newton phase exhibits extremely fast, quadratic convergence. For a function

continuous, twice-differentiable function f with ∇2f(x) < mI, ∇2f(x) 4 MI, and

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x−y‖2 (Lipschitz constant L), AdaCurv-Newton converges
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to an extremely good 1 solution in at most

6 +
M2L2/m5

αβmin{1, 9(1− 2α)2}
(f(x0)− x∗)

iterations, where α and β are parameters of the backtracking line search. A detailed

analysis is in Appendix A. Despite the fact that the convergence theory is the same

for both AdaCurv-Newton and classical Newton’s method, we find that adaptive

curvature provides substantial benefits in practice as we show in the experiments

(Chapter 5).

1Convergence is to an extremely good solution because the the quadratically convergent phase
is approximated by 6 iterations, after which the error is approximately 5 ∗ 10−20e0 (Boyd and
Vandenberghe, 2004, Chap. 9.5.3).
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Chapter 4

COMPUTATIONAL DETAILS

Approximate second-order optimization methods tend to be computationally

intensive. Accordingly, we specify in detail here how one can efficiently compute

the necessary approximations. We focus on computing the descent direction as the

solution to Bv = g and computing the shrinkage factor for B.

4.1 Efficiently Solving the Linear System

Newton-style methods require solving Cv = g at every iteration. This inner

optimization is generally the most compute intensive portion of the optimizer so it is

important to perform this step efficiently. We discuss three different techniques that

improve the computational efficiency of this inner optimization. In practice, we find

that these optimizations provide excellent performance and that, especially later in

training when nearing a local optimum, the CG solver sometimes terminates in less

than 10 iterations.

4.1.1 Truncated CG

One common approach to reduce the computational needs of the CG solver is the

truncate the number of iterations and terminate before the minimum is reached. This

permits finding an approximate descent direction and is well-justified theoretically

because CG converges rapidly over the initial iterations (Shewchuk et al., 1994, Sec. 9).

We use this technique in all tested AdaCurv variants. Moreover, by making the

assumption that final direction computed by CG in the previous iteration is close to

optimal for the current iteration we can initialize the CG solver with the previous
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solution. This results in a form of “momentum” that improves convergence of the

truncated CG. We find that 10 CG iterations and a CG initialization of x0 = 0.5vt−1

perform well.

4.1.2 Preconditioned CG

The use of a preconditioner that is easily computed and inverted can be used

to improve the conditioning of the curvature matrix and accelerate the convergence

of CG by transforming the quadratic to be approximately spherical. Following the

work by (Martens, 2010) we use a regularized version of the diagonal of empirical

Fisher as a preconditioner. For the non-adaptive case this results in a diagonal matrix,

Vt = diag(gt � gt + λI)d, where λ is a regularization parameter and d is an exponent

less than one used to dampen the effect of extreme values. In the adaptive case we

form an adaptive preconditioner based on the same averaging functions used in the

core algorithm. For example, if performing adaptive curvature based on the Adam

averaging functions, the preconditioner is defined to be,

M̂t = β2Mt−1 + (1− β2)Vt

Vt = M̂t/(1− βt2).

Because this matrix is diagonal it is easy to invert an apply during the CG iteration.

Since the empirical Fisher may not accurately reflect the local curvature (Martens,

2014) this preconditioner likely does not result in a well-conditioned curvature matrix

for many cases but, as is often the case, is a balance between computation and

performance. More accurate, and compute intensive, preconditioners have been

proposed (Chapelle and Erhan, 2011) but we do not investigate any additional

preconditioners in this work.
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4.1.3 Block-Diagonal CG

There exists empirical evidence that the true curvature of a neural network is

approximately block-diagonal by layer or block-tridiagonal spanning adjacent layers

(Martens and Grosse, 2015). Previous work proposed solving Clvl = gl by layer where

Cl and gl represent the curvature matrix and gradient corresponding to the weights of

layer l (Zhang et al., 2017). This set of systems of equations can be solved in parallel.

We investigate this approach and find that it does not significantly alter final test

performance but were unable to achieve a notable computational improvement. It

is not clear, without substantial parallel compute resources, how such an approach

can reduce computation time since solving C1v1 = g1 still requires one to propagate

forward and backward through all the subsequent layers, an inherently sequential

process.

4.2 Efficiently Computing the Shrinkage

Like CG, computing the shrinkage factor by Lanczos is a potential computation

bottleneck. We propose two approximations that make computing this component more

efficient, both of which assume that the damping factor will not change significantly

over the course of a few iterations:

1. Amortize the computational cost of Lanczos shrinkage over k iterations.

2. Compute a lagged shrinkage based on the previous iteration by extracting

eigenvalue estimates from CG solver.

The first approximation computes the shrinkage factor based on Lanczos’ method

only every k steps of the optimization. This keeps the cost of computing eigenvalues

low relative to the cost of computing the gradient and solving Cv = g but assumes
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the shrinkage factor will remain approximately constant over k optimization steps.

In practice we find this assumption to hold extremely well, however, if this is not

expected to be the case for a particular task, a heuristic update could be used as in

Martens (2010).

The second approximation computes the shrinkage based on the eigenvalues

from the previous timestep. These eigenvalues can be computed by recovering the

tridiagnonal Lanczos matrix from the iterations of conjugate gradient (Saad, 2003,

chap. 6.7.3),

T =



1
α0

√
β0
α0

√
β0
α0

1
α1

+ β0
α0

√
β1
α1

√
β1
α1

. .

. .

√
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αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2


where αi =

r>i ri
d>i Fdi

and βi =
r>i+1ri+1

r>i ri
for residual, ri, and descent direction, di. This

method has negligible overhead as it it does not add any additional matrix-vector

products and computing the eigenvalues of a small tridiagonal matrix is fast, but the

shrinkage factor will lag behind the matrix for a single optimization step and has the

additional constraint that the number of eigenvalues estimated must equal the number

of CG iterations. We observe no reduction performance using this versus computing

the shrinkage by Lanczos at every iteration. Note that when using a preconditioner,

M , this method computes the eigenvalues of M−1F instead of F . This is acceptable,

however, because in this case one cares about the variance of M−1F rather than F .
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Chapter 5

EXPERIMENTS

We now investigate the performance of the introduced AdaCurv framework and

specific instances thereof, when compared to existing adaptive and non-adaptive

methods. 1

5.1 Application to Noisy, Ill-Conditioned, and Sparse Problems

To begin, we present an intuitive perspective on our algorithm on an informative

but simple problem to optimizer a stochastic quadratic. We adapt this experiment

from Balles and Hennig (2018).

We define the loss, L(θ;x) = 0.5(θ − x)>Q(θ − x) for a symmetric, positive

semi-definite matrix Q. Data is sampled from the distribution x ∼ N (x∗, ν2I). We

analyze problems of dimension 100 varying the noise, the conditioning of the quadratic

and its rotation, along with the sparsity of the gradients. A random quadratic with

the desired conditioning is generated by first generating a diagonal matrix Λ with

the desired eigenvalues and then transforming it with a rotation matrix uniformly

sampled from the set of all rotation matrices (Diaconis and Shahshahani, 1987). The

gradient sparsity parameter signifies that each dimension of the gradient gi is set to

zero with the given probability. At every time step 10 samples are drawn from the,

possibly noisy, data distribution and the optimization is run for 100 steps.

We observe (Figure 5.1) that the adaptive variant outperforms the classical for-

mulation when the gradients are noisy and sparse. Rotation does not appear to

have a significant effect on convergence. When there is no noise and the problem is

1Code available: https://github.com/tpbarron/adacurv
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well-conditioned, the non-adaptive version performs well, which is arguably a case

that does not exist in practice.
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Figure 5.1: Optimization of a Noisy and Sparse Quadratic. AdaCurv Outperforms
Classical Newton’s Method When the Data is Noisy and the Gradient is Sparse.

5.2 Logistic Regression and Shrinkage Analysis

We fit a 2-dimensional logistic regression model on a randomly generated dataset

with 500 samples and two classes and observed the convergence of various algorithms

over the first 25 iterations. Figure 5.2a shows the behavior of AdaCurv variants and

NGD over the contour plot of the objective function. Within the given limited budget

of iterations, AdaCurv variants make faster progress toward the local minimum even

on a very low dimensional task.

Figure 5.2b confirms empirically that shrinkage improves the accuracy of the Fisher

matrix, which for this problem is equivalent to the Gauss-Newton matrix. Note that

p indicates the dimensionality of the task. When the batch size is small, the shrinkage

estimator significantly improves the accuracy relative to the sample Fisher. As the
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Problem over the First 25 Iterations. (b): Error from the True Fisher According to
the Spectral Norm for Various Numbers of Parameters, p, and Batch Sizes, with and
Without Shrinkage.

batch size increases both estimators improve in accuracy, though even at a batch size

of 1,000, shrinkage improves the accuracy of the Fisher.

5.3 Supervised Learning on MNIST and SVHN

MNIST
AdaCurv-

Adam∗

AdaCurv-

AMSGrad∗

AdaCurv-

Adagrad∗
NGD Adam AMSGrad Adagrad SGD

125 97.41±0.06 97.79±0.09 97.95±0.02 96.98±0.13 97.83±0.04 97.79±0.03 91.81±0.12 93.12±0.05

250 97.65±0.1 98.1±0.03 98.01±0.07 97.12±0.11 97.55±0.13 97.56±0.14 91.53±0.06 91.61±0.11

500 97.7±0.04 98.12±0.05 97.99±0.07 97.21±0.07 96.93±0.15 96.9±0.16 91.14±0.08 89.97±0.19

1000 97.6±0.06 97.94±0.04 97.89±0.06 97.33±0.07 95.87±0.11 95.85±0.1 90.36±0.15 87.67±0.51

Table 5.1: Comparison of AdaCurv Variants with NGD and Adaptive SGD Methods
on the MNIST Dataset Averaged over 5 Seeds.

We compared several adaptive SGD methods, both standard natural gradient

descent, and AdaCurv variants applied to the Fisher matrix and examined the effect

of shrinkage and approximate updates. The following experiments were performed

on the MNIST dataset using a two-layer MLP (784-100-10). The learning rate was
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MNIST
AdaCurv-

Adam∗

AdaCurv-

AMSGrad∗

AdaCurv-

Adagrad∗

AdaCurv-

Adam∗(s)

AdaCurv-

AMSGrad∗(s)

AdaCurv-

Adagrad∗(s)

AdaCurv-

Adamˆ

AdaCurv-

AMSGrad̂

AdaCurv-

Adagrad̂

125 97.45 97.88 98.02 97.49 98.04 98.01 97.51 97.74 97.27

250 97.61 98.07 98.01 97.67 98.13 98.09 97.68 98.1 97.65

500 97.71 98.1 97.91 97.7 98.03 97.95 97.68 98.07 97.81

1000 97.63 98.06 97.92 - - - 97.66 98.0 97.63

Table 5.2: Comparison of Optimal and Approximate Updates and the Effect of
Shrinkage. The Best Value from Each Variant is Reported.

SVHN
AdaCurv-

Adam∗

AdaCurv-

AMSGrad∗

AdaCurv-

Adagrad∗
NGD Adam AMSGrad Adagrad SGD

125 83.68 83.55 82.91 79.65 83.27 83.34 66.65 68.92

250 82.61 82.15 82.13 80.33 82.86 82.86 65.98 62.62

500 82.53 82.67 82.86 80.02 82.01 82.1 64.78 49.9

1000 82.88 82.61 80.92 79.0 80.0 80.01 63.41 34.53

Table 5.3: Comparison of AdaCurv Variants with NGD and Adaptive SGD Methods
on the SVHN Dataset.

held constant for all variants at 0.001 with the exception of batch sizes 125 and 250 of

AdaCurv-Adam and AdaCurv-AMSGrad for which it was set at 0.0001 and 0.0005,

respectively. The training was performed for 10 epochs and the data is accumulated

over 5 random seeds. Additional hyperparameters are noted in the supplemental

material. Figure 5.3 shows how performance varies with the batch size. We find that

the AdaCurv variants converge at a faster rate and are remarkably consistent across

batch sizes, while adaptive SGD algorithms tend to degrade in performance as the

batch size increases and standard NGD performs poorly with small batch sizes. All

AdaCurv variants outperform NGD at every batch size, and the best AdaCurv variant

outperforms all adaptive SGD methods at every batch size. Table 5.1 summarizes

each method’s performance with the mean and standard deviation over 5 seeds.

Table 5.2 shows how the performance of our method varies with shrinkage and the

approximate update step. We find that the shrinkage estimate improves performance,
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particularly when the batch size is small. For batch sizes 125 and 250, AdaCurv-

AMSGrad∗(s) outperforms all other tested optimizers. We observe that using the

approximate AdaCurv update (Table 3.1) results in a slight performance decrease at

the benefit of reduced computational cost. The performance hit is most significant for

AdaCurv-Adagrad at approximately 0.75%. Approximate versions of AdaCurv-Adam

and AdaCurv-AMSGrad perform very closely to the optimal versions. This aligns

with our intuition regarding when the Fisher matrix will change linearly. In AdaCurv-

Adam and AdaCurv-AMSGrad the lagged parameters trail the true parameters,

while AdaCurv-Adagrad averages all previous parameters. Thus, the space AdaCurv-

Adagrad averages over is likely not linear, while the linearity assumption is more likely

to hold for the space averaged by AdaCurv-Adam and AdaCurv-AMSGrad.

We perform a similar experiment using the SVHN dataset (Netzer et al., 2011). In

this experiment we classify grayscale images with a feed-forward neural network with

structure MLP(1024-265-10). In this task, we again find that AdaCurv variants applied

to the Fisher matrix outperform both NGD and adaptive SGD methods (see Table 5.3).

It is possible to achieve higher performance on this task with a convolutional model

but the relative performance with an MLP should be representative.

Finally, we have performed additional experiments comparing K-FAC on the

Fashion MNIST dataset using a 4-layer, convolutional model and found that, whereas
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K-FAC initially converged slightly faster (still, both methods reach 90% test accuracy

in the first 2-3 epochs), AdaCurv-Adamˆ reached a slightly better test accuracy over

10 epochs (AdaCurv: 91.0%, K-FAC: 90.95%; not a statistically significant result given

the limited number of seeds, one in this case). The K-FAC optimizer used default

hyperparameters from the tensorflow-kfac implementation, and both methods used

a learning rate of 0.001 and batch size of 250. Both methods outperformed Adam and

NGD, which achieved test accuracies of approximately 90.75% and 88.31%, respectively,

over the same number of iterations. We emphasize that unlike K-FAC, AdaCurv

does not assume block-diagonal or block-tridiagonal structure in the Fisher matrix,

does not make the independence assumption of activations and gradients required by

K-FAC, and instead approximates the transformation by the true Fisher.

5.4 Reinforcement Learning and Robotics

In addition to supervised learning experiments, we also apply our method to

continuous control tasks with reinforcement learning. We perform experiments on

three different simulated control tasks in the PyBullet simulator (Coumans and Bai,

2018), comparing adaptive variants of natural policy gradient (Rajeswaran et al., 2017)

and Trust Region Policy Optimization (Schulman et al., 2015). The goal in these tasks

is to control a simulated robot to walk forward as quickly as possible. We are able to

directly apply our method to enhance TRPO by computing the update direction using

AdaCurv but computing the step size using the KL-divergence bound from TRPO.

On all three tasks the AdaCurv variant with the Adam averaging functions and a

shrunk Fisher estimate applied to TRPO outperforms all methods (see Figure 5.4).

The same AdaCurv variant applied to NPG outperforms “vanilla” NPG.

We also apply our method to a more practical robot control application where a

simulated bi-manual robot is tasked with throwing a ball into a hoop. Figure 5.5a
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Control Tasks Across 5 Seeds. AdaCurv-Adam∗(s)-{rl-algo} Signifies That AdaCurv
was Applied to the Designated RL Algorithm.

shows a render of the simulation environment. This robot is a high-fidelity model of a

physical robot in our lab.

The hoop position is randomized within a 30 degree angle of the robot’s orientation.

At each step the robot receives the environment state as input, which includes the

joint angles and velocities of both arms, the position and velocity of the ball along

with the angle to the hoop. Given the input state the policy generates a control

output specifying the joint velocities for each arm individually. The robot also receives

a reward at each time step, which we define to be the negative Euclidean norm

between the current ball velocity vector and that which would land the ball in the

hoop. Intuitively, the robot is rewarded for moving the ball such that if it were to

let go immediately, the ball would follow the proper trajectory into the hoop. In our

experimental analysis we find AdaCurv results in as much as 50 percent improvement

in learning rate.

Figure 5.6 provides some analysis of our results. Figure 5.6a shows the low

dimensional space carved out by the learned controller. That is, if one samples

trajectories across the possible range of hoop placements and fits a 2D embeddeding

with PCA, it becomes clear the dimensions of most significance relative to the robot

are left-right and in the axis of the hoop. This is not at all surprising and is, in fact,
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what one would intuitively expect for this task. Figure 5.6b shows learning curves for

various instantiations of TRPO with and without AdaCurv. As expected, when the

batch size is large the benefit of AdaCurv is relatively low since the curvature matrix

can be estimated accurately with the available samples. As the batch size is decreased,

the adaptive curvature estimate becomes particularly useful for fast convergence.

(a)

1.5 m

(b)

Figure 5.5: (a): Render of the Basketball Robot Simulation. (b): Diagram of the
Basketball Setup. The Robot is 1.5 Meters from the Hoop and the Hoop is Randomized
Within a 30 Degree Arc.
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Figure 5.6: (a): A 2D Density Plot of the Latent Space Represented by the Robot
Policy. The Data is Collected over 100 Trajectories with the Hoop Spaced At Equal
Intervals Between the Left and Right Bounds. The Gray Lines Represent a Trajectories
with the Hoop Placed on the Left, Middle, and Right. Clearly, the Two Most Significant
Dimensions are the Coordinate Axes Representing Lateral and Longitudinal Movement
Relative to the Hoop. (b): Learning Curves for the TRPO and AdaCurv-TRPO with
Adam-Style Averaging Applied to Fisher Matrix Estimation.

In the RL tasks, AdaCurv-Adam∗ applied to TRPO is about 1.15x slower than the

benchmarked TRPO algorithm. The addition of shrinkage computation by CG has
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negligable overhead, while computing shrinkage by Lanczos adds approximately 10%

additional overhead. As expected, the approximate adaptive update, AdaCurv-Adam ,̂

has no additional cost.

5.5 Low-Rank Matrix Completion to Estimate Natural Disaster Trends

Matrix completion tasks aim to estimate the unknown entries of a matrix R that

is hypothesized to be represented as the product of two smaller matrices, R ≈ AB>,

where R ∈ Rn×m,A ∈ Rn×r, and B ∈ Rm×r. That is, the matrix R is assumed to

have rank r. While there are various approaches to solve this problem, one is to directly

optimize the (non-linear) objective, L = ‖W (R−AB>)‖22 +λ1‖A‖22 +λ2‖B‖22, where

W is a matrix the same size as R that acts as a mask so that the loss is only computed

over the observed values. The use of a Newton-style optimizer has been found to be

effective in this context (Buchanan and Fitzgibbon, 2005).

With inspiration from Ghafarianzadeh and Monteleoni (2013) we aim to use matrix

completion for climate modeling but instead of estimating future temperature trends

we aim to look for relationships between temperature and the economic and social costs

of natural disasters. Using model output from various institutions contributing data

to the World Climate Research Program’s Climate Model Intercomparison Project

(CMIP) combined with natural disaster data from the NOAA (NOAA, 2019) we

aim to estimate the economic cost and number of fatalities resulting from natural

disasters over the next century. The CMIP5 project includes model output for various

representative concentration pathways (RCP), which describe different possible future

outcomes depending on the level of greenhouse gas emissions. We focus on two of

these variants: RCP 4.5, which models a medium-emissions scenario, and RCP 8.5,

which models a high-emissions scenario. Using this data, the matrix R is constructed.

To provide some intuition, Figure 5.7 shows the data used to build the sparse matrix.
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R =



Historical temperature anomalies −

6× RCP Temp. air surface hindcast 6× RCP temp. air surface forecast

6× RCP temp. ocean surface hindcast 6× RCP temp. ocean surface forecast

NOAA natural disaster costs −

NOAA natural disaster fatalities −
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Figure 5.7: (a): The Historical Temperature Anomalies by Month Since 1900. (b):
Hindcasts (black) and Forecasts (blue: RCP4.5, Orange: RCP8.5) for the Air Surface
Temperature. (c): Hindcasts (black) and Forecasts (blue: RCP4.5, Orange: RCP8.5)
for the Sea Surface Temperature.

We optimize the objective, L, with AdaCurv-Adamˆusing mini-batches. That is,

at each iteration, a subset of observations is used to compute the loss and the gradient.

We found that, in this setting, adaptive estimates are particularly useful since, when

using mini-batches, the gradient is explicitly sparse for many entries of the elements.

Figure 5.8 shows the estimates for each statistic from the completed matrix.

Interestingly, in the RCP 4.5 case the rate of increase in cost and fatalities decreases

over time, whereas in the RCP 8.5 scenario the rate continues to increase exponentially.

5.6 Runtime Comparison

Computational time is often a concern with second-order approximations, especially

those that employ truncated Newton approximations. However, we have found that
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Figure 5.8: (a,b,c): Predictions Based on the RCP 4.5 Scenario. (d,e,f): Predictions
Based on the RCP 8.5 Scenario.

compared to the original Hessian-free work, we can significantly reduce the number of

CG iterations at each step by using the adaptive estimates and that in some cases

CG converges to the residual tolerance in fewer than 10 iterations.

In supervised tasks, an optimized implementation of AdaCurv with the approximate

adaptive update takes about 1.25x the wall-clock time of the best block diagonal

methods (e.g., K-FAC) for a 4-layer convolutional model, and this margin could likely

be reduced by solving for the natural gradient in a layer-wise, block-diagonal fashion.

In the RL tasks, AdaCurv-Adam∗ applied to TRPO is about 1.15x slower than the

benchmarked TRPO algorithm. The addition of shrinkage computation by CG has

negligible overhead, while computing shrinkage by Lanczos adds approximately 10%

additional overhead. As expected, the approximate adaptive update, AdaCurv-Adam ,̂

has no additional cost.
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Chapter 6

RELATED WORK

The seminal work on natural gradients comes from Amari (1998), who discusses

its application to a variety of tasks and shows that it is Fisher-efficient. Since then,

significant work has gone into reducing the computational complexity, resulting in

incremental algorithms, as proposed by Park et al. (2000) and Roux et al. (2008).

These methods form the estimate of the Fisher matrix at the current time step using

the previous Fisher and integrating a rank-1 estimate, usually via the Woodbury

matrix identity. These methods fit in our framework if viewed as an online adaptive

natural gradient with batch size one.

Martens (2010) proposed Hessian-free learning for neural networks, which eliminates

the need to construct the Hessian (or Fisher or Gauss-Newton) explicitly and instead

solvesHv = g with CG. Pascanu and Bengio (2013) examined the effectiveness of NGD

for deep learning applications. More recently, Martens and Grosse (2015) proposed K-

FAC, which uses an assumption of independence between the activations and gradients

of a layer to formulate a factored, block-diagonal approximation to the Fisher. Botev

et al. (2017) extend this framework to estimate the Gauss-Newton matrix. Although

we have framed our method in the Hessian-free style, it extends in a straightforward

manner to algorithms that employ explicit block-diagonal approximations. Note,

however, that there are applications, such as matrix completion, where clear block

definitions are not obvious and block-diagonal approximation may remain intractable,

whereas our enhancements remains advantageous.

The need for sample-efficiency in reinforcement learning (RL) has also produced

a large number of policy gradient methods based on the natural gradient beginning
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with Kakade (2002). Since then, the natural policy gradient algorithm has become a

staple of RL research and has been repeatedly improved to include a critic (Peters

and Schaal, 2008), bounded and safe step size (Schulman et al., 2015), and lower

computational requirements Wu et al. (2017). As we will see in the experiments, even

these RL methods benefit from the introduced AdaCurv framework.

The large number of proposed adaptive SGD methods within the last decade

(Duchi et al., 2011; Zeiler, 2012; Hinton et al., 2012; Kingma and Ba, 2014; Reddi

et al., 2018) aim to estimate the 2nd-order characteristics of the optimization landscape

focusing primarily on diagonal approximations of gradient variance and do not consider

adaptive estimates of the Hessian or Fisher. Martens (2014) gives a survey of natural

gradient techniques along with local convergence analysis and some intuition behind

why the Fisher, as an approximation to the Hessian, works well as a preconditioner.

Martens also notes that use of the empirical Fisher as a scaling matrix, the diagonal of

which is often used by existing adaptive SGD methods, is a questionable choice since

it is not guaranteed that the empirical Fisher accurately describes the local properties

of the model. Our work integrates the promising components from adaptive SGD

methods based on a diagonal scaling to an adaptive curvature method based on the

improved curvature estimates.
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Chapter 7

CONCLUSION

After a discussion of a general and unified view of adaptive curvature gradient

descent, we proposed AdaCurv, a practical and efficient algorithmic framework that

encapsulates the update mechanics of a number of existing methods. Our framework

introduces a variety of innovations including approximate update rules and sample-

efficient shrinkage estimation of the curvature matrix. We found on a variety of

benchmarks that AdaCurv provides excellent empirical performance. An interesting

future research direction would be to investigate the application of this framework to

block-diagonal curvature estimation methods.
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APPENDIX A

CONVERGENCE OF ADACURV-NEWTON
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Proof of convergence of adaptive Newton’s method on strongly convex functions

Our analysis closely follows the exposition by Boyd and Vandenberghe (2004,
chap. 9.5). We emphasize the differences and explicitly note assumptions that must
hold. We assume the function to be optimized, f , is twice differentiable and strongly
convex and there exists constant m such that ∇2f(x) < mI, which also implies there
exists M such that ∇2f(x) 4MI. We also assume the Hessian is Lipschitz continuous
with constant L,

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2.

and that a backtracking line search is used with parameters α ∈ (0.0, 1.0) and
β ∈ (0.0, 0.5). As in the analysis by Boyd and Vandenberghe (2004), we analyze the
convergence in two cases, which depend on the norm of the gradient, and affect the
rate of convergence. For 0 < η < m2/L and γ > 0 either:

1. ‖∇f(xk)‖2 ≥ η and f(xk+1)− f(xk) ≤ −γ or,

2. ‖∇f(xk)‖2 < η and L
2m2‖∇f(xk+1)‖2 ≤

(
L

2m2‖∇f(xk)‖2
)2

.

If the second condition is satisfied the line search selects a step size t = 1 and,
moreover, once it has been satisfied at a given step, k, it will be satisfied for all future
iterations. Define the Hessian at step k be Hk = ∇2f(xk) and the adaptive Hessian,

Ĥk = 1−β
1−βk

∑k
i=1 β

k−iHi. Then the AdaCurv-Newton step is ∆xant,k = −Ĥ−1k ∇f(xk)

and the AdaCurv-Newton decrement is λ(xk) = (∆x>ant,kĤk∆xant,k)
1/2. We note

that the AdaCurv-Newton step, ∆xant,k is guaranteed to be a descent direction since

∇f(xk)∆xant,k = −∇f(xk)
>Ĥ−1k ∇f(xk), the gradient must be positive, and the

RHS is negative since Ĥ−1k is PSD as it is inverse of the sum of PSD matrices.

The damped Newton phase In this phase of convergence we require that there
exist γ such that f(xk+1)− f(xk) ≤ −γ.

f(xk + t∆xant,k) ≤ f(xk) + t∇f(xk)
>∆xant,k +

M‖∆xant,k‖22
2

t2

≤ f(xk)− tλ(xk)
2 +

M

2m
t2λ(xk)

2

This last step relies on λ(xk)
2 = ∆x>ant,kĤk∆xant,k ≥ m‖∆xant,k‖22. This can

be seen since the minimum eigenvalue of Ĥk must be greater than or equal to m.
Similarly, λ(xk)

2 = ∇f(xk)
>Ĥ−1k ∇f(xk) ≥ (1/M)‖∇f(xk)‖22 because the maximum

eigenvalue of the sum will be less than or equal to the sum of the maximum eigenvalues.
Hence we have,

f(x+
k )− f(xk) ≤ −αtλ(xk)

2.
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Noting that t = m/M satisfies the line search condition,

≤ −αβ m
M
λ(xk)

2

≤ −αβη2 m
M2

.

So the first condition is satisfied with γ = αβη2 m
M2 .

The true Newton phase The second case uses the bound on the Lipschitz constant
of the Hessian, which in general implies that,

‖∇2f(xk + t∆xant,k)−∇2f(xk)‖2 ≤ tL‖∆xant,k‖2.

With an adaptive Hessian estimate this bound becomes a bit more complicated
because,

Ĥk(xk + t∆xant,k) =
1

1− βk
(
βk−1(1− β)H1(x1 + t∆xant,1) + βk−2(1− β)H2(x2 + t∆xant,2)

+ · · ·+ (1− β)Hk(xk + t∆xant,k)
)
.

One can observe the Lipschitz bound for each of these matrices individually as it is
clear that for each i the following holds:

βk−i(1− β)

1− βk
‖Hi(xi + t∆xant,i)−Hi(xi)‖2 ≤ tL

βk−i(1− β)

1− βk
‖∆xant,i‖2.

Then, the sum over i from 1 to k yields the desired relationship,

‖Ĥk(xk + t∆xant,k)− Ĥk(xk)‖2 ≤ tL‖∆xant,k‖2,

where the sum over the Euclidean norms holds by the generalized triangle inequality.
The remainder of the proof follows identically to the traditional proof of Newton’s

method presented in Boyd and Vandenberghe (2004, Chap. 9.5), which we reproduce
here for completeness. The above inequality implies that,∣∣∣∆x>ant,k (Ĥk(xk + t∆xant,k)− Ĥk(xk)

)
∆xant,k

∣∣∣ ≤ tL‖∆xant,k‖32.

Defining f̃k(t) = fk(xk + t∆xant,k) and its second derivative f̃
′′
k (t) = ∆x>ant,kĤk(xk +

t∆xant,k)∆xant,k the above inequality becomes,∣∣∣f̃ ′′(t)− f̃ ′′(0)
∣∣∣ ≤ tL‖∆xant,k‖32.

So, in turn,

f̃
′′
(t) ≤ f̃

′′
(0) + tL‖∆xant‖32.
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This will be used to bound f̃(t). Using the fact that f̃
′′
(0) = λ(xk)

2 and λ(xk)
3 ≥

m3/2‖∆xant,k‖32,

f̃
′′
(t) ≤ λ(xk)

2 +
tL

m3/2
λ(xk)

3.

Integrating the inequality twice and using the fact that f̃
′
(0) = −λ(xk)

2,

f̃(t) ≤ f̃(0)− tλ(xk)
2 + t2

1

2
λ(xk)

2 + t3
L

6m3/2
λ(xk)

3.

Substituting t = 1 (a full step size),

f(xk + ∆xant,k) ≤ f(xk)−
1

2
λ(xk)

2 +
L

6m3/2
λ(xk)

3.

Now, assume ‖∇f(xk)‖2 ≤ η ≤ 3(1−2α)m2/L. Because λ(xk)
2 = ∇f(xk)

>Ĥ−1k ∇f(xk) ≤
1/m‖∇f(xk)‖22, it follows that λ(xk) ≤ 3(1− 2α)m3/2/L. Substituting back into the
previous inequality, we have

f(xk + ∆xant,k) ≤ f(xk)− λ(xk)
2

(
1

2
− Lλ(xk)

6m3/2

)
.

Noting that the coefficient on λ(xk)
2 equals α,

f(xk + ∆xant,k) ≤ f(xk)− αλ(xk)
2

= f(xk) + α∇f(xk)
>∆xant,k,

which shows a step size t = 1 is selected. Applying the Lipschitz condition to the
resulting iterate shows ‖∇f(x+

k )‖2 ≤ L
2m2‖∇f(xk)‖22, which is the condition case 2,

and implies that if ‖∇f(xk)‖2 ≤ η with η = min{1, 3(1− 2α)}m2

L
.

The number of iterations required to compute an extremely good approximation is

bounded by f(x0)−x∗
γ

+ 6, where the 6 iterations are from the quadratically convergent

phase. Substituting this value for η into the value derived for gamma above and,
finally, substituting into the aforementioned expression gives a bound on the number
of iterations found to be,

6 +
M2L2/m5

αβmin{1, 9(1− 2α)2}
(f(x0)− x∗),

which completes the convergence analysis.
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DETAILS OF SPECIFIC ADACURV VARIANTS
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We present pseudocode for a AdaCurv-Adam and AdaCurv-Adagrad. AdaCurv-
AMSGrad is a simple change from AdaCurv-Adam. All of the variants optionally use
a shrinkage estimator to compute the damping factor. Algorithm 3 gives a formal
algorithm for computing this shrinkage given the number of samples, the parameter
vector, and the desired number of eigenvectors to compute. This function returns a
diagonal matrixD, which is the shrinkage target, and a factor ρ ∈ [0, 1], which specifies
how much shift the empirical estimate towards D. The call to LANCZOS is a standard
Lanczos procedure (Saad, 2003, chap. 6.7.1). The CG procedure is implemented as a
standard conjugate gradient iteration (Shewchuk et al., 1994) but the required α, β
are stored in order to recover the tridiagonal Lanczos matrix.

Algorithm 3 Lanczos shrinkage estimation

Require: n: batch size
Require: θ: parameter vector representing C(θ)
Require: k: number of Lanczos iterations
1: p← len(θ)
2: λi, . . . λk ← LANCZOS(θ, k)
3: τ ←

∑
i λi Tr(C(θ))

4: γ ← τ 2 − 2
∑

i<j λiλj Tr(C(θ)2)
5: D ← τ

p
In

6: ρ←
(

(1−2/p)γ+τ2
(n+1−2/p)[γ+τ2/p] , 1

)
7: return D, ρ

AdaCurv-Adam

The Adam algorithm (Kingma and Ba, 2014) uses bias correction to correct
for the zero initialization of the first and second moments. AdaCurv-Adam and
AdaCurv-AMSGrad also incorporate bias correction but it is a bit nuanced. Because
the curvature matrices are never constructed explicitly the bias correction must be
incorporated into the CG optimization.

The bias correction for the gradient is exactly the same as Adam. The bias
correction for the curvature matrix can be derived as follows,

Ĉt =
β2Ct−1 + (1− β2)Bt

(1− βt2)

Ĉtv =
β2Ct−1 + (1− β2)Bt

(1− βt2)
v

This implies that while performing CG, in order to account for bias, one must
divide the curvature-vector product by 1− βt2. This leads to AdaCurv-Adam∗ using
the optimal update rule for θ− as shown in Algorithm 5.

We also note that on line 14 of Algorithm 5 we compute a normalized step size
based on the current estimate of the Fisher. This transforms the step size onto the
local metric space. This follows the form by Rajeswaran et al. (2017). We find that
this normalized step size is sufficient for stable convergence.
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Algorithm 4 CG shrinkage estimation

Require: n: batch size
Require: θ: parameter vector representing C(θ)
Require: g: gradient vector to solve C(θ)v = g
Require: k: number of conjugate gradient solver iterations
1: p← len(θ)
2: diag0 ← []; diag1 ← []
3: for i in 1 : k do
4: cg status← CG(C,v, g)

5: αi ← r>i ri
d>i Fdi

CG iteration step size

6: βi ←
r>i+1ri+1

r>i ri
CG residual step

7: diag0.append
(

1
αi

+ βi−1

αi−1

)
8: if i > 1 then

9: diag1.append

(√
βi−1

αi−1

)
10: end if
11: end for
12: xmin ← cg status.solution
13: λi, . . . λk ← eigvalsh(diag0, diag1) Compute eigenvalues of tridiagonal matrix
14: τ ←

∑
i λi Tr(C(θ))

15: γ ← τ 2 − 2
∑

i<j λiλj Tr(C(θ)2)
16: D ← τ

p
In

17: ρ←
(

(1−2/p)γ+τ2
(n+1−2/p)[γ+τ2/p] , 1

)
18: return xmin,D, ρ

In order to reduce complexity of the above algorithm, we experiment with replacing
the line search in Algorithm 5 with an approximate version that does not incur any
overhead. This version may be seen in Algorithm 6.

AdaCurv-AMSGrad

The AdaCurv variant with the AMSGrad averaging functions mirrors the Adam
variant with one significant change. After the line search has return the new lagged
parameters, θ−t , the largest eigenvalues λmax

t and λmax
t−1 of C(θ−t ) and C(θ−t−1) are

estimated. If λmax
t is not greater than λmax

t−1 , then θ−t is reset to be θ−t−1.

AdaCurv-Adagrad

The adaptive update performed in AdaCurv-Adagrad differs from that in AdaCurv-
Adam and AdaCurv-AMSGrad. Adagrad maintains a cumulative average over the
variance and does not average the gradient. AdaCurv-Adagrad performs a cumulative
average over the curvature matrix. The optimal update, shown in Algorithm 7, uses the
line search to find parameters that represent this cumulative average. The approximate
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Algorithm 5 AdaCurv-Adam∗

Require: η: normalized step size
Require: β1, β2 ∈ [0, 1)
Require: θ0: initial parameter vector
Require: θ−0 : initial lagged parameter vector
Require: f(θ): stochastic objective with parameters θ
1: m0 ← 0
2: t← 0
3: while not converged do
4: t← t+ 1
5: gt ← ∇θft(θt−1)
6: mt ← β1mt−1 + (1− β1)gt
7: m̂t ←mt/(1− βt1)
8: θ−t ← LS

[
minθ

∥∥(C(θ)− β2C(θ−t−1)− (1− β2)B(θt−1)
)
ν̂t−1

∥∥]
9: s.t. θ = γθ−t−1 + (1− γ)θt−1
10: γ ∈ [0, 1]
11: Dt, ρ← SHRINKAGE

(
C(θ−t )

)
(optionally, else ρ = constant)

12: νt ← CG
(

((1−ρ)C(θ−t )+ρDt)ν

1−βt2
= m̂t

)
13: α←

√
η

m̂>t νt

14: θt ← θt−1 − ανt
15: end while
16: return θt

AdaCurv-Adagrad update is shown in Algorithm 8.
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Algorithm 6 AdaCurv-Adamˆ

Require: η: normalized step size
Require: β1, β2 ∈ [0, 1)
Require: θ0: initial parameter vector
Require: θ−0 : initial lagged parameter vector
Require: f(θ): stochastic objective with parameters θ
1: m0 ← 0
2: t← 0
3: while not converged do
4: t← t+ 1
5: gt ← ∇θft(θt−1)
6: mt ← β1mt−1 + (1− β1)gt
7: m̂t ←mt/(1− βt1)
8: θ−t ← β2θ

−
t−1 + (1− β2)θt−1

9: Dt, ρ← SHRINKAGE
(
C(θ−t )

)
(optionally, else ρ = constant)

10: νt ← CG
(

((1−ρ)C(θ−t )+ρDt)ν

1−βt2
= m̂t

)
11: α←

√
η

m̂>t νt

12: θt ← θt−1 − ανt
13: end while
14: return θt

Algorithm 7 AdaCurv-Adagrad∗

Require: η: normalized step size
Require: θ0: initial parameter vector
Require: θ−0 : initial lagged parameter vector
Require: f(θ): stochastic objective with parameters θ
1: t← 0
2: while not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1)
5: θ−t ← LS

[
minθ

∥∥(C(θ)−
(
(t− 1)C(θ−t−1) +B(θt−1)

)
/t
)
νt−1

∥∥]
6: s.t. θ = γθ−t−1 + (1− γ)θt−1
7: γ ∈ [0, 1]
8: Dt, ρ← SHRINKAGE

(
C(θ−t )

)
(optionally, else ρ = constant)

9: νt ← CG
(

((1−ρ)C(θ−t )+ρDt)ν

1−βt2
= gt

)
10: α←

√
η

g>t νt

11: θt ← θt−1 − ανt
12: end while
13: return θt
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Algorithm 8 AdaCurv-Adagradˆ

Require: η: normalized step size
Require: θ0: initial parameter vector
Require: θ−0 : initial lagged parameter vector
Require: f(θ): stochastic objective with parameters θ
1: t← 0
2: while not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1)
5: θ−t ←

(
(t− 1)θ−t−1 + θt−1

)
/t

6: Dt, ρ← SHRINKAGE
(
C(θ−t )

)
(optionally, else ρ = constant)

7: νt ← CG
(

((1−ρ)C(θ−t )+ρDt)ν

1−βt2
= gt

)
8: α←

√
η

g>t νt

9: θt ← θt−1 − ανt
10: end while
11: return θt
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ANALYSIS OF BIAS AND VARIANCE OF ADAPTIVE METHODS
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We analyze, in the finite sample case, the relationship between the bias and variance
of the adaptive and single-step gradient estimates for a general adaptive method. The
adaptive estimates reduce error incurred by Monte Carlo sampling at the expense of
bias.

To simplify the analysis, assume the gradient at time t is a normal random variable
xt ∼ N (µt, σt). The estimate of the mean x̄t has Monte Carlo error on the order of
O(σt/

√
n) for an estimate derived from n samples (Hutchinson, 1993). The mean and

variance of an adaptive gradient estimate can be derived as follows. First, the mean,
with δµ,t = µT − µt as the difference between µT and µt, can be estimated according
to:

E[µ̂t] = (1− β1)
T∑
t=1

βT−t1 µt

= (1− β1)
T∑
t=1

βT−t1 (µT − δµ,t)

= (1− βT1 )µT − (1− β1)
T∑
t=1

βT−t1 δµ,t.

In turn, similarly letting δσ,t = σT − σt be the difference between σT and σt, the
variance can be estimated according to:

VT = Var[µ̂t] =
T∑
t=1

(
(1− β2)βT−t2

)2
σ2
t + 2

∑
1<i

∑
<j≤n

(1− β2)βT−i2 (1− β2)βT−j2 ρσiσj.

Since the absolute value of the correlation |ρ| is less than or equal to 1, we can write

VT ≤
T∑
t=1

(
(1− β2)βT−t2

)2
σ2
t + 2

∑
1<i

∑
<j≤n

(1− β2)βT−i2 (1− β2)βT−j2 σiσj.

Factoring this expression into the form (x1 + x2 + . . .+ xn)2 gives

VT ≤
(
(1− β2)βT−12 σ1 + (1− β2)βT−22 σ2 + . . .+ (1− β2)σT

)2
.

Setting σt = σT − δσ,t, we get

VT ≤
(
(1− β2)βT−12 (σT − δσ,1) + (1− β2)βT−22 (σT − δσ,2) + . . .+ (1− β2)σT

)2
≤
(
σT − (1− β2)βT−12 δσ,1 − (1− β2)βT−22 δσ,2 − . . .− (1− β2)β2δσ,T−1

)2
.

Given these quantities, we compare the Monte Carlo sampling error of the adaptive
and single-step estimates. Let

∆σ,T = −(1− β2)βT−12 δσ,1 − (1− β2)βT−22 δσ,2 − . . .− (1− β2)β2δσ,T−1,

∆µ,T = (1− β1)
T∑
t=1

βT−t1 δµ,t.
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Comparing the Monte Carlo errors we get
√
VT√
Tn
≤ σT√

n
.

The above expression relates the Monte Carlo sampling error for adaptive methods
(LHS) to the sampling error of single-step methods (RHS). We are particularly
interested in the conditions under which the left-hand side is smaller than the right-
hand side. Accordingly, we can rewrite the inequality as√

VT≤
σT
√
Tn√
n

∆σ,T≤
σT
√
Tn√
n
− σT

≤σT (
√
T − 1).

The above derivation implies that in cases where, ∆σ,T , the negative, discounted sum

of δσ,t, is less than σT (
√
T − 1), the adaptive estimate will have a smaller Monte Carlo

error. This is a rather benign assumption since β2 is often set close to 1 and, in general,
δσ,t will be small. Hence, under reasonable conditions, the adaptive estimate has lower
variance. Given the Monte Carlo errors, we can investigate how likely the adaptive
estimate is to be closer to the truth when compared to the single-step estimate. To
analyze this, we also need the bias of the adaptive estimate,

BT = µT − ((1− β1)µT −∆µ,T )

= β1µT + ∆µ,T .

The bias of the single-step estimate is zero because E[x̄t] = µt. Thus, if the bias of
the adaptive estimate plus the expected error of the adaptive estimate is less than the
expected error of the single-step estimate, then the adaptive estimate will be more
accurate. Accordingly, we have the expected accuracy of the adaptive estimator, in
comparison to the single-step estimate,

BT +

√
VT√
Tn
≤ σT√

n

β1µT + ∆µ,T≤
σT√
n
−
√
VT√
Tn

.

We can see that the bias must be less than the difference in the variances. By assuming
that ∆σ,T has expected value zero, i.e., the variance of the gradients is constant, we
can simplify further,

β1µT + ∆µ,T≤
σT√
n
− σT + ∆σ,T√

Tn

β1µT + ∆µ,T≤
σT (
√
T − 1)√
Tn

.
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Assuming a value of β1 close to one, the value of ∆µ,T will be close to zero.
Accordingly, whether the above condition holds depends primarily on the magnitude
of the gradient, µT , and its (constant) standard deviation, σT . Moreover, since the
standard deviation is scaled by a factor approximately equal to 1√

n
, the gradient mean

must decrease in magnitude.
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This section details the hyperparameters used in our MNIST and reinforcement
learning experiments. All experiments are run using the PyTorch framework (Paszke
et al., 2017). The learning rate for Adam, AMSGrad, Adagrad and SGD-momentum
was initialized at 0.001 for all runs. The betas (β1, β2) in Adam and AMSGrad set set
to the recommended defaults of 0.9 and 0.999. The momentum in SGD was set to 0.9.

Details of logistic regression task and Fisher error analysis

In the logistic regression experiment we generate random data from two classes using
the sklearn.datasets.make regression utility. The generated dataset contains 500
samples of two dimensions so the results can be easily interpreted.

We use a similar approach to compute the Fisher error for the sample and shrunk
Fishers. In this case, we generate additional datasets using the sklearn utility of
varying dimenion and batch size. When the model is small, as in this experiment, the
curvature can be computed fully, as opposed to observed through curvature-vector
products. The true curvature is computed by calculating the curvature over a very
large data sample (we use 105 samples). Finally, the error is computed as:

λtrue1 = ρ(Ctrue)

λest1 = ρ(Cest)

error = |λtrue1 − λest1 |.

As shown in Section 5.2 of the paper, the shrinkage reduces the error in the
curvature matrix.

MNIST and SVHN

Hyperparameter Value

Learning rate 0.001 1

Learning rate decay factor 1/
√

epoch
Network structure MLP(784, 100, 10)
Activation function ReLU
Lanczos k (where applicable) 10
CG damping (when not shrunk) 0.0001
CG iters 10
β1 (where applicable) 0.1
β2 (where applicable) 0.1
Epochs 10
Batch size [125, 250, 500, 1000]

Table D.1: MNIST Hyperparameters

The hyperparameters in the SVHN experiment are exactly the same as MNIST
except that the model used was MLP(1024,256,10) and the images were transformed
to grayscale.

1AdaCurv-Adam and AdaCurv-AMSGrad with batch sizes of 125 and 250 use learning rates of
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Reinforcement Learning with PyBullet

The RL experiments are performed in the Bullet Physics Simulator (Coumans and
Bai, 2018). Note that the tasks in this simulator are tuned to be more realistic than
those crafted for MuJoCo (Todorov et al., 2012) thus the performance of the learned
policy is not directly comparable.

Hyperparameter Value

Steps per policy update 5000
Policy network structure MLP(obs d, 64, act d)
Policy activation function Tanh
Policy learning rate 0.005
Critic structure MLP(obs d, 64, 64, 1)
Critic activation function ReLU
Critic batch size 64
Critic L2 regu. coeff. 0.001
Critic epochs / policy update 2
Critic learning rate 0.001
Total steps 1000000
Discount factor γ 0.995
Generalized advantage est. λ 0.97
Lanczos k (where applicable) 5
CG damping (when not shrunk) 0.0001
CG iters 10
β1 (where applicable) 0.1
β2 (where applicable) 0.1

Table D.2: RL Hyperparameters

Matrix Completion for Estimating Natural Disaster Trends

In our matrix completion experiment we use climate models from six international
institutes. Table D.3 lists the models used in our experiment. There is data available
for RCP 4.5 and 8.5 for each of these models.

The sparse matrix is of dimension 15 × 2412 The rows represent 1 historical
data, 5 models for each of air and sea temperature, 1 NOAA billion dollar costs,
1 NOAA billion dollar fatalities. The matrix columns represent months from 1900
through 2100. We use a model of rank 5 and represent the matrix R ≈ AB>,
where R ∈ R15×2412,A ∈ R15×5, and B ∈ R2412×5. We optimize the objective with
batch sizes of 5000 and a learning rate of 0.01 that is set to decay when progress
on the objective plateaus. Because this objective does not have a clear probabilistic
interpretation, we employ Gauss-Newton curvature for this task.

Finally, we gratefully acknowledge the World Climate Research Programme’s
Working Group on Coupled Modelling, which is responsible for CMIP, and we thank

0.0001 and 0.0005, respectively.

56



the climate modeling groups (listed in Table D.3 of this paper) for producing and
making available their model output.

Institute Model

CCCma CanESM2
CNRM CNRM-CM5
NASA GISS GISS-E2-H
NIMR/KMA HadGEM2-A0
IPSL IPSL-CM5A-MR
MPI-M MPI-ESM-MR

Table D.3: Climate Models Used in Matrix Completion Experiment.
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