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ABSTRACT 

When air is supplied to a conditioned space, the temperature and humidity of the 

air often contribute to the comfort and health of the occupants within the space. However, 

the vapor compression system, which is the standard air conditioning configuration, 

requires air to reach the dew point for dehumidification to occur, which can decrease 

system efficiency and longevity in low temperature applications.  

To improve performance, some systems dehumidify the air before cooling. One 

common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture 

out of the air while rotating through circular housing. This system improves performance, 

especially when the desiccant is regenerated with waste or solar heat; however, the heat of 

regeneration is very large, as the water absorbed during dehumidification must be 

evaporated. N-isopropylacrylamide (NIPAAm), a sorbent that oozes water when raised 

above a certain temperature, could potentially replace traditional desiccants in 

dehumidifiers. The heat of regeneration for NIPAAm consists of some sensible heat to 

bring the sorbent to the regeneration temperature, plus some latent heat to offset any liquid 

water that is evaporated as it is exuded from the NIPAAm. This means the NIPAAm 

regeneration heat has the potential to be much lower than that of a traditional desiccant. 

Models were created for a standard vapor compression air conditioning system, two 

desiccant systems, and two theoretical NIPAAm systems. All components were modeled 

for simplified steady state operation. For a moderate percent of water evaporated during 

regeneration, it was found that the NIPAAm systems perform better than standard vapor 

compression. When compared to the desiccant systems, the NIPAAm systems performed 
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better at almost all percent evaporation values. The regeneration heat was modeled as if 

supplied by an electric heater. If a cheaper heat source were utilized, the case for NIPAAm 

would be even stronger. 

Future work on NIPAAm dehumidification should focus on lowering the percent 

evaporation from the 67% value found in literature. Additionally, the NIPAAm cannot 

exceed the lower critical solution temperature during dehumidification, indicating that a 

NIPAAm dehumidification system should be carefully designed such that the sorbent 

temperature is kept sufficiently low during dehumidification.   
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1 INTRODUCTION 

1.1 Background 

Dehumidification is a process that is useful in many scenarios. Indoor air must often 

have a relative humidity within a certain range to produce comfortable conditions for 

occupants and inhibit mold growth. The EPA states that the relative humidity of indoor air 

should remain between 30 and 60% to inhibit the growth of mold, while ASHRAE states 

that relative humidity should remain below 65% for human comfort [1]. Certain types of 

buildings, like supermarkets and ice rinks, require precise and often relatively low humidity 

levels [2]. Thus, it is important that the heating, ventilation, and air conditioning (HVAC) 

system of a building properly controls the air humidity level, as well as temperature.  

The humidity of indoor air can be controlled through several means. One of the 

most common methods, and often the simplest, is to use a traditional vapor compression 

refrigeration cycle air conditioner. At the moment, vapor compression air conditioning is 

the most prominent method of providing cool air to a space [3], and these systems require 

no additional components to dehumidify the air, as the cooling and dehumidification takes 

place simultaneously. However, in certain scenarios, these systems can be inefficient or 

ineffective, at which point a supplemental dehumidifying component becomes necessary 

to make the system cost effective or to reach the desired humidity. One such dehumidifier 

is a rotary desiccant wheel. This component, pictured below, absorbs moisture out of the 

air and into the desiccant material. 
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Fig. 1.1.1: Desiccant wheel with a dehumidification section (top) and regeneration 

section (bottom) [2] 

 

 

To allow for continuous use, the water that is absorbed in the dehumidification portion of 

the wheel must be desorbed and evaporated off, which requires heat input. While desiccant 

dehumidification provides an improvement to performance and efficiency in many 

scenarios, the efficiency would be improved further if the dehumidifying wheel required 

less energy input for regeneration.  

 

1.2  HVAC Review 

The HVAC system within a building provides air that is fresh (through ventilation) 

and comfortable (through heating or cooling, depending on the outdoor conditions). As 

well as controlling temperature, the HVAC system controls the humidity of the air, as a 

combination of temperature and humidity determine the comfort of building occupants [1]. 

Most HVAC systems control humidity by either cooling the supply air below the dew point, 

at which point moisture in the air is forced to condense as the air continues to cool, or by 

absorbing moisture out of the air [2]. The dew point of air at a given humidity ratio is the 
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temperature at which the air becomes saturated with moisture and cannot cool any further 

without giving up some moisture. Vapor compression HVAC systems, which are the 

dominant type of system used to cool buildings [3], utilize the dew point condensation 

method of dehumidification. Vapor compression refrigeration systems contain four main 

components: a compressor, condenser, expansion valve, and evaporator. These 

components create a refrigeration cycle; first, refrigerant vapor enters the compressor, at 

which point the temperature and pressure are significantly increased. Next, the superheated 

vapor enters the condenser, at which point a fan blows outside air over the condenser coils, 

which cools the refrigerant and causes it to condense. After leaving the condenser, the 

liquid refrigerant enters the expansion valve, at which point it cools and drops to a lower 

pressure. Finally, the refrigerant flows through the evaporator. When the cool refrigerant 

flows through the evaporator, which is placed within the building, a fan blows supply air 

over the evaporator coils. The supply air is cooled by the coils and sent to the conditioned 

space. During this cooling process, if the evaporator coils are significantly colder than the 

dew point of the supply air, some of the moisture is forced to condense out of the air, thus 

decreasing the humidity ratio of the air.  

In certain locations, ventilation of fresh, outside air into buildings can significantly 

increase the latent load (moisture to be removed) of the air supplied to the conditioned 

space. Due to increased concern about the effects of indoor air quality on occupant health, 

building ventilation rates have increased over the years [2]. When the ventilation 

constraints in a humid location require a significant portion of outside air to be provided to 

the space, discomfort associated with the air can occur in one of two ways. It is possible 
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that the vapor compression air conditioner will not be able to dehumidify the air to a 

comfortable humidity level, due to a lack of cooling power, or due to an inability to reach 

a sufficiently low evaporator temperature. It is also possible that the vapor compression 

system is able to dehumidify the air sufficiently, but the dew point of the dry air is so low 

that it becomes too cold to be comfortable for the occupants. In this scenario, the air may 

need to be reheated to reach comfortable levels, which would introduce inefficiency to the 

overall process [2].  

In certain cases, condensation based dehumidification from vapor compression 

systems is the most desirable method for dehumidifying air, as vapor compression systems 

are common, and they often have relatively high coefficient of performance (COP) values. 

However, in many scenarios, the coupling of outlet temperature and humidity associated 

with condensation based dehumidification makes a separate dehumidification system 

desirable. 

 

1.3 Desiccant Dehumidification Review 

While vapor compression air conditioning systems are capable of dehumidifying 

air, there are many cases in which dehumidification by cooling the air beyond its dew point 

is ineffective or inefficient. When the dew point of the cooled supply air is below the 

freezing point of water, frost will accumulate on the evaporator coils as the condensed 

moisture begins to freeze, which can negatively affect performance. This scenario is 

common in buildings which require that the humidity or temperature of the space be kept 

at a significantly low value, such as supermarkets and ice rinks [2]. Aside from issues with 
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frost, there are some scenarios where the required humidity of the supply air corresponds 

to a dew point that is too low for comfort, in which case the conditioned air leaving the 

evaporator coils must be reheated before it is supplied to the conditioned space [2]. For 

these scenarios, it would be more efficient to dehumidify the air to the desired humidity 

ratio first, after which the air could be cooled to, but not beyond, the dew point, thus 

preventing the buildup of frost on the evaporator coils. A desiccant dehumidifier is an 

example of a device that could be place in-line with a traditional cooling system to 

dehumidify the air first. While there are many types of desiccant dehumidifiers, the rotary 

solid desiccant wheel is a commonly used variation, as it allows for constant use, as 

pictured in Fig. 1.1.1. Air is passed over the desiccant in the wheel, and the difference in 

vapor pressure between the desiccant surface and the air causes the desiccant to absorb the 

moisture [4]. During the absorption process, the heat is released from the water vapor to 

the air and desiccant material. To pre-cool the supply air before sending it to the cooling 

system, a heat exchanger can be utilized to transfer heat between the supply air and a stream 

of process air, which is often a combination of outside air and return air from the 

conditioned space. This pre-cooling brings the temperature of the supply air closer to room 

temperature and allows the vapor compression cooling system to do less work for the same 

overall process. The pre-cooling of the supply air also serves to pre-heat the process air, 

which can then be used to regenerate the saturated desiccant in the wheel. Usually, the heat 

from the heat exchanger is not enough to heat the process air to the regeneration 

temperature necessary to dry out the desiccant, in which case a supplemental heat source 

is required. While an electric heater could be used as the heating device, some systems 
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utilize natural gas as the heat source. In many of these scenarios, the difference between 

the price of natural gas and on-peak electricity is leveraged and the system is run during 

peak hours to reduce the electricity load associated with the vapor compression system [2]. 

Other systems utilize solar or waste heat to regenerate the desiccant [2]. These scenarios 

are desirable as they require no extra fuel cost for regeneration, but the heat source must 

be readily available and able to reach the required regeneration temperature.  

Desiccant dehumidification can be an economic and efficient method of removing 

moisture when the latent load of the air is high, and the method of regeneration is cost 

effective. However, desiccant dehumidification also presents another interesting 

application in desiccant air conditioning. Desiccant air conditioning is simply a system that 

utilizes a desiccant dehumidifier in line with a heat exchanger and an evaporative cooler 

[4]. In this configuration, the supply air is dried and heated by the dehumidifier, pre-cooled 

by the heat exchanger, and humidified and cooled by the evaporative cooler. The pre-

cooling from the heat exchanger allows for a net cooling and drying process to occur, as 

illustrated on the psychrometric chart in the figure below. 

 

 

Fig. 1.3.1: Desiccant air conditioning process 

 



7 

 

This type of system can be desirable for two reasons. Desiccant air conditioning uses water 

to achieve the refrigeration effect, while vapor compression systems use 

hydrofluorocarbons, which have high global warming potentials [5]. Additionally, if the 

system is regenerated with waste heat, solar heat, or natural gas, desiccant air conditioning 

can be cheaper than a vapor compression system in locations where electricity is relatively 

expensive. If the consumption of water is favorable to the consumption of electricity, 

desiccant air conditioning can serve as a viable replacement to vapor compression air 

conditioning. However, depending on the operating conditions and system design, the 

required regeneration temperature can exceed 100 °C [4]. A desiccant material with a lower 

regeneration temperature could significantly improve the efficiency and cost effectiveness 

of desiccant dehumidifiers and desiccant air conditioning systems. 

 

1.4 NIPAAm Review 

Traditional desiccants are regenerated by causing the absorbed water to desorb, 

which requires enough heat to offset the energy of bonding between the water molecules 

and the sorbent, and enough heat to vaporize the water molecules [6]. However, there are 

certain sorbents that, in response to a slight temperature change, give off the absorbed water 

as a liquid. If one of these materials were leveraged properly in a desiccant dehumidifier, 

it could be regenerated with far less heat than a traditional desiccant.  

Poly(N-isopropylacrylamide) (PNIPAAm) is a hydrogel that responds to a change 

in temperature. When the polymer is raised above its lower critical solution temperature 

(LCST), it changes from hydrophilic to hydrophobic. This means the PNIPAAm tends to 
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absorb moisture out of air when it is below the LCST, but it will ooze some of the absorbed 

moisture when it is raised above the LCST. The LCST of PNIPAAm is approximately 32 

°C [7]. Sodium alginate (Alg) is a highly hydrophilic material, and researchers created an 

interpenetrating polymer network (IPN) gel that consisted of PNIPAAm chains, to ooze 

water upon temperature response, and Alg chains to improve the absorption capacity of the 

gel [7]. While the researchers in this group also created several other materials based on 

N-isopropylacrylamide (NIPAAm), the main focus of their research was on the IPN gel. 

The researchers were able to produce a sample that absorbed moisture out of humid air 

below the LCST and regenerated by giving off a mix of liquid water and water vapor when 

raised above the LCST [7]. To see the maximum potential of a thermo-responsive 

NIPAAm based hydrogel, the NIPAAm should be synthesized and the system should be 

constructed such that the amount of water that is evaporated during regeneration is 

minimized, as this is the scenario in which the least amount of heat is necessary to drive 

regeneration. Additionally, the NIPAAm sorbent must stay below the LCST during 

dehumidification, otherwise the NIPAAM will be unable to sustain the dehumidification 

process. This presents a potential challenge, as the supply air heats up during 

dehumidification, and it is unclear how much heat from the dehumidification process will 

be transferred to the NIPAAm.  

 

1.5  Objectives 

The objective of this thesis is to present an analysis of a dehumidifier with NIPAAm 

as the sorbent. A simple steady state model was created for the NIPAAm dehumidifier, and 
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system-level models were created for a NIPAAm dehumidifier in series with a vapor 

compression cooling system, as well as a NIPAAm dehumidifier in series with an 

evaporative cooler. To assess the performance of the proposed NIPAAm dehumidification 

process, models were created for a standard vapor compression system, a desiccant 

dehumidifier in series with a vapor compression cooling system, and a traditional desiccant 

air conditioning system. Cases were run for all five models, and the performance of each 

system configuration was compared.  

While the goal of this report is to highlight the general potential of any thermo-

responsive NIPAAm hydrogel, the PNIPAAm/Alg IPN was the specific material that was 

modeled. For the sake of simplicity, the term “NIPAAm” is hereafter used to refer to the 

PNIPAAm/Alg IPN. 

Because the models created for this report are system-level models that do not 

capture certain details, such as the dynamic temperature response of the NIPAAm during 

dehumidification, it is simply assumed that the NIPAAm temperature does not reach the 

LCST during dehumidification (as this would stop the dehumidification process). This, 

however, is a non-trivial qualification, and it is unclear under what circumstances this is a 

valid assumption. A brief discussion is presented at the end of the report regarding the 

mitigation of temperature rise within the NIPAAm during dehumidification, and a design 

for an isothermal NIPAAm dehumidifier is presented. 

After running the models for various cases, it was found that there is significant 

potential for a NIPAAm dehumidifier that could be designed to generally behave as it was 

modeled in this report. For high latent loads, the NIPAAm dehumidification and vapor 
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compression cooling method was found to perform better than standard vapor compression, 

even when the percent of water evaporated during NIPAAm regeneration was high. For 

cases with a lower latent load, the NIPAAm dehumidification and vapor compression 

cooling outperformed standard vapor compression cooling for low percent evaporation 

values. The NIPAAm dehumidification and vapor compression cooling model was found 

to outperform the desiccant dehumidification and vapor compression cooling model in 

every case. The NIPAAm dehumidification and evaporative cooling was found to be much 

more efficient than desiccant dehumidification and evaporative cooling when at low 

percent evaporation values, an as the percent evaporation increased, the NIPAAm 

efficiency was found to approach the efficiency of the desiccant system. When waste heat 

source is used, the NIPAAm desiccant systems require the same amount of electricity input, 

but the NIPAAm requires less heat than the desiccant to regenerate, and the heat can be 

supplied at a lower temperature for the NIPAAm.  

  



11 

 

2 METHODS 

2.1 Overview 

To assess the potential of NIPAAm as a dehumidifying agent in HVAC 

applications, system models were created in Python for several different air conditioning 

configurations. One model was created for a standard vapor compression system, models 

were created for two systems containing desiccant dehumidification, and models were 

created for two systems containing NIPAAm dehumidification. The system models take 

inputs for the temperature and humidity of the air at the system inlet, as well as the desired 

temperature and humidity at the system outlet. The components for each system were 

modeled for steady state operation, and, upon input, the models determine the 

characteristics for each component, such as sorbent mass or electrical power that is drawn, 

that are necessary to bring the inlet air to the required outlet conditions. The component 

models are combined, by passing the outputs of an upstream component as inputs to the 

component immediately downstream, to form the overall system models. After the 

characteristics of each component are determined, the system model sums the required 

power input to all of the components and determines the COP by dividing the rate of 

cooling by the total power input. Aside from required power and COP, the models also 

output psychrometric charts of the processes. One of the desiccant systems and one of the 

NIPAAm systems utilize evaporative cooling; for these systems, the models also output 

the amount of water consumed by the evaporative cooler that is necessary to achieve the 

desired cooling process. The two NIPAAm configurations also output the amount of liquid 
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water that is reclaimed during regeneration. A graphical interface was created in Python to 

display the outputs of each system model.  

The function of each system model is to determine the energy that must be supplied 

to the system in order to achieve a desired cooling process. The user inputs the desired 

cooling provided by the system in the form of air temperature and humidity at the system 

inlet and outlet. The following is a list of the model inputs: 

• Thermostat set temperature 

• Indoor air humidity ratio 

• Outdoor air temperature  

• Outdoor air humidity ratio 

• Desired temperature of the supply air 

• Desired humidity ratio of the supply air 

Once the values are set by the user, the initial temperature of the indoor air is set to 5/9 °C 

(1 °F) higher than the thermostat set temperature input by the user, as it is assumed that the 

air conditioning would switch on once the indoor temperature is 1 °F greater than the 

thermostat setting.  

In the configurations modeled in this paper, the supply air is a mix of indoor return 

air and outdoor air. The air that returns from the conditioned space is often cooler and drier 

than the outdoor air, and thus increases system efficiency, while the outdoor air is fresh 

and improves ventilation. Before any dehumidification or cooling occurs, some mass flow 

rate of return air, ṁreturn,s, is combined with some mass flow rate of outside air, ṁoutside,s, 

to form the supply air flow rate, ṁsupply. Additionally, some of the configurations that were 
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modeled utilize a “process” air stream to regenerate the dehumidifier. The process air 

stream is also a combination of return and outside air. The separate air streams are 

illustrated in the graphic below, where the black lines with arrows are air streams; the return 

air stream splits in two, with some portion being sent to the supply air stream, and the 

remainder being sent to the process air stream. 

 

Fig. 2.1.1: Diagram of system airflows 

 

 

Within the model, it is assumed that the supply and return air flow rates are the only 

airflows in or out of the house (i.e.: there is no infiltration or passive ventilation). Thus, to 

maintain constant pressure within the house, the supply air mass flow rate must be equal 

to the return air mass flow rate. Additionally, it is often advantageous for the process air 

flow rate to be equal to the supply air flow rate, as explained later in Section 2.2.2. Thus, 

the following equation holds true.  
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 �̇�𝑠𝑢𝑝𝑝𝑙𝑦 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛 = �̇�𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (2.1) 

As seen in Fig. 2.1.1 above, some of the return air is provided to the supply air (ṁreturn,s), 

while the remainder is provided to the process air (ṁreturn,p), as illustrated in the equation 

below.  

 �̇�𝑟𝑒𝑡𝑢𝑟𝑛 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 + �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑝 (2.2) 

When combining the previous equation with Eq. 2.3 and 2.10, it can be seen that the 

magnitude of the mass flow rate of the return air that is sent to the process air stream is the 

same as the magnitude of the mass flow rate of outdoor air that is sent to the supply air. 

Additionally, it can be seen that the magnitude of mass flow rate of the outdoor component 

of process air is the same as the magnitude of mass flow rate of the return air component 

of supply air. 

 �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑝 = �̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠 (2.3) 

 �̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑝 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 (2.4) 

The first step of each system model is to calculate the temperature and humidity 

ratio of the supply air after the return and outdoor air are mixed. This process is modeled 

using the equations below, where x is the humidity ratio of the air, which is the ratio of 

water vapor to dry air. The specific heats are evaluated at the average of the return and 

outside temperatures.  

 
𝑥𝑠,𝑖 =

𝑥𝑟𝑒𝑡𝑢𝑟𝑛 ∗ �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 + 𝑥𝑜𝑢𝑡𝑠𝑖𝑑𝑒�̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠

�̇�𝑠𝑢𝑝𝑝𝑙𝑦
 

(2.5) 
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𝑇𝑠,𝑖 =

𝑇𝑟𝑒𝑡𝑢𝑟𝑛�̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠(𝑐𝑝,𝑎 + 𝑥𝑟𝑒𝑡𝑢𝑟𝑛𝑐𝑝,𝑣)

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑖𝑐𝑝,𝑣)

+
𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒�̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠(𝑐𝑝,𝑎 + 𝑥𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑐𝑝,𝑣)

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑖𝑐𝑝,𝑣)
 

 

(2.6) 

 �̇�𝑠𝑢𝑝𝑝𝑙𝑦 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑠 + �̇�𝑜𝑢𝑡𝑠𝑖𝑑𝑒,𝑠 (2.7) 

Each of the aforementioned mass flow rates is a mass flow rate of dry air. The total mass 

flow rate of a given air stream is the sum of the dry air mass flow rate and the mass flow 

rate of the water vapor in the air, as shown in the equation below. 

 �̇�𝑡𝑜𝑡 = �̇�𝑎(1 + 𝑥) (2.8) 

The specific heat or specific enthalpy of an air stream can be found by adding the dry air 

property with the product of the water vapor property and the humidity ratio, as shown in 

the equations below. 

 ℎ𝑡𝑜𝑡 = ℎ𝑎 + 𝑥 ∗ ℎ𝑣 (2.9) 

 𝑐𝑝,𝑡𝑜𝑡 = 𝑐𝑝,𝑎 + 𝑥 ∗ 𝑐𝑝,𝑣 (2.10) 

All of the Python models described in this paper use a wrapper called CoolProp to access 

various air and water properties, like specific heat, specific enthalpy, and temperature.  

The process air stream is used for the system configurations that utilize a separate 

dehumidifier. The standard vapor compression configuration, which does not include a 

separate dehumidifier, does not utilize any process air. For the other configurations, the 

process air is a mix of return and outside air, which, just like the supply air, must be mixed. 

After the supply air mixing is modeled, the process air mixing is modeled as well, using 

equations very similar to Eq. 2.5 and 2.6. The only difference is that the supply air mass 
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flow rates, ṁsupply, ṁreturn,s, and ṁoutside,s, are replaced with the process air mass flow rates, 

ṁprocess, ṁreturn,p, and ṁoutside,p, respectively. 

After the air mixing is modeled, the program calculates the processes necessary to 

bring the supply air stream to the desired output temperature and humidity ratio specified 

by the user. In determining the necessary processes, the program also calculates the 

performance of the components that induce these processes, such as the dehumidifier, 

process air heater, and cooling unit. From this information, the power required for each 

component is determined.   

 

2.2  System Model Configurations 

2.2.1 Vapor Compression Only 

To analyze the performance of a NIPAAm dehumidification system, five general 

system configurations were considered and modeled through the use of several Python 

scripts. The configuration of the first model consists of a traditional vapor compression 

cycle air conditioning system. In this configuration, dehumidification occurs as the AC 

evaporator cools the supply air past its dew point, forcing water to condense on the 

evaporator coils. Because this configuration consists solely of a vapor compression air 

conditioning system, this configuration is hereafter referred to as “vapor compression only” 

or “standard vapor compression”. For this configuration, as well as the remaining ones, the 

air supplied to the conditioned space is a mix of return air and outside air. The schematic 

for this configuration is shown in the figure below. 
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Fig. 2.2.1.1: Vapor compression only schematic 

 

 

As mentioned previously, the return air flow rate is set equal to the supply air flow rate to 

keep constant pressure within the house. In the other configurations, some of the return air 

is used for the regeneration process; however, in this configuration, no process air is need 

as there is no dehumidifying wheel to regenerate, so some of the return air is exhausted to 

the outside. This has the same effect as building leakage and purposeful ventilation.  

An example case illustrating the general process of the supply air in a vapor 

compression only configuration is shown on the psychrometric chart in the figure below. 
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Fig. 2.2.1.2: Psychrometric chart of supply air cooled by a vapor compression only air 

conditioning system 

 

 

To describe the performance of the system, the model calculates a COP, which depends on 

the useful cooling and the power consumed by the AC compressor, as described in the 

following equations, where hhouse,i is the specific enthalpy of the return air leaving the 

space, hs,o is the specific enthalpy of the cooled supply air, ṁref is the mass flow rate of the 

AC refrigerant, href,2 is the specific enthalpy of the refrigerant as it leaves the evaporator 

and enters the compressor, and href,3 is the specific enthalpy of the refrigerant as it leaves 

the compressor and enters the condenser.  

 �̇�𝑐𝑜𝑜𝑙 = �̇�𝑟𝑒𝑡𝑢𝑟𝑛ℎℎ𝑜𝑢𝑠𝑒,𝑖 − �̇�𝑠𝑢𝑝𝑝𝑙𝑦ℎ𝑠,𝑜 (2.11) 
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 �̇�𝑉𝐶 = �̇�𝑟𝑒𝑓(ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,2) (2.12) 

 
𝐶𝑂𝑃 =

�̇�𝑐𝑜𝑜𝑙

�̇�𝑉𝐶

 
(2.13) 

It should be noted that any pumps, fans, or blowers in this configuration or any of the 

following configurations were not modeled, and thus the power required to run these 

elements was not considered in any COP calculations. The compressor is assumed to be 

adiabatic, but not isentropic. An isentropic efficiency was included in the calculation of the 

change in specific enthalpy across the compressor; the value selected for isentropic 

efficiency is discussed in Section 2.6.   

 

2.2.2 Desiccant Dehumidification and Vapor Compression Cooling 

The configuration for the second model consists of a desiccant dehumidifier in 

conjunction with a vapor compression air conditioner, and this configuration is called 

“desiccant dehumidification and vapor compression cooling.” The model for this system 

was created such that it could be applied to any traditional desiccant, such as silica gel or 

a zeolite. To model this system, a rotary desiccant wheel was selected as the 

dehumidification component. The figure below shows a schematic for this configuration. 
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Fig. 2.2.2.1: Desiccant dehumidification and vapor compression cooling schematic 

 

 

The general process of the supply air for this configuration is shown in the figure below. 

 

 

Fig. 2.2.2.2: Psychrometric chart for supply air in a desiccant dehumidification and vapor 

compression cooling system 
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At the beginning of this cycle, the supply air is sent to a portion of the desiccant wheel, at 

which point the humidity ratio of the air drops while the temperature of the air rises, as the 

latent heat of condensation is being converted to sensible heat within the air. When creating 

the model for this configuration, it was assumed that the air leaving the desiccant wheel 

has the same humidity ratio as the air leaving the evaporator coils in the previous 

configuration, as this allows for a direct comparison of the two configurations. After 

dehumidification, the air is then sent through a heat exchanger and pre-cooled, with the air 

on the other side of the heat exchanger, the process air, being a mix of return and outside 

air as well. As previously mentioned, the process air mass flow rate was set equal to the 

supply air mass flow rate. This was done to ensure the temperature increase of the process 

air across the heat exchanger is the same as the temperature drop of the supply air across 

the heat exchanger. After pre-cooling in the heat exchanger, the supply air, now dried to 

the desired humidity ratio but still hotter than desired, is sent to the vapor compression 

system, where the evaporator coils can cool the air to the desired temperature.  

In this configuration, less cooling is required from the AC system, as no 

condensation needs to occur, which means the AC system compressor does not do as much 

work. At this point, the same net cooling effect is achieved with less input electricity to the 

AC system, indicating that the COP should increase. However, this configuration requires 

an additional energy input in the form of heat. While one part of the desiccant wheel is 

dehumidifying, the remainder must be regenerated to keep the dehumidification process 

constant. To do this, heat must be put into the desiccant through the process air stream. The 

hot process air causes the water to desorb and vaporize, thus drying out the desiccant. While 
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the aforementioned heat exchanger serves to pre-cool the supply air, it also serves to pre-

heat the process air; however, the temperature of the process air exiting the heat exchanger 

is often insufficient to regenerate the desiccant wheel. Thus, a heating element is placed 

downstream of the heat exchanger and is used to heat the process air to the required 

temperature. The following equation describes the rate of heat transfer required to achieve 

the regeneration temperature, where ṁprocess is the mass flow rate of the dry process air, 

Tp,HX,o is the temperature of the process air as it leaves the heat exchanger, Tp,regen is the 

required regeneration temperature, cp,a is the specific heat of the dry air, xp,i is the humidity 

ratio of the process air, and cp,v is the specific heat of the water vapor in the process air.   

 �̇�𝑟𝑒𝑔𝑒𝑛,𝑑𝑒𝑠 = �̇�𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑐𝑝,𝑎 + 𝑥𝑝,𝑖𝑐𝑝,𝑣)(𝑇𝑝,𝑟𝑒𝑔𝑒𝑛 − 𝑇𝑝,𝐻𝑋,𝑜) (2.14) 

For this model, it is assumed that a lossless and perfectly efficient electric heater is used to 

heat the process air, such that all electrical input, �̇�𝑟𝑒𝑔𝑒𝑛, is converted to sensible heat, 

�̇�𝑟𝑒𝑔𝑒𝑛,𝑑𝑒𝑠, within the air stream. The following equation describes the COP of this 

configuration and reflects the second input to the system. 

 
𝐶𝑂𝑃 =

�̇�𝑐𝑜𝑜𝑙

�̇�𝑉𝐶 + �̇�𝑟𝑒𝑔𝑒𝑛

 
(2.15) 

For some section of the desiccant wheel in the regenerating portion, the desiccant must be 

dried out by the time it rotates back to the dehumidifying portion. In order to dry out the 

desiccant at the proper rate, the process air stream must reach a certain regeneration 

temperature. The temperature necessary for a desired rate of desorption depends on system 

geometry and other aspects not considered in the models described within this paper; thus, 

the required regeneration temperature is not obvious. To account for this, the model for 
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this configuration was designed to allow the user to select various regeneration 

temperatures in the graphical interface and observe the resulting system performance.  

 

2.2.3 NIPAAm Dehumidification and Vapor Compression Cooling 

As with the previous configuration, the model for the third configuration includes 

a dehumidifying wheel and a vapor compression air conditioner; however, in this 

configuration, the dehumidifying material is NIPAAm. This configuration is hereafter 

called the “NIPAAm dehumidification and vapor compression cooling” configuration. The 

general process of the supply air for this case is the same as the previous case. The overall 

system configuration for this model is very similar to the second configuration, with the 

exception of the regeneration process, as shown in the figure below. 

 

 

Fig. 2.2.3.1: NIPAAm dehumidification and vapor compression cooling schematic 
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While the regenerating portion of the desiccant wheel uses a hot air stream to dry the 

desiccant, this process is not ideal for NIPAAm regeneration. To regenerate a traditional 

desiccant, the absorbed water must be vaporized during the desorption process, which is 

why a hot air stream is used. With NIPAAm, however, regeneration can occur by raising 

the material above its LCST, at which point the NIPAAm transitions from hydrophilic to 

hydrophobic, and the absorbed water is expelled in liquid form. In this situation, it is 

desirable to have no evaporation occur while the NIPAAm is being heated, as any 

evaporation would require heat that would otherwise increase the temperature of the 

NIPAAm, which is the desired effect. Thus, for the NIPAAm dehumidification and vapor 

compression cooling configuration, the process air stream is exhausted to the outside after 

exiting the heat exchanger, and the regeneration heat is supplied directly to the regenerating 

portion of the wheel.  

Because the NIPAAm becomes hydrophobic above the LCST, it is important that 

the NIPAAm stays below the LCST on the dehumidification side of the desiccant wheel. 

Because the regeneration process involves heating it to the LCST, it is likely that some 

supplemental cooling must be provided before the NIPAAm can begin the 

dehumidification process again. This process is shown in the figure below, which illustrates 

a potential NIPAAm dehumidification wheel design. 
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Fig. 2.2.3.2: Proposed design for a rotary NIPAAm dehumidifying wheel 

 

The rotary NIPAAm wheel has three distinct sections. The upper section is the 

dehumidification portion, where moist air enters the dehumidifier and leaves hot and dry. 

The NIPAAm at the point where the upper section of the wheel begins is at some initial 

temperature, TNIPAAm,i. As the wheel rotates and the NIPAAm travels clockwise, it is heated 

by the sorption process. At the end of the upper section, the NIPAAm is at some final 

temperature for the dehumidification process, TNIPAAm,f. The next section of the wheel, 

shown in the bottom right of the figure, is where the NIPAAm is regenerated. Heaters are 

placed within the wheel housing to heat the NIPAAm to the LCST, at which point it begins 

draining the water. While the water is draining, some percentage of it could evaporate, 
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which would cool the NIPAAm. Heaters would then be needed for the draining section as 

well, in order to maintain the LCST and offset any evaporative cooling that might occur. 

The final section of the wheel contains coolers to bring the NIPAAm from the LCST to the 

initial dehumidification temperature, TNIPAAm,i. It is assumed that the vapor compression 

cooling system used to cool the supply air is able to provide some supplemental cooling to 

reduce the NIPAAm temperature. 

The energy required to regenerate the NIPAAm is the sensible heat required to raise 

the NIPAAm and any absorbed water from the final dehumidification temperature, 

TNIPAAm,f, to the LCST, plus the latent heat of any evaporation that occurs, plus the cooling 

required to bring the NIPAAm temperature back down to TNIPAAm,i. The heaters are once 

again assumed to be lossless and perfectly efficient, meaning the required heat is also the 

required electricity input. For the cooler, the electricity input is the required cooling divided 

by the COP of the vapor compression cooler, as it is assumed that the vapor compression 

system is able to provide cooling to this portion of the wheel.  

For the proposed NIPAAm wheel design, the amount of NIPAAm necessary is 

dependent on the rate of dehumidification, which depends on the supply air flow rate and 

humidity drop, the increase in water to NIPAAm mass ratio, ∆CNIPAAm, and the rotational 

speed of the wheel, ω, which is expressed in deg/s in the equation below. 

 
𝑚𝑁𝐼𝑃𝐴𝐴𝑚 =

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑥𝑠,𝑖 − 𝑥𝑠,𝑜)

∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚

360

𝜔
  

(2.16) 

The required energy input can be separated into three parts: sensible heating, latent heating, 

and sensible cooling. The rate of heat transfer for each of these processes its dependent on 

the mass of NIPAAm and rotational speed. The equations for these energy inputs are shown 
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below, where cp,w is the specific heat of liquid water and the evaporation fraction is the 

fraction of liquid water that evaporates during the draining process. 

 �̇�𝑁𝐼𝑃𝐴𝐴𝑚,1 =
𝑚𝑁𝐼𝑃𝐴𝐴𝑚

360
𝜔(𝑐𝑝,𝑁𝐼𝑃𝐴𝐴𝑚 + ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥𝑐𝑝,𝑤)(𝐿𝐶𝑆𝑇

− 𝑇𝑁𝐼𝑃𝐴𝐴𝑚,𝑓) 

 

(2.17) 

 �̇�𝑁𝐼𝑃𝐴𝐴𝑚,2 =
𝑚𝑁𝐼𝑃𝐴𝐴𝑚

360
𝜔(𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)ℎ𝑓𝑔 (2.18) 

 �̇�𝑁𝐼𝑃𝐴𝐴𝑚,3 =
𝑚𝑁𝐼𝑃𝐴𝐴𝑚

360
𝜔(𝑐𝑝,𝑁𝐼𝑃𝐴𝐴𝑚 + ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑖𝑛𝑐𝑝,𝑤)(𝐿𝐶𝑆𝑇

− 𝑇𝑁𝐼𝑃𝐴𝐴𝑚,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

(2.19) 

The sensible heating contains the thermal mass of liquid water because the heaters must 

increase the temperature of the NIPAAm and the water contained within the sorbent, 

∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥, but after this some of the water drains, so the sensible cooling needs to 

decrease the temperature of NIPAAm and whatever water remains within the NIPAAm 

after regeneration, ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑖𝑛 . The regeneration energy for NIPAAm, expressed as 

required electrical input, is shown in the equation below, where COPcool is the COP of the 

system that cools the NIPAAm in the lower left portion of the NIPAAm wheel (i.e.: the 

vapor compression cooling system).  

 
�̇�𝑟𝑒𝑔𝑒𝑛,𝑁𝐼𝑃𝐴𝐴𝑚 = �̇�𝑁𝐼𝑃𝐴𝐴𝑚,1 + �̇�𝑁𝐼𝑃𝐴𝐴𝑚,2 +

�̇�𝑁𝐼𝑃𝐴𝐴𝑚,3

𝐶𝑂𝑃𝑐𝑜𝑜𝑙
 

(2.20) 

The absorption capacity of NIPAAm is dependent on the inlet temperature and humidity 

of the supply air, as shown in the following figure. 
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Fig. 2.2.3.3: NIPAAm moisture absorption capacity for various temperature and relative 

humidity values [7] 

 

 

The data points were taken from these curves to form an array of NIPAAm absorption 

capacity for varying air temperature and humidity. The model uses the temperature and 

relative humidity of the air entering the dehumidifier to determine the absorption capacity 

of the NIPAAm for the given inlet conditions. The absorption capacity is the maximum 

uptake in water, relative to the mass of NIPAAm, that the NIPAAm can sustain before it 

becomes saturated. NIPAAm, however, cannot feasibly be dried out completely, as shown 

in the figure below.  

 

Fig. 2.2.3.4: Normalized water content as a function of temperature for various NIPAAm 

gels [7] 
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The black curve in the figure above is associated with the PNIPAAm/Alg IPN, which is 

the NIPAAm configuration that was considered for the models in this paper. The curve 

shows the normalized water content, which is the water absorbed over maximum 

absorption capacity. From the figure, it can be seen that the NIPAAm does not completely 

dry out from regeneration. After regeneration at 32 °C, the NIPAAm reaches 

approximately 40% of its absorption capacity, while at 60 °C it is still at approximately 

30% of it’s absorption capacity. Thus, the NIPAAm was modeled under the assumption 

that it could only drain 60% of its water content at a regeneration temperature of 32 °C. 

This means that NIPAAm entering the dehumidification portion of the wheel still has water 

content equal to 40% of its maximum capacity. The increase in relative water content 

across the dehumidification portion is then 60% of the absorption capacity, ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥, 

as described in the equation below.  

 ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚 = 0.6 ∗ ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑎𝑥 (2.21) 

The water retained by the NIPAAm after regeneration, ∆𝐶𝑁𝐼𝑃𝐴𝐴𝑚,𝑚𝑖𝑛, is then 40% of the 

maximum water content. 

Aside from only being able to remove 60% of the total water content within the 

NIPAAm, some percentage of the water that is removed will be evaporated. While it is 

desirable to drain and reclaim all of the regenerated water as a liquid, it is inevitable that 

some of the water will evaporate during the draining process. The figure below is from a 

study on the performance of a NIPAAm IPN gel, and it shows the ratio of water collected 

in liquid form during regeneration to the total water content before regeneration. 
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Fig. 2.2.3.5: Ratio of liquid water collected during regeneration to total water absorbed 

by the NIPAAm [7] 

 

 

The figure above shows that approximately 20% of the total water content is reclaimed as 

liquid water during regeneration. When considering that only 60% of the water content is 

removed during regeneration, this means that 20% of the water content after 

dehumidification is reclaimed as liquid water, 40% is evaporated during regeneration, and 

40% stays absorbed within the NIPAAm. The model was written to reflect these 

characteristics; however, it should be noted that the 2:1 mass ratio of evaporated water to 

reclaimed liquid water that was seen during regeneration was for regeneration at 50 °C [7]; 

thus, at lower regeneration temperatures, that ratio should decrease.  

The electrical power required to regenerate the NIPAAm wheel can be used in Eq. 

2.15 to find the COP for the NIPAAm system. It is assumed that the liquid water expelled 

from the wheel is simply drained, much like the water that is condensed on the evaporator 

coils in the vapor compression only case. Because the evaporation fraction and the 

temperatures TNIPAAm,i and TNIPAAm,f in Eq. 2.20 are not obvious for the general system 

configuration that was modeled, the model was created such that the user can vary these 
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values in the graphical interface and observe the resulting regeneration energy and COP. 

Based on Fig. 2.2.3.4 above, it appears that the regeneration process begins around 25 °C, 

so for the cases described in Chapter 3, the value of TNIPAAm,f was set to 25 °C. 

 

2.2.4 Desiccant Dehumidification and Evaporative Cooling 

In the first three configurations, a vapor compression air conditioner was 

implemented for the cooling portion of the cycle. In the following two configurations, the 

vapor compression air conditioner is replaced with an evaporative cooler, which is 

commonly used in desiccant air conditioning systems. The fourth configuration is a 

“desiccant dehumidification and evaporative cooling” system, which, as shown in the 

figure below, has the same components as the desiccant dehumidification and vapor 

compression cooling configuration, except for the cooling unit. 

 

Fig. 2.2.4.1: Desiccant dehumidification and evaporative cooling schematic 
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To achieve the desired outlet supply air conditions, the supply air is dehumidified past the 

desired outlet humidity, thus over-heating and over-drying the air. The supply air is then 

pre-cooled at the heat exchanger, after which the evaporative cooler increases the humidity 

and further cools the air to the desired outlet humidity ratio and temperature. The general 

process of the supply air for this case is shown on the psychrometric chart in the figure 

below. 

 

Fig. 2.2.4.2: Psychrometric chart for supply air in a desiccant dehumidification and 

evaporative cooling system 

 

 

The desiccant dehumidifier and evaporative cooler configuration is representative of a 

traditional desiccant air conditioning system. In this configuration, water is consumed at 
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the evaporative cooler, and the water that is absorbed by the desiccant wheel is eventually 

exhausted to the outside as vapor during regeneration. Thus, this type of system has a net 

consumption of water. 

 

2.2.5 NIPAAm Dehumidification and Evaporative Cooling 

The fifth and final configuration described in this report is the “NIPAAm 

dehumidification and evaporative cooling” configuration. As with the previous 

configuration, it has the same components as its vapor compression counterpart, with the 

exception of the cooling unit. The general process of the supply air for this configuration 

is the same as the previous one. The figure below shows the system schematic. 

 

 

Fig. 2.2.5.1: NIPAAm dehumidification and evaporative cooling schematic 

 

 

The vapor compression cooler uses electricity to implement a refrigeration cycle 

and produce cooling. The evaporative cooler in this system, however, uses the latent heat 
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of evaporation to produce cooling. Thus, when blowers and other smaller electrical 

components are neglected, the evaporative cooler produces cooling without consuming 

electricity. In the other NIPAAm-based configuration, which utilizes a vapor compression 

cooling system, the power required for regeneration was described in Eq. 2.20 and includes 

the electricity required to produce cooling. In this configuration, however, there is no 

electricity required for cooling, so the term drops to zero.  

Aside from the cooling unit, the only difference between this system and its vapor 

compression counterpart is the regeneration water. In the NIPAAm dehumidification and 

vapor compression configuration, it was assumed that the water expelled from the 

regenerating NIPAAm would be drained, due to a lack of obvious use. However, in this 

configuration, the evaporative cooler consumes liquid water, while the regenerating portion 

of the NIPAAm wheel expels liquid water. Thus, the blue line in Fig. 2.8 represents the 

expelled liquid water being sent to the evaporative cooler. Aside from the lower heat of 

regeneration, this reclamation of water during regeneration could serve as another benefit 

of using NIPAAm instead of a traditional desiccant.  

 

2.3 Sub-system and Component Models 

Most of the components were modeled in individual Python scripts as functions, 

with top level scripts organizing the variables and passing information from one component 

function to the next. Some components with simpler processes were modeled in the top 

level scripts, as a separate function was not needed. The vapor compression sub-system 
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consists of a script for the evaporator coils, the condenser coils, and several top level scripts 

to pass information.  

Regarding the dehumidifier model, the rate of moisture removed from the air is 

equivalent to the rate of absorption by the dehumidifying wheel. While the maximum 

capacity of moisture absorption is determined by the absorbent and the inlet air properties, 

the dynamic rate of absorption is dependent on the material, air temperature and relative 

humidity, instantaneous concentration of water within the absorbent, system geometry, as 

well as various flow characteristics [8]. Because the models described in this paper are 

intended for system-level analysis and do not incorporate detailed information about the 

components, some of these parameters are not known, thus making it difficult to accurately 

model a dynamic dehumidification response from the dehumidifying wheel. Because of 

this, and because the air stream properties were already chosen to be modeled as steady, it 

was decided that the components would be modeled for steady state performance. This 

means that the dehumidifying wheel model uses an energy balance to determine the outlet 

temperature for the required humidity drop, while the models for the vapor compression 

air conditioner determine the required refrigerant state points, and thus input power, to 

achieve the required outlet temperature.  

 

2.3.1 Vapor Compression Evaporator  

To model for the vapor compression evaporator requires several inputs: the 

temperature and humidity of the air just before it passes over the evaporator and the desired 

temperature and humidity of the air after it is cooled by the evaporator. The inlet air 
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temperature and humidity are known, and the desired outlet temperature is known, so the 

AC script determines if the desired outlet temperature is lower than the saturation 

temperature for the given inlet air temperature and humidity. If the desired outlet 

temperature is not lower than the saturation temperature, then no condensation occurs, and 

the outlet humidity is the same as the inlet humidity. If the desired outlet temperature is 

lower than saturation, then the outlet humidity is the saturation humidity ratio for the outlet 

temperature. This is illustrated in the graphic below. 

 

 

Fig. 2.3.1.1: Determining the outlet humidity ratio. Illustrated on the left is the case when 

the desired outlet temperature is higher than the saturation temperature, and the humidity 

ratio is constant. On the right is the process if the desired outlet temperature is lower than 

saturation, at which point the process follows the saturation curve and the outlet air is 

saturated at the desired outlet temperature. 

 

 

For all of the cases that were modeled in this report, some dehumidification took place, 

meaning all of the processes took the general form of the process shown on the right in the 

figure above. The evaporator is modeled as a heat exchanger. The purpose of the evaporator 

model is to determine the evaporator temperature that will bring the inlet air to the desired 

outlet temperature. 
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First, the script determines the rate of heat transfer necessary to achieve the desired 

outlet conditions. When no dehumidification occurs, the necessary rate of heat transfer is 

described in the equation below, where TVC,i is the temperature of the air before it is cooled 

(i.e.: the supply inlet air for the vapor compression only case, or the air leaving the heat 

exchanger for the dehumidification and vapor compression cooling cases), and TVC,o is the 

temperature of the air after it is cooled (i.e.: the supply outlet temperature, also denoted as 

Ts,o). 

 �̇�𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥 ∗ 𝑐𝑝,𝑣)(𝑇𝑉𝐶,𝑖 − 𝑇𝑉𝐶,𝑜) (2.22) 

When dehumidification occurs across the evaporator coils, the required heat transfer rate 

becomes the following, where the first term is the heat transfer required to bring the air to 

saturation, the second term is sensible heat transfer that occurs during dehumidification 

(i.e.: the cooling that causes the air temperature to drop along the saturation curve), and the 

third term is the latent portion of the heat transfer that occurs during dehumidification (i.e.: 

the cooling that causes the moisture to condense), where Tsat is the saturation temperature 

for the inlet humidity ratio. 

 �̇�𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 = �̇�𝑒,1 + �̇�𝑒,2 + �̇�𝑒,3 (2.23) 

 �̇�𝑒,1 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑉𝐶,𝑖 ∗ 𝑐𝑝,𝑣)(𝑇𝑉𝐶,𝑖 − 𝑇𝑠𝑎𝑡) (2.24) 

 
�̇�𝑒,2 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦 (𝑐𝑝,𝑎 +

𝑥𝑉𝐶,𝑖 + 𝑥𝑉𝐶,𝑜

2
∗ 𝑐𝑝,𝑣) (𝑇𝑠𝑎𝑡 − 𝑇𝑉𝐶,𝑜) 

(2.25) 

 �̇�𝑒,3 = �̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑥𝑉𝐶,𝑖 − 𝑥𝑉𝐶,𝑜)ℎ𝑓𝑔 (2.26) 

Of the terms above, �̇�𝑒,1 is the rate of heat transfer that occurs across the dry portion of the 

heat exchanger (before condensation occurs), while �̇�𝑒,2 + �̇�𝑒,3 is the rate of heat transfer 
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that results across the portion where condensation occurs. The equations above must be 

satisfied for the air to reach the desired outlet properties, while the equations below 

describe the actual heat exchanger performance for some evaporator temperature, 

Tref,evaporator. 

 𝑈𝐴𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 = 𝑈𝐴𝑑𝑟𝑦 + 𝑈𝐴𝑤𝑒𝑡  

 
�̇�𝑒,1 = 𝑈𝐴𝑑𝑟𝑦

𝑇𝑉𝐶,𝑖 − 𝑇𝑠𝑎𝑡

ln (
𝑇𝑉𝐶,𝑖 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟

𝑇𝑠𝑎𝑡 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟
)

 
(2.27) 

 
�̇�𝑒,2 +  �̇�𝑒,3 = 𝑈𝐴𝑤𝑒𝑡

𝑇𝑠𝑎𝑡 − 𝑇𝑉𝐶,𝑜

ln (
𝑇𝑠𝑎𝑡 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟

𝑇𝑉𝐶,𝑜 − 𝑇𝑟𝑒𝑓,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟
)

 
(2.28) 

The model uses an iterative scheme to find the evaporator temperature that satisfies the two 

sets of equations for rate of heat transfer across the evaporator.  

It is assumed that the thermal conductivity of the evaporator coils is high, such that 

the temperature of the refrigerant is the same as the temperature at the exterior of the coils. 

Thus, the temperature of the refrigerant flowing through the evaporator is now known. It 

is also assumed that the vapor compression system regulates the mass flow rate of the 

refrigerant such that the refrigerant leaving the evaporator is saturated vapor, meaning the 

quality at this point is known. From the known temperature and quality, the specific 

enthalpy and specific entropy of the refrigerant leaving the evaporator is known. 

Additionally, since the refrigerant undergoes phase change in the evaporator, the pressure 

is the saturation pressure at the known evaporator temperature.  
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2.3.2 Vapor Compression Condenser and Expansion Valve 

The vapor compression condenser was modeled as a heat exchanger, much like the 

evaporator. The evaporator model was implemented to determine the required evaporator 

temperature, as well as the resulting refrigerant pressure and the enthalpy of the refrigerant 

as it leaves the evaporator. Similarly, the condenser model was implemented to find the 

condenser temperature required to complete the cycle, based on the outside air temperature. 

Because the refrigerant in the evaporator is undergoing phase change, the evaporator 

effectiveness is maximized for the given heat transfer coefficient and heat capacity rate of 

the incoming air. The equation for heat exchanger effectiveness, ε, under this condition is 

given in the equation below, where UAcond is the heat transfer coefficient for the condenser. 

 
𝜀 = 1 − exp (−

𝑈𝐴𝑐𝑜𝑛𝑑

�̇�𝑎𝑖𝑟,𝑐𝑜𝑛𝑑 ∗ (𝑐𝑝,𝑎 + 𝑥𝑜𝑢𝑡𝑠𝑖𝑑𝑒𝑐𝑝,𝑣)
) 

(2.29) 

It is assumed that the refrigerant leaving the condenser must be saturated liquid, so the 

condenser temperature must be high enough such that the heat exchanger facilitates the 

necessary amount of heat transfer to bring the refrigerant to saturated liquid at the 

condenser exit. An iterative solver was implemented to find the temperature that satisfies 

several conditions. First, the rate of heat transfer at the heat exchanger must equal the rate 

of heat transfer required to bring the refrigerant from the specific enthalpy as it enters the 

condenser, href,3, to the specific enthalpy as it leaves the condenser, href,4. 

 𝜀 ∗ �̇�𝑎𝑖𝑟,𝑐𝑜𝑛𝑑 ∗ 𝑐𝑝(𝑇𝑟𝑒𝑓,𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 − 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒) = �̇�𝑟𝑒𝑓(ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,4) (2.30) 

The specific enthalpy of the refrigerant as it enters the condenser must also satisfy the 

following equation describing the compressor with some isentropic efficiency, where 
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href,3,isen is the refrigerant specific enthalpy at the same pressure as href,3, but with the same 

entropy as href,2. 

 
𝜂𝑖𝑠𝑒𝑛 =

ℎ𝑟𝑒𝑓,3,𝑖𝑠𝑒𝑛 − ℎ𝑟𝑒𝑓,2

ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,2
 

(2.31) 

Additionally, the pressure is assumed to be constant throughout the condenser. The specific 

enthalpy of the refrigerant leaving the condenser can then be found from the pressure of 

the refrigerant entering the condenser and a quality of zero. Because the expansion valve 

is assumed to be isenthalpic, the specific enthalpy of the refrigerant leaving the condenser 

must also be the specific enthalpy of the refrigerant as it enters the evaporator. Now that 

the specific enthalpies of the refrigerant at the beginning and end of the evaporator are 

known, and the required rate of heat transfer at the evaporator is known as well, the mass 

flow rate of the refrigerant through the system can be found, as described in the equation 

below.  

 
�̇�𝑟𝑒𝑓 =

�̇�𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟

ℎ𝑟𝑒𝑓,1 − ℎ𝑟𝑒𝑓,2
 

(2.32) 

The iterative scheme starts with a temperature just above the outside ambient and evaluates 

the specific enthalpy of the refrigerant as it enters the condenser, using Eq. 2.31. It then 

computes the rest of the values and finds the error produced by Eq. 2.30. The iterations 

continue until the error is sufficiently small, at which point the resulting condenser values 

are found. At this point, all of the state in the vapor compression cycle are defined, and all 

information regarding the refrigerant is known.  
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2.3.3  Air Conditioning Compressor 

The models for the evaporator and condenser are used to find the specific enthalpy 

of the refrigerant leaving the evaporator and the specific enthalpy of the refrigerant entering 

the condenser. These values are used to find the power used by the compressor the raise 

the refrigerant pressure and temperature, as described previously in Eq. 2.8.  

 

2.3.4 Dehumidifier 

It is assumed that the dehumidifying wheel operates at steady state. Desiccant 

dehumidification is close to an isenthalpic procedure [4], meaning all latent heat is 

converted to sensible heat, and the enthalpy of the moist air before dehumidification is 

equal to the enthalpy of the drier, hot air after the process. While simple models account 

only for the latent heat [4], there is some binding energy that must also be released as heat 

during sorption [6]. However, this binding energy is often small compared to the latent heat 

(less than 25% of the total heat released for a certain example of desiccation [6]). To 

maintain the simplicity of the model, and because the heat of adsorption for NIPAAm must 

be found experimentally, the dehumidification process is modeled as isenthalpic, and only 

the latent heat is considered. Additionally, it is assumed that all of the heat produced during 

dehumidification is transferred to the air, and the sorbent material is assumed to stay at a 

constant temperature. In reality, some of the heat will be transferred to the sorbent, and the 

temperature of the sorbent will change with time. The amount of heat that is transferred to 

the sorbent is based on the air properties, geometric properties, specific heat of the sorbent, 

and the instantaneous adsorption uptake of the sorbent [9]. As with the dynamic rate of 
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sorption, the dynamic temperature change of the sorbent material is not considered in this 

model, as many of the necessary parameters are not known. For traditional desiccants, the 

temperature of the desiccant material could nominally affect the dehumidification 

performance; however, for NIPAAm, the temperature of the NIPAAm could greatly affect 

performance. If the NIPAAm temperature reaches the LCST during dehumidification, the 

NIPAAm will stop dehumidifying the air, as it will have transitioned from hydrophilic to 

hydrophobic. Thus, the dehumidification model assumes that the NIPAAm temperature 

does not exceed the LCST during operation. In Chapter 3, a discussion is presented on 

potential alternate configurations for the case where it is found that the NIPAAm 

temperature reaches the LCST before the conditioning process is complete.  

The dehumidifier model is given an input for the known inlet air temperature and 

humidity ratio, as well as the desired outlet humidity ratio, and it uses an iterative solver to 

find the outlet temperature that satisfies the following equation describing the isenthalpic 

process, where the specific enthalpies are found through CoolProp with temperature as an 

input. 

 ℎ𝑎,𝑖 + 𝑥𝑖ℎ𝑣,𝑖 = ℎ𝑎,𝑜 + 𝑥𝑜ℎ𝑣,𝑜 (2.33) 

 

2.3.5 Heat Exchanger 

The heat exchanger downstream of the dehumidifier was modeled to determine the 

temperature drop of the supply air and the temperature rise of the process air. The model 

for this heat exchanger was written to assume a constant effectiveness of 0.99, as the 

effectiveness approaches unity when the heat exchanger becomes sufficiently large, and 
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certain desiccant air conditioning cycles were described in literature with heat exchanger 

effectiveness values close to unity [4]. The heat exchanger model uses the following 

equation to find the rate of heat transfer between the supply and process air streams, where 

Cmin is the lesser of the two heat capacity rates, as determined in the script, Ts,HX,i is the 

supply air temperature as it enters the heat exchanger, and Tp,HX,i is the process air 

temperature as it enters the heat exchanger. 

 �̇�𝐻𝑋 = 𝜀 ∗ 𝐶𝑚𝑖𝑛(𝑇𝑠,𝐻𝑋,𝑖 − 𝑇𝑝,𝐻𝑋,𝑖) (2.34) 

After the rate of heat transfer is calculated, the script calculates the supply and process air 

outlet temperatures as shown in the equations below, where Ts,HX,o is the supply air 

temperature as it leaves the heat exchanger, and Tp,HX,o is the process air temperature as it 

leaves the heat exchanger. 

 
𝑇𝑠,𝐻𝑋,𝑜 = 𝑇𝑠,𝐻𝑋,𝑖 −

�̇�𝐻𝑋

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑖𝑐𝑝,𝑣)
 

(2.35) 

 
𝑇𝑝,𝐻𝑋,𝑜 = 𝑇𝑝,𝐻𝑋,𝑖 +

�̇�𝐻𝑋

�̇�𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑐𝑝,𝑎 + 𝑥𝑝,𝑖𝑐𝑝,𝑣)
 

(2.36) 

 

2.3.6 Regeneration 

As previously mentioned, the regeneration temperature of the desiccant wheel is 

not directly obvious and varies on a case-to-case basis. Thus, the model for the heat of 

regeneration was implemented such that it requires the regeneration temperature as an 

input. This allows the user to input the regeneration temperature for a known scenario, or 

it allows the user to vary the regeneration temperature when it is unknown, such that the 
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performance of the desiccant systems can be determined for a range of possible 

regeneration temperatures.  

Regeneration of the NIPAAm dehumidifier requires three inputs: the NIPAAm stop 

temperature, the percent evaporation, and the NIPAAm start temperature, as seen in Eq. 

2.17 through 2.19. The NIPAAm stop temperature is known to be 25 °C, as this is the 

temperature of NIPAAm before which dehumidification will occur. The NIPAAm start 

temperature (or the temperature as it enters the dehumidification section of the wheel) and 

the percent evaporation are less obvious. The model user was given the ability to vary these 

parameters, such that the system performance could be observed for various values.   

 

2.3.7 Evaporative Cooler 

Like the dehumidification process, the evaporative cooling was modeled as an 

isenthalpic process, which means the enthalpy of the air leaving the heat exchanger should 

equal the enthalpy of the air leaving the cooler. Thus, the script performs an iterative 

process to determine the conditions under which this is satisfied. The process of the supply 

air before it enters the evaporative cooler is as follows: the supply air enters the 

dehumidifier, and when it leaves the temperature is higher and the humidity ratio is lower; 

the air is then pre-cooled by the heat exchanger and the temperature, and thus enthalpy, 

drops. The only parameter that can be varied in this process is the humidity ratio of the air 

leaving the dehumidifier; thus, during the iterative process, the humidity ratio drop across 

the dehumidifier is varied until the value is found that results in the required enthalpy to 

satisfy the desired outlet conditions. This iterative process is illustrated in the figure below. 
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Fig. 2.3.7.1: Psychrometric charts of the supply air process, with a process that could not 

meet the desired output (left) and a process that could (right). The points in green are the 

inlet states, and the points in blue are the desired outlet states. 

 

2.4 Conditioned Space Transient Models 

When first constructing the model, it was unclear if the dynamic performance of 

the system components could be evaluated, such as a dynamic rate of absorption at the 

dehumidifier wheel. It was eventually determined that, for the purpose of highlighting the 

potential of a general NIPAAm system, it did not make sense to create a complicated 

numerical model based on a specific system design. Thus, simple steady state models were 

implemented. However, before it was decided that steady operation would be modeled, a 

transient model for the temperature and humidity of the air within the house was created. 

The transient model for the house air is still used within the graphical interface, but 

currently it is entirely cosmetic. It shows how the average temperature and humidity within 

the space drop over time, as well as the time it takes the air within the house to reach the 

desired cool temperature, but this has no bearing on the steady state performance of the 

systems. Thus, the transient model serves no current purpose and has no effect on the 

results presented in the following chapter. To keep the methods section succinct, an 
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explanation of the transient model is not presented in this chapter. However, a lengthy 

explanation of the transient model is presented in Appendix A, along with a discussion of 

the graphical interface setup and all of the python scripts used.   

 

2.5 Graphical User Interface 

 As previously mentioned, a graphical user interface was created to allow a user to 

select which system configurations to model, input the required temperature and humidity 

values, and observe the results for the various system configurations.  A detailed 

explanation of the graphical user interface is provided in Appendix A, along with an 

explanation of all of the Python scripts used to model the system and create the graphical 

interface. The appendices after Appendix A contain the code used to create the Python 

scripts.  

 

2.6 Selection of Various Values 

Many of the values used in the system models were defined as constants, such as 

absorption capacity of the sorbents, evaporator and condenser heat transfer coefficients, 

and the maximum desiccant regeneration temperature. The following sections describe 

how these values were selected for all of the models. 

 

2.6.1 Selection of NIPAAm Regeneration Temperature 

For most cases, the regeneration temperature of NIPAAm was defined as 305.15 K 

(32 °C); however, the model was run for once case with the regeneration temperature as 
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323.15 K (50 °C). This was done based on experiments in which the NIPAAm was 

regenerated at 50 °C (assumedly to ensure a sufficient regeneration time) [7]. The 

minimum temperature for the NIPAAm “Start” and “Stop” temperature sliders was set to 

20 °C, as it was assumed that the NIPAAm would not need to be cooled much further than 

that in order to sustain absorption for the entire dehumidification portion of the wheel. If 

necessary, however, these constants, as well as all others mentioned, can be easily changed.  

 

2.6.2 Selection of Other Values Regarding the Various Air Conditioning System 

Configurations 

The mass flow rate of supply air was selected to be 0.7 kg/s of dry air. This was 

calculated from a rule-of-thumb that states the average air flow provided for a certain 

amount of cooling is 400 cfm/ton [10], so with a cooling power of 3 tons, the volumetric 

flow rate was set as 1200 cfm, which corresponds to approximately 0.7 kg/s of air. The 

supply air flow consists of a mix of return air from the space and outside air. For the cases 

analyzed, the ratio of return air to outside air was varied. While the rule-of-thumb for the 

air flow rate over the evaporator was given as 400 cfm/ton, the flow rate used to cool the 

condenser was set as double the flow rate over the evaporator, as the condenser is larger, 

and the process needs a greater rate of heat transfer. Thus, the mass flow rate of outside air 

over the condenser coils was set to be 1.4 kg/s. 

Silica gel is the material that was chosen for the desiccant wheel that was modeled. 

From literature, it was found that silica gel has a moisture absorption capacity of 

approximately 0.38 kg of water per kg of silica gel [6]. The specific heat of silica gel was 
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reported to be in the range of 0.92 and 1.00 kJ/kg K [6], so a mean value of 0.96 kJ/kg K 

was chosen. This was also chosen as the specific heat of NIPAAm, as a value for the 

specific heat of the NIPAAm IPN was not found in literature; however, if a more accurate 

value is found, the specific heat can easily be changed within the Python scripts by 

changing the value of the variable “c_p_NIPAAm”.  

A rotational speed of 0.75 deg/s was selected for the desiccant and NIPAAm 

wheels. Based on literature, it was found that most desiccant wheels operate between 5 and 

10 revolutions per hour, in order to maximize performance [11]. Thus, a mean value of 7.5 

revolution per hour was selected, which is equivalent to 0.75 deg/s. To analyze a particular 

desiccant wheel with a known speed, the value of the variable “omega” can easily be 

changed within the Python scripts.   

 

2.6.3 Selection of Values for the Vapor Compression System 

The air pressure for both inside and outside of the house was selected as 101325 Pa 

(standard pressure). A value of 80% was chosen for the isentropic efficiency for the 

compressor of the vapor compression cycle. The only other values to be defined in this 

script were the evaporator and condenser heat transfer coefficients. Based on minimum air 

conditioning efficiency standards set by the DOE in 2015, a 3 ton air conditioner can have 

an energy efficiency ratio (EER) of no less than 11.7 for the southwest region [12], which 

corresponds to a COP of 3.43. The efficiency of an air conditioner is determined under 

standard indoor and outdoor conditions specified by ASHRAE, which state that the system 

is to be tested with an indoor dry bulb temperature of 80 °F and a wet bulb temperature of 
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67 °F, while the outdoor air must be at a dry bulb temperature of 95 °F and a wet bulb 

temperature of 75 °F [13]. Because it was difficult to find heat transfer coefficient values 

for an average air conditioning evaporator or condenser, the values were determined 

iteratively through the use of the model. The vapor compression model was run with the 

air properties described in the ASHRAE standard rating conditions, as well as an outlet 

temperature of 53 °F, and the heat transfer coefficients were varied until the COP of the air 

conditioning system reached the minimum allowable value of 3.43. Because the condenser 

is traditionally larger than the evaporator, it was decided that the heat transfer coefficient 

for the condenser would be double the value for the evaporator. Eventually, it was found 

that an evaporator heat transfer coefficient of 1810 W/K and a condenser heat transfer 

coefficient of 3620 W/K produced a COP of 3.43, and these were the values that were 

selected. While these values are somewhat arbitrary, they produce a realistic COP for the 

AC and in turn produce a relatively realistic model for the AC system. It should be noted 

that the COP of the vapor compression AC system is not the same as the COP previously 

mentioned; the COP of the vapor compression system is shown in the equation below and 

only depends on the specific enthalpy values of the refrigerant.  

 
𝐶𝑂𝑃𝐴𝐶 =

ℎ𝑟𝑒𝑓,2 − ℎ𝑟𝑒𝑓,1

ℎ𝑟𝑒𝑓,3 − ℎ𝑟𝑒𝑓,2
 

(2.40) 

The ASHRAE test conditions do not specify a required outlet temperature that the 

air conditioning system must achieve. The aforementioned outlet temperature of 53 °F was 

selected through the following procedure. One ton of refrigeration is equivalent to 3.5 kW, 

and the rule-of-thumb for selecting the flow rate of air over air conditioning evaporator 

coils is 400 cfm/ton [10]. The volumetric flow rate of 400 cfm/ton can be converted to a 
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mass flow rate, and the cooling of 3.5 kW must equal the product of mass flow rate, specific 

heat, and temperature drop. The mass flow rate and specific heat of humid air are known, 

resulting in a temperature drop of 27 °F. Thus, from the definition of a ton of refrigeration, 

the outlet air was determined to be 53 °F for an air conditioning system under the ASHRAE 

standard conditions that follows the 400 cfm/ton air flow rate guideline.  
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3 RESULTS AND DISCUSSION 

3.1 List of Cases Analyzed 

To analyze the performance of the NIPAAm dehumidification configurations, 

several cases were run for each of the five configurations, and the COP values of the 

different configurations were compared. For each case, the following values were defined: 

the properties of the air within the conditioned space (return air), system outlet air 

properties (the conditioned supply air), outside air properties, percent of the supply air flow 

that comes from return air, percent of the supply air flow that comes from outside air, 

percent of the process air flow that comes from return air, and percent of the process air 

flow that comes from outside air. Thus, each case represents a scenario of air, with certain 

properties, entering the overall system and being conditioned to a cooler, drier state. The 

models then determine the sub-processes and energy input required for each configuration 

to achieve the same overall process for a given case. Four cases were analyzed, and the 

description of each case can be found in Table 3.1 below. The outlet air properties are the 

properties of the air as it leaves the final component of the system (i.e.: as it leaves the 

evaporator coils for the vapor compression cooling configurations or as it leaves the 

evaporative cooler for the other two configurations). The supply air stream is comprised of 

a mix of return and outside air, so the supply stream percent return air and the supply stream 

percent outside air sums to 100% for all cases. The process air stream is also comprised of 

a mix of return and outside air, so the two percentages should sum to 100% for the process 

air as well. 

 



52 

 

 

Table 3.1.1: Description of cases analyzed 

 Case 1: 

Pennington 

Cycle 

Case 2: 

Recirculation 

Cycle 

Case 3: 

Hybrid Cycle 

Case 4: 

Supermarket 

Return air 

temperature 

 

22.50 °C 

 

27.00 °C 

 

22.00 °C 

 

10.00 °C 

 

Return air 

relative 

humidity 

 

76% 

 

52% 

 

50% 

 

92% 

 

Outlet air 

temperature 

 

13.27 °C 

 

9.74 °C 

 

11.00 °C 

 

3.90 °C 

 

Outlet air 

humidity 

ratio 

 

9.50 g/kg 

 

7.50 g/kg 

 

8.16 g/kg 

 

5.00 g/kg 

 

Outside air 

temperature 

 

35.00 °C 

 

27.00 °C 

 

25.00 °C 

 

25.00 °C 

 

Outside air 

relative 

humidity 

 

40% 

 

78% 

 

100% 

 

75% 

 

Supply 

stream  

return air % 

 

0 

 

100 

 

50 

 

64 

 

Supply 

stream 

outside air % 

 

100 

 

0 

 

50 

 

36 

 

Process 

stream  

return air % 

 

100 

 

0 

 

50 

 

36 

 

Process 

stream 

outside air % 

0 100 50 64 
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Following the analysis of the cases described in the previous table, the third case was 

revisited, and the NIPAAm configurations were analyzed for a regeneration temperature 

of 50 °C, instead of the LCST of 32 °C. This analysis was performed to see how much the 

performance would be affected if the NIPAAm was required to be regenerated at a 

temperature significantly greater than the LCST, as indicated in certain literature [7]. 

Additionally, a parametric study was performed to observe the effect of changing the 

NIPAAm dehumidification start temperature on the system performance.  

 

3.2 Case 1: The Pennington Cycle 

A very common air conditioning cycle associated with desiccant air conditioning 

is the Pennington cycle, as it was the first cycle introduced for rotary desiccant air 

conditioning [4]; a generalized version of the Pennington cycle was the first case that was 

modeled. In the Pennington cycle, outside air is conditioned and provided to the building, 

while return air is used as the process air. This cycle is illustrated in the figure below. 
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Fig. 3.2.1: Pennington cycle schematic (top) and psychrometric process (bottom) [4] 

 

 

The figure above, taken from literature, uses an evaporative cooler at the beginning of the 

process air stream, while the systems modeled in this report did not incorporate an 

evaporative cooler at this point in the cycle. Other than that, the overall process of the 

Pennington cycle was modeled using the conditions listed in Table 3.1 under Case 1. For 

this case, the supply air consisted entirely of outside air, and the process air consisted 

entirely of return air. Based on Fig. 3.1 above, the regeneration temperature for the 

desiccant was set to 75 °C. The NIPAAm configurations were modeled for evaporation 

percentages of 0%, 17%, 33%, 50%, 67%, 83%, and 100%. As previously mentioned, the 

NIPAAm temperature must remain sufficiently below the LCST during the 

dehumidification section to allow for continuous absorption. Based on Fig. 2.2.3.4, the 

NIPAAm was set to have a temperature of 25 °C at the end of dehumidification. The 
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temperature of the NIPAAm at the beginning of dehumidification that results in the 

temperature at the end of dehumidification being 25 °C is unknown, and it was set 

somewhat arbitrarily to 20 °C. The results from this case are presented in the tables below; 

Table 3.2 contains the values for the vapor compression only, desiccant dehumidification 

and vapor compression cooling, and desiccant dehumidification and evaporative cooling 

configurations, Table 3.3 contains the values for NIPAAm dehumidification and vapor 

compression cooling, and Table 3.4 contains the values for NIPAAm dehumidification and 

evaporative cooling. 

 

Table 3.2.1: Case 1 results for vapor compression and desiccant systems 

 

Vapor Compression 

Only 

Desiccant 

+ 

Vapor Compression 

Cooling 

Desiccant 

+ 

Evaporative Cooling 

Vapor 

compression 

compressor 

power 

 

7.23 kW 

 

0.99 kW 

 

0.00 kW 

 

Rate of 

regeneration 

energy 

 

0.00 kW 

 

20.99 kW 

 

14.21 kW 

 

Total 

electrical 

power 

required 

 

7.23 kW 

 

21.98 kW 

 

14.21 kW 

 

COP 1.78 0.58 0.9 
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 Table 3.2.2: Case 1 results for NIPAAm dehumidification and vapor compression 

cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Vapor 

compression 

compressor 

power 

 

0.99 

kW 

  

0.99 

kW 

 

0.99 

kW 

 

0.99 

kW 

 

0.99 

kW 

 

0.99 

kW 

 

0.99 

kW 

 

Rate of 

regeneration 

energy 

 

0.45 

kW 

 

1.74 

kW 

 

2.97 

kW 

 

4.27 

kW 

 

5.56 

kW 

 

6.79 

kW 

 

8.08 

kW 

 

Total 

electrical 

power 

required 

 

1.44 

kW 

 

2.73 

kW 

 

3.96 

kW 

 

5.26 

kW 

 

6.55 

kW 

 

7.78 

kW 

 

9.07 

kW 

 

COP 8.97 4.70 3.25 2.45 1.96 1.65 1.42 

 

 

Table 3.2.3: Case 1 results for NIPAAm dehumidification and evaporative cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Rate of 

regeneration 

energy 

 

0.70 

kW 

 

3.11 

kW 

 

5.38 

kW 

 

7.79 

kW 

 

10.20 

kW 

 

12.47 

kW 

 

14.88 

kW 

 

COP 18.39 4.13 2.39 1.65 1.26 1.03 0.86 

 

 

The latent load, or amount of cooling required to produce the desired dehumidification, for 

this case is relatively high compared to the sensible load, or amount of cooling required to 
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drop the air to the desired temperature. This is because the rate of ventilation in this cycle 

is very high; all of the supply air comes from fresh ambient air. Because of this, the vapor 

compression only COP in the table above is not very high. As seen in the results, the 

desiccant dehumidification is more efficient when in line with the evaporative cooler than 

the vapor compression system; this is because the evaporative cooling configuration 

required a lower intermediate supply air humidity, which corresponds to a higher 

intermediate supply air temperature. This higher supply air temperature heats up the 

process air more at the heat exchanger, which greatly improves efficiency. Thus, the 

desiccant dehumidifier would only make sense to be place in line with the vapor 

compression cooler if the desiccant were regenerated with a cheaper heat source than 

electricity.  

 From the results above, it can be seen that the NIPAAm systems performed quite 

well at low percent evaporation values. At 0% evaporation, the NIPAAm dehumidifier in 

line with the evaporative cooler performs best, as it requires no vapor compression work. 

However, by 17% evaporation, the NIPAAm dehumidifier and vapor compression cooling 

configuration becomes the most efficient. This is because the evaporative cooling 

configuration requires much more dehumidification, which increases the water content of 

the NIPAAm, as well as the required mass of NIPAAm, both of which increase the thermal 

mass and regeneration heat. Before 50% evaporation, both of the NIPAAm systems are 

more efficient than the other three systems. The NIPAAm dehumidification and vapor 

compression cooling system remains the most efficient past evaporation values greater than 

67%. The NIPAAm dehumidification and evaporative cooling system is more efficient 
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than the desiccant equivalent until the evaporation percent approaches 100%. It should be 

noted, however, that it is yet unknown if the NIPAAm can sustain the high temperature 

dehumidification associated with the evaporative cooling configuration. There is potential 

for both NIPAAm configurations to perform better than the traditional configurations, but 

the NIPAAm dehumidification seems to be most promising when used in conjunction with 

a vapor compression cooling system. It should also be noted that the NIPAAm 

dehumidification would become most promising, even at 100% evaporation during 

regeneration, if waste heat were used during regeneration, instead of the assumed electric 

heating.  

 The following plots provide a helpful visualization of the results from this case. 

The first plot, shown in Fig. 3.2.1 below, shows the COP of the vapor compression cooling 

configurations, as plotted for various percent evaporation values.  

 

Fig. 3.2.1: Case 1 COP results for the vapor compression cooling configurations 
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The plot shown in Fig. 3.2.2 below shows the COP of the two evaporative cooling 

configurations for the first case. 

 

Fig. 3.2.2: Case 1 COP results for the evaporative cooling configurations 

 

 

From the plots above, it can be seen that the percent evaporation significantly affects the 

COP of the NIPAAm configurations. For low percent evaporation, the NIPAAm systems 

are by far the most efficient.  

 

3.3 The Recirculation Cycle 

Another common cooling cycle is the recirculation cycle. While the Pennington 

cycle represents an extreme case in ventilation, where all of the supply air is comprised of 

outside air, the recirculation cycle trades ventilation for efficiency. In this cycle, all of the 

supply air is return air from the building, and the process air consists entirely of outside air 

[4]. Thus, in the many locations where the ambient air outside is more humid than the 

inside air, this cycle requires a less intensive process than the Pennington cycle, and is thus 
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more efficient. It is only applicable, however, in buildings with low ventilation 

requirements. The figure below describes this cycle. 

 

 

Fig. 3.3.1: Recirculation cycle schematic (top) and psychrometric process (bottom) [4] 

 

 

A scenario representative of the recirculation cycle was modeled and is described under 

Case 2 in Table 3.1. Based on Fig. 3.3.1, the desiccant regeneration temperature was set 

to 80 °C, while the NIPAAm temperature and the beginning and end of dehumidification 

were kept at 20 °C and 25 °C, respectively. The models for each configuration were run 

with the prescribed conditions, and the results are described in the tables below. 
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Table 3.3.1: Case 2 results for vapor compression and desiccant systems 

 

Vapor Compression 

Only 

Desiccant 

+ 

Vapor Compression 

Cooling 

Desiccant 

+ 

Evaporative Cooling 

Vapor 

compression 

compressor 

power 

 

4.32 kW 

 

1.87 kW 

 

0.00 kW 

 

Rate of 

regeneration 

energy 

 

0.00 kW 

 

31.48 kW 

 

19.12 kW 

 

Total 

electrical 

power 

required 

 

4.32 kW 

 

33.35 kW 

 

19.12 kW 

 

COP 4.51 0.58 1.02 

 

 

Table 3.3.2: Case 2 results for NIPAAm dehumidification and vapor compression cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Vapor 

compression 

compressor 

power 

 

1.87 

kW 

 

1.87 

kW 

 

1.87 

kW 

 

1.87 

kW 

 

1.87 

kW 

 

1.87 

kW 

 

1.87 

kW 

 

Rate of 

regeneration 

energy 

 

0.31 

kW 

 

1.46 

kW 

 

2.55 

kW 

 

3.70 

kW 

 

4.86 

kW 

 

5.94 

kW 

 

7.09 

kW 

 

Total 

electrical 

power 

required 

2.18 

kW 

 

3.33 

kW 

 

4.42 

kW 

 

5.57 

kW 

 

6.73 

kW 

 

7.81 

kW 

 

8.96 

kW 
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COP 7.51 5.20 4.03 3.25 2.73 2.37 2.07 

Table 3.3.3: Case 2 results for NIPAAm dehumidification and evaporative cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Rate of 

regeneration 

energy 

 

0.72 

kW 

 

3.89 

kW 

 

6.89 

kW 

 

10.06 

kW 

 

13.24 

kW 

 

16.23 

kW 

 

19.41 

kW 

 

COP 27.12 5.00 2.83 1.93 1.47 1.20 1.00 

 

 

Because the latent load was lower in this case, the COP of the vapor compression only 

configuration increased significantly. For this scenario, the NIPAAm systems only 

outperform standalone vapor compression when the percent evaporation is below 33%. 

The performance of the NIPAAm systems relative to the desiccant systems, however, is 

very similar to what was seen in the previous case. Thus, it can be seen that the NIPAAm 

outperforms traditional desiccants in most scenarios, except for significantly high 

evaporation during regeneration. NIPAAm systems with higher evaporation percentages 

can outperform vapor compression only if the latent load is high; if the latent load is low, 

the NIPAAm performs better than traditional vapor compression only if the water oozed 

during regeneration does not evaporate at a significant rate. 

 The following plots summarize the results presented in the tables above. The first 

figure below illustrates the results of the vapor compression cooling configurations, while 

the second figure illustrates the results of the evaporative cooling configurations.  
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Fig. 3.3.1: Case 2 COP results for the vapor compression cooling configurations 

 

 

 

Fig. 3.3.2: Case 2 COP results for the evaporative cooling configurations 

 

 

The plots above illustrate the COP of the different systems for a lower latent load than in 

the first case. As expected, the COP of each NIPAAm configuration drops below the COP 

of the standard vapor compression at a significantly lower percent evaporation than the 
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previous case, which had a higher latent load. Thus, the NIPAAm configurations are more 

desirable in scenarios where the latent load is high.  

 

3.4 The Hybrid Cycle 

The third case was created as a hybrid of the two previous cases; it has substantial 

ventilation while still using some return air to maintain efficiency. The air properties in the 

third case represent a feasible scenario of operation in a humid location. This scenario, 

described as Case 3 in Table 3.1, models a supply air stream that is comprised of equal 

parts return and outside air. This allows for significant ventilation to the space while 

utilizing some return air to decrease the latent load. The outside air was set to 25 °C and 

20.09 g/kg absolute humidity, which is 77 °F, 100% relative humidity air, a condition that 

can frequently occur during summer months in humid locations. The inside air was set to 

22 °C and 8.16 g/kg absolute humidity, or 71.6 °F at approximately 50% relative humidity, 

which falls well within the guidelines for thermal comfort [1]. The cooling system is set to 

achieve a temperature of 11 °C, which has an absolute humidity of 8.16 g/kg at saturation. 

This provides a reasonably realistic scenario for a humid location, with significant 

ventilation, comfortable indoor conditions, and realistic conditions at the cooling system 

outlet. The process air humidity is in between the first and second case, so a regeneration 

temperature of 78 °C was selected for the desiccant. The NIPAAm start and stop 

temperatures were once again kept at 20 °C and 25°C, respectively. This case was run for 

all five configurations, and the results are summarized in the tables below.  
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Table 3.4.1: Case 3 results for vapor compression and desiccant systems 

 

Vapor Compression 

Only 

Desiccant 

+ 

Vapor Compression 

Cooling 

Desiccant 

+ 

Evaporative Cooling 

Vapor 

compression 

compressor 

power 

 

3.92 kW 

 

1.01 kW 

 

0.00 kW 

 

Rate of 

regeneration 

energy 

 

0.00 kW 

 

28.90 kW 

 

19.86 kW 

 

Total 

electrical 

power 

required 

 

3.92 kW 

 

29.91 kW 

 

19.86 kW 

 

COP 2.01 0.26 0.4 

 

 

Table 3.4.2: Case 3 results for NIPAAm dehumidification and vapor compression cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Vapor 

compression 

compressor 

power 

 

1.01 

kW 

 

1.01 

kW 

 

1.01 

kW 

 

1.01 

kW 

 

1.01 

kW 

 

1.01 

kW 

 

1.01 

kW 

 

Rate of 

regeneration 

energy 

 

0.32 

kW 

 

2.04 

kW 

 

3.66 

kW 

 

5.38 

kW 

 

7.10 

kW 

 

8.72 

kW 

 

10.44 

kW 

 

Total 

electrical 

power 

required 

 

1.33 

kW 

 

3.05 

kW 

 

4.67 

kW 

 

6.39 

kW 

 

8.11 

kW 

 

9.73 

kW 

 

11.45 

kW 

 

COP 5.89 2.57 1.68 1.23 0.97 0.81 0.69 
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Table 3.4.3: Case 3 results for NIPAAm dehumidification and evaporative cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Rate of 

regeneration 

energy 

 

0.53 

kW 

 

3.74 

kW 

 

6.75 

kW 

 

9.95 

kW 

 

13.16 

kW 

 

16.17 

kW 

 

19.37 

kW 

 

COP 14.71 2.10 1.16 0.79 0.6 0.49 0.41 

 

 

This case and the second case are more realistic for standard air conditioning operation 

than the first case, as the amount of ventilation seen in the first case is uncommon in many 

scenarios. This case differs significantly from the second case, however, as 50% of the 

supply air comes from outside air in this case, compared to 0% in the second case. 

Additionally, the return air is cooler and drier in this case, which better aligns with typical 

human comfort than the conditions presented in the second case. Despite these differences, 

the trends seen from the results of this case are very similar to the trends seen in the second 

case. The NIPAAm systems perform better than the other three when the evaporation is 

below 33%, The NIPAAm dehumidification and evaporative cooling configuration drops 

off more quickly than the NIPAAm in line with vapor compression, and the NIPAAm and 

evaporative cooling configuration approaches the COP of the desiccant and evaporative 

cooling configuration as the water evaporated during NIPAAm regeneration approaches 

100%. The plots in the figures below illustrate the results from the tables above.  
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Fig. 3.4.1: Case 3 COP results for the vapor compression cooling configurations 

 

 

 

Fig. 3.4.2: Case 3 COP results for the evaporative cooling configurations 
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3.5 Supermarket/Ice Rink Case Study 

While the previously examined cases give insight on the performance of the various 

air conditioning methods in certain scenarios, the following case is presented as one of the 

prime applications of desiccant dehumidification. The conditioning of air in supermarkets 

and ice rinks has been identified as one of the most promising applications of desiccant 

dehumidification, due to the low temperatures encountered in these scenarios. For these 

types of buildings, the air is required to be very cold and dry, which means that, in a 

standard air conditioning system that consists only of vapor compression components, the 

evaporator coils will reach a temperature below 0 °C, and the water condensed on the coils 

will freeze, which significantly reduces efficiency and performance [2]. Thus, in 

applications where the supply air must be dehumidified to a dew point close to 0 °C, a 

standard vapor compression cycle will not suffice. Additionally, desiccant 

dehumidification combined with evaporative cooling will not suffice in many of these 

scenarios either, because the air cannot get dry enough to complete the desiccant air 

conditioning cycle. Thus, the main method of conditioning that works for this scenario is 

dehumidification followed by vapor compression cooling. For this reason, only the 

desiccant dehumidification and vapor compression cooling and NIPAAm dehumidification 

and vapor compression cooling configurations were considered for this case. The proper 

ventilation rate for a supermarket was found based on ASHRAE codes [14], and the return 

air temperature for an ice rink and certain parts of a supermarket was found to be 

approximately 10 °C [15], [16]. The desired supply air humidity was found to be 

approximately 5 g/kg for the supermarket, which corresponds with a dew point of 3.90 °C 
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for the supply air temperature. It should be noted that the supply air for this case is cooled 

to the dew point but not beyond, so no frost should build up on the evaporator coils. It was 

unclear what the regeneration temperature for an average desiccant wheel would be in this 

scenario, so the desiccant system was evaluated for three different regeneration 

temperatures: 60 °C, 70 °C, and 80 °C, while the NIPAAm temperatures were set to the 

same values as the previous cases. The results from this case are displayed in the tables 

below. 

 

Table 3.5.1: Case 4 results for desiccant dehumidification and vapor compression cooling 

Desiccant 

Regeneration 

Temperature 

60 °C  70 °C  80 °C 

Vapor 

compression 

compressor 

power 

 

1.92 kW 

 

1.92 kW 

 

1.92 kW 

 

Rate of 

regeneration 

energy 

 

23.48 kW 

 

30.68 kW 

 

37.89 kW 

 

Total 

electrical 

power 

required 

 

25.40 kW 

 

32.60 kW 

 

39.81 kW 

 

COP 0.31 0.24 0.2 
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Table 3.5.2: Case 4 results for NIPAAm dehumidification and vapor compression cooling 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

Vapor 

compression 

compressor 

power 

 

1.92 

kW 

 

1.92 

kW 

 

1.92 

kW 

 

1.92 

kW 

 

1.92 

kW 

 

1.92 

kW 

 

1.92 

kW 

 

Rate of 

regeneration 

energy 

 

0.31 

kW 

 

1.72 

kW 

 

3.04 

kW 

 

4.45 

kW 

 

5.86 

kW 

 

7.19 

kW 

 

8.59 

kW 

 

Total 

electrical 

power 

required 

 

2.23 

kW 

 

3.64 

kW 

 

4.96 

kW 

 

6.37 

kW 

 

7.78 

kW 

 

9.11 

kW 

 

10.51 

kW 

 

COP 3.52 2.16 1.58 1.23 1.01 0.86 0.75 

 

 

 Until this point in the analysis, the effect of changing the desiccant regeneration 

temperature had not been observed. Because a specific desiccant dehumidifier was not 

modeled, the previous regeneration temperatures were selected from literature [4]. 

However, the results in Table 3.5.1 show that even if a regeneration temperature of only 

60 °C is needed, which is somewhat of a lower bound for desiccant regeneration 

temperatures [4], the system efficiency is not greatly improved for the desiccant 

dehumidifier in line with vapor compression cooling.  

 Desiccant dehumidifiers are very useful in scenarios like the one described in the 

case above, as they prevent frost from building up on the vapor compression evaporator 

coils. However, the results above indicate that the NIPAAm dehumidifier could result in a 
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higher COP for any evaporation percent. The low temperature application seen in 

supermarkets and ice rinks is also good for NIPAAm, as there is much less risk of the 

NIPAAm exceeding the LCST during dehumidification. The plot in the figure below 

illustrates the results presented in the tables above. 

 

Fig. 3.5.1: Case 4 COP results for the vapor compression cooling configurations 

 

From the plot, it can be seen that, for this scenario, the NIPAAm performs better than the 

desiccant, even when the desiccant regeneration temperature is as low as 60 °C. There is 

significant potential for NIPAAm dehumidificaiton in low temperature applications, like 

those seen in supermarkets and ice rinks.  

 

3.6 Analyzing the NIPAAm Systems for a Higher Regeneration Temperature 

While the LCST of NIPAAm is 32 °C, and the gel even begins to give off water at 

temperatures somewhat lower than 32 °C, regeneration tests on the material described in 

literature were conducted at 50 °C [7]. While it is currently unclear if this higher 
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temperature is necessary for regeneration or if it was done to decrease the time of the 

regeneration process, the NIPAAm configurations were modeled again with the conditions 

described in the third case (the hybrid cycle), this time with a regeneration temperature of 

50 °C. For this scenario, the NIPAAm would rotate into the dehumidification section of 

the wheel with a temperature of 20 °C, dehumidify the air, leave the dehumidification 

section with a temperature of 25 °C (as was modeled in the third case), but then the 

NIPAAm would need to be heated to 50 °C instead of 32 °C in the regeneration section of 

the wheel. The results for the NIPAAm dehumidification and vapor compression cooling 

and NIPAAm dehumidification and evaporative cooling configurations with the new 

regeneration temperature are shown in the tables below. 

 

Table 3.6.1: Case 3 results for NIPAAm dehumidification and vapor compression cooling 

with a regeneration temperature of 50 °C 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

 

COP 

 

3.69 2.04 1.44 1.09 0.88 0.75 0.64 

 

 

Table 3.6.2: Case 3 results for NIPAAm dehumidification and evaporative cooling with a 

regeneration temperature of 50 °C 

Percent 

Evaporation 
0%  17% 33%  50%  67%  83% 100%  

 

COP 

 

4.12 1.54 0.97 0.69 0.54 0.45 0.38 
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When comparing these numbers to the numbers in Section 3.4, it can be seen that an 

increase in the regeneration temperature has the most effect at low percent evaporation 

values. For example, the COP for NIPAAm dehumidification and vapor compression 

cooling at 0% evaporation falls from 5.89 to 3.69. However, as the percent evaporation 

goes up, the sensible heating of the NIPAAm is a smaller portion of the total energy needed 

in regeneration, so the higher regeneration temperature has less of an effect. At 100% 

evaporation, the COP only falls from 0.69 to 0.64. The from Table 3.6.1 above, regarding 

the vapor compression cooling configurations, are illustrated in the following figure. 

 

Fig. 3.6.1: Case 3 COP results for the vapor compression cooling configurations, with an 

added curve for NIPAAm regeneration at 50 °C 

 

 

The solid lines in the figure above are the same as in Fig. 3.4.1, while the dashed line is the 

NIPAAm dehumidification and vapor compression cooling COP for the 50 °C regeneration 

temperature.  
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It can also be seen that the increased regeneration temperature has a greater effect 

on the evaporative cooling configuration; this can be explained by the fact that the 

evaporative cooling configuration requires more dehumidification; thus, more water is 

absorbed. Because more water is absorbed in the evaporative cooling configuration, the 

thermal mass is greater than in the vapor compression cooling configuration, and a change 

in regeneration temperature has a much greater effect on the system with greater thermal 

mass. While the total power required for the NIPAAm dehumidification and vapor 

compression cooling configuration is split between the air conditioning compressor and the 

heating and cooling required to regenerate the NIPAAm, all of the power in the evaporative 

cooling configuration is used to either heat or cool the NIPAAm. Thus, a change in the 

temperature to which the NIPAAm must be heated has a greater effect on the evaporative 

cooling configuration.  

Something that should also be considered is that a higher regeneration temperature 

will also increase the amount of evaporation that takes place during regeneration. A 

NIPAAm wheel could have 33% evaporation when the regeneration temperature is 32 °C; 

however, it might have 67% evaporation when the regeneration temperature is increased 

to 50 °C. Thus, based on the NIPAAm dehumidification and vapor compression cooling 

numbers, the COP would fall from 1.68 to 0.88 when moving from 32 °C and 33% 

evaporation to 50 °C and 67% evaporation. It is desirable to keep the regeneration 

temperature as low as possible, but the temperature must be high enough to cause the 

regeneration process to complete in the time that the NIPAAm rotates through the 

regeneration section of the wheel. 
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3.7 Analyzing the Effect Seen by Changing the NIPAAm Start Temperature 

As previously mentioned, it is known that the NIPAAm must remain below the 

LCST while it is in the dehumidification section of the wheel. To allow for proper 

dehumidification, a conservative value of 25 °C was chosen for the temperature of the 

NIPAAm as it leaves the dehumidification section of the wheel and enters the regeneration 

section. However, it is unclear at what temperature the NIPAAm must be when it enters 

the dehumidification section, such that it is heated only to 25 °C when it leaves the section. 

Thus, a value of 20 °C was chosen as the NIPAAm “start” temperature, or the temperature 

when it enters the dehumidification section. Because this value is somewhat arbitrary, the 

NIPAAm system performance was reevaluated, under the conditions described in the third 

case, with various start temperatures. For this analysis, the regeneration evaporation 

percent was kept at 67%, the NIPAAm “stop” temperature was once again set to 25 °C, 

and the regeneration temperature was set back to 32 °C. The NIPAAm “start” temperature 

was varied between 0 °C and 25 °C. The case in which the NIPAAm is cooled to 0 °C is 

unrealistic, as any retained water would freeze, but it is presented to demonstrate a lower 

bound of the NIPAAm start temperature. A value of 25 °C represents the upper bound, as 

this is the scenario where the NIPAAm does not receive any heat during dehumidification 

and does not require any pre-cooling.  The table below shows the results for the reevaluated 

Case 3 scenario with the NIPAAm dehumidification and vapor compression cooling 

configuration. 
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Table 3.7.1: Case 3 results for NIPAAm dehumidification and vapor compression cooling 

with various NIPAAm start temperatures 

NIPAAm 

Start 

Temperature 

0 °C 5°C 10 °C 15 °C 20 °C 25 °C 

 

COP 

 

0.95 0.96 0.96 0.97 0.97 0.97 

 

 

It can be seen from the table above that the temperature to which the NIPAAm must be 

cooled has a very minimal effect on the overall efficiency when a realistic evaporation 

percentage is used. This is because the thermal mass of the NIPAAm in this section is low, 

as the water content of the NIPAAm is at a minimum in the cooling section, and the cooling 

is assumed to be provided to the NIPAAm at the COP of the vapor compression sub-

system, which often has a COP value significantly greater than 1. Thus, while the selection 

of the NIPAAm start temperature was somewhat arbitrary for the previous cases examined, 

it can be seen that the NIPAAm start temperature does not have a significant effect on the 

system efficiency.  

This analysis was not performed for the evaporative cooling method for several 

reasons. First, the evaporative cooling method does not require significant consumption of 

power, so an increase in the amount of NIPAAm pre-cooling will only affect the 

consumption of water, not the system efficiency. Additionally, the evaporative cooler 

cannot achieve the low temperatures that were evaluated in this case. For the scenario 

described in Case 3, the lower limit of the air temperature that the evaporative cooler can 



77 

 

produce is approximately 8 °C. This is possible only if the air used for cooling the NIPAAm 

is supply air that was dried to 0% relative humidity and then humidified to 100% relative 

humidity, which is not feasible in practice. If ambient air is used for cooling the NIPAAm, 

instead of dried supply air, the lowest achievable temperature ranges from approximately 

11 °C, for ambient air at 20 °C and 30% relative humidity, to 25 °C, for ambient air at 30 

°C and 70% relative humidity. Thus, the evaporative cooler cannot achieve temperatures 

as low as the vapor compression system. If it is found that the NIPAAm must be cooled to 

a significantly low temperature to sustain continuous operation, then an evaporative cooler 

will not suffice in providing the cooling to the NIPAAm. 

 

3.8 Revisiting Case 3 with Waste Heat Used for Dehumidifier Regeneration 

 While the previous analyses regard the “worst case scenario”, or the scenario where 

the desiccant and NIPAAm configurations are regenerated with electric heating, the best 

case for a desiccant or NIPAAm dehumidifier can be made when the regeneration heat 

source is a significantly abundant source, like waste heat. To analyze this scenario, the third 

case was revisited with the assumption that the NIPAAm and desiccant dehumidifiers 

could be regenerated “for free” (i.e.: with a heat source that is abundant and requires no 

extra consumption of fuel, such as waste or solar heat). The plot below shows the COP for 

vapor compression cooling configurations, where the COP only accounts for electricity 

input. 
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Fig. 3.8.1: Case 3 COP results for the vapor compression cooling configurations, with a 

waste heat source considered for regeneration 

 

 

Because the heat of regeneration is not supplied by electricity in this scenario, the only 

input to the system is the electricity required to run the vapor compression compressor. 

This means that the desiccant and NIPAAm dehumidifiers have the same COP. It also 

means that the evaporative cooling configurations have an infinite COP, as the evaporative 

coolers do not require electricity input (when neglecting any pumps or blowers). For this 

scenario, it might seem like the NIPAAm dehumidifier offers no benefits; however, the 

NIPAAm dehumidifier still requires less heat, even if the heat is supplied by a waste or 

solar heat source. This could lead to smaller and cheaper components and could be 

applicable in cases where the waste heat source is not significantly large. 

 From the analyses in this section, the potential of a NIPAAm dehumidifier can be 

seen. When electric heating is used to regenerate the dehumidifier, the NIPAAm 

configurations require less electricity input than standard vapor compression or desiccant 
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dehumidification when the latent load is high, or the percent of water evaporated during 

NIPAAm regeneration is low. Additionally, it was found that the NIPAAm dehumidifier 

would be more efficient than a desiccant dehumidifier when used with an evaporative 

cooler, provided that the NIPAAm dehumidifier could properly operate at the high 

temperatures associated with the evaporative cooling configurations. Increasing the 

NIPAAm regeneration temperature from the LCST of 32 °C to the value of 50 °C seen in 

literature, it can be seen that the NIPAAm requires a non-trivial increase in regeneration 

heat, but even at the higher regeneration temperature, the NIPAAm is still quite efficient. 

Finally, it was shown that if the NIPAAm were regenerated with waste heat, it would have 

the same electricity-based COP as the desiccant system, but the NIPAAm would require 

less heat and could regenerate at a lower temperature than a traditional desiccant. This is 

desirable in scenarios where the waste heat is not so abundant as to become trivial, and it 

is also desirable in scenarios where the waste heat source is available at temperatures higher 

than the NIPAAm regeneration temperature but lower than the regeneration temperature 

of a traditional desiccant. Because the source of regeneration heat exists at some 

temperature, waste and solar heat can only be used when they are available at a temperature 

greater than the regeneration temperature of the dehumidifier. Since the regeneration 

temperature of NIPAAm is less than that of a traditional desiccant, the NIPAAm 

dehumidifier would be applicable in a greater number of scenarios.  
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3.9 Revisiting Case 3 with Various Heat Exchanger Effectiveness Values 

 For the analyses that were conducted, a heat exchanger effectiveness of 0.99 was 

assumed; however, not all systems will utilize a heat exchanger with an effectiveness this 

high. Thus, Case 3 was reevaluated, and the heat exchanger effectiveness was varied to 

observe the impact that a lower effectiveness has on the NIPAAm and traditional desiccant 

systems. For this analysis, both of the NIPAAm configurations and both of the desiccant 

configurations were reexamined for heat exchanger effectiveness values of 0.80, 0.85, 0.90, 

and 0.95, along with the original value of 0.99. Two plots were created: one plot 

demonstrates the performance of the vapor compression cooling configurations, and the 

other demonstrates the performance of the evaporative cooling configurations. For the 

NIPAAm configurations, separate curves were created for each heat exchanger 

effectiveness value. For the traditional desiccant, the data associated with the five separate 

heat exchanger effectiveness values were gathered into a shaded area, as it was found that 

the change in COP for the desiccant configurations was minimal. The plots are shown 

below.   
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Fig. 3.9.1: Case 3 COP results for the vapor compression cooling configurations, with 

heat exchanger effectiveness varied 

 

 

 
Fig. 3.9.2: Case 3 COP results for the evaporative cooling configurations, with heat 

exchanger effectiveness varied 
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the percent evaporation) for a decrease in heat exchanger effectiveness of 0.05. The change 

in desiccant COP is even smaller, ranging from 3% to less than 1%. 

 The heat exchanger effectiveness was not decreased below 0.8, as it was found, for 

this specific case, that the evaporative cooling cycles would not be possible with heat 

exchanger effectiveness values much lower than 0.8 (the air would have to be dried below 

0 g/kg humidity to achieve the cycle, which cannot happen).  
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4 CONCLUSIONS AND RECOMMENDATIONS 

 From the results of the system-level models, it is clear that a NIPAAm dehumidifier 

has the potential to perform better than traditional alternatives. The following list 

summarizes the findings of this report, based on the results in the previous chapter: 

• NIPAAm dehumidification increases system efficiency when added to a standard 

vapor compression system if the latent load is high 

• For low latent loads, NIPAAm dehumidification increases vapor compression 

system efficiency when the percent evaporation seen during regeneration is below 

approximately 25% 

• NIPAAm dehumidification is more efficient than traditional desiccant 

dehumidification for almost any percent evaporation seen during NIPAAm 

regeneration  

• NIPAAm has great potential in low temperature applications where standard vapor 

compression cannot be used, and the NIPAAm is less likely to exceed the LCST 

during dehumidification for low temperature applications  

NIPAAm shows the most obvious promise when used in conjunction with vapor 

compression cooling in low temperature applications, as exemplified in the 

supermarket/ice rink scenarios. These applications would require the least nuanced design 

and would be the most likely to provide significant improvement over current system 

configurations. The NIPAAm dehumidifier still holds promise in other applications, but 

the considerations regarding the dehumidifier design (such as the percent evaporation of 
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regeneration water and the NIPAAm temperature rise) hold greater weight in scenarios 

other than the low temperature cases.  

The models detailed in this report indicate that a NIPAAm dehumidifier could 

significantly improve overall system efficiency in many scenarios, given that the 

dehumidifier behaves as it was modeled. For a NIPAAm dehumidifier to work, the sorbent 

must remain below a certain temperature (roughly 25 to 30 °C) throughout the entirety of 

the dehumidification section of the wheel. To achieve this, it was proposed that the 

NIPAAm wheel be cooled immediately before it enters the dehumidification section; 

however, it is unknown how easily this could be achieved, and there are limitations 

regarding the temperature to which the NIPAAm could be cooled. Therefore, a NIPAAm 

wheel that is internally cooled during the dehumidification section is proposed. In this 

configuration, some tubes would run through the NIPAAm wheel, such that the NIPAAm 

would fill the annular space around the tubes. A cooling fluid, such as the process air, could 

be flowed through the tubes, thus ensuring the NIPAAm does not heat up as latent heat is 

released during dehumidification. This would essentially combine the downstream heat 

exchanger with the NIPAAm wheel, and it would cause the dehumidification process to 

become isothermal or near-isothermal. Internally cooled desiccant wheels have been 

demonstrated in literature, meaning that an internally cooled NIPAAm wheel is likely 

possible. This could end up being the most feasible design for a NIPAAm wheel, as it 

would ensure that the NIPAAm does not exceed a certain temperature during 

dehumidification, and the conceptual design is generally obvious. The figure below shows 

a conceptual design for an internally cooled NIPAAm wheel.   
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Fig. 4.1: Conceptual design for a NIPAAm wheel with housing shown (left) and not 

shown (right). NIPAAm is placed in the annular space (shown in blue), supply air enters 

through the axle and flows through the annular space, and process air flows through the 

heat exchanger tubes. 

 

 

When pursuing future work on a NIPAAm dehumidifier, it is recommended that 

the initial efforts focus on the evaporation fraction and thermal response of the NIPAAm. 

The percent of water evaporated during regeneration should be more rigorously examined 

for NIPAAm regeneration at different temperatures, and efforts to improve system 

performance should focus on reducing the percent evaporation. Additionally, the transient 

temperature response of the NIPAAm should be observed for dehumidification over some 

period of time. If it is found that the NIPAAm does not significantly change in temperature 

as it absorbs moisture from the air, then the pre-cooling of the NIPAAm before 

dehumidification might not be an issue. However, if it is found that the NIPAAm 

significantly changes in temperature during dehumidification, then considerations must be 
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made regarding the prevention of excessive NIPAAm temperature rise during 

dehumidification.  

Going forward, a more complex model can be made. The vapor compression model 

presented in this paper can be easily modified to account for dynamic changes in inlet air 

properties, but numerical models would be required for the desiccant and NIPAAm wheels. 

The conditioned space could be modeled in a CFD program, such as ANSYS Fluent, and 

a top-level Python script could be set up to pass the air properties, as determined by the air 

conditioning component Python models, directly to Fluent. The Fluent simulation can be 

set-up and initialized entirely through the use of a Python script, so the overall model, 

consisting of Python models for the air conditioning components and a Fluent model for 

the air within the space, could be initialized and run from one command in the computer’s 

command line.  
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APPENDIX A 

 

EXPLANATION OF GRAPHICAL INTERFACE AND PYTHON SCRIPTS 
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After inputting the initial indoor, the outdoor, and the desired outlet air conditions, 

the program calculates the dynamic response of the control volume. A diagram of the 

control volume is shown in the figure below.  

 

 

Fig. A.1: Control volume for the air within the house that is being conditioned, with mass 

flows, external heat gain, and internal moisture gain 

 

 

For the models that were created, the heat gain and indoor evaporation rate were 

set to zero. The heat gain was set to zero because it was found to be miniscule compared 

to the thermal mass of the house and the cooling provided by the air conditioning, and the 

evaporation rate was set to zero for simplicity, as this is the case when the house is 

unoccupied.  

For some volume of air within the house and the selected mass flow rates for the 

various air streams, the temperature and humidity drop of the control volume is determined 

for a given time-step, as described later in Section 2.4. The simulation ends when the 
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thermal mass weighted average temperature of the conditioned space reaches a value 1 °F 

lower than the thermostat set temperature. To simplify calculations, it is assumed that the 

supply air entering the conditioned space does not mix with the remaining air. This was 

done so that the temperature and humidity ratio of the return air are kept constant 

throughout the transient process, such that the air conditioning components can be modeled 

for constant inlet properties. Because the air stream properties are kept constant, the 

modeling of the components can then be seen as a simulation of steady state performance, 

while the simplified transient response of the air within the conditioned space gives an 

estimate of the system operation time. The operation time can then be used to find the total 

amount of water removed from the air during operation, which can be used to determine 

how much desiccant and NIPAAm is required. 

After receiving the model inputs, the graphical interface calls one of two functions. 

If the user selected vapor compression as the cooling method, the first function is called. 

This function, written in house_air.py, gathers relevant values regarding the steady state 

performance of the three models that contain vapor compression cooling, given the desired 

conditions. The second function, which was written in house_air_evap_cool.py and is 

utilized if the user selected evaporative cooling as the desired method, gathers values 

regarding the steady state performance of the two evaporative cooling configurations. Each 

model, after gathering temperature and humidity values at each state in the cycle, as well 

as heat and power inputs to the devices, calculates the temperature and humidity drop of 

the conditioned space over time.  
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After the supply air exits the air conditioning system, it is provided to the 

conditioned space. Before it reaches the control volume, however, it travels though ducting. 

The ducting is initially at the temperature of the control volume, and when the cold supply 

air passes through, the supply air is heated while the ducting is cooled. This process is 

described in the equation below, which was taken from an ASHRAE paper on dynamic 

modeling for air conditioning components [17]. 

 𝑑𝑇𝑑𝑢𝑐𝑡

𝑑𝑡
=

𝑇𝑠,𝑜 − 𝑇𝑑𝑢𝑐𝑡

𝑈𝑑𝑢𝑐𝑡,𝑖

𝑈𝑑𝑢𝑐𝑡,𝑖 + 𝑈𝑑𝑢𝑐𝑡,𝑜
∗

𝑚𝑑𝑢𝑐𝑡𝑐𝑝,𝑑𝑢𝑐𝑡

�̇�𝑠𝑢𝑝𝑝𝑙𝑦(𝑐𝑝,𝑎 + 𝑥𝑠,𝑜𝑐𝑝,𝑣)
 
 

(A.1) 

For the scenarios that were modeled, it is assumed that the heat transfer coefficient on the 

inside of the ducting is far greater than the heat transfer coefficient on the outside of the 

ducting, due to the occurrence of forced convection within the ducting and natural 

convection on the ducting exterior. Thus, the external heat transfer coefficient is neglected, 

and it is assumed that the ducting approaches a steady state temperature equal to the 

temperature of the supply air as it enters the duct.  

The temperature and humidity of the air within the conditioned space are at some 

initial values Thouse,i and xhouse,i, respectively. Some percentage of the total volume is 

occupied by solids, which are at the same initial temperature as the air. This scenario is 

illustrated in the figure below, where mhouse,i is the initial mass of air in the space, which, 

for the scenario modeled, is the mass of air in the space for the entire process, as the supply 

and return mass flow rates are constant. 
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Fig. A.2: Initial properties for the air within the conditioned space 

 

 

The cool and dry supply air enters the control volume through some inlet and the return air 

exits through an outlet. Because the various components of the system are modeled for 

steady state performance, the properties of the air that enters these components should 

remain constant with time. Because the supply air is some mix of return and outside air, 

the return air properties must then stay constant. To achieve this, it is assumed that the 

supply air and return air do not mix or exchange heat, as shown in the figure below. 

 

Fig. A.3: Separated supply and return air within the conditioned space 
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The mass of supply air within the space, m1, is simply the product of the mass flow rate 

and the time that the system has been running, �̇�𝑠𝑢𝑝𝑝𝑙𝑦∆𝑡. The mass of initial air that 

remains within the space, m2, is the initial air mass minus the product of mass flow rate and 

operation time, 𝑚ℎ𝑜𝑢𝑠𝑒,𝑖 − �̇�𝑟𝑒𝑡𝑢𝑟𝑛∆𝑡. 

While the air is kept stratified for the purpose of maintaining steady conditions at 

the outlet, the mass weighted average temperature and humidity ratio are calculated at each 

time step. These are the values that would result if the air would mix completely and reach 

equilibrium with the solids in the room. These values are computed for display on the 

graphical interface, and for the stop criterion. A loop in the house_air and 

house_air_evap_cool functions adds some mass of supply air and removes some mass of 

return air from the conditioned space at every time step. Once the average temperature 

reaches a value 1 °F lower than the thermostat set temperature that was input by the user, 

the loop breaks, and the model stops. The following equations describe the mass weight 

average humidity ratio and temperature for the conditioned space at any  time t, where the 

specific heat of the solids, cp,solid, is given per unit volume instead of mass. 

 
𝑥ℎ𝑜𝑢𝑠𝑒,𝑎𝑣𝑔 =

𝑚1𝑥𝑠,𝑜 + 𝑚2𝑥ℎ𝑜𝑢𝑠𝑒,𝑖

𝑚1 + 𝑚2
 

(A.2) 

 𝑇ℎ𝑜𝑢𝑠𝑒,𝑎𝑣𝑔 = 

𝑚1(𝑐𝑝,𝑎 + 𝑥𝑠,𝑜𝑐𝑝,𝑣)𝑇𝑑𝑢𝑐𝑡 + (𝑚2(𝑐𝑝,𝑎 + 𝑥ℎ𝑜𝑢𝑠𝑒,𝑖𝑐𝑝,𝑣) + 𝑉𝑠𝑜𝑙𝑖𝑑𝑐𝑝,𝑠𝑜𝑙𝑖𝑑)𝑇ℎ𝑜𝑢𝑠𝑒,𝑖

(𝑚1 + 𝑚2)(𝑐𝑝,𝑎 + 𝑥ℎ𝑜𝑢𝑠𝑒,𝑎𝑣𝑔𝑐𝑝,𝑣) + 𝑉𝑠𝑜𝑙𝑖𝑑𝑐𝑝,𝑠𝑜𝑙𝑖𝑑

 

(A.3) 
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It should be noted that the validity of the stratified model is contingent on the 

operation time. At a certain time, 𝑚ℎ𝑜𝑢𝑠𝑒,𝑖/�̇�𝑟𝑒𝑡𝑢𝑟𝑛, all of the air within the conditioned 

space will have been replaced with supply air, at which point it is impossible for the return 

air to be at the initial conditions. 

As mentioned previously, the vapor compression cooling configurations were 

modeled in house_air.py. The model starts by defining various properties, including the 

NIPAAm regeneration temperature, total volume within the conditioned space, indoor 

evaporation rate, supply air total mass flow rate, fraction of the supply air mass flow that 

comes from outside air, mass flow rate of the air that cools the vapor compression 

condenser, specific heats of the desiccant and NIPAAm, moisture absorption capacity for 

the desiccant and NIPAAm, as well as the percent of the control volume which is solid and 

volumetric specific heat of the solids. After defining these properties and receiving the 

inputs from the graphical interface, the model accounts for the mixing of the return and 

outdoor air streams to form the supply air and calculates the temperature, Ts,i, and humidity 

ratio, xs,i, of the mixed supply air. The code then models the mixing of return and outside 

air to form the process air and calculates the temperature, Tp,i, and humidity ratio, xp,i, of 

the process air stream. 

For the vapor compression only configuration, the model calls the AC.py function 

with the supply air properties, desired outlet properties, and outside air properties as inputs. 

The AC function returns the power required, as well as several values used to create 

graphics in the graphical interface.  
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For the desiccant dehumidification and vapor compression cooling configuration 

and the NIPAAm dehumidification and vapor compression cooling configuration, the 

mixed supply air is sent first to the dehumidifier. For these configurations, the Dehum 

function is called, with the mixed supply air temperature and humidity ratio, as well as the 

desired outlet humidity ratio, as inputs. Based on the required outlet humidity, the 

temperature is found for the supply air as it leaves the dehumidifier. The dehumidifier 

outlet properties are used as the inlet properties for the heat exchanger. The heat exchange 

process is modeled by calling the HX function, which uses the dehumidified supply air 

properties as inputs for the hot-side inlet properties and uses the mixed process air 

properties as inputs for the cold-side inlet properties. The function returns the temperatures 

for the supply and process air streams as they exit the heat exchanger. Now that the supply 

air has been dehumidified and pre-cooled, it is sent to the vapor compression cooling 

system. The properties of the supply air as it exits the heat exchanger are used as inputs for 

the AC function, along with the outside air and desired outlet air conditions. Once again, 

the AC function returns the power required at the compressor. Additionally, the model 

determines the total amount of water that was absorbed during the process.  

Aside from collecting values for the various states in the system, the house_air 

function also calculates the dynamic temperature change within the conditioned space, as 

described in the previous section. After a certain number of time steps, the lumped 

temperature of the space reaches the desired value and the loop breaks. At this point, the 

time required to cool the conditioned space is recorded. During the loop, the lumped 

temperature and humidity ratio for the conditioned space is recorded at each time step. This 
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information is passed back to the graphical interface so that an interactive timeline of the 

temperature and humidity within the house can be viewed. 

Modeling of the vapor compression air conditioner was accomplished with three 

separate scripts. The first script, AC.py, is a top level script that contains certain 

information that is passed to the other two scripts, such as the refrigerant, heat transfer 

coefficients, outdoor and indoor air pressure, and isentropic efficiency of the compressor. 

Aside from containing this information, the AC script also calculates the power used by 

the compressor and creates the arrays for the T-s and P-h diagrams that are displayed in the 

graphical interface.  

To model the vapor compression air conditioning evaporator, the script 

HX_AC_evap.py is used. Before calling the HX_AC_evap function, the AC script 

calculates the humidity of the air after it is cooled by the evaporator coils. If the desired 

outlet temperature is greater than the dew point, the outlet humidity ratio is equal to the 

inlet humidity ratio. If the desired outlet temperature is less than the dew point of the inlet 

air, then the outlet humidity ratio is the saturation humidity ratio associated with the outlet 

temperature, as determined by the script x_s.py. Once the outlet humidity ratio has been 

determined, the AC script calls the HX_AC_evap script with inputs for the mass flow rate 

of air over the evaporator coils, the air pressure within the building, the inlet air temperature 

and humidity, the outlet air temperature and humidity, the refrigerant, and the heat transfer 

coefficient of the evaporator. 
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The vapor compression condenser was modeled in HX_AC_cond.py. Much like 

the script that models the evaporator, the script for the condenser uses an iterative scheme 

to solve the relevant heat exchanger equations, as described in Section 2.3.2. 

The air conditioning compressor was not modeled in its own script; rather, it was 

modeled in the script AC.py. 

The model for dehumidification was implemented in the script Dehum.py. The 

Dehum script is used to find the outlet temperature of the supply air for a given amount of 

dehumidification.  

The heat exchanger that pre-cools the supply air and pre-heats the process air was 

modeled in HX.py. 

The energy required for the regeneration process is different for the desiccant and 

NIPAAm configurations and was not modeled in a separate script; instead, the regeneration 

for both configurations was modeled in the graphical interface script (GUI.py). This was 

done because the regeneration energy is dependent on certain parameters that cannot be 

determined with the models’ current level of sophistication. In the graphical interface, the 

user can adjust a slider to control the required regeneration temperature for the desiccant, 

after which the GUI.py script utilizes the selected regeneration temperature in Eq. 2.14 to 

calculate the rate of heating required for regeneration. The script then multiplies the rate of 

heating by the cycle time to find the total regeneration heat, which it then displays, along 

with the COP. The slider allows the user to vary the regeneration temperature between two 

extremes. The lower bound of the slider is the temperature of the process air leaving the 

heat exchanger, which represents the case in which the desiccant can be regenerated at the 
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temperature of the process air after it is pre-heated in the heat exchanger, meaning no heat 

is required from the electric heater. The upper bound of the slider was set to a temperature 

of 140 °C, as the desiccant regeneration temperatures found in literature were all lower 

than 140 °C, meaning that the slider should encompass the entire range of possible 

regeneration temperatures. 

For the NIPAAm regeneration, each rate of heat transfer in Eq. 2.20 is dependent 

on an unknown parameter. Three sliders are displayed in the GUI, such that the user can 

control the NIPAAm temperature at the beginning of the dehumidification portion, the 

evaporation fraction, and the NIPAAm temperature at the end of the dehumidification 

portion. The GUI script then calculates the three rates of heat transfer and divides the rate 

of cooling by the cooling system COP to find the required electrical power. It should be 

noted that the evaporative cooling configuration does not consume electricity to produce 

cooling; rather, it consumes water. Thus, the COP in terms of cooling rate per unit electrical 

power is infinite for the evaporative cooler (when neglecting any blowers used to induce 

airflow), and the cooling term drops out of regeneration energy equation. At the moment, 

it is not obvious how the vapor compression or evaporative cooling systems would 

interface with the NIPAAm wheel. It is assumed that cooling is provided to the wheel at 

the COP of cooling system and is done by means that do not involve the NIPAAm 

absorbing any moisture before entering the dehumidification section. 

If the user selects the evaporative cooling configurations, the transient cooling 

process for the air within the conditioned space is evaluated using the model in 

house_air_evap_cool.py. This script, like the house_air script, defines various properties 
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and models the mixing of return and outside air to form the supply and process air streams. 

For these configurations, an iterative process is used to find the amount of supply air 

dehumidification required to reach the desired outlet conditions, as illustrated previously 

in Fig. 2.3.7.1. First the mixed supply air properties are given as inputs to the Dehum 

function, the outputs of which are given as inputs to the HX function, along with the process 

air properties. The error for each iteration is the difference between the enthalpy of the 

supply air exiting the heat exchanger and the desired enthalpy of the supply air after 

evaporative cooling, as the evaporative cooling is an isenthalpic process. The iterative 

solver varies the humidity of the supply air leaving the dehumidifier until the error is 

sufficiently small. At this point, all states in the system process are known, and the 

house_air_evap_cool function models the transient behavior of the conditioned space, as 

previously described. The evaporative cooler was also not given a separate script and was 

instead modeled directly within the house_air_evap_cool script. 

The highest level script in the overall model is GUI.py, which creates the graphical 

user interface and, based on user input, decides which scripts to run and what conditions to 

model. When run, the GUI script first creates a window that allows the user to pass inputs 

and view various plots, graphics, and values. The first page displayed by the GUI script is 

an explanation of the tool and a disclaimer about the nature of the models that were 

implemented. After clicking the “Next” button, the user is taken to a configuration selection 

page, in which the user can choose between simulating the vapor compression 

configurations (vapor compression only, desiccant dehumidification and vapor 

compression cooling, and NIPAAm dehumidification and vapor compression cooling), or 
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the evaporative cooler models (desiccant dehumidification and evaporative cooling and 

NIPAAm dehumidification and evaporative cooling). This page is shown in the figure 

below. 

 

 

Fig. A.4: Page two of the GUI – configuration selection 

 

After selecting the cooling method and advancing to the next page, the user is prompted to 

input several values: the thermostat set temperature, initial indoor humidity ratio, desired 

temperature and humidity ratio of the cool air supplied to the house, and outdoor air 

temperature and humidity ratio. All temperatures are to be input in Kelvin and all humidity 

ratios are to be input in kg/kg. The figure below shows this page of the GUI. 
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Fig. A.5: Page three of the GUI – inputs 

 

 

After inputting the values and clicking the “Next” button, the GUI script passes the inputs 

to the next appropriate script; if vapor compression cooling was selected, the inputs are 

passed to house_air.py, and if evaporative cooling was selected, the inputs are passed to 

house_air_evap_cool.py. Within the appropriate script, several other scripts are run, and 

the processes at each component are modeled, along with the transient temperature and 

humidity response of the air within the house. Additionally, several arrays of graphics are 

created in this process, which include system diagrams and psychrometric charts. After the 

scripts are finished running, the final page is displayed. The figure below shows an example 

of the page that is displayed for the vapor compression cooling configurations. 
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Fig. A.6: Page four of the GUI with vapor compression configuration selected 

 

 

Several key features are displayed on the page: the main graphic, the live plots, important 

values, the configuration selection buttons, and the time slider. The default graphic in the 

main frame is the system schematic with temperatures and humidity ratios printed on the 

image. The user can click and drag the slider at the bottom of the window to adjust the 

system time and watch the house air temperature and humidity ratio change. Additionally, 

the user can click the “Next figure” button to switch the graphic in the main frame to a 

psychrometric chart of the steady state processes performed by the total system, as shown 

in the figure below. 
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Fig. A.7: Page four of the GUI with the psychrometric chart selected as the main figure 

 

 

The psychrometric chart was found on linric.com [11]. When viewing the psychrometric 

chart, the user can click the “Previous figure” button to switch the main figure back to the 

system schematic. The live plots to the right of the main figure are T-s and P-h diagrams 

of the vapor compression refrigeration cycle used to cool the air. By default, the T-s 

diagram is shown when the page loads, but the user can switch between the two diagrams 

by clicking the “T-s” and “P-h” buttons.  

Additionally, the user can click one of the buttons at the bottom of the page to 

change the system configuration. The default configuration shown when the page loads is 

the “Vapor Compression Only” configuration. By clicking the “Desiccant + Vapor 

Compression” button, the page  changes to that which is shown in the figure below. 
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Fig. A.8: Page four of the GUI with the desiccant dehumidification and vapor 

compression cooling configuration selected 

 

 

The dehumidification process was modeled to bring the humidity of the supply air to the 

same humidity that was achieved with the vapor compression only configuration, and the 

vapor compression cooling for this configuration was modeled to bring the outlet 

temperature of the supply air to the same temperature as the supply air in the vapor 

compression only configuration. Thus, although the intermediate processes differ, the air 

entering and exiting the system for this configuration is the same as the air in the vapor 

compression only configuration. Because of this, the time it takes for the house to reach 

the desired temperature is the same as in the previous configuration. Because 

dehumidification and pre-cooling occurs before the air is sent to the vapor compression air 

conditioner in this configuration, less cooling is required to achieve the same outlet 

temperature, and the plots on the right of the page change. Additionally, because a different 

process is taken to reach the supply air outlet properties, the psychrometric chart is different 
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for this configuration than it was for the vapor compression only configuration, as shown 

in the figure below. 

 

 

Fig. A.9: Page four of the GUI with the psychrometric chart as the main figure and the 

desiccant dehumidification and vapor compression cooling configuration selected 

 

 

The vertical slider that appears when changing to the desiccant configuration allows the 

user to control the regeneration temperature of the desiccant. Adjusting this slider will 

change the regeneration energy and COP values.  

By clicking the “NIPAAm + Vapor Compression” button, the page changes again, 

as shown in the figure below. 
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Fig. A.10: Page four of the GUI with the NIPAAm dehumidification and vapor 

compression cooling configuration selected 

 

 

Because  the steady state dehumidification process for this configuration is the same as in 

the previous configuration, the psychrometric chart and vapor compression plots for this 

configuration are the same as in the desiccant configuration. The only process that differs 

between the desiccant and NIPAAm configurations is regeneration, so the system 

schematic and vertical sliders change, along with the regeneration heat and COP values. 

For this configuration, the user can manipulate the three sliders shown in the figure above. 

The first slider, labeled “Start”, is the temperature at which the NIPAAm leaves the cooling 

portion and enters the dehumidification portion of the wheel, TNIPAAm,i. The lower this 

temperature is required to be, the more energy is required for cooling. The second slider 

allows the user to adjust the percent  of water that is evaporated during regeneration. As 

more water is evaporated during regeneration, more heat must be transferred to the wheel 

to maintain the NIPAAm at the LCST. Finally, the third slider, labeled “Stop”, controls the 
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temperature at which the NIPAAm leaves the dehumidification portion and enters the 

regeneration portion of the wheel, TNIPAAm,f. This value should be as close as possible to the 

LCST without exceeding it. The closer the temperature is to the LCST, the less the 

temperature has to be raised with external heating to allow it to regenerate; however, the 

NIPAAm cannot exceed this temperature in the dehumidification portion, otherwise it will 

transition to hydrophobic and stop dehumidifying the air.  

If the evaporative cooling method is selected on the second page, instead of vapor 

compression cooling, the user is prompted with the same inputs on the third page, after 

which the GUI script sends the inputs to house_air_evap_cool.py. The script calls the 

appropriate functions and determines the processes for the evaporative cooling 

configurations. After the simulation is complete, the final page is displayed, as shown in 

the figure below. 

 

 

Fig. A.11: Page four of the GUI for the evaporative cooling configurations 
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For the evaporative cooling method, there are only two configurations: desiccant 

dehumidification and evaporative cooling and NIPAAm dehumidification and evaporative 

cooling. The desiccant configuration is the default when the page loads. The layout of this 

page is very similar to the layout seen in the desiccant dehumidification and vapor 

compression cooling page. The system schematic is slightly changed to reflect the 

evaporative cooler, but the horizontal time slider and vertical regeneration temperature 

slider function in the same manner as they do in the desiccant dehumidification and vapor 

compression cooling display. Because there is no vapor compression air conditioner in this 

cycle, the T-s and P-h diagrams are replaced with a plot of humidity ratio vs temperature. 

The axes of this plot are the same as in the psychrometric chart, which can still be seen by 

clicking the “Next figure” button; however, the live plot on the right side of the page are 

simplified and do not contain the extra information that is shown on the psychrometric 

chart, such as the lines of constant humidity and enthalpy. Additionally, the plot on the 

right has units of kg/kg for humidity ratio and °C for temperature, while the psychrometric 

chart has units of grains/lb. for humidity ratio and °F for temperature. The plot on the right 

can be seen as a basic illustration of the process the supply air undergoes, while the 

psychrometric chart is more complex but provides more information and insight if the user 

understands how to read it. Furthermore, the plot on the right also displays a curve for the 

process air as it is pre-heated by the heat exchanger, heated further by the electric heater, 

and then humidified by the regenerating portion of the desiccant wheel as it absorbed 

moisture from the desiccant. To ensure the desorption in the regenerating portion occurs at 

the same rate as the absorption in the dehumidifying portion, the increase in process air 
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humidity ratio across the regenerating portion is the same as the supply air humidity ratio 

drop across the dehumidifying portion. As the user moves the vertical slider, which controls 

the regeneration temperature, the plot on the right changes to reflect the new regeneration 

temperature, as shown in the figure below. 

 

 

Fig. A.12: Humidity ratio vs temperature GUI plot changing with regeneration 

temperature. Plots are shown for a regeneration temperature that is impossible (left) and 

possible (right) based on the position of the process air outlet temperature relative to the 

saturation curve. The inset is the slider that controls regeneration temperature. 

 

 

By clicking the “NIPAAm + Evaporative Cooling” button, the user display changes 

to reflect the NIPAAm configuration, as shown in the figure below.  
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Fig. A.13: Page four of the GUI with the NIPAAm dehumidification and evaporative 

cooling configuration selected 

 

 

The system schematic changes to reflect the different method of regeneration, and 

the vertical sliders change to once gain control the NIPAAm temperature at the beginning 

and end of the dehumidification portion of the NIPAAm wheel, as well as the evaporation 

fraction. Additionally, the process air curve is different on the plot to the right, as the 

NIPAAm is regenerated directly with a heater, and the process air is vented after passing 

through the heat exchanger. 

All of the following values relate to the transient model of the air within the 

conditioned space, which, again, does not affect the results in Chapter 3; these values are 

simply presented for clarity. A 1200 sq. ft floor area was selected for the conditioned space 

that was modeled, and a 3 ton air conditioning system was selected to cool this space. Based 

on the floor space and an average ceiling height of 8 ft, the total volume of the space was 

set to 271.84 m3. The air pressure within the space was set to 101325 Pa. The solids in the 
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space were set to take up 0.5% of the total volume, as this allowed the system operation 

time to remain low enough to use the stratified air model. The specific heat of the solid was 

defined as 903600 J/m3K, as this is roughly the volumetric specific heat of wood [19].  

The internal heat transfer coefficient for the duct, specific heat for the duct material, 

and duct mass per unit length were all taken from a study on the dynamic modeling of an 

HVAC system [20]. The length of the ducting was set to 9.14 m, which is approximately 

30 ft, such that the ducting could span the width of a 40 ft x 30 ft room.  

The time step for the transient model was set to 1 s. As the percent solid volume 

decreases, the average room temperature changes at a greater rate, and a smaller time step 

may be desired. However, if the time step is too small for a given percentage of solid 

volume, the Python lists will become too large, and the computer on which the model is 

running will be likely to crash.  
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APPENDIX B 

 

PYTHON CODE FOR “GUI.PY” 
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from house_air import house_air 

from house_air_evap_cool import house_air_evap_cool 

import numpy as np 

from x_s import x_s 

from T_s import T_s 

from Tkinter import * 

from PIL import Image, ImageTk, ImageFont, ImageDraw 

import matplotlib 

matplotlib.use('TkAgg') 

 

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, 

NavigationToolbar2TkAgg 

# implement the default mpl key bindings 

from matplotlib.backend_bases import key_press_handler 

 

 

from matplotlib.figure import Figure 

print_query = 'no' 

fnt = ImageFont.truetype("C:\Windows\Fonts\ARIAL.TTF", 25) 

window = Tk() 

 

window.title("Air Conditioned House Model") 

w = window.winfo_screenwidth() 

h = window.winfo_screenheight() - 80 

window.geometry('%dx%d+0+0' % (w, h)) 

#window.geometry('961x418') 

 

window.configure(background='white') 

 

window_1_title = Label(window, bg='white', text='Air Conditioning Modeling', 

font=("Open Sans Bold", 25)) 

window_1_title.place(x=w/2., y=0, anchor="n") 

 

window_1_underline = Label(window, bg='white', 

text='___________________________________________________________________

____________________', font=("Open Sans Bold", 25)) 

window_1_underline.place(x=w/2., y=50, anchor="n") 

 

v = IntVar() 

#v.set(1) 

 

window_1_body = Label(window, bg='white', text='This is a graphical user interface that 

can be used to model various air conditioning system configurations. The components are 

modeled for steady state performance, and the user can scroll through to watch how the 
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average temperature and humidity within the house change. The models in this interface 

rely on certain approximations and best-case assumptions and are only intended to show 

the potential of various hypothetical system configurations.', font=("Open Sans", 15), 

wraplength=w*7./8.) 

window_1_body.place(relx=0.5, rely=0.5, anchor=CENTER) 

 

 

 

  

def third_window(): 

 window_2_title = Label(window, bg='white', text='Select the Air Handling 

System Configuration', font=("Open Sans Bold", 25)) 

 window_2_title.place(x=w/2., y=0, anchor="n") 

 window_2_underline = Label(window, bg='white', 

text='___________________________________________________________________

____________________', font=("Open Sans Bold", 25)) 

 window_2_underline.place(x=w/2., y=50, anchor="n") 

 v = IntVar() 

 #v.set(1) 

 Radiobutton(window, bg='white', text='Vapor Compression Cooling', 

font=("Open Sans", 15), padx=20, variable=v, value=1).place(relx=0.5, rely=0.46, 

anchor=CENTER) #VC 

 Radiobutton(window, bg='white', text='Evaporative Cooling', font=("Open Sans", 

15), padx=20, variable=v, value=2).place(relx=0.5, rely=0.5, anchor=CENTER) #Evap 

 def fourth_window(): 

  if v.get() == 1: 

   window_5_title = Label(window, bg='white', text='Input Values', 

font=("Open Sans Bold", 25)) 

   window_5_title.place(x=w/2., y=0, anchor="n") 

 

   window_5_underline = Label(window, bg='white', 

text='___________________________________________________________________

____________________', font=("Open Sans Bold", 25)) 

   window_5_underline.place(x=w/2., y=50, anchor="n") 

   text_1 = Label(window, bg='white', text='Thermostat Set 

Temperature', font=("Open Sans", 15)) 

   text_1.place(relx=0.5, rely=0.40, anchor="e") 

   text_2 = Label(window, bg='white', text='Initial Indoor Air 

Humidity Ratio', font=("Open Sans", 15)) 

   text_2.place(relx=0.5, rely=0.44, anchor="e") 

   text_3 = Label(window, bg='white', text='Outside Air 

Temperature', font=("Open Sans", 15)) 

   text_3.place(relx=0.5, rely=0.52, anchor="e") 
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   text_4 = Label(window, bg='white', text='Outside Air Humidity 

Ratio', font=("Open Sans", 15)) 

   text_4.place(relx=0.5, rely=0.56, anchor="e") 

   text_5 = Label(window, bg='white', text='AC Outlet Air 

Temperature', font=("Open Sans", 15)) 

   text_5.place(relx=0.5, rely=0.48, anchor="e") 

   text_5 = Label(window, bg='white', text='Percent Supply Air from 

Outside', font=("Open Sans", 15)) 

   text_5.place(relx=0.5, rely=0.6, anchor="e") 

   txt_1 = Entry(window,width=20) 

   txt_1.insert(INSERT,"294.59444") 

   txt_1.place(relx=0.5, rely=0.40, anchor=W) 

   txt_2 = Entry(window,width=20) 

   txt_2.insert(INSERT,"0.008164972225996216") 

   txt_2.place(relx=0.5, rely=0.44, anchor=W) 

   txt_3 = Entry(window,width=20) 

   txt_3.insert(INSERT,"298.15") 

   txt_3.place(relx=0.5, rely=0.52, anchor=W) 

   txt_4 = Entry(window,width=20) 

   txt_4.insert(INSERT,"0.02009") 

   txt_4.place(relx=0.5, rely=0.56, anchor=W)  

   txt_5 = Entry(window,width=20) 

   txt_5.insert(INSERT,"284.15") 

   txt_5.place(relx=0.5, rely=0.48, anchor=W) 

   txt_7 = Entry(window,width=20) 

   txt_7.insert(INSERT,"50") 

   txt_7.place(relx=0.5, rely=0.6, anchor=W) 

    

   def fifth_window(): 

    #Vapor Compression 

    global count 

    global count_2 

    global canvas_image 

    global main_figure 

    global main_frame 

    global main_canvas 

    global w_frame 

    global h_frame 

    global vbar 

    global hbar 

    global val_save 

    global T_set 

    global x_i 

    global T_outside 
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    global x_outside 

    global T_air_o 

    global Sb 

    global mass_H2O 

    global work_AC 

    global heat_regen 

    global W_AC 

    global W_des 

    global W_NIPAAm 

    global Q_regen_NIPAAm 

    global h_fg_NIPAAm 

    global m_NIPAAm 

    global delta_m_h2o 

    global des_amount 

    global COP 

    global sub_frame_1 

    global sub_frame_2 

    global t_f 

    global delta_t 

    global T_HX_preheat_o 

    global C_p_regen 

    global mass_H2O_reclaimed 

    global count_3 

    global c_p_NIPAAm_dry 

    global c_p_NIPAAm_wet 

    global T_regen_NIPAAm 

    global COP_AC_NIPAAm 

    global m_des 

    global percent_vent 

    main_figure_1 = [] 

    [delta_t, t_f, T_h_array_AC, x_h_array_AC, 

T_duct_array_AC, x_duct_array_AC, T_return_array_AC, x_return_array_AC, 

T_h_array_des, x_h_array_des, T_duct_array_des, x_duct_array_des, 

T_return_array_des, x_return_array_des, T_h_array_NIPAAm, x_h_array_NIPAAm, 

T_duct_array_NIPAAm, x_duct_array_NIPAAm, T_return_array_NIPAAm, 

x_return_array_NIPAAm, delta_m_h2o, W_AC, W_des, W_NIPAAm, 

c_p_NIPAAm_dry, c_p_NIPAAm_wet, h_fg_NIPAAm, 

T_1_AC,T_3_AC,T_4_AC,s_1_AC,s_2_AC,s_3_AC,s_4_AC,s_g_AC,P_evap_AC,P_co

nd_AC,h_1_AC,h_2_AC,h_3_AC,h_4_AC,T_1_des,T_3_des,T_4_des,s_1_des,s_2_des,

s_3_des,s_4_des,s_g_des,P_evap_des,P_cond_des,h_1_des,h_2_des,h_3_des,h_4_des,T_

1_NIPAAm,T_3_NIPAAm,T_4_NIPAAm,s_1_NIPAAm,s_2_NIPAAm,s_3_NIPAAm,s

_4_NIPAAm,s_g_NIPAAm,P_evap_NIPAAm,P_cond_NIPAAm,h_1_NIPAAm,h_2_NI

PAAm,h_3_NIPAAm,h_4_NIPAAm,Q_AC_cool,Q_des_cool,Q_NIPAAm_cool,s_array

,T_array,h_array,P_array,T_HX_preheat_o,C_p_regen,Q_useful,omega,m_NIPAAm,CO
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P_AC_NIPAAm,m_des,delta_C_NIPAAm] = 

house_air(T_set,x_i,T_outside,x_outside,(T_set + 

5./9.),x_i,T_outside,x_outside,T_air_o,percent_vent) 

    T_regen_NIPAAm = 32 + 273.15 

    final_index_1 = len(T_h_array_AC) 

    final_index_3 = len(T_h_array_des) 

    final_index_5 = len(T_h_array_NIPAAm) 

    main_figure_2 = [] 

    main_figure_3 = [] 

    main_figure_4 = [] 

    main_figure_5 = [] 

    main_figure_6 = [] 

    img_2 = 

Image.open('output\psychrom\psychrom_AC_out.png') 

    img_4 = 

Image.open('output\psychrom\psychrom_desiccant_out.png') 

    img_6 = 

Image.open('output\psychrom\psychrom_NIPAAm_out.png') 

    for ind in range(final_index_1): 

     img_1 = Image.open('diag_AC_only.png') 

     draw = ImageDraw.Draw(img_1) 

     s = " " 

     seq = ("T = ", str(round(T_h_array_AC[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_i_str = s.join(seq) 

     seq = ("T = ", str(round(T_return_array_AC[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_r_str = s.join(seq) 

     seq = ("T = ", str(round(T_duct_array_AC[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_f_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_return_array_AC[ind]*1000, 2)), "g/kg") 

     x_r_str = s.join(seq) 

     seq = ("x = ", str(round(x_h_array_AC[ind]*1000, 

2)), "g/kg") 

     x_i_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_duct_array_AC[ind]*1000, 2)), "g/kg") 

     x_f_str = s.join(seq) 

     seq = ("T = ", str(round(T_outside - 273.15, 2)), 

u'\xb0'"C") 

     T_out_str = s.join(seq) 
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     seq = ("x = ", str(round(x_outside*1000, 2)), 

"g/kg") 

     x_out_str = s.join(seq) 

     draw.text((875,288), T_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((746,513), T_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((746,102), T_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((875,318), x_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((746,543), x_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((746,132), x_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((171,288), T_out_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((171,318), x_out_str, font = fnt, fill = 

(0,0,0)) 

     main_figure_1.append(img_1) 

      

      

     main_figure_2.append(img_2) 

      

      

    for ind in range(final_index_3): 

     img_3 = Image.open('diag.png') 

     draw = ImageDraw.Draw(img_3) 

     s = " " 

     seq = ("T = ", str(round(T_h_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_i_str = s.join(seq) 

     seq = ("T = ", str(round(T_return_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_r_str = s.join(seq) 

     seq = ("T = ", str(round(T_duct_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_f_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_return_array_des[ind]*1000, 2)), "g/kg") 

     x_r_str = s.join(seq) 

     seq = ("x = ", str(round(x_h_array_des[ind]*1000, 

2)), "g/kg") 

     x_i_str = s.join(seq) 
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     seq = ("x = ", 

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg") 

     x_f_str = s.join(seq) 

     seq = ("T = ", str(round(T_outside - 273.15, 2)), 

u'\xb0'"C") 

     T_out_str = s.join(seq) 

     seq = ("x = ", str(round(x_outside*1000, 2)), 

"g/kg") 

     x_out_str = s.join(seq) 

     draw.text((1015,318), T_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,513), T_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,132), T_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((1015,348), x_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,543), x_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,162), x_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((465,463), T_out_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((465,493), x_out_str, font = fnt, fill = 

(0,0,0)) 

     main_figure_3.append(img_3) 

     main_figure_4.append(img_4) 

    for ind in range(final_index_5): 

     img_5 = Image.open('diag2.png') 

     draw = ImageDraw.Draw(img_5) 

     s = " " 

     seq = ("T = ", str(round(T_h_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_i_str = s.join(seq) 

     seq = ("T = ", str(round(T_return_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_r_str = s.join(seq) 

     seq = ("T = ", str(round(T_duct_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_f_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_return_array_des[ind]*1000, 2)), "g/kg") 
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     x_r_str = s.join(seq) 

     seq = ("x = ", str(round(x_h_array_des[ind]*1000, 

2)), "g/kg") 

     x_i_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg") 

     x_f_str = s.join(seq) 

     seq = ("T = ", str(round(T_outside - 273.15, 2)), 

u'\xb0'"C") 

     T_out_str = s.join(seq) 

     seq = ("x = ", str(round(x_outside*1000, 2)), 

"g/kg") 

     x_out_str = s.join(seq) 

     draw.text((1015,318), T_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,513), T_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,132), T_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((1015,348), x_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,543), x_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,162), x_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((465,463), T_out_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((465,493), x_out_str, font = fnt, fill = 

(0,0,0)) 

     main_figure_5.append(img_5) 

     main_figure_6.append(img_6) 

    count = 0 

    count_2 = 1 

    main_figure = main_figure_1 

    main = main_figure[0] 

    w_main, h_main = main.size 

    main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

    w_main, h_main = main.size 

    w_frame = w_main 

    h_frame = h_main 

    s = " " 
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    mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15)) 

    mass_H2O.place(x=5, y=(h_frame + 61), anchor="nw") 

    work_AC = Label(window, bg='white', text=s.join(("AC 

work: ", str(round(W_AC/1000., 2)), "kJ")), font=("Open Sans", 15)) 

    work_AC.place(x=(w_frame - 35)/2., y=(h_frame + 61), 

anchor="n") 

    heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration heat: ", str(round(0*1000, 2)), "kJ")), font=("Open Sans", 15)) 

    heat_regen.place(x=(w_frame - 30), y=(h_frame + 61), 

anchor="ne") 

    mass_H2O_reclaimed = Label(window, bg='white', 

text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15)) 

    mass_H2O_reclaimed.place(x=(w_frame + 100)/2., 

y=(h_frame + 131), anchor="n") 

    des_amount = Label(window, bg='white', 

text=s.join(("Required desiccant: ", str(round(0*delta_m_h2o*1000./0.4, 2)), "g")), 

font=("Open Sans", 15)) 

    des_amount.place(x=5, y=(h_frame + 131), anchor="nw") 

    COP = Label(window, bg='white', text=s.join(("COP: ", 

str(round((Q_AC_cool/(W_AC + 0)), 2)))), font=("Open Sans", 15)) 

    COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

    main = ImageTk.PhotoImage(main) 

    main.image = main 

   

 main_frame=Frame(window,width=w_main,height=h_main) 

    main_frame.grid(row=0,column=0) 

   

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

    def AC_only_button(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     global mass_H2O 

     global work_AC 
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     global heat_regen 

     global W_AC 

     global des_amount 

     global COP 

     global t_f 

     global delta_t 

     global mass_H2O_reclaimed 

     global GUI_txt_1 

     global GUI_txt_2 

     global GUI_txt_3 

     #global canvas_image 

     if count_2 == 1: 

      1 

     else: 

      global Sb_2 

      if count_2 == 3: 

       Sb_2.destroy() 

       Sb_3.destroy() 

       Sb_4.destroy() 

       GUI_txt_1.destroy() 

       GUI_txt_2.destroy() 

       GUI_txt_3.destroy() 

      elif count_2 == 2: 

       Sb_2.destroy() 

      else: 

       1 

      global val_save 

      global Sb 

      global sub_frame_1 

      global sub_frame_2 

      count = 0 

      count_2 = 1 

      count_3 = 1 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      main_figure = main_figure_1 

      if val_save > (final_index_1 - 1): 

       val_save = final_index_1 - 1 

      else: 

       1 

      main = main_figure[val_save] 

      w_main, h_main = main.size 
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      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

      mass_H2O.destroy() 

      work_AC.destroy() 

      heat_regen.destroy() 

      des_amount.destroy() 

      COP.destroy() 

      mass_H2O_reclaimed.destroy() 

      s = " " 

      mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15)) 

      mass_H2O.place(x=5, y=(h_frame + 61), 

anchor="nw") 

      work_AC = Label(window, bg='white', 

text=s.join(("AC work: ", str(round(W_AC/1000., 2)), "kJ")), font=("Open Sans", 15)) 

      work_AC.place(x=(w_frame - 35)/2., 

y=(h_frame + 61), anchor="n") 

      heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round(0/1000., 2)), "kJ")), font=("Open Sans", 

15)) 

      heat_regen.place(x=(w_frame - 30), 

y=(h_frame + 61), anchor="ne") 
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      mass_H2O_reclaimed = Label(window, 

bg='white', text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open 

Sans", 15)) 

      mass_H2O_reclaimed.place(x=(w_frame + 

100)/2., y=(h_frame + 131), anchor="n") 

      des_amount = Label(window, bg='white', 

text=s.join(("Required desiccant: ", str(round(0*delta_m_h2o*1000./0.4, 2)), "g")), 

font=("Open Sans", 15)) 

      des_amount.place(x=5, y=(h_frame + 131), 

anchor="nw") 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_AC_cool/(W_AC + 0)), 2)))), font=("Open Sans", 

15)) 

      COP.place(x=(w_frame - 30), y=(h_frame + 

131), anchor="ne") 

      Sb.destroy() 

      Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

      Sb.set(val_save*delta_t) 

      Sb.place(relx=0,rely=1,anchor='sw') 

      sub_frame_1.destroy() 

      sub_frame_1=Frame(window,width=(w - 

w_frame - 30),height=h/2.,bg='white') 

     

 sub_frame_1.place(relx=1,rely=0,anchor='ne') 

       

      f = Figure(figsize=((w - w_frame - 30)/100., 

h/200), dpi=100) 

      a = f.add_subplot(111) 

 

      a.plot([s_1_AC, s_2_AC, s_3_AC, s_g_AC, 

s_4_AC, s_1_AC],[T_1_AC, T_1_AC, T_3_AC, T_4_AC, T_4_AC, T_1_AC], 

label='Refrigerant', color='orange') 

      a.plot(s_array,T_array, color='k') 

 

      # a tk.DrawingArea 

      canvas = FigureCanvasTkAgg(f, 

master=sub_frame_1) 

      canvas.show() 

      canvas.get_tk_widget().pack(side=TOP, 

expand=0) 
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      toolbar = 

NavigationToolbar2TkAgg(canvas, sub_frame_1) 

      toolbar.update() 

      canvas._tkcanvas.pack(side=TOP, 

expand=0) 

       

    Button(window, text='Vapor Compression Only', 

command=AC_only_button, bg='white', font=("Open Sans", 10)).place(x=0, y=(h - 25), 

anchor='sw') #AC Only button 

     

    def des_button(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     global mass_H2O 

     global work_AC 

     global heat_regen 

     global W_des 

     global des_amount 

     global COP 

     global t_f 

     global delta_t 

     global mass_H2O_reclaimed 

     global GUI_txt_1 

     global GUI_txt_2 

     global GUI_txt_3 

     #global canvas_image 

     if count_2 == 2: 

      1 

     else: 

      global Sb_2 

      if count_2 == 3: 

       Sb_2.destroy() 

       Sb_3.destroy() 

       Sb_4.destroy() 

       GUI_txt_1.destroy() 

       GUI_txt_2.destroy() 
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       GUI_txt_3.destroy() 

      else: 

       1 

      global val_save 

      global Sb 

      global sub_frame_1 

      global sub_frame_2 

      global m_des 

      count = 0 

      count_2 = 2 

      count_3 = 1 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      main_figure = main_figure_3 

      main = main_figure[val_save] 

      w_main, h_main = main.size 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

      mass_H2O.destroy() 

      work_AC.destroy() 

      heat_regen.destroy() 
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      des_amount.destroy() 

      COP.destroy() 

      mass_H2O_reclaimed.destroy() 

      s = " " 

      mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open 

Sans", 15)) 

      mass_H2O.place(x=5, y=(h_frame + 61), 

anchor="nw") 

      mass_H2O_reclaimed = Label(window, 

bg='white', text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open 

Sans", 15)) 

      mass_H2O_reclaimed.place(x=(w_frame + 

100)/2., y=(h_frame + 131), anchor="n") 

      work_AC = Label(window, bg='white', 

text=s.join(("AC work: ", str(round(W_des/1000., 2)), "kJ")), font=("Open Sans", 15)) 

      work_AC.place(x=(w_frame-35)/2., 

y=(h_frame + 61), anchor="n") 

      des_amount = Label(window, bg='white', 

text=s.join(("Required desiccant: ", str(round(m_des*1000., 2)), "g")), font=("Open 

Sans", 15)) 

      des_amount.place(x=5, y=(h_frame + 131), 

anchor="nw") 

      Sb.destroy() 

      Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

      Sb.set(val_save*delta_t) 

      Sb.place(relx=0,rely=1,anchor='sw') 

      Sb_2 = 

Scale(window,orient=VERTICAL,bg='white',from_=140,to=(T_HX_preheat_o - 

273.15),command=slider_des,length=(h/2. - 70),resolution=1) 

      Sb_2.set(T_HX_preheat_o - 273.15) 

      Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h - 

20),anchor='s') 

      sub_frame_1.destroy() 

      sub_frame_1=Frame(window,width=(w - 

w_frame - 30),height=h/2.,bg='white') 

     

 sub_frame_1.place(relx=1,rely=0,anchor='ne') 

       

      f = Figure(figsize=((w - w_frame - 30)/100., 

h/200), dpi=100) 

      a = f.add_subplot(111) 
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      a.plot([s_1_des, s_2_des, s_3_des, s_g_des, 

s_4_des, s_1_des],[T_1_des, T_1_des, T_3_des, T_4_des, T_4_des, T_1_des], 

label='Refrigerant', color='orange') 

      a.plot(s_array,T_array, color='k') 

 

      # a tk.DrawingArea 

      canvas = FigureCanvasTkAgg(f, 

master=sub_frame_1) 

      canvas.show() 

      canvas.get_tk_widget().pack(side=TOP, 

expand=0) 

 

      toolbar = 

NavigationToolbar2TkAgg(canvas, sub_frame_1) 

      toolbar.update() 

      canvas._tkcanvas.pack(side=TOP, 

expand=0) 

       

    Button(window, text='Desiccant + Vapor Compression', 

command=des_button, bg='white', font=("Open Sans", 10)).place(x=int(w_main/2.), y=(h 

- 25), anchor='s') #Desiccant button 

     

    def NIPAAm_button(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     global mass_H2O 

     global work_AC 

     global heat_regen 

     global W_NIPAAm 

     global Q_regen_NIPAAm 

     global des_amount 

     global COP 

     global t_f 

     global delta_t 

     global percent_evap 
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     global T_start 

     global T_stop 

     global GUI_txt_1 

     global GUI_txt_2 

     global GUI_txt_3 

     #global canvas_image 

     if count_2 == 3: 

      1 

     else: 

      global val_save 

      global Sb 

      global Sb_2 

      global Sb_3 

      global Sb_4 

      global sub_frame_1 

      global sub_frame_2 

      global m_NIPAAm 

      if count_2 == 2: 

       Sb_2.destroy() 

      else: 

       1 

      count = 0 

      count_2 = 3 

      count_3 = 1 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      main_figure = main_figure_5 

      main = main_figure[val_save] 

      w_main, h_main = main.size 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 
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      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

      mass_H2O.destroy() 

      work_AC.destroy() 

      heat_regen.destroy() 

      des_amount.destroy() 

      COP.destroy() 

      s = " " 

      mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open 

Sans", 15)) 

      mass_H2O.place(x=5, y=(h_frame + 61), 

anchor="nw") 

      work_AC = Label(window, bg='white', 

text=s.join(("AC work: ", str(round(W_NIPAAm/1000., 2)), "kJ")), font=("Open Sans", 

15)) 

      work_AC.place(x=(w_frame-35)/2., 

y=(h_frame + 61), anchor="n") 

      des_amount = Label(window, bg='white', 

text=s.join(("Required NIPAAm: ", str(round(m_NIPAAm*1000., 2)), "g")), 

font=("Open Sans", 15)) 

      des_amount.place(x=5, y=(h_frame + 131), 

anchor="nw") 

      Sb.destroy() 

      Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

      Sb.set(val_save*delta_t) 

      Sb.place(relx=0,rely=1,anchor='sw') 

      percent_evap = 0 

      T_start = 20 + 273.15 

      T_stop = 20 + 273.15 

      Sb_2 = 

Scale(window,orient=VERTICAL,bg='white',from_=100,to=0,command=slider_NIPAA

m,length=(h/2. - 70),resolution=1) 

      Sb_2.set(0) 
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      Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h - 

20),anchor='s') 

      Sb_3 = 

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm - 

273.15),to=0,command=slider_NIPAAm_2,length=(h/2. - 70),resolution=1) 

      Sb_3.set(0) 

      Sb_3.place(relx=1,y=(h - 20),anchor='se') 

      Sb_4 = 

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm - 

273.15),to=0,command=slider_NIPAAm_3,length=(h/2. - 70),resolution=1) 

      Sb_4.set(0) 

      Sb_4.place(x=(w_frame + 30),y=(h - 

20),anchor='sw') 

      GUI_txt_1 = Label(window, bg='white', 

text="Start", font=("Open Sans", 12)) 

      GUI_txt_1.place(x=(w_frame + 

30),rely=1,anchor='sw') 

      GUI_txt_2 = Label(window, bg='white', 

text="Percent Evaporated", font=("Open Sans", 12)) 

      GUI_txt_2.place(x=(w_frame + 30 + 

w)/2.,rely=1,anchor='s') 

      GUI_txt_3 = Label(window, bg='white', 

text="Stop", font=("Open Sans", 12)) 

      GUI_txt_3.place(relx=1,rely=1,anchor='se') 

      sub_frame_1.destroy() 

      sub_frame_1=Frame(window,width=(w - 

w_frame - 30),height=h/2.,bg='white') 

     

 sub_frame_1.place(relx=1,rely=0,anchor='ne') 

       

      f = Figure(figsize=((w - w_frame - 30)/100., 

h/200), dpi=100) 

      a = f.add_subplot(111) 

 

      a.plot([s_1_NIPAAm, s_2_NIPAAm, 

s_3_NIPAAm, s_g_NIPAAm, s_4_NIPAAm, s_1_NIPAAm],[T_1_NIPAAm, 

T_1_NIPAAm, T_3_NIPAAm, T_4_NIPAAm, T_4_NIPAAm, T_1_NIPAAm], 

label='Refrigerant', color='orange') 

      a.plot(s_array,T_array, color='k') 

 

      # a tk.DrawingArea 

      canvas = FigureCanvasTkAgg(f, 

master=sub_frame_1) 

      canvas.show() 
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      canvas.get_tk_widget().pack(side=TOP, 

expand=0) 

 

      toolbar = 

NavigationToolbar2TkAgg(canvas, sub_frame_1) 

      toolbar.update() 

      canvas._tkcanvas.pack(side=TOP, 

expand=0) 

       

    Button(window, text='NIPAAm + Vapor Compression', 

command=NIPAAm_button, bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h 

- 25), anchor='se') #NIPAAm button 

     

     

    hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

    hbar.pack(side=BOTTOM,fill=X) 

    hbar.config(command=main_canvas.xview) 

    vbar=Scrollbar(main_frame,orient=VERTICAL) 

    vbar.pack(side=RIGHT,fill=Y) 

    vbar.config(command=main_canvas.yview) 

    main_canvas.config(width=w_main,height=h_main) 

    main_canvas.config(xscrollcommand=hbar.set, 

yscrollcommand=vbar.set) 

    main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

    canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

    val_save = 0 

    def slider(val): 

     global val_save 

     global count 

     global delta_t 

     main_canvas.delete("all") 

     main = main_figure[int(float(val)/delta_t)] 

     w_main, h_main = main.size 

     if count == 0: 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

     else: 

      1 

     w_main, h_main = main.size 

     main = ImageTk.PhotoImage(main) 

     main.image = main 

     canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 
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     val_save = int(float(val)/delta_t) 

    Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

    Sb.place(relx=0,rely=1,anchor='sw') 

    def slider_NIPAAm(val): 

     global m_NIPAAm 

     global delta_m_h2o 

     global h_fg_NIPAAm 

     global heat_regen 

     global COP 

     global mass_H2O_reclaimed 

     global percent_evap 

     global T_start 

     global T_stop 

     global c_p_NIPAAm_dry 

     global c_p_NIPAAm_wet 

     global T_regen_NIPAAm 

     global COP_AC_NIPAAm 

     global t_f 

     heat_regen.destroy() 

     COP.destroy() 

     mass_H2O_reclaimed.destroy() 

     percent_evap = float(val) 

     regeneration_energy = 

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet + 

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100. + (T_regen_NIPAAm - 

T_start)*c_p_NIPAAm_dry/COP_AC_NIPAAm)*t_f 

     heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

     heat_regen.place(x=(w_frame - 30), y=(h_frame + 

61), anchor="ne") 

     COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + regeneration_energy)), 

2)))), font=("Open Sans", 15)) 

     COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

     mass_H2O_reclaimed = Label(window, bg='white', 

text=s.join(("Water reclaimed: ", str(round(delta_m_h2o*(1 - float(val)/100.)*1000, 2)), 

"g")), font=("Open Sans", 15)) 

     mass_H2O_reclaimed.place(x=(w_frame + 100)/2., 

y=(h_frame + 131), anchor="n") 

    def slider_NIPAAm_2(val): 
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     global m_NIPAAm 

     global h_fg_NIPAAm 

     global heat_regen 

     global COP 

     global mass_H2O_reclaimed 

     global percent_evap 

     global T_start 

     global T_stop 

     global c_p_NIPAAm_dry 

     global c_p_NIPAAm_wet 

     global T_regen_NIPAAm 

     global COP_AC_NIPAAm 

     heat_regen.destroy() 

     COP.destroy() 

     T_stop = float(val) + 273.15 

     regeneration_energy = 

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet + 

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100. + (T_regen_NIPAAm - 

T_start)*c_p_NIPAAm_dry/COP_AC_NIPAAm)*t_f 

     heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

     heat_regen.place(x=(w_frame - 30), y=(h_frame + 

61), anchor="ne") 

     COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + regeneration_energy)), 

2)))), font=("Open Sans", 15)) 

     COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

    def slider_NIPAAm_3(val): 

     global m_NIPAAm 

     global h_fg_NIPAAm 

     global heat_regen 

     global COP 

     global mass_H2O_reclaimed 

     global percent_evap 

     global T_start 

     global T_stop 

     global c_p_NIPAAm_dry 

     global c_p_NIPAAm_wet 

     global T_regen_NIPAAm 

     global COP_AC_NIPAAm 

     heat_regen.destroy() 

     COP.destroy() 
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     T_start = float(val) + 273.15 

     regeneration_energy = 

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet + 

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100. + (T_regen_NIPAAm - 

T_start)*c_p_NIPAAm_dry/COP_AC_NIPAAm)*t_f 

     heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

     heat_regen.place(x=(w_frame - 30), y=(h_frame + 

61), anchor="ne") 

     COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + regeneration_energy)), 

2)))), font=("Open Sans", 15)) 

     COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

    def slider_des(val): 

     global T_HX_preheat_o 

     global C_p_regen 

     global heat_regen 

     global COP 

     global t_f 

     heat_regen.destroy() 

     COP.destroy() 

     if float(val) == float(round((T_HX_preheat_o - 

273.15),0)): 

      heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(0)*t_f)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

      heat_regen.place(x=(w_frame - 30), 

y=(h_frame + 61), anchor="ne") 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + C_p_regen*(0)*t_f)), 2)))), 

font=("Open Sans", 15)) 

      COP.place(x=(w_frame - 30), y=(h_frame + 

131), anchor="ne") 

     else: 

      heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(float(val) + 273.15 - 

T_HX_preheat_o)*t_f)/1000., 2)), "kJ")), font=("Open Sans", 15)) 

      heat_regen.place(x=(w_frame - 30), 

y=(h_frame + 61), anchor="ne") 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_AC_cool/(W_NIPAAm + C_p_regen*(float(val) + 

273.15 - T_HX_preheat_o)*t_f)), 2)))), font=("Open Sans", 15)) 
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      COP.place(x=(w_frame - 30), y=(h_frame + 

131), anchor="ne") 

    def next_fig(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     #global canvas_image 

     if count == 1: 

      1 

     else: 

      global val_save 

      count = count + 1 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      if count_2 == 1: 

       main_figure = main_figure_2 

      elif count_2 == 2: 

       main_figure = main_figure_4 

      elif count_2 == 3: 

       main_figure = main_figure_6 

      else: 

       1 

      main = main_figure[val_save] 

      w_main, h_main = main.size 

      #main = main.resize([int(w - h/2. - 25), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_frame,height=h_frame,scr

ollregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 
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 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_frame,height=h_frame) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

    Button(window, text='Next Figure', command=next_fig, 

bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h_main + 25), anchor='ne') 

#next figure button 

     

    def prev_fig(): 

     global count 

     global count_2 

     global main_figure 

     global main_frame 

     global main_canvas 

     global canvas_image 

     global vbar 

     global hbar 

     #global canvas_image 

     if count == 0: 

      1 

     else: 

      global val_save 

      count = count - 1 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      if count_2 == 1: 

       main_figure = main_figure_1 

      elif count_2 == 2: 

       main_figure = main_figure_3 

      elif count_2 == 3: 

       main_figure = main_figure_5 

      else: 

       1 

      main = main_figure[val_save] 

      w_main, h_main = main.size 
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      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

    Button(window, text='Previous Figure', 

command=prev_fig, bg='white', font=("Open Sans", 10)).place(x=0, y=(h_main + 25), 

anchor='nw') #prev figure button 

     

    count_3 = 1 

     

    def Ts_diag(): 

     global main_figure 

     global main_frame 

     global main_canvas 

     global canvas_image 

     global vbar 

     global hbar 

     global count_3 

     global count_2 

     global sub_frame_1 

     global sub_frame_2 

     #global canvas_image 

     if count_3 == 1: 

      1 
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     else: 

      count_3 = 1 

      sub_frame_2.destroy 

      if count_2 == 1: 

      

 sub_frame_1=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white') 

      

 sub_frame_1.place(relx=1,rely=0,anchor='ne') 

        

       f = Figure(figsize=((w - w_frame - 

30)/100., h/200), dpi=100) 

       a = f.add_subplot(111) 

 

       a.plot([s_1_AC, s_2_AC, s_3_AC, 

s_g_AC, s_4_AC, s_1_AC],[T_1_AC, T_1_AC, T_3_AC, T_4_AC, T_4_AC, T_1_AC], 

label='Refrigerant', color='orange') 

       a.plot(s_array,T_array, color='k') 

 

       # a tk.DrawingArea 

       canvas = FigureCanvasTkAgg(f, 

master=sub_frame_1) 

       canvas.show() 

      

 canvas.get_tk_widget().pack(side=TOP, expand=0) 

 

       toolbar = 

NavigationToolbar2TkAgg(canvas, sub_frame_1) 

       toolbar.update() 

       canvas._tkcanvas.pack(side=TOP, 

expand=0) 

      elif count_2 == 2: 

      

 sub_frame_1=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white') 

      

 sub_frame_1.place(relx=1,rely=0,anchor='ne') 

        

       f = Figure(figsize=((w - w_frame - 

30)/100., h/200), dpi=100) 

       a = f.add_subplot(111) 

 

       a.plot([s_1_des, s_2_des, s_3_des, 

s_g_des, s_4_des, s_1_des],[T_1_des, T_1_des, T_3_des, T_4_des, T_4_des, T_1_des], 

label='Refrigerant', color='orange') 

       a.plot(s_array,T_array, color='k') 
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       # a tk.DrawingArea 

       canvas = FigureCanvasTkAgg(f, 

master=sub_frame_1) 

       canvas.show() 

      

 canvas.get_tk_widget().pack(side=TOP, expand=0) 

 

       toolbar = 

NavigationToolbar2TkAgg(canvas, sub_frame_1) 

       toolbar.update() 

       canvas._tkcanvas.pack(side=TOP, 

expand=0) 

      elif count_2 == 3: 

       sub_frame_1.destroy() 

      

 sub_frame_1=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white') 

      

 sub_frame_1.place(relx=1,rely=0,anchor='ne') 

        

       f = Figure(figsize=((w - w_frame - 

30)/100., h/200), dpi=100) 

       a = f.add_subplot(111) 

 

       a.plot([s_1_NIPAAm, 

s_2_NIPAAm, s_3_NIPAAm, s_g_NIPAAm, s_4_NIPAAm, 

s_1_NIPAAm],[T_1_NIPAAm, T_1_NIPAAm, T_3_NIPAAm, T_4_NIPAAm, 

T_4_NIPAAm, T_1_NIPAAm], label='Refrigerant', color='orange') 

       a.plot(s_array,T_array, color='k') 

 

       # a tk.DrawingArea 

       canvas = FigureCanvasTkAgg(f, 

master=sub_frame_1) 

       canvas.show() 

      

 canvas.get_tk_widget().pack(side=TOP, expand=0) 

 

       toolbar = 

NavigationToolbar2TkAgg(canvas, sub_frame_1) 

       toolbar.update() 

       canvas._tkcanvas.pack(side=TOP, 

expand=0) 

      else: 

       1 
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    Button(window, text='T-s', command=Ts_diag, bg='white', 

font=("Open Sans", 10)).place(x=(w_frame + 30), rely=0.5, anchor='nw') #T-s figure 

button 

     

    def Ph_diag(): 

     global main_figure 

     global main_frame 

     global main_canvas 

     global canvas_image 

     global vbar 

     global hbar 

     global count_3 

     global count_2 

     global sub_frame_1 

     global sub_frame_2 

     #global canvas_image 

     if count_3 == 2: 

      1 

     else: 

      count_3 = 2 

      sub_frame_1.destroy 

      if count_2 == 1: 

      

 sub_frame_2=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white') 

      

 sub_frame_2.place(relx=1,rely=0,anchor='ne') 

        

       f_2 = Figure(figsize=((w - w_frame - 

30)/100., h/200), dpi=100) 

       a = f_2.add_subplot(111) 

        

       a.plot(h_array,P_array, color='k') 

       a.plot([h_1_AC, h_2_AC, h_3_AC, 

h_4_AC, h_1_AC],[P_evap_AC, P_evap_AC, P_cond_AC, P_cond_AC, P_evap_AC], 

color='orange') 

       a.set_yscale("log") 

       a.set_xticks([h_1_AC, (h_1_AC + 

h_3_AC)/2., h_3_AC], minor=False) 

 

 

       # a tk.DrawingArea 

       canvas_2 = 

FigureCanvasTkAgg(f_2, master=sub_frame_2) 

       canvas_2.show() 
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 canvas_2.get_tk_widget().pack(side=TOP, expand=0) 

 

       toolbar_2 = 

NavigationToolbar2TkAgg(canvas_2, sub_frame_2) 

       toolbar_2.update() 

       canvas_2._tkcanvas.pack(side=TOP, 

expand=0) 

      elif count_2 == 2: 

      

 sub_frame_2=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white') 

      

 sub_frame_2.place(relx=1,rely=0,anchor='ne') 

        

       f_2 = Figure(figsize=((w - w_frame - 

30)/100., h/200), dpi=100) 

       a = f_2.add_subplot(111) 

        

       a.plot(h_array,P_array, color='k') 

       a.plot([h_1_des, h_2_des, h_3_des, 

h_4_des, h_1_des],[P_evap_des, P_evap_des, P_cond_des, P_cond_des, P_evap_des], 

color='orange') 

       a.set_yscale("log") 

       a.set_xticks([h_1_des, (h_1_des + 

h_3_des)/2., h_3_des], minor=False) 

 

 

       # a tk.DrawingArea 

       canvas_2 = 

FigureCanvasTkAgg(f_2, master=sub_frame_2) 

       canvas_2.show() 

      

 canvas_2.get_tk_widget().pack(side=TOP, expand=0) 

 

       toolbar_2 = 

NavigationToolbar2TkAgg(canvas_2, sub_frame_2) 

       toolbar_2.update() 

       canvas_2._tkcanvas.pack(side=TOP, 

expand=0) 

      elif count_2 == 3: 

      

 sub_frame_2=Frame(window,width=(w - w_frame - 30),height=h/2.,bg='white') 

      

 sub_frame_2.place(relx=1,rely=0,anchor='ne') 
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       f_2 = Figure(figsize=((w - w_frame - 

30)/100., h/200), dpi=100) 

       a = f_2.add_subplot(111) 

        

       a.plot(h_array,P_array, color='k') 

       a.plot([h_1_NIPAAm, 

h_2_NIPAAm, h_3_NIPAAm, h_4_NIPAAm, h_1_NIPAAm],[P_evap_NIPAAm, 

P_evap_NIPAAm, P_cond_NIPAAm, P_cond_NIPAAm, P_evap_NIPAAm], 

color='orange') 

       a.set_yscale("log") 

       a.set_xticks([h_1_NIPAAm, 

(h_1_NIPAAm + h_3_NIPAAm)/2., h_3_NIPAAm], minor=False) 

 

 

       # a tk.DrawingArea 

       canvas_2 = 

FigureCanvasTkAgg(f_2, master=sub_frame_2) 

       canvas_2.show() 

      

 canvas_2.get_tk_widget().pack(side=TOP, expand=0) 

 

       toolbar_2 = 

NavigationToolbar2TkAgg(canvas_2, sub_frame_2) 

       toolbar_2.update() 

       canvas_2._tkcanvas.pack(side=TOP, 

expand=0) 

      else: 

       1 

    Button(window, text='P-h', command=Ph_diag, bg='white', 

font=("Open Sans", 10)).place(relx=1, rely=0.5, anchor='ne') #P-h figure button 

     

     

    sub_frame_1=Frame(window,width=(w - w_frame - 

30),height=h/2.,bg='white') 

    sub_frame_1.place(relx=1,rely=0,anchor='ne') 

     

    f = Figure(figsize=((w - w_frame - 30)/100., h/200), 

dpi=100) 

    a = f.add_subplot(111) 

 

    a.plot([s_1_AC, s_2_AC, s_3_AC, s_g_AC, s_4_AC, 

s_1_AC],[T_1_AC, T_1_AC, T_3_AC, T_4_AC, T_4_AC, T_1_AC], 

label='Refrigerant', color='orange') 
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    a.plot(s_array,T_array, color='k') 

 

    # a tk.DrawingArea 

    canvas = FigureCanvasTkAgg(f, master=sub_frame_1) 

    canvas.show() 

    canvas.get_tk_widget().pack(side=TOP, expand=0) 

 

    toolbar = NavigationToolbar2TkAgg(canvas, sub_frame_1) 

    toolbar.update() 

    canvas._tkcanvas.pack(side=TOP, expand=0) 

     

     

 

    

    

  elif v.get() == 2: 

   window_5_title = Label(window, bg='white', text='Input Values', 

font=("Open Sans Bold", 25)) 

   window_5_title.place(x=w/2., y=0, anchor="n") 

 

   window_5_underline = Label(window, bg='white', 

text='___________________________________________________________________

____________________', font=("Open Sans Bold", 25)) 

   window_5_underline.place(x=w/2., y=50, anchor="n") 

   text_1 = Label(window, bg='white', text='Thermostat Set 

Temperature', font=("Open Sans", 15)) 

   text_1.place(relx=0.5, rely=0.38, anchor="e") 

   text_2 = Label(window, bg='white', text='Initial Indoor Air 

Humidity Ratio', font=("Open Sans", 15)) 

   text_2.place(relx=0.5, rely=0.42, anchor="e") 

   text_3 = Label(window, bg='white', text='Outside Air 

Temperature', font=("Open Sans", 15)) 

   text_3.place(relx=0.5, rely=0.54, anchor="e") 

   text_4 = Label(window, bg='white', text='Outside Air Humidity 

Ratio', font=("Open Sans", 15)) 

   text_4.place(relx=0.5, rely=0.58, anchor="e") 

   text_5 = Label(window, bg='white', text='AC Outlet Air 

Temperature', font=("Open Sans", 15)) 

   text_5.place(relx=0.5, rely=0.46, anchor="e") 

   text_6 = Label(window, bg='white', text='AC Outlet Air Humidity 

Ratio', font=("Open Sans", 15)) 

   text_6.place(relx=0.5, rely=0.50, anchor="e") 

   text_7 = Label(window, bg='white', text='Percent Supply Air from 

Outside', font=("Open Sans", 15)) 
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   text_7.place(relx=0.5, rely=0.62, anchor="e") 

   txt_1 = Entry(window,width=20) 

   txt_1.insert(INSERT,"294.59444") 

   txt_1.place(relx=0.5, rely=0.38, anchor=W) 

   txt_2 = Entry(window,width=20) 

   txt_2.insert(INSERT,"0.008164972225996216") 

   txt_2.place(relx=0.5, rely=0.42, anchor=W) 

   txt_3 = Entry(window,width=20) 

   txt_3.insert(INSERT,"298.15") 

   txt_3.place(relx=0.5, rely=0.54, anchor=W) 

   txt_4 = Entry(window,width=20) 

   txt_4.insert(INSERT,"0.02009") 

   txt_4.place(relx=0.5, rely=0.58, anchor=W)  

   txt_5 = Entry(window,width=20) 

   txt_5.insert(INSERT,"284.15") 

   txt_5.place(relx=0.5, rely=0.46, anchor=W) 

   txt_6 = Entry(window,width=20) 

   txt_6.insert(INSERT,"0.008164972225996216") 

   txt_6.place(relx=0.5, rely=0.50, anchor=W) 

   txt_7 = Entry(window,width=20) 

   txt_7.insert(INSERT,"50") 

   txt_7.place(relx=0.5, rely=0.62, anchor=W) 

    

   def fifth_window(): 

    #Evap Cooling 

    global count 

    global count_2 

    global canvas_image 

    global main_figure 

    global main_frame 

    global main_canvas 

    global w_frame 

    global h_frame 

    global vbar 

    global hbar 

    global val_save 

    global T_set 

    global x_i 

    global T_outside 

    global x_outside 

    global T_air_o 

    global x_air_o 

    global Sb 

    global mass_H2O 
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    global heat_regen 

    global Q_regen_NIPAAm 

    global h_fg_NIPAAm 

    global delta_m_h2o 

    global des_amount 

    global COP 

    global sub_frame_1 

    global sub_frame_2 

    global t_f 

    global delta_t 

    global T_HX_preheat_o 

    global C_p_regen 

    global Sb_2 

    global line 

    global x_HX_preheat_o 

    global a 

    global canvas 

    global Q_useful 

    global mass_H2O_reclaimed 

    global delta_x_dehum 

    global T_dehum_slope 

    global T_regen_NIPAAm 

    global c_p_NIPAAm_dry 

    global c_p_NIPAAm_wet 

    global m_des 

    global m_NIPAAm 

    global percent_vent 

    [delta_t, t_f, T_h_array_des, x_h_array_des, 

T_duct_array_des, x_duct_array_des, T_return_array_des, 

x_return_array_des,t_f_NIPAAm, T_h_array_NIPAAm, x_h_array_NIPAAm, 

T_duct_array_NIPAAm, x_duct_array_NIPAAm, T_return_array_NIPAAm, 

x_return_array_NIPAAm, delta_m_h2o, h2o_des, h2o_NIPAAm, c_p_NIPAAm_dry, 

c_p_NIPAAm_wet, 

h_fg_NIPAAm,T_HX_preheat_i,T_HX_preheat_o,x_HX_preheat_o,C_p_regen,T_air_A

H,T_air_to_HX,T_air_to_AC,T_air_o,x_AH,x_dehum,x_dehum,x_air_o,Q_useful,m_h2

o_used,omega,m_NIPAAm,m_des,delta_C_NIPAAm] = 

house_air_evap_cool(T_set,x_i,T_outside,x_outside,T_air_o,x_air_o,percent_vent) 

    T_regen_NIPAAm = 32 + 273.15 

    delta_x_dehum = (x_AH - x_dehum) 

    T_dehum_slope = (T_air_to_HX - 

T_air_AH)/delta_x_dehum 

    final_index_3 = len(T_h_array_des) 

    final_index_5 = len(T_h_array_NIPAAm) 

    main_figure_3 = [] 
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    main_figure_4 = [] 

    main_figure_5 = [] 

    main_figure_6 = [] 

    img_4 = 

Image.open('output\psychrom\psychrom_desiccant_out.png') 

    img_6 = 

Image.open('output\psychrom\psychrom_NIPAAm_out.png') 

    for ind in range(final_index_3): 

     img_3 = Image.open('diag3.png') 

     draw = ImageDraw.Draw(img_3) 

     s = " " 

     seq = ("T = ", str(round(T_h_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_i_str = s.join(seq) 

     seq = ("T = ", str(round(T_return_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_r_str = s.join(seq) 

     seq = ("T = ", str(round(T_duct_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_f_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_return_array_des[ind]*1000, 2)), "g/kg") 

     x_r_str = s.join(seq) 

     seq = ("x = ", str(round(x_h_array_des[ind]*1000, 

2)), "g/kg") 

     x_i_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg") 

     x_f_str = s.join(seq) 

     seq = ("T = ", str(round(T_outside - 273.15, 2)), 

u'\xb0'"C") 

     T_out_str = s.join(seq) 

     seq = ("x = ", str(round(x_outside*1000, 2)), 

"g/kg") 

     x_out_str = s.join(seq) 

     draw.text((1015,318), T_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,513), T_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,132), T_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((1015,348), x_i_str, font = fnt, fill = 

(0,0,0)) 
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     draw.text((960,543), x_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,162), x_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((465,463), T_out_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((465,493), x_out_str, font = fnt, fill = 

(0,0,0)) 

     main_figure_3.append(img_3) 

     main_figure_4.append(img_4) 

    for ind in range(final_index_5): 

     img_5 = Image.open('diag4.png') 

     draw = ImageDraw.Draw(img_5) 

     s = " " 

     seq = ("T = ", str(round(T_h_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_i_str = s.join(seq) 

     seq = ("T = ", str(round(T_return_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_r_str = s.join(seq) 

     seq = ("T = ", str(round(T_duct_array_des[ind] - 

273.15, 2)), u'\xb0'"C") 

     T_f_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_return_array_des[ind]*1000, 2)), "g/kg") 

     x_r_str = s.join(seq) 

     seq = ("x = ", str(round(x_h_array_des[ind]*1000, 

2)), "g/kg") 

     x_i_str = s.join(seq) 

     seq = ("x = ", 

str(round(x_duct_array_des[ind]*1000, 2)), "g/kg") 

     x_f_str = s.join(seq) 

     seq = ("T = ", str(round(T_outside - 273.15, 2)), 

u'\xb0'"C") 

     T_out_str = s.join(seq) 

     seq = ("x = ", str(round(x_outside*1000, 2)), 

"g/kg") 

     x_out_str = s.join(seq) 

     draw.text((1015,318), T_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,513), T_r_str, font = fnt, fill = 

(0,0,0)) 
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     draw.text((960,132), T_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((1015,348), x_i_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,543), x_r_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((960,162), x_f_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((5,21), T_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((5,43), x_out_str, font = fnt, fill = (0,0,0)) 

     draw.text((465,463), T_out_str, font = fnt, fill = 

(0,0,0)) 

     draw.text((465,493), x_out_str, font = fnt, fill = 

(0,0,0)) 

     main_figure_5.append(img_5) 

     main_figure_6.append(img_6) 

    count = 0 

    count_2 = 2 

    main_figure = main_figure_3 

    main = main_figure[0] 

    w_main, h_main = main.size 

    main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

    w_main, h_main = main.size 

    w_frame = w_main 

    h_frame = h_main 

    s = " " 

    mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open 

Sans", 15)) 

    mass_H2O.place(x=5, y=(h_frame + 61), anchor="nw") 

    mass_H2O_used = Label(window, bg='white', 

text=s.join(("Water consumed: ", str(round(m_h2o_used*1000, 2)), "g")), font=("Open 

Sans", 15)) 

    mass_H2O_used.place(x=(w_frame-60)/2., y=(h_frame + 

61), anchor="n") 

    mass_H2O_reclaimed = Label(window, bg='white', 

text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open Sans", 15)) 

    mass_H2O_reclaimed.place(x=(w_frame + 100)/2., 

y=(h_frame + 131), anchor="n") 

    des_amount = Label(window, bg='white', 

text=s.join(("Required desiccant: ", str(round(m_des*1000., 2)), "g")), font=("Open 

Sans", 15)) 

    des_amount.place(x=5, y=(h_frame + 131), anchor="nw") 
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    heat_regen = Label(window, bg='white', text="", 

font=("Open Sans", 15)) 

    COP = Label(window, bg='white', text="", font=("Open 

Sans", 15)) 

    main = ImageTk.PhotoImage(main) 

    main.image = main 

   

 main_frame=Frame(window,width=w_main,height=h_main) 

    main_frame.grid(row=0,column=0) 

   

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

    def des_button(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     global mass_H2O 

     global heat_regen 

     global des_amount 

     global COP 

     global t_f 

     global delta_t 

     global mass_H2O_reclaimed 

     global percent_evap 

     global T_start 

     global T_stop 

     global GUI_txt_1 

     global GUI_txt_2 

     global GUI_txt_3 

     global m_des 

     #global canvas_image 

     if count_2 == 2: 

      1 

     else: 

      global Sb_2 

      global Sb_3 
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      global Sb_4 

      if count_2 == 3: 

       Sb_2.destroy() 

       Sb_3.destroy() 

       Sb_4.destroy() 

       GUI_txt_1.destroy() 

       GUI_txt_2.destroy() 

       GUI_txt_3.destroy() 

      else: 

       1 

      global val_save 

      global Sb 

      global sub_frame_1 

      global sub_frame_2 

      global a 

      global canvas 

      global line 

      line, = a.plot([T_HX_preheat_o - 

273.15,T_HX_preheat_o - 273.15],[x_HX_preheat_o,x_HX_preheat_o], color='pink') 

      canvas.draw() 

      count = 0 

      count_2 = 2 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      main_figure = main_figure_3 

      main = main_figure[val_save] 

      w_main, h_main = main.size 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 
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 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

      mass_H2O.destroy() 

      heat_regen.destroy() 

      des_amount.destroy() 

      COP.destroy() 

      mass_H2O_reclaimed.destroy() 

      s = " " 

      mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open 

Sans", 15)) 

      mass_H2O.place(x=5, y=(h_frame + 61), 

anchor="nw") 

      mass_H2O_reclaimed = Label(window, 

bg='white', text=s.join(("Water reclaimed: ", str(round(0*1000, 2)), "g")), font=("Open 

Sans", 15)) 

      mass_H2O_reclaimed.place(x=(w_frame + 

100)/2., y=(h_frame + 131), anchor="n") 

      des_amount = Label(window, bg='white', 

text=s.join(("Required desiccant: ", str(round(m_des*1000., 2)), "g")), font=("Open 

Sans", 15)) 

      des_amount.place(x=5, y=(h_frame + 131), 

anchor="nw") 

      Sb.destroy() 

      Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

      Sb.set(val_save*delta_t) 

      Sb.place(relx=0,rely=1,anchor='sw') 

      Sb_2 = 

Scale(window,orient=VERTICAL,bg='white',from_=140,to=(T_HX_preheat_o - 

273.15),command=slider_des,length=(h/2. - 70),resolution=1) 

      Sb_2.set(T_HX_preheat_o - 273.15) 

      Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h - 

20),anchor='s') 

       



154 

 

    Button(window, text='Desiccant + Evaporative Cooling', 

command=des_button, bg='white', font=("Open Sans", 10)).place(x=0, y=(h - 25), 

anchor='sw') #Desiccant button 

     

    def NIPAAm_button(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     global mass_H2O 

     global heat_regen 

     global Q_regen_NIPAAm 

     global des_amount 

     global COP 

     global t_f 

     global delta_t 

     global a 

     global canvas 

     global percent_evap 

     global T_start 

     global T_stop 

     global GUI_txt_1 

     global GUI_txt_2 

     global GUI_txt_3 

     global Sb_3 

     global Sb_4 

     global m_NIPAAm 

     #global canvas_image 

     if count_2 == 3: 

      1 

     else: 

      global val_save 

      global Sb 

      global Sb_2 

      global sub_frame_1 

      global sub_frame_2 

      if count_2 == 2: 

       Sb_2.destroy() 
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      else: 

       1 

      count = 0 

      count_2 = 3 

      line.remove() 

      canvas.draw() 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      main_figure = main_figure_5 

      main = main_figure[val_save] 

      w_main, h_main = main.size 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

      mass_H2O.destroy() 

      heat_regen.destroy() 

      des_amount.destroy() 

      COP.destroy() 

      s = " " 

      mass_H2O = Label(window, bg='white', 

text=s.join(("Absorbed water: ", str(round(delta_m_h2o*1000, 2)), "g")), font=("Open 

Sans", 15)) 
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      mass_H2O.place(x=5, y=(h_frame + 61), 

anchor="nw") 

      des_amount = Label(window, bg='white', 

text=s.join(("Required NIPAAm: ", str(round(m_NIPAAm*1000., 2)), "g")), 

font=("Open Sans", 15)) 

      des_amount.place(x=5, y=(h_frame + 131), 

anchor="nw") 

      Sb.destroy() 

      Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

      Sb.set(val_save*delta_t) 

      Sb.place(relx=0,rely=1,anchor='sw') 

      percent_evap = 0 

      T_start = 20 + 273.15 

      T_stop = 20 + 273.15 

      Sb_2 = 

Scale(window,orient=VERTICAL,bg='white',from_=100,to=0,command=slider_NIPAA

m,length=(h/2. - 70),resolution=1) 

      Sb_2.set(0) 

      Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h - 

20),anchor='s') 

      Sb_3 = 

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm - 

273.15),to=0,command=slider_NIPAAm_2,length=(h/2. - 70),resolution=1) 

      Sb_3.set(0) 

      Sb_3.place(relx=1,y=(h - 20),anchor='se') 

      Sb_4 = 

Scale(window,orient=VERTICAL,bg='white',from_=(T_regen_NIPAAm - 

273.15),to=0,command=slider_NIPAAm_3,length=(h/2. - 70),resolution=1) 

      Sb_4.set(0) 

      Sb_4.place(x=(w_frame + 30),y=(h - 

20),anchor='sw') 

      GUI_txt_1 = Label(window, bg='white', 

text="Start", font=("Open Sans", 12)) 

      GUI_txt_1.place(x=(w_frame + 

30),rely=1,anchor='sw') 

      GUI_txt_2 = Label(window, bg='white', 

text="Percent Evaporated", font=("Open Sans", 12)) 

      GUI_txt_2.place(x=(w_frame + 30 + 

w)/2.,rely=1,anchor='s') 

      GUI_txt_3 = Label(window, bg='white', 

text="Stop", font=("Open Sans", 12)) 

      GUI_txt_3.place(relx=1,rely=1,anchor='se') 
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    Button(window, text='NIPAAm + Evaporative Cooling', 

command=NIPAAm_button, bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h 

- 25), anchor='se') #NIPAAm button 

     

     

    hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

    hbar.pack(side=BOTTOM,fill=X) 

    hbar.config(command=main_canvas.xview) 

    vbar=Scrollbar(main_frame,orient=VERTICAL) 

    vbar.pack(side=RIGHT,fill=Y) 

    vbar.config(command=main_canvas.yview) 

    main_canvas.config(width=w_main,height=h_main) 

    main_canvas.config(xscrollcommand=hbar.set, 

yscrollcommand=vbar.set) 

    main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

    canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

    val_save = 0 

    def slider(val): 

     global val_save 

     global count 

     global delta_t 

     main_canvas.delete("all") 

     main = main_figure[int(float(val)/delta_t)] 

     w_main, h_main = main.size 

     if count == 0: 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

     else: 

      1 

     w_main, h_main = main.size 

     main = ImageTk.PhotoImage(main) 

     main.image = main 

     canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

     val_save = int(float(val)/delta_t) 

    Sb = 

Scale(window,orient=HORIZONTAL,bg='white',from_=0,to=t_f,command=slider,length

=w_frame,resolution=delta_t) 

    Sb.place(relx=0,rely=1,anchor='sw') 

    def slider_NIPAAm(val): 

     global m_NIPAAm 

     global delta_m_h2o 
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     global h_fg_NIPAAm 

     global heat_regen 

     global COP 

     global mass_H2O_reclaimed 

     global percent_evap 

     global T_start 

     global T_stop 

     global c_p_NIPAAm_dry 

     global c_p_NIPAAm_wet 

     global T_regen_NIPAAm 

     global COP_AC_NIPAAm 

     global t_f 

     heat_regen.destroy() 

     COP.destroy() 

     mass_H2O_reclaimed.destroy() 

     percent_evap = float(val) 

     regeneration_energy = 

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet + 

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100.)*t_f 

     heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

     heat_regen.place(x=(w_frame - 30), y=(h_frame + 

61), anchor="ne") 

     mass_H2O_reclaimed = Label(window, bg='white', 

text=s.join(("Water reclaimed: ", str(round(delta_m_h2o*(1 - float(val)/100.)*1000, 2)), 

"g")), font=("Open Sans", 15)) 

     mass_H2O_reclaimed.place(x=(w_frame + 100)/2., 

y=(h_frame + 131), anchor="n") 

     if regeneration_energy == 0: 

      COP = Label(window, bg='white', 

text="COP: inf", font=("Open Sans", 15)) 

     else: 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_useful/( regeneration_energy)), 2)))), font=("Open 

Sans", 15)) 

     COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

    def slider_NIPAAm_2(val): 

     global m_NIPAAm 

     global h_fg_NIPAAm 

     global heat_regen 

     global COP 

     global mass_H2O_reclaimed 
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     global percent_evap 

     global T_start 

     global T_stop 

     global c_p_NIPAAm_dry 

     global c_p_NIPAAm_wet 

     global T_regen_NIPAAm 

     global COP_AC_NIPAAm 

     heat_regen.destroy() 

     COP.destroy() 

     T_stop = float(val) + 273.15 

     regeneration_energy = 

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet + 

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100.)*t_f 

     heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

     heat_regen.place(x=(w_frame - 30), y=(h_frame + 

61), anchor="ne") 

     if regeneration_energy == 0: 

      COP = Label(window, bg='white', 

text="COP: inf", font=("Open Sans", 15)) 

     else: 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_useful/( regeneration_energy)), 2)))), font=("Open 

Sans", 15)) 

     COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

    def slider_NIPAAm_3(val): 

     global m_NIPAAm 

     global h_fg_NIPAAm 

     global heat_regen 

     global COP 

     global mass_H2O_reclaimed 

     global percent_evap 

     global T_start 

     global T_stop 

     global c_p_NIPAAm_dry 

     global c_p_NIPAAm_wet 

     global T_regen_NIPAAm 

     global COP_AC_NIPAAm 

     heat_regen.destroy() 

     COP.destroy() 

     T_start = float(val) + 273.15 
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     regeneration_energy = 

m_NIPAAm*omega/360.*((T_regen_NIPAAm - T_stop)*c_p_NIPAAm_wet + 

delta_C_NIPAAm*percent_evap*h_fg_NIPAAm/100.)*t_f 

     heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((regeneration_energy)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

     heat_regen.place(x=(w_frame - 30), y=(h_frame + 

61), anchor="ne") 

     if regeneration_energy == 0: 

      COP = Label(window, bg='white', 

text="COP: inf", font=("Open Sans", 15)) 

     else: 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_useful/( regeneration_energy)), 2)))), font=("Open 

Sans", 15)) 

     COP.place(x=(w_frame - 30), y=(h_frame + 131), 

anchor="ne") 

    def slider_des(val): 

     global T_HX_preheat_o 

     global C_p_regen 

     global heat_regen 

     global COP 

     global t_f 

     global line 

     global x_HX_preheat_o 

     global a 

     global canvas 

     global delta_x_dehum 

     global T_dehum_slope 

     line.remove() 

     heat_regen.destroy() 

     COP.destroy() 

     if float(val) == float(round((T_HX_preheat_o - 

273.15),0)): 

      heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(0)*t_f)/1000., 2)), "kJ")), 

font=("Open Sans", 15)) 

      heat_regen.place(x=(w_frame - 30), 

y=(h_frame + 61), anchor="ne") 

      COP = Label(window, bg='white', 

text="COP: inf", font=("Open Sans", 15)) 

      COP.place(x=(w_frame - 30), y=(h_frame + 

131), anchor="ne") 

     else: 
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      heat_regen = Label(window, bg='white', 

text=s.join(("Regeneration energy: ", str(round((C_p_regen*(float(val) + 273.15 - 

T_HX_preheat_o)*t_f)/1000., 2)), "kJ")), font=("Open Sans", 15)) 

      heat_regen.place(x=(w_frame - 30), 

y=(h_frame + 61), anchor="ne") 

      COP = Label(window, bg='white', 

text=s.join(("COP: ", str(round((Q_useful/(C_p_regen*(float(val) + 273.15 - 

T_HX_preheat_o)*t_f)), 2)))), font=("Open Sans", 15)) 

      COP.place(x=(w_frame - 30), y=(h_frame + 

131), anchor="ne") 

     line, = a.plot([T_HX_preheat_o - 

273.15,float(val),(float(val) - 

T_dehum_slope*delta_x_dehum)],[x_HX_preheat_o,x_HX_preheat_o,(x_HX_preheat_o 

+ delta_x_dehum)], color='pink') 

     canvas.draw() 

    def next_fig(): 

     global count 

     global count_2 

     global main_figure 

     global canvas_image 

     global main_frame 

     global main_canvas 

     global w_frame 

     global h_frame 

     global vbar 

     global hbar 

     #global canvas_image 

     if count == 1: 

      1 

     else: 

      global val_save 

      count = count + 1 

      main_canvas.destroy() 

      vbar.destroy() 

      hbar.destroy() 

      if count_2 == 1: 

       main_figure = main_figure_2 

      elif count_2 == 2: 

       main_figure = main_figure_4 

      elif count_2 == 3: 

       main_figure = main_figure_6 

      else: 

       1 

      main = main_figure[val_save] 
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      w_main, h_main = main.size 

      #main = main.resize([int(w - h/2. - 25), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_frame,height=h_frame,scr

ollregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_frame,height=h_frame) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

    Button(window, text='Next Figure', command=next_fig, 

bg='white', font=("Open Sans", 10)).place(x=w_main, y=(h_main + 25), anchor='ne') 

#next figure button 

     

    def prev_fig(): 

     global count 

     global count_2 

     global main_figure 

     global main_frame 

     global main_canvas 

     global canvas_image 

     global vbar 

     global hbar 

     #global canvas_image 

     if count == 0: 

      1 

     else: 

      global val_save 

      count = count - 1 

      main_canvas.destroy() 
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      vbar.destroy() 

      hbar.destroy() 

      if count_2 == 1: 

       main_figure = main_figure_1 

      elif count_2 == 2: 

       main_figure = main_figure_3 

      elif count_2 == 3: 

       main_figure = main_figure_5 

      else: 

       1 

      main = main_figure[val_save] 

      w_main, h_main = main.size 

      main = main.resize([int(w - h/2. - 145), 

int((float(h_main)/w_main)*w*2./3.)], Image.ANTIALIAS) 

      w_main, h_main = main.size 

      main = ImageTk.PhotoImage(main) 

      main.image = main 

     

 main_canvas=Canvas(main_frame,bg='white',width=w_main,height=h_main,scro

llregion=(0,0,w_main,h_main)) 

     

 hbar=Scrollbar(main_frame,orient=HORIZONTAL) 

      hbar.pack(side=BOTTOM,fill=X) 

      hbar.config(command=main_canvas.xview) 

     

 vbar=Scrollbar(main_frame,orient=VERTICAL) 

      vbar.pack(side=RIGHT,fill=Y) 

      vbar.config(command=main_canvas.yview) 

     

 main_canvas.config(width=w_main,height=h_main) 

     

 main_canvas.config(xscrollcommand=hbar.set, yscrollcommand=vbar.set) 

     

 main_canvas.pack(side=LEFT,expand=True,fill=BOTH) 

      canvas_image = 

main_canvas.create_image(0,0,image=main, anchor="nw") 

    Button(window, text='Previous Figure', 

command=prev_fig, bg='white', font=("Open Sans", 10)).place(x=0, y=(h_main + 25), 

anchor='nw') #prev figure button 
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    sub_frame_1=Frame(window,width=(w - w_frame - 

30),height=h/2.,bg='white') 

    sub_frame_1.place(relx=1,rely=0,anchor='ne') 

     

    f = Figure(figsize=((w - w_frame - 30)/100., h/200.), 

dpi=100, tight_layout=True) 

    a = f.add_subplot(111) 

    a.set_xlabel('Temperature (Celsius)') 

    a.set_ylabel('Humidity Ratio (kg/kg)') 

    a.plot([T_air_AH - 273.15,T_air_to_HX - 

273.15,T_air_to_AC - 273.15,T_air_o - 273.15],[x_AH,x_dehum,x_dehum,x_air_o], 

label='Supply Air', color='green') 

    a.plot([T_HX_preheat_i - 273.15,T_HX_preheat_o - 

273.15],[x_HX_preheat_o,x_HX_preheat_o], label='Process Air', color='pink') 

    T_s_curve = [] 

    for x_val in 

np.linspace(x_s(273.15,101325),x_HX_preheat_o*2): 

     T_s_curve.append(T_s(x_val,101325) - 273.15) 

   

 a.plot(T_s_curve,np.linspace(x_s(273.15,101325),x_HX_preheat_o*2), 

label='Saturation Curve', color='black') 

    a.legend() 

    a.set_xlim(0,150) 

    a.set_ylim(0,x_HX_preheat_o*2) 

     

     

    line, = a.plot([T_HX_preheat_o - 273.15,T_HX_preheat_o 

- 273.15],[x_HX_preheat_o,x_HX_preheat_o], color='pink') 

 

    # a tk.DrawingArea 

    canvas = FigureCanvasTkAgg(f, master=sub_frame_1) 

    canvas.show() 

    canvas.get_tk_widget().pack(side=TOP,anchor='nw') 

 

    toolbar = NavigationToolbar2TkAgg(canvas, sub_frame_1) 

    toolbar.update() 

    canvas._tkcanvas.pack(side=TOP, expand=0) 

 

    Sb_2 = 

Scale(window,orient=VERTICAL,bg='white',from_=140,to=(T_HX_preheat_o - 

273.15),command=slider_des,length=(h/2. - 70),resolution=1) 

    Sb_2.set(T_HX_preheat_o - 273.15) 

    Sb_2.place(x=(w_frame + 30 + w)/2.,y=(h - 20),anchor='s') 
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  else: 

   1 

  #Define function to erase window 

  def cont_func(): 

 

   if v.get() == 1: 

    1 

   else: 

    global T_set 

    global x_i 

    global T_outside 

    global x_outside 

    global T_air_o 

    global selection 

    global percent_vent 

    T_set = float(txt_1.get()) 

    x_i = float(txt_2.get()) 

    T_outside = float(txt_3.get()) 

    x_outside = float(txt_4.get()) 

    T_air_o = float(txt_5.get()) 

    percent_vent = float(txt_7.get()) 

    if selection == "Evap": 

     global x_air_o 

     x_air_o = float(txt_6.get()) 

    else: 

     1 

    def all_children (window) : 

     _list = window.winfo_children() 

 

     for item in _list : 

      if item.winfo_children() : 

       _list.extend(item.winfo_children()) 

 

     return _list 

 

    widget_list = all_children(window) 

    for item in widget_list: 

     item.destroy() 

    fifth_window() 

    v.set(0) 

  Button(window, text='Next', command=cont_func, bg='white', 

font=("Open Sans", 20)).place(relx=0.5, rely=0.8, anchor=CENTER) #fourth window 

continue button 

 #Define function to erase window 
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 def cont_func(): 

 

  if v.get() == 0: 

   1 

  else: 

   def all_children (window) : 

    _list = window.winfo_children() 

 

    for item in _list : 

     if item.winfo_children() : 

      _list.extend(item.winfo_children()) 

 

    return _list 

 

   widget_list = all_children(window) 

   for item in widget_list: 

    item.destroy() 

   if v.get() == 2: 

    global selection 

    selection = "Evap" 

   else: 

    selection = "" 

   fourth_window() 

   v.set(0) 

 Button(window, text='Next', command=cont_func, bg='white', font=("Open 

Sans", 20)).place(relx=0.5, rely=0.8, anchor=CENTER) #third window continue button 

 

  

 

#Define function to erase window 

def cont_func(): 

 def all_children (window) : 

  _list = window.winfo_children() 

 

  for item in _list : 

   if item.winfo_children() : 

    _list.extend(item.winfo_children()) 

 

  return _list 

 

 widget_list = all_children(window) 

 for item in widget_list: 

  item.destroy() 

 third_window() 
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 v.set(0) 

Button(window, text='Next', command=cont_func, bg='white', font=("Open Sans", 

20)).place(relx=0.5, rely=0.84, anchor=CENTER) #first window continue button 

 

 

window.mainloop()   
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APPENDIX C 

 

PYTHON CODE FOR “HOUSE_AIR.PY” 
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def 

house_air(T_set,x_i,T_outside,x_outside,T_air_calibrate,x_air_calibrate,T_outside_calibr

ate,x_outside_calibrate,T_air_calibrate_o,percent_vent): 

 import math 

 from CoolProp import CoolProp as CP 

 from scipy.optimize import fsolve 

 from AC import AC 

 from Dehum import Dehum 

 from Psyplot import Psyplot 

 from HX import HX 

 from scipy.interpolate import interp1d 

 from RH import RH 

 from T_s import T_s 

  

 T_air_i = T_set + 5./9. #initial temperature of air within the house [K] 

 x_to_AC = x_i 

 V_tot = 271.84 #total conditioned space volume [m^3] 

 P_air = 101325 #total pressure within conditioned space [Pa] 

 indoor_evap_rate = 0. #no indoor evaporation  

 m_dot_supply = 0.7 #defines the total mass flow rate of supply air [kg/s] 

 m_dot_vent = percent_vent*m_dot_supply/100. #portion of supply air that comes 

from outside [kg/s] 

 h_duct_i = 8.33 #duct interior heat transfer coefficient [W/m^2K] 

 h_duct_o = 0. #duct exterior heat transfer coefficient [W/m^2K] 

 L_duct = 9.14 #length of duct [m] 

 D_duct = 0.1016 #diameter of duct [m] 

 A_duct = math.pi*D_duct*L_duct #surface area of duct [m^2] 

 C_duct = 470*6.404*L_duct #heat capacity of duct [J/K] 

  

 T_regen_NIPAAm = 32 + 273.15 #Regen temperature of NIPAAm, used only to 

find the specific heat of water within the NIPAAm; this value is redefined in GUI.py 

 c_p_des = 960. #desiccant specific heat 

 C_des = 0.4 #absorption capacity of desiccant in kg_water/kg_des 

 c_p_NIPAAm = 960. #NIPAAm specific heat 

 percent_solid_vol = 0.005 #percent of the room volume that is solid 

 V_air = V_tot*(1 - percent_solid_vol) #volume of air within the room 

 V_solid = V_tot*percent_solid_vol #volume of solid within the room 

 c_p_solid = 903600 #volumetric heat capacity of the solid, J/(m^3*K)  

  

 ##The following section models the vapor compression only scenario 

 cooling_mode = "VC" 

 UAs_house = 0 #sets the heat transfer coefficient for house heat gain to zero 

 T_air_initial = T_air_i 

 x_initial = x_i 
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 sys_config = "AC Only" 

 print_query = "no" 

 M_a = 0.028964 #molecular mass of air 

 M_w = 0.018016 #molecular mass of water 

 m_dot_cond = 1.4 #defines the total mass flow rate of air used to cool condenser 

[kg/s] 

 T_h_array_AC = [] 

 x_h_array_AC = [] 

 T_duct_array_AC = [] 

 x_duct_array_AC = [] 

 T_return_array_AC = [] 

 x_return_array_AC = [] 

  

 #models the mixing of supply air at the beginning of the process 

 x_AH = (m_dot_vent*x_outside + (m_dot_supply - 

m_dot_vent)*x_i)/(m_dot_supply) 

 T_air_AH = (m_dot_vent*T_outside*(CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'Q',1,"Water")) + (m_dot_supply - 

m_dot_vent)*T_air_i*(CP.PropsSI('C','T',(T_air_i + T_outside)/2.,'P',101325,"Air") + 

x_i*CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'P',101325,"Air") + x_AH*CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'Q',1,"Water"))) 

 T_air_to_AC = T_air_AH 

 x_to_AC = x_AH 

  

 #Calls the vapor compression model 

 [T_air_o,x_air_o,m_dot_supply,P_air,W_dot_comp,T_1_AC,T_3_AC,T_4_AC,s

_1_AC,s_2_AC,s_3_AC,s_4_AC,s_g_AC,P_evap_AC,P_cond_AC,h_1_AC,h_2_AC,h_

3_AC,h_4_AC,Q_dot_cool,s_array,T_array,h_array,P_array,dummy] = 

AC(T_air_to_AC,x_to_AC,T_outside,x_outside,T_air_calibrate_o,print_query,sys_confi

g,m_dot_supply,m_dot_cond) 

  

 rho_a = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air") #density of dry air [kg/m^3] 

 m_w = V_air*rho_a*(1. + x_i)/((1. + x_i*M_a/M_w)*(1. + 1./x_i)) #mass of 

water in air [kg] 

 m_w_initial = m_w 

 rho_tot = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air")*(1 + x_i)/((1 + 

x_i*M_a/M_w)) #density of moist air [kg/m^3] 

 m_h = V_air*rho_tot #mass of moist air [kg] 

 m_a = m_h - m_w #mass of dry air [kg] 

 m_a_initial = m_a 

 delta_t = 1. #time step [s] 
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 t_f_AC = 0 

 T_duct = T_air_i #initial temperature of the duct [K] 

 U_duct = (h_duct_i*h_duct_o)/(h_duct_i + h_duct_o) #heat transfer coefficient of 

the duct [W/m^2K] 

 T_ss = T_air_i + (T_air_o - T_air_i)*math.exp(-

U_duct*A_duct/(m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") + 

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. + 

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") + 

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #steady state temperature of the duct [K] 

 T_h_array_AC.append(T_air_i) 

 x_h_array_AC.append(x_i) 

 T_duct_array_AC.append(T_duct) 

 x_duct_array_AC.append(x_air_o) 

 T_return_array_AC.append(T_air_i) 

 x_return_array_AC.append(x_i) 

 delta_m_h2o = 0. #initial amount of water vapor that has been condensed from air 

[kg] 

  

 #the transient loop for the air within the house 

 while T_air_i >= (T_set - 5./9.): 

  m_w = m_w + delta_t*(m_dot_supply*(x_air_o - x_initial)  + 

indoor_evap_rate) #mass of water in air at new time step 

  x_i = m_w/m_a #humidity ratio at new time step 

  T_duct = T_duct + delta_t*(T_ss - T_duct)/(h_duct_i*C_duct/((h_duct_i + 

h_duct_o)*m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") + 

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. + 

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") + 

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #temperature of duct at new time step 

  T_duct_array_AC.append(T_duct) 

  T_air_i = 

(m_dot_supply*T_duct*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_air_o*CP.PropsSI('C','T',T_set,'Q',1,"Water"))*(t_f_AC + delta_t) + (m_a_initial - 

m_dot_supply*(t_f_AC + 

delta_t))*T_air_initial*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_initial*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + 

V_solid*c_p_solid*T_air_initial)/(m_a*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_i*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + V_solid*c_p_solid) + 

UAs_house*(T_outside - T_air_i)/((m_a*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_i*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + V_solid*c_p_solid)*delta_t) #average 

temperature within the house at new time step 

  T_h_array_AC.append(float(T_air_i)) 

  x_h_array_AC.append(x_i) 

  x_duct_array_AC.append(x_air_o) 

  T_return_array_AC.append(T_return_array_AC[0]) 
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  x_return_array_AC.append(x_return_array_AC[0]) 

  delta_m_h2o = delta_m_h2o + m_dot_supply*(x_AH - x_air_o)*delta_t 

#amount of water dehumidified within the time step 

  t_f_AC = t_f_AC + delta_t #total time after time step 

 Q_dot_cool = m_dot_supply*((CP.PropsSI('H','T',T_air_initial,'P',P_air,"Air") + 

x_initial*CP.PropsSI('H','T',T_air_initial,'Q',1,"Water")) - 

(CP.PropsSI('H','T',T_air_o,'P',P_air,"Air") + 

x_air_o*CP.PropsSI('H','T',T_air_o,'Q',1,"Water"))) #rate cooling experienced by the 

conditioned space 

 W_AC = W_dot_comp*t_f_AC #required compressor power 

 Q_AC_cool = Q_dot_cool*t_f_AC #total cooling energy 

   

 ##The following section models the desiccant dehumidification + vapor 

compression cooling config 

 sys_config = "Desiccant" 

 T_air_i = T_air_initial 

 T_duct = T_air_initial 

 m_w = m_w_initial 

 x_i = x_initial 

 T_h_array_des = [] 

 x_h_array_des = [] 

 T_duct_array_des = [] 

 x_duct_array_des = [] 

 T_return_array_des = [] 

 x_return_array_des = [] 

  

 #mixing of the process air 

 x_HX_preheat_i = (m_dot_vent*x_initial + (m_dot_supply - 

m_dot_vent)*x_outside)/(m_dot_supply) 

 T_HX_preheat_i = ((m_dot_supply - 

m_dot_vent)*T_outside*(CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'Q',1,"Water")) + 

m_dot_vent*T_air_initial*(CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'P',101325,"Air") + x_i*CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'P',101325,"Air") + x_HX_preheat_i*CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'Q',1,"Water"))) 

  

 #modeling the dehumidifier for the desiccant system 

 [T_air_to_HX] = Dehum(x_AH,T_air_AH,x_air_o,101325) 

 x_to_AC = x_air_o 

  

 #modeling the heat reclamation at the heat exchanger  
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 [T_air_to_AC,T_HX_preheat_o] = 

HX(m_dot_supply,m_dot_supply,P_air,P_air,T_air_to_HX,T_HX_preheat_i,x_to_AC,x

_HX_preheat_i,"Air","Air",0.99) 

  

 #modeling the cooling at the vapor compression cooler 

 C_p_regen = m_dot_supply*(CP.PropsSI('C','T',T_HX_preheat_o,'P',P_air,"Air") 

+ x_HX_preheat_i*CP.PropsSI('C','T',T_HX_preheat_o,'Q',1,"Water")) #heat rate of 

regeneration air [W/K] 

 [T_air_o,x_air_o,m_dot_supply,P_air,W_dot_comp,T_1_des,T_3_des,T_4_des,s

_1_des,s_2_des,s_3_des,s_4_des,s_g_des,P_evap_des,P_cond_des,h_1_des,h_2_des,h_3

_des,h_4_des,Q_dot_cool,dummy1,dummy2,dummy3,dummy4,dummy5] = 

AC(T_air_to_AC,x_to_AC,T_outside,x_outside,T_air_calibrate_o,print_query,sys_confi

g,m_dot_supply,m_dot_cond) 

 T_duct_array_des = T_duct_array_AC 

 T_h_array_des = T_h_array_AC 

 x_h_array_des = x_h_array_AC 

 x_duct_array_des = x_duct_array_AC 

 T_return_array_des = T_return_array_AC 

 x_return_array_des = x_return_array_AC 

 t_f_des = t_f_AC 

  

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_to_AC,0,x_air_o) #creating psychrometric chart 

 W_des = W_dot_comp*t_f_des 

 Q_des_cool = Q_dot_cool*t_f_des 

  

 ##The following section models the NIPAAm dehumidification + vapor 

compression cooling config 

 sys_config = "NIPAAm" 

 T_air_i = T_air_initial 

 T_duct = T_air_initial 

 m_w = m_w_initial 

 x_i = x_initial 

 T_h_array_NIPAAm = [] 

 x_h_array_NIPAAm = [] 

 T_duct_array_NIPAAm = [] 

 x_duct_array_NIPAAm = [] 

 T_return_array_NIPAAm = [] 

 x_return_array_NIPAAm = [] 

 [T_air_to_HX] = Dehum(x_AH,T_air_AH,x_air_o,101325) 

 x_HX_preheat_i = (m_dot_vent*x_initial + (m_dot_supply - 

m_dot_vent)*x_outside)/(m_dot_supply) 

 x_to_AC = x_air_o 
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 [T_air_to_AC,T_HX_preheat_o] = 

HX(m_dot_supply,m_dot_supply,P_air,P_air,T_air_to_HX,T_HX_preheat_i,x_to_AC,x

_HX_preheat_i,"Air","Air",0.99) 

 [T_air_o,x_air_o,m_dot_supply,P_air,W_dot_comp,T_1_NIPAAm,T_3_NIPAA

m,T_4_NIPAAm,s_1_NIPAAm,s_2_NIPAAm,s_3_NIPAAm,s_4_NIPAAm,s_g_NIPA

Am,P_evap_NIPAAm,P_cond_NIPAAm,h_1_NIPAAm,h_2_NIPAAm,h_3_NIPAAm,h

_4_NIPAAm,Q_dot_cool,dummy1,dummy2,dummy3,dummy4,COP_AC_NIPAAm] = 

AC(T_air_to_AC,x_to_AC,T_outside,x_outside,T_air_calibrate_o,print_query,sys_confi

g,m_dot_supply,m_dot_cond) 

 T_duct_array_NIPAAm = T_duct_array_AC 

 T_h_array_NIPAAm = T_h_array_AC 

 x_h_array_NIPAAm = x_h_array_AC 

 x_duct_array_NIPAAm = x_duct_array_AC 

 T_return_array_NIPAAm = T_return_array_AC 

 x_return_array_NIPAAm = x_return_array_AC 

 t_f_NIPAAm = t_f_AC 

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_to_AC,0,x_air_o) 

 W_NIPAAm = W_dot_comp*t_f_NIPAAm 

  

 #determining the absorption capacity of the NIPAAm based on temperature and 

humidity ratio  

 C_NIPAAm_matrix = [[0, 0.17, 0.22, 0.25, 0.3, 0.37, 0.47, 0.74, 1.02], #Row for 

21 deg C; columns correspond to inlet air relative humidites of 0, 20, 30, 40, 50, 60, 70, 

80, 90 %RH 

 [0, 0.12, 0.18, 0.22, 0.26, 0.31, 0.38, 0.48, 0.90], #Row for 25 deg C 

 [0, 0.12, 0.17, 0.20, 0.24, 0.27, 0.31, 0.36, 0.47], #Row for 30 

 [0, 0.10, 0.14, 0.16, 0.19, 0.22, 0.25, 0.28, 0.31], #Row for 35 

 [0, 0.06, 0.10, 0.12, 0.14, 0.16, 0.19, 0.21, 0.23], #Row for 40 

 [0, 0.03, 0.05, 0.06, 0.07, 0.09, 0.10, 0.11, 0.12], #Row for 50 

 [0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]]#Row for 60 deg C;  

 RH_array = [0, 20, 30, 40, 50, 60, 70, 80, 90] 

 RH_1 = int(math.floor(RH(T_air_AH,T_s(x_AH,P_air))*100/10.) - 1) 

 RH_2 = int(math.ceil(RH(T_air_AH,T_s(x_AH,P_air))*100/10.) - 1) 

 if RH_1 == -1: 

  RH_1 = 0 

 else: 

  1 

 if T_air_AH < 21 + 273.15: 

  1 

 elif T_air_AH > 21 + 273.15 and T_air_AH < 25 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[0][RH_1], 

C_NIPAAm_matrix[0][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 
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  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1], 

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([21 + 273.15, 25 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 25 + 273.15 and T_air_AH < 30 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1], 

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1], 

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([25 + 273.15, 30 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 30 + 273.15 and T_air_AH < 35 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1], 

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1], 

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([30 + 273.15, 35 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 35 + 273.15 and T_air_AH < 40 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1], 

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1], 

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([35 + 273.15, 40 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 40 + 273.15 and T_air_AH < 50 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1], 

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1], 

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([40 + 273.15, 50 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 50 + 273.15 and T_air_AH < 60 + 273.15: 
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  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1], 

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[6][RH_1], 

C_NIPAAm_matrix[6][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([50 + 273.15, 60 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 else: 

  1 

 delta_C_NIPAAm = 0.6*C_NIPAAm #relative water content increase during 

dehumidification [kg_water/kg_NIPAAm] 

 c_p_NIPAAm_wet = 

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*C_NIPAAm + c_p_NIPAAm) 

#specific heat of NIPAAm when saturated  

 c_p_NIPAAm_dry = 

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*(C_NIPAAm - delta_C_NIPAAm) 

+ c_p_NIPAAm) #specific heat of NIPAAm when it is as dried as possible  

 h_fg_NIPAAm = (CP.PropsSI('H','T',T_regen_NIPAAm,'Q',1,"Water") - 

CP.PropsSI('H','T',T_regen_NIPAAm,'Q',0,"Water")) #heat of evaporation for water  

 Q_NIPAAm_cool = Q_dot_cool*t_f_NIPAAm  

 Q_useful = 1 

 omega = 0.75 

 m_NIPAAm = m_dot_supply*(x_AH - x_air_o)*360/(omega*delta_C_NIPAAm) 

#necessary mass of NIPAAm  

 m_des = m_dot_supply*(x_AH - x_air_o)*360/(omega*C_des) #necessary mass 

of desiccant  

 return [delta_t, t_f_AC, T_h_array_AC, x_h_array_AC, T_duct_array_AC, 

x_duct_array_AC, T_return_array_AC, x_return_array_AC, T_h_array_des, 

x_h_array_des, T_duct_array_des, x_duct_array_des, T_return_array_des, 

x_return_array_des, T_h_array_NIPAAm, x_h_array_NIPAAm, 

T_duct_array_NIPAAm, x_duct_array_NIPAAm, T_return_array_NIPAAm, 

x_return_array_NIPAAm, delta_m_h2o, W_AC, W_des, W_NIPAAm, 

c_p_NIPAAm_dry, c_p_NIPAAm_wet, h_fg_NIPAAm, 

T_1_AC,T_3_AC,T_4_AC,s_1_AC,s_2_AC,s_3_AC,s_4_AC,s_g_AC,P_evap_AC,P_co

nd_AC,h_1_AC,h_2_AC,h_3_AC,h_4_AC,T_1_des,T_3_des,T_4_des,s_1_des,s_2_des,

s_3_des,s_4_des,s_g_des,P_evap_des,P_cond_des,h_1_des,h_2_des,h_3_des,h_4_des,T_

1_NIPAAm,T_3_NIPAAm,T_4_NIPAAm,s_1_NIPAAm,s_2_NIPAAm,s_3_NIPAAm,s

_4_NIPAAm,s_g_NIPAAm,P_evap_NIPAAm,P_cond_NIPAAm,h_1_NIPAAm,h_2_NI

PAAm,h_3_NIPAAm,h_4_NIPAAm,Q_AC_cool,Q_des_cool,Q_NIPAAm_cool,s_array

,T_array,h_array,P_array,T_HX_preheat_o,C_p_regen,Q_useful,omega,m_NIPAAm,CO

P_AC_NIPAAm,m_des,delta_C_NIPAAm]   
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APPENDIX D 

 

PYTHON CODE FOR “HOUSE_AIR_EVAP_COOL.PY” 
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def house_air_evap_cool(T_set,x_i,T_outside,x_outside,T_air_o,x_air_o,percent_vent): 

 import math 

 from CoolProp import CoolProp as CP 

 from scipy.optimize import fsolve 

 from AC import AC 

 from Dehum import Dehum 

 from Psyplot import Psyplot 

 from HX import HX 

 from x import x 

 from scipy.interpolate import interp1d 

 from RH import RH 

 from T_s import T_s 

  

 P_air = 101325 #total pressure within conditioned space [Pa] 

 V_tot = 271.84 #total conditioned space volume [m^3] 

 T_regen_NIPAAm = 32 + 273.15 #Regen temperature of NIPAAm, used only to 

find the specific heat of water within the NIPAAm; this value is redefined in GUI.py 

 c_p_des = 960. #desiccant specific heat 

 C_des = 0.4 #absorption capacity of desiccant in kg_water/kg_des 

 c_p_NIPAAm = 960. #NIPAAm specific heat 

 percent_solid_vol = 0.005 #percent of the room volume that is solid 

 V_air = V_tot*(1 - percent_solid_vol) #volume of air within the room 

 V_solid = V_tot*percent_solid_vol #volume of solid within the room 

 c_p_solid = 903600 #volumetric heat capacity of the solid, J/(m^3*K)  

 T_air_i = T_set + 5./9. #initial temperature of air within the house [K] 

 indoor_evap_rate = 0. #no indoor evaporation  

 UAs_house = 0 #sets the heat transfer coefficient for house heat gain to zero 

 h_duct_i = 8.33 #duct interior heat transfer coefficient [W/m^2K] 

 h_duct_o = 0. #duct exterior heat transfer coefficient [W/m^2K] 

 L_duct = 9.14 #length of duct [m] 

 D_duct = 0.1016 #diameter of duct [m] 

 A_duct = math.pi*D_duct*L_duct #surface area of duct [m^2] 

 C_duct = 470*6.404*L_duct #heat capacity of duct [J/K] 

 m_dot_supply = 0.7 #defines the total mass flow rate of supply air [kg/s] 

 m_dot_vent = percent_vent*m_dot_supply/100. #portion of supply air that comes 

from outside [kg/s] 

 cooling_mode = "Evap" 

 delta_t = 1 #time step [s] 

  

 ##The following section models the desiccant dehumidification + evaporative 

cooling config 

 sys_config = "Desiccant" 

 print_query = "no" 

 M_a = 0.028964 #molecular mass of air 
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 M_w = 0.018016 #molecular mass of water 

 T_duct = T_air_i #initial temperature of the duct 

 T_air_initial = T_air_i  

 x_initial = x_i 

  

 #models the mixing of supply air at the beginning of the process 

 x_AH = (m_dot_vent*x_outside + (m_dot_supply - 

m_dot_vent)*x_i)/(m_dot_supply) 

 T_air_AH = (m_dot_vent*T_outside*(CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'Q',1,"Water")) + (m_dot_supply - 

m_dot_vent)*T_air_i*(CP.PropsSI('C','T',(T_air_i + T_outside)/2.,'P',101325,"Air") + 

x_i*CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'P',101325,"Air") + x_AH*CP.PropsSI('C','T',(T_air_i + 

T_outside)/2.,'Q',1,"Water"))) 

 h_air_o = CP.PropsSI('H','T',T_air_o,'P',101325,"Air") + 

x_air_o*CP.PropsSI('H','T',T_air_o,'Q',1,"Water") 

  

 #mixing of the process air 

 x_HX_preheat_i = (m_dot_vent*x_initial + (m_dot_supply - 

m_dot_vent)*x_outside)/(m_dot_supply) 

 T_HX_preheat_i = ((m_dot_supply - 

m_dot_vent)*T_outside*(CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'P',101325,"Air") + x_outside*CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'Q',1,"Water")) + 

m_dot_vent*T_air_initial*(CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'P',101325,"Air") + x_i*CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'Q',1,"Water")))/(m_dot_supply*(CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'P',101325,"Air") + x_HX_preheat_i*CP.PropsSI('C','T',(T_air_initial + 

T_outside)/2.,'Q',1,"Water"))) 

  

 #iteratively solves for the necessary dehumidifier outlet humidity  

 def equations(x_new): 

  eq_1 = 

CP.PropsSI('H','T',float(HX(m_dot_supply,m_dot_supply,P_air,P_air,float(Dehum(x_A

H,T_air_AH,float(x_new),101325)[0]),T_HX_preheat_i,float(x_new),x_HX_preheat_i,"

Air","Air",0.80)[0]),'P',101325,"Air") + 

float(x_new)*CP.PropsSI('H','T',(HX(m_dot_supply,m_dot_supply,P_air,P_air,Dehum(x

_AH,T_air_AH,float(x_new),101325)[0],T_HX_preheat_i,float(x_new),x_HX_preheat_i

,"Air","Air",0.80)[0]),'Q',1,"Water") - h_air_o 

  return(eq_1) 

 [x_dehum] = fsolve(equations, x_air_o - 0.0001) 
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 #models the heat exchanger 

 [T_air_to_HX] = Dehum(x_AH,T_air_AH,x_dehum,101325) 

 [T_air_to_AC,T_HX_preheat_o] = 

HX(m_dot_supply,m_dot_supply,P_air,P_air,T_air_to_HX,T_HX_preheat_i,x_dehum,x

_HX_preheat_i,"Air","Air",0.80) 

  

 #the following definitions are for the transient modeling  

 rho_a = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air") #density of dry air [kg/m^3] 

 m_w = V_air*rho_a*(1. + x_i)/((1. + x_i*M_a/M_w)*(1. + 1./x_i)) #mass of 

water in air [kg] 

 rho_tot = CP.PropsSI('D','T',T_air_i,'P',P_air,"Air")*(1 + x_i)/((1 + 

x_i*M_a/M_w)) #density of moist air [kg/m^3] 

 m_h = V_air*rho_tot #mass of moist air [kg] 

 m_a = m_h - m_w #mass of dry air [kg] 

 m_a_initial = m_a 

 U_duct = (h_duct_i*h_duct_o)/(h_duct_i + h_duct_o) #heat transfer coefficient of 

the duct [W/m^2K] 

 T_ss = T_air_i + (T_air_o - T_air_i)*math.exp(-

U_duct*A_duct/(m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") + 

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. + 

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") + 

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #steady state temperature of the duct [K] 

 T_h_array_des = [] 

 x_h_array_des = [] 

 T_duct_array_des = [] 

 x_duct_array_des = [] 

 T_return_array_des = [] 

 x_return_array_des = [] 

 C_p_regen = m_dot_supply*(CP.PropsSI('C','T',T_HX_preheat_o,'P',P_air,"Air") 

+ x_HX_preheat_i*CP.PropsSI('C','T',T_HX_preheat_o,'Q',1,"Water")) #heat rate of 

regeneration air  [W/K] 

  

 t_f_des = 0. #initializing the total cooling time [s] 

  

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_dehum,x_dehum,x_air_o) #creating psychrometric chart 

 h2o_des = 0. #initializing the amount of water consumed by the evaporative 

cooler [kg] 

 delta_m_h2o = 0. #initializing the amount of water absorbed during 

dehumidification [kg] 

 m_h2o_used = 0. 

 T_h_array_des.append(T_air_i) 

 x_h_array_des.append(x_i) 

 T_duct_array_des.append(T_duct) 
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 x_duct_array_des.append(x_air_o) 

 T_return_array_des.append(T_air_i) 

 x_return_array_des.append(x_i) 

  

 #transient model 

 while T_air_i >= (T_set - 5./9.): 

  m_w = m_w + delta_t*(m_dot_supply*(x_air_o - x_initial)  + 

indoor_evap_rate) #mass of water in air at new time step 

  x_i = m_w/m_a #humidity ratio at new time step 

  T_duct = T_duct + delta_t*(T_ss - T_duct)/(h_duct_i*C_duct/((h_duct_i + 

h_duct_o)*m_dot_supply*((CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") + 

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. + 

x_air_o*(CP.PropsSI('C','T',T_air_i,'Q',1,"Water") + 

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2.))) #temperature of duct at new time step 

  T_duct_array_des.append(T_duct)  

  T_air_i = 

(m_dot_supply*T_duct*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_air_o*CP.PropsSI('C','T',T_set,'Q',1,"Water"))*(t_f_des + delta_t) + (m_a_initial - 

m_dot_supply*(t_f_des + 

delta_t))*T_air_initial*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_initial*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + 

V_solid*c_p_solid*T_air_initial)/(m_a*(CP.PropsSI('C','T',T_set,'P',P_air,"Air") + 

x_i*CP.PropsSI('C','T',T_set,'Q',1,"Water")) + V_solid*c_p_solid) #average temperature 

within the house at new time step 

  T_h_array_des.append(float(T_air_i)) 

  x_h_array_des.append(x_i) 

  x_duct_array_des.append(x_air_o) 

  T_return_array_des.append(T_return_array_des[0]) 

  x_return_array_des.append(x_return_array_des[0]) 

  delta_m_h2o = delta_m_h2o + m_dot_supply*(x_AH - x_dehum)*delta_t 

  m_h2o_used = m_h2o_used + m_dot_supply*(x_air_o - 

x_dehum)*delta_t 

  h2o_des = h2o_des + m_dot_supply*(x_air_o - x_dehum)*delta_t 

  #[T_air_to_AC,x_to_AC] = Dehum(T_air_i,x_i,x_to_AC) 

  #[T_air_o,x_air_o,m_dot_supply,P_air] = 

AC(T_air_calibrate,x_air_calibrate,T_outside_calibrate,x_outside_calibrate,T_air_calibra

te_o,T_air_to_AC,x_to_AC,T_outside,x_outside,print_query) 

  t_f_des = t_f_des + delta_t #total time after time step 

   

  

  

 #the overall process for the NIPAAm is the same, the only difference is the 

required regeneration heat, which is modeled in GUI.py 

 sys_config = "NIPAAm" 
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 T_air_i = T_air_initial 

 T_duct = T_air_initial 

  

 T_h_array_NIPAAm = T_h_array_des 

 x_h_array_NIPAAm = x_h_array_des 

 T_duct_array_NIPAAm = T_duct_array_des 

 x_duct_array_NIPAAm = x_duct_array_des 

 T_return_array_NIPAAm = T_return_array_des 

 x_return_array_NIPAAm = x_return_array_des 

  

 t_f_NIPAAm = t_f_des 

 h2o_NIPAAm = h2o_des 

  

 Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,

x_AH,x_dehum,x_dehum,x_air_o) #creates plot for NIPAAm 

  

 #determining the absorption capacity of the NIPAAm based on temperature and 

humidity ratio  

 C_NIPAAm_matrix = [[0, 0.17, 0.22, 0.25, 0.3, 0.37, 0.47, 0.74, 1.02], #Row for 

21 deg C; columns correspond to inlet air relative humidites of 0, 20, 30, 40, 50, 60, 70, 

80, 90 %RH 

 [0, 0.12, 0.18, 0.22, 0.26, 0.31, 0.38, 0.48, 0.90], #Row for 25 deg C 

 [0, 0.12, 0.17, 0.20, 0.24, 0.27, 0.31, 0.36, 0.47], #Row for 30 

 [0, 0.10, 0.14, 0.16, 0.19, 0.22, 0.25, 0.28, 0.31], #Row for 35 

 [0, 0.06, 0.10, 0.12, 0.14, 0.16, 0.19, 0.21, 0.23], #Row for 40 

 [0, 0.03, 0.05, 0.06, 0.07, 0.09, 0.10, 0.11, 0.12], #Row for 50 

 [0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]]#Row for 60 deg C;  

 RH_array = [0, 20, 30, 40, 50, 60, 70, 80, 90] 

 RH_1 = int(math.floor(RH(T_air_AH + 273.15,T_s(x_AH,P_air))*100/10.) - 1) 

 RH_2 = int(math.ceil(RH(T_air_AH,T_s(x_AH,P_air))*100/10.) - 1) 

 if RH_1 == -1: 

  RH_1 = 0 

 else: 

  1 

 if T_air_AH < 21 + 273.15: 

  1 

 elif T_air_AH > 21 + 273.15 and T_air_AH < 25 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[0][RH_1], 

C_NIPAAm_matrix[0][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1], 

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 
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  C_NIPAAm = float(interp1d([21 + 273.15, 25 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 25 + 273.15 and T_air_AH < 30 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[1][RH_1], 

C_NIPAAm_matrix[1][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1], 

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([25 + 273.15, 30 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 30 + 273.15 and T_air_AH < 35 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[2][RH_1], 

C_NIPAAm_matrix[2][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1], 

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([30 + 273.15, 35 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 35 + 273.15 and T_air_AH < 40 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[3][RH_1], 

C_NIPAAm_matrix[3][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1], 

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([35 + 273.15, 40 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 40 + 273.15 and T_air_AH < 50 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[4][RH_1], 

C_NIPAAm_matrix[4][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1], 

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([40 + 273.15, 50 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 elif T_air_AH > 50 + 273.15 and T_air_AH < 60 + 273.15: 

  C_1 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[5][RH_1], 

C_NIPAAm_matrix[5][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 
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  C_2 = float(interp1d([RH_array[RH_1], 

RH_array[RH_2]],[C_NIPAAm_matrix[6][RH_1], 

C_NIPAAm_matrix[6][RH_2]])(RH(T_air_AH,T_s(x_AH,P_air))*100)) 

  C_NIPAAm = float(interp1d([50 + 273.15, 60 + 273.15],[C_1, 

C_2])(T_air_AH)) 

 else: 

  1 

 delta_C_NIPAAm = 0.6*C_NIPAAm #relative water content increase during 

dehumidification [kg_water/kg_NIPAAm] 

 c_p_NIPAAm_wet = 

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*C_NIPAAm + c_p_NIPAAm) 

#specific heat of NIPAAm when saturated  

 c_p_NIPAAm_dry = 

(CP.PropsSI('C','T',T_regen_NIPAAm,'Q',0,"water")*(C_NIPAAm - delta_C_NIPAAm) 

+ c_p_NIPAAm) #specific heat of NIPAAm when it is as dried as possible  

 h_fg_NIPAAm = (CP.PropsSI('H','T',T_regen_NIPAAm,'Q',1,"Water") - 

CP.PropsSI('H','T',T_regen_NIPAAm,'Q',0,"Water")) #heat of evaporation for water  

  

 Q_useful = m_dot_supply*((CP.PropsSI('H','T',T_air_initial,'P',P_air,"Air") + 

x_initial*CP.PropsSI('H','T',T_air_initial,'Q',1,"Water")) - 

(CP.PropsSI('H','T',T_air_o,'P',P_air,"Air") + 

x_air_o*CP.PropsSI('H','T',T_air_o,'Q',1,"Water")))*t_f_des 

 omega = 0.75 

 m_NIPAAm = m_dot_supply*(x_AH - 

x_dehum)*360./(omega*delta_C_NIPAAm) 

 m_des = m_dot_supply*(x_AH - x_dehum)*360./(omega*C_des) 

  

  

 return [delta_t, t_f_des, T_h_array_des, x_h_array_des, T_duct_array_des, 

x_duct_array_des, T_return_array_des, x_return_array_des,t_f_NIPAAm, 

T_h_array_NIPAAm, x_h_array_NIPAAm, T_duct_array_NIPAAm, 

x_duct_array_NIPAAm, T_return_array_NIPAAm, x_return_array_NIPAAm, 

delta_m_h2o, h2o_des, h2o_NIPAAm, c_p_NIPAAm_dry, c_p_NIPAAm_wet, 

h_fg_NIPAAm,T_HX_preheat_i,T_HX_preheat_o,x_HX_preheat_i,C_p_regen,T_air_A

H,T_air_to_HX,T_air_to_AC,T_air_o,x_AH,x_dehum,x_dehum,x_air_o,Q_useful,m_h2

o_used,omega,m_NIPAAm,m_des,delta_C_NIPAAm]   
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APPENDIX E 

 

PYTHON CODE FOR “AC.PY” 
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def 

AC(T_air_i,w_i,T_outside,w_outside,T_air_o,print_query,sys_config,m_dot_evap,m_dot

_cond,): 

 from CoolProp import CoolProp as CP 

 import numpy as np 

 from PIL import Image, ImageFont, ImageDraw 

 import math 

 from HX_AC_evap import HX_AC_evap 

 from HX_AC_cond import HX_AC_cond 

 from x_s import x_s 

 from T_s import T_s 

 fnt = ImageFont.truetype("C:\Windows\Fonts\ARIALUNI.TTF", 50) 

 

 img = Image.open("psychrometric.png") 

 draw = ImageDraw.Draw(img) 

  

 Refrigerant = "R134a" 

 

 ##T-s vapor dome 

 # This code creates arrays of temperature and specific entropy values to be used 

for plotting in the graphical interface (GUI.py) 

 T_crit = CP.PropsSI('Tcrit',Refrigerant) 

 T_array_1 = np.linspace(193.15,T_crit,1000) 

 T_array_2 = [] 

 for T in T_array_1: 

  if T == T_crit: 

   1 

  else: 

   T_array_2.append(T) 

 

 

 s_array_1 = [] 

 for T in T_array_1: 

  s = CP.PropsSI('S','T',T,'Q',0,Refrigerant) 

  s_array_1.append(s) 

 

 s_array_2 = [] 

 for T in T_array_2: 

  s = CP.PropsSI('S','T',T,'Q',1,Refrigerant) 

  s_array_2.append(s) 

 

 s_array = s_array_1 + list(np.flipud(s_array_2)) 

 T_array = list(T_array_1) + list(np.flipud(T_array_2)) 
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 ##P-h vapor dome 

 # This code creates arrays of Pressure and specific enthalpy values to be used for 

plotting in the graphical interface (GUI.py) 

 P_array_1 = np.linspace(100000,4020000.88,1001) 

 P_array_2 = P_array_1 

 

 

 h_array_1 = [] 

 for P in P_array_1: 

  h = CP.PropsSI('H','P',P,'Q',0,Refrigerant) 

  h_array_1.append(h) 

 

 h_array_2 = [] 

 for P in P_array_2: 

  h = CP.PropsSI('H','P',P,'Q',1,Refrigerant) 

  h_array_2.append(h) 

 

 P_array = np.concatenate((P_array_1, np.fliplr([P_array_2])[0]), axis=0) 

 h_array = np.concatenate((h_array_1, np.fliplr([h_array_2])[0]), axis=0) 

  

 #Setting the air pressure within and outside of the house, as well as the heat 

transfer coefficient of the evaporator 

 P_air = 101325 

 UAs_evap = 1810 

 UAs = UAs_evap 

  

 #Determining the humidity ratio of the air exiting the evaporator  

 if T_s(w_i, P_air) > T_air_o: 

  w_o = x_s(T_air_o, P_air) 

 else: 

  w_o = w_i 

  

 #Calling the evaporator function  

 [T_ref_evap, m_dot_ref, Q_evap] = HX_AC_evap(m_dot_evap, P_air, T_air_i, 

w_i, T_air_o, w_o, Refrigerant, UAs) 

  

 #Using information from the evaporator model to define various refrigerant 

properties at the evaporator, where state 1 is before the evaporator and state 2 is after the 

evaporator   

 T_1 = T_ref_evap 

 T_2 = T_ref_evap 

 s_1 = CP.PropsSI('S','T',T_1,'Q',0,Refrigerant) 

 s_2 = CP.PropsSI('S','T',T_2,'Q',1,Refrigerant) 

 P_evap = CP.PropsSI('P','T',T_1,'Q',0,Refrigerant) 
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 h_1 = CP.PropsSI('H','T',T_1,'Q',0,Refrigerant) 

 h_2 = CP.PropsSI('H','T',T_2,'Q',1,Refrigerant) 

  

 #defining the isentropic efficiency of the compressor, as well as the condenser 

heat transfer coefficient  

 isen_eff = 0.8 

 UAs_cond = 3620 

 UAs = UAs_cond 

  

 #Calling the condenser function  

 [P_cond, h_4, h_3] = HX_AC_cond(m_dot_cond, P_air, T_outside, w_outside, 

Q_evap, Refrigerant, UAs, h_2, s_2, isen_eff) 

  

 #Defining the properties at the remaining states, as well as the mass flow rate of 

refrigerant, refrigerant COP, and power required 

 h_1 = h_4 

 m_dot_ref = Q_evap/(h_2 - h_1) 

 s_1 = CP.PropsSI('S','P',P_evap,'H',h_4,Refrigerant) 

 s_3 = CP.PropsSI('S','P',P_cond,'H',h_3,Refrigerant) 

 s_g = CP.PropsSI('S','P',P_cond,'Q',1,Refrigerant) 

 s_4 = CP.PropsSI('S','P',P_cond,'H',h_4,Refrigerant) 

 T_3 = CP.PropsSI('T','P',P_cond,'H',h_3,Refrigerant) 

 T_cond = CP.PropsSI('T','P',P_cond,'Q',1,Refrigerant) 

 T_4 = CP.PropsSI('T','P',P_cond,'Q',0,Refrigerant) 

  

 COP_AC = (h_2 - h_1)/(h_3 - h_2) 

  

 W_dot_comp = m_dot_ref*(h_3 - h_2) 

  

  

 #The remainder of the code plots the process that the air undergoes over a 

psychromtric graphic 

 T_air_i_F = (T_air_i - 273.15)*9./5. + 32 

 T_air_o_F = (T_air_o - 273.15)*9./5. + 32 

 w_i_psy = w_i*7000 

 w_o_psy = w_o*7000 

  

 if sys_config == "AC Only": 

  x_1 = 17.03*T_air_i_F - 204.60 + (7.*T_air_i_F/1500. - 14./25.)*w_i_psy 

  y_1 = -(1349./210.)*w_i_psy + 1483 

  T_1s = T_s(w_i_psy/7000., 101325) 

  T_1s_F = (T_1s - 273.15)*9./5. + 32 

  x_1s = 17.03*T_1s_F - 204.60 + (7.*T_1s_F/1500. - 14./25.)*w_i_psy 
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  x_3 = 17.03*T_air_o_F - 204.60 + (7.*T_air_i_F/1500. - 

14./25.)*w_i_psy 

 

   

 

  if T_air_o < T_s(w_i,101325): 

   draw.line((x_1, y_1, x_1s, y_1), fill=(255,0,0), width=5) 

   for w in range(int(math.floor(w_o_psy)), int(math.ceil(w_i_psy))): 

    T = T_s(w/7000., 101325) 

    T = (T - 273.15)*9./5. + 32 

    x_1 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w 

    y_1 = -(1349./210.)*w + 1483 

    w = w + 1 

    T = T_s(w/7000., 101325) 

    T = (T - 273.15)*9./5. + 32 

    x_2 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w 

    y_2 = -(1349./210.)*w + 1483 

    draw.line((x_1, y_1, x_2, y_2), fill=(255,0,0), width=5) 

  else: 

   draw.line((x_1, y_1, x_3, y_1), fill=(255,0,0), width=5) 

 

  img.save("output\psychrom\psychrom_AC_out.png") 

 elif sys_config == "Desiccant": 

  1 

 elif sys_config == "NIPAAm": 

  1 

 else: 

  1 

 return 

[T_air_o,w_o,m_dot_evap,P_air,W_dot_comp,T_1,T_3,T_cond,s_1,s_2,s_3,s_4,s_g,P_e

vap,P_cond,h_1,h_2,h_3,h_4,Q_evap,s_array,T_array,h_array,P_array,COP_AC]  



190 

 

APPENDIX F 

 

PYTHON CODE FOR “HX_AC_EVAP.PY” 

  



191 

 

def HX_AC_evap(m_dot_air, P_air, T_air_i, w_i, T_air_o, w_o, Refrigerant, UAs): 

 from CoolProp import CoolProp as CP 

 import math 

 from T_s import T_s 

 from x_s import x_s 

 from scipy.optimize import fsolve 

  

 #defining the heat rate for the air flowing over the evaporator coils 

 c_p_air = (CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") + 

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. 

 c_p_water = (CP.PropsSI('C','T',T_air_i,'Q',1,"Water") + 

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2. 

 C_min = m_dot_air*c_p_air + m_dot_air*c_p_water*(w_i + w_o)/2. 

 NTU = UAs/C_min 

 eff = 1 - math.exp(-NTU) 

  

 #solving for the evaporator temperature 

 if w_i == w_o: #if there is no dehumidification  

  Q_p1 = m_dot_air*(T_air_i - T_air_o)*(c_p_air + w_i*c_p_water) 

  Q_p2 = 0 

  Q_p3 = 0 

  Q = Q_p1 + Q_p2 + Q_p3 

  Q_max = Q/eff 

  T_ref_evap = T_air_i - Q_max/C_min 

 else: #if there is some dehumidification  

  #defining the air and water vapor properties  

  c_p_air_1 = (CP.PropsSI('C','T',T_air_i,'P',P_air,"Air") + 

CP.PropsSI('C','T',T_s(w_i, P_air),'P',P_air,"Air"))/2. 

  c_p_water_1 = (CP.PropsSI('C','T',T_air_i,'Q',1,"Water") + 

CP.PropsSI('C','T',T_s(w_i, P_air),'Q',1,"Water"))/2. 

  Q_p1 = m_dot_air*(T_air_i - T_s(w_i, P_air))*(c_p_air_1 + 

w_i*c_p_water_1) 

  c_p_air_2 = (CP.PropsSI('C','T',T_s(w_i, P_air),'P',P_air,"Air") + 

CP.PropsSI('C','T',T_air_o,'P',P_air,"Air"))/2. 

  c_p_water_2 = (CP.PropsSI('C','T',T_s(w_i, P_air),'Q',1,"Water") + 

CP.PropsSI('C','T',T_air_o,'Q',1,"Water"))/2. 

  h_fg = ((CP.PropsSI('H','T',T_s(w_i, P_air),'Q',1,"Water") - 

CP.PropsSI('H','T',T_s(w_i, P_air),'Q',0,"Water")) + (CP.PropsSI('H','T',T_s(w_o, 

P_air),'Q',1,"Water") - CP.PropsSI('H','T',T_s(w_o, P_air),'Q',0,"Water")))/2. 

   

  #defining the rate of heat transfer required to bring the air to the desired 

conditions 

  Q_p2 = m_dot_air*(T_s(w_i, P_air) - T_air_o)*(c_p_air_2 + 

c_p_water_2*(w_i + w_o)/2.) 
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  Q_p3 = m_dot_air*(w_i - w_o)*h_fg 

  Q = Q_p1 + Q_p2 + Q_p3 

  Q_max = Q/eff 

   

  #iterative solver 

  def equations(T_ref_evap): 

   eq_1 = m_dot_air*(c_p_air_2 + ((w_i + 

w_o)/2.)*c_p_water_2)*(T_s(w_i,P_air) - T_air_o) + m_dot_air*(w_i - w_o)*h_fg - 

(UAs - (m_dot_air*(c_p_air_1 + w_i*c_p_water_1)*(T_air_i - 

T_s(w_i,P_air)))/((T_air_i - T_s(w_i,P_air))/math.log((T_air_i - 

T_ref_evap)/(T_s(w_i,P_air) - T_ref_evap))))*((T_s(w_i,P_air) - 

T_air_o)/math.log((T_s(w_i,P_air) - T_ref_evap)/(T_air_o - T_ref_evap))) 

   return(eq_1) 

  [T_ref_evap] = fsolve(equations, (T_air_o - 0.1)) #defining the refrigerant 

temperature at the evaporator  

 h_fg = CP.PropsSI('H','T',T_ref_evap,'Q',1,Refrigerant) - 

CP.PropsSI('H','T',T_ref_evap,'Q',0,Refrigerant) 

 m_dot_ref = Q/h_fg 

 return [T_ref_evap, m_dot_ref, Q]  
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APPENDIX G 

 

PYTHON CODE FOR “HX_AC_COND.PY” 
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def HX_AC_cond(m_dot_air, P_air, T_air_i, w_i, Q_evap, Refrigerant, UAs, h_2, s_2, 

isen_eff): 

 from CoolProp import CoolProp as CP 

 import math 

 from scipy.optimize import fsolve 

  

 #defining the heat rate for the air flowing over the condenser coils 

 c_p_air = CP.PropsSI('C','T',T_air_i,'P',P_air,"Air")  

 c_p_water = CP.PropsSI('C','T',T_air_i,'Q',1,"Water")  

 C_min = m_dot_air*c_p_air + m_dot_air*c_p_water*w_i 

  

 #iterative solver to find the required condenser temperature  

 def equations(T_cond): 

  eq_1 = Q_evap*(CP.PropsSI('H','T',T_cond[-1],'Q',1,Refrigerant) - 

CP.PropsSI('H','T',T_cond[-1],'Q',0,Refrigerant))/(h_2 - CP.PropsSI('H','T',T_cond[-

1],'Q',0,Refrigerant)) - (1 - math.exp(-(max(0, (UAs - (Q_evap/(h_2 - 

CP.PropsSI('H','T',T_cond[-1],'Q',0,Refrigerant)))*((((CP.PropsSI('H','T',T_cond[-

1],'S',s_2,Refrigerant)) - h_2)/isen_eff + h_2) - (CP.PropsSI('H','T',T_cond[-

1],'Q',1,Refrigerant)))/(((CP.PropsSI('T','P',(CP.PropsSI('P','T',T_cond[-

1],'Q',1,Refrigerant)),'S',s_2,Refrigerant)) - T_cond[-

1])/math.log(((CP.PropsSI('T','P',(CP.PropsSI('P','T',T_cond[-

1],'Q',1,Refrigerant)),'S',s_2,Refrigerant)) - T_air_i)/(T_cond[-1] - 

T_air_i)))))/C_min)))*C_min*(T_cond[-1] - T_air_i) 

  return(eq_1) 

 T_4 = fsolve(equations, (T_air_i + 0.1)) #solving for condenser temperature  

 T_4 = T_4[-1] 

  

 #solving for the remaining refrigerant  properties  

 h_4 = CP.PropsSI('H','T',T_4,'Q',0,Refrigerant) 

 P_cond = CP.PropsSI('P','T',T_4,'Q',1,Refrigerant) 

 h_3s = CP.PropsSI('H','P',P_cond,'S',s_2,Refrigerant) 

 h_3a = (h_3s - h_2)/isen_eff + h_2 

 T_3 = CP.PropsSI('T','P',P_cond,'H',h_3a,Refrigerant)  

  

 return [P_cond, h_4, h_3a]  
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APPENDIX H 

 

PYTHON CODE FOR “DEHUM.PY” 
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def Dehum(x_in,T_in,x_out,P_tot): 

 from CoolProp import CoolProp as CP 

 import time 

 from scipy.optimize import fsolve 

 

 h_i = CP.PropsSI('H','T',T_in,'P',P_tot,"Air") + 

x_in*CP.PropsSI('H','T',T_in,'Q',1,"Water") #enthalpy of the moist air entering the 

dehumidifier 

  

 #iteratively solving for the temperature of the air leaving the dehumidifier, such 

that the process is isenthalpic 

 def equations(T_out): 

  eq_1 = CP.PropsSI('H','T',T_out,'P',P_tot,"Air") + 

x_out*CP.PropsSI('H','T',T_out,'Q',1,"Water") - h_i 

  return(eq_1) 

 [T_out] = fsolve(equations, (T_in + 0.1)) 

 return [T_out]  
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APPENDIX I 

 

PYTHON CODE FOR “PSYPLOT.PY” 
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def 

Psyplot(sys_config,cooling_mode,T_air_AH,T_air_to_HX,T_air_to_AC,T_air_o,x_AH,

x_to_AC,x_dehum,x_air_o): 

 from PIL import Image, ImageFont, ImageDraw 

 from T_s import T_s 

 import math 

 fnt = ImageFont.truetype("C:\Windows\Fonts\ARIALUNI.TTF", 80) 

 fnt2 = ImageFont.truetype("C:\Windows\Fonts\ARIALUNI.TTF", 50) 

 

 #the following code creates a psychrometric chart based on the system 

configuration used (VC = standard vapor compression)  

 img = Image.open("psychrometric.png") 

 draw = ImageDraw.Draw(img) 

 if cooling_mode == "VC": 

  #first the temperatures are converted to deg F, and the humidity ratios are 

converted to gr/lb 

  T_air_i_F = (T_air_to_AC - 273.15)*9./5. + 32 

  T_air_o_F = (T_air_o - 273.15)*9./5. + 32 

  T_dehum_i_F = (T_air_AH - 273.15)*9./5. + 32 

  T_dehum_o_F = (T_air_to_HX - 273.15)*9./5. + 32 

  w_0_psy = x_AH*7000 

  w_i_psy = x_to_AC*7000 

  w_o_psy = x_air_o*7000 

   

  #x and y coordinates are created for the points in the process, based on the 

psychrometric graphic over which the lines are plotted. x and y coordinates are created in 

units of pixels 

  x_1 = 17.03*T_air_i_F - 204.60 + (7.*T_air_i_F/1500. - 14./25.)*w_i_psy 

  y_1 = -(1349./210.)*w_i_psy + 1483 

  T_1s = T_s(w_i_psy/7000., 101325) 

  T_1s_F = (T_1s - 273.15)*9./5. + 32 

  x_1s = 17.03*T_1s_F - 204.60 + (7.*T_1s_F/1500. - 14./25.)*w_i_psy 

  x_2 = 17.03*T_air_o_F - 204.60 + (7.*T_air_o_F/1500. - 

14./25.)*w_i_psy 

   

  if T_air_o < T_s(x_air_o,101325): 

   draw.line((x_1, y_1, x_1s, y_1), fill=(255,0,0), width=5) 

  else: 

   draw.line((x_1, y_1, x_2, y_1), fill=(255,0,0), width=5) 

  x_0 = 17.03*T_dehum_i_F - 204.60 + (7.*T_dehum_i_F/1500. - 

14./25.)*w_0_psy 

  y_0 = -(1349./210.)*w_0_psy + 1483 

  x_0a = 17.03*T_dehum_o_F - 204.60 + (7.*T_dehum_o_F/1500. - 

14./25.)*w_i_psy 
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  draw.line((x_0, y_0, x_0a, y_1), fill=(255,0,0), width=5) 

   

  draw.line((x_0a, y_1, x_1, y_1), fill=(255,0,0), width=5) 

  if T_air_o < T_s(x_air_o,101325): 

   for w in range(int(math.floor(w_o_psy)), int(math.ceil(w_i_psy))): 

    T = T_s(w/7000., 101325) 

    T = (T - 273.15)*9./5. + 32 

    x_3 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w 

    y_3 = -(1349./210.)*w + 1483 

    w = w + 1 

    T = T_s(w/7000., 101325) 

    T = (T - 273.15)*9./5. + 32 

    x_4 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w 

    y_4 = -(1349./210.)*w + 1483 

    draw.line((x_3, y_3, x_4, y_4), fill=(255,0,0), width=5) 

  else: 

   1 

  draw.text(((x_0 - 8),(y_0 - 80)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_0a - 13),(y_1 - 82)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_1 - 10),(y_1 - 81)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_2 - 7),(y_1 - 81)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_0 - 16),(y_0 - 80 + 15)), "1", font = fnt2, fill = (0,0,0)) 

  draw.text(((x_0a - 17),(y_1 - 82 + 70)), "2", font = fnt2, fill = (0,0,0)) 

  draw.text(((x_1 - 14),(y_1 - 81 + 70)), "3", font = fnt2, fill = (0,0,0)) 

  draw.text(((x_2 - 11),(y_1 - 81 + 70)), "4", font = fnt2, fill = (0,0,0)) 

 else: 

  T_air_i_F = (T_air_to_AC - 273.15)*9./5. + 32 

  T_air_o_F = (T_air_o - 273.15)*9./5. + 32 

  T_dehum_i_F = (T_air_AH - 273.15)*9./5. + 32 

  T_dehum_o_F = (T_air_to_HX - 273.15)*9./5. + 32 

  w_0_psy = x_AH*7000 

  w_i_psy = x_to_AC*7000 

  w_o_psy = x_air_o*7000 

  w_dehum_psy = x_dehum*7000 

  x_1 = 17.03*T_air_i_F - 204.60 + (7.*T_air_i_F/1500. - 

14./25.)*w_dehum_psy 

  y_1 = -(1349./210.)*w_dehum_psy + 1483 

  T_1s = T_s(w_i_psy/7000., 101325) 

  T_1s_F = (T_1s - 273.15)*9./5. + 32 

  x_1s = 17.03*T_1s_F - 204.60 + (7.*T_1s_F/1500. - 14./25.)*w_i_psy 

  x_2 = 17.03*T_air_o_F - 204.60 + (7.*T_air_o_F/1500. - 

14./25.)*w_o_psy 

  y_2 = -(1349./210.)*w_o_psy + 1483 
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  draw.line((x_1, y_1, x_2, y_2), fill=(255,0,0), width=5) 

  x_0 = 17.03*T_dehum_i_F - 204.60 + (7.*T_dehum_i_F/1500. - 

14./25.)*w_0_psy 

  y_0 = -(1349./210.)*w_0_psy + 1483 

  x_0a = 17.03*T_dehum_o_F - 204.60 + (7.*T_dehum_o_F/1500. - 

14./25.)*w_dehum_psy 

   

  if T_dehum_o_F > 120: 

   w_120 = (y_0 + ((y_0 - y_1)/(x_0a - x_0))*x_0 - 1483 - 

(120*17.03 - 204.60)*((y_0 - y_1)/(x_0a - x_0)))*(-(1349./210.) + ((y_0 - y_1)/(x_0a - 

x_0))*(7.*120/1500. - 14./25.))**(-1) 

   x_0b = 17.03*120 - 204.60 + (7.*120/1500. - 14./25.)*w_120 

   y_0b = -(1349./210.)*w_120 + 1483 

   x_1a = 17.03*120 - 204.60 + (7.*120/1500. - 

14./25.)*w_dehum_psy 

   draw.line((x_0, y_0, x_0b, y_0b), fill=(255,0,0), width=5) 

    

   draw.line((x_1a, y_1, x_1, y_1), fill=(255,0,0), width=5) 

  else: 

   draw.line((x_0, y_0, x_0a, y_1), fill=(255,0,0), width=5) 

    

   draw.line((x_0a, y_1, x_1, y_1), fill=(255,0,0), width=5) 

  if T_air_o < T_s(x_air_o,101325): 

   for w in range(int(math.floor(w_o_psy)), int(math.ceil(w_i_psy))): 

    T = T_s(w/7000., 101325) 

    T = (T - 273.15)*9./5. + 32 

    x_3 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w 

    y_3 = -(1349./210.)*w + 1483 

    w = w + 1 

    T = T_s(w/7000., 101325) 

    T = (T - 273.15)*9./5. + 32 

    x_4 = 17.03*T - 204.60 + (7.*T/1500. - 14./25.)*w 

    y_4 = -(1349./210.)*w + 1483 

    draw.line((x_3, y_3, x_4, y_4), fill=(255,0,0), width=5) 

  else: 

   1 

  draw.text(((x_0 - 8),(y_0 - 80)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_0a - 13),(y_1 - 82)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_1 - 10),(y_1 - 81)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_2 - 7),(y_2 - 81)), ".", font = fnt, fill = (0,0,0)) 

  draw.text(((x_0 - 16),(y_0 - 80 + 15)), "1", font = fnt2, fill = (0,0,0)) 

  draw.text(((x_0a - 17),(y_1 - 82 + 70)), "2", font = fnt2, fill = (0,0,0)) 

  draw.text(((x_1 - 14),(y_1 - 81 + 70)), "3", font = fnt2, fill = (0,0,0)) 
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  draw.text(((x_2 - 11),(y_2 - 81 + 70)), "4", font = fnt2, fill = (0,0,0)) 

 if sys_config == "Desiccant": 

  img.save("output\psychrom\psychrom_desiccant_out.png") 

 elif sys_config == "NIPAAm": 

  img.save("output\psychrom\psychrom_NIPAAm_out.png") 

 else: 

  1 

 return []  
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APPENDIX J 

 

PYTHON CODE FOR “HX.PY” 
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def HX(m_dot_h, m_dot_c, P_h, P_c, T_h_i, T_c_i, x_h, x_c, Fluid_h, Fluid_c, eff): 

 from CoolProp import CoolProp as CP 

  

 #determining the heat rates of the supply (h) and process (c) air 

 c_p_h = CP.PropsSI('C','T',T_h_i,'P',P_h,Fluid_h) + 

x_h*CP.PropsSI('C','T',T_h_i,'Q',1,"Water") 

 c_p_c = CP.PropsSI('C','T',T_c_i,'P',P_c,Fluid_c) + 

x_c*CP.PropsSI('C','T',T_c_i,'Q',1,"Water") 

 C_max = max(m_dot_h*c_p_h, m_dot_c*c_p_c) 

 C_min = min(m_dot_h*c_p_h, m_dot_c*c_p_c) 

 

  

 Q_max = C_min*(T_h_i - T_c_i) #the maximum available rate of heat transfer 

 Q = eff*Q_max #the actual rate of heat transfer 

  

 T_h_o = T_h_i - Q/(m_dot_h*c_p_h) 

 T_c_o = T_c_i + Q/(m_dot_c*c_p_c) 

 return [T_h_o, T_c_o]  
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APPENDIX K 

 

PYTHON CODE FOR “RH.PY” 
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def RH(T, T_d): 

 import math 

 m = 17.625 #constant 

 T_n = 243.04 #constant 

 T = T - 273.15 #actual air temperature  

 T_d = T_d - 273.15 #dew point temperature  

 RH = math.exp(m*(((T_d)/(T_d + T_n)) - ((T)/(T + T_n)))) #relative humidity  

 return RH  
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APPENDIX L 

 

PYTHON CODE FOR “T_S.PY” 
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def T_s(x, P_tot): 

 import math 

 from scipy.optimize import fsolve 

 P_vs = (x*P_tot/0.6219907)/(1 + x/0.6219907) #saturation vapor pressure for 

given humidity  

 def equation(T): 

  Eq_1 = 22064000*math.exp(647.096/T*(-7.85951783*(1 - T/647.096) + 

1.84408259*(1 - T/647.096)**1.5 - 11.7866497*(1 - T/647.096)**3 + 22.6807411*(1 - 

T/647.096)**3.5 - 15.9618719*(1 - T/647.096)**4 + 1.80122502*(1 - T/647.096)**7.5)) 

- P_vs 

  return(Eq_1) 

 T_s = fsolve(equation, 273.15) #saturation temperature  

 T_s = T_s[0] 

 return T_s  
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APPENDIX M 

 

PYTHON CODE FOR “X.PY” 
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def x(T, RH, P_tot): 

 import math 

 theta = 1 - T/647.096 #temperature-based variable  

 P_vs = 22064000*math.exp(647.096/T*(-7.85951783*theta + 

1.84408259*theta**1.5 - 11.7866497*theta**3 + 22.6807411*theta**3.5 - 

15.9618719*theta**4 + 1.80122502*theta**7.5)) #Saturation vapor pressure [Pa] 

 P_v = P_vs*RH #actual vapor pressure 

 x = 0.6219907*P_v/(P_tot - P_v) #humidity ratio  

 return x  



210 

 

APPENDIX N 

 

PYTHON CODE FOR “X_S.PY” 
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def x_s(T, P_tot): 

 import math 

 theta = 1 - T/647.096 #temperature based variable  

 P_vs = 22064000*math.exp(647.096/T*(-7.85951783*theta + 

1.84408259*theta**1.5 - 11.7866497*theta**3 + 22.6807411*theta**3.5 - 

15.9618719*theta**4 + 1.80122502*theta**7.5)) #Saturation vapor pressure [Pa] 

 x_s = 0.6219907*P_vs/(P_tot - P_vs) #saturation humidity ratio for given 

temperature  

 return x_s 


