

Analyzing the Opportunities for NIPAAm Dehumidification in Air Conditioning Systems

by

Jordan Daniel Kocher

A Thesis Presented in Partial Fulfillment

of the Requirement for the Degree

Master of Science

Approved April 2019 by the

Graduate Supervisory Committee:

Robert Wang, Chair

Patrick Phelan

Kristen Parrish

ARIZONA STATE UNIVERSITY

May 2019

i

ABSTRACT

When air is supplied to a conditioned space, the temperature and humidity of the

air often contribute to the comfort and health of the occupants within the space. However,

the vapor compression system, which is the standard air conditioning configuration,

requires air to reach the dew point for dehumidification to occur, which can decrease

system efficiency and longevity in low temperature applications.

To improve performance, some systems dehumidify the air before cooling. One

common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture

out of the air while rotating through circular housing. This system improves performance,

especially when the desiccant is regenerated with waste or solar heat; however, the heat of

regeneration is very large, as the water absorbed during dehumidification must be

evaporated. N-isopropylacrylamide (NIPAAm), a sorbent that oozes water when raised

above a certain temperature, could potentially replace traditional desiccants in

dehumidifiers. The heat of regeneration for NIPAAm consists of some sensible heat to

bring the sorbent to the regeneration temperature, plus some latent heat to offset any liquid

water that is evaporated as it is exuded from the NIPAAm. This means the NIPAAm

regeneration heat has the potential to be much lower than that of a traditional desiccant.

Models were created for a standard vapor compression air conditioning system, two

desiccant systems, and two theoretical NIPAAm systems. All components were modeled

for simplified steady state operation. For a moderate percent of water evaporated during

regeneration, it was found that the NIPAAm systems perform better than standard vapor

compression. When compared to the desiccant systems, the NIPAAm systems performed

ii

better at almost all percent evaporation values. The regeneration heat was modeled as if

supplied by an electric heater. If a cheaper heat source were utilized, the case for NIPAAm

would be even stronger.

Future work on NIPAAm dehumidification should focus on lowering the percent

evaporation from the 67% value found in literature. Additionally, the NIPAAm cannot

exceed the lower critical solution temperature during dehumidification, indicating that a

NIPAAm dehumidification system should be carefully designed such that the sorbent

temperature is kept sufficiently low during dehumidification.

iii

Dedicated to my family: Eric, Vickie, Alison, Molly, and Lucy.

iv

ACKNOWLEDGMENTS

 I would like to acknowledge Dr. Robert Wang, who served as both my Master’s

and undergraduate thesis advisor. Since joining his research group, Dr. Wang has imparted

much of his knowledge and experience to me. He has helped prepare me for graduate

school and my future career, regardless of the path I choose. Over the years Dr. Wang has

introduced me to many topics of research in which I am now greatly interested, and for that

I am very thankful.

 Additionally, I would like to acknowledge and thank Dr. Patrick Phelan and Dr.

Kristen Parrish for serving on my thesis committee. Dr. Phelan also served on my

undergraduate thesis committee and taught several of the courses I took as a Master’s

student; I am very grateful of the knowledge he has imparted to me over the years.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii

TABLE OF FIGURES ... ix

LIST OF NOMENCLATURE ... xiii

CHAPTER

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 HVAC Review .. 2

1.3 Desiccant Dehumidification Review .. 4

1.4 NIPAAm Review .. 7

1.5 Objectives ... 8

2 METHODS .. 11

2.1 Overview .. 11

2.2 System Model Configurations .. 16

2.2.1 Vapor Compression Only ... 16

2.2.2 Desiccant Dehumidification and Vapor Compression Cooling 19

2.2.3 NIPAAm Dehumidification and Vapor Compression Cooling 23

2.2.4 Desiccant Dehumidification and Evaporative Cooling............................... 31

2.2.5 NIPAAm Dehumidification and Evaporative Cooling 33

2.3 Sub-system and Component Models .. 34

2.3.1 Vapor Compression Evaporator .. 35

2.3.2 Vapor Compression Condenser and Expansion Valve 39

vi

CHAPTER Page

2.3.3 Air Conditioning Compressor .. 41

2.3.4 Dehumidifier ... 41

2.3.5 Heat Exchanger ... 42

2.3.6 Regeneration ... 43

2.3.7 Evaporative Cooler ... 44

2.4 Conditioned Space Transient Models ... 45

2.5 Graphical User Interface ... 46

2.6 Selection of Various Values ... 46

2.6.1 Selection of NIPAAm Regeneration Temperature 46

2.6.2 Selection of Other Values Regarding the Various Air Conditioning System

Configurations... 47

2.6.3 Selection of Values for the Vapor Compression System 48

3 RESULTS AND DISCUSSION .. 51

3.1 List of Cases Analyzed ... 51

3.2 Case 1: The Pennington Cycle .. 53

3.3 The Recirculation Cycle ... 59

3.4 The Hybrid Cycle ... 64

3.5 Supermarket/Ice Rink Case Study .. 68

3.6 Analyzing the NIPAAm Systems for a Higher Regeneration Temperature ... 71

3.7 Analyzing the Effect Seen by Changing the NIPAAm Start Temperature 75

3.8 Revisiting Case 3 with Waste Heat Used for Dehumidifier Regeneration 77

3.9 Revisiting Case 3 with Various Heat Exchanger Effectiveness Values 80

vii

CHAPTER Page

4 CONCLUSIONS AND RECOMMENDATIONS .. 83

REFERENCES ... 87

APPENDIX

A EXPLANATION OF GRAPHICAL INTERFACE AND PYTHON SCRIPTS ... 89

B PYTHON CODE FOR “GUI.PY” ... 113

C PYTHON CODE FOR “HOUSE_AIR.PY” .. 168

D PYTHON CODE FOR “HOUSE_AIR_EVAP_COOL.PY” 177

E PYTHON CODE FOR “AC.PY” ... 185

F PYTHON CODE FOR “HX_AC_EVAP.PY” ... 190

G PYTHON CODE FOR “HX_AC_COND.PY” .. 193

H PYTHON CODE FOR “DEHUM.PY” .. 195

I PYTHON CODE FOR “PSYPLOT.PY” ... 197

J PYTHON CODE FOR “HX.PY” ... 202

K PYTHON CODE FOR “RH.PY” ... 204

L PYTHON CODE FOR “T_S.PY” .. 206

M PYTHON CODE FOR “X.PY” .. 208

N PYTHON CODE FOR “X_S.PY” ... 210

viii

LIST OF TABLES

Table Page

3.1.1: Description of Cases Analyzed ... 52

3.2.1: Case 1 Results for Vapor Compression and Desiccant Systems 55

3.2.2: Case 1 Results for NIPAAm Dehumidification and Vapor Compression Cooling 56

3.2.3: Case 1 Results for NIPAAm Dehumidification and Evaporative Cooling 56

3.3.1: Case 2 Results for Vapor Compression and Desiccant Systems 61

3.3.2: Case 2 Results for NIPAAm Dehumidification and Vapor Compression Cooling 61

3.3.3: Case 2 Results for NIPAAm Dehumidification and Evaporative Cooling 62

3.4.1: Case 3 Results for Vapor Compression and Desiccant Systems 65

3.4.2: Case 3 Results for NIPAAm Dehumidification and Vapor Compression Cooling 65

3.4.3: Case 3 Results for NIPAAm Dehumidification and Evaporative Cooling 66

3.5.1: Case 4 Results for Desiccant Dehumidification and Vapor Compression Cooling 69

3.5.2: Case 4 Results for NIPAAm Dehumidification and Vapor Compression Cooling 70

3.6.1: Case 3 Results for NIPAAm Dehumidification and Vapor Compression Cooling

with a Regeneration Temperature of 50 °C .. 72

3.6.2: Case 3 Results for NIPAAm Dehumidification and Evaporative Cooling with a

Regeneration Temperature of 50 °C ... 72

3.7.1: Case 3 Results for NIPAAm Dehumidification and Vapor Compression Cooling

with Various NIPAAm Start Temperatures .. 76

ix

TABLE OF FIGURES

Figure Page

1.1.1: Desiccant Wheel with a Dehumidification Section (Top) and Regeneration Section

(Bottom) .. 2

1.3.1: Desiccant Air Conditioning Process ... 6

2.1.1: Diagram of System Airflows .. 13

2.2.1.1: Vapor Compression Only Schematic ... 17

2.2.1.2: Psychrometric Chart of Supply Air Cooled by a Vapor Compression Only Air

Conditioning System ... 18

2.2.2.1: Desiccant Dehumidification and Vapor Compression Cooling Schematic 20

2.2.2.2: Psychrometric Chart for Supply Air in a Desiccant Dehumidification and Vapor

Compression Cooling System ... 20

2.2.3.1: NIPAAm Dehumidification and Vapor Compression Cooling Schematic 23

2.2.3.2: Proposed Design for a Rotary NIPAAm Dehumidifying Wheel 25

2.2.3.3: NIPAAm Moisture Absorption Capacity for Various Temperature and Relative

Humidity Values ... 28

2.2.3.4: Normalized Water Content as a Function of Temperature for Various NIPAAm

Gels ... 28

2.2.3.5: Ratio of Liquid Water Collected During Regeneration to Total Water Absorbed

by the NIPAAm .. 30

2.2.4.1: Desiccant Dehumidification and Evaporative Cooling Schematic 31

x

Figure Page

2.2.4.2: Psychrometric Chart for Supply Air in a Desiccant Dehumidification and

Evaporative Cooling System... 32

2.2.5.1: NIPAAm Dehumidification and Evaporative Cooling Schematic 33

2.3.1.1: Determining the Outlet Humidity Ratio. Illustrated on the Left is the Case When

the Desired Outlet Temperature is Higher than the Saturation Temperature, and the

Humidity Ratio is Constant. On the Right is the Process if the Desired Outlet

Temperature is Lower than Saturation, at Which Point the Process Follows the Saturation

Curve and the Outlet Air is Saturated at the Desired Outlet Temperature. 36

2.3.7.1: Psychrometric Charts of the Supply Air Process, with a Process That Could Not

Meet the Desired Output (Left) and a Process That Could (Right). The Points in Green

Are the Inlet States, and the Points in Blue Are the Desired Outlet States. 45

3.2.1: Pennington Cycle Schematic (Top) and Psychrometric Process (Bottom) 54

3.2.1: Case 1 COP Results for the Vapor Compression Cooling Configurations............. 58

3.2.2: Case 1 COP Results for the Evaporative Cooling Configurations 59

3.3.1: Recirculation Cycle Schematic (Top) and Psychrometric Process (Bottom) 60

3.3.1: Case 2 COP Results for the Vapor Compression Cooling Configurations............. 63

3.3.2: Case 2 COP Results for the Evaporative Cooling Configurations 63

3.4.1: Case 3 COP Results for the Vapor Compression Cooling Configurations............. 67

3.5.1: Case 4 COP Results for the Vapor Compression Cooling Configurations............. 71

3.6.1: Case 3 COP Results for the Vapor Compression Cooling Configurations, with an

Added Curve for NIPAAm Regeneration at 50 °C ... 73

xi

Figure Page

3.8.1: Case 3 COP Results for the Vapor Compression Cooling Configurations, with a

Waste Heat Source Considered for Regeneration ... 78

3.9.1: Case 3 COP Results for the Vapor Compression Cooling Configurations, with Heat

Exchanger Effectiveness Varied ... 81

3.9.2: Case 3 COP Results for the Evaporative Cooling Configurations, with Heat

Exchanger Effectiveness Varied ... 81

4.1: Conceptual Design for a NIPAAm Wheel with Housing Shown (Left) and Not

Shown (Right). NIPAAm Is Placed in the Annular Space (Shown in Blue), Supply Air

Enters through the Axle and Flows through the Annular Space, and Process Air Flows

through the Heat Exchanger Tubes. .. 85

A.1: Control Volume for the Air within the House That Is Being Conditioned, with Mass

Flows, External Heat Gain, and Internal Moisture Gain .. 90

A.2: Initial Properties for the Air within the Conditioned Space 93

A.3: Separated Supply and Return Air within the Conditioned Space 93

A.4: Page Two of the GUI – Configuration Selection .. 101

A.5: Page Three of the GUI – Inputs .. 102

A.6: Page Four of the GUI with Vapor Compression Configuration Selected 103

A.7: Page Four of the GUI with the Psychrometric Chart Selected as the Main Figure 104

A.8: Page Four of the GUI with the Desiccant Dehumidification and Vapor Compression

Cooling Configuration Selected .. 105

A.9: Page Four of the GUI with the Psychrometric Chart as the Main Figure and the

Desiccant Dehumidification and Vapor Compression Cooling Configuration Selected 106

xii

Figure Page

A.10: Page Four of the GUI with the NIPAAm Dehumidification and Vapor

Compression Cooling Configuration Selected.. 107

A.11: Page Four of the GUI for the Evaporative Cooling Configurations 108

A.12: Humidity Ratio vs Temperature GUI Plot Changing with Regeneration

Temperature. Plots are Shown for a Regeneration Temperature that is Impossible (Left)

and Possible (Right) Based on the Position of the Process Air Outlet Temperature

Relative to the Saturation Curve. The Inset is the Slider That Controls Regeneration

Temperature. ... 110

A.13: Page Four of the GUI with the NIPAAm Dehumidification and Evaporative

Cooling Configuration Selected .. 111

xiii

LIST OF NOMENCLATURE

𝐶 heat rate, i.e.: the product of mass flow rate and specific heat

∆𝐶 absorbed moisture per unit sorbent mass

𝐶𝑂𝑃 coefficient of performance

𝑐𝑝 specific heat

�̇� electrical power

ℎ specific enthalpy

𝑚 mass

�̇� mass flow rate

�̇� rate of heat transfer

𝑅𝐻 relative humidity

𝑇 temperature

𝑈𝐴 heat transfer coefficient

𝑉 volume

�̇� compressor power

𝑥 humidity ratio

Subscripts

𝑎 dry air

𝑑𝑒𝑠 desiccant

𝑒 evaporator

𝑓 final

𝐻𝑋 heat exchanger

𝑖 inlet

𝑖𝑠𝑒𝑛 isentropic

o outlet

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 describes the properties of the outside air

𝑜𝑢𝑡𝑠𝑖𝑑𝑒, 𝑝 flow rate of outside air that is sent to the process air stream

𝑜𝑢𝑡𝑠𝑖𝑑𝑒, 𝑠 flow rate of outside air that is sent to the supply air stream

𝑝 process

𝑟 return

𝑟𝑒𝑓 refrigerant

𝑟𝑒𝑡𝑢𝑟𝑛 denotes the total return air flow rate and properties of the return air

𝑟𝑒𝑡𝑢𝑟𝑛, 𝑝 flow rate of return air that is sent to the process air stream

𝑟𝑒𝑡𝑢𝑟𝑛, 𝑠 flow rate of return air that is sent to the supply air stream

𝑠 supply

𝑠𝑎𝑡 saturated

𝑡𝑜𝑡 total air (dry air plus moisture)

𝑣 water vapor

𝑉𝐶 vapor compression

𝑤 liquid water

xiv

Greek letters

𝜀 heat exchanger effectiveness

𝜂 efficiency

𝜔 rotational speed

1

1 INTRODUCTION

1.1 Background

Dehumidification is a process that is useful in many scenarios. Indoor air must often

have a relative humidity within a certain range to produce comfortable conditions for

occupants and inhibit mold growth. The EPA states that the relative humidity of indoor air

should remain between 30 and 60% to inhibit the growth of mold, while ASHRAE states

that relative humidity should remain below 65% for human comfort [1]. Certain types of

buildings, like supermarkets and ice rinks, require precise and often relatively low humidity

levels [2]. Thus, it is important that the heating, ventilation, and air conditioning (HVAC)

system of a building properly controls the air humidity level, as well as temperature.

The humidity of indoor air can be controlled through several means. One of the

most common methods, and often the simplest, is to use a traditional vapor compression

refrigeration cycle air conditioner. At the moment, vapor compression air conditioning is

the most prominent method of providing cool air to a space [3], and these systems require

no additional components to dehumidify the air, as the cooling and dehumidification takes

place simultaneously. However, in certain scenarios, these systems can be inefficient or

ineffective, at which point a supplemental dehumidifying component becomes necessary

to make the system cost effective or to reach the desired humidity. One such dehumidifier

is a rotary desiccant wheel. This component, pictured below, absorbs moisture out of the

air and into the desiccant material.

2

Fig. 1.1.1: Desiccant wheel with a dehumidification section (top) and regeneration

section (bottom) [2]

To allow for continuous use, the water that is absorbed in the dehumidification portion of

the wheel must be desorbed and evaporated off, which requires heat input. While desiccant

dehumidification provides an improvement to performance and efficiency in many

scenarios, the efficiency would be improved further if the dehumidifying wheel required

less energy input for regeneration.

1.2 HVAC Review

The HVAC system within a building provides air that is fresh (through ventilation)

and comfortable (through heating or cooling, depending on the outdoor conditions). As

well as controlling temperature, the HVAC system controls the humidity of the air, as a

combination of temperature and humidity determine the comfort of building occupants [1].

Most HVAC systems control humidity by either cooling the supply air below the dew point,

at which point moisture in the air is forced to condense as the air continues to cool, or by

absorbing moisture out of the air [2]. The dew point of air at a given humidity ratio is the

3

temperature at which the air becomes saturated with moisture and cannot cool any further

without giving up some moisture. Vapor compression HVAC systems, which are the

dominant type of system used to cool buildings [3], utilize the dew point condensation

method of dehumidification. Vapor compression refrigeration systems contain four main

components: a compressor, condenser, expansion valve, and evaporator. These

components create a refrigeration cycle; first, refrigerant vapor enters the compressor, at

which point the temperature and pressure are significantly increased. Next, the superheated

vapor enters the condenser, at which point a fan blows outside air over the condenser coils,

which cools the refrigerant and causes it to condense. After leaving the condenser, the

liquid refrigerant enters the expansion valve, at which point it cools and drops to a lower

pressure. Finally, the refrigerant flows through the evaporator. When the cool refrigerant

flows through the evaporator, which is placed within the building, a fan blows supply air

over the evaporator coils. The supply air is cooled by the coils and sent to the conditioned

space. During this cooling process, if the evaporator coils are significantly colder than the

dew point of the supply air, some of the moisture is forced to condense out of the air, thus

decreasing the humidity ratio of the air.

In certain locations, ventilation of fresh, outside air into buildings can significantly

increase the latent load (moisture to be removed) of the air supplied to the conditioned

space. Due to increased concern about the effects of indoor air quality on occupant health,

building ventilation rates have increased over the years [2]. When the ventilation

constraints in a humid location require a significant portion of outside air to be provided to

the space, discomfort associated with the air can occur in one of two ways. It is possible

4

that the vapor compression air conditioner will not be able to dehumidify the air to a

comfortable humidity level, due to a lack of cooling power, or due to an inability to reach

a sufficiently low evaporator temperature. It is also possible that the vapor compression

system is able to dehumidify the air sufficiently, but the dew point of the dry air is so low

that it becomes too cold to be comfortable for the occupants. In this scenario, the air may

need to be reheated to reach comfortable levels, which would introduce inefficiency to the

overall process [2].

In certain cases, condensation based dehumidification from vapor compression

systems is the most desirable method for dehumidifying air, as vapor compression systems

are common, and they often have relatively high coefficient of performance (COP) values.

However, in many scenarios, the coupling of outlet temperature and humidity associated

with condensation based dehumidification makes a separate dehumidification system

desirable.

1.3 Desiccant Dehumidification Review

While vapor compression air conditioning systems are capable of dehumidifying

air, there are many cases in which dehumidification by cooling the air beyond its dew point

is ineffective or inefficient. When the dew point of the cooled supply air is below the

freezing point of water, frost will accumulate on the evaporator coils as the condensed

moisture begins to freeze, which can negatively affect performance. This scenario is

common in buildings which require that the humidity or temperature of the space be kept

at a significantly low value, such as supermarkets and ice rinks [2]. Aside from issues with

5

frost, there are some scenarios where the required humidity of the supply air corresponds

to a dew point that is too low for comfort, in which case the conditioned air leaving the

evaporator coils must be reheated before it is supplied to the conditioned space [2]. For

these scenarios, it would be more efficient to dehumidify the air to the desired humidity

ratio first, after which the air could be cooled to, but not beyond, the dew point, thus

preventing the buildup of frost on the evaporator coils. A desiccant dehumidifier is an

example of a device that could be place in-line with a traditional cooling system to

dehumidify the air first. While there are many types of desiccant dehumidifiers, the rotary

solid desiccant wheel is a commonly used variation, as it allows for constant use, as

pictured in Fig. 1.1.1. Air is passed over the desiccant in the wheel, and the difference in

vapor pressure between the desiccant surface and the air causes the desiccant to absorb the

moisture [4]. During the absorption process, the heat is released from the water vapor to

the air and desiccant material. To pre-cool the supply air before sending it to the cooling

system, a heat exchanger can be utilized to transfer heat between the supply air and a stream

of process air, which is often a combination of outside air and return air from the

conditioned space. This pre-cooling brings the temperature of the supply air closer to room

temperature and allows the vapor compression cooling system to do less work for the same

overall process. The pre-cooling of the supply air also serves to pre-heat the process air,

which can then be used to regenerate the saturated desiccant in the wheel. Usually, the heat

from the heat exchanger is not enough to heat the process air to the regeneration

temperature necessary to dry out the desiccant, in which case a supplemental heat source

is required. While an electric heater could be used as the heating device, some systems

6

utilize natural gas as the heat source. In many of these scenarios, the difference between

the price of natural gas and on-peak electricity is leveraged and the system is run during

peak hours to reduce the electricity load associated with the vapor compression system [2].

Other systems utilize solar or waste heat to regenerate the desiccant [2]. These scenarios

are desirable as they require no extra fuel cost for regeneration, but the heat source must

be readily available and able to reach the required regeneration temperature.

Desiccant dehumidification can be an economic and efficient method of removing

moisture when the latent load of the air is high, and the method of regeneration is cost

effective. However, desiccant dehumidification also presents another interesting

application in desiccant air conditioning. Desiccant air conditioning is simply a system that

utilizes a desiccant dehumidifier in line with a heat exchanger and an evaporative cooler

[4]. In this configuration, the supply air is dried and heated by the dehumidifier, pre-cooled

by the heat exchanger, and humidified and cooled by the evaporative cooler. The pre-

cooling from the heat exchanger allows for a net cooling and drying process to occur, as

illustrated on the psychrometric chart in the figure below.

Fig. 1.3.1: Desiccant air conditioning process

7

This type of system can be desirable for two reasons. Desiccant air conditioning uses water

to achieve the refrigeration effect, while vapor compression systems use

hydrofluorocarbons, which have high global warming potentials [5]. Additionally, if the

system is regenerated with waste heat, solar heat, or natural gas, desiccant air conditioning

can be cheaper than a vapor compression system in locations where electricity is relatively

expensive. If the consumption of water is favorable to the consumption of electricity,

desiccant air conditioning can serve as a viable replacement to vapor compression air

conditioning. However, depending on the operating conditions and system design, the

required regeneration temperature can exceed 100 °C [4]. A desiccant material with a lower

regeneration temperature could significantly improve the efficiency and cost effectiveness

of desiccant dehumidifiers and desiccant air conditioning systems.

1.4 NIPAAm Review

Traditional desiccants are regenerated by causing the absorbed water to desorb,

which requires enough heat to offset the energy of bonding between the water molecules

and the sorbent, and enough heat to vaporize the water molecules [6]. However, there are

certain sorbents that, in response to a slight temperature change, give off the absorbed water

as a liquid. If one of these materials were leveraged properly in a desiccant dehumidifier,

it could be regenerated with far less heat than a traditional desiccant.

Poly(N-isopropylacrylamide) (PNIPAAm) is a hydrogel that responds to a change

in temperature. When the polymer is raised above its lower critical solution temperature

(LCST), it changes from hydrophilic to hydrophobic. This means the PNIPAAm tends to

8

absorb moisture out of air when it is below the LCST, but it will ooze some of the absorbed

moisture when it is raised above the LCST. The LCST of PNIPAAm is approximately 32

°C [7]. Sodium alginate (Alg) is a highly hydrophilic material, and researchers created an

interpenetrating polymer network (IPN) gel that consisted of PNIPAAm chains, to ooze

water upon temperature response, and Alg chains to improve the absorption capacity of the

gel [7]. While the researchers in this group also created several other materials based on

N-isopropylacrylamide (NIPAAm), the main focus of their research was on the IPN gel.

The researchers were able to produce a sample that absorbed moisture out of humid air

below the LCST and regenerated by giving off a mix of liquid water and water vapor when

raised above the LCST [7]. To see the maximum potential of a thermo-responsive

NIPAAm based hydrogel, the NIPAAm should be synthesized and the system should be

constructed such that the amount of water that is evaporated during regeneration is

minimized, as this is the scenario in which the least amount of heat is necessary to drive

regeneration. Additionally, the NIPAAm sorbent must stay below the LCST during

dehumidification, otherwise the NIPAAM will be unable to sustain the dehumidification

process. This presents a potential challenge, as the supply air heats up during

dehumidification, and it is unclear how much heat from the dehumidification process will

be transferred to the NIPAAm.

1.5 Objectives

The objective of this thesis is to present an analysis of a dehumidifier with NIPAAm

as the sorbent. A simple steady state model was created for the NIPAAm dehumidifier, and

9

system-level models were created for a NIPAAm dehumidifier in series with a vapor

compression cooling system, as well as a NIPAAm dehumidifier in series with an

evaporative cooler. To assess the performance of the proposed NIPAAm dehumidification

process, models were created for a standard vapor compression system, a desiccant

dehumidifier in series with a vapor compression cooling system, and a traditional desiccant

air conditioning system. Cases were run for all five models, and the performance of each

system configuration was compared.

While the goal of this report is to highlight the general potential of any thermo-

responsive NIPAAm hydrogel, the PNIPAAm/Alg IPN was the specific material that was

modeled. For the sake of simplicity, the term “NIPAAm” is hereafter used to refer to the

PNIPAAm/Alg IPN.

Because the models created for this report are system-level models that do not

capture certain details, such as the dynamic temperature response of the NIPAAm during

dehumidification, it is simply assumed that the NIPAAm temperature does not reach the

LCST during dehumidification (as this would stop the dehumidification process). This,

however, is a non-trivial qualification, and it is unclear under what circumstances this is a

valid assumption. A brief discussion is presented at the end of the report regarding the

mitigation of temperature rise within the NIPAAm during dehumidification, and a design

for an isothermal NIPAAm dehumidifier is presented.

After running the models for various cases, it was found that there is significant

potential for a NIPAAm dehumidifier that could be designed to generally behave as it was

modeled in this report. For high latent loads, the NIPAAm dehumidification and vapor

10

compression cooling method was found to perform better than standard vapor compression,

even when the percent of water evaporated during NIPAAm regeneration was high. For

cases with a lower latent load, the NIPAAm dehumidification and vapor compression

cooling outperformed standard vapor compression cooling for low percent evaporation

values. The NIPAAm dehumidification and vapor compression cooling model was found

to outperform the desiccant dehumidification and vapor compression cooling model in

every case. The NIPAAm dehumidification and evaporative cooling was found to be much

more efficient than desiccant dehumidification and evaporative cooling when at low

percent evaporation values, an as the percent evaporation increased, the NIPAAm

efficiency was found to approach the efficiency of the desiccant system. When waste heat

source is used, the NIPAAm desiccant systems require the same amount of electricity input,

but the NIPAAm requires less heat than the desiccant to regenerate, and the heat can be

supplied at a lower temperature for the NIPAAm.

11

2 METHODS

2.1 Overview

To assess the potential of NIPAAm as a dehumidifying agent in HVAC

applications, system models were created in Python for several different air conditioning

configurations. One model was created for a standard vapor compression system, models

were created for two systems containing desiccant dehumidification, and models were

created for two systems containing NIPAAm dehumidification. The system models take

inputs for the temperature and humidity of the air at the system inlet, as well as the desired

temperature and humidity at the system outlet. The components for each system were

modeled for steady state operation, and, upon input, the models determine the

characteristics for each component, such as sorbent mass or electrical power that is drawn,

that are necessary to bring the inlet air to the required outlet conditions. The component

models are combined, by passing the outputs of an upstream component as inputs to the

component immediately downstream, to form the overall system models. After the

characteristics of each component are determined, the system model sums the required

power input to all of the components and determines the COP by dividing the rate of

cooling by the total power input. Aside from required power and COP, the models also

output psychrometric charts of the processes. One of the desiccant systems and one of the

NIPAAm systems utilize evaporative cooling; for these systems, the models also output

the amount of water consumed by the evaporative cooler that is necessary to achieve the

desired cooling process. The two NIPAAm configurations also output the amount of liquid

12

water that is reclaimed during regeneration. A graphical interface was created in Python to

display the outputs of each system model.

The function of each system model is to determine the energy that must be supplied

to the system in order to achieve a desired cooling process. The user inputs the desired

cooling provided by the system in the form of air temperature and humidity at the system

inlet and outlet. The following is a list of the model inputs:

• Thermostat set temperature

• Indoor air humidity ratio

• Outdoor air temperature

• Outdoor air humidity ratio

• Desired temperature of the supply air

• Desired humidity ratio of the supply air

Once the values are set by the user, the initial temperature of the indoor air is set to 5/9 °C

(1 °F) higher than the thermostat set temperature input by the user, as it is assumed that the

air conditioning would switch on once the indoor temperature is 1 °F greater than the

thermostat setting.

In the configurations modeled in this paper, the supply air is a mix of indoor return

air and outdoor air. The air that returns from the conditioned space is often cooler and drier

than the outdoor air, and thus increases system efficiency, while the outdoor air is fresh

and improves ventilation. Before any dehumidification or cooling occurs, some mass flow

rate of return air, ṁreturn,s, is combined with some mass flow rate of outside air, ṁoutside,s,

to form the supply air flow rate, ṁsupply. Additionally, some of the configurations that were

13

modeled utilize a “process” air stream to regenerate the dehumidifier. The process air

stream is also a combination of return and outside air. The separate air streams are

illustrated in the graphic below, where the black lines with arrows are air streams; the return

air stream splits in two, with some portion being sent to the supply air stream, and the

remainder being sent to the process air stream.

Fig. 2.1.1: Diagram of system airflows

Within the model, it is assumed that the supply and return air flow rates are the only

airflows in or out of the house (i.e.: there is no infiltration or passive ventilation). Thus, to

maintain constant pressure within the house, the supply air mass flow rate must be equal

to the return air mass flow rate. Additionally, it is often advantageous for the process air

flow rate to be equal to the supply air flow rate, as explained later in Section 2.2.2. Thus,

the following equation holds true.

14

 �̇�𝑠𝑢𝑝𝑝𝑙𝑦 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛 = �̇�𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (2.1)

As seen in Fig. 2.1.1 above, some of the return air is provided to the supply air (ṁreturn,s),

while the remainder is provided to the process air (ṁreturn,p), as illustrated in the equation

below.

 �̇�𝑟𝑒𝑡𝑢𝑟𝑛 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 + �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑝 (2.2)

When combining the previous equation with Eq. 2.3 and 2.10, it can be seen that the

magnitude of the mass flow rate of the return air that is sent to the process air stream is the

same as the magnitude of the mass flow rate of outdoor air that is sent to the supply air.

Additionally, it can be seen that the magnitude of mass flow rate of the outdoor component

of process air is the same as the magnitude of mass flow rate of the return air component

of supply air.

 �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑝 = �̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠 (2.3)

 �̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑝 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 (2.4)

The first step of each system model is to calculate the temperature and humidity

ratio of the supply air after the return and outdoor air are mixed. This process is modeled

using the equations below, where x is the humidity ratio of the air, which is the ratio of

water vapor to dry air. The specific heats are evaluated at the average of the return and

outside temperatures.

𝑥𝑠,𝑖 =

𝑥𝑟𝑒𝑡𝑢𝑟𝑛 ∗ �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 + 𝑥𝑜𝑢𝑡𝑠𝑖𝑑𝑒�̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠

�̇�𝑠𝑢𝑝𝑝𝑙𝑦

(2.5)

15

𝑇𝑠,𝑖 =

𝑇𝑟𝑒𝑡𝑢𝑟𝑛�̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠(𝑐𝑝,𝑎 + 𝑥𝑟𝑒𝑡𝑢𝑟𝑛𝑐𝑝,𝑣)

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑖𝑐𝑝,𝑣)

+
𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒�̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠(𝑐𝑝,𝑎 + 𝑥𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑐𝑝,𝑣)

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑖𝑐𝑝,𝑣)

(2.6)

 �̇�𝑠𝑢𝑝𝑝𝑙𝑦 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 + �̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠 (2.7)

Each of the aforementioned mass flow rates is a mass flow rate of dry air. The total mass

flow rate of a given air stream is the sum of the dry air mass flow rate and the mass flow

rate of the water vapor in the air, as shown in the equation below.

 �̇�𝑡𝑜𝑡 = �̇�𝑎(1 + 𝑥) (2.8)

The specific heat or specific enthalpy of an air stream can be found by adding the dry air

property with the product of the water vapor property and the humidity ratio, as shown in

the equations below.

 ℎ𝑡𝑜𝑡 = ℎ𝑎 + 𝑥 ∗ ℎ𝑣 (2.9)

 𝑐𝑝,𝑡𝑜𝑡 = 𝑐𝑝,𝑎 + 𝑥 ∗ 𝑐𝑝,𝑣 (2.10)

All of the Python models described in this paper use a wrapper called CoolProp to access

various air and water properties, like specific heat, specific enthalpy, and temperature.

The process air stream is used for the system configurations that utilize a separate

dehumidifier. The standard vapor compression configuration, which does not include a

separate dehumidifier, does not utilize any process air. For the other configurations, the

process air is a mix of return and outside air, which, just like the supply air, must be mixed.

After the supply air mixing is modeled, the process air mixing is modeled as well, using

equations very similar to Eq. 2.5 and 2.6. The only difference is that the supply air mass

16

flow rates, ṁsupply, ṁreturn,s, and ṁoutside,s, are replaced with the process air mass flow rates,

ṁprocess, ṁreturn,p, and ṁoutside,p, respectively.

After the air mixing is modeled, the program calculates the processes necessary to

bring the supply air stream to the desired output temperature and humidity ratio specified

by the user. In determining the necessary processes, the program also calculates the

performance of the components that induce these processes, such as the dehumidifier,

process air heater, and cooling unit. From this information, the power required for each

component is determined.

2.2 System Model Configurations

2.2.1 Vapor Compression Only

To analyze the performance of a NIPAAm dehumidification system, five general

system configurations were considered and modeled through the use of several Python

scripts. The configuration of the first model consists of a traditional vapor compression

cycle air conditioning system. In this configuration, dehumidification occurs as the AC

evaporator cools the supply air past its dew point, forcing water to condense on the

evaporator coils. Because this configuration consists solely of a vapor compression air

conditioning system, this configuration is hereafter referred to as “vapor compression only”

or “standard vapor compression”. For this configuration, as well as the remaining ones, the

air supplied to the conditioned space is a mix of return air and outside air. The schematic

for this configuration is shown in the figure below.

17

Fig. 2.2.1.1: Vapor compression only schematic

As mentioned previously, the return air flow rate is set equal to the supply air flow rate to

keep constant pressure within the house. In the other configurations, some of the return air

is used for the regeneration process; however, in this configuration, no process air is need

as there is no dehumidifying wheel to regenerate, so some of the return air is exhausted to

the outside. This has the same effect as building leakage and purposeful ventilation.

An example case illustrating the general process of the supply air in a vapor

compression only configuration is shown on the psychrometric chart in the figure below.

18

Fig. 2.2.1.2: Psychrometric chart of supply air cooled by a vapor compression only air

conditioning system

To describe the performance of the system, the model calculates a COP, which depends on

the useful cooling and the power consumed by the AC compressor, as described in the

following equations, where hhouse,i is the specific enthalpy of the return air leaving the

space, hs,o is the specific enthalpy of the cooled supply air, ṁref is the mass flow rate of the

AC refrigerant, href,2 is the specific enthalpy of the refrigerant as it leaves the evaporator

and enters the compressor, and href,3 is the specific enthalpy of the refrigerant as it leaves

the compressor and enters the condenser.

 �̇�𝑐𝑜𝑜𝑙 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛ℎℎ𝑜𝑢𝑠𝑒,𝑖 − �̇�𝑠𝑢𝑝𝑝𝑙𝑦ℎ𝑠,𝑜 (2.11)

19

 �̇�𝑉𝐶 = �̇�𝑟𝑒𝑓(ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,2) (2.12)

𝐶𝑂𝑃 =

�̇�𝑐𝑜𝑜𝑙

�̇�𝑉𝐶

(2.13)

It should be noted that any pumps, fans, or blowers in this configuration or any of the

following configurations were not modeled, and thus the power required to run these

elements was not considered in any COP calculations. The compressor is assumed to be

adiabatic, but not isentropic. An isentropic efficiency was included in the calculation of the

change in specific enthalpy across the compressor; the value selected for isentropic

efficiency is discussed in Section 2.6.

2.2.2 Desiccant Dehumidification and Vapor Compression Cooling

The configuration for the second model consists of a desiccant dehumidifier in

conjunction with a vapor compression air conditioner, and this configuration is called

“desiccant dehumidification and vapor compression cooling.” The model for this system

was created such that it could be applied to any traditional desiccant, such as silica gel or

a zeolite. To model this system, a rotary desiccant wheel was selected as the

dehumidification component. The figure below shows a schematic for this configuration.

20

Fig. 2.2.2.1: Desiccant dehumidification and vapor compression cooling schematic

The general process of the supply air for this configuration is shown in the figure below.

Fig. 2.2.2.2: Psychrometric chart for supply air in a desiccant dehumidification and vapor

compression cooling system

21

At the beginning of this cycle, the supply air is sent to a portion of the desiccant wheel, at

which point the humidity ratio of the air drops while the temperature of the air rises, as the

latent heat of condensation is being converted to sensible heat within the air. When creating

the model for this configuration, it was assumed that the air leaving the desiccant wheel

has the same humidity ratio as the air leaving the evaporator coils in the previous

configuration, as this allows for a direct comparison of the two configurations. After

dehumidification, the air is then sent through a heat exchanger and pre-cooled, with the air

on the other side of the heat exchanger, the process air, being a mix of return and outside

air as well. As previously mentioned, the process air mass flow rate was set equal to the

supply air mass flow rate. This was done to ensure the temperature increase of the process

air across the heat exchanger is the same as the temperature drop of the supply air across

the heat exchanger. After pre-cooling in the heat exchanger, the supply air, now dried to

the desired humidity ratio but still hotter than desired, is sent to the vapor compression

system, where the evaporator coils can cool the air to the desired temperature.

In this configuration, less cooling is required from the AC system, as no

condensation needs to occur, which means the AC system compressor does not do as much

work. At this point, the same net cooling effect is achieved with less input electricity to the

AC system, indicating that the COP should increase. However, this configuration requires

an additional energy input in the form of heat. While one part of the desiccant wheel is

dehumidifying, the remainder must be regenerated to keep the dehumidification process

constant. To do this, heat must be put into the desiccant through the process air stream. The

hot process air causes the water to desorb and vaporize, thus drying out the desiccant. While

22

the aforementioned heat exchanger serves to pre-cool the supply air, it also serves to pre-

heat the process air; however, the temperature of the process air exiting the heat exchanger

is often insufficient to regenerate the desiccant wheel. Thus, a heating element is placed

downstream of the heat exchanger and is used to heat the process air to the required

temperature. The following equation describes the rate of heat transfer required to achieve

the regeneration temperature, where ṁprocess is the mass flow rate of the dry process air,

Tp,HX,o is the temperature of the process air as it leaves the heat exchanger, Tp,regen is the

required regeneration temperature, cp,a is the specific heat of the dry air, xp,i is the humidity

ratio of the process air, and cp,v is the specific heat of the water vapor in the process air.

 �̇�𝑟𝑒𝑔𝑒𝑛,𝑑𝑒𝑠 = �̇�𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑐𝑝,𝑎 + 𝑥𝑝,𝑖𝑐𝑝,𝑣)(𝑇𝑝,𝑟𝑒𝑔𝑒𝑛 − 𝑇𝑝,𝐻𝑋,𝑜) (2.14)

For this model, it is assumed that a lossless and perfectly efficient electric heater is used to

heat the process air, such that all electrical input, �̇�𝑟𝑒𝑔𝑒𝑛, is converted to sensible heat,

�̇�𝑟𝑒𝑔𝑒𝑛,𝑑𝑒𝑠, within the air stream. The following equation describes the COP of this

configuration and reflects the second input to the system.

𝐶𝑂𝑃 =

�̇�𝑐𝑜𝑜𝑙

�̇�𝑉𝐶 + �̇�𝑟𝑒𝑔𝑒𝑛

(2.15)

For some section of the desiccant wheel in the regenerating portion, the desiccant must be

dried out by the time it rotates back to the dehumidifying portion. In order to dry out the

desiccant at the proper rate, the process air stream must reach a certain regeneration

temperature. The temperature necessary for a desired rate of desorption depends on system

geometry and other aspects not considered in the models described within this paper; thus,

the required regeneration temperature is not obvious. To account for this, the model for

23

this configuration was designed to allow the user to select various regeneration

temperatures in the graphical interface and observe the resulting system performance.

2.2.3 NIPAAm Dehumidification and Vapor Compression Cooling

As with the previous configuration, the model for the third configuration includes

a dehumidifying wheel and a vapor compression air conditioner; however, in this

configuration, the dehumidifying material is NIPAAm. This configuration is hereafter

called the “NIPAAm dehumidification and vapor compression cooling” configuration. The

general process of the supply air for this case is the same as the previous case. The overall

system configuration for this model is very similar to the second configuration, with the

exception of the regeneration process, as shown in the figure below.

Fig. 2.2.3.1: NIPAAm dehumidification and vapor compression cooling schematic

24

While the regenerating portion of the desiccant wheel uses a hot air stream to dry the

desiccant, this process is not ideal for NIPAAm regeneration. To regenerate a traditional

desiccant, the absorbed water must be vaporized during the desorption process, which is

why a hot air stream is used. With NIPAAm, however, regeneration can occur by raising

the material above its LCST, at which point the NIPAAm transitions from hydrophilic to

hydrophobic, and the absorbed water is expelled in liquid form. In this situation, it is

desirable to have no evaporation occur while the NIPAAm is being heated, as any

evaporation would require heat that would otherwise increase the temperature of the

NIPAAm, which is the desired effect. Thus, for the NIPAAm dehumidification and vapor

compression cooling configuration, the process air stream is exhausted to the outside after

exiting the heat exchanger, and the regeneration heat is supplied directly to the regenerating

portion of the wheel.

Because the NIPAAm becomes hydrophobic above the LCST, it is important that

the NIPAAm stays below the LCST on the dehumidification side of the desiccant wheel.

Because the regeneration process involves heating it to the LCST, it is likely that some

supplemental cooling must be provided before the NIPAAm can begin the

dehumidification process again. This process is shown in the figure below, which illustrates

a potential NIPAAm dehumidification wheel design.

25

Fig. 2.2.3.2: Proposed design for a rotary NIPAAm dehumidifying wheel

The rotary NIPAAm wheel has three distinct sections. The upper section is the

dehumidification portion, where moist air enters the dehumidifier and leaves hot and dry.

The NIPAAm at the point where the upper section of the wheel begins is at some initial

temperature, TNIPAAm,i. As the wheel rotates and the NIPAAm travels clockwise, it is heated

by the sorption process. At the end of the upper section, the NIPAAm is at some final

temperature for the dehumidification process, TNIPAAm,f. The next section of the wheel,

shown in the bottom right of the figure, is where the NIPAAm is regenerated. Heaters are

placed within the wheel housing to heat the NIPAAm to the LCST, at which point it begins

draining the water. While the water is draining, some percentage of it could evaporate,

26

which would cool the NIPAAm. Heaters would then be needed for the draining section as

well, in order to maintain the LCST and offset any evaporative cooling that might occur.

The final section of the wheel contains coolers to bring the NIPAAm from the LCST to the

initial dehumidification temperature, TNIPAAm,i. It is assumed that the vapor compression

cooling system used to cool the supply air is able to provide some supplemental cooling to

reduce the NIPAAm temperature.

The energy required to regenerate the NIPAAm is the sensible heat required to raise

the NIPAAm and any absorbed water from the final dehumidification temperature,

TNIPAAm,f, to the LCST, plus the latent heat of any evaporation that occurs, plus the cooling

required to bring the NIPAAm temperature back down to TNIPAAm,i. The heaters are once

again assumed to be lossless and perfectly efficient, meaning the required heat is also the

required electricity input. For the cooler, the electricity input is the required cooling divided

by the COP of the vapor compression cooler, as it is assumed that the vapor compression

system is able to provide cooling to this portion of the wheel.

For the proposed NIPAAm wheel design, the amount of NIPAAm necessary is

dependent on the rate of dehumidification, which depends on the supply air flow rate and

humidity drop, the increase in water to NIPAAm mass ratio, ∆CNIPAAm, and the rotational

speed of the wheel, ω, which is expressed in deg/s in the equation below.

𝑚𝑁𝐼𝑃𝐴𝐴𝑚 =

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑥𝑠,𝑖 − 𝑥𝑠,𝑜)

∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚

360

𝜔

(2.16)

The required energy input can be separated into three parts: sensible heating, latent heating,

and sensible cooling. The rate of heat transfer for each of these processes its dependent on

the mass of NIPAAm and rotational speed. The equations for these energy inputs are shown

27

below, where cp,w is the specific heat of liquid water and the evaporation fraction is the

fraction of liquid water that evaporates during the draining process.

 �̇�𝑁𝐼𝑃𝐴𝐴𝑚,1 =
𝑚𝑁𝐼𝑃𝐴𝐴𝑚

360
𝜔(𝑐𝑝,𝑁𝐼𝑃𝐴𝐴𝑚 + ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥𝑐𝑝,𝑤)(𝐿𝐶𝑆𝑇

− 𝑇𝑁𝐼𝑃𝐴𝐴𝑚,𝑓)

(2.17)

 �̇�𝑁𝐼𝑃𝐴𝐴𝑚,2 =
𝑚𝑁𝐼𝑃𝐴𝐴𝑚

360
𝜔(𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)ℎ𝑓𝑔 (2.18)

 �̇�𝑁𝐼𝑃𝐴𝐴𝑚,3 =
𝑚𝑁𝐼𝑃𝐴𝐴𝑚

360
𝜔(𝑐𝑝,𝑁𝐼𝑃𝐴𝐴𝑚 + ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑖𝑛𝑐𝑝,𝑤)(𝐿𝐶𝑆𝑇

− 𝑇𝑁𝐼𝑃𝐴𝐴𝑚,𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

(2.19)

The sensible heating contains the thermal mass of liquid water because the heaters must

increase the temperature of the NIPAAm and the water contained within the sorbent,

∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥, but after this some of the water drains, so the sensible cooling needs to

decrease the temperature of NIPAAm and whatever water remains within the NIPAAm

after regeneration, ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑖𝑛 . The regeneration energy for NIPAAm, expressed as

required electrical input, is shown in the equation below, where COPcool is the COP of the

system that cools the NIPAAm in the lower left portion of the NIPAAm wheel (i.e.: the

vapor compression cooling system).

�̇�𝑟𝑒𝑔𝑒𝑛,𝑁𝐼𝑃𝐴𝐴𝑚 = �̇�𝑁𝐼𝑃𝐴𝐴𝑚,1 + �̇�𝑁𝐼𝑃𝐴𝐴𝑚,2 +

�̇�𝑁𝐼𝑃𝐴𝐴𝑚,3

𝐶𝑂𝑃𝑐𝑜𝑜𝑙

(2.20)

The absorption capacity of NIPAAm is dependent on the inlet temperature and humidity

of the supply air, as shown in the following figure.

28

Fig. 2.2.3.3: NIPAAm moisture absorption capacity for various temperature and relative

humidity values [7]

The data points were taken from these curves to form an array of NIPAAm absorption

capacity for varying air temperature and humidity. The model uses the temperature and

relative humidity of the air entering the dehumidifier to determine the absorption capacity

of the NIPAAm for the given inlet conditions. The absorption capacity is the maximum

uptake in water, relative to the mass of NIPAAm, that the NIPAAm can sustain before it

becomes saturated. NIPAAm, however, cannot feasibly be dried out completely, as shown

in the figure below.

Fig. 2.2.3.4: Normalized water content as a function of temperature for various NIPAAm

gels [7]

29

The black curve in the figure above is associated with the PNIPAAm/Alg IPN, which is

the NIPAAm configuration that was considered for the models in this paper. The curve

shows the normalized water content, which is the water absorbed over maximum

absorption capacity. From the figure, it can be seen that the NIPAAm does not completely

dry out from regeneration. After regeneration at 32 °C, the NIPAAm reaches

approximately 40% of its absorption capacity, while at 60 °C it is still at approximately

30% of it’s absorption capacity. Thus, the NIPAAm was modeled under the assumption

that it could only drain 60% of its water content at a regeneration temperature of 32 °C.

This means that NIPAAm entering the dehumidification portion of the wheel still has water

content equal to 40% of its maximum capacity. The increase in relative water content

across the dehumidification portion is then 60% of the absorption capacity, ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥,

as described in the equation below.

 ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚 = 0.6 ∗ ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥 (2.21)

The water retained by the NIPAAm after regeneration, ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑖𝑛, is then 40% of the

maximum water content.

Aside from only being able to remove 60% of the total water content within the

NIPAAm, some percentage of the water that is removed will be evaporated. While it is

desirable to drain and reclaim all of the regenerated water as a liquid, it is inevitable that

some of the water will evaporate during the draining process. The figure below is from a

study on the performance of a NIPAAm IPN gel, and it shows the ratio of water collected

in liquid form during regeneration to the total water content before regeneration.

30

Fig. 2.2.3.5: Ratio of liquid water collected during regeneration to total water absorbed

by the NIPAAm [7]

The figure above shows that approximately 20% of the total water content is reclaimed as

liquid water during regeneration. When considering that only 60% of the water content is

removed during regeneration, this means that 20% of the water content after

dehumidification is reclaimed as liquid water, 40% is evaporated during regeneration, and

40% stays absorbed within the NIPAAm. The model was written to reflect these

characteristics; however, it should be noted that the 2:1 mass ratio of evaporated water to

reclaimed liquid water that was seen during regeneration was for regeneration at 50 °C [7];

thus, at lower regeneration temperatures, that ratio should decrease.

The electrical power required to regenerate the NIPAAm wheel can be used in Eq.

2.15 to find the COP for the NIPAAm system. It is assumed that the liquid water expelled

from the wheel is simply drained, much like the water that is condensed on the evaporator

coils in the vapor compression only case. Because the evaporation fraction and the

temperatures TNIPAAm,i and TNIPAAm,f in Eq. 2.20 are not obvious for the general system

configuration that was modeled, the model was created such that the user can vary these

31

values in the graphical interface and observe the resulting regeneration energy and COP.

Based on Fig. 2.2.3.4 above, it appears that the regeneration process begins around 25 °C,

so for the cases described in Chapter 3, the value of TNIPAAm,f was set to 25 °C.

2.2.4 Desiccant Dehumidification and Evaporative Cooling

In the first three configurations, a vapor compression air conditioner was

implemented for the cooling portion of the cycle. In the following two configurations, the

vapor compression air conditioner is replaced with an evaporative cooler, which is

commonly used in desiccant air conditioning systems. The fourth configuration is a

“desiccant dehumidification and evaporative cooling” system, which, as shown in the

figure below, has the same components as the desiccant dehumidification and vapor

compression cooling configuration, except for the cooling unit.

Fig. 2.2.4.1: Desiccant dehumidification and evaporative cooling schematic

32

To achieve the desired outlet supply air conditions, the supply air is dehumidified past the

desired outlet humidity, thus over-heating and over-drying the air. The supply air is then

pre-cooled at the heat exchanger, after which the evaporative cooler increases the humidity

and further cools the air to the desired outlet humidity ratio and temperature. The general

process of the supply air for this case is shown on the psychrometric chart in the figure

below.

Fig. 2.2.4.2: Psychrometric chart for supply air in a desiccant dehumidification and

evaporative cooling system

The desiccant dehumidifier and evaporative cooler configuration is representative of a

traditional desiccant air conditioning system. In this configuration, water is consumed at

33

the evaporative cooler, and the water that is absorbed by the desiccant wheel is eventually

exhausted to the outside as vapor during regeneration. Thus, this type of system has a net

consumption of water.

2.2.5 NIPAAm Dehumidification and Evaporative Cooling

The fifth and final configuration described in this report is the “NIPAAm

dehumidification and evaporative cooling” configuration. As with the previous

configuration, it has the same components as its vapor compression counterpart, with the

exception of the cooling unit. The general process of the supply air for this configuration

is the same as the previous one. The figure below shows the system schematic.

Fig. 2.2.5.1: NIPAAm dehumidification and evaporative cooling schematic

The vapor compression cooler uses electricity to implement a refrigeration cycle

and produce cooling. The evaporative cooler in this system, however, uses the latent heat

34

of evaporation to produce cooling. Thus, when blowers and other smaller electrical

components are neglected, the evaporative cooler produces cooling without consuming

electricity. In the other NIPAAm-based configuration, which utilizes a vapor compression

cooling system, the power required for regeneration was described in Eq. 2.20 and includes

the electricity required to produce cooling. In this configuration, however, there is no

electricity required for cooling, so the term drops to zero.

Aside from the cooling unit, the only difference between this system and its vapor

compression counterpart is the regeneration water. In the NIPAAm dehumidification and

vapor compression configuration, it was assumed that the water expelled from the

regenerating NIPAAm would be drained, due to a lack of obvious use. However, in this

configuration, the evaporative cooler consumes liquid water, while the regenerating portion

of the NIPAAm wheel expels liquid water. Thus, the blue line in Fig. 2.8 represents the

expelled liquid water being sent to the evaporative cooler. Aside from the lower heat of

regeneration, this reclamation of water during regeneration could serve as another benefit

of using NIPAAm instead of a traditional desiccant.

2.3 Sub-system and Component Models

Most of the components were modeled in individual Python scripts as functions,

with top level scripts organizing the variables and passing information from one component

function to the next. Some components with simpler processes were modeled in the top

level scripts, as a separate function was not needed. The vapor compression sub-system

35

consists of a script for the evaporator coils, the condenser coils, and several top level scripts

to pass information.

Regarding the dehumidifier model, the rate of moisture removed from the air is

equivalent to the rate of absorption by the dehumidifying wheel. While the maximum

capacity of moisture absorption is determined by the absorbent and the inlet air properties,

the dynamic rate of absorption is dependent on the material, air temperature and relative

humidity, instantaneous concentration of water within the absorbent, system geometry, as

well as various flow characteristics [8]. Because the models described in this paper are

intended for system-level analysis and do not incorporate detailed information about the

components, some of these parameters are not known, thus making it difficult to accurately

model a dynamic dehumidification response from the dehumidifying wheel. Because of

this, and because the air stream properties were already chosen to be modeled as steady, it

was decided that the components would be modeled for steady state performance. This

means that the dehumidifying wheel model uses an energy balance to determine the outlet

temperature for the required humidity drop, while the models for the vapor compression

air conditioner determine the required refrigerant state points, and thus input power, to

achieve the required outlet temperature.

2.3.1 Vapor Compression Evaporator

To model for the vapor compression evaporator requires several inputs: the

temperature and humidity of the air just before it passes over the evaporator and the desired

temperature and humidity of the air after it is cooled by the evaporator. The inlet air

36

temperature and humidity are known, and the desired outlet temperature is known, so the

AC script determines if the desired outlet temperature is lower than the saturation

temperature for the given inlet air temperature and humidity. If the desired outlet

temperature is not lower than the saturation temperature, then no condensation occurs, and

the outlet humidity is the same as the inlet humidity. If the desired outlet temperature is

lower than saturation, then the outlet humidity is the saturation humidity ratio for the outlet

temperature. This is illustrated in the graphic below.

Fig. 2.3.1.1: Determining the outlet humidity ratio. Illustrated on the left is the case when

the desired outlet temperature is higher than the saturation temperature, and the humidity

ratio is constant. On the right is the process if the desired outlet temperature is lower than

saturation, at which point the process follows the saturation curve and the outlet air is

saturated at the desired outlet temperature.

For all of the cases that were modeled in this report, some dehumidification took place,

meaning all of the processes took the general form of the process shown on the right in the

figure above. The evaporator is modeled as a heat exchanger. The purpose of the evaporator

model is to determine the evaporator temperature that will bring the inlet air to the desired

outlet temperature.

37

First, the script determines the rate of heat transfer necessary to achieve the desired

outlet conditions. When no dehumidification occurs, the necessary rate of heat transfer is

described in the equation below, where TVC,i is the temperature of the air before it is cooled

(i.e.: the supply inlet air for the vapor compression only case, or the air leaving the heat

exchanger for the dehumidification and vapor compression cooling cases), and TVC,o is the

temperature of the air after it is cooled (i.e.: the supply outlet temperature, also denoted as

Ts,o).

 �̇�𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥 ∗ 𝑐𝑝,𝑣)(𝑇𝑉𝐶,𝑖 − 𝑇𝑉𝐶,𝑜) (2.22)

When dehumidification occurs across the evaporator coils, the required heat transfer rate

becomes the following, where the first term is the heat transfer required to bring the air to

saturation, the second term is sensible heat transfer that occurs during dehumidification

(i.e.: the cooling that causes the air temperature to drop along the saturation curve), and the

third term is the latent portion of the heat transfer that occurs during dehumidification (i.e.:

the cooling that causes the moisture to condense), where Tsat is the saturation temperature

for the inlet humidity ratio.

 �̇�𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 = �̇�𝑒,1 + �̇�𝑒,2 + �̇�𝑒,3 (2.23)

 �̇�𝑒,1 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑉𝐶,𝑖 ∗ 𝑐𝑝,𝑣)(𝑇𝑉𝐶,𝑖 − 𝑇𝑠𝑎𝑡) (2.24)

�̇�𝑒,2 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦 (𝑐𝑝,𝑎 +

𝑥𝑉𝐶,𝑖 + 𝑥𝑉𝐶,𝑜

2
∗ 𝑐𝑝,𝑣) (𝑇𝑠𝑎𝑡 − 𝑇𝑉𝐶,𝑜)

(2.25)

 �̇�𝑒,3 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑥𝑉𝐶,𝑖 − 𝑥𝑉𝐶,𝑜)ℎ𝑓𝑔 (2.26)

Of the terms above, �̇�𝑒,1 is the rate of heat transfer that occurs across the dry portion of the

heat exchanger (before condensation occurs), while �̇�𝑒,2 + �̇�𝑒,3 is the rate of heat transfer

38

that results across the portion where condensation occurs. The equations above must be

satisfied for the air to reach the desired outlet properties, while the equations below

describe the actual heat exchanger performance for some evaporator temperature,

Tref,evaporator.

 𝑈𝐴𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 = 𝑈𝐴𝑑𝑟𝑦 + 𝑈𝐴𝑤𝑒𝑡

�̇�𝑒,1 = 𝑈𝐴𝑑𝑟𝑦

𝑇𝑉𝐶,𝑖 − 𝑇𝑠𝑎𝑡

ln (
𝑇𝑉𝐶,𝑖 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟

𝑇𝑠𝑎𝑡 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟
)

(2.27)

�̇�𝑒,2 + �̇�𝑒,3 = 𝑈𝐴𝑤𝑒𝑡

𝑇𝑠𝑎𝑡 − 𝑇𝑉𝐶,𝑜

ln (
𝑇𝑠𝑎𝑡 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟

𝑇𝑉𝐶,𝑜 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟
)

(2.28)

The model uses an iterative scheme to find the evaporator temperature that satisfies the two

sets of equations for rate of heat transfer across the evaporator.

It is assumed that the thermal conductivity of the evaporator coils is high, such that

the temperature of the refrigerant is the same as the temperature at the exterior of the coils.

Thus, the temperature of the refrigerant flowing through the evaporator is now known. It

is also assumed that the vapor compression system regulates the mass flow rate of the

refrigerant such that the refrigerant leaving the evaporator is saturated vapor, meaning the

quality at this point is known. From the known temperature and quality, the specific

enthalpy and specific entropy of the refrigerant leaving the evaporator is known.

Additionally, since the refrigerant undergoes phase change in the evaporator, the pressure

is the saturation pressure at the known evaporator temperature.

39

2.3.2 Vapor Compression Condenser and Expansion Valve

The vapor compression condenser was modeled as a heat exchanger, much like the

evaporator. The evaporator model was implemented to determine the required evaporator

temperature, as well as the resulting refrigerant pressure and the enthalpy of the refrigerant

as it leaves the evaporator. Similarly, the condenser model was implemented to find the

condenser temperature required to complete the cycle, based on the outside air temperature.

Because the refrigerant in the evaporator is undergoing phase change, the evaporator

effectiveness is maximized for the given heat transfer coefficient and heat capacity rate of

the incoming air. The equation for heat exchanger effectiveness, ε, under this condition is

given in the equation below, where UAcond is the heat transfer coefficient for the condenser.

𝜀 = 1 − exp (−

𝑈𝐴𝑐𝑜𝑛𝑑

�̇�𝑎𝑖𝑟,𝑐𝑜𝑛𝑑 ∗ (𝑐𝑝,𝑎 + 𝑥𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑐𝑝,𝑣)
)

(2.29)

It is assumed that the refrigerant leaving the condenser must be saturated liquid, so the

condenser temperature must be high enough such that the heat exchanger facilitates the

necessary amount of heat transfer to bring the refrigerant to saturated liquid at the

condenser exit. An iterative solver was implemented to find the temperature that satisfies

several conditions. First, the rate of heat transfer at the heat exchanger must equal the rate

of heat transfer required to bring the refrigerant from the specific enthalpy as it enters the

condenser, href,3, to the specific enthalpy as it leaves the condenser, href,4.

 𝜀 ∗ �̇�𝑎𝑖𝑟,𝑐𝑜𝑛𝑑 ∗ 𝑐𝑝(𝑇𝑟𝑒𝑓,𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 − 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒) = �̇�𝑟𝑒𝑓(ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,4) (2.30)

The specific enthalpy of the refrigerant as it enters the condenser must also satisfy the

following equation describing the compressor with some isentropic efficiency, where

40

href,3,isen is the refrigerant specific enthalpy at the same pressure as href,3, but with the same

entropy as href,2.

𝜂𝑖𝑠𝑒𝑛 =

ℎ𝑟𝑒𝑓,3,𝑖𝑠𝑒𝑛 − ℎ𝑟𝑒𝑓,2

ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,2

(2.31)

Additionally, the pressure is assumed to be constant throughout the condenser. The specific

enthalpy of the refrigerant leaving the condenser can then be found from the pressure of

the refrigerant entering the condenser and a quality of zero. Because the expansion valve

is assumed to be isenthalpic, the specific enthalpy of the refrigerant leaving the condenser

must also be the specific enthalpy of the refrigerant as it enters the evaporator. Now that

the specific enthalpies of the refrigerant at the beginning and end of the evaporator are

known, and the required rate of heat transfer at the evaporator is known as well, the mass

flow rate of the refrigerant through the system can be found, as described in the equation

below.

�̇�𝑟𝑒𝑓 =

�̇�𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟

ℎ𝑟𝑒𝑓,1 − ℎ𝑟𝑒𝑓,2

(2.32)

The iterative scheme starts with a temperature just above the outside ambient and evaluates

the specific enthalpy of the refrigerant as it enters the condenser, using Eq. 2.31. It then

computes the rest of the values and finds the error produced by Eq. 2.30. The iterations

continue until the error is sufficiently small, at which point the resulting condenser values

are found. At this point, all of the state in the vapor compression cycle are defined, and all

information regarding the refrigerant is known.

41

2.3.3 Air Conditioning Compressor

The models for the evaporator and condenser are used to find the specific enthalpy

of the refrigerant leaving the evaporator and the specific enthalpy of the refrigerant entering

the condenser. These values are used to find the power used by the compressor the raise

the refrigerant pressure and temperature, as described previously in Eq. 2.8.

2.3.4 Dehumidifier

It is assumed that the dehumidifying wheel operates at steady state. Desiccant

dehumidification is close to an isenthalpic procedure [4], meaning all latent heat is

converted to sensible heat, and the enthalpy of the moist air before dehumidification is

equal to the enthalpy of the drier, hot air after the process. While simple models account

only for the latent heat [4], there is some binding energy that must also be released as heat

during sorption [6]. However, this binding energy is often small compared to the latent heat

(less than 25% of the total heat released for a certain example of desiccation [6]). To

maintain the simplicity of the model, and because the heat of adsorption for NIPAAm must

be found experimentally, the dehumidification process is modeled as isenthalpic, and only

the latent heat is considered. Additionally, it is assumed that all of the heat produced during

dehumidification is transferred to the air, and the sorbent material is assumed to stay at a

constant temperature. In reality, some of the heat will be transferred to the sorbent, and the

temperature of the sorbent will change with time. The amount of heat that is transferred to

the sorbent is based on the air properties, geometric properties, specific heat of the sorbent,

and the instantaneous adsorption uptake of the sorbent [9]. As with the dynamic rate of

42

sorption, the dynamic temperature change of the sorbent material is not considered in this

model, as many of the necessary parameters are not known. For traditional desiccants, the

temperature of the desiccant material could nominally affect the dehumidification

performance; however, for NIPAAm, the temperature of the NIPAAm could greatly affect

performance. If the NIPAAm temperature reaches the LCST during dehumidification, the

NIPAAm will stop dehumidifying the air, as it will have transitioned from hydrophilic to

hydrophobic. Thus, the dehumidification model assumes that the NIPAAm temperature

does not exceed the LCST during operation. In Chapter 3, a discussion is presented on

potential alternate configurations for the case where it is found that the NIPAAm

temperature reaches the LCST before the conditioning process is complete.

The dehumidifier model is given an input for the known inlet air temperature and

humidity ratio, as well as the desired outlet humidity ratio, and it uses an iterative solver to

find the outlet temperature that satisfies the following equation describing the isenthalpic

process, where the specific enthalpies are found through CoolProp with temperature as an

input.

 ℎ𝑎,𝑖 + 𝑥𝑖ℎ𝑣,𝑖 = ℎ𝑎,𝑜 + 𝑥𝑜ℎ𝑣,𝑜 (2.33)

2.3.5 Heat Exchanger

The heat exchanger downstream of the dehumidifier was modeled to determine the

temperature drop of the supply air and the temperature rise of the process air. The model

for this heat exchanger was written to assume a constant effectiveness of 0.99, as the

effectiveness approaches unity when the heat exchanger becomes sufficiently large, and

43

certain desiccant air conditioning cycles were described in literature with heat exchanger

effectiveness values close to unity [4]. The heat exchanger model uses the following

equation to find the rate of heat transfer between the supply and process air streams, where

Cmin is the lesser of the two heat capacity rates, as determined in the script, Ts,HX,i is the

supply air temperature as it enters the heat exchanger, and Tp,HX,i is the process air

temperature as it enters the heat exchanger.

 �̇�𝐻𝑋 = 𝜀 ∗ 𝐶𝑚𝑖𝑛(𝑇𝑠,𝐻𝑋,𝑖 − 𝑇𝑝,𝐻𝑋,𝑖) (2.34)

After the rate of heat transfer is calculated, the script calculates the supply and process air

outlet temperatures as shown in the equations below, where Ts,HX,o is the supply air

temperature as it leaves the heat exchanger, and Tp,HX,o is the process air temperature as it

leaves the heat exchanger.

𝑇𝑠,𝐻𝑋,𝑜 = 𝑇𝑠,𝐻𝑋,𝑖 −

�̇�𝐻𝑋

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑖𝑐𝑝,𝑣)

(2.35)

𝑇𝑝,𝐻𝑋,𝑜 = 𝑇𝑝,𝐻𝑋,𝑖 +

�̇�𝐻𝑋

�̇�𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑐𝑝,𝑎 + 𝑥𝑝,𝑖𝑐𝑝,𝑣)

(2.36)

2.3.6 Regeneration

As previously mentioned, the regeneration temperature of the desiccant wheel is

not directly obvious and varies on a case-to-case basis. Thus, the model for the heat of

regeneration was implemented such that it requires the regeneration temperature as an

input. This allows the user to input the regeneration temperature for a known scenario, or

it allows the user to vary the regeneration temperature when it is unknown, such that the

44

performance of the desiccant systems can be determined for a range of possible

regeneration temperatures.

Regeneration of the NIPAAm dehumidifier requires three inputs: the NIPAAm stop

temperature, the percent evaporation, and the NIPAAm start temperature, as seen in Eq.

2.17 through 2.19. The NIPAAm stop temperature is known to be 25 °C, as this is the

temperature of NIPAAm before which dehumidification will occur. The NIPAAm start

temperature (or the temperature as it enters the dehumidification section of the wheel) and

the percent evaporation are less obvious. The model user was given the ability to vary these

parameters, such that the system performance could be observed for various values.

2.3.7 Evaporative Cooler

Like the dehumidification process, the evaporative cooling was modeled as an

isenthalpic process, which means the enthalpy of the air leaving the heat exchanger should

equal the enthalpy of the air leaving the cooler. Thus, the script performs an iterative

process to determine the conditions under which this is satisfied. The process of the supply

air before it enters the evaporative cooler is as follows: the supply air enters the

dehumidifier, and when it leaves the temperature is higher and the humidity ratio is lower;

the air is then pre-cooled by the heat exchanger and the temperature, and thus enthalpy,

drops. The only parameter that can be varied in this process is the humidity ratio of the air

leaving the dehumidifier; thus, during the iterative process, the humidity ratio drop across

the dehumidifier is varied until the value is found that results in the required enthalpy to

satisfy the desired outlet conditions. This iterative process is illustrated in the figure below.

45

Fig. 2.3.7.1: Psychrometric charts of the supply air process, with a process that could not

meet the desired output (left) and a process that could (right). The points in green are the

inlet states, and the points in blue are the desired outlet states.

2.4 Conditioned Space Transient Models

When first constructing the model, it was unclear if the dynamic performance of

the system components could be evaluated, such as a dynamic rate of absorption at the

dehumidifier wheel. It was eventually determined that, for the purpose of highlighting the

potential of a general NIPAAm system, it did not make sense to create a complicated

numerical model based on a specific system design. Thus, simple steady state models were

implemented. However, before it was decided that steady operation would be modeled, a

transient model for the temperature and humidity of the air within the house was created.

The transient model for the house air is still used within the graphical interface, but

currently it is entirely cosmetic. It shows how the average temperature and humidity within

the space drop over time, as well as the time it takes the air within the house to reach the

desired cool temperature, but this has no bearing on the steady state performance of the

systems. Thus, the transient model serves no current purpose and has no effect on the

results presented in the following chapter. To keep the methods section succinct, an

46

explanation of the transient model is not presented in this chapter. However, a lengthy

explanation of the transient model is presented in Appendix A, along with a discussion of

the graphical interface setup and all of the python scripts used.

2.5 Graphical User Interface

 As previously mentioned, a graphical user interface was created to allow a user to

select which system configurations to model, input the required temperature and humidity

values, and observe the results for the various system configurations. A detailed

explanation of the graphical user interface is provided in Appendix A, along with an

explanation of all of the Python scripts used to model the system and create the graphical

interface. The appendices after Appendix A contain the code used to create the Python

scripts.

2.6 Selection of Various Values

Many of the values used in the system models were defined as constants, such as

absorption capacity of the sorbents, evaporator and condenser heat transfer coefficients,

and the maximum desiccant regeneration temperature. The following sections describe

how these values were selected for all of the models.

2.6.1 Selection of NIPAAm Regeneration Temperature

For most cases, the regeneration temperature of NIPAAm was defined as 305.15 K

(32 °C); however, the model was run for once case with the regeneration temperature as

47

323.15 K (50 °C). This was done based on experiments in which the NIPAAm was

regenerated at 50 °C (assumedly to ensure a sufficient regeneration time) [7]. The

minimum temperature for the NIPAAm “Start” and “Stop” temperature sliders was set to

20 °C, as it was assumed that the NIPAAm would not need to be cooled much further than

that in order to sustain absorption for the entire dehumidification portion of the wheel. If

necessary, however, these constants, as well as all others mentioned, can be easily changed.

2.6.2 Selection of Other Values Regarding the Various Air Conditioning System

Configurations

The mass flow rate of supply air was selected to be 0.7 kg/s of dry air. This was

calculated from a rule-of-thumb that states the average air flow provided for a certain

amount of cooling is 400 cfm/ton [10], so with a cooling power of 3 tons, the volumetric

flow rate was set as 1200 cfm, which corresponds to approximately 0.7 kg/s of air. The

supply air flow consists of a mix of return air from the space and outside air. For the cases

analyzed, the ratio of return air to outside air was varied. While the rule-of-thumb for the

air flow rate over the evaporator was given as 400 cfm/ton, the flow rate used to cool the

condenser was set as double the flow rate over the evaporator, as the condenser is larger,

and the process needs a greater rate of heat transfer. Thus, the mass flow rate of outside air

over the condenser coils was set to be 1.4 kg/s.

Silica gel is the material that was chosen for the desiccant wheel that was modeled.

From literature, it was found that silica gel has a moisture absorption capacity of

approximately 0.38 kg of water per kg of silica gel [6]. The specific heat of silica gel was

48

reported to be in the range of 0.92 and 1.00 kJ/kg K [6], so a mean value of 0.96 kJ/kg K

was chosen. This was also chosen as the specific heat of NIPAAm, as a value for the

specific heat of the NIPAAm IPN was not found in literature; however, if a more accurate

value is found, the specific heat can easily be changed within the Python scripts by

changing the value of the variable “c_p_NIPAAm”.

A rotational speed of 0.75 deg/s was selected for the desiccant and NIPAAm

wheels. Based on literature, it was found that most desiccant wheels operate between 5 and

10 revolutions per hour, in order to maximize performance [11]. Thus, a mean value of 7.5

revolution per hour was selected, which is equivalent to 0.75 deg/s. To analyze a particular

desiccant wheel with a known speed, the value of the variable “omega” can easily be

changed within the Python scripts.

2.6.3 Selection of Values for the Vapor Compression System

The air pressure for both inside and outside of the house was selected as 101325 Pa

(standard pressure). A value of 80% was chosen for the isentropic efficiency for the

compressor of the vapor compression cycle. The only other values to be defined in this

script were the evaporator and condenser heat transfer coefficients. Based on minimum air

conditioning efficiency standards set by the DOE in 2015, a 3 ton air conditioner can have

an energy efficiency ratio (EER) of no less than 11.7 for the southwest region [12], which

corresponds to a COP of 3.43. The efficiency of an air conditioner is determined under

standard indoor and outdoor conditions specified by ASHRAE, which state that the system

is to be tested with an indoor dry bulb temperature of 80 °F and a wet bulb temperature of

49

67 °F, while the outdoor air must be at a dry bulb temperature of 95 °F and a wet bulb

temperature of 75 °F [13]. Because it was difficult to find heat transfer coefficient values

for an average air conditioning evaporator or condenser, the values were determined

iteratively through the use of the model. The vapor compression model was run with the

air properties described in the ASHRAE standard rating conditions, as well as an outlet

temperature of 53 °F, and the heat transfer coefficients were varied until the COP of the air

conditioning system reached the minimum allowable value of 3.43. Because the condenser

is traditionally larger than the evaporator, it was decided that the heat transfer coefficient

for the condenser would be double the value for the evaporator. Eventually, it was found

that an evaporator heat transfer coefficient of 1810 W/K and a condenser heat transfer

coefficient of 3620 W/K produced a COP of 3.43, and these were the values that were

selected. While these values are somewhat arbitrary, they produce a realistic COP for the

AC and in turn produce a relatively realistic model for the AC system. It should be noted

that the COP of the vapor compression AC system is not the same as the COP previously

mentioned; the COP of the vapor compression system is shown in the equation below and

only depends on the specific enthalpy values of the refrigerant.

𝐶𝑂𝑃𝐴𝐶 =

ℎ𝑟𝑒𝑓,2 − ℎ𝑟𝑒𝑓,1

ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,2

(2.40)

The ASHRAE test conditions do not specify a required outlet temperature that the

air conditioning system must achieve. The aforementioned outlet temperature of 53 °F was

selected through the following procedure. One ton of refrigeration is equivalent to 3.5 kW,

and the rule-of-thumb for selecting the flow rate of air over air conditioning evaporator

coils is 400 cfm/ton [10]. The volumetric flow rate of 400 cfm/ton can be converted to a

50

mass flow rate, and the cooling of 3.5 kW must equal the product of mass flow rate, specific

heat, and temperature drop. The mass flow rate and specific heat of humid air are known,

resulting in a temperature drop of 27 °F. Thus, from the definition of a ton of refrigeration,

the outlet air was determined to be 53 °F for an air conditioning system under the ASHRAE

standard conditions that follows the 400 cfm/ton air flow rate guideline.

51

3 RESULTS AND DISCUSSION

3.1 List of Cases Analyzed

To analyze the performance of the NIPAAm dehumidification configurations,

several cases were run for each of the five configurations, and the COP values of the

different configurations were compared. For each case, the following values were defined:

the properties of the air within the conditioned space (return air), system outlet air

properties (the conditioned supply air), outside air properties, percent of the supply air flow

that comes from return air, percent of the supply air flow that comes from outside air,

percent of the process air flow that comes from return air, and percent of the process air

flow that comes from outside air. Thus, each case represents a scenario of air, with certain

properties, entering the overall system and being conditioned to a cooler, drier state. The

models then determine the sub-processes and energy input required for each configuration

to achieve the same overall process for a given case. Four cases were analyzed, and the

description of each case can be found in Table 3.1 below. The outlet air properties are the

properties of the air as it leaves the final component of the system (i.e.: as it leaves the

evaporator coils for the vapor compression cooling configurations or as it leaves the

evaporative cooler for the other two configurations). The supply air stream is comprised of

a mix of return and outside air, so the supply stream percent return air and the supply stream

percent outside air sums to 100% for all cases. The process air stream is also comprised of

a mix of return and outside air, so the two percentages should sum to 100% for the process

air as well.

52

Table 3.1.1: Description of cases analyzed

 Case 1:

Pennington

Cycle

Case 2:

Recirculation

Cycle

Case 3:

Hybrid Cycle

Case 4:

Supermarket

Return air

temperature

22.50 °C

27.00 °C

22.00 °C

10.00 °C

Return air

relative

humidity

76%

52%

50%

92%

Outlet air

temperature

13.27 °C

9.74 °C

11.00 °C

3.90 °C

Outlet air

humidity

ratio

9.50 g/kg

7.50 g/kg

8.16 g/kg

5.00 g/kg

Outside air

temperature

35.00 °C

27.00 °C

25.00 °C

25.00 °C

Outside air

relative

humidity

40%

78%

100%

75%

Supply

stream

return air %

0

100

50

64

Supply

stream

outside air %

100

0

50

36

Process

stream

return air %

100

0

50

36

Process

stream

outside air %

0 100 50 64

53

Following the analysis of the cases described in the previous table, the third case was

revisited, and the NIPAAm configurations were analyzed for a regeneration temperature

of 50 °C, instead of the LCST of 32 °C. This analysis was performed to see how much the

performance would be affected if the NIPAAm was required to be regenerated at a

temperature significantly greater than the LCST, as indicated in certain literature [7].

Additionally, a parametric study was performed to observe the effect of changing the

NIPAAm dehumidification start temperature on the system performance.

3.2 Case 1: The Pennington Cycle

A very common air conditioning cycle associated with desiccant air conditioning

is the Pennington cycle, as it was the first cycle introduced for rotary desiccant air

conditioning [4]; a generalized version of the Pennington cycle was the first case that was

modeled. In the Pennington cycle, outside air is conditioned and provided to the building,

while return air is used as the process air. This cycle is illustrated in the figure below.

54

Fig. 3.2.1: Pennington cycle schematic (top) and psychrometric process (bottom) [4]

The figure above, taken from literature, uses an evaporative cooler at the beginning of the

process air stream, while the systems modeled in this report did not incorporate an

evaporative cooler at this point in the cycle. Other than that, the overall process of the

Pennington cycle was modeled using the conditions listed in Table 3.1 under Case 1. For

this case, the supply air consisted entirely of outside air, and the process air consisted

entirely of return air. Based on Fig. 3.1 above, the regeneration temperature for the

desiccant was set to 75 °C. The NIPAAm configurations were modeled for evaporation

percentages of 0%, 17%, 33%, 50%, 67%, 83%, and 100%. As previously mentioned, the

NIPAAm temperature must remain sufficiently below the LCST during the

dehumidification section to allow for continuous absorption. Based on Fig. 2.2.3.4, the

NIPAAm was set to have a temperature of 25 °C at the end of dehumidification. The

55

temperature of the NIPAAm at the beginning of dehumidification that results in the

temperature at the end of dehumidification being 25 °C is unknown, and it was set

somewhat arbitrarily to 20 °C. The results from this case are presented in the tables below;

Table 3.2 contains the values for the vapor compression only, desiccant dehumidification

and vapor compression cooling, and desiccant dehumidification and evaporative cooling

configurations, Table 3.3 contains the values for NIPAAm dehumidification and vapor

compression cooling, and Table 3.4 contains the values for NIPAAm dehumidification and

evaporative cooling.

Table 3.2.1: Case 1 results for vapor compression and desiccant systems

Vapor Compression

Only

Desiccant

+

Vapor Compression

Cooling

Desiccant

+

Evaporative Cooling

Vapor

compression

compressor

power

7.23 kW

0.99 kW

0.00 kW

Rate of

regeneration

energy

0.00 kW

20.99 kW

14.21 kW

Total

electrical

power

required

7.23 kW

21.98 kW

14.21 kW

COP 1.78 0.58 0.9

56

 Table 3.2.2: Case 1 results for NIPAAm dehumidification and vapor compression

cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Vapor

compression

compressor

power

0.99

kW

0.99

kW

0.99

kW

0.99

kW

0.99

kW

0.99

kW

0.99

kW

Rate of

regeneration

energy

0.45

kW

1.74

kW

2.97

kW

4.27

kW

5.56

kW

6.79

kW

8.08

kW

Total

electrical

power

required

1.44

kW

2.73

kW

3.96

kW

5.26

kW

6.55

kW

7.78

kW

9.07

kW

COP 8.97 4.70 3.25 2.45 1.96 1.65 1.42

Table 3.2.3: Case 1 results for NIPAAm dehumidification and evaporative cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Rate of

regeneration

energy

0.70

kW

3.11

kW

5.38

kW

7.79

kW

10.20

kW

12.47

kW

14.88

kW

COP 18.39 4.13 2.39 1.65 1.26 1.03 0.86

The latent load, or amount of cooling required to produce the desired dehumidification, for

this case is relatively high compared to the sensible load, or amount of cooling required to

57

drop the air to the desired temperature. This is because the rate of ventilation in this cycle

is very high; all of the supply air comes from fresh ambient air. Because of this, the vapor

compression only COP in the table above is not very high. As seen in the results, the

desiccant dehumidification is more efficient when in line with the evaporative cooler than

the vapor compression system; this is because the evaporative cooling configuration

required a lower intermediate supply air humidity, which corresponds to a higher

intermediate supply air temperature. This higher supply air temperature heats up the

process air more at the heat exchanger, which greatly improves efficiency. Thus, the

desiccant dehumidifier would only make sense to be place in line with the vapor

compression cooler if the desiccant were regenerated with a cheaper heat source than

electricity.

 From the results above, it can be seen that the NIPAAm systems performed quite

well at low percent evaporation values. At 0% evaporation, the NIPAAm dehumidifier in

line with the evaporative cooler performs best, as it requires no vapor compression work.

However, by 17% evaporation, the NIPAAm dehumidifier and vapor compression cooling

configuration becomes the most efficient. This is because the evaporative cooling

configuration requires much more dehumidification, which increases the water content of

the NIPAAm, as well as the required mass of NIPAAm, both of which increase the thermal

mass and regeneration heat. Before 50% evaporation, both of the NIPAAm systems are

more efficient than the other three systems. The NIPAAm dehumidification and vapor

compression cooling system remains the most efficient past evaporation values greater than

67%. The NIPAAm dehumidification and evaporative cooling system is more efficient

58

than the desiccant equivalent until the evaporation percent approaches 100%. It should be

noted, however, that it is yet unknown if the NIPAAm can sustain the high temperature

dehumidification associated with the evaporative cooling configuration. There is potential

for both NIPAAm configurations to perform better than the traditional configurations, but

the NIPAAm dehumidification seems to be most promising when used in conjunction with

a vapor compression cooling system. It should also be noted that the NIPAAm

dehumidification would become most promising, even at 100% evaporation during

regeneration, if waste heat were used during regeneration, instead of the assumed electric

heating.

 The following plots provide a helpful visualization of the results from this case.

The first plot, shown in Fig. 3.2.1 below, shows the COP of the vapor compression cooling

configurations, as plotted for various percent evaporation values.

Fig. 3.2.1: Case 1 COP results for the vapor compression cooling configurations

0

1

2

3

4

5

6

7

8

9

10

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Vapor Compression Cooling
Systems

Standard VC

Desiccant + VC

NIPAAm + VC

59

The plot shown in Fig. 3.2.2 below shows the COP of the two evaporative cooling

configurations for the first case.

Fig. 3.2.2: Case 1 COP results for the evaporative cooling configurations

From the plots above, it can be seen that the percent evaporation significantly affects the

COP of the NIPAAm configurations. For low percent evaporation, the NIPAAm systems

are by far the most efficient.

3.3 The Recirculation Cycle

Another common cooling cycle is the recirculation cycle. While the Pennington

cycle represents an extreme case in ventilation, where all of the supply air is comprised of

outside air, the recirculation cycle trades ventilation for efficiency. In this cycle, all of the

supply air is return air from the building, and the process air consists entirely of outside air

[4]. Thus, in the many locations where the ambient air outside is more humid than the

inside air, this cycle requires a less intensive process than the Pennington cycle, and is thus

0

2

4

6

8

10

12

14

16

18

20

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Evaporative Cooling Systems

Desiccant + Evap Cool

NIPAAm + Evap Cool

60

more efficient. It is only applicable, however, in buildings with low ventilation

requirements. The figure below describes this cycle.

Fig. 3.3.1: Recirculation cycle schematic (top) and psychrometric process (bottom) [4]

A scenario representative of the recirculation cycle was modeled and is described under

Case 2 in Table 3.1. Based on Fig. 3.3.1, the desiccant regeneration temperature was set

to 80 °C, while the NIPAAm temperature and the beginning and end of dehumidification

were kept at 20 °C and 25 °C, respectively. The models for each configuration were run

with the prescribed conditions, and the results are described in the tables below.

61

Table 3.3.1: Case 2 results for vapor compression and desiccant systems

Vapor Compression

Only

Desiccant

+

Vapor Compression

Cooling

Desiccant

+

Evaporative Cooling

Vapor

compression

compressor

power

4.32 kW

1.87 kW

0.00 kW

Rate of

regeneration

energy

0.00 kW

31.48 kW

19.12 kW

Total

electrical

power

required

4.32 kW

33.35 kW

19.12 kW

COP 4.51 0.58 1.02

Table 3.3.2: Case 2 results for NIPAAm dehumidification and vapor compression cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Vapor

compression

compressor

power

1.87

kW

1.87

kW

1.87

kW

1.87

kW

1.87

kW

1.87

kW

1.87

kW

Rate of

regeneration

energy

0.31

kW

1.46

kW

2.55

kW

3.70

kW

4.86

kW

5.94

kW

7.09

kW

Total

electrical

power

required

2.18

kW

3.33

kW

4.42

kW

5.57

kW

6.73

kW

7.81

kW

8.96

kW

62

COP 7.51 5.20 4.03 3.25 2.73 2.37 2.07

Table 3.3.3: Case 2 results for NIPAAm dehumidification and evaporative cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Rate of

regeneration

energy

0.72

kW

3.89

kW

6.89

kW

10.06

kW

13.24

kW

16.23

kW

19.41

kW

COP 27.12 5.00 2.83 1.93 1.47 1.20 1.00

Because the latent load was lower in this case, the COP of the vapor compression only

configuration increased significantly. For this scenario, the NIPAAm systems only

outperform standalone vapor compression when the percent evaporation is below 33%.

The performance of the NIPAAm systems relative to the desiccant systems, however, is

very similar to what was seen in the previous case. Thus, it can be seen that the NIPAAm

outperforms traditional desiccants in most scenarios, except for significantly high

evaporation during regeneration. NIPAAm systems with higher evaporation percentages

can outperform vapor compression only if the latent load is high; if the latent load is low,

the NIPAAm performs better than traditional vapor compression only if the water oozed

during regeneration does not evaporate at a significant rate.

 The following plots summarize the results presented in the tables above. The first

figure below illustrates the results of the vapor compression cooling configurations, while

the second figure illustrates the results of the evaporative cooling configurations.

63

Fig. 3.3.1: Case 2 COP results for the vapor compression cooling configurations

Fig. 3.3.2: Case 2 COP results for the evaporative cooling configurations

The plots above illustrate the COP of the different systems for a lower latent load than in

the first case. As expected, the COP of each NIPAAm configuration drops below the COP

of the standard vapor compression at a significantly lower percent evaporation than the

0

1

2

3

4

5

6

7

8

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Vapor Compression Cooling
Systems

Standard VC

Desiccant + VC

NIPAAm + VC

0

5

10

15

20

25

30

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Evaporative Cooling Systems

Desiccant + Evap Cool

NIPAAm + Evap Cool

64

previous case, which had a higher latent load. Thus, the NIPAAm configurations are more

desirable in scenarios where the latent load is high.

3.4 The Hybrid Cycle

The third case was created as a hybrid of the two previous cases; it has substantial

ventilation while still using some return air to maintain efficiency. The air properties in the

third case represent a feasible scenario of operation in a humid location. This scenario,

described as Case 3 in Table 3.1, models a supply air stream that is comprised of equal

parts return and outside air. This allows for significant ventilation to the space while

utilizing some return air to decrease the latent load. The outside air was set to 25 °C and

20.09 g/kg absolute humidity, which is 77 °F, 100% relative humidity air, a condition that

can frequently occur during summer months in humid locations. The inside air was set to

22 °C and 8.16 g/kg absolute humidity, or 71.6 °F at approximately 50% relative humidity,

which falls well within the guidelines for thermal comfort [1]. The cooling system is set to

achieve a temperature of 11 °C, which has an absolute humidity of 8.16 g/kg at saturation.

This provides a reasonably realistic scenario for a humid location, with significant

ventilation, comfortable indoor conditions, and realistic conditions at the cooling system

outlet. The process air humidity is in between the first and second case, so a regeneration

temperature of 78 °C was selected for the desiccant. The NIPAAm start and stop

temperatures were once again kept at 20 °C and 25°C, respectively. This case was run for

all five configurations, and the results are summarized in the tables below.

65

Table 3.4.1: Case 3 results for vapor compression and desiccant systems

Vapor Compression

Only

Desiccant

+

Vapor Compression

Cooling

Desiccant

+

Evaporative Cooling

Vapor

compression

compressor

power

3.92 kW

1.01 kW

0.00 kW

Rate of

regeneration

energy

0.00 kW

28.90 kW

19.86 kW

Total

electrical

power

required

3.92 kW

29.91 kW

19.86 kW

COP 2.01 0.26 0.4

Table 3.4.2: Case 3 results for NIPAAm dehumidification and vapor compression cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Vapor

compression

compressor

power

1.01

kW

1.01

kW

1.01

kW

1.01

kW

1.01

kW

1.01

kW

1.01

kW

Rate of

regeneration

energy

0.32

kW

2.04

kW

3.66

kW

5.38

kW

7.10

kW

8.72

kW

10.44

kW

Total

electrical

power

required

1.33

kW

3.05

kW

4.67

kW

6.39

kW

8.11

kW

9.73

kW

11.45

kW

COP 5.89 2.57 1.68 1.23 0.97 0.81 0.69

66

Table 3.4.3: Case 3 results for NIPAAm dehumidification and evaporative cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Rate of

regeneration

energy

0.53

kW

3.74

kW

6.75

kW

9.95

kW

13.16

kW

16.17

kW

19.37

kW

COP 14.71 2.10 1.16 0.79 0.6 0.49 0.41

This case and the second case are more realistic for standard air conditioning operation

than the first case, as the amount of ventilation seen in the first case is uncommon in many

scenarios. This case differs significantly from the second case, however, as 50% of the

supply air comes from outside air in this case, compared to 0% in the second case.

Additionally, the return air is cooler and drier in this case, which better aligns with typical

human comfort than the conditions presented in the second case. Despite these differences,

the trends seen from the results of this case are very similar to the trends seen in the second

case. The NIPAAm systems perform better than the other three when the evaporation is

below 33%, The NIPAAm dehumidification and evaporative cooling configuration drops

off more quickly than the NIPAAm in line with vapor compression, and the NIPAAm and

evaporative cooling configuration approaches the COP of the desiccant and evaporative

cooling configuration as the water evaporated during NIPAAm regeneration approaches

100%. The plots in the figures below illustrate the results from the tables above.

67

Fig. 3.4.1: Case 3 COP results for the vapor compression cooling configurations

Fig. 3.4.2: Case 3 COP results for the evaporative cooling configurations

0

1

2

3

4

5

6

7

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Vapor Compression Cooling
Systems

Standard VC

Desiccant + VC

NIPAAm + VC

0

2

4

6

8

10

12

14

16

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Evaporative Cooling Systems

Desiccant + Evap Cool

NIPAAm + Evap Cool

68

3.5 Supermarket/Ice Rink Case Study

While the previously examined cases give insight on the performance of the various

air conditioning methods in certain scenarios, the following case is presented as one of the

prime applications of desiccant dehumidification. The conditioning of air in supermarkets

and ice rinks has been identified as one of the most promising applications of desiccant

dehumidification, due to the low temperatures encountered in these scenarios. For these

types of buildings, the air is required to be very cold and dry, which means that, in a

standard air conditioning system that consists only of vapor compression components, the

evaporator coils will reach a temperature below 0 °C, and the water condensed on the coils

will freeze, which significantly reduces efficiency and performance [2]. Thus, in

applications where the supply air must be dehumidified to a dew point close to 0 °C, a

standard vapor compression cycle will not suffice. Additionally, desiccant

dehumidification combined with evaporative cooling will not suffice in many of these

scenarios either, because the air cannot get dry enough to complete the desiccant air

conditioning cycle. Thus, the main method of conditioning that works for this scenario is

dehumidification followed by vapor compression cooling. For this reason, only the

desiccant dehumidification and vapor compression cooling and NIPAAm dehumidification

and vapor compression cooling configurations were considered for this case. The proper

ventilation rate for a supermarket was found based on ASHRAE codes [14], and the return

air temperature for an ice rink and certain parts of a supermarket was found to be

approximately 10 °C [15], [16]. The desired supply air humidity was found to be

approximately 5 g/kg for the supermarket, which corresponds with a dew point of 3.90 °C

69

for the supply air temperature. It should be noted that the supply air for this case is cooled

to the dew point but not beyond, so no frost should build up on the evaporator coils. It was

unclear what the regeneration temperature for an average desiccant wheel would be in this

scenario, so the desiccant system was evaluated for three different regeneration

temperatures: 60 °C, 70 °C, and 80 °C, while the NIPAAm temperatures were set to the

same values as the previous cases. The results from this case are displayed in the tables

below.

Table 3.5.1: Case 4 results for desiccant dehumidification and vapor compression cooling

Desiccant

Regeneration

Temperature

60 °C 70 °C 80 °C

Vapor

compression

compressor

power

1.92 kW

1.92 kW

1.92 kW

Rate of

regeneration

energy

23.48 kW

30.68 kW

37.89 kW

Total

electrical

power

required

25.40 kW

32.60 kW

39.81 kW

COP 0.31 0.24 0.2

70

Table 3.5.2: Case 4 results for NIPAAm dehumidification and vapor compression cooling

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

Vapor

compression

compressor

power

1.92

kW

1.92

kW

1.92

kW

1.92

kW

1.92

kW

1.92

kW

1.92

kW

Rate of

regeneration

energy

0.31

kW

1.72

kW

3.04

kW

4.45

kW

5.86

kW

7.19

kW

8.59

kW

Total

electrical

power

required

2.23

kW

3.64

kW

4.96

kW

6.37

kW

7.78

kW

9.11

kW

10.51

kW

COP 3.52 2.16 1.58 1.23 1.01 0.86 0.75

 Until this point in the analysis, the effect of changing the desiccant regeneration

temperature had not been observed. Because a specific desiccant dehumidifier was not

modeled, the previous regeneration temperatures were selected from literature [4].

However, the results in Table 3.5.1 show that even if a regeneration temperature of only

60 °C is needed, which is somewhat of a lower bound for desiccant regeneration

temperatures [4], the system efficiency is not greatly improved for the desiccant

dehumidifier in line with vapor compression cooling.

 Desiccant dehumidifiers are very useful in scenarios like the one described in the

case above, as they prevent frost from building up on the vapor compression evaporator

coils. However, the results above indicate that the NIPAAm dehumidifier could result in a

71

higher COP for any evaporation percent. The low temperature application seen in

supermarkets and ice rinks is also good for NIPAAm, as there is much less risk of the

NIPAAm exceeding the LCST during dehumidification. The plot in the figure below

illustrates the results presented in the tables above.

Fig. 3.5.1: Case 4 COP results for the vapor compression cooling configurations

From the plot, it can be seen that, for this scenario, the NIPAAm performs better than the

desiccant, even when the desiccant regeneration temperature is as low as 60 °C. There is

significant potential for NIPAAm dehumidificaiton in low temperature applications, like

those seen in supermarkets and ice rinks.

3.6 Analyzing the NIPAAm Systems for a Higher Regeneration Temperature

While the LCST of NIPAAm is 32 °C, and the gel even begins to give off water at

temperatures somewhat lower than 32 °C, regeneration tests on the material described in

literature were conducted at 50 °C [7]. While it is currently unclear if this higher

0

0.5

1

1.5

2

2.5

3

3.5

4

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Desiccant and NIPAAm + Vapor
Compression

Desiccant (60 C)

Desiccant (70 C)

Desiccant (80 C)

NIPAAm

72

temperature is necessary for regeneration or if it was done to decrease the time of the

regeneration process, the NIPAAm configurations were modeled again with the conditions

described in the third case (the hybrid cycle), this time with a regeneration temperature of

50 °C. For this scenario, the NIPAAm would rotate into the dehumidification section of

the wheel with a temperature of 20 °C, dehumidify the air, leave the dehumidification

section with a temperature of 25 °C (as was modeled in the third case), but then the

NIPAAm would need to be heated to 50 °C instead of 32 °C in the regeneration section of

the wheel. The results for the NIPAAm dehumidification and vapor compression cooling

and NIPAAm dehumidification and evaporative cooling configurations with the new

regeneration temperature are shown in the tables below.

Table 3.6.1: Case 3 results for NIPAAm dehumidification and vapor compression cooling

with a regeneration temperature of 50 °C

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

COP

3.69 2.04 1.44 1.09 0.88 0.75 0.64

Table 3.6.2: Case 3 results for NIPAAm dehumidification and evaporative cooling with a

regeneration temperature of 50 °C

Percent

Evaporation
0% 17% 33% 50% 67% 83% 100%

COP

4.12 1.54 0.97 0.69 0.54 0.45 0.38

73

When comparing these numbers to the numbers in Section 3.4, it can be seen that an

increase in the regeneration temperature has the most effect at low percent evaporation

values. For example, the COP for NIPAAm dehumidification and vapor compression

cooling at 0% evaporation falls from 5.89 to 3.69. However, as the percent evaporation

goes up, the sensible heating of the NIPAAm is a smaller portion of the total energy needed

in regeneration, so the higher regeneration temperature has less of an effect. At 100%

evaporation, the COP only falls from 0.69 to 0.64. The from Table 3.6.1 above, regarding

the vapor compression cooling configurations, are illustrated in the following figure.

Fig. 3.6.1: Case 3 COP results for the vapor compression cooling configurations, with an

added curve for NIPAAm regeneration at 50 °C

The solid lines in the figure above are the same as in Fig. 3.4.1, while the dashed line is the

NIPAAm dehumidification and vapor compression cooling COP for the 50 °C regeneration

temperature.

0

1

2

3

4

5

6

7

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Vapor Compression Cooling
Systems

Standard VC

Desiccant + VC

NIPAAm (32)

NIPAAm (50)

74

It can also be seen that the increased regeneration temperature has a greater effect

on the evaporative cooling configuration; this can be explained by the fact that the

evaporative cooling configuration requires more dehumidification; thus, more water is

absorbed. Because more water is absorbed in the evaporative cooling configuration, the

thermal mass is greater than in the vapor compression cooling configuration, and a change

in regeneration temperature has a much greater effect on the system with greater thermal

mass. While the total power required for the NIPAAm dehumidification and vapor

compression cooling configuration is split between the air conditioning compressor and the

heating and cooling required to regenerate the NIPAAm, all of the power in the evaporative

cooling configuration is used to either heat or cool the NIPAAm. Thus, a change in the

temperature to which the NIPAAm must be heated has a greater effect on the evaporative

cooling configuration.

Something that should also be considered is that a higher regeneration temperature

will also increase the amount of evaporation that takes place during regeneration. A

NIPAAm wheel could have 33% evaporation when the regeneration temperature is 32 °C;

however, it might have 67% evaporation when the regeneration temperature is increased

to 50 °C. Thus, based on the NIPAAm dehumidification and vapor compression cooling

numbers, the COP would fall from 1.68 to 0.88 when moving from 32 °C and 33%

evaporation to 50 °C and 67% evaporation. It is desirable to keep the regeneration

temperature as low as possible, but the temperature must be high enough to cause the

regeneration process to complete in the time that the NIPAAm rotates through the

regeneration section of the wheel.

75

3.7 Analyzing the Effect Seen by Changing the NIPAAm Start Temperature

As previously mentioned, it is known that the NIPAAm must remain below the

LCST while it is in the dehumidification section of the wheel. To allow for proper

dehumidification, a conservative value of 25 °C was chosen for the temperature of the

NIPAAm as it leaves the dehumidification section of the wheel and enters the regeneration

section. However, it is unclear at what temperature the NIPAAm must be when it enters

the dehumidification section, such that it is heated only to 25 °C when it leaves the section.

Thus, a value of 20 °C was chosen as the NIPAAm “start” temperature, or the temperature

when it enters the dehumidification section. Because this value is somewhat arbitrary, the

NIPAAm system performance was reevaluated, under the conditions described in the third

case, with various start temperatures. For this analysis, the regeneration evaporation

percent was kept at 67%, the NIPAAm “stop” temperature was once again set to 25 °C,

and the regeneration temperature was set back to 32 °C. The NIPAAm “start” temperature

was varied between 0 °C and 25 °C. The case in which the NIPAAm is cooled to 0 °C is

unrealistic, as any retained water would freeze, but it is presented to demonstrate a lower

bound of the NIPAAm start temperature. A value of 25 °C represents the upper bound, as

this is the scenario where the NIPAAm does not receive any heat during dehumidification

and does not require any pre-cooling. The table below shows the results for the reevaluated

Case 3 scenario with the NIPAAm dehumidification and vapor compression cooling

configuration.

76

Table 3.7.1: Case 3 results for NIPAAm dehumidification and vapor compression cooling

with various NIPAAm start temperatures

NIPAAm

Start

Temperature

0 °C 5°C 10 °C 15 °C 20 °C 25 °C

COP

0.95 0.96 0.96 0.97 0.97 0.97

It can be seen from the table above that the temperature to which the NIPAAm must be

cooled has a very minimal effect on the overall efficiency when a realistic evaporation

percentage is used. This is because the thermal mass of the NIPAAm in this section is low,

as the water content of the NIPAAm is at a minimum in the cooling section, and the cooling

is assumed to be provided to the NIPAAm at the COP of the vapor compression sub-

system, which often has a COP value significantly greater than 1. Thus, while the selection

of the NIPAAm start temperature was somewhat arbitrary for the previous cases examined,

it can be seen that the NIPAAm start temperature does not have a significant effect on the

system efficiency.

This analysis was not performed for the evaporative cooling method for several

reasons. First, the evaporative cooling method does not require significant consumption of

power, so an increase in the amount of NIPAAm pre-cooling will only affect the

consumption of water, not the system efficiency. Additionally, the evaporative cooler

cannot achieve the low temperatures that were evaluated in this case. For the scenario

described in Case 3, the lower limit of the air temperature that the evaporative cooler can

77

produce is approximately 8 °C. This is possible only if the air used for cooling the NIPAAm

is supply air that was dried to 0% relative humidity and then humidified to 100% relative

humidity, which is not feasible in practice. If ambient air is used for cooling the NIPAAm,

instead of dried supply air, the lowest achievable temperature ranges from approximately

11 °C, for ambient air at 20 °C and 30% relative humidity, to 25 °C, for ambient air at 30

°C and 70% relative humidity. Thus, the evaporative cooler cannot achieve temperatures

as low as the vapor compression system. If it is found that the NIPAAm must be cooled to

a significantly low temperature to sustain continuous operation, then an evaporative cooler

will not suffice in providing the cooling to the NIPAAm.

3.8 Revisiting Case 3 with Waste Heat Used for Dehumidifier Regeneration

 While the previous analyses regard the “worst case scenario”, or the scenario where

the desiccant and NIPAAm configurations are regenerated with electric heating, the best

case for a desiccant or NIPAAm dehumidifier can be made when the regeneration heat

source is a significantly abundant source, like waste heat. To analyze this scenario, the third

case was revisited with the assumption that the NIPAAm and desiccant dehumidifiers

could be regenerated “for free” (i.e.: with a heat source that is abundant and requires no

extra consumption of fuel, such as waste or solar heat). The plot below shows the COP for

vapor compression cooling configurations, where the COP only accounts for electricity

input.

78

Fig. 3.8.1: Case 3 COP results for the vapor compression cooling configurations, with a

waste heat source considered for regeneration

Because the heat of regeneration is not supplied by electricity in this scenario, the only

input to the system is the electricity required to run the vapor compression compressor.

This means that the desiccant and NIPAAm dehumidifiers have the same COP. It also

means that the evaporative cooling configurations have an infinite COP, as the evaporative

coolers do not require electricity input (when neglecting any pumps or blowers). For this

scenario, it might seem like the NIPAAm dehumidifier offers no benefits; however, the

NIPAAm dehumidifier still requires less heat, even if the heat is supplied by a waste or

solar heat source. This could lead to smaller and cheaper components and could be

applicable in cases where the waste heat source is not significantly large.

 From the analyses in this section, the potential of a NIPAAm dehumidifier can be

seen. When electric heating is used to regenerate the dehumidifier, the NIPAAm

configurations require less electricity input than standard vapor compression or desiccant

0

1

2

3

4

5

6

7

8

9

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Vapor Compression Cooling
Systems

Desiccant + VC and
NIPAAm + VC

Standard VC

79

dehumidification when the latent load is high, or the percent of water evaporated during

NIPAAm regeneration is low. Additionally, it was found that the NIPAAm dehumidifier

would be more efficient than a desiccant dehumidifier when used with an evaporative

cooler, provided that the NIPAAm dehumidifier could properly operate at the high

temperatures associated with the evaporative cooling configurations. Increasing the

NIPAAm regeneration temperature from the LCST of 32 °C to the value of 50 °C seen in

literature, it can be seen that the NIPAAm requires a non-trivial increase in regeneration

heat, but even at the higher regeneration temperature, the NIPAAm is still quite efficient.

Finally, it was shown that if the NIPAAm were regenerated with waste heat, it would have

the same electricity-based COP as the desiccant system, but the NIPAAm would require

less heat and could regenerate at a lower temperature than a traditional desiccant. This is

desirable in scenarios where the waste heat is not so abundant as to become trivial, and it

is also desirable in scenarios where the waste heat source is available at temperatures higher

than the NIPAAm regeneration temperature but lower than the regeneration temperature

of a traditional desiccant. Because the source of regeneration heat exists at some

temperature, waste and solar heat can only be used when they are available at a temperature

greater than the regeneration temperature of the dehumidifier. Since the regeneration

temperature of NIPAAm is less than that of a traditional desiccant, the NIPAAm

dehumidifier would be applicable in a greater number of scenarios.

80

3.9 Revisiting Case 3 with Various Heat Exchanger Effectiveness Values

 For the analyses that were conducted, a heat exchanger effectiveness of 0.99 was

assumed; however, not all systems will utilize a heat exchanger with an effectiveness this

high. Thus, Case 3 was reevaluated, and the heat exchanger effectiveness was varied to

observe the impact that a lower effectiveness has on the NIPAAm and traditional desiccant

systems. For this analysis, both of the NIPAAm configurations and both of the desiccant

configurations were reexamined for heat exchanger effectiveness values of 0.80, 0.85, 0.90,

and 0.95, along with the original value of 0.99. Two plots were created: one plot

demonstrates the performance of the vapor compression cooling configurations, and the

other demonstrates the performance of the evaporative cooling configurations. For the

NIPAAm configurations, separate curves were created for each heat exchanger

effectiveness value. For the traditional desiccant, the data associated with the five separate

heat exchanger effectiveness values were gathered into a shaded area, as it was found that

the change in COP for the desiccant configurations was minimal. The plots are shown

below.

81

Fig. 3.9.1: Case 3 COP results for the vapor compression cooling configurations, with

heat exchanger effectiveness varied

Fig. 3.9.2: Case 3 COP results for the evaporative cooling configurations, with heat

exchanger effectiveness varied

For both vapor compression and evaporative cooling, it can be seen that the change in COP

for the NIPAAm is relatively small, ranging from 7 to 1% decrease in COP (depending on

0

1

2

3

4

5

6

7

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Vapor Compression Cooling
Systems

Standard VC

Desiccant + VC

NIPAAm (eff= 0.99)

NIPAAm (eff= 0.95)

NIPAAm (eff= 0.90)

NIPAAm (eff= 0.85)

NIPAAm (eff= 0.80)

0

2

4

6

8

10

12

14

16

0 17 33 50 67 83 100

C
O

P

% Evaporation (NIPAAm)

Performance of Evaporative Cooling Systems

Desiccant + Evap Cool

NIPAAm (eff= 0.99)

NIPAAm (eff= 0.95)

NIPAAm (eff= 0.90)

NIPAAm (eff= 0.85)

NIPAAm (eff= 0.80)

82

the percent evaporation) for a decrease in heat exchanger effectiveness of 0.05. The change

in desiccant COP is even smaller, ranging from 3% to less than 1%.

 The heat exchanger effectiveness was not decreased below 0.8, as it was found, for

this specific case, that the evaporative cooling cycles would not be possible with heat

exchanger effectiveness values much lower than 0.8 (the air would have to be dried below

0 g/kg humidity to achieve the cycle, which cannot happen).

83

4 CONCLUSIONS AND RECOMMENDATIONS

 From the results of the system-level models, it is clear that a NIPAAm dehumidifier

has the potential to perform better than traditional alternatives. The following list

summarizes the findings of this report, based on the results in the previous chapter:

• NIPAAm dehumidification increases system efficiency when added to a standard

vapor compression system if the latent load is high

• For low latent loads, NIPAAm dehumidification increases vapor compression

system efficiency when the percent evaporation seen during regeneration is below

approximately 25%

• NIPAAm dehumidification is more efficient than traditional desiccant

dehumidification for almost any percent evaporation seen during NIPAAm

regeneration

• NIPAAm has great potential in low temperature applications where standard vapor

compression cannot be used, and the NIPAAm is less likely to exceed the LCST

during dehumidification for low temperature applications

NIPAAm shows the most obvious promise when used in conjunction with vapor

compression cooling in low temperature applications, as exemplified in the

supermarket/ice rink scenarios. These applications would require the least nuanced design

and would be the most likely to provide significant improvement over current system

configurations. The NIPAAm dehumidifier still holds promise in other applications, but

the considerations regarding the dehumidifier design (such as the percent evaporation of

84

regeneration water and the NIPAAm temperature rise) hold greater weight in scenarios

other than the low temperature cases.

The models detailed in this report indicate that a NIPAAm dehumidifier could

significantly improve overall system efficiency in many scenarios, given that the

dehumidifier behaves as it was modeled. For a NIPAAm dehumidifier to work, the sorbent

must remain below a certain temperature (roughly 25 to 30 °C) throughout the entirety of

the dehumidification section of the wheel. To achieve this, it was proposed that the

NIPAAm wheel be cooled immediately before it enters the dehumidification section;

however, it is unknown how easily this could be achieved, and there are limitations

regarding the temperature to which the NIPAAm could be cooled. Therefore, a NIPAAm

wheel that is internally cooled during the dehumidification section is proposed. In this

configuration, some tubes would run through the NIPAAm wheel, such that the NIPAAm

would fill the annular space around the tubes. A cooling fluid, such as the process air, could

be flowed through the tubes, thus ensuring the NIPAAm does not heat up as latent heat is

released during dehumidification. This would essentially combine the downstream heat

exchanger with the NIPAAm wheel, and it would cause the dehumidification process to

become isothermal or near-isothermal. Internally cooled desiccant wheels have been

demonstrated in literature, meaning that an internally cooled NIPAAm wheel is likely

possible. This could end up being the most feasible design for a NIPAAm wheel, as it

would ensure that the NIPAAm does not exceed a certain temperature during

dehumidification, and the conceptual design is generally obvious. The figure below shows

a conceptual design for an internally cooled NIPAAm wheel.

85

Fig. 4.1: Conceptual design for a NIPAAm wheel with housing shown (left) and not

shown (right). NIPAAm is placed in the annular space (shown in blue), supply air enters

through the axle and flows through the annular space, and process air flows through the

heat exchanger tubes.

When pursuing future work on a NIPAAm dehumidifier, it is recommended that

the initial efforts focus on the evaporation fraction and thermal response of the NIPAAm.

The percent of water evaporated during regeneration should be more rigorously examined

for NIPAAm regeneration at different temperatures, and efforts to improve system

performance should focus on reducing the percent evaporation. Additionally, the transient

temperature response of the NIPAAm should be observed for dehumidification over some

period of time. If it is found that the NIPAAm does not significantly change in temperature

as it absorbs moisture from the air, then the pre-cooling of the NIPAAm before

dehumidification might not be an issue. However, if it is found that the NIPAAm

significantly changes in temperature during dehumidification, then considerations must be

86

made regarding the prevention of excessive NIPAAm temperature rise during

dehumidification.

Going forward, a more complex model can be made. The vapor compression model

presented in this paper can be easily modified to account for dynamic changes in inlet air

properties, but numerical models would be required for the desiccant and NIPAAm wheels.

The conditioned space could be modeled in a CFD program, such as ANSYS Fluent, and

a top-level Python script could be set up to pass the air properties, as determined by the air

conditioning component Python models, directly to Fluent. The Fluent simulation can be

set-up and initialized entirely through the use of a Python script, so the overall model,

consisting of Python models for the air conditioning components and a Fluent model for

the air within the space, could be initialized and run from one command in the computer’s

command line.

87

REFERENCES

[1] Centers for Disease Control and Prevention, "Indoor Environmental Quality:

Building Ventilation Resources - NIOSH Workplace Safety and Health Topic," 1

September 2015. [Online]. Available:

https://www.cdc.gov/niosh/topics/indoorenv/temperature.html. [Accessed 20

March 2019].

[2] A. A. Pesaran, "A Review of Desiccant Dehumidification Technology," in EPRI's

Electric Dehumidification: Energy Efficient Humidity Control for Commercial and

Institutional Buildings Conference, New Orleans, 1993.

[3] W. Goetzler, R. Zogg, J. Young and C. Johnson, "Energy Savings Potential and

RD&D Opportunities for Non-Vapor Compression HVAC Technologies," U.S.

Department of Energy Office of Scientific and Technical Information, Burlington,

2014.

[4] D. La, Y. Dai, Y. Li, R. Wang and T. Ge, " Technical development of rotary

desiccant dehumidification and air conditioning: A review," Renewable &

Sustainable Energy Reviews, vol. 14, no. 1, pp. 130-147, 2010.

[5] United States Environmental Protection Agency, "Understanding Global Warming

Potentials," [Online]. Available:

https://www.epa.gov/ghgemissions/understanding-global-warming-potentials.

[Accessed 20 March 2019].

[6] A. Hauer, "Sorption Theory for Thermal Energy Storage," in Thermal Energy

Storage for Sustainable Energy Consumption, H. Ö. Paksoy, Ed., Dordrecht,

Springer, 2007, pp. 393-408.

[7] K. Matsumoto, N. Sakikawa and T. Miyata, "Thermo-responsive gels that absorb

moisture and ooze water," Nature Communications, vol. 9, no. 1, 2018.

[8] T. Ge, F. Ziegler and R. Wang, "A mathematical model for predicting the

performance of a compound desiccant wheel (A model of compound desiccant

wheel)," Applied Thermal Engineering, vol. 30, no. 8-9, pp. 1005-1015, 2010.

[9] M. Sultan, T. Miyazaki, S. Koyama and Z. M. Khan, "Performance evaluation of

hydrophilic organic polymer sorbents for desiccant air-conditioning applications,"

Adsorption Science & Technology, vol. 36, no. 1-2, pp. 311-326, 2018.

[10] Missouri Division of Energy, "Why 400 CFM per Ton is used for Determining

"Standard Air" Conditions Air Volumes," [Online]. Available:

https://energy.mo.gov/sites/energy/files/61-why-400-cfm-per-ton.pdf. [Accessed

20 March 2019].

88

[11] G. Angrisani, C. Roselli and M. Sasso, "Effect of rotational speed on the

performances of a desiccant wheel," Applied Energy, vol. 104, pp. 268-275, 2013.

[12] U.S. Department of Energy, "Explaining Central Air Conditioner & Heat Pump

Standards," [Online]. Available:

https://www.energy.gov/sites/prod/files/2015/11/f27/CAC%20Brochure.pdf.

[Accessed 20 March 2019].

[13] Air-Conditioning, Heating, and Refrigeration Institute, "2015 Standard for

Performance Rating of Commercial and Industrial Unitary Air-conditioning and

Heat Pump Equipment," [Online]. Available:

http://www.ahrinet.org/App_Content/ahri/files/STANDARDS/AHRI/AHRI_Stand

ard_340-360_2015.pdf. [Accessed 20 March 2019].

[14] ASHRAE, "Ventilation for Acceptable Indoor Air Quality," 2015. [Online].

Available:

https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20an

d%20Guidelines/Standards%20Addenda/62_1_2013_p_20150707.pdf. [Accessed

25 March 2019].

[15] A. Palmowska and B. Lipska, "Research on improving thermal and humidity

conditions in a ventilated ice rink arena using a validated CFD model,"

International Journal of Refrigeration, vol. 86, pp. 373-387, 2017.

[16] D. B. Jani, M. Mishra and P. K. Sahoo, " Performance analysis of hybrid solid

desiccant-vapor compression air conditioning system in hot and humid weather of

India," Building Services Engineering Research & Technology, vol. 37, no. 5, pp.

523-538, 2016.

[17] D. Clark, C. Hurley and C. Hill, "Dynamic Models for HVAC System

Components," ASHRAE Transactions, vol. 91, no. 1, pp. 737-751, 1985.

[18] Linric.com, "PSYCHROMETRICS for Engineers," [Online]. Available:

http://www.linric.com/demos.htm. [Accessed 25 March 2019].

[19] M. J. Moran and B. R. Munson, MAE 240 - Thermofluids I, Hoboken: John Wiley

& Sons, Inc., 2015.

[20] B. Tashtoush, M. Molhim and M. Al-Rousan, "Dynamic model of an HVAC

system for control analysis," Energy, vol. 30, pp. 1729-1745, 2005.

89

APPENDIX A

EXPLANATION OF GRAPHICAL INTERFACE AND PYTHON SCRIPTS

90

After inputting the initial indoor, the outdoor, and the desired outlet air conditions,

the program calculates the dynamic response of the control volume. A diagram of the

control volume is shown in the figure below.

Fig. A.1: Control volume for the air within the house that is being conditioned, with mass

flows, external heat gain, and internal moisture gain

For the models that were created, the heat gain and indoor evaporation rate were

set to zero. The heat gain was set to zero because it was found to be miniscule compared

to the thermal mass of the house and the cooling provided by the air conditioning, and the

evaporation rate was set to zero for simplicity, as this is the case when the house is

unoccupied.

For some volume of air within the house and the selected mass flow rates for the

various air streams, the temperature and humidity drop of the control volume is determined

for a given time-step, as described later in Section 2.4. The simulation ends when the

91

thermal mass weighted average temperature of the conditioned space reaches a value 1 °F

lower than the thermostat set temperature. To simplify calculations, it is assumed that the

supply air entering the conditioned space does not mix with the remaining air. This was

done so that the temperature and humidity ratio of the return air are kept constant

throughout the transient process, such that the air conditioning components can be modeled

for constant inlet properties. Because the air stream properties are kept constant, the

modeling of the components can then be seen as a simulation of steady state performance,

while the simplified transient response of the air within the conditioned space gives an

estimate of the system operation time. The operation time can then be used to find the total

amount of water removed from the air during operation, which can be used to determine

how much desiccant and NIPAAm is required.

After receiving the model inputs, the graphical interface calls one of two functions.

If the user selected vapor compression as the cooling method, the first function is called.

This function, written in house_air.py, gathers relevant values regarding the steady state

performance of the three models that contain vapor compression cooling, given the desired

conditions. The second function, which was written in house_air_evap_cool.py and is

utilized if the user selected evaporative cooling as the desired method, gathers values

regarding the steady state performance of the two evaporative cooling configurations. Each

model, after gathering temperature and humidity values at each state in the cycle, as well

as heat and power inputs to the devices, calculates the temperature and humidity drop of

the conditioned space over time.

92

After the supply air exits the air conditioning system, it is provided to the

conditioned space. Before it reaches the control volume, however, it travels though ducting.

The ducting is initially at the temperature of the control volume, and when the cold supply

air passes through, the supply air is heated while the ducting is cooled. This process is

described in the equation below, which was taken from an ASHRAE paper on dynamic

modeling for air conditioning components [17].

 𝑑𝑇𝑑𝑢𝑐𝑡

𝑑𝑡
=

𝑇𝑠,𝑜 − 𝑇𝑑𝑢𝑐𝑡

𝑈𝑑𝑢𝑐𝑡,𝑖

𝑈𝑑𝑢𝑐𝑡,𝑖 + 𝑈𝑑𝑢𝑐𝑡,𝑜
∗

𝑚𝑑𝑢𝑐𝑡𝑐𝑝,𝑑𝑢𝑐𝑡

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑜𝑐𝑝,𝑣)

(A.1)

For the scenarios that were modeled, it is assumed that the heat transfer coefficient on the

inside of the ducting is far greater than the heat transfer coefficient on the outside of the

ducting, due to the occurrence of forced convection within the ducting and natural

convection on the ducting exterior. Thus, the external heat transfer coefficient is neglected,

and it is assumed that the ducting approaches a steady state temperature equal to the

temperature of the supply air as it enters the duct.

The temperature and humidity of the air within the conditioned space are at some

initial values Thouse,i and xhouse,i, respectively. Some percentage of the total volume is

occupied by solids, which are at the same initial temperature as the air. This scenario is

illustrated in the figure below, where mhouse,i is the initial mass of air in the space, which,

for the scenario modeled, is the mass of air in the space for the entire process, as the supply

and return mass flow rates are constant.

93

Fig. A.2: Initial properties for the air within the conditioned space

The cool and dry supply air enters the control volume through some inlet and the return air

exits through an outlet. Because the various components of the system are modeled for

steady state performance, the properties of the air that enters these components should

remain constant with time. Because the supply air is some mix of return and outside air,

the return air properties must then stay constant. To achieve this, it is assumed that the

supply air and return air do not mix or exchange heat, as shown in the figure below.

Fig. A.3: Separated supply and return air within the conditioned space

94

The mass of supply air within the space, m1, is simply the product of the mass flow rate

and the time that the system has been running, �̇�𝑠𝑢𝑝𝑝𝑙𝑦∆𝑡. The mass of initial air that

remains within the space, m2, is the initial air mass minus the product of mass flow rate and

operation time, 𝑚ℎ𝑜𝑢𝑠𝑒,𝑖 − �̇�𝑟𝑒𝑡𝑢𝑟𝑛∆𝑡.

While the air is kept stratified for the purpose of maintaining steady conditions at

the outlet, the mass weighted average temperature and humidity ratio are calculated at each

time step. These are the values that would result if the air would mix completely and reach

equilibrium with the solids in the room. These values are computed for display on the

graphical interface, and for the stop criterion. A loop in the house_air and

house_air_evap_cool functions adds some mass of supply air and removes some mass of

return air from the conditioned space at every time step. Once the average temperature

reaches a value 1 °F lower than the thermostat set temperature that was input by the user,

the loop breaks, and the model stops. The following equations describe the mass weight

average humidity ratio and temperature for the conditioned space at any time t, where the

specific heat of the solids, cp,solid, is given per unit volume instead of mass.

𝑥ℎ𝑜𝑢𝑠𝑒,𝑎𝑣𝑔 =

𝑚1𝑥𝑠,𝑜 + 𝑚2𝑥ℎ𝑜𝑢𝑠𝑒,𝑖

𝑚1 + 𝑚2

(A.2)

 𝑇ℎ𝑜𝑢𝑠𝑒,𝑎𝑣𝑔 =

𝑚1(𝑐𝑝,𝑎 + 𝑥𝑠,𝑜𝑐𝑝,𝑣)𝑇𝑑𝑢𝑐𝑡 + (𝑚2(𝑐𝑝,𝑎 + 𝑥ℎ𝑜𝑢𝑠𝑒,𝑖𝑐𝑝,𝑣) + 𝑉𝑠𝑜𝑙𝑖𝑑𝑐𝑝,𝑠𝑜𝑙𝑖𝑑)𝑇ℎ𝑜𝑢𝑠𝑒,𝑖

(𝑚1 + 𝑚2)(𝑐𝑝,𝑎 + 𝑥ℎ𝑜𝑢𝑠𝑒,𝑎𝑣𝑔𝑐𝑝,𝑣) + 𝑉𝑠𝑜𝑙𝑖𝑑𝑐𝑝,𝑠𝑜𝑙𝑖𝑑

(A.3)

95

It should be noted that the validity of the stratified model is contingent on the

operation time. At a certain time, 𝑚ℎ𝑜𝑢𝑠𝑒,𝑖/�̇�𝑟𝑒𝑡𝑢𝑟𝑛, all of the air within the conditioned

space will have been replaced with supply air, at which point it is impossible for the return

air to be at the initial conditions.

As mentioned previously, the vapor compression cooling configurations were

modeled in house_air.py. The model starts by defining various properties, including the

NIPAAm regeneration temperature, total volume within the conditioned space, indoor

evaporation rate, supply air total mass flow rate, fraction of the supply air mass flow that

comes from outside air, mass flow rate of the air that cools the vapor compression

condenser, specific heats of the desiccant and NIPAAm, moisture absorption capacity for

the desiccant and NIPAAm, as well as the percent of the control volume which is solid and

volumetric specific heat of the solids. After defining these properties and receiving the

inputs from the graphical interface, the model accounts for the mixing of the return and

outdoor air streams to form the supply air and calculates the temperature, Ts,i, and humidity

ratio, xs,i, of the mixed supply air. The code then models the mixing of return and outside

air to form the process air and calculates the temperature, Tp,i, and humidity ratio, xp,i, of

the process air stream.

For the vapor compression only configuration, the model calls the AC.py function

with the supply air properties, desired outlet properties, and outside air properties as inputs.

The AC function returns the power required, as well as several values used to create

graphics in the graphical interface.

96

For the desiccant dehumidification and vapor compression cooling configuration

and the NIPAAm dehumidification and vapor compression cooling configuration, the

mixed supply air is sent first to the dehumidifier. For these configurations, the Dehum

function is called, with the mixed supply air temperature and humidity ratio, as well as the

desired outlet humidity ratio, as inputs. Based on the required outlet humidity, the

temperature is found for the supply air as it leaves the dehumidifier. The dehumidifier

outlet properties are used as the inlet properties for the heat exchanger. The heat exchange

process is modeled by calling the HX function, which uses the dehumidified supply air

properties as inputs for the hot-side inlet properties and uses the mixed process air

properties as inputs for the cold-side inlet properties. The function returns the temperatures

for the supply and process air streams as they exit the heat exchanger. Now that the supply

air has been dehumidified and pre-cooled, it is sent to the vapor compression cooling

system. The properties of the supply air as it exits the heat exchanger are used as inputs for

the AC function, along with the outside air and desired outlet air conditions. Once again,

the AC function returns the power required at the compressor. Additionally, the model

determines the total amount of water that was absorbed during the process.

Aside from collecting values for the various states in the system, the house_air

function also calculates the dynamic temperature change within the conditioned space, as

described in the previous section. After a certain number of time steps, the lumped

temperature of the space reaches the desired value and the loop breaks. At this point, the

time required to cool the conditioned space is recorded. During the loop, the lumped

temperature and humidity ratio for the conditioned space is recorded at each time step. This

97

information is passed back to the graphical interface so that an interactive timeline of the

temperature and humidity within the house can be viewed.

Modeling of the vapor compression air conditioner was accomplished with three

separate scripts. The first script, AC.py, is a top level script that contains certain

information that is passed to the other two scripts, such as the refrigerant, heat transfer

coefficients, outdoor and indoor air pressure, and isentropic efficiency of the compressor.

Aside from containing this information, the AC script also calculates the power used by

the compressor and creates the arrays for the T-s and P-h diagrams that are displayed in the

graphical interface.

To model the vapor compression air conditioning evaporator, the script

HX_AC_evap.py is used. Before calling the HX_AC_evap function, the AC script

calculates the humidity of the air after it is cooled by the evaporator coils. If the desired

outlet temperature is greater than the dew point, the outlet humidity ratio is equal to the

inlet humidity ratio. If the desired outlet temperature is less than the dew point of the inlet

air, then the outlet humidity ratio is the saturation humidity ratio associated with the outlet

temperature, as determined by the script x_s.py. Once the outlet humidity ratio has been

determined, the AC script calls the HX_AC_evap script with inputs for the mass flow rate

of air over the evaporator coils, the air pressure within the building, the inlet air temperature

and humidity, the outlet air temperature and humidity, the refrigerant, and the heat transfer

coefficient of the evaporator.

98

The vapor compression condenser was modeled in HX_AC_cond.py. Much like

the script that models the evaporator, the script for the condenser uses an iterative scheme

to solve the relevant heat exchanger equations, as described in Section 2.3.2.

The air conditioning compressor was not modeled in its own script; rather, it was

modeled in the script AC.py.

The model for dehumidification was implemented in the script Dehum.py. The

Dehum script is used to find the outlet temperature of the supply air for a given amount of

dehumidification.

The heat exchanger that pre-cools the supply air and pre-heats the process air was

modeled in HX.py.

The energy required for the regeneration process is different for the desiccant and

NIPAAm configurations and was not modeled in a separate script; instead, the regeneration

for both configurations was modeled in the graphical interface script (GUI.py). This was

done because the regeneration energy is dependent on certain parameters that cannot be

determined with the models’ current level of sophistication. In the graphical interface, the

user can adjust a slider to control the required regeneration temperature for the desiccant,

after which the GUI.py script utilizes the selected regeneration temperature in Eq. 2.14 to

calculate the rate of heating required for regeneration. The script then multiplies the rate of

heating by the cycle time to find the total regeneration heat, which it then displays, along

with the COP. The slider allows the user to vary the regeneration temperature between two

extremes. The lower bound of the slider is the temperature of the process air leaving the

heat exchanger, which represents the case in which the desiccant can be regenerated at the

99

temperature of the process air after it is pre-heated in the heat exchanger, meaning no heat

is required from the electric heater. The upper bound of the slider was set to a temperature

of 140 °C, as the desiccant regeneration temperatures found in literature were all lower

than 140 °C, meaning that the slider should encompass the entire range of possible

regeneration temperatures.

For the NIPAAm regeneration, each rate of heat transfer in Eq. 2.20 is dependent

on an unknown parameter. Three sliders are displayed in the GUI, such that the user can

control the NIPAAm temperature at the beginning of the dehumidification portion, the

evaporation fraction, and the NIPAAm temperature at the end of the dehumidification

portion. The GUI script then calculates the three rates of heat transfer and divides the rate

of cooling by the cooling system COP to find the required electrical power. It should be

noted that the evaporative cooling configuration does not consume electricity to produce

cooling; rather, it consumes water. Thus, the COP in terms of cooling rate per unit electrical

power is infinite for the evaporative cooler (when neglecting any blowers used to induce

airflow), and the cooling term drops out of regeneration energy equation. At the moment,

it is not obvious how the vapor compression or evaporative cooling systems would

interface with the NIPAAm wheel. It is assumed that cooling is provided to the wheel at

the COP of cooling system and is done by means that do not involve the NIPAAm

absorbing any moisture before entering the dehumidification section.

If the user selects the evaporative cooling configurations, the transient cooling

process for the air within the conditioned space is evaluated using the model in

house_air_evap_cool.py. This script, like the house_air script, defines various properties

100

and models the mixing of return and outside air to form the supply and process air streams.

For these configurations, an iterative process is used to find the amount of supply air

dehumidification required to reach the desired outlet conditions, as illustrated previously

in Fig. 2.3.7.1. First the mixed supply air properties are given as inputs to the Dehum

function, the outputs of which are given as inputs to the HX function, along with the process

air properties. The error for each iteration is the difference between the enthalpy of the

supply air exiting the heat exchanger and the desired enthalpy of the supply air after

evaporative cooling, as the evaporative cooling is an isenthalpic process. The iterative

solver varies the humidity of the supply air leaving the dehumidifier until the error is

sufficiently small. At this point, all states in the system process are known, and the

house_air_evap_cool function models the transient behavior of the conditioned space, as

previously described. The evaporative cooler was also not given a separate script and was

instead modeled directly within the house_air_evap_cool script.

The highest level script in the overall model is GUI.py, which creates the graphical

user interface and, based on user input, decides which scripts to run and what conditions to

model. When run, the GUI script first creates a window that allows the user to pass inputs

and view various plots, graphics, and values. The first page displayed by the GUI script is

an explanation of the tool and a disclaimer about the nature of the models that were

implemented. After clicking the “Next” button, the user is taken to a configuration selection

page, in which the user can choose between simulating the vapor compression

configurations (vapor compression only, desiccant dehumidification and vapor

compression cooling, and NIPAAm dehumidification and vapor compression cooling), or

101

the evaporative cooler models (desiccant dehumidification and evaporative cooling and

NIPAAm dehumidification and evaporative cooling). This page is shown in the figure

below.

Fig. A.4: Page two of the GUI – configuration selection

After selecting the cooling method and advancing to the next page, the user is prompted to

input several values: the thermostat set temperature, initial indoor humidity ratio, desired

temperature and humidity ratio of the cool air supplied to the house, and outdoor air

temperature and humidity ratio. All temperatures are to be input in Kelvin and all humidity

ratios are to be input in kg/kg. The figure below shows this page of the GUI.

102

Fig. A.5: Page three of the GUI – inputs

After inputting the values and clicking the “Next” button, the GUI script passes the inputs

to the next appropriate script; if vapor compression cooling was selected, the inputs are

passed to house_air.py, and if evaporative cooling was selected, the inputs are passed to

house_air_evap_cool.py. Within the appropriate script, several other scripts are run, and

the processes at each component are modeled, along with the transient temperature and

humidity response of the air within the house. Additionally, several arrays of graphics are

created in this process, which include system diagrams and psychrometric charts. After the

scripts are finished running, the final page is displayed. The figure below shows an example

of the page that is displayed for the vapor compression cooling configurations.

103

Fig. A.6: Page four of the GUI with vapor compression configuration selected

Several key features are displayed on the page: the main graphic, the live plots, important

values, the configuration selection buttons, and the time slider. The default graphic in the

main frame is the system schematic with temperatures and humidity ratios printed on the

image. The user can click and drag the slider at the bottom of the window to adjust the

system time and watch the house air temperature and humidity ratio change. Additionally,

the user can click the “Next figure” button to switch the graphic in the main frame to a

psychrometric chart of the steady state processes performed by the total system, as shown

in the figure below.

104

Fig. A.7: Page four of the GUI with the psychrometric chart selected as the main figure

The psychrometric chart was found on linric.com [11]. When viewing the psychrometric

chart, the user can click the “Previous figure” button to switch the main figure back to the

system schematic. The live plots to the right of the main figure are T-s and P-h diagrams

of the vapor compression refrigeration cycle used to cool the air. By default, the T-s

diagram is shown when the page loads, but the user can switch between the two diagrams

by clicking the “T-s” and “P-h” buttons.

Additionally, the user can click one of the buttons at the bottom of the page to

change the system configuration. The default configuration shown when the page loads is

the “Vapor Compression Only” configuration. By clicking the “Desiccant + Vapor

Compression” button, the page changes to that which is shown in the figure below.

105

Fig. A.8: Page four of the GUI with the desiccant dehumidification and vapor

compression cooling configuration selected

The dehumidification process was modeled to bring the humidity of the supply air to the

same humidity that was achieved with the vapor compression only configuration, and the

vapor compression cooling for this configuration was modeled to bring the outlet

temperature of the supply air to the same temperature as the supply air in the vapor

compression only configuration. Thus, although the intermediate processes differ, the air

entering and exiting the system for this configuration is the same as the air in the vapor

compression only configuration. Because of this, the time it takes for the house to reach

the desired temperature is the same as in the previous configuration. Because

dehumidification and pre-cooling occurs before the air is sent to the vapor compression air

conditioner in this configuration, less cooling is required to achieve the same outlet

temperature, and the plots on the right of the page change. Additionally, because a different

process is taken to reach the supply air outlet properties, the psychrometric chart is different

106

for this configuration than it was for the vapor compression only configuration, as shown

in the figure below.

Fig. A.9: Page four of the GUI with the psychrometric chart as the main figure and the

desiccant dehumidification and vapor compression cooling configuration selected

The vertical slider that appears when changing to the desiccant configuration allows the

user to control the regeneration temperature of the desiccant. Adjusting this slider will

change the regeneration energy and COP values.

By clicking the “NIPAAm + Vapor Compression” button, the page changes again,

as shown in the figure below.

107

Fig. A.10: Page four of the GUI with the NIPAAm dehumidification and vapor

compression cooling configuration selected

Because the steady state dehumidification process for this configuration is the same as in

the previous configuration, the psychrometric chart and vapor compression plots for this

configuration are the same as in the desiccant configuration. The only process that differs

between the desiccant and NIPAAm configurations is regeneration, so the system

schematic and vertical sliders change, along with the regeneration heat and COP values.

For this configuration, the user can manipulate the three sliders shown in the figure above.

The first slider, labeled “Start”, is the temperature at which the NIPAAm leaves the cooling

portion and enters the dehumidification portion of the wheel, TNIPAAm,i. The lower this

temperature is required to be, the more energy is required for cooling. The second slider

allows the user to adjust the percent of water that is evaporated during regeneration. As

more water is evaporated during regeneration, more heat must be transferred to the wheel

to maintain the NIPAAm at the LCST. Finally, the third slider, labeled “Stop”, controls the

108

temperature at which the NIPAAm leaves the dehumidification portion and enters the

regeneration portion of the wheel, TNIPAAm,f. This value should be as close as possible to the

LCST without exceeding it. The closer the temperature is to the LCST, the less the

temperature has to be raised with external heating to allow it to regenerate; however, the

NIPAAm cannot exceed this temperature in the dehumidification portion, otherwise it will

transition to hydrophobic and stop dehumidifying the air.

If the evaporative cooling method is selected on the second page, instead of vapor

compression cooling, the user is prompted with the same inputs on the third page, after

which the GUI script sends the inputs to house_air_evap_cool.py. The script calls the

appropriate functions and determines the processes for the evaporative cooling

configurations. After the simulation is complete, the final page is displayed, as shown in

the figure below.

Fig. A.11: Page four of the GUI for the evaporative cooling configurations

109

For the evaporative cooling method, there are only two configurations: desiccant

dehumidification and evaporative cooling and NIPAAm dehumidification and evaporative

cooling. The desiccant configuration is the default when the page loads. The layout of this

page is very similar to the layout seen in the desiccant dehumidification and vapor

compression cooling page. The system schematic is slightly changed to reflect the

evaporative cooler, but the horizontal time slider and vertical regeneration temperature

slider function in the same manner as they do in the desiccant dehumidification and vapor

compression cooling display. Because there is no vapor compression air conditioner in this

cycle, the T-s and P-h diagrams are replaced with a plot of humidity ratio vs temperature.

The axes of this plot are the same as in the psychrometric chart, which can still be seen by

clicking the “Next figure” button; however, the live plot on the right side of the page are

simplified and do not contain the extra information that is shown on the psychrometric

chart, such as the lines of constant humidity and enthalpy. Additionally, the plot on the

right has units of kg/kg for humidity ratio and °C for temperature, while the psychrometric

chart has units of grains/lb. for humidity ratio and °F for temperature. The plot on the right

can be seen as a basic illustration of the process the supply air undergoes, while the

psychrometric chart is more complex but provides more information and insight if the user

understands how to read it. Furthermore, the plot on the right also displays a curve for the

process air as it is pre-heated by the heat exchanger, heated further by the electric heater,

and then humidified by the regenerating portion of the desiccant wheel as it absorbed

moisture from the desiccant. To ensure the desorption in the regenerating portion occurs at

the same rate as the absorption in the dehumidifying portion, the increase in process air

110

humidity ratio across the regenerating portion is the same as the supply air humidity ratio

drop across the dehumidifying portion. As the user moves the vertical slider, which controls

the regeneration temperature, the plot on the right changes to reflect the new regeneration

temperature, as shown in the figure below.

Fig. A.12: Humidity ratio vs temperature GUI plot changing with regeneration

temperature. Plots are shown for a regeneration temperature that is impossible (left) and

possible (right) based on the position of the process air outlet temperature relative to the

saturation curve. The inset is the slider that controls regeneration temperature.

By clicking the “NIPAAm + Evaporative Cooling” button, the user display changes

to reflect the NIPAAm configuration, as shown in the figure below.

111

Fig. A.13: Page four of the GUI with the NIPAAm dehumidification and evaporative

cooling configuration selected

The system schematic changes to reflect the different method of regeneration, and

the vertical sliders change to once gain control the NIPAAm temperature at the beginning

and end of the dehumidification portion of the NIPAAm wheel, as well as the evaporation

fraction. Additionally, the process air curve is different on the plot to the right, as the

NIPAAm is regenerated directly with a heater, and the process air is vented after passing

through the heat exchanger.

All of the following values relate to the transient model of the air within the

conditioned space, which, again, does not affect the results in Chapter 3; these values are

simply presented for clarity. A 1200 sq. ft floor area was selected for the conditioned space

that was modeled, and a 3 ton air conditioning system was selected to cool this space. Based

on the floor space and an average ceiling height of 8 ft, the total volume of the space was

set to 271.84 m3. The air pressure within the space was set to 101325 Pa. The solids in the

112

space were set to take up 0.5% of the total volume, as this allowed the system operation

time to remain low enough to use the stratified air model. The specific heat of the solid was

defined as 903600 J/m3K, as this is roughly the volumetric specific heat of wood [19].

The internal heat transfer coefficient for the duct, specific heat for the duct material,

and duct mass per unit length were all taken from a study on the dynamic modeling of an

HVAC system [20]. The length of the ducting was set to 9.14 m, which is approximately

30 ft, such that the ducting could span the width of a 40 ft x 30 ft room.

The time step for the transient model was set to 1 s. As the percent solid volume

decreases, the average room temperature changes at a greater rate, and a smaller time step

may be desired. However, if the time step is too small for a given percentage of solid

volume, the Python lists will become too large, and the computer on which the model is

running will be likely to crash.

113

APPENDIX B

PYTHON CODE FOR “GUI.PY”

114

from house_air import house_air

from house_air_evap_cool import house_air_evap_cool

import numpy as np

from x_s import x_s

from T_s import T_s

from Tkinter import *

from PIL import Image, ImageTk, ImageFont, ImageDraw

import matplotlib

matplotlib.use('TkAgg')

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,

NavigationToolbar2TkAgg

implement the default mpl key bindings

from matplotlib.backend_bases import key_press_handler

from matplotlib.figure import Figure

print_query = 'no'

fnt = ImageFont.truetype("C:\Windows\Fonts\ARIAL.TTF", 25)

window = Tk()

window.title("Air Conditioned House Model")

w = window.winfo_screenwidth()

h = window.winfo_screenheight() - 80

window.geometry('%dx%d+0+0' % (w, h))

#window.geometry('961x418')

window.configure(background='white')

window_1_title = Label(window, bg='white', text='Air Conditioning Modeling',

font=("Open Sans Bold", 25))

window_1_title.place(x=w/2., y=0, anchor="n")

window_1_underline = Label(window, bg='white',

text='___

____________________', font=("Open Sans Bold", 25))

window_1_underline.place(x=w/2., y=50, anchor="n")

v = IntVar()

#v.set(1)

window_1_body = Label(window, bg='white', text='This is a graphical user interface that

can be used to model various air conditioning system configurations. The components are

modeled for steady state performance, and the user can scroll through to watch how the

115

average temperature and humidity within the house change. The models in this interface

rely on certain approximations and best-case assumptions and are only intended to show

the potential of various hypothetical system configurations.', font=("Open Sans", 15),

wraplength=w*7./8.)

window_1_body.place(relx=0.5, rely=0.5, anchor=CENTER)

def third_window():

 window_2_title = Label(window, bg='white', text='Select the Air Handling

System Configuration', font=("Open Sans Bold", 25))

 window_2_title.place(x=w/2., y=0, anchor="n")

 window_2_underline = Label(window, bg='white',

text='___

____________________', font=("Open Sans Bold", 25))

 window_2_underline.place(x=w/2., y=50, anchor="n")

 v = IntVar()

 #v.set(1)

 Radiobutton(window, bg='white', text='Vapor Compression Cooling',

font=("Open Sans", 15), padx=20, variable=v, value=1).place(relx=0.5, rely=0.46,

anchor=CENTER) #VC

 Radiobutton(window, bg='white', text='Evaporative Cooling', font=("Open Sans",

15), padx=20, variable=v, value=2).place(relx=0.5, rely=0.5, anchor=CENTER) #Evap

 def fourth_window():

 if v.get() == 1:

 window_5_title = Label(window, bg='white', text='Input Values',

font=("Open Sans Bold", 25))

 window_5_title.place(x=w/2., y=0, anchor="n")

 window_5_underline = Label(window, bg='white',

text='___

____________________', font=("Open Sans Bold", 25))

 window_5_underline.place(x=w/2., y=50, anchor="n")

 text_1 = Label(window, bg='white', text='Thermostat Set

Temperature', font=("Open Sans", 15))

 text_1.place(relx=0.5, rely=0.40, anchor="e")

 text_2 = Label(window, bg='white', text='Initial Indoor Air

Humidity Ratio', font=("Open Sans", 15))

 text_2.place(relx=0.5, rely=0.44, anchor="e")

 text_3 = Label(window, bg='white', text='Outside Air

Temperature', font=("Open Sans", 15))

 text_3.place(relx=0.5, rely=0.52, anchor="e")

116

 text_4 = Label(window, bg='white', text='Outside Air Humidity

Ratio', font=("Open Sans", 15))

 text_4.place(relx=0.5, rely=0.56, anchor="e")

 text_5 = Label(window, bg='white', text='AC Outlet Air

Temperature', font=("Open Sans", 15))

 text_5.place(relx=0.5, rely=0.48, anchor="e")

 text_5 = Label(window, bg='white', text='Percent Supply Air from

Outside', font=("Open Sans", 15))

 text_5.place(relx=0.5, rely=0.6, anchor="e")

 txt_1 = Entry(window,width=20)

 txt_1.insert(INSERT,"294.59444")

 txt_1.place(relx=0.5, rely=0.40, anchor=W)

 txt_2 = Entry(window,width=20)

 txt_2.insert(INSERT,"0.008164972225996216")

 txt_2.place(relx=0.5, rely=0.44, anchor=W)

 txt_3 = Entry(window,width=20)

 txt_3.insert(INSERT,"298.15")

 txt_3.place(relx=0.5, rely=0.52, anchor=W)

 txt_4 = Entry(window,width=20)

 txt_4.insert(INSERT,"0.02009")

 txt_4.place(relx=0.5, rely=0.56, anchor=W)

 txt_5 = Entry(window,width=20)

 txt_5.insert(INSERT,"284.15")

 txt_5.place(relx=0.5, rely=0.48, anchor=W)

 txt_7 = Entry(window,width=20)

 txt_7.insert(INSERT,"50")

 txt_7.place(relx=0.5, rely=0.6, anchor=W)

 def fifth_window():

 #Vapor Compression

 global count

 global count_2

 global canvas_image

 global main_figure

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global val_save

 global T_set

 global x_i

 global T_outside

117

 global x_outside

 global T_air_o

 global Sb

 global mass_H2O

 global work_AC

 global heat_regen

 global W_AC

 global W_des

 global W_NIPAAm

 global Q_regen_NIPAAm

 global h_fg_NIPAAm

 global m_NIPAAm

 global delta_m_h2o

 global des_amount

 global COP

 global sub_frame_1

 global sub_frame_2

 global t_f

 global delta_t

 global T_HX_preheat_o

 global C_p_regen

 global mass_H2O_reclaimed

 global count_3

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 global m_des

 global percent_vent

 main_figure_1 = []

 [delta_t, t_f, T_h_array_AC, x_h_array_AC,

T_duct_array_AC, x_duct_array_AC, T_return_array_AC, x_return_array_AC,

T_h_array_des, x_h_array_des, T_duct_array_des, x_duct_array_des,

T_return_array_des, x_return_array_des, T_h_array_NIPAAm, x_h_array_NIPAAm,

T_duct_array_NIPAAm, x_duct_array_NIPAAm, T_return_array_NIPAAm,

x_return_array_NIPAAm, delta_m_h2o, W_AC, W_des, W_NIPAAm,

c_p_NIPAAm_dry, c_p_NIPAAm_wet, h_fg_NIPAAm,

T_1_AC,T_3_AC,T_4_AC,s_1_AC,s_2_AC,s_3_AC,s_4_AC,s_g_AC,P_evap_AC,P_co

nd_AC,h_1_AC,h_2_AC,h_3_AC,h_4_AC,T_1_des,T_3_des,T_4_des,s_1_des,s_2_des,

s_3_des,s_4_des,s_g_des,P_evap_des,P_cond_des,h_1_des,h_2_des,h_3_des,h_4_des,T_

1_NIPAAm,T_3_NIPAAm,T_4_NIPAAm,s_1_NIPAAm,s_2_NIPAAm,s_3_NIPAAm,s

_4_NIPAAm,s_g_NIPAAm,P_evap_NIPAAm,P_cond_NIPAAm,h_1_NIPAAm,h_2_NI

PAAm,h_3_NIPAAm,h_4_NIPAAm,Q_AC_cool,Q_des_cool,Q_NIPAAm_cool,s_array

,T_array,h_array,P_array,T_HX_preheat_o,C_p_regen,Q_useful,omega,m_NIPAAm,CO

118

P_AC_NIPAAm,m_des,delta_C_NIPAAm] =

house_air(T_set,x_i,T_outside,x_outside,(T_set +

5./9.),x_i,T_outside,x_outside,T_air_o,percent_vent)

 T_regen_NIPAAm = 32 + 273.15

 final_index_1 = len(T_h_array_AC)

 final_index_3 = len(T_h_array_des)

 final_index_5 = len(T_h_array_NIPAAm)

 main_figure_2 = []

 main_figure_3 = []

 main_figure_4 = []

 main_figure_5 = []

 main_figure_6 = []

 img_2 =

Image.open('output\psychrom\psychrom_AC_out.png')

 img_4 =

Image.open('output\psychrom\psychrom_desiccant_out.png')

 img_6 =

Image.open('output\psychrom\psychrom_NIPAAm_out.png')

 for ind in range(final_index_1):

 img_1 = Image.open('diag_AC_only.png')

 draw = ImageDraw.Draw(img_1)

 s = " "

 seq = ("T = ", str(round(T_h_array_AC[ind] -

273.15, 2)), u'\xb0'"C")

 T_i_str = s.join(seq)

 seq = ("T = ", str(round(T_return_array_AC[ind] -

273.15, 2)), u'\xb0'"C")

 T_r_str = s.join(seq)

 seq = ("T = ", str(round(T_duct_array_AC[ind] -

273.15, 2)), u'\xb0'"C")

 T_f_str = s.join(seq)

 seq = ("x = ",

str(round(x_return_array_AC[ind]*1000, 2)), "g/kg")

 x_r_str = s.join(seq)

 seq = ("x = ", str(round(x_h_array_AC[ind]*1000,

2)), "g/kg")

 x_i_str = s.join(seq)

 seq = ("x = ",

str(round(x_duct_array_AC[ind]*1000, 2)), "g/kg")

 x_f_str = s.join(seq)

 seq = ("T = ", str(round(T_outside - 273.15, 2)),

u'\xb0'"C")

 T_out_str = s.join(seq)

119

 seq = ("x = ", str(round(x_outside*1000, 2)),

"g/kg")

 x_out_str = s.join(seq)

 draw.text((875,288), T_i_str, font = fnt, fill =

(0,0,0))

 draw.text((746,513), T_r_str, font = fnt, fill =

(0,0,0))

 draw.text((746,102), T_f_str, font = fnt, fill =

(0,0,0))

 draw.text((875,318), x_i_str, font = fnt, fill =

(0,0,0))

 draw.text((746,543), x_r_str, font = fnt, fill =

(0,0,0))

 draw.text((746,132), x_f_str, font = fnt, fill =

(0,0,0))

 draw.text((171,288), T_out_str, font = fnt, fill =

(0,0,0))

 draw.text((171,318), x_out_str, font = fnt, fill =

(0,0,0))

 main_figure_1.append(img_1)

 main_figure_2.append(img_2)

 for ind in range(final_index_3):

 img_3 = Image.open('diag.png')

 draw = ImageDraw.Draw(img_3)

 s = " "

 seq = ("T = ", str(round(T_h_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_i_str = s.join(seq)

 seq = ("T = ", str(round(T_return_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_r_str = s.join(seq)

 seq = ("T = ", str(round(T_duct_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_f_str = s.join(seq)

 seq = ("x = ",

str(round(x_return_array_des[ind]*1000, 2)), "g/kg")

 x_r_str = s.join(seq)

 seq = ("x = ", str(round(x_h_array_des[ind]*1000,

2)), "g/kg")

 x_i_str = s.join(seq)

120

 seq = ("x = ",

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg")

 x_f_str = s.join(seq)

 seq = ("T = ", str(round(T_outside - 273.15, 2)),

u'\xb0'"C")

 T_out_str = s.join(seq)

 seq = ("x = ", str(round(x_outside*1000, 2)),

"g/kg")

 x_out_str = s.join(seq)

 draw.text((1015,318), T_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,513), T_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,132), T_f_str, font = fnt, fill =

(0,0,0))

 draw.text((1015,348), x_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,543), x_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,162), x_f_str, font = fnt, fill =

(0,0,0))

 draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0))

 draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0))

 draw.text((465,463), T_out_str, font = fnt, fill =

(0,0,0))

 draw.text((465,493), x_out_str, font = fnt, fill =

(0,0,0))

 main_figure_3.append(img_3)

 main_figure_4.append(img_4)

 for ind in range(final_index_5):

 img_5 = Image.open('diag2.png')

 draw = ImageDraw.Draw(img_5)

 s = " "

 seq = ("T = ", str(round(T_h_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_i_str = s.join(seq)

 seq = ("T = ", str(round(T_return_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_r_str = s.join(seq)

 seq = ("T = ", str(round(T_duct_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_f_str = s.join(seq)

 seq = ("x = ",

str(round(x_return_array_des[ind]*1000, 2)), "g/kg")

121

 x_r_str = s.join(seq)

 seq = ("x = ", str(round(x_h_array_des[ind]*1000,

2)), "g/kg")

 x_i_str = s.join(seq)

 seq = ("x = ",

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg")

 x_f_str = s.join(seq)

 seq = ("T = ", str(round(T_outside - 273.15, 2)),

u'\xb0'"C")

 T_out_str = s.join(seq)

 seq = ("x = ", str(round(x_outside*1000, 2)),

"g/kg")

 x_out_str = s.join(seq)

 draw.text((1015,318), T_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,513), T_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,132), T_f_str, font = fnt, fill =

(0,0,0))

 draw.text((1015,348), x_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,543), x_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,162), x_f_str, font = fnt, fill =

(0,0,0))

 draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0))

 draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0))

 draw.text((465,463), T_out_str, font = fnt, fill =

(0,0,0))

 draw.text((465,493), x_out_str, font = fnt, fill =

(0,0,0))

 main_figure_5.append(img_5)

 main_figure_6.append(img_6)

 count = 0

 count_2 = 1

 main_figure = main_figure_1

 main = main_figure[0]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 w_frame = w_main

 h_frame = h_main

 s = " "

122

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15))

 mass_H2O.place(x=5, y=(h_frame + 61), anchor="nw")

 work_AC = Label(window, bg='white', text=s.join(("AC

work: ", str(round(W_AC/1000., 2)), "kJ")), font=("Open Sans", 15))

 work_AC.place(x=(w_frame - 35)/2., y=(h_frame + 61),

anchor="n")

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration heat: ", str(round(0*1000, 2)), "kJ")), font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame + 61),

anchor="ne")

 mass_H2O_reclaimed = Label(window, bg='white',

text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame + 100)/2.,

y=(h_frame + 131), anchor="n")

 des_amount = Label(window, bg='white',

text=s.join(("Required desiccant: ", str(round(0*delta_m_h2o*1000./0.4, 2)), "g")),

font=("Open Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131), anchor="nw")

 COP = Label(window, bg='white', text=s.join(("COP: ",

str(round((Q_AC_cool/(W_AC + 0)), 2)))), font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_frame=Frame(window,width=w_main,height=h_main)

 main_frame.grid(row=0,column=0)

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 def AC_only_button():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global mass_H2O

 global work_AC

123

 global heat_regen

 global W_AC

 global des_amount

 global COP

 global t_f

 global delta_t

 global mass_H2O_reclaimed

 global GUI_txt_1

 global GUI_txt_2

 global GUI_txt_3

 #global canvas_image

 if count_2 == 1:

 1

 else:

 global Sb_2

 if count_2 == 3:

 Sb_2.destroy()

 Sb_3.destroy()

 Sb_4.destroy()

 GUI_txt_1.destroy()

 GUI_txt_2.destroy()

 GUI_txt_3.destroy()

 elif count_2 == 2:

 Sb_2.destroy()

 else:

 1

 global val_save

 global Sb

 global sub_frame_1

 global sub_frame_2

 count = 0

 count_2 = 1

 count_3 = 1

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 main_figure = main_figure_1

 if val_save > (final_index_1 - 1):

 val_save = final_index_1 - 1

 else:

 1

 main = main_figure[val_save]

 w_main, h_main = main.size

124

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 mass_H2O.destroy()

 work_AC.destroy()

 heat_regen.destroy()

 des_amount.destroy()

 COP.destroy()

 mass_H2O_reclaimed.destroy()

 s = " "

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15))

 mass_H2O.place(x=5, y=(h_frame + 61),

anchor="nw")

 work_AC = Label(window, bg='white',

text=s.join(("AC work: ", str(round(W_AC/1000., 2)), "kJ")), font=("Open Sans", 15))

 work_AC.place(x=(w_frame - 35)/2.,

y=(h_frame + 61), anchor="n")

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round(0/1000., 2)), "kJ")), font=("Open Sans",

15))

 heat_regen.place(x=(w_frame - 30),

y=(h_frame + 61), anchor="ne")

125

 mass_H2O_reclaimed = Label(window,

bg='white', text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame +

100)/2., y=(h_frame + 131), anchor="n")

 des_amount = Label(window, bg='white',

text=s.join(("Required desiccant: ", str(round(0*delta_m_h2o*1000./0.4, 2)), "g")),

font=("Open Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131),

anchor="nw")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_AC_cool/(W_AC + 0)), 2)))), font=("Open Sans",

15))

 COP.place(x=(w_frame - 30), y=(h_frame +

131), anchor="ne")

 Sb.destroy()

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.set(val_save*delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 sub_frame_1.destroy()

 sub_frame_1=Frame(window,width=(w -

w_frame - 30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame - 30)/100.,

h/200), dpi=100)

 a = f.add_subplot(111)

 a.plot([s_1_AC, s_2_AC, s_3_AC, s_g_AC,

s_4_AC, s_1_AC],[T_1_AC, T_1_AC, T_3_AC, T_4_AC, T_4_AC, T_1_AC],

label='Refrigerant', color='orange')

 a.plot(s_array,T_array, color='k')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f,

master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP,

expand=0)

126

 toolbar =

NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP,

expand=0)

 Button(window, text='Vapor Compression Only',

command=AC_only_button, bg='white', font=("Open Sans", 10)).place(x=0, y=(h - 25),

anchor='sw') #AC Only button

 def des_button():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global mass_H2O

 global work_AC

 global heat_regen

 global W_des

 global des_amount

 global COP

 global t_f

 global delta_t

 global mass_H2O_reclaimed

 global GUI_txt_1

 global GUI_txt_2

 global GUI_txt_3

 #global canvas_image

 if count_2 == 2:

 1

 else:

 global Sb_2

 if count_2 == 3:

 Sb_2.destroy()

 Sb_3.destroy()

 Sb_4.destroy()

 GUI_txt_1.destroy()

 GUI_txt_2.destroy()

127

 GUI_txt_3.destroy()

 else:

 1

 global val_save

 global Sb

 global sub_frame_1

 global sub_frame_2

 global m_des

 count = 0

 count_2 = 2

 count_3 = 1

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 main_figure = main_figure_3

 main = main_figure[val_save]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 mass_H2O.destroy()

 work_AC.destroy()

 heat_regen.destroy()

128

 des_amount.destroy()

 COP.destroy()

 mass_H2O_reclaimed.destroy()

 s = " "

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O.place(x=5, y=(h_frame + 61),

anchor="nw")

 mass_H2O_reclaimed = Label(window,

bg='white', text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame +

100)/2., y=(h_frame + 131), anchor="n")

 work_AC = Label(window, bg='white',

text=s.join(("AC work: ", str(round(W_des/1000., 2)), "kJ")), font=("Open Sans", 15))

 work_AC.place(x=(w_frame-35)/2.,

y=(h_frame + 61), anchor="n")

 des_amount = Label(window, bg='white',

text=s.join(("Required desiccant: ", str(round(m_des*1000., 2)), "g")), font=("Open

Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131),

anchor="nw")

 Sb.destroy()

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.set(val_save*delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 Sb_2 =

Scale(window,orient=VERTICAL,bg='white',from_=140,to=(T_HX_preheat_o -

273.15),command=slider_des,length=(h/2. - 70),resolution=1)

 Sb_2.set(T_HX_preheat_o - 273.15)

 Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h -

20),anchor='s')

 sub_frame_1.destroy()

 sub_frame_1=Frame(window,width=(w -

w_frame - 30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame - 30)/100.,

h/200), dpi=100)

 a = f.add_subplot(111)

129

 a.plot([s_1_des, s_2_des, s_3_des, s_g_des,

s_4_des, s_1_des],[T_1_des, T_1_des, T_3_des, T_4_des, T_4_des, T_1_des],

label='Refrigerant', color='orange')

 a.plot(s_array,T_array, color='k')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f,

master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP,

expand=0)

 toolbar =

NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP,

expand=0)

 Button(window, text='Desiccant + Vapor Compression',

command=des_button, bg='white', font=("Open Sans", 10)).place(x=int(w_main/2.), y=(h

- 25), anchor='s') #Desiccant button

 def NIPAAm_button():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global mass_H2O

 global work_AC

 global heat_regen

 global W_NIPAAm

 global Q_regen_NIPAAm

 global des_amount

 global COP

 global t_f

 global delta_t

 global percent_evap

130

 global T_start

 global T_stop

 global GUI_txt_1

 global GUI_txt_2

 global GUI_txt_3

 #global canvas_image

 if count_2 == 3:

 1

 else:

 global val_save

 global Sb

 global Sb_2

 global Sb_3

 global Sb_4

 global sub_frame_1

 global sub_frame_2

 global m_NIPAAm

 if count_2 == 2:

 Sb_2.destroy()

 else:

 1

 count = 0

 count_2 = 3

 count_3 = 1

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 main_figure = main_figure_5

 main = main_figure[val_save]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

131

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 mass_H2O.destroy()

 work_AC.destroy()

 heat_regen.destroy()

 des_amount.destroy()

 COP.destroy()

 s = " "

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O.place(x=5, y=(h_frame + 61),

anchor="nw")

 work_AC = Label(window, bg='white',

text=s.join(("AC work: ", str(round(W_NIPAAm/1000., 2)), "kJ")), font=("Open Sans",

15))

 work_AC.place(x=(w_frame-35)/2.,

y=(h_frame + 61), anchor="n")

 des_amount = Label(window, bg='white',

text=s.join(("Required NIPAAm: ", str(round(m_NIPAAm*1000., 2)), "g")),

font=("Open Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131),

anchor="nw")

 Sb.destroy()

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.set(val_save*delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 percent_evap = 0

 T_start = 20 + 273.15

 T_stop = 20 + 273.15

 Sb_2 =

Scale(window,orient=VERTICAL,bg='white',from_=100,to=0,command=slider_NIPAA

m,length=(h/2. - 70),resolution=1)

 Sb_2.set(0)

132

 Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h -

20),anchor='s')

 Sb_3 =

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm -

273.15),to=0,command=slider_NIPAAm_2,length=(h/2. - 70),resolution=1)

 Sb_3.set(0)

 Sb_3.place(relx=1,y=(h - 20),anchor='se')

 Sb_4 =

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm -

273.15),to=0,command=slider_NIPAAm_3,length=(h/2. - 70),resolution=1)

 Sb_4.set(0)

 Sb_4.place(x=(w_frame + 30),y=(h -

20),anchor='sw')

 GUI_txt_1 = Label(window, bg='white',

text="Start", font=("Open Sans", 12))

 GUI_txt_1.place(x=(w_frame +

30),rely=1,anchor='sw')

 GUI_txt_2 = Label(window, bg='white',

text="Percent Evaporated", font=("Open Sans", 12))

 GUI_txt_2.place(x=(w_frame + 30 +

w)/2.,rely=1,anchor='s')

 GUI_txt_3 = Label(window, bg='white',

text="Stop", font=("Open Sans", 12))

 GUI_txt_3.place(relx=1,rely=1,anchor='se')

 sub_frame_1.destroy()

 sub_frame_1=Frame(window,width=(w -

w_frame - 30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame - 30)/100.,

h/200), dpi=100)

 a = f.add_subplot(111)

 a.plot([s_1_NIPAAm, s_2_NIPAAm,

s_3_NIPAAm, s_g_NIPAAm, s_4_NIPAAm, s_1_NIPAAm],[T_1_NIPAAm,

T_1_NIPAAm, T_3_NIPAAm, T_4_NIPAAm, T_4_NIPAAm, T_1_NIPAAm],

label='Refrigerant', color='orange')

 a.plot(s_array,T_array, color='k')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f,

master=sub_frame_1)

 canvas.show()

133

 canvas.get_tk_widget().pack(side=TOP,

expand=0)

 toolbar =

NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP,

expand=0)

 Button(window, text='NIPAAm + Vapor Compression',

command=NIPAAm_button, bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h

- 25), anchor='se') #NIPAAm button

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set,

yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 val_save = 0

 def slider(val):

 global val_save

 global count

 global delta_t

 main_canvas.delete("all")

 main = main_figure[int(float(val)/delta_t)]

 w_main, h_main = main.size

 if count == 0:

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 else:

 1

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

134

 val_save = int(float(val)/delta_t)

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 def slider_NIPAAm(val):

 global m_NIPAAm

 global delta_m_h2o

 global h_fg_NIPAAm

 global heat_regen

 global COP

 global mass_H2O_reclaimed

 global percent_evap

 global T_start

 global T_stop

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 global t_f

 heat_regen.destroy()

 COP.destroy()

 mass_H2O_reclaimed.destroy()

 percent_evap = float(val)

 regeneration_energy =

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet +

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100. + (T_regen_NIPAAm -

T_start)*c_p_NIPAAm_dry/COP_AC_NIPAAm)*t_f

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame +

61), anchor="ne")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + regeneration_energy)),

2)))), font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 mass_H2O_reclaimed = Label(window, bg='white',

text=s.join(("Water reclaimed: ", str(round(delta_m_h2o*(1 - float(val)/100.)*1000, 2)),

"g")), font=("Open Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame + 100)/2.,

y=(h_frame + 131), anchor="n")

 def slider_NIPAAm_2(val):

135

 global m_NIPAAm

 global h_fg_NIPAAm

 global heat_regen

 global COP

 global mass_H2O_reclaimed

 global percent_evap

 global T_start

 global T_stop

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 heat_regen.destroy()

 COP.destroy()

 T_stop = float(val) + 273.15

 regeneration_energy =

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet +

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100. + (T_regen_NIPAAm -

T_start)*c_p_NIPAAm_dry/COP_AC_NIPAAm)*t_f

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame +

61), anchor="ne")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + regeneration_energy)),

2)))), font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 def slider_NIPAAm_3(val):

 global m_NIPAAm

 global h_fg_NIPAAm

 global heat_regen

 global COP

 global mass_H2O_reclaimed

 global percent_evap

 global T_start

 global T_stop

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 heat_regen.destroy()

 COP.destroy()

136

 T_start = float(val) + 273.15

 regeneration_energy =

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet +

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100. + (T_regen_NIPAAm -

T_start)*c_p_NIPAAm_dry/COP_AC_NIPAAm)*t_f

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame +

61), anchor="ne")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + regeneration_energy)),

2)))), font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 def slider_des(val):

 global T_HX_preheat_o

 global C_p_regen

 global heat_regen

 global COP

 global t_f

 heat_regen.destroy()

 COP.destroy()

 if float(val) == float(round((T_HX_preheat_o -

273.15),0)):

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(0)*t_f)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30),

y=(h_frame + 61), anchor="ne")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + C_p_regen*(0)*t_f)), 2)))),

font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame +

131), anchor="ne")

 else:

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(float(val) + 273.15 -

T_HX_preheat_o)*t_f)/1000., 2)), "kJ")), font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30),

y=(h_frame + 61), anchor="ne")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + C_p_regen*(float(val) +

273.15 - T_HX_preheat_o)*t_f)), 2)))), font=("Open Sans", 15))

137

 COP.place(x=(w_frame - 30), y=(h_frame +

131), anchor="ne")

 def next_fig():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 #global canvas_image

 if count == 1:

 1

 else:

 global val_save

 count = count + 1

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 if count_2 == 1:

 main_figure = main_figure_2

 elif count_2 == 2:

 main_figure = main_figure_4

 elif count_2 == 3:

 main_figure = main_figure_6

 else:

 1

 main = main_figure[val_save]

 w_main, h_main = main.size

 #main = main.resize([int(w - h/2. - 25),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_frame,height=h_frame,scr

ollregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

138

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_frame,height=h_frame)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 Button(window, text='Next Figure', command=next_fig,

bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h_main + 25), anchor='ne')

#next figure button

 def prev_fig():

 global count

 global count_2

 global main_figure

 global main_frame

 global main_canvas

 global canvas_image

 global vbar

 global hbar

 #global canvas_image

 if count == 0:

 1

 else:

 global val_save

 count = count - 1

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 if count_2 == 1:

 main_figure = main_figure_1

 elif count_2 == 2:

 main_figure = main_figure_3

 elif count_2 == 3:

 main_figure = main_figure_5

 else:

 1

 main = main_figure[val_save]

 w_main, h_main = main.size

139

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 Button(window, text='Previous Figure',

command=prev_fig, bg='white', font=("Open Sans", 10)).place(x=0, y=(h_main + 25),

anchor='nw') #prev figure button

 count_3 = 1

 def Ts_diag():

 global main_figure

 global main_frame

 global main_canvas

 global canvas_image

 global vbar

 global hbar

 global count_3

 global count_2

 global sub_frame_1

 global sub_frame_2

 #global canvas_image

 if count_3 == 1:

 1

140

 else:

 count_3 = 1

 sub_frame_2.destroy

 if count_2 == 1:

 sub_frame_1=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame -

30)/100., h/200), dpi=100)

 a = f.add_subplot(111)

 a.plot([s_1_AC, s_2_AC, s_3_AC,

s_g_AC, s_4_AC, s_1_AC],[T_1_AC, T_1_AC, T_3_AC, T_4_AC, T_4_AC, T_1_AC],

label='Refrigerant', color='orange')

 a.plot(s_array,T_array, color='k')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f,

master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP, expand=0)

 toolbar =

NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP,

expand=0)

 elif count_2 == 2:

 sub_frame_1=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame -

30)/100., h/200), dpi=100)

 a = f.add_subplot(111)

 a.plot([s_1_des, s_2_des, s_3_des,

s_g_des, s_4_des, s_1_des],[T_1_des, T_1_des, T_3_des, T_4_des, T_4_des, T_1_des],

label='Refrigerant', color='orange')

 a.plot(s_array,T_array, color='k')

141

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f,

master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP, expand=0)

 toolbar =

NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP,

expand=0)

 elif count_2 == 3:

 sub_frame_1.destroy()

 sub_frame_1=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame -

30)/100., h/200), dpi=100)

 a = f.add_subplot(111)

 a.plot([s_1_NIPAAm,

s_2_NIPAAm, s_3_NIPAAm, s_g_NIPAAm, s_4_NIPAAm,

s_1_NIPAAm],[T_1_NIPAAm, T_1_NIPAAm, T_3_NIPAAm, T_4_NIPAAm,

T_4_NIPAAm, T_1_NIPAAm], label='Refrigerant', color='orange')

 a.plot(s_array,T_array, color='k')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f,

master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP, expand=0)

 toolbar =

NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP,

expand=0)

 else:

 1

142

 Button(window, text='T-s', command=Ts_diag, bg='white',

font=("Open Sans", 10)).place(x=(w_frame + 30), rely=0.5, anchor='nw') #T-s figure

button

 def Ph_diag():

 global main_figure

 global main_frame

 global main_canvas

 global canvas_image

 global vbar

 global hbar

 global count_3

 global count_2

 global sub_frame_1

 global sub_frame_2

 #global canvas_image

 if count_3 == 2:

 1

 else:

 count_3 = 2

 sub_frame_1.destroy

 if count_2 == 1:

 sub_frame_2=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white')

 sub_frame_2.place(relx=1,rely=0,anchor='ne')

 f_2 = Figure(figsize=((w - w_frame -

30)/100., h/200), dpi=100)

 a = f_2.add_subplot(111)

 a.plot(h_array,P_array, color='k')

 a.plot([h_1_AC, h_2_AC, h_3_AC,

h_4_AC, h_1_AC],[P_evap_AC, P_evap_AC, P_cond_AC, P_cond_AC, P_evap_AC],

color='orange')

 a.set_yscale("log")

 a.set_xticks([h_1_AC, (h_1_AC +

h_3_AC)/2., h_3_AC], minor=False)

 # a tk.DrawingArea

 canvas_2 =

FigureCanvasTkAgg(f_2, master=sub_frame_2)

 canvas_2.show()

143

 canvas_2.get_tk_widget().pack(side=TOP, expand=0)

 toolbar_2 =

NavigationToolbar2TkAgg(canvas_2, sub_frame_2)

 toolbar_2.update()

 canvas_2._tkcanvas.pack(side=TOP,

expand=0)

 elif count_2 == 2:

 sub_frame_2=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white')

 sub_frame_2.place(relx=1,rely=0,anchor='ne')

 f_2 = Figure(figsize=((w - w_frame -

30)/100., h/200), dpi=100)

 a = f_2.add_subplot(111)

 a.plot(h_array,P_array, color='k')

 a.plot([h_1_des, h_2_des, h_3_des,

h_4_des, h_1_des],[P_evap_des, P_evap_des, P_cond_des, P_cond_des, P_evap_des],

color='orange')

 a.set_yscale("log")

 a.set_xticks([h_1_des, (h_1_des +

h_3_des)/2., h_3_des], minor=False)

 # a tk.DrawingArea

 canvas_2 =

FigureCanvasTkAgg(f_2, master=sub_frame_2)

 canvas_2.show()

 canvas_2.get_tk_widget().pack(side=TOP, expand=0)

 toolbar_2 =

NavigationToolbar2TkAgg(canvas_2, sub_frame_2)

 toolbar_2.update()

 canvas_2._tkcanvas.pack(side=TOP,

expand=0)

 elif count_2 == 3:

 sub_frame_2=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white')

 sub_frame_2.place(relx=1,rely=0,anchor='ne')

144

 f_2 = Figure(figsize=((w - w_frame -

30)/100., h/200), dpi=100)

 a = f_2.add_subplot(111)

 a.plot(h_array,P_array, color='k')

 a.plot([h_1_NIPAAm,

h_2_NIPAAm, h_3_NIPAAm, h_4_NIPAAm, h_1_NIPAAm],[P_evap_NIPAAm,

P_evap_NIPAAm, P_cond_NIPAAm, P_cond_NIPAAm, P_evap_NIPAAm],

color='orange')

 a.set_yscale("log")

 a.set_xticks([h_1_NIPAAm,

(h_1_NIPAAm + h_3_NIPAAm)/2., h_3_NIPAAm], minor=False)

 # a tk.DrawingArea

 canvas_2 =

FigureCanvasTkAgg(f_2, master=sub_frame_2)

 canvas_2.show()

 canvas_2.get_tk_widget().pack(side=TOP, expand=0)

 toolbar_2 =

NavigationToolbar2TkAgg(canvas_2, sub_frame_2)

 toolbar_2.update()

 canvas_2._tkcanvas.pack(side=TOP,

expand=0)

 else:

 1

 Button(window, text='P-h', command=Ph_diag, bg='white',

font=("Open Sans", 10)).place(relx=1, rely=0.5, anchor='ne') #P-h figure button

 sub_frame_1=Frame(window,width=(w - w_frame -

30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame - 30)/100., h/200),

dpi=100)

 a = f.add_subplot(111)

 a.plot([s_1_AC, s_2_AC, s_3_AC, s_g_AC, s_4_AC,

s_1_AC],[T_1_AC, T_1_AC, T_3_AC, T_4_AC, T_4_AC, T_1_AC],

label='Refrigerant', color='orange')

145

 a.plot(s_array,T_array, color='k')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f, master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP, expand=0)

 toolbar = NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP, expand=0)

 elif v.get() == 2:

 window_5_title = Label(window, bg='white', text='Input Values',

font=("Open Sans Bold", 25))

 window_5_title.place(x=w/2., y=0, anchor="n")

 window_5_underline = Label(window, bg='white',

text='___

____________________', font=("Open Sans Bold", 25))

 window_5_underline.place(x=w/2., y=50, anchor="n")

 text_1 = Label(window, bg='white', text='Thermostat Set

Temperature', font=("Open Sans", 15))

 text_1.place(relx=0.5, rely=0.38, anchor="e")

 text_2 = Label(window, bg='white', text='Initial Indoor Air

Humidity Ratio', font=("Open Sans", 15))

 text_2.place(relx=0.5, rely=0.42, anchor="e")

 text_3 = Label(window, bg='white', text='Outside Air

Temperature', font=("Open Sans", 15))

 text_3.place(relx=0.5, rely=0.54, anchor="e")

 text_4 = Label(window, bg='white', text='Outside Air Humidity

Ratio', font=("Open Sans", 15))

 text_4.place(relx=0.5, rely=0.58, anchor="e")

 text_5 = Label(window, bg='white', text='AC Outlet Air

Temperature', font=("Open Sans", 15))

 text_5.place(relx=0.5, rely=0.46, anchor="e")

 text_6 = Label(window, bg='white', text='AC Outlet Air Humidity

Ratio', font=("Open Sans", 15))

 text_6.place(relx=0.5, rely=0.50, anchor="e")

 text_7 = Label(window, bg='white', text='Percent Supply Air from

Outside', font=("Open Sans", 15))

146

 text_7.place(relx=0.5, rely=0.62, anchor="e")

 txt_1 = Entry(window,width=20)

 txt_1.insert(INSERT,"294.59444")

 txt_1.place(relx=0.5, rely=0.38, anchor=W)

 txt_2 = Entry(window,width=20)

 txt_2.insert(INSERT,"0.008164972225996216")

 txt_2.place(relx=0.5, rely=0.42, anchor=W)

 txt_3 = Entry(window,width=20)

 txt_3.insert(INSERT,"298.15")

 txt_3.place(relx=0.5, rely=0.54, anchor=W)

 txt_4 = Entry(window,width=20)

 txt_4.insert(INSERT,"0.02009")

 txt_4.place(relx=0.5, rely=0.58, anchor=W)

 txt_5 = Entry(window,width=20)

 txt_5.insert(INSERT,"284.15")

 txt_5.place(relx=0.5, rely=0.46, anchor=W)

 txt_6 = Entry(window,width=20)

 txt_6.insert(INSERT,"0.008164972225996216")

 txt_6.place(relx=0.5, rely=0.50, anchor=W)

 txt_7 = Entry(window,width=20)

 txt_7.insert(INSERT,"50")

 txt_7.place(relx=0.5, rely=0.62, anchor=W)

 def fifth_window():

 #Evap Cooling

 global count

 global count_2

 global canvas_image

 global main_figure

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global val_save

 global T_set

 global x_i

 global T_outside

 global x_outside

 global T_air_o

 global x_air_o

 global Sb

 global mass_H2O

147

 global heat_regen

 global Q_regen_NIPAAm

 global h_fg_NIPAAm

 global delta_m_h2o

 global des_amount

 global COP

 global sub_frame_1

 global sub_frame_2

 global t_f

 global delta_t

 global T_HX_preheat_o

 global C_p_regen

 global Sb_2

 global line

 global x_HX_preheat_o

 global a

 global canvas

 global Q_useful

 global mass_H2O_reclaimed

 global delta_x_dehum

 global T_dehum_slope

 global T_regen_NIPAAm

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global m_des

 global m_NIPAAm

 global percent_vent

 [delta_t, t_f, T_h_array_des, x_h_array_des,

T_duct_array_des, x_duct_array_des, T_return_array_des,

x_return_array_des,t_f_NIPAAm, T_h_array_NIPAAm, x_h_array_NIPAAm,

T_duct_array_NIPAAm, x_duct_array_NIPAAm, T_return_array_NIPAAm,

x_return_array_NIPAAm, delta_m_h2o, h2o_des, h2o_NIPAAm, c_p_NIPAAm_dry,

c_p_NIPAAm_wet,

h_fg_NIPAAm,T_HX_preheat_i,T_HX_preheat_o,x_HX_preheat_o,C_p_regen,T_air_A

H,T_air_to_HX,T_air_to_AC,T_air_o,x_AH,x_dehum,x_dehum,x_air_o,Q_useful,m_h2

o_used,omega,m_NIPAAm,m_des,delta_C_NIPAAm] =

house_air_evap_cool(T_set,x_i,T_outside,x_outside,T_air_o,x_air_o,percent_vent)

 T_regen_NIPAAm = 32 + 273.15

 delta_x_dehum = (x_AH - x_dehum)

 T_dehum_slope = (T_air_to_HX -

T_air_AH)/delta_x_dehum

 final_index_3 = len(T_h_array_des)

 final_index_5 = len(T_h_array_NIPAAm)

 main_figure_3 = []

148

 main_figure_4 = []

 main_figure_5 = []

 main_figure_6 = []

 img_4 =

Image.open('output\psychrom\psychrom_desiccant_out.png')

 img_6 =

Image.open('output\psychrom\psychrom_NIPAAm_out.png')

 for ind in range(final_index_3):

 img_3 = Image.open('diag3.png')

 draw = ImageDraw.Draw(img_3)

 s = " "

 seq = ("T = ", str(round(T_h_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_i_str = s.join(seq)

 seq = ("T = ", str(round(T_return_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_r_str = s.join(seq)

 seq = ("T = ", str(round(T_duct_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_f_str = s.join(seq)

 seq = ("x = ",

str(round(x_return_array_des[ind]*1000, 2)), "g/kg")

 x_r_str = s.join(seq)

 seq = ("x = ", str(round(x_h_array_des[ind]*1000,

2)), "g/kg")

 x_i_str = s.join(seq)

 seq = ("x = ",

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg")

 x_f_str = s.join(seq)

 seq = ("T = ", str(round(T_outside - 273.15, 2)),

u'\xb0'"C")

 T_out_str = s.join(seq)

 seq = ("x = ", str(round(x_outside*1000, 2)),

"g/kg")

 x_out_str = s.join(seq)

 draw.text((1015,318), T_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,513), T_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,132), T_f_str, font = fnt, fill =

(0,0,0))

 draw.text((1015,348), x_i_str, font = fnt, fill =

(0,0,0))

149

 draw.text((960,543), x_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,162), x_f_str, font = fnt, fill =

(0,0,0))

 draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0))

 draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0))

 draw.text((465,463), T_out_str, font = fnt, fill =

(0,0,0))

 draw.text((465,493), x_out_str, font = fnt, fill =

(0,0,0))

 main_figure_3.append(img_3)

 main_figure_4.append(img_4)

 for ind in range(final_index_5):

 img_5 = Image.open('diag4.png')

 draw = ImageDraw.Draw(img_5)

 s = " "

 seq = ("T = ", str(round(T_h_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_i_str = s.join(seq)

 seq = ("T = ", str(round(T_return_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_r_str = s.join(seq)

 seq = ("T = ", str(round(T_duct_array_des[ind] -

273.15, 2)), u'\xb0'"C")

 T_f_str = s.join(seq)

 seq = ("x = ",

str(round(x_return_array_des[ind]*1000, 2)), "g/kg")

 x_r_str = s.join(seq)

 seq = ("x = ", str(round(x_h_array_des[ind]*1000,

2)), "g/kg")

 x_i_str = s.join(seq)

 seq = ("x = ",

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg")

 x_f_str = s.join(seq)

 seq = ("T = ", str(round(T_outside - 273.15, 2)),

u'\xb0'"C")

 T_out_str = s.join(seq)

 seq = ("x = ", str(round(x_outside*1000, 2)),

"g/kg")

 x_out_str = s.join(seq)

 draw.text((1015,318), T_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,513), T_r_str, font = fnt, fill =

(0,0,0))

150

 draw.text((960,132), T_f_str, font = fnt, fill =

(0,0,0))

 draw.text((1015,348), x_i_str, font = fnt, fill =

(0,0,0))

 draw.text((960,543), x_r_str, font = fnt, fill =

(0,0,0))

 draw.text((960,162), x_f_str, font = fnt, fill =

(0,0,0))

 draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0))

 draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0))

 draw.text((465,463), T_out_str, font = fnt, fill =

(0,0,0))

 draw.text((465,493), x_out_str, font = fnt, fill =

(0,0,0))

 main_figure_5.append(img_5)

 main_figure_6.append(img_6)

 count = 0

 count_2 = 2

 main_figure = main_figure_3

 main = main_figure[0]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 w_frame = w_main

 h_frame = h_main

 s = " "

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O.place(x=5, y=(h_frame + 61), anchor="nw")

 mass_H2O_used = Label(window, bg='white',

text=s.join(("Water consumed: ", str(round(m_h2o_used*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O_used.place(x=(w_frame-60)/2., y=(h_frame +

61), anchor="n")

 mass_H2O_reclaimed = Label(window, bg='white',

text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame + 100)/2.,

y=(h_frame + 131), anchor="n")

 des_amount = Label(window, bg='white',

text=s.join(("Required desiccant: ", str(round(m_des*1000., 2)), "g")), font=("Open

Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131), anchor="nw")

151

 heat_regen = Label(window, bg='white', text="",

font=("Open Sans", 15))

 COP = Label(window, bg='white', text="", font=("Open

Sans", 15))

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_frame=Frame(window,width=w_main,height=h_main)

 main_frame.grid(row=0,column=0)

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 def des_button():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global mass_H2O

 global heat_regen

 global des_amount

 global COP

 global t_f

 global delta_t

 global mass_H2O_reclaimed

 global percent_evap

 global T_start

 global T_stop

 global GUI_txt_1

 global GUI_txt_2

 global GUI_txt_3

 global m_des

 #global canvas_image

 if count_2 == 2:

 1

 else:

 global Sb_2

 global Sb_3

152

 global Sb_4

 if count_2 == 3:

 Sb_2.destroy()

 Sb_3.destroy()

 Sb_4.destroy()

 GUI_txt_1.destroy()

 GUI_txt_2.destroy()

 GUI_txt_3.destroy()

 else:

 1

 global val_save

 global Sb

 global sub_frame_1

 global sub_frame_2

 global a

 global canvas

 global line

 line, = a.plot([T_HX_preheat_o -

273.15,T_HX_preheat_o - 273.15],[x_HX_preheat_o,x_HX_preheat_o], color='pink')

 canvas.draw()

 count = 0

 count_2 = 2

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 main_figure = main_figure_3

 main = main_figure[val_save]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

153

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 mass_H2O.destroy()

 heat_regen.destroy()

 des_amount.destroy()

 COP.destroy()

 mass_H2O_reclaimed.destroy()

 s = " "

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O.place(x=5, y=(h_frame + 61),

anchor="nw")

 mass_H2O_reclaimed = Label(window,

bg='white', text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open

Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame +

100)/2., y=(h_frame + 131), anchor="n")

 des_amount = Label(window, bg='white',

text=s.join(("Required desiccant: ", str(round(m_des*1000., 2)), "g")), font=("Open

Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131),

anchor="nw")

 Sb.destroy()

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.set(val_save*delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 Sb_2 =

Scale(window,orient=VERTICAL,bg='white',from_=140,to=(T_HX_preheat_o -

273.15),command=slider_des,length=(h/2. - 70),resolution=1)

 Sb_2.set(T_HX_preheat_o - 273.15)

 Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h -

20),anchor='s')

154

 Button(window, text='Desiccant + Evaporative Cooling',

command=des_button, bg='white', font=("Open Sans", 10)).place(x=0, y=(h - 25),

anchor='sw') #Desiccant button

 def NIPAAm_button():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 global mass_H2O

 global heat_regen

 global Q_regen_NIPAAm

 global des_amount

 global COP

 global t_f

 global delta_t

 global a

 global canvas

 global percent_evap

 global T_start

 global T_stop

 global GUI_txt_1

 global GUI_txt_2

 global GUI_txt_3

 global Sb_3

 global Sb_4

 global m_NIPAAm

 #global canvas_image

 if count_2 == 3:

 1

 else:

 global val_save

 global Sb

 global Sb_2

 global sub_frame_1

 global sub_frame_2

 if count_2 == 2:

 Sb_2.destroy()

155

 else:

 1

 count = 0

 count_2 = 3

 line.remove()

 canvas.draw()

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 main_figure = main_figure_5

 main = main_figure[val_save]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 mass_H2O.destroy()

 heat_regen.destroy()

 des_amount.destroy()

 COP.destroy()

 s = " "

 mass_H2O = Label(window, bg='white',

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open

Sans", 15))

156

 mass_H2O.place(x=5, y=(h_frame + 61),

anchor="nw")

 des_amount = Label(window, bg='white',

text=s.join(("Required NIPAAm: ", str(round(m_NIPAAm*1000., 2)), "g")),

font=("Open Sans", 15))

 des_amount.place(x=5, y=(h_frame + 131),

anchor="nw")

 Sb.destroy()

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.set(val_save*delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 percent_evap = 0

 T_start = 20 + 273.15

 T_stop = 20 + 273.15

 Sb_2 =

Scale(window,orient=VERTICAL,bg='white',from_=100,to=0,command=slider_NIPAA

m,length=(h/2. - 70),resolution=1)

 Sb_2.set(0)

 Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h -

20),anchor='s')

 Sb_3 =

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm -

273.15),to=0,command=slider_NIPAAm_2,length=(h/2. - 70),resolution=1)

 Sb_3.set(0)

 Sb_3.place(relx=1,y=(h - 20),anchor='se')

 Sb_4 =

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm -

273.15),to=0,command=slider_NIPAAm_3,length=(h/2. - 70),resolution=1)

 Sb_4.set(0)

 Sb_4.place(x=(w_frame + 30),y=(h -

20),anchor='sw')

 GUI_txt_1 = Label(window, bg='white',

text="Start", font=("Open Sans", 12))

 GUI_txt_1.place(x=(w_frame +

30),rely=1,anchor='sw')

 GUI_txt_2 = Label(window, bg='white',

text="Percent Evaporated", font=("Open Sans", 12))

 GUI_txt_2.place(x=(w_frame + 30 +

w)/2.,rely=1,anchor='s')

 GUI_txt_3 = Label(window, bg='white',

text="Stop", font=("Open Sans", 12))

 GUI_txt_3.place(relx=1,rely=1,anchor='se')

157

 Button(window, text='NIPAAm + Evaporative Cooling',

command=NIPAAm_button, bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h

- 25), anchor='se') #NIPAAm button

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set,

yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 val_save = 0

 def slider(val):

 global val_save

 global count

 global delta_t

 main_canvas.delete("all")

 main = main_figure[int(float(val)/delta_t)]

 w_main, h_main = main.size

 if count == 0:

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 else:

 1

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 val_save = int(float(val)/delta_t)

 Sb =

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t)

 Sb.place(relx=0,rely=1,anchor='sw')

 def slider_NIPAAm(val):

 global m_NIPAAm

 global delta_m_h2o

158

 global h_fg_NIPAAm

 global heat_regen

 global COP

 global mass_H2O_reclaimed

 global percent_evap

 global T_start

 global T_stop

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 global t_f

 heat_regen.destroy()

 COP.destroy()

 mass_H2O_reclaimed.destroy()

 percent_evap = float(val)

 regeneration_energy =

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet +

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100.)*t_f

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame +

61), anchor="ne")

 mass_H2O_reclaimed = Label(window, bg='white',

text=s.join(("Water reclaimed: ", str(round(delta_m_h2o*(1 - float(val)/100.)*1000, 2)),

"g")), font=("Open Sans", 15))

 mass_H2O_reclaimed.place(x=(w_frame + 100)/2.,

y=(h_frame + 131), anchor="n")

 if regeneration_energy == 0:

 COP = Label(window, bg='white',

text="COP: inf", font=("Open Sans", 15))

 else:

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_useful/(regeneration_energy)), 2)))), font=("Open

Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 def slider_NIPAAm_2(val):

 global m_NIPAAm

 global h_fg_NIPAAm

 global heat_regen

 global COP

 global mass_H2O_reclaimed

159

 global percent_evap

 global T_start

 global T_stop

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 heat_regen.destroy()

 COP.destroy()

 T_stop = float(val) + 273.15

 regeneration_energy =

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet +

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100.)*t_f

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame +

61), anchor="ne")

 if regeneration_energy == 0:

 COP = Label(window, bg='white',

text="COP: inf", font=("Open Sans", 15))

 else:

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_useful/(regeneration_energy)), 2)))), font=("Open

Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 def slider_NIPAAm_3(val):

 global m_NIPAAm

 global h_fg_NIPAAm

 global heat_regen

 global COP

 global mass_H2O_reclaimed

 global percent_evap

 global T_start

 global T_stop

 global c_p_NIPAAm_dry

 global c_p_NIPAAm_wet

 global T_regen_NIPAAm

 global COP_AC_NIPAAm

 heat_regen.destroy()

 COP.destroy()

 T_start = float(val) + 273.15

160

 regeneration_energy =

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet +

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100.)*t_f

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30), y=(h_frame +

61), anchor="ne")

 if regeneration_energy == 0:

 COP = Label(window, bg='white',

text="COP: inf", font=("Open Sans", 15))

 else:

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_useful/(regeneration_energy)), 2)))), font=("Open

Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame + 131),

anchor="ne")

 def slider_des(val):

 global T_HX_preheat_o

 global C_p_regen

 global heat_regen

 global COP

 global t_f

 global line

 global x_HX_preheat_o

 global a

 global canvas

 global delta_x_dehum

 global T_dehum_slope

 line.remove()

 heat_regen.destroy()

 COP.destroy()

 if float(val) == float(round((T_HX_preheat_o -

273.15),0)):

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(0)*t_f)/1000., 2)), "kJ")),

font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30),

y=(h_frame + 61), anchor="ne")

 COP = Label(window, bg='white',

text="COP: inf", font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame +

131), anchor="ne")

 else:

161

 heat_regen = Label(window, bg='white',

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(float(val) + 273.15 -

T_HX_preheat_o)*t_f)/1000., 2)), "kJ")), font=("Open Sans", 15))

 heat_regen.place(x=(w_frame - 30),

y=(h_frame + 61), anchor="ne")

 COP = Label(window, bg='white',

text=s.join(("COP: ", str(round((Q_useful/(C_p_regen*(float(val) + 273.15 -

T_HX_preheat_o)*t_f)), 2)))), font=("Open Sans", 15))

 COP.place(x=(w_frame - 30), y=(h_frame +

131), anchor="ne")

 line, = a.plot([T_HX_preheat_o -

273.15,float(val),(float(val) -

T_dehum_slope*delta_x_dehum)],[x_HX_preheat_o,x_HX_preheat_o,(x_HX_preheat_o

+ delta_x_dehum)], color='pink')

 canvas.draw()

 def next_fig():

 global count

 global count_2

 global main_figure

 global canvas_image

 global main_frame

 global main_canvas

 global w_frame

 global h_frame

 global vbar

 global hbar

 #global canvas_image

 if count == 1:

 1

 else:

 global val_save

 count = count + 1

 main_canvas.destroy()

 vbar.destroy()

 hbar.destroy()

 if count_2 == 1:

 main_figure = main_figure_2

 elif count_2 == 2:

 main_figure = main_figure_4

 elif count_2 == 3:

 main_figure = main_figure_6

 else:

 1

 main = main_figure[val_save]

162

 w_main, h_main = main.size

 #main = main.resize([int(w - h/2. - 25),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_frame,height=h_frame,scr

ollregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_frame,height=h_frame)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 Button(window, text='Next Figure', command=next_fig,

bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h_main + 25), anchor='ne')

#next figure button

 def prev_fig():

 global count

 global count_2

 global main_figure

 global main_frame

 global main_canvas

 global canvas_image

 global vbar

 global hbar

 #global canvas_image

 if count == 0:

 1

 else:

 global val_save

 count = count - 1

 main_canvas.destroy()

163

 vbar.destroy()

 hbar.destroy()

 if count_2 == 1:

 main_figure = main_figure_1

 elif count_2 == 2:

 main_figure = main_figure_3

 elif count_2 == 3:

 main_figure = main_figure_5

 else:

 1

 main = main_figure[val_save]

 w_main, h_main = main.size

 main = main.resize([int(w - h/2. - 145),

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS)

 w_main, h_main = main.size

 main = ImageTk.PhotoImage(main)

 main.image = main

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main))

 hbar=Scrollbar(main_frame,orient=HORIZONTAL)

 hbar.pack(side=BOTTOM,fill=X)

 hbar.config(command=main_canvas.xview)

 vbar=Scrollbar(main_frame,orient=VERTICAL)

 vbar.pack(side=RIGHT,fill=Y)

 vbar.config(command=main_canvas.yview)

 main_canvas.config(width=w_main,height=h_main)

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set)

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH)

 canvas_image =

main_canvas.create_image(0,0,image=main, anchor="nw")

 Button(window, text='Previous Figure',

command=prev_fig, bg='white', font=("Open Sans", 10)).place(x=0, y=(h_main + 25),

anchor='nw') #prev figure button

164

 sub_frame_1=Frame(window,width=(w - w_frame -

30),height=h/2.,bg='white')

 sub_frame_1.place(relx=1,rely=0,anchor='ne')

 f = Figure(figsize=((w - w_frame - 30)/100., h/200.),

dpi=100, tight_layout=True)

 a = f.add_subplot(111)

 a.set_xlabel('Temperature (Celsius)')

 a.set_ylabel('Humidity Ratio (kg/kg)')

 a.plot([T_air_AH - 273.15,T_air_to_HX -

273.15,T_air_to_AC - 273.15,T_air_o - 273.15],[x_AH,x_dehum,x_dehum,x_air_o],

label='Supply Air', color='green')

 a.plot([T_HX_preheat_i - 273.15,T_HX_preheat_o -

273.15],[x_HX_preheat_o,x_HX_preheat_o], label='Process Air', color='pink')

 T_s_curve = []

 for x_val in

np.linspace(x_s(273.15,101325),x_HX_preheat_o*2):

 T_s_curve.append(T_s(x_val,101325) - 273.15)

 a.plot(T_s_curve,np.linspace(x_s(273.15,101325),x_HX_preheat_o*2),

label='Saturation Curve', color='black')

 a.legend()

 a.set_xlim(0,150)

 a.set_ylim(0,x_HX_preheat_o*2)

 line, = a.plot([T_HX_preheat_o - 273.15,T_HX_preheat_o

- 273.15],[x_HX_preheat_o,x_HX_preheat_o], color='pink')

 # a tk.DrawingArea

 canvas = FigureCanvasTkAgg(f, master=sub_frame_1)

 canvas.show()

 canvas.get_tk_widget().pack(side=TOP,anchor='nw')

 toolbar = NavigationToolbar2TkAgg(canvas, sub_frame_1)

 toolbar.update()

 canvas._tkcanvas.pack(side=TOP, expand=0)

 Sb_2 =

Scale(window,orient=VERTICAL,bg='white',from_=140,to=(T_HX_preheat_o -

273.15),command=slider_des,length=(h/2. - 70),resolution=1)

 Sb_2.set(T_HX_preheat_o - 273.15)

 Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h - 20),anchor='s')

165

 else:

 1

 #Define function to erase window

 def cont_func():

 if v.get() == 1:

 1

 else:

 global T_set

 global x_i

 global T_outside

 global x_outside

 global T_air_o

 global selection

 global percent_vent

 T_set = float(txt_1.get())

 x_i = float(txt_2.get())

 T_outside = float(txt_3.get())

 x_outside = float(txt_4.get())

 T_air_o = float(txt_5.get())

 percent_vent = float(txt_7.get())

 if selection == "Evap":

 global x_air_o

 x_air_o = float(txt_6.get())

 else:

 1

 def all_children (window) :

 _list = window.winfo_children()

 for item in _list :

 if item.winfo_children() :

 _list.extend(item.winfo_children())

 return _list

 widget_list = all_children(window)

 for item in widget_list:

 item.destroy()

 fifth_window()

 v.set(0)

 Button(window, text='Next', command=cont_func, bg='white',

font=("Open Sans", 20)).place(relx=0.5, rely=0.8, anchor=CENTER) #fourth window

continue button

 #Define function to erase window

166

 def cont_func():

 if v.get() == 0:

 1

 else:

 def all_children (window) :

 _list = window.winfo_children()

 for item in _list :

 if item.winfo_children() :

 _list.extend(item.winfo_children())

 return _list

 widget_list = all_children(window)

 for item in widget_list:

 item.destroy()

 if v.get() == 2:

 global selection

 selection = "Evap"

 else:

 selection = ""

 fourth_window()

 v.set(0)

 Button(window, text='Next', command=cont_func, bg='white', font=("Open

Sans", 20)).place(relx=0.5, rely=0.8, anchor=CENTER) #third window continue button

#Define function to erase window

def cont_func():

 def all_children (window) :

 _list = window.winfo_children()

 for item in _list :

 if item.winfo_children() :

 _list.extend(item.winfo_children())

 return _list

 widget_list = all_children(window)

 for item in widget_list:

 item.destroy()

 third_window()

167

 v.set(0)

Button(window, text='Next', command=cont_func, bg='white', font=("Open Sans",

20)).place(relx=0.5, rely=0.84, anchor=CENTER) #first window continue button

window.mainloop()

168

APPENDIX C

PYTHON CODE FOR “HOUSE_AIR.PY”

169

def

house_air(T_set,x_i,T_outside,x_outside,T_air_calibrate,x_air_calibrate,T_outside_calibr

ate,x_outside_calibrate,T_air_calibrate_o,percent_vent):

 import math

 from CoolProp import CoolProp as CP

 from scipy.optimize import fsolve

 from AC import AC

 from Dehum import Dehum

 from Psyplot import Psyplot

 from HX import HX

 from scipy.interpolate import interp1d

 from RH import RH

 from T_s import T_s

 T_air_i = T_set + 5./9. #initial temperature of air within the house [K]

 x_to_AC = x_i

 V_tot = 271.84 #total conditioned space volume [m^3]

 P_air = 101325 #total pressure within conditioned space [Pa]

 indoor_evap_rate = 0. #no indoor evaporation

 m_dot_supply = 0.7 #defines the total mass flow rate of supply air [kg/s]

 m_dot_vent = percent_vent*m_dot_supply/100. #portion of supply air that comes

from outside [kg/s]

 h_duct_i = 8.33 #duct interior heat transfer coefficient [W/m^2K]

 h_duct_o = 0. #duct exterior heat transfer coefficient [W/m^2K]

 L_duct = 9.14 #length of duct [m]

 D_duct = 0.1016 #diameter of duct [m]

 A_duct = math.pi*D_duct*L_duct #surface area of duct [m^2]

 C_duct = 470*6.404*L_duct #heat capacity of duct [J/K]

 T_regen_NIPAAm = 32 + 273.15 #Regen temperature of NIPAAm, used only to

find the specific heat of water within the NIPAAm; this value is redefined in GUI.py

 c_p_des = 960. #desiccant specific heat

 C_des = 0.4 #absorption capacity of desiccant in kg_water/kg_des

 c_p_NIPAAm = 960. #NIPAAm specific heat

 percent_solid_vol = 0.005 #percent of the room volume that is solid

 V_air = V_tot*(1 - percent_solid_vol) #volume of air within the room

 V_solid = V_tot*percent_solid_vol #volume of solid within the room

 c_p_solid = 903600 #volumetric heat capacity of the solid, J/(m^3*K)

 ##The following section models the vapor compression only scenario

 cooling_mode = "VC"

 UAs_house = 0 #sets the heat transfer coefficient for house heat gain to zero

 T_air_initial = T_air_i

 x_initial = x_i

170

 sys_config = "AC Only"

 print_query = "no"

 M_a = 0.028964 #molecular mass of air

 M_w = 0.018016 #molecular mass of water

 m_dot_cond = 1.4 #defines the total mass flow rate of air used to cool condenser

[kg/s]

 T_h_array_AC = []

 x_h_array_AC = []

 T_duct_array_AC = []

 x_duct_array_AC = []

 T_return_array_AC = []

 x_return_array_AC = []

 #models the mixing of supply air at the beginning of the process

 x_AH = (m_dot_vent*x_outside + (m_dot_supply -

m_dot_vent)*x_i)/(m_dot_supply)

 T_air_AH = (m_dot_vent*T_outside*(CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'Q',1,"Water")) + (m_dot_supply -

m_dot_vent)*T_air_i*(CP.PropsSI('C','T',(T_air_i + T_outside)/2.,'P',101325,"Air") +

x_i*CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'P',101325,"Air") + x_AH*CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'Q',1,"Water")))

 T_air_to_AC = T_air_AH

 x_to_AC = x_AH

 #Calls the vapor compression model

 [T_air_o,x_air_o,m_dot_supply,P_air,W_dot_comp,T_1_AC,T_3_AC,T_4_AC,s

_1_AC,s_2_AC,s_3_AC,s_4_AC,s_g_AC,P_evap_AC,P_cond_AC,h_1_AC,h_2_AC,h_

3_AC,h_4_AC,Q_dot_cool,s_array,T_array,h_array,P_array,dummy] =

AC(T_air_to_AC,x_to_AC,T_outside,x_outside,T_air_calibrate_o,print_query,sys_confi

g,m_dot_supply,m_dot_cond)

 rho_a = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air") #density of dry air [kg/m^3]

 m_w = V_air*rho_a*(1. + x_i)/((1. + x_i*M_a/M_w)*(1. + 1./x_i)) #mass of

water in air [kg]

 m_w_initial = m_w

 rho_tot = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air")*(1 + x_i)/((1 +

x_i*M_a/M_w)) #density of moist air [kg/m^3]

 m_h = V_air*rho_tot #mass of moist air [kg]

 m_a = m_h - m_w #mass of dry air [kg]

 m_a_initial = m_a

 delta_t = 1. #time step [s]

171

 t_f_AC = 0

 T_duct = T_air_i #initial temperature of the duct [K]

 U_duct = (h_duct_i*h_duct_o)/(h_duct_i + h_duct_o) #heat transfer coefficient of

the duct [W/m^2K]

 T_ss = T_air_i + (T_air_o - T_air_i)*math.exp(-

U_duct*A_duct/(m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") +

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. +

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") +

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #steady state temperature of the duct [K]

 T_h_array_AC.append(T_air_i)

 x_h_array_AC.append(x_i)

 T_duct_array_AC.append(T_duct)

 x_duct_array_AC.append(x_air_o)

 T_return_array_AC.append(T_air_i)

 x_return_array_AC.append(x_i)

 delta_m_h2o = 0. #initial amount of water vapor that has been condensed from air

[kg]

 #the transient loop for the air within the house

 while T_air_i >= (T_set - 5./9.):

 m_w = m_w + delta_t*(m_dot_supply*(x_air_o - x_initial) +

indoor_evap_rate) #mass of water in air at new time step

 x_i = m_w/m_a #humidity ratio at new time step

 T_duct = T_duct + delta_t*(T_ss - T_duct)/(h_duct_i*C_duct/((h_duct_i +

h_duct_o)*m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") +

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. +

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") +

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #temperature of duct at new time step

 T_duct_array_AC.append(T_duct)

 T_air_i =

(m_dot_supply*T_duct*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_air_o*CP.PropsSI('C','T',T_set,'Q',1,"Water"))*(t_f_AC + delta_t) + (m_a_initial -

m_dot_supply*(t_f_AC +

delta_t))*T_air_initial*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_initial*CP.PropsSI('C','T',T_set,'Q',1,"Water")) +

V_solid*c_p_solid*T_air_initial)/(m_a*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_i*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + V_solid*c_p_solid) +

UAs_house*(T_outside - T_air_i)/((m_a*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_i*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + V_solid*c_p_solid)*delta_t) #average

temperature within the house at new time step

 T_h_array_AC.append(float(T_air_i))

 x_h_array_AC.append(x_i)

 x_duct_array_AC.append(x_air_o)

 T_return_array_AC.append(T_return_array_AC[0])

172

 x_return_array_AC.append(x_return_array_AC[0])

 delta_m_h2o = delta_m_h2o + m_dot_supply*(x_AH - x_air_o)*delta_t

#amount of water dehumidified within the time step

 t_f_AC = t_f_AC + delta_t #total time after time step

 Q_dot_cool = m_dot_supply*((CP.PropsSI('H','T',T_air_initial,'P',P_air,"Air") +

x_initial*CP.PropsSI('H','T',T_air_initial,'Q',1,"Water")) -

(CP.PropsSI('H','T',T_air_o,'P',P_air,"Air") +

x_air_o*CP.PropsSI('H','T',T_air_o,'Q',1,"Water"))) #rate cooling experienced by the

conditioned space

 W_AC = W_dot_comp*t_f_AC #required compressor power

 Q_AC_cool = Q_dot_cool*t_f_AC #total cooling energy

 ##The following section models the desiccant dehumidification + vapor

compression cooling config

 sys_config = "Desiccant"

 T_air_i = T_air_initial

 T_duct = T_air_initial

 m_w = m_w_initial

 x_i = x_initial

 T_h_array_des = []

 x_h_array_des = []

 T_duct_array_des = []

 x_duct_array_des = []

 T_return_array_des = []

 x_return_array_des = []

 #mixing of the process air

 x_HX_preheat_i = (m_dot_vent*x_initial + (m_dot_supply -

m_dot_vent)*x_outside)/(m_dot_supply)

 T_HX_preheat_i = ((m_dot_supply -

m_dot_vent)*T_outside*(CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'Q',1,"Water")) +

m_dot_vent*T_air_initial*(CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'P',101325,"Air") + x_i*CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'P',101325,"Air") + x_HX_preheat_i*CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'Q',1,"Water")))

 #modeling the dehumidifier for the desiccant system

 [T_air_to_HX] = Dehum(x_AH,T_air_AH,x_air_o,101325)

 x_to_AC = x_air_o

 #modeling the heat reclamation at the heat exchanger

173

 [T_air_to_AC,T_HX_preheat_o] =

HX(m_dot_supply,m_dot_supply,P_air,P_air,T_air_to_HX,T_HX_preheat_i,x_to_AC,x

_HX_preheat_i,"Air","Air",0.99)

 #modeling the cooling at the vapor compression cooler

 C_p_regen = m_dot_supply*(CP.PropsSI('C','T',T_HX_preheat_o,'P',P_air,"Air")

+ x_HX_preheat_i*CP.PropsSI('C','T',T_HX_preheat_o,'Q',1,"Water")) #heat rate of

regeneration air [W/K]

 [T_air_o,x_air_o,m_dot_supply,P_air,W_dot_comp,T_1_des,T_3_des,T_4_des,s

_1_des,s_2_des,s_3_des,s_4_des,s_g_des,P_evap_des,P_cond_des,h_1_des,h_2_des,h_3

_des,h_4_des,Q_dot_cool,dummy1,dummy2,dummy3,dummy4,dummy5] =

AC(T_air_to_AC,x_to_AC,T_outside,x_outside,T_air_calibrate_o,print_query,sys_confi

g,m_dot_supply,m_dot_cond)

 T_duct_array_des = T_duct_array_AC

 T_h_array_des = T_h_array_AC

 x_h_array_des = x_h_array_AC

 x_duct_array_des = x_duct_array_AC

 T_return_array_des = T_return_array_AC

 x_return_array_des = x_return_array_AC

 t_f_des = t_f_AC

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_to_AC,0,x_air_o) #creating psychrometric chart

 W_des = W_dot_comp*t_f_des

 Q_des_cool = Q_dot_cool*t_f_des

 ##The following section models the NIPAAm dehumidification + vapor

compression cooling config

 sys_config = "NIPAAm"

 T_air_i = T_air_initial

 T_duct = T_air_initial

 m_w = m_w_initial

 x_i = x_initial

 T_h_array_NIPAAm = []

 x_h_array_NIPAAm = []

 T_duct_array_NIPAAm = []

 x_duct_array_NIPAAm = []

 T_return_array_NIPAAm = []

 x_return_array_NIPAAm = []

 [T_air_to_HX] = Dehum(x_AH,T_air_AH,x_air_o,101325)

 x_HX_preheat_i = (m_dot_vent*x_initial + (m_dot_supply -

m_dot_vent)*x_outside)/(m_dot_supply)

 x_to_AC = x_air_o

174

 [T_air_to_AC,T_HX_preheat_o] =

HX(m_dot_supply,m_dot_supply,P_air,P_air,T_air_to_HX,T_HX_preheat_i,x_to_AC,x

_HX_preheat_i,"Air","Air",0.99)

 [T_air_o,x_air_o,m_dot_supply,P_air,W_dot_comp,T_1_NIPAAm,T_3_NIPAA

m,T_4_NIPAAm,s_1_NIPAAm,s_2_NIPAAm,s_3_NIPAAm,s_4_NIPAAm,s_g_NIPA

Am,P_evap_NIPAAm,P_cond_NIPAAm,h_1_NIPAAm,h_2_NIPAAm,h_3_NIPAAm,h

_4_NIPAAm,Q_dot_cool,dummy1,dummy2,dummy3,dummy4,COP_AC_NIPAAm] =

AC(T_air_to_AC,x_to_AC,T_outside,x_outside,T_air_calibrate_o,print_query,sys_confi

g,m_dot_supply,m_dot_cond)

 T_duct_array_NIPAAm = T_duct_array_AC

 T_h_array_NIPAAm = T_h_array_AC

 x_h_array_NIPAAm = x_h_array_AC

 x_duct_array_NIPAAm = x_duct_array_AC

 T_return_array_NIPAAm = T_return_array_AC

 x_return_array_NIPAAm = x_return_array_AC

 t_f_NIPAAm = t_f_AC

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_to_AC,0,x_air_o)

 W_NIPAAm = W_dot_comp*t_f_NIPAAm

 #determining the absorption capacity of the NIPAAm based on temperature and

humidity ratio

 C_NIPAAm_matrix = [[0, 0.17, 0.22, 0.25, 0.3, 0.37, 0.47, 0.74, 1.02], #Row for

21 deg C; columns correspond to inlet air relative humidites of 0, 20, 30, 40, 50, 60, 70,

80, 90 %RH

 [0, 0.12, 0.18, 0.22, 0.26, 0.31, 0.38, 0.48, 0.90], #Row for 25 deg C

 [0, 0.12, 0.17, 0.20, 0.24, 0.27, 0.31, 0.36, 0.47], #Row for 30

 [0, 0.10, 0.14, 0.16, 0.19, 0.22, 0.25, 0.28, 0.31], #Row for 35

 [0, 0.06, 0.10, 0.12, 0.14, 0.16, 0.19, 0.21, 0.23], #Row for 40

 [0, 0.03, 0.05, 0.06, 0.07, 0.09, 0.10, 0.11, 0.12], #Row for 50

 [0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]]#Row for 60 deg C;

 RH_array = [0, 20, 30, 40, 50, 60, 70, 80, 90]

 RH_1 = int(math.floor(RH(T_air_AH,T_s(x_AH,P_air))*100/10.) - 1)

 RH_2 = int(math.ceil(RH(T_air_AH,T_s(x_AH,P_air))*100/10.) - 1)

 if RH_1 == -1:

 RH_1 = 0

 else:

 1

 if T_air_AH < 21 + 273.15:

 1

 elif T_air_AH > 21 + 273.15 and T_air_AH < 25 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[0][RH_1],

C_NIPAAm_matrix[0][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

175

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1],

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([21 + 273.15, 25 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 25 + 273.15 and T_air_AH < 30 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1],

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1],

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([25 + 273.15, 30 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 30 + 273.15 and T_air_AH < 35 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1],

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1],

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([30 + 273.15, 35 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 35 + 273.15 and T_air_AH < 40 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1],

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1],

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([35 + 273.15, 40 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 40 + 273.15 and T_air_AH < 50 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1],

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1],

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([40 + 273.15, 50 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 50 + 273.15 and T_air_AH < 60 + 273.15:

176

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1],

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[6][RH_1],

C_NIPAAm_matrix[6][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([50 + 273.15, 60 + 273.15],[C_1,

C_2])(T_air_AH))

 else:

 1

 delta_C_NIPAAm = 0.6*C_NIPAAm #relative water content increase during

dehumidification [kg_water/kg_NIPAAm]

 c_p_NIPAAm_wet =

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*C_NIPAAm + c_p_NIPAAm)

#specific heat of NIPAAm when saturated

 c_p_NIPAAm_dry =

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*(C_NIPAAm - delta_C_NIPAAm)

+ c_p_NIPAAm) #specific heat of NIPAAm when it is as dried as possible

 h_fg_NIPAAm = (CP.PropsSI('H','T',T_regen_NIPAAm,'Q',1,"Water") -

CP.PropsSI('H','T',T_regen_NIPAAm,'Q',0,"Water")) #heat of evaporation for water

 Q_NIPAAm_cool = Q_dot_cool*t_f_NIPAAm

 Q_useful = 1

 omega = 0.75

 m_NIPAAm = m_dot_supply*(x_AH - x_air_o)*360/(omega*delta_C_NIPAAm)

#necessary mass of NIPAAm

 m_des = m_dot_supply*(x_AH - x_air_o)*360/(omega*C_des) #necessary mass

of desiccant

 return [delta_t, t_f_AC, T_h_array_AC, x_h_array_AC, T_duct_array_AC,

x_duct_array_AC, T_return_array_AC, x_return_array_AC, T_h_array_des,

x_h_array_des, T_duct_array_des, x_duct_array_des, T_return_array_des,

x_return_array_des, T_h_array_NIPAAm, x_h_array_NIPAAm,

T_duct_array_NIPAAm, x_duct_array_NIPAAm, T_return_array_NIPAAm,

x_return_array_NIPAAm, delta_m_h2o, W_AC, W_des, W_NIPAAm,

c_p_NIPAAm_dry, c_p_NIPAAm_wet, h_fg_NIPAAm,

T_1_AC,T_3_AC,T_4_AC,s_1_AC,s_2_AC,s_3_AC,s_4_AC,s_g_AC,P_evap_AC,P_co

nd_AC,h_1_AC,h_2_AC,h_3_AC,h_4_AC,T_1_des,T_3_des,T_4_des,s_1_des,s_2_des,

s_3_des,s_4_des,s_g_des,P_evap_des,P_cond_des,h_1_des,h_2_des,h_3_des,h_4_des,T_

1_NIPAAm,T_3_NIPAAm,T_4_NIPAAm,s_1_NIPAAm,s_2_NIPAAm,s_3_NIPAAm,s

_4_NIPAAm,s_g_NIPAAm,P_evap_NIPAAm,P_cond_NIPAAm,h_1_NIPAAm,h_2_NI

PAAm,h_3_NIPAAm,h_4_NIPAAm,Q_AC_cool,Q_des_cool,Q_NIPAAm_cool,s_array

,T_array,h_array,P_array,T_HX_preheat_o,C_p_regen,Q_useful,omega,m_NIPAAm,CO

P_AC_NIPAAm,m_des,delta_C_NIPAAm]

177

APPENDIX D

PYTHON CODE FOR “HOUSE_AIR_EVAP_COOL.PY”

178

def house_air_evap_cool(T_set,x_i,T_outside,x_outside,T_air_o,x_air_o,percent_vent):

 import math

 from CoolProp import CoolProp as CP

 from scipy.optimize import fsolve

 from AC import AC

 from Dehum import Dehum

 from Psyplot import Psyplot

 from HX import HX

 from x import x

 from scipy.interpolate import interp1d

 from RH import RH

 from T_s import T_s

 P_air = 101325 #total pressure within conditioned space [Pa]

 V_tot = 271.84 #total conditioned space volume [m^3]

 T_regen_NIPAAm = 32 + 273.15 #Regen temperature of NIPAAm, used only to

find the specific heat of water within the NIPAAm; this value is redefined in GUI.py

 c_p_des = 960. #desiccant specific heat

 C_des = 0.4 #absorption capacity of desiccant in kg_water/kg_des

 c_p_NIPAAm = 960. #NIPAAm specific heat

 percent_solid_vol = 0.005 #percent of the room volume that is solid

 V_air = V_tot*(1 - percent_solid_vol) #volume of air within the room

 V_solid = V_tot*percent_solid_vol #volume of solid within the room

 c_p_solid = 903600 #volumetric heat capacity of the solid, J/(m^3*K)

 T_air_i = T_set + 5./9. #initial temperature of air within the house [K]

 indoor_evap_rate = 0. #no indoor evaporation

 UAs_house = 0 #sets the heat transfer coefficient for house heat gain to zero

 h_duct_i = 8.33 #duct interior heat transfer coefficient [W/m^2K]

 h_duct_o = 0. #duct exterior heat transfer coefficient [W/m^2K]

 L_duct = 9.14 #length of duct [m]

 D_duct = 0.1016 #diameter of duct [m]

 A_duct = math.pi*D_duct*L_duct #surface area of duct [m^2]

 C_duct = 470*6.404*L_duct #heat capacity of duct [J/K]

 m_dot_supply = 0.7 #defines the total mass flow rate of supply air [kg/s]

 m_dot_vent = percent_vent*m_dot_supply/100. #portion of supply air that comes

from outside [kg/s]

 cooling_mode = "Evap"

 delta_t = 1 #time step [s]

 ##The following section models the desiccant dehumidification + evaporative

cooling config

 sys_config = "Desiccant"

 print_query = "no"

 M_a = 0.028964 #molecular mass of air

179

 M_w = 0.018016 #molecular mass of water

 T_duct = T_air_i #initial temperature of the duct

 T_air_initial = T_air_i

 x_initial = x_i

 #models the mixing of supply air at the beginning of the process

 x_AH = (m_dot_vent*x_outside + (m_dot_supply -

m_dot_vent)*x_i)/(m_dot_supply)

 T_air_AH = (m_dot_vent*T_outside*(CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'Q',1,"Water")) + (m_dot_supply -

m_dot_vent)*T_air_i*(CP.PropsSI('C','T',(T_air_i + T_outside)/2.,'P',101325,"Air") +

x_i*CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'P',101325,"Air") + x_AH*CP.PropsSI('C','T',(T_air_i +

T_outside)/2.,'Q',1,"Water")))

 h_air_o = CP.PropsSI('H','T',T_air_o,'P',101325,"Air") +

x_air_o*CP.PropsSI('H','T',T_air_o,'Q',1,"Water")

 #mixing of the process air

 x_HX_preheat_i = (m_dot_vent*x_initial + (m_dot_supply -

m_dot_vent)*x_outside)/(m_dot_supply)

 T_HX_preheat_i = ((m_dot_supply -

m_dot_vent)*T_outside*(CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'Q',1,"Water")) +

m_dot_vent*T_air_initial*(CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'P',101325,"Air") + x_i*CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'P',101325,"Air") + x_HX_preheat_i*CP.PropsSI('C','T',(T_air_initial +

T_outside)/2.,'Q',1,"Water")))

 #iteratively solves for the necessary dehumidifier outlet humidity

 def equations(x_new):

 eq_1 =

CP.PropsSI('H','T',float(HX(m_dot_supply,m_dot_supply,P_air,P_air,float(Dehum(x_A

H,T_air_AH,float(x_new),101325)[0]),T_HX_preheat_i,float(x_new),x_HX_preheat_i,"

Air","Air",0.80)[0]),'P',101325,"Air") +

float(x_new)*CP.PropsSI('H','T',(HX(m_dot_supply,m_dot_supply,P_air,P_air,Dehum(x

_AH,T_air_AH,float(x_new),101325)[0],T_HX_preheat_i,float(x_new),x_HX_preheat_i

,"Air","Air",0.80)[0]),'Q',1,"Water") - h_air_o

 return(eq_1)

 [x_dehum] = fsolve(equations, x_air_o - 0.0001)

180

 #models the heat exchanger

 [T_air_to_HX] = Dehum(x_AH,T_air_AH,x_dehum,101325)

 [T_air_to_AC,T_HX_preheat_o] =

HX(m_dot_supply,m_dot_supply,P_air,P_air,T_air_to_HX,T_HX_preheat_i,x_dehum,x

_HX_preheat_i,"Air","Air",0.80)

 #the following definitions are for the transient modeling

 rho_a = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air") #density of dry air [kg/m^3]

 m_w = V_air*rho_a*(1. + x_i)/((1. + x_i*M_a/M_w)*(1. + 1./x_i)) #mass of

water in air [kg]

 rho_tot = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air")*(1 + x_i)/((1 +

x_i*M_a/M_w)) #density of moist air [kg/m^3]

 m_h = V_air*rho_tot #mass of moist air [kg]

 m_a = m_h - m_w #mass of dry air [kg]

 m_a_initial = m_a

 U_duct = (h_duct_i*h_duct_o)/(h_duct_i + h_duct_o) #heat transfer coefficient of

the duct [W/m^2K]

 T_ss = T_air_i + (T_air_o - T_air_i)*math.exp(-

U_duct*A_duct/(m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") +

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. +

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") +

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #steady state temperature of the duct [K]

 T_h_array_des = []

 x_h_array_des = []

 T_duct_array_des = []

 x_duct_array_des = []

 T_return_array_des = []

 x_return_array_des = []

 C_p_regen = m_dot_supply*(CP.PropsSI('C','T',T_HX_preheat_o,'P',P_air,"Air")

+ x_HX_preheat_i*CP.PropsSI('C','T',T_HX_preheat_o,'Q',1,"Water")) #heat rate of

regeneration air [W/K]

 t_f_des = 0. #initializing the total cooling time [s]

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_dehum,x_dehum,x_air_o) #creating psychrometric chart

 h2o_des = 0. #initializing the amount of water consumed by the evaporative

cooler [kg]

 delta_m_h2o = 0. #initializing the amount of water absorbed during

dehumidification [kg]

 m_h2o_used = 0.

 T_h_array_des.append(T_air_i)

 x_h_array_des.append(x_i)

 T_duct_array_des.append(T_duct)

181

 x_duct_array_des.append(x_air_o)

 T_return_array_des.append(T_air_i)

 x_return_array_des.append(x_i)

 #transient model

 while T_air_i >= (T_set - 5./9.):

 m_w = m_w + delta_t*(m_dot_supply*(x_air_o - x_initial) +

indoor_evap_rate) #mass of water in air at new time step

 x_i = m_w/m_a #humidity ratio at new time step

 T_duct = T_duct + delta_t*(T_ss - T_duct)/(h_duct_i*C_duct/((h_duct_i +

h_duct_o)*m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") +

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. +

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") +

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #temperature of duct at new time step

 T_duct_array_des.append(T_duct)

 T_air_i =

(m_dot_supply*T_duct*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_air_o*CP.PropsSI('C','T',T_set,'Q',1,"Water"))*(t_f_des + delta_t) + (m_a_initial -

m_dot_supply*(t_f_des +

delta_t))*T_air_initial*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_initial*CP.PropsSI('C','T',T_set,'Q',1,"Water")) +

V_solid*c_p_solid*T_air_initial)/(m_a*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") +

x_i*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + V_solid*c_p_solid) #average temperature

within the house at new time step

 T_h_array_des.append(float(T_air_i))

 x_h_array_des.append(x_i)

 x_duct_array_des.append(x_air_o)

 T_return_array_des.append(T_return_array_des[0])

 x_return_array_des.append(x_return_array_des[0])

 delta_m_h2o = delta_m_h2o + m_dot_supply*(x_AH - x_dehum)*delta_t

 m_h2o_used = m_h2o_used + m_dot_supply*(x_air_o -

x_dehum)*delta_t

 h2o_des = h2o_des + m_dot_supply*(x_air_o - x_dehum)*delta_t

 #[T_air_to_AC,x_to_AC] = Dehum(T_air_i,x_i,x_to_AC)

 #[T_air_o,x_air_o,m_dot_supply,P_air] =

AC(T_air_calibrate,x_air_calibrate,T_outside_calibrate,x_outside_calibrate,T_air_calibra

te_o,T_air_to_AC,x_to_AC,T_outside,x_outside,print_query)

 t_f_des = t_f_des + delta_t #total time after time step

 #the overall process for the NIPAAm is the same, the only difference is the

required regeneration heat, which is modeled in GUI.py

 sys_config = "NIPAAm"

182

 T_air_i = T_air_initial

 T_duct = T_air_initial

 T_h_array_NIPAAm = T_h_array_des

 x_h_array_NIPAAm = x_h_array_des

 T_duct_array_NIPAAm = T_duct_array_des

 x_duct_array_NIPAAm = x_duct_array_des

 T_return_array_NIPAAm = T_return_array_des

 x_return_array_NIPAAm = x_return_array_des

 t_f_NIPAAm = t_f_des

 h2o_NIPAAm = h2o_des

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_dehum,x_dehum,x_air_o) #creates plot for NIPAAm

 #determining the absorption capacity of the NIPAAm based on temperature and

humidity ratio

 C_NIPAAm_matrix = [[0, 0.17, 0.22, 0.25, 0.3, 0.37, 0.47, 0.74, 1.02], #Row for

21 deg C; columns correspond to inlet air relative humidites of 0, 20, 30, 40, 50, 60, 70,

80, 90 %RH

 [0, 0.12, 0.18, 0.22, 0.26, 0.31, 0.38, 0.48, 0.90], #Row for 25 deg C

 [0, 0.12, 0.17, 0.20, 0.24, 0.27, 0.31, 0.36, 0.47], #Row for 30

 [0, 0.10, 0.14, 0.16, 0.19, 0.22, 0.25, 0.28, 0.31], #Row for 35

 [0, 0.06, 0.10, 0.12, 0.14, 0.16, 0.19, 0.21, 0.23], #Row for 40

 [0, 0.03, 0.05, 0.06, 0.07, 0.09, 0.10, 0.11, 0.12], #Row for 50

 [0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]]#Row for 60 deg C;

 RH_array = [0, 20, 30, 40, 50, 60, 70, 80, 90]

 RH_1 = int(math.floor(RH(T_air_AH + 273.15,T_s(x_AH,P_air))*100/10.) - 1)

 RH_2 = int(math.ceil(RH(T_air_AH,T_s(x_AH,P_air))*100/10.) - 1)

 if RH_1 == -1:

 RH_1 = 0

 else:

 1

 if T_air_AH < 21 + 273.15:

 1

 elif T_air_AH > 21 + 273.15 and T_air_AH < 25 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[0][RH_1],

C_NIPAAm_matrix[0][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1],

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

183

 C_NIPAAm = float(interp1d([21 + 273.15, 25 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 25 + 273.15 and T_air_AH < 30 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1],

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1],

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([25 + 273.15, 30 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 30 + 273.15 and T_air_AH < 35 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1],

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1],

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([30 + 273.15, 35 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 35 + 273.15 and T_air_AH < 40 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1],

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1],

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([35 + 273.15, 40 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 40 + 273.15 and T_air_AH < 50 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1],

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1],

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([40 + 273.15, 50 + 273.15],[C_1,

C_2])(T_air_AH))

 elif T_air_AH > 50 + 273.15 and T_air_AH < 60 + 273.15:

 C_1 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1],

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

184

 C_2 = float(interp1d([RH_array[RH_1],

RH_array[RH_2]],[C_NIPAAm_matrix[6][RH_1],

C_NIPAAm_matrix[6][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100))

 C_NIPAAm = float(interp1d([50 + 273.15, 60 + 273.15],[C_1,

C_2])(T_air_AH))

 else:

 1

 delta_C_NIPAAm = 0.6*C_NIPAAm #relative water content increase during

dehumidification [kg_water/kg_NIPAAm]

 c_p_NIPAAm_wet =

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*C_NIPAAm + c_p_NIPAAm)

#specific heat of NIPAAm when saturated

 c_p_NIPAAm_dry =

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*(C_NIPAAm - delta_C_NIPAAm)

+ c_p_NIPAAm) #specific heat of NIPAAm when it is as dried as possible

 h_fg_NIPAAm = (CP.PropsSI('H','T',T_regen_NIPAAm,'Q',1,"Water") -

CP.PropsSI('H','T',T_regen_NIPAAm,'Q',0,"Water")) #heat of evaporation for water

 Q_useful = m_dot_supply*((CP.PropsSI('H','T',T_air_initial,'P',P_air,"Air") +

x_initial*CP.PropsSI('H','T',T_air_initial,'Q',1,"Water")) -

(CP.PropsSI('H','T',T_air_o,'P',P_air,"Air") +

x_air_o*CP.PropsSI('H','T',T_air_o,'Q',1,"Water")))*t_f_des

 omega = 0.75

 m_NIPAAm = m_dot_supply*(x_AH -

x_dehum)*360./(omega*delta_C_NIPAAm)

 m_des = m_dot_supply*(x_AH - x_dehum)*360./(omega*C_des)

 return [delta_t, t_f_des, T_h_array_des, x_h_array_des, T_duct_array_des,

x_duct_array_des, T_return_array_des, x_return_array_des,t_f_NIPAAm,

T_h_array_NIPAAm, x_h_array_NIPAAm, T_duct_array_NIPAAm,

x_duct_array_NIPAAm, T_return_array_NIPAAm, x_return_array_NIPAAm,

delta_m_h2o, h2o_des, h2o_NIPAAm, c_p_NIPAAm_dry, c_p_NIPAAm_wet,

h_fg_NIPAAm,T_HX_preheat_i,T_HX_preheat_o,x_HX_preheat_i,C_p_regen,T_air_A

H,T_air_to_HX,T_air_to_AC,T_air_o,x_AH,x_dehum,x_dehum,x_air_o,Q_useful,m_h2

o_used,omega,m_NIPAAm,m_des,delta_C_NIPAAm]

185

APPENDIX E

PYTHON CODE FOR “AC.PY”

186

def

AC(T_air_i,w_i,T_outside,w_outside,T_air_o,print_query,sys_config,m_dot_evap,m_dot

_cond,):

 from CoolProp import CoolProp as CP

 import numpy as np

 from PIL import Image, ImageFont, ImageDraw

 import math

 from HX_AC_evap import HX_AC_evap

 from HX_AC_cond import HX_AC_cond

 from x_s import x_s

 from T_s import T_s

 fnt = ImageFont.truetype("C:\Windows\Fonts\ARIALUNI.TTF", 50)

 img = Image.open("psychrometric.png")

 draw = ImageDraw.Draw(img)

 Refrigerant = "R134a"

 ##T-s vapor dome

 # This code creates arrays of temperature and specific entropy values to be used

for plotting in the graphical interface (GUI.py)

 T_crit = CP.PropsSI('Tcrit',Refrigerant)

 T_array_1 = np.linspace(193.15,T_crit,1000)

 T_array_2 = []

 for T in T_array_1:

 if T == T_crit:

 1

 else:

 T_array_2.append(T)

 s_array_1 = []

 for T in T_array_1:

 s = CP.PropsSI('S','T',T,'Q',0,Refrigerant)

 s_array_1.append(s)

 s_array_2 = []

 for T in T_array_2:

 s = CP.PropsSI('S','T',T,'Q',1,Refrigerant)

 s_array_2.append(s)

 s_array = s_array_1 + list(np.flipud(s_array_2))

 T_array = list(T_array_1) + list(np.flipud(T_array_2))

187

 ##P-h vapor dome

 # This code creates arrays of Pressure and specific enthalpy values to be used for

plotting in the graphical interface (GUI.py)

 P_array_1 = np.linspace(100000,4020000.88,1001)

 P_array_2 = P_array_1

 h_array_1 = []

 for P in P_array_1:

 h = CP.PropsSI('H','P',P,'Q',0,Refrigerant)

 h_array_1.append(h)

 h_array_2 = []

 for P in P_array_2:

 h = CP.PropsSI('H','P',P,'Q',1,Refrigerant)

 h_array_2.append(h)

 P_array = np.concatenate((P_array_1, np.fliplr([P_array_2])[0]), axis=0)

 h_array = np.concatenate((h_array_1, np.fliplr([h_array_2])[0]), axis=0)

 #Setting the air pressure within and outside of the house, as well as the heat

transfer coefficient of the evaporator

 P_air = 101325

 UAs_evap = 1810

 UAs = UAs_evap

 #Determining the humidity ratio of the air exiting the evaporator

 if T_s(w_i, P_air) > T_air_o:

 w_o = x_s(T_air_o, P_air)

 else:

 w_o = w_i

 #Calling the evaporator function

 [T_ref_evap, m_dot_ref, Q_evap] = HX_AC_evap(m_dot_evap, P_air, T_air_i,

w_i, T_air_o, w_o, Refrigerant, UAs)

 #Using information from the evaporator model to define various refrigerant

properties at the evaporator, where state 1 is before the evaporator and state 2 is after the

evaporator

 T_1 = T_ref_evap

 T_2 = T_ref_evap

 s_1 = CP.PropsSI('S','T',T_1,'Q',0,Refrigerant)

 s_2 = CP.PropsSI('S','T',T_2,'Q',1,Refrigerant)

 P_evap = CP.PropsSI('P','T',T_1,'Q',0,Refrigerant)

188

 h_1 = CP.PropsSI('H','T',T_1,'Q',0,Refrigerant)

 h_2 = CP.PropsSI('H','T',T_2,'Q',1,Refrigerant)

 #defining the isentropic efficiency of the compressor, as well as the condenser

heat transfer coefficient

 isen_eff = 0.8

 UAs_cond = 3620

 UAs = UAs_cond

 #Calling the condenser function

 [P_cond, h_4, h_3] = HX_AC_cond(m_dot_cond, P_air, T_outside, w_outside,

Q_evap, Refrigerant, UAs, h_2, s_2, isen_eff)

 #Defining the properties at the remaining states, as well as the mass flow rate of

refrigerant, refrigerant COP, and power required

 h_1 = h_4

 m_dot_ref = Q_evap/(h_2 - h_1)

 s_1 = CP.PropsSI('S','P',P_evap,'H',h_4,Refrigerant)

 s_3 = CP.PropsSI('S','P',P_cond,'H',h_3,Refrigerant)

 s_g = CP.PropsSI('S','P',P_cond,'Q',1,Refrigerant)

 s_4 = CP.PropsSI('S','P',P_cond,'H',h_4,Refrigerant)

 T_3 = CP.PropsSI('T','P',P_cond,'H',h_3,Refrigerant)

 T_cond = CP.PropsSI('T','P',P_cond,'Q',1,Refrigerant)

 T_4 = CP.PropsSI('T','P',P_cond,'Q',0,Refrigerant)

 COP_AC = (h_2 - h_1)/(h_3 - h_2)

 W_dot_comp = m_dot_ref*(h_3 - h_2)

 #The remainder of the code plots the process that the air undergoes over a

psychromtric graphic

 T_air_i_F = (T_air_i - 273.15)*9./5. + 32

 T_air_o_F = (T_air_o - 273.15)*9./5. + 32

 w_i_psy = w_i*7000

 w_o_psy = w_o*7000

 if sys_config == "AC Only":

 x_1 = 17.03*T_air_i_F - 204.60 + (7.*T_air_i_F/1500. - 14./25.)*w_i_psy

 y_1 = -(1349./210.)*w_i_psy + 1483

 T_1s = T_s(w_i_psy/7000., 101325)

 T_1s_F = (T_1s - 273.15)*9./5. + 32

 x_1s = 17.03*T_1s_F - 204.60 + (7.*T_1s_F/1500. - 14./25.)*w_i_psy

189

 x_3 = 17.03*T_air_o_F - 204.60 + (7.*T_air_i_F/1500. -

14./25.)*w_i_psy

 if T_air_o < T_s(w_i,101325):

 draw.line((x_1, y_1, x_1s, y_1), fill=(255,0,0), width=5)

 for w in range(int(math.floor(w_o_psy)), int(math.ceil(w_i_psy))):

 T = T_s(w/7000., 101325)

 T = (T - 273.15)*9./5. + 32

 x_1 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w

 y_1 = -(1349./210.)*w + 1483

 w = w + 1

 T = T_s(w/7000., 101325)

 T = (T - 273.15)*9./5. + 32

 x_2 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w

 y_2 = -(1349./210.)*w + 1483

 draw.line((x_1, y_1, x_2, y_2), fill=(255,0,0), width=5)

 else:

 draw.line((x_1, y_1, x_3, y_1), fill=(255,0,0), width=5)

 img.save("output\psychrom\psychrom_AC_out.png")

 elif sys_config == "Desiccant":

 1

 elif sys_config == "NIPAAm":

 1

 else:

 1

 return

[T_air_o,w_o,m_dot_evap,P_air,W_dot_comp,T_1,T_3,T_cond,s_1,s_2,s_3,s_4,s_g,P_e

vap,P_cond,h_1,h_2,h_3,h_4,Q_evap,s_array,T_array,h_array,P_array,COP_AC]

190

APPENDIX F

PYTHON CODE FOR “HX_AC_EVAP.PY”

191

def HX_AC_evap(m_dot_air, P_air, T_air_i, w_i, T_air_o, w_o, Refrigerant, UAs):

 from CoolProp import CoolProp as CP

 import math

 from T_s import T_s

 from x_s import x_s

 from scipy.optimize import fsolve

 #defining the heat rate for the air flowing over the evaporator coils

 c_p_air = (CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") +

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2.

 c_p_water = (CP.PropsSI('C','T',T_air_i,'Q',1,"Water") +

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.

 C_min = m_dot_air*c_p_air + m_dot_air*c_p_water*(w_i + w_o)/2.

 NTU = UAs/C_min

 eff = 1 - math.exp(-NTU)

 #solving for the evaporator temperature

 if w_i == w_o: #if there is no dehumidification

 Q_p1 = m_dot_air*(T_air_i - T_air_o)*(c_p_air + w_i*c_p_water)

 Q_p2 = 0

 Q_p3 = 0

 Q = Q_p1 + Q_p2 + Q_p3

 Q_max = Q/eff

 T_ref_evap = T_air_i - Q_max/C_min

 else: #if there is some dehumidification

 #defining the air and water vapor properties

 c_p_air_1 = (CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") +

CP.PropsSI('C','T',T_s(w_i, P_air),'P',P_air,"Air"))/2.

 c_p_water_1 = (CP.PropsSI('C','T',T_air_i,'Q',1,"Water") +

CP.PropsSI('C','T',T_s(w_i, P_air),'Q',1,"Water"))/2.

 Q_p1 = m_dot_air*(T_air_i - T_s(w_i, P_air))*(c_p_air_1 +

w_i*c_p_water_1)

 c_p_air_2 = (CP.PropsSI('C','T',T_s(w_i, P_air),'P',P_air,"Air") +

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2.

 c_p_water_2 = (CP.PropsSI('C','T',T_s(w_i, P_air),'Q',1,"Water") +

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.

 h_fg = ((CP.PropsSI('H','T',T_s(w_i, P_air),'Q',1,"Water") -

CP.PropsSI('H','T',T_s(w_i, P_air),'Q',0,"Water")) + (CP.PropsSI('H','T',T_s(w_o,

P_air),'Q',1,"Water") - CP.PropsSI('H','T',T_s(w_o, P_air),'Q',0,"Water")))/2.

 #defining the rate of heat transfer required to bring the air to the desired

conditions

 Q_p2 = m_dot_air*(T_s(w_i, P_air) - T_air_o)*(c_p_air_2 +

c_p_water_2*(w_i + w_o)/2.)

192

 Q_p3 = m_dot_air*(w_i - w_o)*h_fg

 Q = Q_p1 + Q_p2 + Q_p3

 Q_max = Q/eff

 #iterative solver

 def equations(T_ref_evap):

 eq_1 = m_dot_air*(c_p_air_2 + ((w_i +

w_o)/2.)*c_p_water_2)*(T_s(w_i,P_air) - T_air_o) + m_dot_air*(w_i - w_o)*h_fg -

(UAs - (m_dot_air*(c_p_air_1 + w_i*c_p_water_1)*(T_air_i -

T_s(w_i,P_air)))/((T_air_i - T_s(w_i,P_air))/math.log((T_air_i -

T_ref_evap)/(T_s(w_i,P_air) - T_ref_evap))))*((T_s(w_i,P_air) -

T_air_o)/math.log((T_s(w_i,P_air) - T_ref_evap)/(T_air_o - T_ref_evap)))

 return(eq_1)

 [T_ref_evap] = fsolve(equations, (T_air_o - 0.1)) #defining the refrigerant

temperature at the evaporator

 h_fg = CP.PropsSI('H','T',T_ref_evap,'Q',1,Refrigerant) -

CP.PropsSI('H','T',T_ref_evap,'Q',0,Refrigerant)

 m_dot_ref = Q/h_fg

 return [T_ref_evap, m_dot_ref, Q]

193

APPENDIX G

PYTHON CODE FOR “HX_AC_COND.PY”

194

def HX_AC_cond(m_dot_air, P_air, T_air_i, w_i, Q_evap, Refrigerant, UAs, h_2, s_2,

isen_eff):

 from CoolProp import CoolProp as CP

 import math

 from scipy.optimize import fsolve

 #defining the heat rate for the air flowing over the condenser coils

 c_p_air = CP.PropsSI('C','T',T_air_i,'P',P_air,"Air")

 c_p_water = CP.PropsSI('C','T',T_air_i,'Q',1,"Water")

 C_min = m_dot_air*c_p_air + m_dot_air*c_p_water*w_i

 #iterative solver to find the required condenser temperature

 def equations(T_cond):

 eq_1 = Q_evap*(CP.PropsSI('H','T',T_cond[-1],'Q',1,Refrigerant) -

CP.PropsSI('H','T',T_cond[-1],'Q',0,Refrigerant))/(h_2 - CP.PropsSI('H','T',T_cond[-

1],'Q',0,Refrigerant)) - (1 - math.exp(-(max(0, (UAs - (Q_evap/(h_2 -

CP.PropsSI('H','T',T_cond[-1],'Q',0,Refrigerant)))*((((CP.PropsSI('H','T',T_cond[-

1],'S',s_2,Refrigerant)) - h_2)/isen_eff + h_2) - (CP.PropsSI('H','T',T_cond[-

1],'Q',1,Refrigerant)))/(((CP.PropsSI('T','P',(CP.PropsSI('P','T',T_cond[-

1],'Q',1,Refrigerant)),'S',s_2,Refrigerant)) - T_cond[-

1])/math.log(((CP.PropsSI('T','P',(CP.PropsSI('P','T',T_cond[-

1],'Q',1,Refrigerant)),'S',s_2,Refrigerant)) - T_air_i)/(T_cond[-1] -

T_air_i)))))/C_min)))*C_min*(T_cond[-1] - T_air_i)

 return(eq_1)

 T_4 = fsolve(equations, (T_air_i + 0.1)) #solving for condenser temperature

 T_4 = T_4[-1]

 #solving for the remaining refrigerant properties

 h_4 = CP.PropsSI('H','T',T_4,'Q',0,Refrigerant)

 P_cond = CP.PropsSI('P','T',T_4,'Q',1,Refrigerant)

 h_3s = CP.PropsSI('H','P',P_cond,'S',s_2,Refrigerant)

 h_3a = (h_3s - h_2)/isen_eff + h_2

 T_3 = CP.PropsSI('T','P',P_cond,'H',h_3a,Refrigerant)

 return [P_cond, h_4, h_3a]

195

APPENDIX H

PYTHON CODE FOR “DEHUM.PY”

196

def Dehum(x_in,T_in,x_out,P_tot):

 from CoolProp import CoolProp as CP

 import time

 from scipy.optimize import fsolve

 h_i = CP.PropsSI('H','T',T_in,'P',P_tot,"Air") +

x_in*CP.PropsSI('H','T',T_in,'Q',1,"Water") #enthalpy of the moist air entering the

dehumidifier

 #iteratively solving for the temperature of the air leaving the dehumidifier, such

that the process is isenthalpic

 def equations(T_out):

 eq_1 = CP.PropsSI('H','T',T_out,'P',P_tot,"Air") +

x_out*CP.PropsSI('H','T',T_out,'Q',1,"Water") - h_i

 return(eq_1)

 [T_out] = fsolve(equations, (T_in + 0.1))

 return [T_out]

197

APPENDIX I

PYTHON CODE FOR “PSYPLOT.PY”

198

def

Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,x_AH,

x_to_AC,x_dehum,x_air_o):

 from PIL import Image, ImageFont, ImageDraw

 from T_s import T_s

 import math

 fnt = ImageFont.truetype("C:\Windows\Fonts\ARIALUNI.TTF", 80)

 fnt2 = ImageFont.truetype("C:\Windows\Fonts\ARIALUNI.TTF", 50)

 #the following code creates a psychrometric chart based on the system

configuration used (VC = standard vapor compression)

 img = Image.open("psychrometric.png")

 draw = ImageDraw.Draw(img)

 if cooling_mode == "VC":

 #first the temperatures are converted to deg F, and the humidity ratios are

converted to gr/lb

 T_air_i_F = (T_air_to_AC - 273.15)*9./5. + 32

 T_air_o_F = (T_air_o - 273.15)*9./5. + 32

 T_dehum_i_F = (T_air_AH - 273.15)*9./5. + 32

 T_dehum_o_F = (T_air_to_HX - 273.15)*9./5. + 32

 w_0_psy = x_AH*7000

 w_i_psy = x_to_AC*7000

 w_o_psy = x_air_o*7000

 #x and y coordinates are created for the points in the process, based on the

psychrometric graphic over which the lines are plotted. x and y coordinates are created in

units of pixels

 x_1 = 17.03*T_air_i_F - 204.60 + (7.*T_air_i_F/1500. - 14./25.)*w_i_psy

 y_1 = -(1349./210.)*w_i_psy + 1483

 T_1s = T_s(w_i_psy/7000., 101325)

 T_1s_F = (T_1s - 273.15)*9./5. + 32

 x_1s = 17.03*T_1s_F - 204.60 + (7.*T_1s_F/1500. - 14./25.)*w_i_psy

 x_2 = 17.03*T_air_o_F - 204.60 + (7.*T_air_o_F/1500. -

14./25.)*w_i_psy

 if T_air_o < T_s(x_air_o,101325):

 draw.line((x_1, y_1, x_1s, y_1), fill=(255,0,0), width=5)

 else:

 draw.line((x_1, y_1, x_2, y_1), fill=(255,0,0), width=5)

 x_0 = 17.03*T_dehum_i_F - 204.60 + (7.*T_dehum_i_F/1500. -

14./25.)*w_0_psy

 y_0 = -(1349./210.)*w_0_psy + 1483

 x_0a = 17.03*T_dehum_o_F - 204.60 + (7.*T_dehum_o_F/1500. -

14./25.)*w_i_psy

199

 draw.line((x_0, y_0, x_0a, y_1), fill=(255,0,0), width=5)

 draw.line((x_0a, y_1, x_1, y_1), fill=(255,0,0), width=5)

 if T_air_o < T_s(x_air_o,101325):

 for w in range(int(math.floor(w_o_psy)), int(math.ceil(w_i_psy))):

 T = T_s(w/7000., 101325)

 T = (T - 273.15)*9./5. + 32

 x_3 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w

 y_3 = -(1349./210.)*w + 1483

 w = w + 1

 T = T_s(w/7000., 101325)

 T = (T - 273.15)*9./5. + 32

 x_4 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w

 y_4 = -(1349./210.)*w + 1483

 draw.line((x_3, y_3, x_4, y_4), fill=(255,0,0), width=5)

 else:

 1

 draw.text(((x_0 - 8),(y_0 - 80)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_0a - 13),(y_1 - 82)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_1 - 10),(y_1 - 81)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_2 - 7),(y_1 - 81)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_0 - 16),(y_0 - 80 + 15)), "1", font = fnt2, fill = (0,0,0))

 draw.text(((x_0a - 17),(y_1 - 82 + 70)), "2", font = fnt2, fill = (0,0,0))

 draw.text(((x_1 - 14),(y_1 - 81 + 70)), "3", font = fnt2, fill = (0,0,0))

 draw.text(((x_2 - 11),(y_1 - 81 + 70)), "4", font = fnt2, fill = (0,0,0))

 else:

 T_air_i_F = (T_air_to_AC - 273.15)*9./5. + 32

 T_air_o_F = (T_air_o - 273.15)*9./5. + 32

 T_dehum_i_F = (T_air_AH - 273.15)*9./5. + 32

 T_dehum_o_F = (T_air_to_HX - 273.15)*9./5. + 32

 w_0_psy = x_AH*7000

 w_i_psy = x_to_AC*7000

 w_o_psy = x_air_o*7000

 w_dehum_psy = x_dehum*7000

 x_1 = 17.03*T_air_i_F - 204.60 + (7.*T_air_i_F/1500. -

14./25.)*w_dehum_psy

 y_1 = -(1349./210.)*w_dehum_psy + 1483

 T_1s = T_s(w_i_psy/7000., 101325)

 T_1s_F = (T_1s - 273.15)*9./5. + 32

 x_1s = 17.03*T_1s_F - 204.60 + (7.*T_1s_F/1500. - 14./25.)*w_i_psy

 x_2 = 17.03*T_air_o_F - 204.60 + (7.*T_air_o_F/1500. -

14./25.)*w_o_psy

 y_2 = -(1349./210.)*w_o_psy + 1483

200

 draw.line((x_1, y_1, x_2, y_2), fill=(255,0,0), width=5)

 x_0 = 17.03*T_dehum_i_F - 204.60 + (7.*T_dehum_i_F/1500. -

14./25.)*w_0_psy

 y_0 = -(1349./210.)*w_0_psy + 1483

 x_0a = 17.03*T_dehum_o_F - 204.60 + (7.*T_dehum_o_F/1500. -

14./25.)*w_dehum_psy

 if T_dehum_o_F > 120:

 w_120 = (y_0 + ((y_0 - y_1)/(x_0a - x_0))*x_0 - 1483 -

(120*17.03 - 204.60)*((y_0 - y_1)/(x_0a - x_0)))*(-(1349./210.) + ((y_0 - y_1)/(x_0a -

x_0))*(7.*120/1500. - 14./25.))**(-1)

 x_0b = 17.03*120 - 204.60 + (7.*120/1500. - 14./25.)*w_120

 y_0b = -(1349./210.)*w_120 + 1483

 x_1a = 17.03*120 - 204.60 + (7.*120/1500. -

14./25.)*w_dehum_psy

 draw.line((x_0, y_0, x_0b, y_0b), fill=(255,0,0), width=5)

 draw.line((x_1a, y_1, x_1, y_1), fill=(255,0,0), width=5)

 else:

 draw.line((x_0, y_0, x_0a, y_1), fill=(255,0,0), width=5)

 draw.line((x_0a, y_1, x_1, y_1), fill=(255,0,0), width=5)

 if T_air_o < T_s(x_air_o,101325):

 for w in range(int(math.floor(w_o_psy)), int(math.ceil(w_i_psy))):

 T = T_s(w/7000., 101325)

 T = (T - 273.15)*9./5. + 32

 x_3 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w

 y_3 = -(1349./210.)*w + 1483

 w = w + 1

 T = T_s(w/7000., 101325)

 T = (T - 273.15)*9./5. + 32

 x_4 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w

 y_4 = -(1349./210.)*w + 1483

 draw.line((x_3, y_3, x_4, y_4), fill=(255,0,0), width=5)

 else:

 1

 draw.text(((x_0 - 8),(y_0 - 80)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_0a - 13),(y_1 - 82)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_1 - 10),(y_1 - 81)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_2 - 7),(y_2 - 81)), ".", font = fnt, fill = (0,0,0))

 draw.text(((x_0 - 16),(y_0 - 80 + 15)), "1", font = fnt2, fill = (0,0,0))

 draw.text(((x_0a - 17),(y_1 - 82 + 70)), "2", font = fnt2, fill = (0,0,0))

 draw.text(((x_1 - 14),(y_1 - 81 + 70)), "3", font = fnt2, fill = (0,0,0))

201

 draw.text(((x_2 - 11),(y_2 - 81 + 70)), "4", font = fnt2, fill = (0,0,0))

 if sys_config == "Desiccant":

 img.save("output\psychrom\psychrom_desiccant_out.png")

 elif sys_config == "NIPAAm":

 img.save("output\psychrom\psychrom_NIPAAm_out.png")

 else:

 1

 return []

202

APPENDIX J

PYTHON CODE FOR “HX.PY”

203

def HX(m_dot_h, m_dot_c, P_h, P_c, T_h_i, T_c_i, x_h, x_c, Fluid_h, Fluid_c, eff):

 from CoolProp import CoolProp as CP

 #determining the heat rates of the supply (h) and process (c) air

 c_p_h = CP.PropsSI('C','T',T_h_i,'P',P_h,Fluid_h) +

x_h*CP.PropsSI('C','T',T_h_i,'Q',1,"Water")

 c_p_c = CP.PropsSI('C','T',T_c_i,'P',P_c,Fluid_c) +

x_c*CP.PropsSI('C','T',T_c_i,'Q',1,"Water")

 C_max = max(m_dot_h*c_p_h, m_dot_c*c_p_c)

 C_min = min(m_dot_h*c_p_h, m_dot_c*c_p_c)

 Q_max = C_min*(T_h_i - T_c_i) #the maximum available rate of heat transfer

 Q = eff*Q_max #the actual rate of heat transfer

 T_h_o = T_h_i - Q/(m_dot_h*c_p_h)

 T_c_o = T_c_i + Q/(m_dot_c*c_p_c)

 return [T_h_o, T_c_o]

204

APPENDIX K

PYTHON CODE FOR “RH.PY”

205

def RH(T, T_d):

 import math

 m = 17.625 #constant

 T_n = 243.04 #constant

 T = T - 273.15 #actual air temperature

 T_d = T_d - 273.15 #dew point temperature

 RH = math.exp(m*(((T_d)/(T_d + T_n)) - ((T)/(T + T_n)))) #relative humidity

 return RH

206

APPENDIX L

PYTHON CODE FOR “T_S.PY”

207

def T_s(x, P_tot):

 import math

 from scipy.optimize import fsolve

 P_vs = (x*P_tot/0.6219907)/(1 + x/0.6219907) #saturation vapor pressure for

given humidity

 def equation(T):

 Eq_1 = 22064000*math.exp(647.096/T*(-7.85951783*(1 - T/647.096) +

1.84408259*(1 - T/647.096)**1.5 - 11.7866497*(1 - T/647.096)**3 + 22.6807411*(1 -

T/647.096)**3.5 - 15.9618719*(1 - T/647.096)**4 + 1.80122502*(1 - T/647.096)**7.5))

- P_vs

 return(Eq_1)

 T_s = fsolve(equation, 273.15) #saturation temperature

 T_s = T_s[0]

 return T_s

208

APPENDIX M

PYTHON CODE FOR “X.PY”

209

def x(T, RH, P_tot):

 import math

 theta = 1 - T/647.096 #temperature-based variable

 P_vs = 22064000*math.exp(647.096/T*(-7.85951783*theta +

1.84408259*theta**1.5 - 11.7866497*theta**3 + 22.6807411*theta**3.5 -

15.9618719*theta**4 + 1.80122502*theta**7.5)) #Saturation vapor pressure [Pa]

 P_v = P_vs*RH #actual vapor pressure

 x = 0.6219907*P_v/(P_tot - P_v) #humidity ratio

 return x

210

APPENDIX N

PYTHON CODE FOR “X_S.PY”

211

def x_s(T, P_tot):

 import math

 theta = 1 - T/647.096 #temperature based variable

 P_vs = 22064000*math.exp(647.096/T*(-7.85951783*theta +

1.84408259*theta**1.5 - 11.7866497*theta**3 + 22.6807411*theta**3.5 -

15.9618719*theta**4 + 1.80122502*theta**7.5)) #Saturation vapor pressure [Pa]

 x_s = 0.6219907*P_vs/(P_tot - P_vs) #saturation humidity ratio for given

temperature

 return x_s

