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ABSTRACT 

 In this research, a new cutting edge wear estimator for micro-endmilling is 

developed and the reliabillity of the estimator is evaluated. The main concept of this 

estimator is the minimum chip thickness effect. This estimator predicts the cutting edge 

radius by detecting the drop in the chip production rate as the cutting edge of a micro- 

endmill slips over the workpiece when the minimum chip thickness becomes larger 

than the uncut chip thickness, thus transitioning from the shearing to the ploughing 

dominant regime. The chip production rate is investigated through simulation and 

experiment. The simulation and the experiment show that the chip production rate 

decreases when the minimum chip thickness becomes larger than the uncut chip 

thickness. Also, the reliability of this estimator is evaluated. The probability of correct 

estimation of the cutting edge radius is more than 80%. This cutting edge wear estimator 

could be applied to an online tool wear estimation system. Then, a large number of 

cutting edge wear data could be obtained. From the data, a cutting edge wear model 

could be developed in terms of the machine control parameters so that the optimum 

control parameters could be applied to increase the tool life and the machining quality 

as well by minimizing the cutting edge wear rate.  

 In addition, in order to find the stable condition of the machining, the stabillity 

lobe of the system is created by measuring the dynamic parameters. This process is 

needed prior to the cutting edge wear estimation since the chatter would affect the 

cutting edge wear and the chip production rate. In this research, a new experimental 

set-up for measuring the dynamic parameters is developed by using a high speed camera 

with microscope lens and a loadcell. The loadcell is used to measure the stiffness of the 

tool-holder assembly of the machine and the high speed camera is used to measure the 
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natural frequency and the damping ratio. From the measured data, a stability lobe is 

created. Even though this new method needs further research, it could be more cost-

effective than the conventional methods in the future. 
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CHAPTER 1 

INTRODUCTION 

Section 1. Overview 

 This dissertation covers two research topics on micro-milling. First, a study is 

conducted to estimate tool wear rate from measuring chip production rate in micro-

endmilling. Next, the dynamic properties of a micro-endmilling system are investigated 

so that the tool wear estimation research could be conducted in stable cutting conditions. 

 A new method for estimating tool wear rates by detecting changes in the chip 

production rate due to changes in the minimum chip thickness (MCT) is described first. 

The proposed method has the potential to overcome the shortcomings of existing tool 

wear measuring methods including the lack of time efficiency and a defined physical 

link between the state of wear and the wear signature. This new method ameliorate both 

of these shortcomings. 

 Based on the MCT effect, the changes in the number of chips are simulated 

using the relationship between the uncut chip thickness (UCT) and the MCT. The MCT 

effect occurs when the sharpness of the cutting edge of the tool becomes comparable to 

the thickness of the material being cut in the micro-milling process. That is, depending 

on the sharpness of the tip of the micro-sized tool, the chips will not be produced by 

showing a ploughing effect on the cutting surface when the edge is blunt, or the chip 

will be produced when the edge is sufficiently sharp. 

 Next, the actual number of chips produced during a set of cutting experiments 

is counted and analyzed to validate the simulation results. In order to induce under 

experimental conditions a ploughing effect known to occur when the cutting edge is 

worn, the experiment was conducted by adjusting the UCT assuming that the sharpness 
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of the cutting edge does not change. 

 In milling, a single chip should be generated once the cutting edge passes 

through the cutting surface as the tool rotates. However, if the UCT is small enough so 

that the cutting edge slides on the surface, one chip will not be produced once the cutting 

edge passes, but one chip will be created when the next cutting edge passes. Thus, if a 

change in the number of chips is detected, then the sharpness of the cutting edge can be 

estimated at that time. 

 We propose the following procedure to estimate the sharpness of the cutting 

edge during a cutting process. Typically, during a cutting operation, the UCT is 

maintained at a constant level in micro-milling. Under these circumstances, we 

hypothesize that the number of chips will decrease if the cutting edge becomes blunt 

enough to cause the cutting edge to slip relative to the cutting surface. At that time, the 

feedrate should be increased in order to increase the UCT high enough to increase the 

number of chips produced per unit time to the original level during the operation. Then, 

when the cutting edge wears further and the number of chips decreases again, the 

sharpness of the cutting edge can be estimated again. If these operations are repeated, 

it will be possible to estimate the sharpness of the cutting edge over time. 

 This cutting edge radius estimation must be conducted in the stable cutting 

conditions. The chatter occurs in the unstable cutting conditions which might affect the 

chip production rate. Chatter is one of the phenomena that impedes machining accuracy. 

Chatter occurs when the vibration frequency of the tool generated by the cutting edge 

passing through the varying periodic UCT is similar to the resonance frequency of the 

tool and the tool holder assembly. Here, a study is conducted to identify the dynamic 

characteristics of the tool and the tool holder assembly of the micro-milling machine. 
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 In order to identify the dynamic characteristics described above, a transfer 

function of the tool and the tool holder assembly must be determined which is consisted 

of natural frequency, stiffness, and damping ratio. The conventional method to carry 

out this process is through impact tests using impact hammers and accelerometers. 

However, for micro-milling, it is difficult to attach an accelerometer because the tool is 

small in size. Also, the equipments are expensive. To compensate for these 

shortcomings, this research suggests using a load cell and a high-speed camera. Instead 

of using the accelerometer, a load cell is used to measure the stiffness of the tool-holder 

assembly. A high-speed camera is used to measure the natural frequency and damping 

ratio of the tool-holder assembly. Based on these, a chatter stability lobe is generated. 

 The stability lobe is divided into the conditions under which the chatter takes 

place and does not. The cutting conditions where chatter takes place should be avoided. 

 This section provides an overview of the entire study. The ideas of estimating 

tool wear by measuring chip production rate and investigating the dynamic 

characteristics of the micro-milling system using a vision sensor begin with efforts to 

overcome the disadvantages of existing methods. Through this study, the feasibility of 

the proposed methods are demonstrated. 

 

Section 2. Statement of problem: Chip production rate & tool wear estimation 

 The demand for miniaturized components is increasing in the fields of 

aerospace, electronics, optics, and biomedical engineering [1]. For example, market 

research indicates that the microfluidic chip used in the biochemical industry has 

formed $2.9 B in the global market in 2016 and is expected to increase up to $11 B in 

2026[2]. As a result, micro-manufacturing technology is actively being developed. As 
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an alternative to various non-mechanical micro-manufacturing processes which are 

limited in terms of workpiece material selection, high cost and poor productivity, micro-

milling is well suited for machining micro parts with the required accuracy while 

compensating for these limitations. The micro-milling process is a miniaturized version 

of conventional milling [3]. However, the machining theories for the conventional 

milling, such as the orthogonal cutting model, have failed to successfully explain the 

micro-milling process due to the small size of the tool [4]. 

 One such characteristic is the unpredictable nature of tool wear. Micro-

endmills have a diameter of 1 mm and can be as small as 50 μm. Therefore, the spindle 

speed required is very high, in order to achieve the necessary cutting speed and develop 

enough cutting force. The process also requires high feedrate to successfully produce a 

cut [5]. The tools are small and have significantly lower strength compared to a macro-

size tool; this makes tool wear and breakage a very severe problem. Thus, tool wear in 

micro-milling is an important area of research. Chae et al. [6] suggest that tool wear 

caused by the inherently high cutting forces and small tool size is a major challenge in 

micro-milling. 

 Machining with a worn tool leads to poor workpiece surface finish and 

dimensional accuracy. There is a large cost benefit that can be availed by monitoring 

and predicting tool wear to improve tool life and lower rejection of workpieces. These 

factors have made the tool wear a crucial area of interest. 

 In order to measure the amount of tool wear, tool condition monitoring systems 

have been developed. There are two types of methods: direct and indirect. 

 A direct measure of tool wear is a measurement which is directly related to at 

least one aspect of tool wear. This measure is not affected by external conditions and 
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hence can provide consistent information for a Tool Condition Monitoring (TCM) 

system. Direct measures have been used at the macro-scale. For example, a machine-

vision based system is used to obtain images of the tool flank surface [7]. A scanning 

electron microscope or a high-resolution optical microscope is needed to take the 

images of the cutting edge as shown in Fig. 1(a)&(b). However, the tool has to be 

uninstalled from the machine to take an image resulting in a tedious and time-

consuming procedure. Also, this method cannot be used as an online system which will 

be needed in the future to achieve better quality and time-saving. 

 ‘Indirect’ means that the parameter being measured can be correlated to tool 

wear, but does not reflect the ground truth of the tool or is not a parameter that can be 

measured on the tool. Cutting force, acoustic emissions (AE), and vibration are some 

examples. Fig. 1(c) shows the AE signal from the tool breakage. The downfall of this 

type is that indirect measures could be influenced by non-wear related phenomena. 

 Tool runout, spindle vibrations, and external conditions can adversely affect 

the AE sensing and cutting force sensing, which in-turn affects the effectiveness and 

capability of the TCM system. Also, the indirect measurements do not explain the 

physical relationship between the tool and the cutting parameters.  

 In this research, we propose a new tool wear data collecting and monitoring 

system by measuring the chip production rate in micro-endmilling. Our method 

explains the physical relationship between the tool and the cutting parameters and could 

perform as an online or real-time system which is more efficient and time-saving.  

 Types of tool wear include crater wear, flank wear, and cutting edge wear, etc. 

as shown in Fig. 1(d). The crater wear occurs on the rake face of the cutting tooth of an 

endmill due to the sliding chip on the surface. The flank wear appears on the outer 
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surface of the cutting tooth as a result of friction between the machined surface of the 

workpiece and the flank. The cutting edge wear can be seen on the edge of the cutting 

tooth. Fig. 1(e) & (f) shows the flank wear and the cutting edge wear. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

  
(f) 

Figure 1. Micro-endmill and tool conditions(a)2-flute 500 μm Micro-endmill [8], 

(b)tool wear along the flute of the micro-endmill [9], (c)AE signal from tool breakage 

[10], (d)schematic of tool wear, (e)flank wear [11], (f)cutting edge wear. 

 

  The flank wear is generally quantified by measuring the size of the wear land 

at the bottom of the tool and the reduction in the diameter of the tool. Crater wear does 

not occur at the cutting edge of the tool but on the rake face slightly above the cutting 

edge, because crater wear occurs due to the friction between the chip and the rake face 

before the perfect disposal of the chip. Therefore, we focus on the cutting edge wear 

which causes more changes to the cutting-edge radius of the endmill more than other 

types of wear. Micro-milling studies have focused on incorporating the round-edge 
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model to understand the mechanics of cutting. The cutting edge radius and edge wear 

are important factors in governing the cutting forces and the thrust force acting on the 

tool. This in-turn governs the cutting parameters of the process. A large edge radius 

causes an effective negative rake angle and the small clearance angle [12]. Additionally, 

changes in the cutting edge substantially increase the cutting forces due to ploughing, 

friction and elastic recovery of the material. Wang et al. stated the reason for this force 

increase is the reduced ratio of the UCT to the cutting edge radius [13]. Cutting edge 

radius has a direct effect on the chip formation process because of the MCT effect. For 

this reason, the cutting edge radius wear is a more meaningful measure of tool wear for 

micro-scale tool wear studies. 

 Many researchers have developed cutting models that incorporate the curved 

nature of the cutting edge and defined the parameter of MCT. Ikawa et al. [14] classified 

the MCT as the most critical parameter in micromachining. Their theory incorporated 

a round-edged tool and they defined MCT as the critical value of thickness below which 

no stable chip formation would take place. Aramcharoen and Mativenga [12] have 

termed this phenomenon as one of the many characteristics of the micro-scale referred 

to as “size-effects”. According to them, when the UCT is below the MCT threshold, the 

cutting tooth begins to rub on the surface of the workpiece rather than creating a metal 

shearing plane. Thus, no cutting takes place and no chip is formed. This ‘rubbing’ of 

the tool is generally referred to as ‘ploughing’. The workpiece material is compressed 

and then recovers after the cutting tooth passes. This is an ‘elastic recovery’ of the 

workpiece material. Only with UCT larger than MCT, chip formation is possible. Kim 

et al. [15] created a theoretical model to account for the lack of formation of chips on 

each pass of a cutting tooth, especially at lower feedrates. When the UCT is sufficiently 



8 

 

high, each cutting pass produces a chip and the cutting is termed as a “steady cutting 

regime”. This is the theoretical prediction based on the round-edged cutting model 

which shows that the feedrate per tooth of the tool is significant in determining the 

chance of production of a chip. Similar studies have been done to derive and establish 

theories of micro-machining and chip formation [15, 18]. It was found that as the tool 

wears out, the minimum feed per tooth required increases which should cause 

intermittent chip formation. 

 The value of MCT is not constant for all cases. It varies based on the cutting 

edge radius of the tool used and also on the type of workpiece material being machined. 

Kim et al. [15] experimentally found the MCT to be 22-25% of the cutting edge radius 

of 3 μm for a 600 μm micro-endmill. In [17], Yuan et al. experimentally observed a 

similar result. The MCT is approximated as 25-30% of the cutting edge radius. In this 

study, we begin by introducing a theoretical correlation between the number of chips 

produced during machining and the condition of the tool. We have published the 

development of this relationship in [18].  

 Using the MCT effect, the number of chips is considered as a new parameter 

that is directly affected by the tool wear, especially the cutting edge wear. Therefore, 

by counting the number of chips during cutting, we can determine whether the MCT is 

below or above the UCT. At the moment that the MCT crosses the UCT, the value of 

the cutting edge radius can be directly determined. Since the value of the UCT can be 

directly controlled by the feedrate, an experiment can be designed in which the feedrate 

is varied, and the number of chips is measured to determine when the UCT has crossed 

the MCT.  By repeating this experiment many times during cutting over the life of an 

endmill, the rate of endmill wear can be determined, and a large amount of data relating 
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cutting-edge wear to machining parameters can be gathered automatically, without 

human intervention. 

 As a first step, we present a cutting simulation of the micro-endmilling process 

based on the geometry of the trochoidal path of the cutting tooth and the MCT effect to 

investigate the relationship between the chip production rate and the state of the 

interaction at the tool-workpiece interface. Also, experimental validation is performed 

to verify our proposed method. It is found that the number of chips produced drops with 

respect to the feedrate of the cutting process when the UCT is below the theoretical 

MCT. Then, the reliability of the proposed method is evaluated.  

 In this section, the need for this new tool wear estimating method and the 

feasibility of this method is discussed. 

 

Section 3. Statement of problem: Dynamic characteristics of micro-milling 

 In micro-milling, it is important to understand the dynamic characteristics of 

the system prior to the cutting edge radius estimation research, because the unstable 

cutting conditions which generate chatter would influence the chip production rate in 

micro-endmilling. But, chatter is not considered in this cutting edge radius estimation 

research. Therefore, the stable cutting conditions should be found and applied to the 

cutting process.  

 However, in micro-endmilling, it is not possible to use the existing method, 

such as using an accelerometer and impact hammer, due to the small tool size. In this 

research, we propose a new experimental method to generate the stability lobes in 

micro-milling using a vision sensor: a high-speed camera with a microscope lens. A 2-

DOF dynamic structural transfer function of micro-endmill is obtained by measuring 
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the stiffness, the natural frequency and the damping ratio of the tool tip for the 1st mode 

shape. The high-speed camera is used to measure the displacement of the tool tip under 

the constant input force and the natural frequency and the damping ratio are obtained 

by tracking the points in the selected feature on the tip of tool while it is having free 

vibration with damping generated by an impact on the tool shank using an impacting 

device. The chatter stability lobes are generated based on the dynamic transfer function.  

 This section briefly explains the necessity of the newly proposed method of 

examining the dynamic characteristics of the micro-milling system using vision sensor 

by comparing to the existing methods.  

 

Section 4. Expected impact on micro-milling field 

 The development of the cutting edge wear estimator studied in this research 

will have a positive impact on micro-milling field. The cutting edge wear estimator 

enables the real-time data collection for modeling and evaluation of models of the 

cutting edge wear rate. By modeling and evaluating the cutting edge wear rate from the 

cutting process using different workpieces and micro-milling tools, the tools that are 

suitable for a specific workpiece can be found. Also, by comparing the change in cutting 

edge wear rate with the presence or absence of coating on a micro-mill, it is possible to 

determine which coating material minimizes the wear rate. Prior to this research, this 

data could only be collected through a time and human-labor intensive process.  This 

research enables fast and automated tool wear data collection.  Thus, this cutting edge 

wear estimator can be used not only for finding the optimum tool materials but also for 

designing a tool that minimizes the wear rate.  

 In the next chapter, literature reviews on related studies are explained.  
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CHAPTER 2 

BACKGROUND 

 In this chapter, the literature review is represented with the topics that are 

closely related to the main research topics of this dissertation. The types of tool wear 

and the existing tool wear models are explained. Then, the reviews on the tool condition 

monitoring system is followed. This chapter also includes explanation on the important 

concepts in the micro-cutting mechanism such as UCT, MCT, and cutting edge radius. 

Since the chips play a key role in this research, the chip formation and the related studies 

are explained. In addition, the influences of microstructure of the workpiece material 

on micro-machining are reviewed. In the last section, the existing studies on chatter are 

included.  

 

Section 1. Tool Wear 

 Tool wear has a significant impact on the machining process. Worn tools reduce 

the quality of machined parts as well as the life of the tool. The measure of the quality 

of the machined parts can be divided into the roughness of the surface and machining 

accuracy. Worn tool shortens the life of the tool itself as well. This is because the worn 

tool increases the cutting force, which increases the tool wear rate. Here we describe 

the types of milling tool wear and the impact on the quality of the machined parts and 

the endmill.  

 For milling tools, tool wear can be largely divided into three types: flank wear, 

crater wear, and cutting edge wear.  

 Flank wear is caused by friction between the side of the tool and the cutting 

surface, when the side of the tool and the cutting surface make contact during a tooth 
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pass. Flank wear is known to be more prominent towards the bottom of the tool, causing 

a decrease in the diameter of the bottom of the toolrelative to the top of the tool. Active 

research is underway to identify the cause of this phenomenon. For example, when 

cutting a single straight channel, when cutting with a tool with flank wear, the width of 

the bottom of the channel is less than the width of the top of the channel. Flank wear 

also affects the sharpness of the cutting edge. Particularly in the lower part of the tool 

where the diameter of the tool decreases, the machining characteristic can be changed 

by the increased or decreased sharpness of the cutting edge due to the combined effect 

of crater wear and flank wear. However, it is not yet clearly determined whether the 

cutting edge becomes sharper or duller. Flank wear, which has these effects, is directly 

related to the quality of the machining. Therefore, many studies have been conducted 

to quantify the amount of wear. Typical methods include measurement using image 

processing, measurement using cutting force, and measuring the width of the bottom 

part and the upper part of the channel after at the straight channel cutting process as 

shown in Fig. 2[19, 20, 9, 21] 

 For image processing methods of measuring tool wear, the image of the tool is 

taken using a microscope. Then, the worn area is visualized and separated from the 

other parts of the tool on the image. The wear is then calculated by obtaining the size 

of the area as shown in Fig. 2(a)[22]. 

 The flank wear has an effect on cutting forces. If the flank surface is in contact 

with the cutting surface and wear occurs during cutting, the cutting force also increases 

because of friction increase. Research has also been conducted to estimate how much 

wear has progressed through analyzing the changes in the cutting force as shown in Fig. 

2(b)[20]. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 2. Flank wear (a)Worn tool examples. Left (clockwise from top left): turning 

inserts after 6, 18, 28 and 33 minutes use. Right (clockwise from top left): milling 

cutter face after 6, 19, 25 and 27 minutes of use[22], (b)The relation between change 

in force harmonics and tool flank wear [20], (c)Image of slot cross section, and (d)slot 

profile measurement parameters[21]. 

 

 In addition, when wear occurs, the audio signal generated during cutting also 

changes. Measurement of the amount of wear by analyzing the sound signal has also 

been investigated [24]. 
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 In micro-milling, the size of the tool is so small that it is difficult to measure or 

estimate the flank wear by any of the conventional methods used at the macroscale. 

Visual methods are time-consuming because the images of the worn tool should be 

taken by a microscope. Therefore, studies were conducted to overcome this limitation. 

Online flank wear estimating system was developed by using the experimental milling 

force model as shown in Fig. 3.[23].  

 

 
Figure 3. Flow chart of tool flank wear online recognition method in time-varying 

cutting condition by using the cutting force[23] 

 

 Unlike the flank wear, the interest in crater wear is not very high, but some 

studies has also been done. Crater wear occurs at the inner surface of the cutter blade 

in milling, which is the part where the chip being cut slides up on it as shown in Fig. 

1(d) & Fig. 5. Therefore, the crater wear is caused by the friction between the chip and 

the rake face. Depending on the design of the tool, the crater part has a different design. 

The reason for this is that the crater portion is closely related to the formation of the 

chip, and the design that smooths the chip discharge has been studied and the groove 

design is different accordingly. Crater wear appears to affect chip formation as shown 

in Fig. 4&6. [27, 28]. 



15 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Cutting edge/chip former configurations (a)straight cutting edge, 

(b)chamfered cutting edge, (c)round cutting edge with flat rake face, (d) raised back 

–wall chip groove, (e)standard chip groove, (f)reduced back-wall chip groove[27] 

 

 
Figure 5. Rake face wear overview of an ISO K20 cemented carbide cutting 

tool after machining Ti-6Al-4V[29] 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Crater wear and chip formation(a)craters for 480 m/min and 0.25 mm/rev, 

(b)craters for 960 m/min and 0.25 mm/rev, (c)chips for 60 m/min and 0.15 mm/rev, 

(d)chips for 240 m/min and 0.15 mm/rev[28]. 
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 Particularly, in the case of micro-milling, since the size of the tool is very small, 

there is a possibility that the process of forming the chip will be changed according to 

the shape of the part where the crater and the cutting edge are connected. Since the 

interest in crater wear is not so high, research on the measuring method has not been 

studied as much as the measurement of flank wear. However, this crater wear measuring 

method was also done through image processing and analysis of cutting sound. 

 Cutting edge wear refers to the reduction in sharpness due to friction that occurs 

on the cutting edge. It is known from the FEM simulation results that the cutting edge 

radius increases as the cutting edge wear increases[9]. 

 Cutting edges are very important because they are directly involved in chip 

formation. If the cutting edge is round as in the case of micro-milling, the material to 

be cut starting from the stagnation point will split under and over the cutting edge as 

shown in Fig. 7&8[30, 31]. If the workpiece material goes to the lower side of the 

cutting edge, it passes through the flank surface. When it goes up, it becomes a chip 

and passes through the crater surface. At this time, the elasto-plastic behavior of the 

workpiece material moving along the rounded surface of the cutting edge can be said 

to be the key to chip formation. And, it is the cutting edge wear that largely affects this 

part. 

 Typically, a microscope is used to measure the cutting edge. An image of the 

cutting edge is taken by a microscope and the image processing is applied to find the 

radius of the round cutting edge by drawing a circle as shown in Fig. 9(c)&(e)[32–34]. 

The radius is a measure of the sharpness of the edge. In micro-milling, a high-resolution 

microscope or a scanning electron microscope should be used. Sometimes a surface 

profilometer can be used, which measures the radius from a three-dimensional image. 
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(a) 

 
(b) 

Figure 7. Cutting edge wear of micro-endmill(a)Tool wear depth distributions along 

the flute of the micro-endmill, (b)a comparison of measured tool wear against 

predicted tool wear[9]. 

 

 
Figure 8. Cutting mechamism using an edge radius tool[31]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 9. Measurement of cutting edge radius(a)Experiment set-up to measure edge 

radius, (b),(c)measurement of tool wear: effective tool diameter(left) and tool edge 

radius (right)[32–34]. 
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 The measurement of the cutting edge requires a very long time and effort. First, 

the cutting operation must be stopped and the tool removed from the spindle. An image 

is taken by a microscope and the image is analyzed through image processing. A circle 

is drawn on the cutting edge during this process. When drawing a circle, a person looks 

at the edge with the eyes and draws it. Repeat measurements must be made because 

accuracy can be poor. 

 So far, the tool wear have been classified according to the location where the 

tool wear occurs. However, there are various kinds of wear mechanisms. Only one wear 

mechanism may appear or multiple wear mechanisms may appear at once. From now 

on, a description of the wear mechanism follows. 

 There are four types of wear mechanisms as shown in Fig.10 & 11 & 12. The 

first is the abrasive wear, which causes the surface of the tool to be worn by small 

particles generated during cutting. Second, the adhesive wear occurs when the tool 

surface and the workpiece material stick together due to heat generated by the friction. 

 

 
Figure 10. Adhered chip on the cutting edge from the tool-chip adhesion[35] 
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Figure 11. Evidence of abrasion on a cemented carbide tool[29]. 

 

 
Figure 12. SEM images of rake face (a)oxidation and diffusion wear, (b) distribution 

graph, (c)mechanical and thermal cracking, (d)oxidation and diffusion wear, (e) 

original component of the tool coating and (f)adhesive wear[36]. 

 

The diffusion wear results from the transfer of atoms from the tool material to the 

workpiece material when they are in contact. This wear changes the chemical 

composition of the tool and workpiece material. Lastly, the oxidation wear reduces the 

tool wear. The presence of a small oxide film on the surface of the tool helps to reduce 

the tool wear, but at high temperature, the film quickly disappears[37]. 

 This section explains the three main types of tool wear: flank wear, crater wear, 
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and cutting edge wear. Also, the tool wear mechanisms are described. The following 

section includes the tool wear models. 

 

Section 2. Tool wear modeling 

 Tool wear measurement useful for understanding the current state of wear of 

an endmill, but modeling of tool wear can be useful to predict and reduce tool wear. 

Therefore, in order to understand the tool wear, many studies have been done on the 

modeling of tool wear. 

 The modeling based on the experimental data is carried out after obtaining data 

by measuring tool wear through the methods described previously. However, empirical 

modeling is not necessarily physically meaningful. Analytical modeling is performed 

to understand the physical sources and causes of tool wear. There are many variables 

needed in analytical tool wear modeling because of the multiple interactions involved. 

These tool wear models are described. 

 First, Taylor[38] modeled tool life based on tool wear. The relationship 

between the area of the flank wear, the cutting time and the cutting speed was 

experimentally determined as shown in Fig. 13. Based on this, a formula for predicting 

tool life was proposed. Shaw and Dirke [39] modeled the wear on sliding surfaces when 

two surfaces were in contact as shown in Fig. 14. They applied the model to the cutting 

mechanism. 

 An equation representing the relationship between the area of the flank wear(w) 

and the cutting distance(L) was proposed as Eq. (1) with a constant number (c). 

 

𝐿 = 𝑐 𝑤2 (1) 
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Figure 13. Graph of flank wear vs cutting time[40]. 

 

 
(a) 

 
(b) 

Figure 14. Tool wear from the contanct between surfaces(a)Statistical picture of 

points of contact between surfaces in contact, (b) representative wear land curves for 

carbide and HSS tools cutting M-2 tool steel of 220 Brinell hardness[39]. 

 

 Usui et al. [41] proposed the relationship between flank wear and cutting time 

by applying variables such as diffusive wear, adhesive wear, temperature and strain to 

the models of Shaw and Sirke. The result is shown in Fig. 15(a). 
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(a) 

 
(b) 

Figure 15. Flank wear model(a)Comparison between predicted and measured 

progress curves for flank[42], (b)theoretical flank wear rate curves of four tools of 

different compositions with actual experimental data[43]. 

 

 Takeyama et al.[44] suggested that the total amount of tool wear is assumed to 

be the addition of the terms due to brittle fracture, mechanical abrasion, 

physicochemical mechanism or rate process, and other mechanisms. 

 Bhattacharyya and Ham [43] studied a statistical model for the mechanical 

wear process. The increment in the flank wear is calculated based on the number of 

wear particles produced in a certain amount of time, and the rate of wear mass is 

obtained as a result. The result is shown in Fig. 15(b). 

 Kannatey-Asibu [45] developed the flank wear rate equation with the 

consideration of the effects of diffusion and adhesion.  

 Only a few studies have been done on the analytical modeling of tool wear in 

micro-milling. 

 Jun et al. [46] proposed a new wear parameter in terms of the difference in edge 

radius(re) and the decrease(δt) in the tool diameter(Dt) as Eq. (2). 

∆re =
1

2
[(re1,worn − re1,new) + (re2,worn − re2,new)] 

 

% δt =
100(δt1 + δt2)

Dt
 

(2) 
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 Bao and Tansel[47] introduced the analytical cutting force( Fu)  model in 

micro-endmilling process with the tool wear representation (Kw : wear coefficient) 

capability as Eq. (3) and the model is shown in Fig. 16(c). 

 

Fu =
KwKmrft

2tanβ
 

 

Kw = 1 + (C1L)C2  

(3) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 16. Micro-endmill and wear model (a)new tool, (b)worn tool, (c)wear model 

of the NAK-55 steel wear[47]. 

  

 In this section, the existing tool wear models are described. In order to develop 

a Tool wear model, it requires tool wear measurements. Thus, the next section presents 
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a study on the measurement of tool wear. And, because the state of the tool including 

tool wear has a large effect on the machining performance, methods of monitoring the 

condition of the tool are also included in the next section.  

 

Section 3. Tool condition monitoring system 

 A tool condition monitoring system refers to a system that monitors tool 

condition offline or online. The condition of the tool includes not only tool wear but 

also tool breakage. Tool wear monitoring can be divided into direct monitoring and 

indirect monitoring approaches. Here, the types of monitoring and the existing studies 

are explained in chronological order. 

 In the 1960’s, the research on the tool condition monitoring starts to increase.  

 Keiji and Katsundo[48] found that the relationship between the cutting force 

and the flank wear is almost linear in the turning process. They discovered that when 

the flank wear increases the cutting force increases in almost linearly. Iwata [49] 

proposed a flank wear monitoring method using acoustic emission (AE) signal by 

counting the number of the signal which has the amplitude that exceeds the 

predetermined threshold as shown in Fig. 17. 

 
(a) 

 
(b) 

Figure 17. Total count of acoustic emission versus flank wear (a)threshold 

voltage=50 mV, (b)threshold voltage=100 mV[49]. 
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 Rao[50] proposed a Wear Index(WI) which increases with the increasing flank 

wear-land. This WI is derived based on the relationship between the dynamic behavior 

of the tool and the flank wear which is the ratio of the force amplitude at first natural 

frequency of tool holder to vibration amplitude at the same frequency. The results are 

shown in Fig. 18 

 

 
(a) 

 
(b) 

Figure 18. Wear Index of flank wear(a)wear index versus wear, (b)monitoring errors 

versus tool wear[50]. 

 

 Diei and Dornfeld[51] conducted research on sensing the tool wear from the 

AE signal in Face milling. They found that the AE root mean squared (RMS) value and 

the specific cutting force have good correlation. These values tend to increase with the 

increase of the flank wear. Jeon and Kim [52] developed an optoelectronic method to 

monitor the flank wear of cutting tool by using image processing. They measured the 

wear land width from the image which shows the illumination of the laser beam from 

the wear zone.  

 In the 1990’s, the interest in the Neural Network increased. Rangwala and 

Dornfeld [53] applied Neural Network to the AE signal and the cutting force to be able 
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to classify the tool condition into two, new and worn. In Fig. 19(a), the fresh and worn 

tool clusters are clearly separated. Purushothaman and Srinivasa[54] proposed the 

back-propagation algorithm to the tool wear monitoring system to be able to distinguish 

between the fresh tool and worn tool. They used the cutting operation control 

parameters as the input and predicted the output which is the flank wear-land width. 

Lim [55] investigated the relationship between the vibration amplitude and the flank 

wear in the turning process. Prior to the tool wear, the vibration acceleration amplitude 

generates two peak amplitudes. And the signal can be used as a tool wear indication as 

shown in Fig. 19(b).  

 

 
(a) 

 
(b) 

Figure 19. Tool wear monitoring system using difference sensor signals(a) AE 

signal : Two dimensional feature space(hidden node features)[53], (b)Vibration : 

Flank wear wear model in turning process[55]. 

 

 Lin and Lin [56] applied the Neural Networks and estimated the average flank 

wear in face milling. Xiaoli and Zhejun [57] proposed the tool wear monitoring method 

by applying the fuzzy clustering method. They classified the tool wear into 4 

classifications: initial, normal, acceptable and severe wear. Li et al. [58] developed a 
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tool condition monitoring system based on the adaptive neuro-fuzzy method. The 

current from the feed motor is measured and the feed cutting force is estimated from 

the measured values. The feed cutting force is used to determine when to replace the 

tool. Ertunc et al. [59] proposed two online tool wear identification method based on 

the cutting forces and the spindle power signals in drilling. They applied Hidden 

Markov Models and classified the tool wear into three conditions, sharp, workable, and 

dull as shown in Fig. 20. 

 

 
(a)  

(b) 

Figure 20. Spindle power vs. tool wear(a)experiment 1, and (b)experiment 2[59]. 

 

 Moriwaki et al. [60] suggested that the nominal specific cutting resistance 

which can be obtained from the cutting force at smaller feedrates is expected to increase 

as the tool wears through an exponential decay function. They found out that the index 

value which is in the exponential decay function is used to estimate the tool wear. There 

has been more research on the tool condition monitoring system for the macro-sized 

cutting tools.  

 However, as the size of the cutting tools becomes smaller, the studies on the 

tool condition monitoring system for the micro-tools starts to increase from the late 

1990s.  

 Tansel et al. [61] conducted research on how to predict the tool breakage before 
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the tool fails. They investigated the cutting force variation patterns during micro-

endmilling process and developed the tool breakage predicting method as shown in Fig. 

21(a). Tansel et al. [62] applied the Genetic Algorithm to estimate the cutting force 

coefficient which indicates the dullness of the cutting edge for micro-endmilling as 

shown in Fig. 21(b). Jemielniak and Arrazola [63] showed that the acoustic emission 

signal and the cutting force in micro-endmilling are largely influenced by the tool wear. 

 Malekian et al. [8] used accelerometers, force and acoustic emission sensors 

for the tool wear monitoring in micro-endmilling. The classification of the tool wear is 

conducted by applying the neuro-fuzzy method to the sensor signals. And the 

monitoring method is verified through the cutting test as shown in Fig. 22(a) 

 

 
(a) 

 
(b) 

Figure 21. Cutting force and tool breakage/wear(a)Original data and the 

reconstructed waveform are presented just before and after breakage takes place[61], 

(b)variation of the dullness index while the tool wears out[62]. 
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 Hsieh et al. [64] attached the accelerometer to the spindle holder and measured 

the vibration in micro-milling. They selected the vibration features that correlate with 

the tool wear in the frequency domain and applied the Backpropagation Neural 

Network to the features to classify the tool wear as shown in Fig. 22(b). 

 

 
(a) 

 
(b) 

Figure 22. Tool wear classifications(a)results of the neuro-fuzzy method for tool 

state[8], (b)workpiece vibration signals for sharp and worn tool test in the frequency 

domain[64]. 

 

 Ren et al. [65] applied a Type-2 fuzzy tool to the AE signal features and 

estimated tool wear in micro-milling.  

 Zhu et al. [66] measured Holder Exponent(HE) which represents the amount 

of singularity in the cutting force signal in micro-milling as shown in Fig. 23(a). They 

showed that the probability distributions of HE are different depending on the tool 

condition and it can be used as a tool wear classifier.  
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(a) 

 
(b) 

Figure 23. Online tool wear estimation and classifications(a)online state estimation 

of test[66], (b)tool wear width and area progression with time[11]. 

 

 Zhu and Yu [11] proposed a tool wear surface area monitoring method using 

the image processing in micro-milling as shown in Fig 23(b). Most of these methods 

are indirect methods. Many studies have been done on the direct tool wear measuring 

method. But, it is mostly done by using a microscope or SEM to get an image of the 

tool and measure the tool wear through the image. In most cases, the measured values 

from the direct methods are used to verify the values from the indirect methods.   

 This section describes how to monitor tool conditions, including tool wear. The 

tool condition is monitored in a direct and indirect way. Unlike the direct method, the 

indirect method determines the state of the tool wear by applying signal processing 

algorithm to the measurement signals. So far, the contents that are related to tool wear 

have been explained. The following sections describe the terms for understanding this 

study, UCT, MCT, and cutting edge radius. 
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Section 4. Uncut chip thickness 

 The UCT is one of the major parameters of the cutting process. For turning, the 

UCT is equal to the depth of cut. For milling, the UCT is different from the depth of cut 

and it can be adjusted by changing the spindle speed and feedrate. It is important from 

the aspect of machining efficiency that the cutting time should be minimized. Especially, 

in the milling process, the tool cuts the workpiece while rotating and moving forward, 

simultaneously. The feedrate and spindle speed should be selected to minimize the 

operating time as much as possible. The UCT is also related to the chip load, which is 

directly related to the cutting force. If the UCT becomes thicker, the cutting force 

increases. If the thickness is too large at low cutting speeds, the tool will break due to 

the large cutting force. The UCT can be calculated by considering the path of the cutting 

edge during a cutting process. 

 In milling, the path of the cutting edge follows the trochoidal path as it 

translates and rotates at the same time. Thus, when cutting the workpiece, the UCT 

changes while the cutting edge passes. When the cutting edge enters the workpiece, it 

has a thickness of zero. But, in the middle of the tooth pass, the UCT becomes 

maximum. And, when the cutting edge exits from the workpiece, the UCT becomes 

zero again. So, the sine curve is usually used to model the UCT. But, it is not a perfect 

circle form because of the translation motion. The sine curve is applied to the model to 

simplify the calculation. This assumption can be applied in conventional milling.  

 The first flute will cut the thicker UCT than the original thickness. And the 

second flute will cut the thinner UCT. This would change the amount of the chip load 

in each flute. The larger cutting force will be applied on the first flute and the smaller 

cutting force will be applied on the other flute. This means that first cutting edge would 
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wear out more and the other cutting edge would wear out less during the same cutting 

time period. This would change the dynamic characteristics of the cutting operation. 

 

  
Figure 24. Simulation of the forces using conventional milling force model for 

6 mm/flute feed rate without runout ((a) and (b)) and with 2 um runout 

((c) and (d))[67] 

 

 This section describes the definition of UCT and the trochoidal path of the 

cutting tooth. Also, the influence of the UCT on the cutting process, such as cutting 

force, is explained. 

 In micro-milling, the UCT and the MCT are closely related since the chip 

formation depends on them. In the next section, the relationship between the UCT and 

the MCT is described. 

 

Section 5. Minimum chip thickness 

 The MCT is better known as the MCT effect. This is one of the size effects 

generated as the size of the tool is reduced from macro to micro size, and it explains the 

cutting mechanism of micro-milling. The MCT refers to the smallest thickness that a 

round cutting edge can cut as shown in Fig. 25. 

 The MCT effect explains how the round edge behaves in the cutting process. 
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For example, if the UCT is larger than the MCT, then the cutting edge will cut the 

workpiece. This cutting mechanism is dominated by the shearing cutting regime. And 

if the UCT is smaller than the MCT, the cutting will not occur due to the sliding of the 

cutting edge on the cutting surface. This cutting mechanism is dominated by the 

ploughing cutting regime. 

 

 
(a) 

 
(b) 

 

 
 

 
(c) 

Figure 25. Minimum chip thickness (a)&(b)Sidewall surface generation taking into 

account the minimum chip thickness effect, (c)extraction of the MCT (tcmin)from 

the surface profile measured by Wyko optical profiler[68]. 
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 The MCT has had a significant impact on micro-milling studies in particular. 

Many of the theories applied to conventional milling cannot be applied to micro-milling. 

One of these theories is the Merchant's Circle model which includes cutting, shearing, 

and friction. This theory assumes that the cutting edge is sharp. However, in micro-

milling, the size of the cutting edge and the UCT become smaller so that they become 

comparable to each other. 

 Therefore, the cutting edge can not be assumed to be sharp anymore. Instead, 

it is assumed to be round having the radius which is called the cutting edge radius. The 

cutting edge radius will be explained more in the following section.  

 Many studies have been done to estimate the MCT. The MCT is not a thickness 

that can be adjusted with a feedrate, a spindle speed or other control parameters, but 

varies depending on how round the cutting edge is or what the cutting material is. The 

roundness of the cutting edge has a significant effect on the movement of the material 

that slides over the rounded edge surface when cutting the workpiece. It plays a crucial 

role in obtaining the MCT. The MCT can be estimated through experiments utilizing 

different materials and tools with different cutting edges, since how the material moves 

along the round edge depends on the cutting material and the round cutting edge. The 

movement of the material at the rounded surface has been studied through FEM 

simulations and it has been found that the material is divided at the stagnation point 

into two parts: a material that will be removed as a chip and a material that remains on 

the workpiece. The position of the stagnation point is similar to the MCT. These 

simulations are also closely related with the chip formation mechanism.  

 In order to find MCT value, many experiments have been done. The MCT -to-

edge radius ratio was predicted between 0.205 and 0.43 in the previous research on 
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MCT [69]. L’Vov [70] estimated the MCT-to-edge radius ratio to 0.298 from the cutting 

experiments with a cemented carbide tool and the SAE1045 workpiece. Also, Yuan et 

al. [17] conducted the ultraprecision lathe experiments to find the ratio by cutting an 

aluminum alloy with a diamond tool. The measured cutting edge radius is 0.2~0.6 μm 

and the MCT is 0.05~0.2 μm indicating that the ratio is between 0.25~0.33. And, from 

the FE simulation by Vogler et al. [71], the ratio was 0.14~0.25 for the pearlite material 

and 0.29~0.43 for the ferrite material.  

 In this section, the definition of MCT is described. Then, the explanations are 

made on the efforts that have been made to investigate the MCT with experimental 

approaches as well as theoretical. Since the MCT can be approximated from the cutting 

edge radius, it is explained more thoroughly in the next section. 

 

Section 6. Cutting edge radius 

 Generally, the sharpness of a rounded cutting edge is classified by its radius. 

Unfortunately, it has been measured in many different ways without defined measuring 

standards. The cutting edge radius can be obtained by measuring the radius of a circle 

drawn on a round cutting edge. In particular, the cutting edge radius is a measure of the 

cutting edge wear. To measure the cutting edge radius, an image of the edge is taken by 

a microscope or SEM and a circle is drawn on the edge. And then, the radius of the 

circle is measured. However, there is a drawback to this measurement method. Since 

the round part of the cutting edge does not exactly match the perfect circle, a 

measurement error occurs. Since the cutting edge is not always round, it also causes 

errors in drawing the circle. The cutting edge of the new tools can be seen clearly. 

However, for the used tools, the workpiece material or the chips can be attached to the 
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cutting edges after the cutting. In this case, when the circle is drawn on it, the edge 

radius can be bigger or smaller than the actual value. Also, the tool should be fixed at 

the position where the bottom of the tool can be exactly parallel with the microscope 

field of view. But, it is not easy to make them parallel since the height difference 

between the lowest part and the highest part on the bottom of the tool could be smaller 

than tens of microns. Therefore, it is also difficult to keep the same depth of focus which 

could change the size of the circle. 

 Efforts have been made to increase the accuracy of drawing the circle [72]. The 

method is as follows. From the bottom view of the tool, the flank and crater surfaces 

appear as two straight lines. Draw a straight line along the flank and crater surfaces and 

draw a circle that meets these two lines and a point at the end of the cutting edge that 

meets with the bisector of an angle between two lines. This process also has some error 

because the lines are drawn by looking at the flank and crater and the dot is picked by 

looking at the cutting edge. This method was chosen in this paper because it is more 

systematic than the conventional methods.  

 The UCT, MCT, and cutting edge radius are closely related to the chip 

formation. In micro-milling, when the MCT is above the UCT, the cutting occurs with 

generating a chip per cutting tooth pass. But, when the MCT is less than the UCT, the 

cutting edge will slip on the workpiece without generating one chip per cutting tooth 

pass.  

 This section describes what the cutting edge radius is and how to measure it. 

Also briefly describes the effect of the relationship between the UCT, MCT and cutting 

edge radius on chip formation. The chip formation and chip control are described in the 

next two sections. 



38 

 

Section 7. Chip formation 

 Understanding the chip formation process and chip control is important in all 

cutting processes. The reason for this is that it is possible to design the optimal tool or 

to find the optimum machining conditions based on many phenomena including the 

friction, force, etc. acting on the tool during chip formation. Chip control is the study 

of chip shape and chip disposal method after the chip formation. It has been studied to 

minimize the influence of chip on process quality. 

 Chip formation research started between the 1930’s and 1950’s by Piispanen 

and Merchant. In Piispanen’s chip formation model, the chip is described as the stacked 

card being pushed forward by the rake surface of the tool as shown in Fig. 26(a)[73] 

[74]. Merchant proved this model both theoretically and experimentally[75]. And 

Merchant's force diagram is still very useful today. It is shown in Fig. 26(b).  

 

 
(a) 

 
(b) 

Figure 26. Early chip formation studies(a)Chip formation with the lamellas[73], 

(b)Merchant’s force diagram showing relationships between components[75]. 

 

 Between the 1950’s and 1970’s, not many studies were done on the chip 

formation. Connolly and Rubenstein[76] proposed a new lower boundary of the 
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primary deformation zone in orthogonal cutting and discussed the stresses acting on the 

new boundary and the influence of the finite radius of curvature of the cutting edge on 

the chip formation.  

 From the 1970s to the 1980s, the research on the chip formation was revitalized 

by the rapid development of SEM since the SEM was first commercialized in 1965. 

Ramalingam and Bell[77] realized that the development of SEM would enable a lot of 

data collection regarding chip formation. Doyle et al.[78] conducted an investigation 

on the friction between the chip and rake face in two conditions with and without air. 

They found that oxygen tends to increase the adhesion and friction. Hastings et al. [79] 

developed a theory that can predict the chip geometry and the cutting forces by taking 

into account the material properties such as the temperature and strain-rate of the 

workpiece. Komanduri and Brown [80] conducted cutting tests to investigate the 

mechanics of chip segmentation by using the high speed camera. They found that the 

chip segmentation occurs due to the stick-slip friction on the rake face. Lee [81] 

compared the chip formation experiments for three different materials. The continuous 

chips are generated from the two materials and the other one generated the segmented 

chip. Lee found that the conditions for discontinuous chip formation are low strain and 

strain rate hardening capability.  

 In addition, the finite element method developed in the aerospace industry in 

1956 began to be applied to the metal cutting process in the 1970s. The finite element 

method has a great influence on the research on the metal cutting process. Tay et al. [82] 

applied 2-D FEM to the orthogonal machining with a continuous chip and obtained the 

temperature distribution in the primary and secondary zone. Strenkowski and Carroll 

[83] conducted the orthogonal metal cutting simulation using the finite element method 



40 

 

and applied Lagrangian formulation for the strain condition as shown in Fig. 27(a). 

Chip formation was simulated and the influence of the value of chip separation criterion 

on the chip geometry, tool forces, and the residual stress is investigated. Strenkowski 

and Moon [84] applied the Eulerian FEM to the orthogonal metal cutting simulation to 

predict the chip geometry and the temperature distribution in the workpiece, chip, and 

tool as shown in Fig. 27(b). They compared the Lagrangian and the Eulerian approach 

to show that the latter approach is better for the metal cutting simulation. Ceretti et al. 

[85] applied the FE code DEFORM 2D to simulate the continuous and the segmented 

chip formation in orthogonal cutting. The influence of cutting speed, tool geometry, and 

depth of cut on the cutting force, temperature etc. are investigated for the continuous 

chip flow. And, the segmented chip flow is also studied to see how the discontinuous 

chips are generated. 

 

 
(a) 

 
(b) 

Figure 27. Numerical simulation of chip formation(a)Chip formation for final 

position of tool[83], (b)contours of predicted workpiece and tool termperatures[84]  

 

 In the 2000s, as interest in micro-machining increased, research on chip 

formation in micro-machining began. The theories that were not applied in 

conventional machinings, such as the size effect that arise due to the small size of the 

tool, were applied. Theories and experiments have been studied together, and finite 
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element method have been applied to the parts that are difficult to know from the 

experiments.  

 Kim et al. [86] conducted an experimental investigation on the chip formation 

in micro-milling as shown in Fig. 28. They concluded that the chip may not form when 

the feed per tooth is comparable to the cutting edge radius or when the stiffness of the 

system is small. 

 

 
(a) 

 
(b) 

Figure 28. Experimental investigation on chip formation in micro-milling(a)Picture 

of a chip from micro-milling, (b)measured chip volume versus feed per tooth[86]. 

  

 Kim et al. [15] studied the chip formation and cutting forces in micro-milling. 

They found that the chip may not be generated when the feed per tooth is smaller than 

the MCT due to the MCT effect. And, the upper and lower boundary of the appropriate 

feed per tooth for a given size tool is defined. The upper boundary guarantees stable 

machining with the consecutive chip formation and the lower boundary does not 

guarantees stable machining with the intermittent chip formation.  

 Özel et al.[87] predicted MCT through applying the Johnson-Cook(J-C) model 

to the analytical chip formation model and conducted FEM simulation based on the 

rigid-plastic deformations to predict the chip formation in micro-milling as shown in 

Fig. 29. 
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(a) 

 
(b) 

Figure 29. Finite element simulation and cutting force in micro-milling(a)Finite 

element simulation of micro-milling, (b)predicted forces in micro-milling[87] 

 

 Jin and Altintas [88] developed a slip-line field model of micro-cutting process 

to predict the total cutting forces as shown in Fig. 30. They applied the J-C model and 

the friction at the tool-chip contact to include the strain, strain-rate and temperature 

effects on the plastic deformation zones along the round edge surface. And validated 

through the cutting test.  

 

 
(a) 

 
(b) 

Figure 30.Slip-line field model(a) Slip-line field model of the orthogonal micro-

cutting process with a round tool edge: primary shear zone [GJBTNEQ], secondary 

shear zone [BCDHJK], tertiary shear zone [BSAUTP], (b)material separation in the 

tertiary zone[88]. 
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 Thepsonthi and Özel [9] investigated the chip flow and the tool wear through 

the 3-D FEM simulation and the experiments in micro-endmilling of Ti-6Al-4V 

titanium alloy as shown in Fig. 31. Chip flow and shapes are compared with the chips 

obtained from the experiment, and the predicted tool wear is also compared with the 

experiment. 

 

 
(a) 

 

 
(b) 

Figure 31. 3-D chips from FEM simulation vs. experiment(a)Predicted 3-D chip 

formation and chip flow, (b)Comparison of predicted and measured 3-D chip 

formation and chip flow for full-immersion micro-end milling [32] 
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 As described in this section, research on chip formation plays an important role 

in understanding the cutting mechanism. Continuous research through simulations or 

experiments is needed to understand a variety of phenomena that occur between the 

cutting edge and the workpiece material. 

 The behavior of the chips beyond the chip formation is also an important issue 

since the chips affect on the machining quality. In the next section, the behavior of the 

chip after the chip formation is explained with the chip control studies. 

 

Section 9. Chip control 

 The area of chip control has been studied for more than a hundred years in 

mechanical machining industry in order to improve the efficiency of the metal cutting 

process. The surface finish, machining accuracy, and tool-life are easily affected by the 

chip formation process. Thus, the chip control research such as chip breaking and chip 

evacuating methods have been done significantly [27]. As a major part of the chip 

control, the prediction of chip geometry corresponding to the tool design is necessary 

prior to the chip break and chip evacuation applications [89]. The chip geometry 

derived in [90, 91] is the most widely accepted analytical model which is composed of 

three geometrical parameters; chip flow angle, side-curl, and up-curl. Also, another 

geometrical analysis of 3-D helical chip is conducted in [92]. They developed 3-D 

helical chip geometry by finding the helical axis, radius, and pitch. In [93], the chip is 

analytically modeled as a 3-D spiral. These chip models are derived based on the 

orthogonal cutting. In [94], 3-D geometry of a chip is obtained based on [91, 95] and 

the model is compared to the chips from the cutting test. 

 But, only a few research studies has been published predicting the chip form in 
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micro-endmilling. In [96], the chip formation process with the size effect in micro-

milling is discussed and the chip form is validated through examining the chips from 

the cutting test. The chip form is predicted by FEM and compared to the chips from 

micro-endmilling in [9, 97]. 

 As shown in Fig. 32, the 3-D geometry of a chip derived in [91] is 

composed of three components; radius (𝜌), pitch (𝑝) and athe xis of a helix(𝜃) in terms 

of rathe dius of side-curl (𝜌𝑠), up-curl (𝜌𝑢) and chip flow angle (𝜂) as Eq. (4)&(5)&(6). 

𝜌 =
√

1 − 𝑠𝑖𝑛2𝜂 𝑐𝑜𝑠2 𝜃

(
𝑐𝑜𝑠 𝜂

𝜌𝑢
)

2

+ (
1
𝜌𝑠

)
2 

 

(4) 

 

𝑝 =
2𝜋𝜌 𝑠𝑖𝑛 𝜂 𝑐𝑜𝑠𝜃

√1 − 𝑠𝑖𝑛2 𝜂 𝑐𝑜𝑠2 𝜃
 

 

(5) 

 

𝑡𝑎𝑛𝜃 =
𝜌𝑢

𝜌𝑠 𝑐𝑜𝑠 𝜂
 (6) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 32. Chip shape formation (a)Motion of chip, (b)sidecurling (left) & upcurling 

(right), (c)variation of chip form by upcurling and sidecurling when the chip flow 

angle is 0(deg), (d)variation of chip form by upcurling and sidecurling when the chip 

flow angle is 15(deg). 
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 The sidecurl, upcurl and the chip flow angle of a 3-D chip are as shown in Fig. 

33. The chip curls upwards with respect to the axis of the upcurl of the x-axis and the 

chip curls to the side with respect to the z-axis which is the axis of the sidecurl. The 

angular velocity of the upcurl ωx  and the anglular velocity of the sidecurl ωz 

generate the resultant angular velocity ω which is on the axis of the helical chip. 

 

 
Figure 33. Comparison between the actual chips and the animated chips for different 

cutting conditions[94]. 
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 The 3-D chip geometry in oblique machining can be expressed in the Cartesian 

coordinate system as following equations [94]: where 𝛿 is the tool helix angle(𝛿 =

𝜋

2
− 𝜃), 𝑡 ∈ [0,2𝜋) is used to determine the number of chips helix turns. 

 

𝑥 = −𝜌 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝑡 

 

𝑦 = −𝜌 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝑡 

 

𝑧 = 𝜌 𝑠𝑖𝑛 𝛿 +
𝑝

2𝜋
𝑡 

(7) 

 

 This section describes how to control chip movement after chip formation. 

Chip control is also an important part because it can affect machining quality if the chip 

remains on the workpiece.  

 The next section covers the microstructure of the workpiece, another factor that 

affects machining. Especially, the influence of the microstructure of workpiece material 

on the cutting force is explained. 

 

Section 9. Microstructure of workpiece material 

 In conventional machining, the workpiece material can be assumed as isotropy. 

However, the size of the grain becomes comparable to the size of the cutting edge of 

the tool in the micro-machining. And each grain has different orientations with different 

material properties such as Young's modulus[98]. Therefore, the workpiece material 

cannot be considered as isotropy but anisotropy. 

 In Fig. 34, it compares the schematic diagram of the grains and the grain 

boundaries to the picture of pearlite steel grain and grain boundaries. Every grain has a 

different orientation. And the shape of the grains is all different. 
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(a) 

 
(b) 

Figure 34. Microstructure of pearlite steel(a)schematic diagram of grains and grain 

boundaries, (b)pearlite steel grain and grain boundaries. 

 

 The influence of the grains on the micro-machining has been investigated. It 

affects the cutting force and the surface roughness which are related to the quality of 

the machining process. 

 The change in the cutting force due to the multi-phase grains including graphite, 

ferrite, and pearlite is investigated by modeling the workpiece material and by 

conducting the cutting force measuring experiment[99] as shown in Fig. 35.  

 

 
Figure 35. Microstructure of ferritic ductile iron(a)actual, and (b)simulated [99] 
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 The result shows that the wavelength of the dominant vibration frequency in 

the cutting force signal occurred due to cutting the grains located on the cutting surface 

is highly close to the average size of the grains. And the cutting force is dependent on 

the UCT which determines the chip load as shown in Fig. 36. 

 

 
Figure 36. Experimental pearlitic ductile iron data (high feed)[99]. 

 

 In this section, the influence of the microstructure on the cutting process is 

described. The size of the grains would affect the cutting force and the surface 

roughness, etc. 

 In the next section, the structural dynamics in the machining process is 

explained.  
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Section 10. Chatter 

 Chatter in the machining process has been studied for several decades. Tobias 

et al. [100] and Tlusty et al. [101] developed the chatter theory for the orthogonal 

cutting process by identifying the relationship between the tool and the cutting process 

as a structural dynamic function. Merritt [102] introduced the Nyquist stability criterion 

to the machine-tool system to find the chatter-free cutting conditions. Sridhar et al. [103, 

104] studied the theoretical approach to developing a general dynamic model of the 

milling process using a cutter without helix through the numerical computation method 

in the time domain and applied the model to predict the stability. Hanna et al. [105] 

introduced nonlinearity into the machine-tool structure dynamics. The average periodic 

coefficients are used in the dynamic milling equation by Opitz et al. [106] to predict 

chatter in milling. Tlusty et al. [107] studied chatter in turning and milling with the 

basic nonlinearity caused by the tool jumping behavior due to the large vibration. Tlusty 

et al. [108] also analyzed the unique vibration characteristics of milling compared to 

continuous cutting. And, the influence of the damping effect on the high-speed milling 

stability was studied in [109]. Minis et al. [110, 111] tried to apply the single point 

cutting chatter mechanism to milling operation utilizing Floquet’s theorem and Fourier 

Series and conducted Nyquist stability analysis of chatter in milling. Altintas & Budak 

[112–114] proposed a new analytical method that is able to predict the stability lobes 

in milling without the numerical computation and verified through the experiments as 

shown in Fig. 37. Their method can be conducted by scanning the chatter frequency 

around the system modes of the machine-tool structure in milling. 
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Figure 37. Analytical, simulation and experimental stability diagrams for a 2-DOF 

end milling system. (Workpiece material: aluminum, cutter; 3 flute, HSS end mill In 

half immersion up-mllllng)[113] 

  

 Altintas [115] also studied the three-dimensional chatter in milling using the 

same analytical method. After years of research on developing general chatter stability 

lobes in milling, it started to be expanded into more complicated machining cases. 

Bayly et al. [116] investigated the chatter stability in low radial immersion endmilling. 

Faassen et al. [117] proposed the stability prediction method that takes into account the 

effects of varying spindle speed to the cutting process and the machine dynamics of 

milling. Altintas et al. [118] compared the frequency domain and semi-discrete time 

domain solutions of the chatter stability of milling by showing the accuracy of the 

predicted stability lobes in low radial immersion milling. 

 The research on the dynamics and the stability of micro-milling started, as the 

interest in micro-machining increased. Filiz et al.[119, 120] developed an analytical 

micro-endmill dynamic model and solved numerically. The model is validated through 
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the finite element simulation and the frequency response experiment using a piezo 

actuator as a vibration source in order to conduct the modal analysis of the tool tip as 

shown in Fig. 38. 

 

 

 
Figure 38. Frequency response simulation and experiment of micro-

endmill(a)&(b)Experimental setup for free-free boundary conditions, (c)FE model 

with the piezoelectric element, (d)FE model with the elastic bands[120] 

  

 Malekian et al. [121] developed a micro-milling cutting force model 

considering the tool run-out, tool dynamics, ploughing effect and the elastic material 

recovery. The milling experiments are conducted in the chatter-free condition based on 

the stability analysis in order to verify the model. Park et al. [122] proposed a robust 

chatter stability model based on the dynamics of the micro-milling tool and emphasized 

the importance of the process damping in the stability of micro-milling operations as 

shown in Fig. 39(a). The nonlinearity in micro-milling is applied to the chatter stability 
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model and the effect of the tool run-out to the stability lobes is investigated by Afazov 

et al. [123] as shown in Fig. 39(b). 

 

 
(a) 

 
(b) 

Figure 39. Chatter stability lobe with other effects(a)Comparison of stability lobes 

with conventional chatter, robust, analytical models and experiments at slotting of 

Al7075 with process damping[122], (b)run-out effect on the stability lobes at 8 

um/tooth feedrate [123] 
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 Jin et al. [124] identified the cutting force and the process damping coefficients 

in micro-milling and predicted the chatter stability using those coefficients. In order to 

evaluate the stability of the system, the stability lobes that can be obtained through the 

frequency response experiments of the tool is required. In the conventional milling, an 

accelerometer was attached to the tool tip and an impulse was applied by the impact 

hammer to perform the Frequency Response Function (FRF) test as shown in Fig. 40(a). 

However, it is impossible to attach the accelerometer to the small tool tip. Only a few 

alternative methods of stability evaluation have been introduced in the literature. Filiz 

et al. [120] attached the piezo actuator to the shank to vibrate the tool tip and measured 

the vibration using laser Dopler vibrometer. Park et al. [122] used receptance coupling 

method to calculate the transfer function by combining the structural dynamic transfer 

function of the shank using the impact hammer and the capacitance sensor and that of 

the tool tip from FEM modal simulation as shown in Fig. 40(b). 

 

 
(a) 

 
(b) 

Figure 40. Existing methods of obtaining structural dynamic transfer function(a) 

Schematic diagram of hammer test[125], (b)receptance coupling of a spindle and an 

arbitrary end mill[122] 
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Section 11. Summary 

 The literature review describes existing research related to the research covered 

in this dissertation. The effect of tool wear on micromachining is emphasized. A lot of 

efforts were made to improve machining quality by predicting tool wear. In addition, 

machining stability has been an important research topic in micromachining field. 

Many chatter studies were performed by understanding the dynamic characteristics of 

the machine. In the next chapter, the chip production rate simulation in micro-

endmilling process is conducted.  
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CHAPTER 3 

CHIP PRODUCTION RATE SIMULATION 

 The simulation of the chip production rate in micro-endmilling process is 

conducted based on the trajectory of the cutting tooth of a micro-endmill and the MCT 

effect. The MCT can be approximated from thecutting edge radius and the UCT is 

determined from the feedrate and the spindle speed. The MCT effect describes the effect 

of the relationship between the MCT and the UCT on chip formation. If the UCT is 

larger than the MCT, one chip is created when the cutting tooth passes the workpiece, 

and when the MCT is larger than the UCT no chip is created when the cutting tooth 

passes the workpiece. Because, the cutting edge slides on the workpiece. Based on this 

MCT effect, a chip production rate simulation is conducted to see how chip formation 

changes when UCT is larger or smaller than MCT. 

 

Section 1. Trochoidal path and uncut chip thickness 

 Our proposed tool wear monitoring system relies upon the UCT and the MCT 

effect. In this section, we develop the UCT model of the micro-endmilling. A trochoid 

can be generated by the combination of rotation and translation motion of a point on a 

circle. And, the path of the kth cutting tooth in the milling process follows the path as 

Fig. 41(a). The trochoidal path of the kth tooth edge is defined as Eq. (8)&(9), where 

𝑥𝑘 and 𝑦𝑘 are the x and y position of kth cutting tooth, f is feedrate (mm/s), t is time 

(s), 𝜔 is cutting speed (rad/s), n is number of flutes, 𝑇𝑐𝑢 is UCT (mm), and 𝑓𝑡𝑜𝑜𝑡ℎ is 

feed per tooth (mm). 
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(a) 

 
(b) 

Figure 41.Uncut chip thickness(a) Trochoidal path of the cutting tooth for a 4-flute 

200 μm micro-endmill, (b) UCT of a 2-flute 200 μm micro-endmill in at 6 mm/s 

feedrate and 10,000 rpm spindle speed [18] 

 

𝑥𝑘 = 𝑓𝑡 + 𝑟𝑠𝑖𝑛 (𝜔𝑡 −
2𝜋

𝑛
(𝑘 − 1)) , 𝑦𝑘 = 𝑟𝑐𝑜𝑠 (𝜔𝑡 −

2𝜋

𝑛
(𝑘 − 1)) 

 

(8) 

 

𝑇𝑐𝑢 = 𝑓𝑡𝑜𝑜𝑡ℎ 𝑠𝑖𝑛(𝜔𝑡) (9) 

  

 Here, we are assuming that there is no chatter, tool deflection, and tool run-out, 

and the UCT varies from zero to feed per tooth as shown in Fig. 41(b).  

 In this section, the trochoidal path of a cutting tooth in milling process is 

simulated to determine the UCT. In the next section, the MCT is calculated prior to the 

chip production rate simulation.  

 

Section 2. Minimum chip thickness  

 The MCT is directly related to the chip formation as it is considered as the 

major factor of the cutting mechanics of the tool-workpiece interface (whether shearing, 

ploughing, or elasto-plastic deformation is taking place). The possibility of shearing 

one chip per tooth pass or not depends on the tool condition, workpiece materials and 
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other machining parameters [126]. And, in order to simulate the chip production rate, 

the MCT has to be determined. As mentioned in chapter 2, the MCT(𝑡𝑐𝑚) to cutting 

edge radius (𝑟𝑒) ratio can be approximated as 0.3 as given in Eq. (10). 

 

𝑡𝑐𝑚 ≅ 0.3 𝑟𝑒 (10) 

 

 Since the cutting edge radius is required to obtain the MCT, the cutting edge 

radius is measured in the next section. 

 

Section 3. Cutting edge radius measurements 

 Generally, the sharpness of a rounded cutting edge is classified by its radius. 

Unfortunately, it has been measured in many different ways without any measuring 

standards. It can be affected by the resolution of the microscope or micro profilometer, 

the uncertainty from the user, and the circle fitting procedure onto the round edge. Wyen 

et al. [72] introduced a cutting edge radius measuring method to increase the reliability 

of the measured values. This measuring method is described in chapter 2.  

 To ensure that the acceptable cutting edge radius is applied to the MCT 

calculation in our simulation, Wyen’s method was applied to measure the cutting edge 

radius of a 2-flute 200 μm micro-endmill from Performance Micro Tool (PMT) using 

Olympus MX50 microscope and the image processing shown in Fig. 42(a)&(b). 

 The MCT can be approximated from the cutting edge radius measurement. The 

following section describes the relationship between the ploughing effect and the chip 

production. 
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(a) 

 
(b) 

Figure 42. A 2-flute 200 μm micro-endmill with 2.01 μm cutting edge radius (a) 

50× magnification, (b)150× magnification of the cutting edge on the right side in 

the tool image in (a). 

 

Section 4. Ploughing effect 

 No chip will be generated if the UCT is less than the MCT. Assuming that the 

MCT does not change during a single tooth pass, only the UCT varies from zero to feed 

per tooth while cutting one tooth path. Therefore, regardless of whether the feed per 

tooth is larger or smaller than the MCT, shearing will not occur at the entering and 

leaving stage as shown in Fig. 43. And, the chip will not be generated until the 

accumulated feed per tooth become larger than the MCT, at which point shearing begins. 



60 

 

 
Figure 43. Ploughing effect in micro-endmilling [18] 

 

Section 5. Chip production rate simulation 

 In order to simulate the chip production rate, the chip numbers are generated 

based on the MCT effect at the feedrate between 0 to a certain feedrate that is able to 

generate the UCT above the MCT. Since the cutting edge wear is unpredictable, the 

UCT which can be obtained from the feedrate is changed assuming that the cutting edge 

radius is constant. Also, a number of tooth passes is chosen so as to look at the trend of 

number of chips generated at the same number of cuts. In. Fig. 44, a flow chart of the 

chip production rate simulation algorithm is shown. A MATLAB® code is developed 

based on this flow chart. 
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Figure 44. A flow chart of chip production rate simulation algorithm [18]  
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Section 6. New chip thickness 

 The engagement angle of a tooth is from 0° to 180°. The UCT is zero at the 

entrance and the exit and it is equal to the feed per tooth at 90°. The chip formation 

occurs only at those angles for which the UCT has exceeded the MCT.  

 Once a chip is created at ith  tooth cut, the new surface created on the 

workpiece will have the same shape as the removed part of the ith tooth path. When a 

chip is not produced due to the MCT effect, the remained surface after ith tooth cut 

will be the same as the i − 1th tooth path. The unremoved part will be accumulated in 

the i + 1th tooth cut and become a new chip thickness. In Fig. 45, the process of chip 

generation is shown. As shown in Fig. 45(a), the UCT becomes closer to zero when the 

tooth enters and leaves the workpiece, and becomes smaller than the MCT during the 

period. Although one chip is created, it can be seen that there is an unremoved 

workpiece left at the entrance and the exit and added to the next UCT. 

 

Section 7. Chip counting and chip volume size 

 The number of chips is obtained by counting the number of groups composed 

of zero values in the remained surface. In Fig. 45(b), a single chip is formed after the 

1st cut and after the 2nd cut. After the 3rd cut, three chips are formed. 

 Practically, infinitesimally small chips cannot be counted. Thus, we add here a 

‘filtering’ to simulate the number of chips that would be counted given a limitation on 

the smallness of chips that can be detected with a hypothetical chip counting device. 

The chips with more than a certain volume (filtering) are only counted to show the 

change in the number of chips in the different sizes. The chip volume size can be 

obtained by multiplying the axial depth of cut and the removed area.  
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(a) 

 

 
(b) 

Figure 45. Chip counting and size of chips(a)New chip thickness after the 1st cut in 

micro-endmilling, (b)Remained surface after the cut [18] 
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 The removed area is calculated from the integration of the removed surface by 

the trapezoidal rule, shown in Eq. (11), where d is the axial depth of cut, θstart and 

θend are the engagement angle at the startstart and end of a formation of a chip. The 

volume of a perfectly formed chip can be calculated as Eq. (11), where 0.637 of feed 

per tooth is the average of UCT, Vchip is the chip volume, and r is the tool radius. 

 

Vchip = d ∫ surf dθ
θend

θstart

= 0.637πrftoothd (11) 

 

Table 1 

Simulation input parameters 

 

Section 8. Simulation result 

 The chip counting simulation for the micro-endmilling operation is conducted 

using the input parameters in Table 1. The tool radius, spindle speed and the axial depth 

of cut are selected considering our future experimental conditions. In particular, the 

spindle speed can also be used as a parameter to determine the UCT. But, the spindle 

speed is selected as 80,000 rpm, which is the highest speed, in order to minimize the 

Simulation Input Parameters 

Tool Radius (mm) 0.1 

Number of flutes 2 

Spindle Speed (rpm) 80,000 

Feedrate (mm/s) 
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 

1.9, 2.0 

Cutting Edge Radius (mm) 0.002 

Axial Depth of Cut (mm) 0.04 

Filter Size ( μm3) 0~22,500 

Number of Cuts 500 
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cutting force [51, 52]. The feedrate is selected between 1.0 mm/s and 2.0 mm/s in order 

to simulate the change of the number of chips when the UCT crosses the MCT at 

feedrate 1.6 mm/s which corresponds to the MCT of 0.0006 mm which is the one-third 

of the cutting edge radius 0.002 mm. The filter values for the chip volume size are 

chosen between zero and the maximum chip volume size in the simulation. The size of 

a perfect chip is calculated to be approximately 3,002~6,004 μm3  in the selected 

feedrate and it is also applied as a reference of the filter value. And the number of cuts 

is arbitrarily selected within a range suitable for detecting changes in the number of 

chips.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 46. Number of chips vs. filtering vs. feedrate(a)Number of chips in different 

feedrate without filtering, (b)number of chips at feedrate 1.0 mm/s in different filter 

values, (c)number of chips in different feedrate and filter values. 
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 The number of chips produced at different feedrates is shown in Fig. 46(a). The 

number of chips shows a clear 1.9% drop from 3,579 to 3,510 when feedrate is reduced 

from 1.7 mm/s to 1.6 mm/s and crosses the feedrate that corresponds to the MCT. And 

the result includes all the chip volume sizes. But, approximately 60% of chips are 

smaller than 225 μm3 which is less than 10% of the volume of a perfectly formed chip 

as shown in Fig. 46(b). 

 The chips smaller than 225 μm3  are difficult to be detected and counted in 

the future experiments due to its small size. Therefore, those chips are neglected in this 

simulation of chip counting by using the filtering. 

 In Fig. 46(c), the number of chips in different feedrate and filter values are 

shown. When the filter value is smaller than the 5,400 μm3 , the number of chips 

decreases as the feedrate decreases from 2 to 1.6 mm/s and it increases as the feedrate 

decrease from 1.6 to 1 mm/s. When the filter value is between 5,400 and 10,580 μm3, 

the number of chips is almost the same in all the feedrate range. When the filter value 

is larger than the 10,580 μm3, the number of chips increases as the feedrate decreases 

from 2 to 1.7 mm/s, 1.6 to 1 mm/s. When the filter value is between 5,400 and 10,580 

μm3, the number of chips is almost the same in all the feedrate range. When the filter 

value is larger than the 10,580 μm3, the number of chips increases as the feedrate 

decreases from 2 to 1.7 mm/s and it decreases as the feedrate decreases from 1.6 to 1 

mm/s. However, at the feedrate between 1.6 ~ 1.7 mm/s and at the filter value between 

1,125 ~ 2,925 μm3, the number of chips decreases from 502 to 261 which 1.6 ~ 1.7 

mm/s and at the filter value between 1,125 ~ 2,925 μm3, the number of chips decreases 

from 502 to 261 which is 48% of the sharp drop. And, at the same feedrate range but at 

the different filtering value between 13,050~14,630 μm3 , the number of chips 
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increases from 83 to 251 which is 202.4 % of the sharp increase.  

 

Section 9. Summary 

 This result shows that the changes in the state of the interaction at the tool-

workpiece interface due to the MCT effect would result in the changes in the chip 

production rate. Therefore, the detection of the chip production rate changes would 

allow the prediction of the state of the interaction between the tool and the workpiece. 

 In micro-endmilling, it is very important to maintain good machining 

performace. And, the state of the interaction significantly affects the machining 

performance such as the surface finish, the machining accuracy, and the tool life etc. 

As a result, there have been many studies measuring the variations in cutting conditions 

(the tool wear, cutting temperature, cutting force etc.) that may occur during the state 

change, and the values are used to enhance the machining performance. In this respect, 

the chip production rate might also be used to improve the machining performance in 

the future. 

 In the next chapter, the experimentation of the chip counting in micro-

endmilling process is described. A device for counting the number of chips produced 

during the cutting process has been designed and built. Since the simulation presented 

here shows a relationship between chip production rate and cutting-edge radius, it is 

expected that information about tool wear may be able to be obtained real-time and 

automatically during the cutting process as described in chapter 6.  
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CHAPTER 4 

CHIP PRODUCTION RATE EXPERIMENT 

 The chip counting experiment is performed to validate our simulation result. 

Simulation is carried out under the same conditions as the experiment. The 

experimental set-up and the cutting teest conditions are explained. In order to obtain 

the number of chips from the image, a digital image processing algorithm is developed 

And the experimental results are analyzed [129]. The experimental results show that 

the number of chips decreases gradually when the UCT is crossing the MCT.   

 

Section 1. Simulation for experiment 

 Prior to the experiment, a new simulation is performed with the different 

filtering values listed in the Table 2. In the simulation results reported in Fig. 46, the 

number of chips varies depending on the feedrate and the size filtering values. It is not 

physically possible to count infinitesimally small chips. Thus, we apply a ‘filtering’ to 

the simulation to count the number of chips that takes into account a limitation on the 

size of chips that can be detected by an experimental setup.  

 

Table 2 

New Simulation input parameters 

Simulation Input Parameters 

Tool Radius (mm) 0.1 

Number of flutes 2 

Spindle Speed (rpm) 80,000 

Feedrate (mm/s) 1, 2, 3, 4, 5, 6 

Cutting Edge Radius (mm) 0.002 

Axial Depth of Cut (mm) 0.04 

Filter Size ( μm3) 0, 5000, 10000, 15000, 20000 

Number of tooth passes 500 
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 If the size filtering value is less than 10,000 μm3 as illustrated in Fig. 47(a) 

and (b), then the number of chips drops between the feedrate 2 and 1 mm/s near the 

critical feedrate of 1.6 mm/s. However, if the filtering value is larger than 10,000 μm3 

as illustrated in Fig. 46(c), (d) and (e), then the number of chips decreases gradually. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 47. Number of chips with filtering 

size (a)0 μm3 , (b)5,000, (c)10,000, 

(d)15,000, (e)20,000 
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Section 2. Experimental setup 

 We have designed and built a machine that is capable of collecting and counting 

the chips produced by a micro-milling process, and filtering the chips for size. A 

conceptual schematic of the machine is shown in Fig. 48. 

 

Figure 48.Conceptual schematic of a chip counting system [129] 

 

 In this machine, chips are vacuumed from the point of production at the tool 

tip through the suction nozzle and the tube and dispersed through the outlet nozzle onto 

the adhesive tape on the conveyor system as shown in Fig. 49(a). The chips are then 

imaged with a USB digital microscope (Dino-Lite Pro 1.3 MP).  

An image processing algorithm is written to count the chips in the image. Only 

chips above a specified size threshold are counted, thus filtering the chips for size. A 

custom-built 3-axis micro-milling machine with the spindle (NSK NR-3080S) attached 

to a brushless motor (EM3080J) controlled by Beckhoff TwinCat 3.0 environment is 
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fitted with the 3D printed suction nozzle holder with tubing connections as shown in 

Fig. 49(c). The suction nozzle is an aluminum pipe. In order to increase the efficiency 

of this pneumatic system, a LDPE (Low- density polyethylene) tube with a low internal 

drag force is used for connections. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 49. Experimental set-up(a)chip collecting system [129], (b)image taking 

moving table with a UBS digital microscope, (c)chip suction nozzle, (d)material 

conveying air pump, (e)conveyor system with the vinyl tape,  
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 A material conveying vacuum air pump (VACCON DF 1-3) is connected to 

the inlet tubing, and the outlet dispersion is through the outlet of the vacuum pump, as 

shown in Fig. 49(d). A roll of white vinyl tape (white commercial 3M general purpose 

vinyl tape 764) is attached to a static roller. The end of the tape is then pulled out and 

attached to a motor, as shown in Fig. 49(e). The motor (USM206-401W2) speed is 

controlled by a motor speed controller unit (USP206-1U2).  

The machining parameters are spindle speed, feedrate, and depth of cut. The 

spindle speed is selected as 80,000 rpm which is the maximum speed of the spindle. In 

the micro-milling process, the spindle speed needs to be high enough so that the cutting 

force can be reduced [51, 52]. A 2-flute 200 μm tungsten carbide micro-endmill 

(Performance Micro Tool: 200M2X600S) is used in this experiment. The cutting edge 

radius of a micro-endmill is measured as 2~3 μm in the previous research [42, 54, 55]. 

Therefore, the MCT can be approximated as one-third of the cutting edge radius which 

is 0.67~1 μm. In order to ensure that the UCT crosses the MCT during the experiment, 

the feedrate is selected as 1~6 mm/s which corresponds to a range of the feed per tooth 

of 0.3~2 μm for a 2-flute endmill at 80,000 rpm spindle speed. The depth of cut is 

arbitrarily selected as 40 μm. A moving table is developed that translates a transparent 

acrylic plate in one direction. After the tape is moved onto the table, the USB digital 

microscope is used to take pictures of the tape lying on the table with as shown in Fig. 

48(b). The table is translated by a rack and pinion gear motion attached to a geared DC 

motor. The table is moved by a simple on-off logic and moves by 1 cm after each picture 

is taken. The images are taken when the table is stopped to avoid the blurriness of the 

image. An LED back light is placed below the tape to back-illuminate the chips and 

provide high contrast between the tape and the chips. The image processing toolbox in 



73 

 

Matlab R2016b is used to count the number of chips from the image. A custom object 

counting algorithm for counting chips is developed here and is reported in the next 

section. A microscope (Olympus MX50) is used to take pictures of the bottom view of 

the tool for cutting-edge radius measurements.  

 

Section 3. Digital Image processing 

 The chips from the micro-end-milling operation can be counted from an image 

of the chips taken by a microscope. Because of the large number of chips and the high 

rate of chip production, hand-counting is excessively tedious. Thus, an object counting 

algorithm is applied to count the chips. This type of algorithm has been already applied 

to other applications such as counting red blood cells [131] or counting fish in a water 

tank [132], etc. In our method, instead of using global threshold method, the locally 

adaptive threshold method is applied addition to the existing object counting algorithms 

in order to get the accurate number of chips since the images have blurry parts due to 

the performance of the microscope. 

 In order to apply the counting algorithm, the images should be in binary form. 

The important factor in the binarization process is a threshold. There are two threshold 

methods: the global and local threshold methods. The global threshold is based on 

Otsu’s method which automatically selects a fixed threshold from a gray-level 

histogram of an image [133]. The drawback of the global threshold method is that the 

binarization fails when an image has varying illumination. In order to avoid this failure, 

the locally adaptive threshold has been developed. It calculates a different threshold in 

each local group of pixels to account for varying illumination.  

 Among many Locally Adaptive Threshold Methods, a method developed by 
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Bradely and Roth [134] is applied in this research.  

 In this work, a chip-collecting device is used to collect the chips from a slot 

micro-end-milling operation, and sample images of the chips are obtained by USB 

microscope. Digital image processing is performed based on Locally Adaptive 

Threshold Method and the morphological operations [135]. 

 A sample image (2560 × 2048) of the tape with the chips is shown in Fig. 

50(a). In the figure, the chips in the in-focus area in the center of the image are more 

easily distinguishable from the background than the chips in the outer area which is 

out-of-focus. The chips in the out-of-focus area would not be counted accurately due to 

the blurriness. In order to remove the out-of-focus area from the image, the boundary 

between the in-focus and the out-of-focus area needs to be determined. However, it is 

difficult to determine the boundary due to the gradual change in the blurriness from the 

center to the outside of the image.  

 In order to understand the properties of the image, the gray-level of the chips 

and the background are investigated. The RGB image is converted into the gray-scale 

image to obtain the gray intensity level. The conversion is conducted by an algorithm 

which sums the weighted values of R, G, B components [136]. The level is represented 

by an integer between 0 ~ 255 (black~white) and it is higher in the in-focus area but 

lower in the out-of-focus area as shown in Fig. 50(b).  

 In Fig. 50(c), the average grayscale levels of the randomly picked chips, one 

from the in-focus area and one from the out-of-focus area are obtained as 89.2 and 118.0, 

respectively. Also, the average level of a randomly cropped background from the in-

focus area and the out-of-focus area are 142.1 and 141.3, respectively. And, the average 

level of the whole image is 140.9. According to those values, the gray level of an image 
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is dominated by the background. But, the gray level of a chip is significantly influenced 

by the blurriness. The chips are counted by finding the connected components in a 

binary image. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 50. An image sample from chip counting system(a)an image of the tape with 

the chips, (b)gray level of the image, (c)a chip in the in-focus area and in the out-of-

focus area, a background area in the in-focus area and in the out-of-focus area (from 

left to right) 
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 Here, we briefly review the method of counting that is used in the testing of 

each binarization method. 

 

 
Figure 51. Boundaries(green lines) around the labeled areas with more than 4-

connected pixels 

 

 The number of labeled areas that are connected to more than 4 neighbor-hood 

pixels are counted as the chips in an image [137]. Fig. 51 illustrates the detection of the 

chips by placing an outline around each detected chip. In the example image shown in 

Fig. 51, the number of chips is 235. In order to apply the connected-pixel chip counting 

algorithm, the image has to be a binary image which only has black and white. A 

threshold value is needed to separate individual pixels into two classes: background and 

objects. Hence, the number of chips is largely dependent on the threshold value.  

 The Global Threshold Method generates one threshold which separates an 

image into the background and the objects [133]. However, the global threshold is not 

suitable for an image with a varying gray-scale level in the background. To compensate 

for such a shortcoming, the Locally Adaptive Threshold Method has been developed 
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[134]. The sampled image of chips from the out-of-focus area has blurriness which can 

be considered as the varying gray-scale level. Therefore, Locally Adaptive Threshold 

Method is applied to obtain an accurate number of chips from the image. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 52. Locally Adaptive threshold 

(a)Sensitivity of 0.5, (b)sensitivity of 0.6, 

(c)sensitivity of 0.7, (d)sensitivity of 0.9, 

(e)relationship between the number of 

objects and the sensitivity factor. 

 

 The Locally Adaptive Threshold Method requires a ‘sensitivity factor’ which 

determines the pixels that will be thresholded as the foreground pixels [138]. The binary 
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images obtained from the locally adaptive threshold with sensitivities of 0.5, 0.6, 0.7 

and 0.9 are shown in Fig. 52. When the sensitivity is too low, as shown in Fig. 52(a), 

no chips are found in the image because the background is thresholded as the 

foreground and the entire image is dark. But, when the sensitivity is set too high, as 

shown in Fig. 52(d), only the chips in the in-focus area are counted because the chips 

in the out-of-focus area are removed. Therefore, the optimal sensitivity factor needs to 

be determined in order to obtain an accurate chip count. 

 The influence of the sensitivity factor on the chip counting in the out-of-focus 

area is shown in Fig. 53. The chips with the green boundary are the chips that are 

counted. The arrows in the figures show the chips which describes the major differences 

between the different sensitivity factors.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 53. Sensitivity factor and the chips in the out-of-focus area, (a)global 

threshold, (b)local threshold with the factor of 0.65, (c) local threshold with the 

factor of 0.75, (d) local threshold with the factor of 0.85 
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 In Fig. 53(a), the two chips are not counted when the global threshold is applied. 

In Fig. 53(b), (c) & (d), the chips are counted by applying the local threshold. But, the 

two chips are counted as one chip in Fig. 53(b) with the sensitivity factor of 0.65 and 

the two chips are not counted in Fig. 53(d) with the sensitivity factor of 0.85. In Fig. 

53(c), all the chips are counted with the sensitivity factor of 0.75. Therefore, the 

sensitivity factor is chosen between 0.7~0.8. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 54. Morphological operation, 

(a)original image, (b)binary image, 

(c)after one morphological operation, (d) 

after 5 morphological operations 

(e)relationship between the number of 

iterations and the number of objects(that 

are not touching the image border) 
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 The ‘majority’ morphological operation is applied to the images to make the 

chips smoother as shown in Fig. 54(a)-(d) [135]. The ‘majority’ operation sets a pixel 

to one, if a pixel has more than five ones in its 3-by-3 neighborhood. The image before 

the operation has many isolated pixels and objects with uncertain shape and gray-scale 

levels as shown in Fig. 54(b). 

 After one ‘majority’ operation, the shape of the chips becomes smooth and the 

isolated pixels are removed as shown in Fig. 54(c). However, the uncertain objects are 

still unremoved. After 5 iterations, only the chips are remained as shown in Fig. 54(d) 

& (e). The iterations for the original image size should be more than 20 to get the 

converged value. 

 One of the main issues in the image processing is computing time. The 

relationship between the computing time and the image size has to be investigated to 

optimize the chip counting process. The chip counting system needs to operate 

automatically while the micro-end-milling machine is cutting the workpiece. And, the 

number of chips should be counted before the microscope takes the next image. 

Therefore, the computing time to obtain the number of chips needs to be considered for 

the future experiment. The time for computing the locally adaptive threshold with the 

20 iterations of ‘majority’ morphological operation increases as the size of the image 

increases as shown in Fig. 55. The choice of the appropriate image size should be made 

so that image processing can take place within a fixed amount of time. 

 In order to count the chips, 10 of the 80 images taken by the USB microscope 

are selected randomly. And, one small image of the size of 1600 by 1600 is cropped 

from each of the 10 images regardless of the area. 
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Figure 55. Relationship between the computing time and the image size 

 

 Prior to counting chips in the 1600 by 1600 images, the chips in the 400 by 400 

cropped images are counted both manually and automatically to test the reliability of 

Locally Adaptive Threshold Method as shown in Fig. 56. 

 

 
Figure 56. Comparison between the number of chips counted manually and 

automatically 
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 The size of 400 by 400 is selected so that the amount of the chips in the image 

becomes manually countable. The sensitivity factor of 0.7 is applied. The 

morphological operations are performed for 25 iterations in each image. The test results 

are listed in Table 3. The total number of chips from the 10 cropped images by the 

global threshold method has counting error greater than twice the counting error by 

Locally Adaptive Threshold Method.  

 After Test.1, the number of chips in the images of size 1600 by 1600 is counted 

automatically as shown in Table 4. The size of 1600 by 1600 is chosen to finish the 

computation within 1 sec based on Fig. 55. The sensitivity factor and the number of 

iterations of the morphological operation are not changed from Test.1. The difference 

between the number of chips obtained by the global threshold and the local threshold 

is in the range of 10~20 %. The main reason of the difference is that the global threshold 

method is not counting the chips in the out-of-focus area accurately as shown in Fig. 

57.  

 
Figure 57. Labeled area from global threshold method (above) and local threshold 

method(below)  
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 A chip counting method using digital image processing is investigated. The 

importance of counting the number of chips in micro-end-milling operation is discussed. 

The results from Test. 1 show that the chip counting algorithm using Locally Adaptive 

Threshold Method can be applied to the image with less than 10% counting error. It is 

sufficiently accurate to detect the change in the number of chips expected in the future 

experiments based on our chip counting simulation from the previous research [18]. 

And the second test shows that Global Threshold Method may not be able to count 

nearly 20% of the chips compare to Locally Adaptive Threshold Method. These results 

indicate that the effective chip count can be achieved using Locally Adaptive Threshold 

Method. 

 

Table 3 

Number of chips in the image size of 400 by 400  

Test1 

Manual 
Automatic 

Global Local 

Number 

of chips 

Number of 

chips 

Error 

(%) 

Number of 

chips 

Error 

(%) 

1 359 303 15.6 363 1.11 

2 297 264 11.11 313 5.39 

3 289 261 9.69 302 4.5 

4 312 264 15.38 316 1.28 

5 294 265 9.86 304 3.4 

 

Table 4 

Number of chips in the image size of 1600 by 1600  

Test2 

Automatic 
Difference 

(%) 
Global Local 

Number of chips Number of chips 

1 419 522 19.73 

2 446 516 13.57 

3 521 590 11.69 

4 475 561 15.33 

5 444 511 13.11 
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 In this section, the digital image processing to get the number of chips from the 

images is explained. The locally adaptive threshold method is applied to the image 

processing since the global threshold is not accurately counting the chips in the blurry 

parts of the images.  

 In the next section, the chip production rate experiment is explained.  

 

Section 4. Experiment 

 A brass workpiece is fixed to the work table. The workpiece is faced off with a 

2 mm endmill before every set of experiments. The 200 μm tool is installed on the 

tool holder of the spindle. The tip of the tool is touched off on the workpiece surface. 

The axial depth of cut is set to 40 μm and the radial depth is 200 μm (full-slotting). 

The spindle speed is set to 80,000 rpm. 

 The air flow rate for the chip suction part is fixed to the maximum of 3 SCFM 

(Standard Cubic Feet per Minute) at the air pressure of 40 PSI. The conveyor pulling 

motor is turned on at a constant speed to pull the tape. Then, the endmill is fed into the 

workpiece at a constant feedrate to perform a slot milling operation. When a complete 

slot is finished, the machine is turned off and the tape with the chips is removed from 

the system by cutting off a portion of the tape that is more than a certain distance (30 

to 40 cm) from where the chips start to stick on the tape. 

 The tape with chips is then placed on the moving table. The tape is translated 

from one side to the other side to take the image of the different area so that a number 

of image samples can be obtained from one slot milling. Fig. 58 shows an image of 

collected chips on the tape.  
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Figure 58. Image of the chips on the tape taken by a USB digital microscope 

 

 The chips in the images are counted using the chip counting algorithm. Within 

one experimental set, a number of channels are cut, and every single channel is cut at a 

constant feedrate. The first channel is cut at a feedrate of 1 mm/s, and each subsequent 

channel is cut at a feedrate 1 mm/s faster than the previous feedrate. The last channel is 

cut at a feedrate of 6 mm/s. 

 All the experiments are conducted in the same experimental conditions except 

the cutting edge radius of the tool. Within one experimental set, a number of channels 

are cut, and every single channel is cut at a constant feedrate. The first channel is cut at 

a feedrate of 1 mm/s, and each subsequent channel is cut at a feedrate 1 mm/s faster 

than the previous feedrate. The last channel is cut at a feedrate of 6 mm/s.  

 The images of the bottom view of the tools are taken before every set of cutting 

experiments to measure the cutting edge radius and to ensure that the tool is not broken 

as Fig. 59. 
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(a) 

 
(b) 

Figure 59. Cutting edge radius of a micro-endmill(a)Image(× 50) of the bottom view 

of a new 200 μm micro-endmill taken by the microscope, (b) image(× 100) of the 

cutting edge of the new tool(cutting edge radius: 1.8 μm) 

 

Section 5. Result 

 The chips from cutting tests are counted. 30 images are sampled from one slot 

milling test at 4 mm/s feedrate. The number of images is determined based on the length 

of the tape with collected chips. The speed of the tape is 16.4934 mm/s since the 

diameter of the pulley on the motor shaft is 45 mm and the motor speed is 7 rpm. And 

the length of the slot is 110 mm. Therefore, the maximum tape length that is able to 

obtain from the slot milling with the feedrate of 6 mm/s is 30.2379 mm. Then, the 

moving tape in the chip counting device translates by 10 mm after each picture is taken. 

Therefore, the maximum number of images able to get is 30. Moreover, in order to keep 

the consistancy, 30 images are taken even with the other feedrates from 1 mm/s to 5 

mm/s which generate longer tape. The mean (1,279) and the standard deviation (65.29) 

of the number of chips from the not cropped images is shown in Fig. 60(a). The 

coefficient of variance of the number of chips from the cutting test is 5.1%. When the 

image is cropped, the mean (415) and the standard deviation (15.73) of the number of 

chips from the cropped images is shown in Fig. 60(b). 
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 The experimental results are compared with the simulation. The simulation is 

    
(a) 

 
(b) 

 
 (c) 

Figure 60. Reliability of number of chips and size filtering value (a) number of chips 

from the 30 image samples without image crop, (b) number of chips from the 30 

image samples with image crop, (c) selection of the filtering values (2,400~2,600) in 

the simulation for the 1st experiment with 100 filtering value 
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performed in the same conditions of the experiment except the number of tooth passes 

and the filtering values. 

 The number of chips from the experiment in the shearing cutting conditions is 

expected to be equal to the number of tooth passes. Based on this assumption, the 

number of tooth passes for the input in the simulation should be determined. However, 

the number of chips from our experiment can be affected by many experimental 

conditions which are difficult to control, such as the loss of the chips during the chip 

collecting process through the tube, the air suction and blow nozzles, and the adhesion 

of the tape, etc. Therefore, the number of tooth passes for the simulation is selected to 

be the same with the number of chips from the experiment at the feedrate of 6 mm/s 

which can be assumed as the shearing dominant cutting condition in our experiment so 

that the equal number of tooth passes can be applied to the simulation and the 

experiment. 

 In order to compare the simulation results to the experimental results, two 

‘filtering’ values need to be selected: one for the simulation and one for the chip 

counting algorithm for the experimental data.  Both filtering values specify the 

smallest chip that should be counted. The filtering values depend on the conditions of 

the chip counting system which includes unpredictable experimental conditions such as 

the change in the image quality due to the unfixed depth of focus of the microscope due 

to the flexible tape, and the size of the chips that are produced, etc. Hence, the filtering 

values for the simulation are inversely predicted from the experimental results. To find 

the filtering values for the simulation which minimize the difference in the number of 

chips between the simulation and the experiment, the squared error between the 

numbers from the simulation and the experiment is calculated as shown in Fig. 60(c). 
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 The filtering value of 2,400~2,600 is selected in the simulation to minimize the 

error (squared error/total num. of chips: %) down to 8.15 % for the 1st experiment 

with the filtering value of 100 in the experiment. The number of chips counted under 

conditions of no size filtering from the six sets of experiments are listed in Table 5. The 

trend of the change in numbers is compared with the simulation as shown in Fig. 61. In 

Table 6&7, the number of chips with the experiment size filtering values of 100 and 

150 are listed. And the trends are shown in Fig. 62 & 63. The number of chips tend to 

decrease gradually as the feedrate decreases from the highest feedrate 6 mm/s to the 

lowest feedrate 1 mm/s. The number of chips from the experiments 2, 3, 4, and 6 tend 

to decrease gradually with no experiment size filtering. The number of chips from 

experiments 1 and 5 decrease without consistency. The result from the experiment 5 

slightly increases. The number drop is not significant around the critical feedrate. The 

simulation results show a small decrease when the feedrate is crossing the critical 

feedrate. The error is between 6.72 ~ 17.9 % 

 In the experiments 1, 2, 3, and 6, the number of chips decrease gradually with 

the experiment size filtering of 100. The number of chips from the experiments 1 and 3 

have a tendency to decrease after the numbers which are nearly constant. In the 

experiment 1, the number of chips drops more than 50 % from the feedrate of 3 mm/s 

to the feedrate 1 mm/s crossing the critical feedrate. In the experiments 2, 3, and 4, the 

number drops more than half between the feedrate of 4 mm/s and 1mm/s. In the other 

results, the number of chips either decreases gradually without any large drop or the 

increase and decrease alternates. The simulation shows a large drop in numbers when 

the feedrate is crossing the critical feedrate. The error is within the range of 7.96 ~ 

19.67 %. The experiments with the experiment size filtering of 150 have the error  
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Table 5  

Number of chips from the cutting experiments and the simulation (no size filtering for 

experiment) 

Number of Chips(No size filtering) 

Feedrate(mm/s) Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 

1 524 671 750 549 675 826 

2 631 699 898 551 662 975 

3 743 739 869 630 916 1302 

4 665 725 1136 741 731 1467 

5 770 876 1227 689 844 1459 

6 655 836 1220 691 620 1497 

Cutting edge radius(𝜇𝑚) 3.32 1.78 2.69 2.12 2.21 4.05 

Critical Feedrate (mm/s) 2.65 1.42 2.15 1.69 1.77 3.24 

Simulation Control Parameter 

Num. of tooth passes 655 836 1220 691 620 1497 

Filtering(× 1000) 
1.6-

1.7 
1.1~1.6 1.5~1.6 1.5~2.6 1.1 2.4 

Error (%)  

(Squared error / total num. of 

chips) 

8 8.97 10.28 7.22 17.9 6.72 
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(e) 

 
(f) 

 

Figure 61. Number of chips from experiments with no experimental size filtering 

(a)experiment 1, (b)experiment 2, (c)experiment 3, (d)experiment 4, (e)experiment 

5, (f)experiment 6  
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Table 6 

Number of chips from the cutting experiments and the simulation (Size filtering for 

experiment : 100) 

Number of Chips 

Feedrate (mm/s) Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 

1 123 156 115 134 208 138 

2 211 255 166 189 250 199 

3 269 247 226 202 316 330 

4 279 321 286 300 287 363 

5 300 341 286 235 310 398 

6 276 368 295 283 256 466 

Simulation Control Parameter 

Num. of tooth passes 276 368 295 283 256 466 

Filtering(× 1000) 2.4~2.6 2~8 1.9~2.6 2.7~6.3 1.7~3 4.7~5 

Error (%) 

(Squared error / total num. of 

chips) 

7.96 19.67 7.79 18.32 9.77 16.95 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

Figure 62. Number of chips from experiments with experimental size filtering of 100 

(a)experiment 1, (b)experiment 2, (c)experiment 3, (d)experiment 4, (e)experiment 

5, (f)experiment 6  
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Table 7 

Number of chips from the cutting experiments and the simulation (Size filtering for 

experiment : 150) 

Number of Chips 

Feedrate(mm/s) Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 

1 65 36 57 69 114 52 

2 141 133 103 138 180 78 

3 193 165 168 165 264 163 

4 216 230 208 253 258 174 

5 252 267 235 214 279 228 

6 244 289 235 234 240 264 

Simulation Control Parameter 

Num. of tooth 

passess 
244 289 235 234 240 264 

Filtering(× 1000) 4.9~8.3 8.5~11 2.7~12.5 6.4~11.6 3.1~5.6 14.1~19.3 

Error (%) 

(Squared error / 

total num. of chips) 

11.1 20.18 12.82 15 11.16 19.29 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

Figure 63. Number of chips from experiments with experimental size filtering of 150 

(a)experiment 1, (b)experiment 2, (c)experiment 3, (d)experiment 4, (e)experiment 

5, (f)experiment 6  

 

 

between the experiments and the simulation of 11.15 ~ 20.18 % which is larger than the 
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error from the results with no filtering and the filtering of 100. In the experiments 3, 4, 

5, and 6, the number of chips decreases gradually. The number of chips from 

experiments 1, 3, 4, and 5 tends to have numbers close to constant before the decrease 

in the numbers. In the experiment 4 and 5, the number of chips drops more than 50 % 

between the feedrate of 4 mm/s and 1 mm/s and between the feedrate of 3 mm/s and 1 

mm/s, respectively. 

 

Section 6. Summary 

 The chip production rate in micro-endmilling is measured using the developed 

chip collecting and counting system, and the results are compared with the simulation.  

 The experimental results show that the number of chips decreases as the 

feedrate decreases. In some of the results with the experiment size filtering of 100, the 

number of chips drops by almost half around the critical feedrate which can be 

calculated from the cutting edge radius. 

 The results show that the total reduced number of chips between the feedrate 

of 6 mm/s and 1 mm/s from the experiment and the simulation are almost the same. 

However, the large drop in the numbers from our experiments could be difficult to be 

distinguished from the gradual decrease. In the experiment 2, 3, and 4 with the filtering 

of 100 and the experiments 4 and 5 with the filtering of 150, the number drops half over 

more than two feedrates from 3 mm/s to 1 mm/s or 4 mm/s to 1 mm/s crossing the 

critical feedrate. And, the large error is mostly caused by the difference in the number 

of chips at the feedrate where the number drops in the simulation. Thus, the results from 

our experiments are not accurate enough to predict the cutting edge radius. Therefore, 

more investigations should be conducted in order to detect the large number drop in the 

experiment. 
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 When the UCT crosses the MCT, it could be a transition zone where the cutting 

regime changes from the shearing to the ploughing as shown in Fig. 64(a). The 

transition zone can be detected by measuring the cutting force [130]. From our 

experimental results, the transition zone could be detected by counting the number of 

chips as shown in Fig. 64(b). Our method could be less expansive than the any other 

transition zone detecting method.  

 
(a) 

 
(b) 

Figure 64. Transition zone detection(a)identification of the transition zone using the 

cutting force measurement from the ploughing dominant region and the shearing 

dominant region[130], (b)identification of the transition zone using the number of 

chips from the ploughing dominant region and the shearing dominant region. 
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 In order to improve the surface quality and the machining accuracy, avoiding 

the ploughing cutting regime is recommended. When the number of chips starts to 

decrease during the machining process, the cutting mechanism changes from the 

shearing to the ploughing regime entering into the transition zone. At that moment, the 

feedrate needs to be increased up to a certain point to maintain the shearing dominant 

regime where the chip numbers show a nearly constant amount.  

 This operation could be performed as an online chip counting process which 

can be applied to the micro-milling system to automatically feedback the tool wear data 

to the machine to optimize the machining parameters. 

 The tool run-out which might affect the number of chips is not considered due 

to the difficulties of measuring the run-out from the 200 μm tool. The chatter stability 

is not taken into account in the decision of the spindle speed and the depth of cut. Since 

the tool is small, it is difficult to investigate the structural dynamics of the cutting 

system which is the most essential part in the chatter stability analysis Therefore, in 

chapter 7, an investigation is made on the chatter stability of our micro-milling machine. 

 In the next chapter, the reliability of the proposed method of estimating the 

cutting edge radius is investigated by analysing the data obtained from the experiments. 
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CHAPTER 5 

DATA ANALYSIS 

 In this chapter, the reliability of the previously developed cutting edge radius 

estimator is evaluated. This estimator predicts the cutting edge radius by detecting the 

decrease in the number of chips as the edge slips over the workpiece when the MCT 

becomes larger than the UCT, thus transitioning from the shearing to the ploughing 

dominant region. The estimator can be divided into two parts: the chip collecting part 

and the chip counting part. The chip collecting part sucks the chips while cutting by 

using the air vacuum pump. And the air is discharged onto the adhesive tape so that the 

chips can be attached onto the tape. The chip counting part counts the chips by taking 

an image of the tape with the chips attached using a microscope and by applying image 

processing. There are many uncertainties in the pneumatic system and the image 

processing. So, these uncertainties may deteriorate the accuracy of the estimation. 

Therefore, this study evaluates the reliability of the newly proposed cutting edge radius 

estimator. 

 

Section 1. Review on chip production rate simulation and experiment 

 A chip production rate simulation has shown that the number of chips produced 

decreases when the MCT becomes larger than the UCT[18]. It has also been confirmed 

through experiments that the number of chips tends to decrease under these conditions. 

In the previous simulation and experiment, the MCT was fixed by setting the cutting 

edge radius as constant for the ease of the experiment. The change in the number of 

chips was observed when the UCT was made smaller than the MCT by decreasing the 



100 

 

feedrate[139]. 

 The cutting edge radius of the tool used in this previous experiment was 

measured to calculate the corresponding MCT and the corresponding critical feedrate 

as well. The cutting edge radius was measured from the experiment and the 

measurements were used in the simulation. The measured cutting edge radius could 

have an inherent error in the direct measuring process using a microscope and image 

processing. Therefore, the measuring procedure should be conducted in a very careful 

manner. 10 measurements were made for each cutting edge image from experiment 1 

to 6 and the means and standard deviations are listed in Table 8 and shown in Fig. 65. 

  
Figure 65. Box plot of cutting edge radius with mean and standard deviation 

 

Table 8 
Cutting edge radius with mean and standard deviation 

Exp. 
Cutting edge radius 

Mean(𝝁𝒎) Std.(𝝁𝒎) 

1 1.83 0.25 

2 1.86 0.16 

3 2.58 0.24 

4 3.68 0.29 

5 2.78 0.16 

6 3.35 0.15 

 

 The next section explains the process of finding the conditions under which the 

proposed cutting edge radius estimator will perform best. 
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Section 2. Calibration 

 The cutting edge radius estimator can be considered as a kind of sensor that 

measures the cutting edge radius by detecting the chip number drop. The sensor needs 

to be calibrated whenever the operating conditions change. The purpose of the 

calibration for this sensor is to detect the drop in the number of chips more accurately. 

Previous studies have shown that a large drop in the number of chips can be seen in the 

number of chips above a certain size[18, 139]. The calibration of this sensor is to find 

the appropriate threshold of size filtering to filter out chips smaller than a certain size 

and to count only the number of large chips. 

 In a chip production rate simulation, the volume of the chips is calculated. The 

unit for the size filtering threshold values for simulation is in μm3. In the experiment, 

the chip size is obtained from the 2-D images. Therefore, the unit for the size filtering 

values for the experiment is in pixels. Since the values have different units, they are 

considered separately. 

 First, the size threshold for the simulation is found as follows: The simulation 

results of the chip number with three different cutting edge radii are shown in Fig. 66. 

The chip production rate simulation requires a value for the number of tooth passes as 

an input parameter. The number of tooth passes for the simulation is determined based 

on the experimental set-up as follows: The size of the image is 1900 pixels by 1400 

pixels, and the conversion factor from pixel to mm is 0.0048 mm/pixel. The length of 

the image of the tape which is 1900 pixels is used to calculate the time taken for the 

tape to travel a distance corresponding to 1900 pixels. The cutting time can be 

calculated from the tape speed and the size of the image. From this information, the 

number of tooth passes during the time is estimated as 1,469.  
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 Increasing the size filtering threshold reduces the number of chips as it filters 

more chips smaller than the threshold. The proper size filtering threshold should be a 

value within a range that allows for the detection of large drops in the number of chips 

at the critical feedrate. For example, in Fig. 66(a), if the critical feedrate is 1.6 mm/s, 

the number of chips drops sharply from feedrate 2 mm/s (above the critical feedrate) to 

1 mm/s (below the critical feedrate) at the size filtering threshold of 5,000. Similarly, 

in Fig. 66(b), if the critical feedrate is 2.4 mm/s, the number of chips has a large drop 

between feedrate 3 mm/s (above the critical feedrate) and 2 mm/s (below the critical 

feedrate) with the size filtering threshold of 5,000. In Fig. 66(c), the number of chips 

also drops sharply between feedrate 4 mm/s and 3 mm/s at the size filtering threshold 

of 5,000, if the critical feedrate is 3.2 mm/s. Therefore, the proper size filtering 

threshold for the simulation is determined to be 5,000. 

 Next, the size filtering threshold for the experiments is determined. In this 

process, the simulation results and the experimental results are linearly fitted. 

Experimental chip number data is collected from a set of images of chips produced 

during a cutting process. 30 images are taken in each feedrate as explained in section 5 

in chapter 4. Therefore, 180 images are taken in each experiment. From each set of 30 

images, 20 images are randomly selected as the training data and the remaining 10 

images are used as the testing data. The training data is used for the calibration process. 

 In order to find the experimental size filtering threshold that gives the 

maximum R-squared value, the filtering threshold is swept from 20 to 450.  
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(a) 

 
(b)  

 
(c) 

Figure 66. Size filtering and number of 

chips from the simulation with the 

cutting edge radius(critical feedrate) of 

(a) 2 μm (1.6 mm/s), (b) 3 μm (2.4 

mm/s), and (c) 4 μm(3.2 mm/s)  

 

 The maximum R-squared values are selected between the filtering thresholds 

of 20~250, since the number of chips becomes significantly small when the threshold 

becomes larger than 250 as shown in Fig. 67. The optimum threshold is selected as 

listed in Table 9. The results from the linear fitting using the optimum thresholds are 

shown in Fig. 68.  

 The reason why the filtering thresholds are different for each experiment is that 

the experimental conditions are changed in parts that are not controlled by the system. 

For example, when the system equipment is dismantled and then re-assembled, there 

can be variations in conditions such as the distance between the microscope and the 

tape, the precise focus position of the microscope, and so on. Therefore, in each 

experiment, this calibration process should be conducted. 
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Table 9 

Optimum experimental filtering threshold with maximum R-squared value 

Exp. 

Experimental filtering threshold 

Optimum filtering 

threshold 
Maximum r-squared Slope y-Intercept 

1 47 0.83 0.14 63.76 

2 126 0.80 0.24 -132.23 

3 124 0.88 0.15 10.46 

4 150 0.85 0.13 9.46 

5 172 0.94 0.14 -14.48 

6 116 0.91 0.23 -36.81 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 67. Relationship between the experimental filtering threshold and R-squared 

values from the linear fitting from (a) exp. 1 to (f) exp. 6 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 68. Linear fit of the number of chips from the simulation and the experiment 

with the optimum experimental filtering threshold from (a) exp. 1 to (f) exp. 6 

 

 Additionally, the reason why the number of chips from the simulation and the 

experiment are different is due to the chip loss from the chip collecting part and the 

image crop in the image processing in the chip counting part. The number of chips 

counted from the images before the crop is around 1,280 which is 87% of the estimated 

number of tooth passes (1,469) in a single image as shown in Fig. 60 in chapter 4. This 

indicates that around 13% of produced chips are lost in the chip collection process. 

However, the image crop is then conducted to increase the accuracy in the chip counting. 
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The image is cropped to 64% of the original image, causing an expected difference of 

36% between the produced and counted number of chips.  Moreover, the number of 

chips decreases as the size filtering value increases. To obtain the optimum size filtering 

value, the number of chips from the experiments becomes smaller since the size 

filtering values should be applied to obtain the number drop. 

 As a final step of the calibration, the optimum drop detection threshold should 

be obtained. The key to the cutting edge radius estimation is to detect the drops in the 

number of chips when the MCT becomes larger than the UCT. After finding the first 

calibration parameter (size filtering threshold) of the estimator, the number of chips 

obtained from the experiment is applied as the input signal. The output signal of the 

sensor can be obtained as shown in Eq. (12). 

 

Output =
(Input − Offset)

Slope
 (12) 

 

 Eq. (12) is the sensor response curve for this estimator. The offset and slope 

values are obtained from the first calibration process. 

 In order to see the result after the first calibration, Eq. (12) is applied to the 

testing data to get the output data from the calibrated estimator. In this experiment, it is 

important to detect the drops in the number of chips as the feedrate crosses the critical 

feedrate. However, not only does the number of chips drop when the feedrate crosses 

the critical feedrate, but also the number of chips drops between the other feedrates as 

shown in Fig. 69. Therefore, an additional process is needed to be able to distinguish 

the number drop at the critical feedrate from the other number drops at the other 
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feedrates.  

 We begin by proposing that the drop in the number of chips at the critical 

feedrate is larger than the drops that occur at other feedrates.  

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 69. Normal distribution of the output signal and the critical feedrate 

boundary(Mean, Std.) from (a) Exp. 1 (1.46 mm/s, 0.196 mm/s), (b) Exp. 2 (1.49 

mm/s, 0.127 mm/s), (c) Exp. 3 (2.07 mm/s, 0.188 mm/s), (d) Exp. 4 (2.94 mm/s, 0.23 

mm/s), (e) Exp. 5 (2.23 mm/s, 0.132 mm/s), and (f) Exp. 6 (2.68 mm/s, 0.12 mm/s) 

 

 In order to distinguish the large drop from the other small drops, a drop 

detection threshold is introduced. This threshold represents the decrease in the chip 
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number in percentage. For example, when the number of chips is reduced by 20% 

between feedrate 3 mm/s and 2 mm/s and the other drop is 30% between feedrate 2 

mm/s and 1 mm/s, the feedrate range between the feedrate of 2 mm/s and 1 mm/s is 

selected with the threshold of 25% as the critical feedrate range that includes the actual 

critical feedrate. 

 The thresholds from 10% to 50% are applied to the training data to find a value 

that gives the highest probability of estimation as shown in Fig. 70. The optimum 

threshold and the maximum probability values are listed in Table 10. A method of 

estimating the cutting edge radius and obtaining the probability of estimation is 

described in the next section. 

 

Section 3. Physical interpretation of calibration 

 In the calibration process, the size filtering and the drop detection threshold 

values are used. The size filtering threshold is needed in order to see the drop in the 

number of chips in the simulation as well as in the experiment. This means that the drop 

can be seen only with the chips larger than the threshold. In other words, chips smaller 

than the threshold obscure the observation of the MCT effect.  

 

Table 10 

Optimum drop detection threshold and maximum probability of estimation 

Exp. 
Probability of estimation and threshold (%) 

Optimum threshold (%) Max. Probability (%) 

1 27 78 

2 23 99 

3 25 62 

4 31 77 

5 25 92 

6 25 97 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 70. Drop detection threshold and probability of estimation (a) exp.1 to (f) 

exp.6 

 Also, the drop detection threshold is applied in the calibration process because 

the drop in the number of chips occurs in multiple feedrate ranges making it difficult to 

distinguish the feedrate range which is including the critical feedrate from the other 

feedrate ranges with the drop in the number of chips. According to the simulation results, 

the number drop should occur at a single feedrate range which is including the critical 

feedrate. And, the assumption that the critical feedrate is constant during the cutting 

process has been made. However, in the real cutting process, the cutting edge radius 
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would change due to the tool wear changing the critical feedrate during one set of 

experiments. Therefore, the drop in the number of chips could occur in multiple feedrate 

ranges. Additionally, the ploughing effect which changes the chip production rate might 

occur even when the UCT is larger than the MCT before the expected feedrate range 

due to other reasons such as tool run-out or tool deflection which are not considered in 

this research.  

 

Section 4. Cutting edge radius estimation 

 In order to evaluate the reliability of the cutting edge radius estimator, the 

probability of detecting the drop in the number of chips between the feedrates above 

and below the critical feedrate should be investigated. 

 In Fig. 71, a flow chart which explains how to calculate the probability of 

correctly estimating the cutting edge radius is presented. In this calculation, only the 

testing data is used. 10 images that are not used in the calibration are selected from each 

different feedrate as the testing data. The difference in the number of chips is calculated 

as follows: the difference between the number of chips at feedrate 6 mm/s and the 

number of chips at feedrate 5 mm/s is calculated. Then, the difference between the 

number of chips at feedrate 5 mm/s and the number of chips at feedrate 4 mm/s is 

calculated. In this order, the difference between the number of chips at feedrate 2 mm/s 

and the number of chips at feedrate 1 mm/s is calculated at the end. This process creates 

a new sample composed of the number differences that is used for the drop detection. 

The total number of this new set of samples is 𝟏𝟎𝟔 since each data set from 6 different 

feedrates has 10 distinct numbers. Among those samples, if the number drop is detected 

at a certain feedrate range and the actual critical feedrate is in that range, then the 
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estimation is successful. The probability of estimation can be obtained by dividing the 

number of successful estimation by the total number of samples. 

 

Section 5. Result 

 The cutting edge radius estimator is calibrated for each experiment, utilizing 

only the training data. The estimator is then applied to the testing data. The optimum 

size filtering threshold, the optimum drop detection threshold, the slope, and the offset 

values are used in the probability calculation. 

 The accuracy of the estimator is evaluated by calculating the probability of 

having the actual critical feedrate in the estimated critical feedrate range as listed in 

Table 11.  

 

Table 11 

Probability of critical feedrate estimation from (a) exp.1 to (f) exp.6 

Good estimation 

Exp. 

Actual critical 

feedrate(mm/s) 

(Mean(±Std. )) 

Probability of estimation (%) 

Estimated critical feedrate 

None 
1~2 

mm/s 

2~3 

mm/s 

3~4 

mm/s 

4~5 

mm/s 

1 1.46(±0.20) 76.95 13.00 0.00 0.00 10.05 

2 1.49(±0.13) 98.81 0.49 0.01 0.00 0.69 

3 2.07(±0.19) 17.29 64.91 17.05 0.75 0.75 

4 2.94(±0.23) 7.27 74.29 18.44 0.00 0.00 

5 2.23(±0.13) 4.92 92.67 0.32 2.10 2.10 

6 2.68(±0.12) 2.01 96.66 1.22 0.00 0.11 
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 Only the feedrates from 1 mm/s to 4 mm/s are shown in the results since the 

actual critical feedrates are in the smaller range of 1 mm/s and 2 mm/s. When the 

number drop could not be detected, the probability of ‘none detected’ is also considered. 

And, the resolution of the estimation is limited to 1 mm/s due to the feedrate increment 

of 1 mm/s. 

 In Exp. 1, the actual critical feedrate is correctly estimated to within 1 mm/s 

with a probability of 76.95%. But, there are 10.05% of samples without any drop 

detection. In Exp. 2, the actual critical feedrate is between 1 mm/s and 2 mm/s, and this 

is correctly estimated 98.81% of the time. In Exp. 3, the actual critical federate of 2.07 

mm/s is correctly estimated to within 1 mm/s with a probability of 64.91%. The 

probability of estimating wrong ranges of 1~2 mm/s and 3~4 mm/s are 17.29% and 

17.05%, respectively. The probability of estimating the actual critical feedrate within 1 

mm/s in Exp. 4 is 74.29%. In Exps. 5 and 6, the probability of estimating the actual 

critical feedrate within 1 mm/s are 92.67% and 96.66%, respectively. 

 

Section 6. Summary 

 In this chapter, the reliability of a new cutting edge radius estimator based on 

chip production rate for micro-milling is evaluated. The size filtering threshold and the 

number difference threshold values can be regarded as calibration parameters, and a 

method of calibration is proposed and reported. A set of sample data is split into two 

sets: training data and testing data. The training data is used for the calibration, and the 

testing data is used for the evaluation. The optimum size filtering threshold values 

which generate the highest R-squared value from the linear curve fitting between the 

number of chips from the simulation and the experiment are determined in order to 
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produce a sensor response curve for the estimator. Also, the optimum drop detection 

threshold values for the maximum probability of estimation is obtained as a part of the 

calibration process.  

 The testing data is used for the evaluation of the reliability of the estimator. The 

results show that the probabilities of correct estimation from the experiments are more 

than 70% except in Exp. 3 with 64.91%.  

 Exps. 2, 5, and 6 show probabilities of correct estimation above 90%. In Exps. 

1, 3, and 4, the standard deviation values of the actual critical feedrates are larger than 

the standard deviation values from the other experiments. As a result, the probabilities 

of wrong estimation are larger in Exps. 1, 3, and 4 than in Exps. 2, 5, and 6 due to the 

influence of the standard deviation on the estimation. 

 The critical feedrate in this experiment can be only approximated to within 

1mm/s. Since the feedrate increment in the experiment is 1 mm/s, it is only possible to 

estimate what feedrate range the critical feedrate is within. Further experiments are 

needed to determine if a higher precision of estimation is possible by using a feedrate 

increment smaller than 1 mm/s. 

 Development of an online cutting edge radius estimation system is planned as 

a future work. If the drop in the number of chips could be detected during the cutting 

process, the cutting edge radius data may be able to be obtained automatically resulting 

in developing a cutting edge wear rate model. 

 In the next chapter, the simulation of the cutting edge wear rate model is 

performed.  
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CHAPTER 6 

CUTTING EDGE WEAR RATE MODEL SIMULATION 

 In this chapter, simulation of cutting edge wear rate model based on the chip 

production rate in micro-endmilling is conducted in order to understand the state of the 

interaction between the tool and the workpiece. The purpose of conducting this 

simulation is to show the applicatiliby of the cutting edge radius estimator to the online 

system. If the cutting edge radius estimator developed in this study is applicable to the 

online system, a lot of cutting edge wear data can be collected. Based on the data 

collected, a cutting edge wear model can be created. Our proposed cutting edge wear 

rate model can be useful in improving the tool life and the surface quality by estimating 

the tool wear. 

 

Section 1. Background 

 The hu which represents the UCT can be calculated in terms of the feedrate(𝑓), 

number of teeth(n), and spindle speed(N) as Eq. (11). 

ℎ𝑢 =
𝑓

𝑛𝑁
 (11) 

 

 The hm(MCT) can be approximated as 1/3 of 𝑟𝑒(cutting edge radius) as Eq. 

(12). 

 

ℎ𝑚 = 0.3𝑟𝑒 (12) 

 

 When the MCT crosses the UCT due to the increasing cutting edge radius from 

the cutting edge wear, the number of chips decreases[18]. At the moment that the MCT 

crosses the UCT, they are equal. The cutting edge radius can be estimated in terms of 
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the spindle speed, number of teeth, and the feedrate by putting Eq. (11)&(12) together 

as Eq. (13).  

𝑓

𝑛𝑁
≈ ℎ𝑢 = ℎ𝑚 ≅ 0.3𝑟𝑒 (13) 

 

 After the number of chips starts to decrease and the estimation of the cutting 

edge radius is made, the feedrate is increased to make the UCT larger than the MCT so 

that the cutting occurs in the shearing regime again generating one chip per tooth pass 

as shown in Fig. 72. As the cutting time increases, the MCT becomes larger than the 

UCT again due to the cutting edge wear and enables another estimation of the cutting 

edge radius. And, the cutting edge radius data can be collected until the tool breaks. 

From the data, the cutting edge wear rate could be obtained. Fig. 73 shows the flow 

chart of the cutting edge wear estimation. As a first step, the chip counting simulation 

was conducted[18]. 

 In the simulation, the UCT model is developed base on the trochoidal tooth 

path of micro-endmilling process. 

 

 
Figure 72. Schematic diagram of MCT effect (𝑅𝑒 :cutting edge radius, ℎ : UCT, 

ℎ𝑚 : MCT)[4] 
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Figure 73. A flow chart of cutting edge wear estimation process 

 

 From the cutting tooth passes, only the tooth passes with the UCT larger than 

the MCT could remove the chip. As shown in Fig. 73(a), it was theoretically validated 

from the chip counting simulation that the number of chips drops in a large amount 

when the UCT becomes less than the MCT crossing the critical feedrate which 

corresponds to the measured cutting edge radius.  

 

Section 2. Cutting edge wear rate simulation 

 A simulation of the cutting edge wear rate is conducted based on the results 

from previous research investigating the relationship between number of chips and tool 

wear based on an FEM simulation of the tool cutting-edge [9]. In this previous study 

by Thepsonthi [9], the change in the cutting edge radius was studied through the FEM 

simulation and the experiments. The spindle speed and the feed per tooth were 16,000 

rpm and 4.5μm, respectively. The results are shown in Fig. 74(a), showing that the 

cutting edge radius becomes larger as the cutting distance increases. However, it does 
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not increase linearly, but exponentially. Therefore, Thepsonthi [9] also performed curve 

fitting to find the empirical cutting edge wear model from the experimental results. 

 As a first step in our simulation, the cutting distance from Thepsonthi [9] is 

changed to the cutting time to make it easy to apply to our proposed chip production 

rate tool wear modeling method. The cutting time t can be calculated from the cutting 

conditions( 𝑓𝑡𝑜𝑜𝑡ℎ: feed per tooth, 𝑛: number of teeth, 𝑁: spindle speed ) and the 

cutting distance(𝑑𝑖𝑠𝑡𝑐𝑢𝑡), as shown in Eq. (14). 

 

𝑡 =
60𝑑𝑖𝑠𝑡𝑐𝑢𝑡

𝑓𝑡𝑜𝑜𝑡ℎ𝑛𝑁
 (14) 

 

 The cutting edge radius wear rate can be modelled by the curve fitting of the 

cutting edge radius data measured by Thepsonthi [9] and shown in Fig. 74(a) and the 

fitted data is shown in Fig. 74(b).  

 

 
(a) 

 
(b) 

Figure 74. Cutting edge wear data(a)Comparison of measured cutting edge wear 

against predicted cutting edge wear by FEM simulation in micro-endmilling[9], 

(b)exponential curve fitting with the measured cutting edge radius data points in (a). 

 

 The exponential fit of the data has an R-square value of 0.997 with the 

coefficients of 2.88 and 0.0008 with 95% confidence bounds as Eq. (15). 
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𝑟𝑒 = 2.88𝑒0.0008𝑡 (15) 

 

 According to our previous results investigating the relationship between 

cutting edge radius wear and chip count, the number of chips drops at time 𝑡𝑖 when 

the MCT becomes larger than the UCT. At that time, the feedrate should be increased 

from 𝑓(𝑡𝑖) to 𝑓(𝑡𝑖+1) to make the UCT become larger than the MCT again. Then, as 

the tool continues to wear, the MCT will cross the UCT again at time 𝑡𝑖+1, resulting in 

another drop in number of chips.  

 

    

Figure 75. A flow chart of cutting edge wear rate simulation 

 

 The cutting edge wear rate simulation is conducted as shown in the flow chart 

in Fig. 75. 
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 In consideration of the future experimental conditions, the input parameters for 

the simulation of the cutting edge wear rate are selected as listed in Table 12. This 

simulation includes the chip production rate simulation and the cutting edge wear model 

that are introduced in the previous section. In order to conduct the chip production rate 

simulation, the input parameters such as the tool radius, number of flutes, spindle speed, 

depth of cut, size filtering, number of tooth passes, and feedrate are needed. The cutting 

edge wear model from Thepsonthi[9] is used as a reference to calculate the MCT. Then, 

the MCT is compared to the UCT. The cutting edge radius is obtained eveytime when 

the MCT becomes larger than the UCT. 

 

Table 12  

Cutting edge wear rate simulation input parameters 

Input parameters 

Tool radius (mm) 0.1 

Number of flutes 2 

Spindle speed(rpm) 80,000 

Axial depth of cut (mm) 0.04 

Filter size (μm3) 50, 200, 300, adaptive filter 

Number of tooth passes 500 

Feedrate (mm/s) 3+feed increase 

Cutting edge radius (mm) Linear increase, Exponential increase[9] 

  

Section 3. Result 

 Fig. 76 shows the results of the simulation. The MCT becomes larger as the 

cutting time increases. When the MCT becomes equal to the UCT at a critical point, the 

number of chips changes. The starting UCT should be above the MCT. And, the amount 

of increment of the feedrate applied at each of the critical points determines the number 

of cutting edge radius data points. Therefore, those parameters should be determined to 
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make enough data points for the development of the cutting edge wear rate model. The 

size filtering values are applied. The size filtering value is the volume of the removed 

chip from the workpiece. In order to see the influence of the size filtering on the chip 

numbers, the values of 50, 200, and 300 are applied. The reason for the application of 

the size filtering value is to remove the small chips that might not be able to be detected 

in the future experiment[18, 139, 140]. 

 Two different cases, the linear and the exponential cutting edge wear rate 

model, are considered. In the linear case with the size filtering value of 50, the number 

of chips increases as the cutting time increases. Especially, the number of large chips is 

increased due to the slipping tooth on the cutting surface. But the size filtering value is 

not large enough resulting in the increase in the number of chips without any large drop 

in number but generating the small drops as shown in Fig. 76(a). In the figure, the first 

drop is at 360 sec and it drops again at 880 sec, 1,360 sec, and 1,880 sec. After the first 

drop, the feedrate is increased by 1 mm/s to make the UCT becomes larger than the 

MCT again. Four cutting edge radius data points are obtained.  

 The expected results should have constant number of chips through out the 

whole cutting time except the time when the number drops. Therefore, the larger 

filtering size values of 200 and 300 are applied to exclude the bigger chips from the 

results. 

 In the result with filtering size value of 200, the drop occurs at 280 sec, 840 

sec, 1,360 sec, and 1,840 sec. But the number of chips still increases after the third drop 

as shown in Fig. 76(c). When the value of 300 is applied, the number stays constant 

until it reaches almost to the end as shown in Fig. 76(e). The number drops at 160 sec, 

800 sec, 1,320 sec, and 1,840 sec obtaining four cutting edg radius data points.  
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 

Figure 76. Linear cutting edge wear rate (a),(c),(e)number of chips vs. cutting time 

with the size filtering values of 50, 200, 300, respectively, (b),(d),(f) the UCT and the 

MCT vs. cutting time with the size filtering values of 50, 200, 300, respectively 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

Figure 77. Exponential cutting edge wear rate (a),(c),(e)number of chips vs. cutting 

time with the size filtering values of 50, 200, 300, respectively, (b),(d),(f) the UCT 

and the MCT vs. cutting time with the size filtering values of 50, 200, 300, 

respectively. 
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  From the exponential cutting edge wear model with 50 size filtering value, 

the number increases having nine drops as shown in Fig. 77(a). The size filtering values 

of 200 and 300 are applied as shown in Fig. 77(c)&(e). Those values are not large 

enough to make the number of chips constant. In the exponential model, the cuting edge 

wear rate becomes larger as the cutting time increases. And, the average volume of the 

chips increases as shown in Fig. 78.  

 

 

Figure 78. Change in the average volume of chips 

 

 Therefore, the size filtering value need to be increased based on the increase 

rate of average volume of the chips. The increase of the average volume of chips is 

fitted to an exponential function with the R-square of 99.47 % as Eq. (16). 

 

𝑣𝑎𝑣𝑔 = 63.45𝑒0.001607𝑡 (16) 

 

 The average volume increases due to not only the increase in the feedrate at the 

each drop of the chip number but also the increase of the cutting edge radius. As the 
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cutting edge radius becomes larger, the slip occurs more frequently which means that 

the chip thickness becomes thicker. Therefore, when the cutting edge wear rate 

increases much higher, then the influence of the ploughing effect should not be ignored. 

 If the increase of the average volume of the chips is considered in the 

determination of the size filtering value, the constant numbers of chips through out the 

whole cutting time can be obtained as shown in Fig. 79(a). 

 The error between the exponential cutting edge wear rate and the estimated 

cutting edge radius change rate by using the chip counting method is calculated. The 

average percentage error (%) is 10.44 % as shown in Fig. 79(c). 

 

 
(a) 

 
(b) 

 

 
(c) 

Figure 79. The number of chips with the 

adaptive size filtering value (a)number of 

chips vs. cutting time, (b)the UCT and 

the MCT vs. cutting time, (c)error 

between the reference cutting edge wear 

rate and the estimated cutting edge wear 

rate from chip counting method. 
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Section 5. Summary 

 The cutting edge wear estimation simulation is conducted by using the chip 

counting method based on the MCT effect. The simulation results show that the cutting 

edge wear rate can be estimated accurately with less than 11% of error compare to the 

reference data. 

 In the conventional tool wear monitoring methods, the cutting edge radius data 

can be obtained by taking the images of cutting edge using a microscope and by 

applying the image processing algorithm to draw a circle in order to measure the radius. 

But, these direct methods are not accurate and time consuming.  

Our proposed method is expected to have the capability of collecting a large amount of 

cutting edge radius data during the cutting operation. Therefore, our method can be 

used to re-evaluate other direct tool wear monitoring methods by modeling the cutting 

edge wear rate with the cutting edge radius data points obtained from the online system. 

 However, the amount of the increase in the feedrate and the determination of 

the size filtering value need more investigation. 

 In the next chapter, the stability of micro-endmilling system is investigated by 

generating a chatter stability lobe using vision sensor.  
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CHAPTER 7 

CHATTER STABILITY LOBE GENERATION FOR EXTENDED REACH 

MICRO-ENDMILLING USING VISION SENSOSR 

 This chapter presents a new chatter stability lobe generating method in micro-

endmilling. The dynamic behavior of an extended reach 508 μm micro-endmill is 

recorded by a high-speed camera with a microscope lens. The stiffness, the natural 

frequency, and the damping ratio are measured in order to obtain a 2-DOF structural 

transfer function of the tool. In the stiffness measuring experiment, the step force input 

is applied to the tip of the tool and the displacement is measured from the CNC micro-

milling machine. In the frequency response experiment, the impulse input is applied to 

the tool shank. The behavior of the area where the light being reflected on the tip of the 

tool is recorded while having the damped free vibration. The point tracking algorithm 

is applied to follow the vibrating tool to obtain the exponentially decaying frequency 

response. Based on the measurements, a chatter stability lobe is generated using the 

stiffness, natural frequency, and damping ratio obtained from the experiments.  

 

Section 2. Background 

 The combination of the generation of wavy surface finish on the inner and outer 

surface of a chip due to the deflection of a flexible tool occured by the cutting force and 

the phase difference between the past tooth cut and the present tooth cut results in the 

regenerative UCT which causes self-excited vibration, chatter [141]. 
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Figure 80. Regenerative chatter 

 

 The regenerative chatter mechanism is shown in Fig. 79. The prediction of 

chatter stability can be carried out by either numerical or analytical method. When the 

nonlinear behavior such as plouhing effect at the feed per tooth below the MCT in 

micro-milling is considered in the equation of motion, the solution needs to be solved 

numerically. However, in this research, only the linear cutting regime with the cutting 

feed per tooth above one third of the cutting edge radius [70, 142, 71, 126, 69] is 

considered. Therefore, the analytical stability model is applied in this work. The 

equation of motion of the micro-endmill is assumed to be a 2-DOF in the feed direction 

and the direction perpendicular to the feed. And the tool is assumed to be perfectly 

symmetric.  

 The development of the stability lobe in frequency domain is as follows[113]. 

The stability analysis begins with the varying UCT due to regenerative chatter 

described as Eq. (17) where 𝛥𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 𝑇)and𝛥𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 − 𝑇) 

are the displacement in x and y direction and T is the tooth passing period.: 
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ℎ(𝑡) = (𝛥𝑥(𝑡) 𝑐𝑜𝑠 𝜙𝑗(𝑡) + 𝛥𝑦(𝑡) 𝑐𝑜𝑠 𝜙𝑗(𝑡))𝑔 (𝜙𝑗(𝑡)) (17) 

 

 The calculation takes place only within the engagement angle range via 

function 𝑔(𝜙𝑗) where 𝜙𝑠𝑡(𝑡) and 𝜙𝑒𝑥(𝑡) are the start and exit engagement angle of 

the tooth. 

 

𝑔 (𝜙𝑗(𝑡)) = {
1, 𝑖𝑓 𝜙𝑠𝑡(𝑡) < 𝜙𝑗(𝑡) < 𝜙𝑒𝑥(𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (18) 

 

 The tangential cutting force on the 𝑗𝑡ℎ tooth can be described as Eq.(19)&(20) 

where 𝑎 is the axial depth of cut, 𝐾𝑡 is the tangential cutting coefficient and 𝐾𝑟 is 

the radial cutting coefficient. 

 

𝐹𝑡𝑗
(𝑡) = 𝐾𝑡𝑎ℎ𝑗(𝑡) (19) 

𝐹𝑟𝑗
(𝑡) = 𝐾𝑟𝐹𝑡𝑗

(𝑡) (20) 

 

 The total milling force direction can be obtained as Eq. (21) where 𝑎𝑥𝑥, 𝑎𝑥𝑦, 

𝑎𝑦𝑥, and 𝑎𝑦𝑦 are the directional milling force coefficients: 

 

[
𝐹𝑥

𝐹𝑦
] =

1

2
𝑎𝐾𝑡 [

𝑎𝑥𝑥 𝑎𝑥𝑦

𝑎𝑦𝑥 𝑎𝑦𝑦
] [

∆𝑥
∆𝑦

] (21) 

 

 Fourier transformation is applied Eq. (21) to obtain the cutting force in the 

frequency domain. After the transformation, Fourier series expansion with zero order 
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is applied. The total milling force becomes Eq. (22) where 𝑎 is the depth of cut, 𝐴0 

is the directional milling force coefficient and 𝐺(𝑖𝜔) is the structural dynamic transfer 

function of the milling tool tip: 

 

𝐹(𝜔) =
1

2
𝑎𝐾𝑡(1 − 𝑒−𝑖𝜔𝑇)𝐴0𝐺(𝑖𝜔)𝐹(𝜔) (22) 

 

 The structural dynamic transfer function of the milling tool tip is expressed as 

Eq. (23) where 𝐺𝑥𝑥 and 𝐺𝑦𝑦 are the dynamic transfer function in x and y direction: 

 

𝐺(𝑖𝜔) = [
𝐺𝑥𝑥 𝐺𝑥𝑦

𝐺𝑦𝑥 𝐺𝑦𝑦
] (23) 

 

Since the tool can be assumed as symmetric, the elements in Eq. (23) can be 𝐺𝑥𝑥 =

𝐺𝑦𝑦 and 𝐺𝑥𝑦 = 𝐺𝑦𝑥 = 0. 

 The dynamic transfer function in the x direction can be described as Eq. (24) 

where X(s) is the displacement output in x direction, F(s) is the impulse input force, k 

is the stiffness of the tool tip, ωn is the natural frequency and ζ is the damping ratio: 

 

𝐺𝑥𝑥(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑘
(

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

) (24) 

 

 The characteristic equation of the system can be obtained from Eq. (22) as Eq. 

(25) where 𝜔𝑐 is chatter frequency: 
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𝑑𝑒𝑡 (𝐼 −
1

2
𝑎𝐾𝑡(1 − 𝑒−𝑖𝜔𝑐𝑇)𝐴0𝐺(𝑖𝜔𝑐)) = 0 (25) 

 

 The solution of Eq. (25) determines 𝑎𝑙𝑖𝑚 as  

 

𝑎𝑙𝑖𝑚 = −
2𝜋𝛬𝑅

𝑁𝐾𝑡

(1 + 𝜅2), 𝜅 =
𝛬𝐼

𝛬𝑅
 (26) 

 

where the real part and imaginery part are  

 

𝛬𝑅 = 𝑅𝑒 (−
1

2𝑎0
(𝑎1 ± √𝑎1

2 − 4𝑎0) 

  𝛬𝐼 = 𝐼𝑚 (−
1

2𝑎0
(𝑎1 ± √𝑎1

2 − 4𝑎0) 

 

where, 𝑎0 = 𝐺𝑥𝑥(𝑖𝜔𝑐)𝐺𝑦𝑦(𝑖𝜔𝑐)(𝛼𝑥𝑥𝛼𝑦𝑦 − 𝛼𝑥𝑦𝛼𝑦𝑥)  and 𝑎1 = 𝛼𝑥𝑥𝐺𝑥𝑥(𝑖𝜔𝑐) +

𝛼𝑦𝑦𝐺𝑦𝑦(𝑖𝜔𝑐). 

 The spindle speed 𝑛(𝑟𝑝𝑚) can be calculated from Eq. (27) where 𝜖 = 𝜋 −

2𝜓 is the phase difference and the phase shift can be calculated from 𝜓 = 𝑡𝑎𝑛−1 𝜅. 

 

𝑛 =
60

𝑁𝑇
, 𝑇 =

𝜖 + 2𝑘𝜋

𝜔𝑐
 (27) 

 

Section 2. Experiment setup 

 Experimental setup is shown in Fig. 81. The structural dynamic transfer 
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function of the tool tip is needed in order to generate the stability lobe. The stiffness of 

the tool tip can be obtained from the static test by applying the step force input to the 

tool tip and the loadcell. The natural frequency and the damping ratio can be calculated 

from the free vibration frequency response test by appling the impulse force input. In 

the stiffness experiment a load cell (RB-Phi-117) with 780g capacity and 0.05% full 

scale precision is used to measure the applied force. The displacement for the stiffness 

experiment can be obtained by the position data from the machine.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 81. Stiffness and impulse response experiments set-up (a)milling machine, 

(b)stiffness measuring experiment, (c)frequency response experiment 

 

 An USB microscope (Dino-Lite AM4111T) is used to observe the tool during 

the stiffness experiment. And the displacement from the free vibration is measured 

using the high speed camera. A high speed camera (Chronos 1.4 high speed camera 

CR14-1.0) with a microscope lens (2x barlow lens) is used to record the video of the 

moving tool tip. The camera can perform from 1,057 FPS at 1280×1024 resolution to 
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38,565 FPS at 336×96 resolution. The FPS and the resolution are inversely proportional. 

In order to measure the high natural frequency, FPS must be fast. But the resolution is 

also important since the tool is small. 

 In this experiment, a 2-flute extended reach 508μm micro-endmill with 3.408 

mm reach and the flute length of 0.762 mm from PMT(Performance Micro Tool : TS-

2-0200-SR6) is selected to be able to assume the tool-tip as a uniform cantilever beam 

with circular cross-section. Only 1st mode natural frequency is considered since the 

2nd mode natural frequency is not easy to generate and difficult to measure due to its 

high frequency. A 3-DOF CNC micro-milling machine with spindle (NSK NR-3080S) 

attached to a brushless motor (EM3080J) controlled by Beckhoff TwinCat 3.0 

evironment is used for the cutting test. The spindle holder translates in x, y, and z 

direction instead of the spindle holder translating only in z direction and the workpiece 

translating in x and y direction as shown in Fig. 81(a). The full immersion slot milling 

is conducted on a brass 260 block in the selected cutting conditions with four different 

depth of cut at four different spindle speed based on the stability lobe to validate our 

experimental results by detecting the chatter frequency from the audio signal recorded 

by a microphone (Samson Go Mic) with 16-bit/44.1kHz resolution using Audacity 

software 2.2.2. 

 

Section 3. Stiffness experiment 

 The stiffness of the tool tip can be obtained from two experiments: a static 

deformation experiment with a step force input applied to the tool-tip as shown in Fig. 

82(a) and to the spindle-holder of the machine. 
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(a) 

 
(b) 

 
(c) 

Figure 82. A schematic diagram of stiffness and impulse response experiments 

(a)stiffness measuring experiment, (b)frequency response experiment, (c)an 

extended reach 508𝜇𝑚 micro-endmill(𝐿1 = 0.762 𝑚𝑚, 𝐿2 = 3.048 𝑚𝑚) 

 

 In the experiment, the tool tip stopped before the applied force crosses the 

allowable maximum force with a safety factor 2 based on the maximum normal stress 

theory for the tungsten carbide tool as shown in Fig. 83. The maximum normal stress 

theory is applied. The tensile strength and the compression strength for the tungsten 

carbide are 344 MPa and 2.7 GPa, respectively. 

 

 

Figure 83. Maximum normal stress for tool tip 
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(a) 

 
(b) 

 
(c) 

Figure 84. Stress and displacement analysis of tool tip(a)FEM model of the tool,(b) 

& (c) stress analysis and displacement of the tool in the static load of 0.72 N at the 

tip 

 

 Assuming that the tool tip can be regarded as a cantilever beam with a circular 

cross section, the maximum force can be obtained using the maximum and normal 

stresses as Eq. (28) where L is the length of the tool tip, d is the tool tip diameter, F is 

the applied force, 𝜎1,2 are the normal stresses, 𝜎𝑥 and 𝜎𝑦 is the normal stress in the 

x, y directions and 𝜏𝑥𝑦 is the shear stress: 

 

𝜎𝑚𝑎𝑥 =
4𝐹𝐿

𝜋 (
𝑑
2)

3 , 𝜏𝑚𝑎𝑥 =
4𝐹

3𝜋 (
𝑑
2)

2 

 

𝜎1,2 =
𝜎𝑥 + 𝜎𝑦

2
± √(

𝜎𝑥 − 𝜎𝑦

2
) + 𝜏𝑥𝑦

2  

(28) 

 

 The maximum force allowed to the tool tip is 0.72 N based on the tool tip 
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geometry and the calculation of the maximum normal and shear stress at the different 

locations A, B and C as shown in Fig. 83. 

 The stiffness of the tool tip with the overhang length of 10 mm is investigated 

prior to the experiment by FEM simulation with Static Analysis in Solidworks 

Simulation 2013 as shown in Fig. 84. The tool tip is modeled as a dummy rod. The 

stiffness of the tool tip is predicted as 133.7 N/mm as shown in Fig. 84(c). And the 

maximum stress of 172 MPa which is half of the yield stress due to the safety factor of 

2 occurs at the location A. 

 In order to conduct the first experiment, an extended reach micro-endmill 

installed on the spindle is translated until the tool tip makes contact with the load cell 

to set the initial position. The tool tip is translated towards the loadcell to apply the 

static force to the tool tip. The displacement is obtained from the position data displayed 

on the milling machine and the force is measured by the load cell. 

 The stiffness measured from the first experiment (𝑘𝑒𝑥1) can be described as a 

series connection of the stiffness of the translational joints(x&z direction or y&z 

direction), the spindle, the loadcell, and the tool-tip (𝑘𝑡𝑜𝑜𝑙−𝑡𝑖𝑝). The total stiffness of all 

the parts except the tool-tip is described as a stiffness of an assembly (𝑘𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦). The 

relationship between these stiffness values is expressed as follows : 

 

1

𝑘𝑒𝑥1
=

1

𝑘𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦
+

1

𝑘𝑡𝑜𝑜𝑙−𝑡𝑖𝑝
 (29) 

 

 In the second experiment, the spindle-holder is translated to the loadcell to 

obtain the stiffness of the assembly except the tool-holder. The spindle-holder and the 
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spindle is assumed to be rigid. Therefore, the stiffness relationships can be expressed 

as following equation where 𝑘𝑒𝑥2  is the stiffness measured from the second 

experiment and 𝑘𝑡𝑜𝑜𝑙−ℎ𝑜𝑙𝑑𝑒𝑟 is the stiffness of the spindle: 

 

1

𝑘𝑒𝑥2
=

1

𝑘𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦
−

1

𝑘𝑡𝑜𝑜𝑙−ℎ𝑜𝑙𝑑𝑒𝑟
 (30) 

 

 In the third experiment, the stiffness of the assembly is measured by translating 

the installed tool’s shank to the loadcell. It can be expressed as Eq. (31) where 𝑘𝑒𝑥3 is 

the stiffness measured from the third experiment. 

:   

 

1

𝑘𝑒𝑥3
=

1

𝑘𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦
 (31) 

 

 The stiffness of the tool-tip and the spindle can be calculated by substituting 

Eq. (31) into Eq. (30) and Eq. (29). 

 The stiffness values measured from the experiments are shown in Fig. 85. The 

stiffness values are linearized to a 1st order polynomial to simplify the calculation. The 

r-squared values from the curve fitting are above 98 % (Ex.1 : 99.5 %, Ex.2 : 98.6 %, 

Ex.3 : 98.1 %). The stiffness values show that if the applied force is less than 0.2 N, the 

nonlinearity increases with the incease of the r-squared values. Therefore, only the force 

data above 0.2 N is linearized.  
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 The stiffness values from the first, second and third experiment are 37.8 N/mm, 

73.9 N/mm and 53.7 N/mm, respectively. The stiffness values for the tool tip and the 

tool-holder are calculated as 128.1 N/mm and 195.7 N/mm. The stiffness of the tool-

tip from the experiment is 3.68 % different from the FEM result of 133 N/mm. 

 In our experiment, not all the parts in the assembly are taken into account. Since 

the mass of the joint is extremely larger than the mass of the tool, the influence of the 

dynamic behavior of the tool due to the periodic cutting force is not expected to reach 

at the joint. Therefore, only the tool and the tool-holder is considered to develop a single 

DOF mass-spring-damper system as shown in Fig. 86(a).  

 

 
(a) 

 
(b) 

 
(c) 

Figure 86. Frequency response experiment model(a)single DOF mass-spring-damper 

model of the tool-holder, (b)FRF of the model, (c)FEM frequency analysis. 

 

Figure 85. Stiffness experiment results 
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 The stiffness is obtained from the stiffness experiment. The damping ratio and 

the 1st mode natural frequency are obtained from the impulse response experiment 

described in section 5. In the calculation, the effective mass of the tool should be used. 

For a single DOF mass-spring-damper system, the effective mass ( 𝑚𝑒𝑓𝑓 ) can be 

calculated as: 

 

𝜔𝑛 = √
𝑘

𝑚𝑒𝑓𝑓
 (32) 

 

 The natural frequency and the damping ratio are obtained as 2787.4 Hz and 

0.0342 from Section 6. The stiffness is measured as 195.7 N/mm. The effective mass is 

calculated as 0.6382 gram.  

 The FRF(Frequency Response Function) of this system is shown in Fig. 86(b). 

The effective mass is larger than the approximated mass of the tool tip of 0.01 grams 

but less than the approximated mass of the tool of 3.91 grams. From the FEM frequency 

analysis, the tool-tip, taper and the shank of the overhang length of 2.6 mm are included 

in the mass of 0.63 grams which has the 1𝑠𝑡 mode natural frequency of 2798.4 Hz.  

 The stiffness of the tool-holder in this experiment is much smaller than the 

stiffness values from the previous studies listed in Table 13. The stiffness values might 

vary from machine to machine, and thus a large variance can be seen. 

 However, most of the 1𝑠𝑡 mode natural frequency values exist between 2,000 

and 4,000 Hz, which have less variance than the stiffness values. The natural frequency 

is influenced by the stiffness and the mass. But, the 1𝑠𝑡 mode natural frequency values 

in the table are the natural frequency of the assebled parts. It is different from the 1𝑠𝑡 
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mode natural frequency of the tool which is about 15~16 kHz [120]. In order to 

understand the relationship between these values regarding this system, the mass of the 

assembled parts should be investigated. The stiffness might be proportional to the 

effective mass of the system since the natural frequency has much small variance. 

Therefore, the effective mass increases if the stiffness increases.  

 The stiffness and the damping ratio of the tool-holder, and the natural frequency 

are applied to generate the stability lobe in section 6.  

 

Table 13 

Stiffness, natural frequency, damping ratio of a tungsten carbide micro-endmill in the 

previous studies 

Previous 

research 

Dia. 

(𝜇𝑚) 

1st mode natural freq. 

(Hz) 

Stiffness 

(N/mm) 

Damping 

ratio 

[123] 500 
4,035 

(Tool-holder-spindle assembly) 
3,200 0.0105 

[121] 500 
4,035 

(Tool tip) 
2,142.5 0.016 

[124] 400 
3,800 

(Tool) 
890 0.0362 

[143] 500 
3,722 

(Tool tip) 
80,100 0.009 

[144] 500 
2,189 

(Tool tip) 
- 0.012 

[145] 500 
710 

(Tool tip) 
3,200 0.007 

[130] 500 
3,633 

(Tool tip) 
586 0.075 
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Section 4. High speed camera and KLT point tracker 

 A high speed camera is used to measure the displacement of the tool tip in the 

frequency response experiment. From the recorded video frames, the displacement is 

measured by tracking the selected points on the tool tip using the Kanade-Lucas-Tomasi 

(KLT) point tracker algorithm from MATLAB R2016a. 

 In the frequency response experiment, the resolution and the frame rate are the 

main control parameters since the tool tip is small and it vibrates in the high frequency. 

Also, the light source significantly affects the performance of the point tracker 

algorithm. The light should be bright enough so that the reflected area can be clearly 

observed. The basic concept of KLT point tracker algorithm is to find the displacement 

vector between the two consecutive images I and J which minimizes the error described 

as Eq. (33) where 𝑡, 𝜏 and 𝑥 = (𝑥, 𝑦) are the time variables and the space variables, 

respectively. And, 𝑑 = (ξ, 𝜂) is the displacement vector of the point 𝑥 between time 

𝑡 and 𝑡 + 𝜏 [146]: 

 

𝐽(𝑥) = 𝐼(𝑥, 𝑦, 𝑡 + 𝜏) 

  𝐼(𝑥 − 𝑑) = 𝐼(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) 

(33) 

 

 The error between the images I and J can be obtained as :  

𝐽(𝑥) = 𝐼(𝑥 − 𝑑) + 𝜖 (34) 

 

where, 𝜖 is the error described as Eq. (35) where W is a given window (selected area), 

and ω is a weighting function: 

: 
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𝜖 = ∫ [𝐼(𝑥 − 𝑑) − 𝐽(𝑥)]2𝜔𝑑𝑥
𝑊

 (35) 

 

 In order to simplify the calculation of Eq. (35), 𝐼(𝑥 − 𝑑) is linearized by 

Taylor series approximation assuming that the displacement is infinitesimal. Generally, 

the higher resolution results in the lower FPS. And, it increases the displacement in 

each frame and consequently reduces the performance of this algorithm due to the 

increased linearization error. Therefore, an available maximum FPS is recommended 

to obtain the highest performance. 

 The minimum eigenvalue algorithm is applied to the selected area on the tool 

tip where the light reflects. The points in the area of interest will be tracked well even 

after the impact as shown in Fig. 87 [147]. 

 

Section 5. Impulse response experiment 

 The 1st  mode natural frequency and the damping ratio of the tool-holder-

spindle assembly is measured by impacting the tool shank and the displacement of the 

tool tip is monitored by the high speed camera as shown in Fig. 87.   

 Based on the previous studies listed in Table 13, the 1st  mode natural 

frequency for 400 μm and 500 μm tool-holder-spindle assembly is between 2,000 - 

4,000 Hz. Therefore, the FPS of the high speed camera should be selected no less than 

8,200 FPS in order to avoid the aliasing. In this experiment, the aliasing is minimized 

by choosing the highest FPS of 38,565 at 336×96 resolution. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 87. Point Selection by the minimum eigenvalue algorithm on 500 μm micro-

endmill (a)original video frame with 640 × 360  high speed camera resolution, 

(b)video frame with selected points, (c)video frame after a small impact. 

 

 The points on the tool tip in the video are tracked by the point tracker to obtain 

the displacement. The damped natural frequency and the damping ratio can be 

calculated using the time preiod and the logarithmic decrement of two successive 

maximum values at time 𝑡1 and 𝑡2. The time period T and the damping ratio 𝜁 can 

be obtained from Eq. (36) & (37) where 𝑦1 , 𝑦2  are the successive maximum 

displacement values. And 𝜔𝑑 is the damped natural frequency: 
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𝑡2 − 𝑡1 = 𝑇 =
2𝜋

𝜔𝑑
 (36) 

 

𝜁 =
𝑙𝑛 (

𝑦1

𝑦2
) /2𝜋

√1 + (𝑙𝑛 (
𝑦1

𝑦2
) /2𝜋)

2
 (37) 

 

 The natural frequency 𝜔𝑛 can be calculated as : 

 

𝜔𝑛 =
𝜔𝑑

√1 − 𝜁2
 

(38) 

  

 The displacement data is filtered by the high pass filter with the cutoff 

frequency 2,000 Hz to obtain only the 1st mode natrual frequency from the possible 

harmonic behavior of the tool. It is approximated by the exponential function with R-

squared value of 97.2 %. The natural frequency of the tool-holder-spindle assembly and 

the damping ratio are 2,787.4 Hz and 0.0342, respectively as shown in Fig. 88(a) & (b). 

 In order to obtain the overhang length of the tool that agrees with the FEM 

simulation, the relationship between the natural frequency and the tool overhang length 

is investigated through the frequency response experiment with three different 

overhang length, 5 mm, 10 mm, and 15 mm. The natural frequency from the experiment 

differs only small amount compare to the simulation. Therefore, the overhang length of 

10 mm is selected arbitrarily. 
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(a) 

 

 
(b) 

 

Figure 88. Impulse response experiment result(a)Displacement from the tool shank 

impact, (b)tracking the points on the tool (Camera resolution : 336×96, FPS : 38,565) 

  

Table 14 

Natural frequency in different overhang length of a 500 μm micro-endmill 

Overhang length 
Natural frequency (Hz) 

Experiment Simulation 

5 2,787.4 
3015.1 

5 2,877.8 

10 2,730.8 
2323.7 

10 2,717.2 

15 2,737.4 
1944.2 

15 2,751.3 
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Section 6. Chatter detection using microphone 

 Slot micro-endmilling is performed and a microphone is used to detect the 

chatter frequency in order to validate the stability lobe obtained from our proposed 

method. 

 The detection of chatter from the cutting test is conducted by collecting the 

audio signal using a microphone. And, the audio signal is analysed through the FFT 

(Fast Fourier Transform) plot to visulize the dominant frequencies. The microphone 

should be located more than 3 wavelengths away from the source to avoid the 

circulation of the sound wave in the near field. The distance farther than 3 wavelenghts 

is called the far field. If the microphone is in the far field, the sound source can be 

assumed as a point source which will not generate the sound circulation [148]. The 

wavelength of the chatter sound signal can be obtained from the 1st mode natural 

frequency of the micro-endmill. The chatter frequency of 508 μm tool is between 

2,000-4,000 Hz. The wavelength 𝜆 can be calculated as Eq. (39) where, 𝑣  is the 

speed of sound and 𝑓 is the frequency:  

 

𝜆 =
𝑣

𝑓
 (39) 

 

 The speed of sound is 343 m/s at room temperature. The range of sound 

frequencies that are audible is 20 to 20 kHz. The chatter frequency is in the audible 

range and the wavelength is between 0.083-0.163 m. Therefore, the distance to the point 

where the far field starts is between 0.25-0.49 m. Since the chatter occurs around the 

natural frequency, the micrphone is located farther than 0.49 m to cover all possible 
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frequencies.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 89. Chatter detection using microphone(a) FFT of the sound signal from the 
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microphone at 40,000 rpm idle, (b) 40,000 rpm with 50 μm depth of cut, (c) 40,000 

rpm with 150 μm depth of cut 

 In order to test the microphone, the slot cutting tests are conducted using 1 mm 

end mill at 40,000 rpm with 8 mm/s feedrate. And the depth cuts are selected as 50 and 

150 μm to compare the FFT of the sound signals from the stable and unstable cutting 

conditions. The multiples of the 667 Hz which is the spindle frequency with the 

background noise are shown in Fig. 89(a) at 40,000 rpm. In the stable condition with 

the depth of cut of 50 μm, the sound signal has almost same frequencies with the idle 

condition as shown in Fig. 89(b). In the unstable condition with the depth of cut of 150 

μm, the sound signal has the frequecies generated from the chatter which are not the 

spindle frequencies or the back ground noise. 

 

Section 7. Determinination of cutting force coefficient 

 In order to calculate the critical depth of cut and the spindle speed for the 

stability lobe, the cutting coefficients (Kt, Kr) are needed in Eq. (19) and (20). Those 

coefficients can only be obtained through the cutting experiments or slip-line field 

model or FEM cutting simulation. The coefficients are not influenced by the depth of 

cut, spindle speed, and feedrate, but by the workpiece material, UCT, and tool geometry 

such as the helix and the rake angle. But they are independent of the diameter of the 

tool [149]. 

 In this experiment, the brass 260 is used as a workpiece and the tool has 30 deg. 

helix angle with 2~3μm cutting edge radius same as other research [150]. But the rake 

angle is not considered due to the unpredictable flank wear in micro-endmilling. 

 According to the other research, the cutting force coeffiencts can be described 

as Eq. (40) where h is the UCT, r is the cutting edge radius, and other parameters are 
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the constants from slip-line field model simulation shown listed in Table 15: 

 

𝐾𝑡(ℎ, 𝑟) = 𝛼𝑡ℎ𝑑𝑡 + 𝛽𝑡ℎ𝑝𝑡𝑟𝑞𝑡 

𝐾𝑟(ℎ, 𝑟) = 𝛼𝑟ℎ𝑑𝑟 + 𝛽𝑟ℎ𝑝𝑟𝑟𝑞𝑟 

(40) 

 

 The constants from the slip-line field model are selected since it predicted the 

cutting force more accurate than the ones from the FEM simulation. The feed per tooth 

is set to 10 μm and the average UCT of 6.3662 μm is used to obtain the coefficients 

for the stability lobe [124]. And the cutting edge radius is selected as an average value 

of 2.5 μm assuming that the edge rounding and sharping may occur from the tool wear 

[151]. As a result, 𝐾𝑡 is 917.19 MPa and 𝐾𝑟 is 633.32 MPa.  

 

Table 15 

Constants for cutting force coefficients [150] 

  α d β p q 

Slip-

line 

Kt(MPa) 914.4 -0.0004 62.21 -0.814 0.230 

Kr(MPa) 629.4 -0.0002 78.24 -0.787 0.247 

 

Section 8. Results 

 The feed per tooth for the cutting test should be selected larger then one third 

of the cutting edge radius to avoid the nonlinearity due to the ploughing effect. Also, 

the UCT has to be exist at all time within the start and exit engagement angle during 

the cutting test since regenerative chatter mechanism is based on the varying UCT. 
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The cutting edge radius of a 508 μm  micro-endmill without any coating is 

approximately 2-3 μm from the previous research [25, 39, 40]. Therefore, the feed per 

tooth is set to be as 10 μm which is about 3 μm larger than the possible maximum 

run-out length to guarantee the shearing dominant cutting at all time. 

 The stiffness (195.7 N/mm), natural frequency (2787.4 Hz) and the damping 

(0.0342) of the tool-holder-spindle assembly obtained in the previous section are used 

to generate the stability lobe of the 2-DOF micro-endmilling system as shown in Fig. 

90. 

 

 

Figure 90. Stability lobe of tool-holder assembly of micro-endmilling system 

 

Section 9. Summary 

 In order to avoid the chatter in micro-endmilling process, the chatter stability 
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lobe should be generated by investigating the structural dynamics of the machine 

system. In this chapter, the structural dynamics of a CNC machine is investigated by 

using a vision sensor and a load cell. The stiffness, natural frequency, and the damping 

ratio of the tool-holder assembly of the machine is obtained from the experiment. The 

chatter stability lobe is generated using those measurements.  

 In the future, the stability lobe should be validated through the microphone test 

with 500 μm micro-endmill.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

Section 1. Conclusion  

 This study introduces and evaluates a new method of tool wear estimation that 

can be performed online (without interrupting a cutting process) and is directly founded 

on the underlying physics of microscale chip formation. Unlike the conventional 

milling process, the tool wear has a major impact on micro-milling process due to the 

small size of the tool. Therefore, many studies have been conducted to develop the tool 

wear monitoring systems to investigate the tool wear. However, there are some 

disadvantages in the existing tool wear monitoring systems. To overcome these 

drawbacks, a new cutting edge wear estimator is developed in this research. Both the 

simulation and the experiment are conducted to evaluate the performance of the cutting 

edge wear estimator.  

 This study also investigates a new method of chatter modeling utilizing low-

cost sensors (high-speed camera and loadcell) rather than the traditional instruments. 

When the cutting process is performed under unstable conditions, the regenerative 

chatter occurs. In unstable conditions, the cutting edge wear estimator cannot be used. 

Therefore, a stability lobe of the micro-endmmilling system is created by measuring 

the structural dynamic parameters of the system. To create a stability lobe, a transfer 

function of the system is needed. In order to create a transfer function, the stiffness, the 

natural frequency, and the damping ratio of the system are required. The conventional 

method of finding a transfer function was by analyzing the impulse response of the 

system from the impact applied to the system by an impact hammer. However, the price 

of the equipment needed for the conventional method is high. Therefore, the research 
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has been conducted to develop a new stability analysis method for micro-milling system. 

The following is a summary of the primary contributions of this work and the 

conclusions that have been drawn from the tool wear research and the chatter research.  

 

1. A new method of modelling tool wear rate by measuring chip production rate in 

micromilling is introduced and analytically supported. 

 

2. A chip production rate simulation for micromilling based on the MCT effect is 

developed and conducted. 

- The simulation results show that the chip production rate decreases when the 

MCT becomes larger than the UCT. 

Contribution and conclusions 1 and 2 have been published in: 

J.-H. Lee and A. A. Sodemann, “Geometrical Simulation of Chip Production Rate in 

Micro-EndMilling,” 46th SME North American Manufacturing Research Conference, 

NAMRC 46, Texas, USA, vol. 26, pp. 209–216, Jan. 2018. 

 

3. An algorithm for measuring chip production rate from pictures of chips is 

developed and evaluated 

- The chip counting algorithm using Locally Adaptive Threshold method can be 

applied to the image with less than 10 % of counting error. 

Contribution and conclusions 3 have been published in: 

J.-H. Lee and A. A. Sodemann, “Digital Image Processing for Counting Chips in 

Micro-End-Milling,” in Proceedings of the 2nd International Conference on Vision, 

Image and Signal Processing  - ICVISP 2018, Las Vegas, NV, USA, 2018, pp. 1–6. 
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4. A machine for collecting chips and measuring the chip production rate is designed, 

built, and evaluated. 

- The number of chips measured from the machine has less than 5% of covariance. 

 

5. A complete set of experiments for relating the chip production rate to the cutting-

edge radius is designed and performed. 

 The experimental results are used to validate the chip-production-rate 

experiments. 

 The experimental results show that detection of the transition zone could be 

possible by detecting the decrease in the chip product rate. 

Contribution and conclusions 4 and 5 has been published in: 

J.-H. Lee, A. A. Sodemann, and A. K. Bajaj, “Experimental Validation of Chip 

Production Rate as a Tool Wear Identification in Micro-EndMilling,” International 

Journal of Advanced Manufacturing Technology 

 

6. An evaluation of the reliability of the cutting edge wear estimator is conducted. 

 The evaluation results show that the probability of correct estimation of the 

cutting edge radius is more than 80%. 

Contribution and conclusions 6 has been published in: 

J.-H. Lee and A. A. Sodemann, “Reliability of cutting edge radius estimator based on 

chip production rate for micro-endmilling,” Journal of Manufacturing and Materials 

Processing. 
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7. A cutting edge wear rate model simulation based upon the chip production rate 

relationship is created and evaluated against an existing tool wear model. 

 The simulation results show that the cutting edge wear estimator is 

applicable to the online system. 

Contribution and conclusions 7 has been accepted to: 

[Accepted]J.-H. Lee and A. A. Sodemann, “Simulation of Cutting Edge Wear Model 

based on Chip Production Rate in Micro-endmilling,” Proceedings of the ASME 2019 

14th International Manufacturing Science and Engineering Conference(MSEC2019). 

Erie, PA, USA 

 

8. A new method of measuring the structural dynamic parameters is proposed and the 

experiments have been performed. 

 A loadcell is used to measure the stiffness of the tool-holder assembly of 

the CNC machine. Then, a high speed camera with a microscope lens is 

used to measure the natural frequency and the damping ratio of the tool-

holder assembly. 

 The stability lobe of the system is created based on the measured dynamic 

parameters. 

 This new method is more cost-effective than conventional methods. 

 

9. The chatter detection experiment is performed using a microphone.  

 The chatter frequency of the system is detected by analyzing the sound 

signal recorded using a microphone during the cutting process with a 1-mm 

endmill. 
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Section 2. Future work 

 The following points should be improved in the future. 

① Future research is needed to reduce the difference between the number of 

chips expected from the calculation and the actual number of chips 

measured in the experiment.  

 The chip collecting part has the pneumatic system. The pneumatic part uses 

the material conveying air pump to collect the chips through two suction 

nozzles. Two nozzles suck the chips from the left and right side of the tool. 

However, these nozzles are not able to suck all the chips. Therefore, a new 

suction nozzle that could suck more chips should be developed in the future. 

 The chip collecting part has the adhesive tape part. The chips will be blown 

and attached on the tape. However, some chips can fly away through the 

gap between the exhaust of the air pump and the tape. Therefore, a new 

research should be conducted to make the chips stick on the tape as many 

as possible. 

 The chip counting part is consisted of the image taking part and the image 

processing part. In the image taking part, the focus of the USB microscope 

should be fixed. However, the focus changes due to the flexible tape. If the 

focus changes, the size of the chips from the image can change. Therefore, 

the size filtering value could become an uncontrollable variable. Hence, 

further research is needed to fix the focus. 

 

② The cutting edge wear estimator should be applied to an online system. 
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 In order to apply the cutting edge wear estimator to an online system, 

furthur study is needed to make the tape stop perfectly. When the USB 

microscope is taking images of the tape, the tape should be stopped. But, 

the tape moves even after the tape collecting motor stopped due to the 

flexibility of the tape. Therefore, more studies on the tape are needed to 

understand the behavior of the tape. 

 

③ The resolution of the cutting edge wear estimator should be increased. 

 In this research, the resolution of the cutting edge wear estimator is set to 

be 1mm/s. However, the resolution should be increased to improve the 

accuracy of the estimator.  

 

④ The chatter detection test using a micro-endmill is needed. 

 In this research, the chatter detection test is conducted using a 1 mm endmill. 

The chatter detection test is not conducted using a micro-endmill. The 

chatter experiment will be performed in the future. 

 

⑤ The stiffness of the endmilling machine should be investigated in depth. 

 The stiffness of the tool-holder assembly is measured using a loadcell in 

this research. However, the stiffness of the other parts of the machine such 

as the joints should be investigated to reduce the error.  
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APPENDIX A 

INSTRUCTION FOR CALIBRATION OF CUTTING EDGE WEAR ESTIMATOR 
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Following instruction explains how and when the calibration should be done in practice.  

 Device setup 

① Chip collecting part 

- Check the variance of the number of chips in the same cutting 

condition. (C.O.V<10%) 

- If the variance is large, check the chip suction part or the chip 

blowing part. 

② Chip counting part 

- Check the images to make sure the focus of USB microscope is at 

the center of the tape. 

- Check the image processing to make sure the images are not blurry.  

③ Tape collecting part 

- Tape speed should be constant. 

- Tape must keep a same distance from the exhaust nozzle of the air 

pump. 

 Calibration process 

① Select a micro-endmill and measure the cutting edge radius using a 

high performance microscope. 

② Run the chip production simulation. Use the measured cutting edge 

radius data in the simulation. Find the optimum size filtering value 

for the simulation. 

③ Depth of cut and spindle speed must be selected from the stable 

cutting condition. 



172 

 

④ Before starting the cutting operation, select the resolution of the 

cutting edge wear estimator. Ex) 0.5mm/s, 1mm/s 

⑤ If the resolution is 1mm/s, then cut 6 slots with 6 different feedrates 

from 1 to 6 mm/s with 1 mm/s increment at each slot while 

collecting and counting the chips. If the resolution is 0.5 mm/s, then 

cut 12 slots with 12 different feedrates from 1 to 6 mm/s with 0.5 

mm/s increment at each slot. 

⑥ Conduct the linear fitting between the simulation and the 

experimental results. 

⑦ Find the optimum size filtering values for the experiment by 

sweeping the experimental size filtering values from 0 to a certain 

value which gives zero r-square value from the linear fitting.  

⑧ Find the optimum drop detection threshold which gives a 

maximum probability of correct estimation by sweeping the drop 

detection threshold from 0 to 50 %.  

 

 The calibration must be conducted everytime the device setup has been 

changed.  

 


