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ABSTRACT 

 

Injuries and death associated with fall incidences pose a significant burden to 

society, both in terms of human suffering and economic losses. The main aim of this 

dissertation is to study approaches that can reduce the risk of falls. One major subset of 

falls is falls due to neurodegenerative disorders such as Parkinson’s disease (PD). Freezing 

of gait (FOG) is a major cause of falls in this population. Therefore, a new FOG detection 

method using wavelet transform technique employing optimal sampling window size, 

update time, and sensor placements for identification of FOG events is created and 

validated in this dissertation. Another approach to reduce the risk of falls in PD patients is 

to correctly diagnose PD motor subtypes. PD can be further divided into two subtypes 

based on clinical features: tremor dominant (TD), and postural instability and gait difficulty 

(PIGD). PIGD subtype can place PD patients at a higher risk for falls compared to TD 

patients and, they have worse postural control in comparison to TD patients. Accordingly, 

correctly diagnosing subtypes can help caregivers to initiate early amenable interventions 

to reduce the risk of falls in PIGD patients. As such, a method using the standing center-

of-pressure time series data has been developed to identify PD motor subtypes in this 

dissertation. Finally, an intervention method to improve dynamic stability was tested and 

validated.  Unexpected perturbation-based training (PBT) is an intervention method which 

has shown promising results in regard to improving balance and reducing falls. Although 

PBT has shown promising results, the efficacy of such interventions is not well understood 

and evaluated. In other words, there is paucity of data revealing the effects of PBT on 

improving dynamic stability of walking and flexible gait adaptability. Therefore, the effects 
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of three types of perturbation methods on improving dynamics stability was assessed. 

Treadmill delivered translational perturbations training improved dynamic stability, and 

adaptability of locomotor system in resisting perturbations while walking. 
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CHAPTER 1: OVERVIEW  
 

1.1 Rationale 

There are many daily situations that may challenge individual’s ability to stay 

upright. The cracks in the sidewalks, slippery or uneven surfaces, loose rocks and many 

other situations which may increase the risk of losing one’s balance (i.e., falling).  Although 

many factors increase the likelihood of falling, generally, a fall occurs when a person 

cannot recover from a loss of balance (Maki & McIlroy 1996). Different recovery strategies 

are utilized by individuals to regain their balance and to prevent a fall. All individuals who 

are ambulatory can experience balance losses and falls, but certain diseases and aging 

processes, as well as fall-risk conditions can make it more difficult for these events to be 

controlled safely.  In this chapter, the rationale of the Dissertation as well as the approaches 

(i.e., specific aims) that can reduce the risk of falls are further elaborated.   

Injuries and death associated with fall incidences pose a significant burden to 

society, both in terms of human suffering and economic losses. Injuries associated with fall 

accidents are the leading cause of nonfatal injuries treated in hospital emergency 

departments and the third leading cause death due to unintentional injury in the U.S. 

(Center for Disease Control and Prevention, 2014). In the working population, the direct 

cost of occupational injuries in 2012 due to falls on the same level in the U.S. was estimated 

to be approximately $9.19 billion or 15.4% of total injury cost (Liberty Mutual Research 

Institute for Safety, 2014). During 2014, more than 2.8 million older individuals were 

treated in emergency departments for fall-related injuries, and approximately 800,000 of 

these patients were subsequently hospitalized (Bergen et al. 2016; Center for Disease 
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Control and Prevention, 2014). The resulting treatment cost was estimated to be $31 billion 

annually in the U.S. for older adults (Burns et al. 2016). As such, finding the intervention 

strategies to reduce fall accidents are paramount to our society. 

One major subset of these falls is falls due to neurodegenerative disorders such as 

Parkinson’s disease (PD). Approximately 50-70% of  patients with PD fall at least once 

(Bloem et al. 2003; Allen et al. 2013; Ashburn et al. 2001; Ashburn et al. 2008) and over 

50% of these fallers experience two or more falls each year (Wood et al. 2002; Allen et al. 

2013). It is estimated that about 630,000 people were diagnosed with PD in 2010 in the 

United States. This number is anticipated to be double by 2040 (Kowal et al. 2013), 

meaning PD-related falls can be expected to have a major impact on health care systems in 

the coming decades.  

It should be noticed that there are a variety of reasons for loss of balance in daily 

life which can have extrinsic sources or intrinsic sources (Robinovitch et al. 2013). 

Extrinsic sources can be uneven or slippery surfaces while intrinsic sources might be aging 

or disorder such as PD. Therefore, the causes or circumstances of a fall are important to 

define the type of approach which could reduce the risk of future falls. For example, 

freezing of gait (FOG) is a major cause of falls in PD. FOG is defined as a “brief, episodic 

absence or marked reduction of forward progression of the feet despite having the intention 

to walk” (Nieuwboer & Giladi 2013; Schlenstedt et al. 2016). Previous studies have shown 

that external cues such as rhythmic auditory stimulation can help patients to alleviate FOG 

episodes and resume walking (Bächlin, Plotnik, Roggen, Maidan, Jeffrey M. Hausdorff, et 

al. 2010; Okuma 2006; Nieuwboer & Giladi 2013). As such, objective measures of FOG 
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have been developed and employed utilizing wearable sensors to detect FOG right after an 

episode starts (Bächlin, Plotnik, Roggen, Maidan, Jeffrey M. Hausdorff, et al. 2010; 

Rezvanian & Lockhart 2016; Jeffrey M. Hausdorff et al. 2003a; Horak 2013; Silva de Lima 

et al. 2017). There are several requirements that must be considered prior to designing any 

real-time FOG detection systems, such as minimum sensor nodes, sensor placement 

locations, and appropriate sampling window size and update time. Smaller window size of 

data allows for better detection of short-duration FOG episodes, since larger window size 

can average-out shorter FOG episodes. In addition, smaller window size could decrease 

processing time and allow for faster triggering of external cues to help patients overcome 

the FOG episodes. Furthermore, the robustness due to the update time variability does not 

attenuate the levels of detection. It is important that these characteristics are taken into 

account to create promising systems to detect FOG. 

Another approach to reduce risk of falls in PD patients is to correctly diagnose PD 

motor subtypes. PD can be further divided into two subtypes based on clinical features: 

tremor dominant (TD), and postural instability and gait difficulty (PIGD) (Chen et al. 2015; 

Fahn et al. 2011; Thenganatt & Jankovic 2014; Jankovic et al. 1990a). This categorization 

is of predominant importance at the early stage of PD, since identifying PD subtypes can 

help to predict the clinical progression of the disease. Several studies have confirmed that 

the PIGD subtype has a faster disease progression, greater motor function impairment 

(Jankovic & Kapadia 2001a), and is less responsive to levodopa and deep brain stimulation 

compared to the TD subtype (Jankovic et al. 1990a; Rajput et al. 1993; Mehanna & Lai 

2013; Chen et al. 2015). Additionally, the PIGD subtype can place PD patients at a higher 

risk for falls compared to TD patients (Rudzińska et al. n.d.). Accordingly, correctly 
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diagnosing subtypes can help physicians, patients and caregivers to initiate early amenable 

interventions and track the progression of the disease. Differentiation of TD from PIGD is 

currently based on sub-scores of the Unified Parkinson's Disease Rating Scale (UPDRS) 

(Stebbins et al. 2013; Chen et al. 2015). The UPDRS is scored by clinicians and is 

subjective and prone to error (Thenganatt & Jankovic 2014; Stebbins et al. 2013). Subtype-

specific biomarkers may improve the accuracy of diagnoses relevant to PD subtypes and 

PD progression. Several studies have reported a frequency range of 3-7 Hz for PD tremor 

(Hallett 1998; Lemstra et al. 1999; Timmermann et al. 2003). It can be hypothesized that 

this frequency range might be seen in whole body center of pressure of patients with TD 

subtype since a human whole body center of pressure has a frequency lower than 2 Hz 

(Freitas et al. 2005; Vieira et al. 2009). Therefore, motor subtype of PD might be better 

identified by using the frequency component of an individual’s center of pressure signal.  

Postural and gait perturbation training to prevent future falls has been readily 

adopted by previous studies. They have shown that participants in these types of training 

intervention can readily adapt to unpredictable changes or perturbations in environment 

during different activities, such as standing or walking (Bhatt et al. 2006; Nashner 1976; 

Horak et al. 1989; Owings et al. 2001; Parijat & Lockhart 2012). This adaptation can be 

developed by exposing individuals to repetitive external perturbations to create a helpful 

motor behavior that can be used in the cases of unexpected real-world perturbations (Pai 

& Bhatt 2007). Perturbation based training (PBT) has been proposed based on this notion 

and shows promising results in reducing the incidence of falls (Mansfield et al. 2015; 

Mccrum et al. 2017). In this training method, individuals are exposed to repeated postural 

perturbations during standing or walking. PBT enhances reactions to balance loss with 



5 
 

practice and enriches neuro-mechanical control of stability to prevent balance loss and falls 

(Pai & Bhatt 2007). A decrease in occurrences of falls in the laboratory from the pre- to 

post-perturbation training have been reported (Parijat & Lockhart 2012; Y. C. Pai et al. 

2014; Tanvi et al. 2012; Mansfield et al. 2015; McCrum et al. 2017). These investigators 

have shown that there are improvement in control of voluntary movements (Rogers et al. 

2003), an increase in the speed of balance reaction (Parijat & Lockhart 2012; Tanvi et al. 

2012; Mansfield et al. 2010), and improvement in reactive recovery response to 

perturbations (e.g., recovery step) (Parijat & Lockhart 2012; Y. C. Pai et al. 2014; Tanvi et 

al. 2012; Lurie et al. 2013; Pai et al. 2010; Bierbaum & Peper 2010; Bierbaum et al. 2011; 

Mansfield et al. 2015) following PBT. On another compendium of movement control, PBT 

also shows positive outcomes within the field of athletic training. It yields promising results 

in performance, reduces injury, and assists in rehabilitation, as shown in athletes with knee 

injury (Zech et al. 2010). Rehabilitation with PBT also helps individuals to return to 

functional activity sooner and maintains their functional status for longer periods as 

compared to the standard rehabilitation program (Hurd et al. 2006; Chmielewski et al. 

2005; Fitzgerald et al. 2000; Rudolph et al. 2000; Williams et al. 2001; Zech et al. 2010).  

Although PBT has shown promising results, the efficacy of such interventions is 

not well understood and evaluated. Most of studies report improvement in some measures 

(e.g. reaction time, center of mass velocity) of the reactive recovery responses after the 

training, which may not be transferable to another type of perturbations. In other words, 

there is paucity of data revealing the effects of PBT on improving dynamic stability of 

walking and flexible gait adaptability. Additionally, most of the studies applied 

perturbations while subjects walked over-ground by utilizing the method of movable 
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platform perturbations occurring at the same place, which may lead to a proactive walking 

pattern, limiting the understanding of the true characteristics associated with motor 

learning (Y. C. Pai et al. 2014; Parijat & Lockhart 2012). Understanding the effects of PBT 

on gait stability and complexity will pave the way to developing a better intervention for 

those who are at a higher risk of losing balance and falls as a result of gait instability. 

1.2 Specific aims 

The aim of this dissertation is to develop methods to reduce risk of falls in different 

populations. 

Aim #1: Create and validate a new FOG detection method using wavelet transform, testing 

optimal sampling window size, update time, and sensor placements for identification of 

FOG events.  

Hypothesis 1a: Wavelet transform can detect FOG with higher specificity and 

sensitivity compared to previous method which used fast Fourier transform.  

Hypothesis 1b: By using wavelet transform method sampling window size could 

be as small as 2 s and be robust to changing update time from .5 s to 1 s. 

Hypothesis 1c: Shank sensor is the best place to detect FOG in compare to thigh 

and back. 

Aim #2: Identify motor subtypes of PD using frequency components of whole body center 

of pressure 
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Hypothesis 2a: TD patients have larger frequency in their center of pressure signal 

in the frequency of 3-7 Hz compared to PIGD patients. 

Hypothesis 2b: Wavelet transform is a better tool to diagnose PD subtypes than 

fast Fourier transform. 

Aim #3: Evaluate the effect of slip, mediolateral (ML) and mixed (both slip and ML) 

perturbation trainings on whole body dynamic stability (as measured by maximum 

Lyapunov exponent) and gait adaptability (as measured by entropy analysis). 

Hypothesis 3a: Slip perturbation training will improve dynamic stability in AP 

direction. 

Hypothesis 3b: ML perturbation training will improve dynamic stability in ML 

direction. 

Hypothesis 3c: ML and slip perturbation training (mixed) will improve dynamic 

stability in both AP and ML directions.  

Hypothesis 3d: Perturbation training will improve gait flexible adaptability. 

Hypothesis 3e: Perturbation training on treadmill will improve dynamic stability 

when tested during over-ground walking. 

1.3 Organization  

This dissertation has six chapters. Chapter 1 provides the motivations and rationale 

for conducting this dissertation research as well as the research objectives and hypotheses. 
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Chapter 2 provides background information and a review of the pertinent literature in 

regards to the impact and cost of falls, human gait, PD and its symptoms, perturbation 

training, and a brief background on nonlinear dynamics and stability analyses as well as 

complexity. In chapter 3, a novel, real-time FOG detection method using the Wavelet 

transform and wireless accelerometer is proposed and the first aim is explored. The results 

of this study has been published in journal of Sensors. Chapter 4 provides a method to 

identify motor subtypes of PD by using frequency component of whole body center of 

pressure and explores the second aim of this dissertation. The first portion of this study has 

been published in Biomedical Sciences Instrumentation and the entire study has been 

published in journal of Sensors. In chapter 5, the effect of slip, ML and mixed (slip and 

ML) perturbation trainings on the whole-body dynamic stability and flexible gait 

adaptability are assessed. Finally, Chapter 6 highlights the major findings from all three 

studies, future directions and conclusions.  
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CHAPTER 2: BACKGROUND 

 

2.1 Impact and cost of instability and falls 

Injuries and death associated with fall incidents pose a significant burden to society 

both in terms of human suffering and economic losses. Injuries associated with fall 

accidents are the leading cause of nonfatal injuries treated in hospital emergency 

departments and the third leading cause of death from unintentional injury in the U.S. 

(Center for Disease Control and Prevention, 2014). Among all the environmental causes of 

falls, 47.6% and 20.2% are due to uneven surfaces and slipping on something, respectively 

(Li et al. 2006). During 2014, more than 2.8 million older individuals were treated in 

emergency departments for fall-related injuries, and approximately 800,000 of these 

patients were subsequently hospitalized (Bergen et al. 2016; Center for Disease Control 

and Prevention, 2014). Outdoor falls happen more often than indoor falls and 47% occur 

while walking (Li et al. 2006). The resulting treatment cost was estimated to be $31 billion 

annually in the U.S. for older adults (Burns et al. 2016). In the working population, the 

direct cost of occupational injuries in 2012 due to falls on the same level in the U.S. was 

estimated to be approximately $9.19 billion or 15.4% of total injury cost (Liberty Mutual 

Research Institute for Safety, 2014). Fall often leads to injuries (Bloem et al. 2001; Genever 

et al. 2005), increased dependency, reduced activity (Bloem et al. 2001), poor quality of 

life (Bloem et al. 2001; Franchignoni et al. 2005), added caregiver-burden (Schrag et al. 

2006), and mortality (Allen et al. 2013).  

One major subset of these falls is falls due to neurodegenerative disorders such as 

Parkinson’s disease (PD). Approximately 50-70% of  patients with PD fall at least once 

(Bloem et al. 2003; Allen et al. 2013; Ashburn et al. 2001; Ashburn et al. 2008) and over 
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50% of these fallers experience two or more falls each year (Wood et al. 2002; Allen et al. 

2013). It is estimated that about 630,000 people were diagnosed with PD in 2010 in the 

United States. This number is anticipated to be double by 2040 (Kowal et al. 2013), 

meaning PD-related falls can be expected to have a major impact on health care systems in 

the coming decades. Although the costs of fall, fall-related injuries, and its consequences 

have not been separately investigated, it can be estimated that significant percentage of 

economic burden of PD are caused by falling because PD patients are highly susceptible 

to fall. The economic burden of PD studies show that PD is costly in view of the fact that 

the national medical expenses of PD are more than 14.4 billion in 2010 (Kowal et al. 2013; 

Johnson et al. 2013). As such, finding the intervention strategies to reduce fall accidents 

are paramount to our society. 

2.2 Human gait 

The purpose of walking is to transport the body safely and efficiently across terrain. 

This is achieved through biomechanical constraints of the body and the physical constraints 

of the environment. Additionally, the central nervous system (CNS) needs to integrate all 

of the sensory information to generate appropriate motor commands. Normal walking 

depends on a series of reciprocal movements involving the alteration of the function of 

each leg supporting the body and advancing into the next position. Apart from individual 

differences, human gait is constructed of several events which are similar across all 

individuals. A gait cycle is defined as a time period from when one foot contacts the floor 

to next time that foot contacts the floor again (Winter 1990). Each gait cycle can be divided 

into two phases for either leg: swing phase and stance phase. Stance phase (approximately 

60% of the gait cycle) starts when the heel of one foot contacts the floor and ends at toe-
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off of the same foot. Swing phase includes the period when the foot advances forward 

without touching the floor. Within each gait cycle, there is a period of double support time 

(20% of the gait cycle), in which both feet are in stance phase, and two periods of single 

support time, where one foot is supporting the weight of the body while the other is in 

swing phase.  

Forward locomotion is achieved by pushing off the leg in stance phase while 

swinging other leg forward. At the heel contact phase of the gait cycle, hip and knee extend 

to prevent body from collapsing (Winter 1990). Forward movement of the body propels 

the weight on the foot forward from heel to forefoot. At that instance, heel rises and pushes 

the foot backward. At the same time, muscles extend the hip, flex the knee, and plantar flex 

the foot (Whittle 1996). In the swing phase, the leg is flexed at hip and knee and dorsiflexed 

at foot, the limbs move under the influence of gravity alone and a fall is arrested by putting 

down the contralateral foot. 

In normal walking, muscles contract and relax in a rhythmic form. Synchronized 

EMG and kinematic data can be measured during walking to identify the sequence of 

muscle recruitment during walking (Rose et al. 1994). At the initial contact of foot, the 

limbs begin to decelerate the body as it reaches the floor by activating both knee flexor and 

extensor to stabilize the knee in space. Deceleration of thigh is obtained by hip extensor. 

Additionally, the anterior tibialis contracts to gradually lower the foot. The limb accepts 

the weight of body by contracting knee extensors (vasti muscles). The knee bend slightly 

and begins extending. This is accompanied by plantarflexion of the ankle, which moves 

the contact point of the limb forward. At mid stance, the center of mass reaches its highest 
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point. As long as the knee remains extended, body mass can fall forward (in line of walking 

progression). By contraction of soleus muscle, foot is pressed against the floor and allows 

the knee to remain extended. At terminal stance, knee extension and ankle plantarflexion 

force couple to keep the knee passively extended, but now the ankle plantar-flexors begin 

to contract and accelerate the body forward. Pre-swing starts by contracting hip flexors 

which lifts the limb and swings it forward. Swing phase continues using ankle 

plantarflexion to allow the foot to clear the floor. At terminal swing, the limb starts to 

decelerate by contracting hamstrings. This efficiently slows both hip flexion and knee 

extension. Tibialis anterior continues its activity as it gently float the foot over the floor 

immediately before foot contact. As the foot contacts the floor, this cycle repeats itself. 

2.3 Parkinson’s disease  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the 

death of dopaminergic neurons in the substantia nigra, one of the nuclei of the basal ganglia 

in the midbrain.. The basal ganglia receives signals from the cortex, processes this 

information and then projects to the motor cortex via the thalamus. Two distinct pathways 

process signals through the basal ganglia: the direct pathway and the indirect pathway. 

These two pathways have opposite effect. Activation of the direct pathway increases 

thalamocortical activity whereas activation of the indirect pathway inhibits thalamocortical 

neurons. Roughly, activation of the direct pathway facilitates movements and activation of 

the indirect pathway inhibits movements. Integrated activity of these two pathways 

modulate movements. The balance of activity between the direct and indirect pathways are 

modulated by dopamine. The cells of direct pathway have D1 dopamine receptors. When 

dopamine binds to these receptors, it excites the neurons and makes them more likely to 
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fire. Therefore, dopamine activates the direct pathway. In contrast, cells of indirect 

pathway utilize D2 dopamine receptors. When dopamine binds to these receptors, it inhibits 

the neurons and makes them less likely to fire. Accordingly, death of dopaminergic neurons 

in the substantia nigra during PD results in an imbalance towards over activity of indirect 

pathway and underactivity of direct pathway. This means motor programs are now 

excessively inhibited, leading to difficulty in initiating movements and thus the 

characteristic features of PD of slowness of movements (bradykinesia) and rigidity (Davie 

2008; Morris 2000; Jankovic 2008; Kendal et al. 2013). The most common motor 

symptoms of PD include tremor, bradykinesia, akinesia, rigidity, freezing of gait (FOG), 

and impaired balance and postural control (Davie 2008; Morris 2000; Jankovic 2008; 

Kandel et al. 2013). 

FOG is one of the symptoms of PD which is defined as an inability of a person to 

move one’s feet in spite of the fact that he/she intends to move (Giladi 2008; Nutt et al. 

2011). FOG usually occurs during gait initiation and turning or encountering an obstacle 

(Moore, D. a Yungher, et al. 2013). The occurrence of FOG increases at the later stage of 

PD; PD patients with mild and advanced stages experience FOG about 10% and 80%, 

respectively (Macht et al. 2007). FOG not only negative impacts activities of daily living, 

but is also a common cause of falls in this population (Bloem et al. 2004). As such, 

specifying a treatment and finding a biomarker of FOG is an important goal of PD clinical 

research.  

PD can be further divided into two subtypes based on clinical features: tremor dominant 

(TD), and postural instability and gait difficulty (PIGD) (Chen et al. 2015; Fahn et al. 2011; 
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Thenganatt & Jankovic 2014; Jankovic et al. 1990a). This categorization at the early stage 

of PD is important, as identifying PD subtypes could help to predict the clinical progression 

of the disease. Several studies have confirmed that the PIGD subtype has a faster disease 

progression, greater motor function impairment (Jankovic & Kapadia 2001a), and is less 

responsive to levodopa and deep brain stimulation of the STN and GPi compared to the 

TD subtype (Jankovic et al. 1990a; Rajput et al. 1993; Mehanna & Lai 2013; Chen et al. 

2015). It has also been reported that there is a correlation between freezing of gait score 

and PIGD score (Rajput et al. 1993). Additionally, the PIGD subtype can place PD patients 

at a higher risk for falls  compared to TD patients (Rudzińska et al. n.d.). It has been shown 

that PIGD patients have worse postural control in comparison to TD patients (Rudzińska 

et al. n.d.; Herman et al. 2013). Accordingly, correctly diagnosing subtypes can help 

caregivers to initiate early amenable interventions and track the progression of the disease.  

2.4 Perturbation-based training  

Previous studies have shown that physical exercises which focus on balance 

training result in fall reduction (Ld et al. 2015; Parijat et al. 2009; Beam et al. 2004; 

Sherrington et al. 2008). Although these exercises can reduce the risk of falls, greater 

reduction in fall incidence are not seen because it may need an intervention focusing on 

one’s balance recovery strategies following a balance loss (such as swaying around the 

ankles or hips, taking a step, or grasping action) (Maki & McIlroy 2006; Hof 2007).  Thus, 

training tasks that focuses on improving the balance recovery strategies may provide a 

beneficial effect in reducing falls (McCrum et al. 2017; Mansfield et al. 2015).   

One intervention method focusing on improving balance recovery that has shown 

promising results in regard to reducing the incidence of falls is unexpected perturbation-
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based training (PBT) (Mansfield et al. 2015; Mccrum et al. 2017). This balance-training 

intervention exposes individuals to repeated external perturbations during walking which 

might happen in daily life and evokes balance recovery reaction. This empowers 

individuals to enhance these reactions with practice. PBT can enrich neuro-mechanical 

control of stability to prevent falls and create a helpful motor behavior that can be used in 

the cases of unexpected real-world perturbations (Pai & Bhatt 2007). Different studies have 

shown that there are improvements in control of voluntary movements (Rogers et al. 2003), 

an increase in the speed of balance reactions (Parijat & Lockhart 2012; Tanvi et al. 2012; 

Mansfield et al. 2010), and improvements in some measures of the reactive recovery 

response to perturbations (e.g., recovery step) (Parijat & Lockhart 2012; Y. C. Pai et al. 

2014; Tanvi et al. 2012; Lurie et al. 2013; Pai et al. 2010; Bierbaum & Peper 2010; 

Bierbaum et al. 2011; Mansfield et al. 2015).  

Additionally, a decrease in occurrence of falls in the laboratory from the pre- to 

post-perturbation training has been reported (Parijat & Lockhart 2012; Y. C. Pai et al. 2014; 

Tanvi et al. 2012; Mansfield et al. 2015; McCrum et al. 2017). Parijat et. al. indicated fall 

reduction on slippery surface from 42% to 0% (Parijat & Lockhart 2012) and, Pai et. al 

reported fall reduction from 42.5% to 0%, 8.7% and 11.5% in 6, 9, and 12 months after 

repeated slip training during the laboratory retest (Y. C. Pai et al. 2014). A few studies also 

show reduction in number of daily living falls by following up with their participants after 

several months of PBT (Y.-C. Pai et al. 2014; McCrum et al. 2017). Therefore, an 

improvement in control of balance may improve response to unexpected real world balance 

loss and reduce the likelihood of falls (Mansfield et al. 2015).  
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Along with reducing risk of fall, PBT shows promising results in performance, 

preventing injury, and rehabilitation (mainly athletes with knee injuries) within the field of 

athletic training (Zech et al. 2010). Rehabilitation with PBT facilitates return to functional 

activity sooner and maintains functional status for longer periods compared with a standard 

rehabilitation program (Hurd et al. 2006; Chmielewski et al. 2005; Fitzgerald et al. 2000; 

Rudolph et al. 2000; Williams et al. 2001; Zech et al. 2010). The commonly used PBT 

protocol for this purpose is the one proposed by Chmielewski et. al. (Chmielewski et al. 

2005). In their study, they have applied PBT on individual with unilateral anterior cruciate 

ligament (ACL) (Chmielewski et al. 2005). All subjects participate in sessions of 

perturbation training which include perturbation on tilt board while subject stands on one 

leg and ML and AP perturbation with only one foot on a roller board or one on roller board 

and the other on a static platform. Results indicated that individuals with ACL injures 

showed improvement in movement patterns and muscle activations, resembling subjects 

without injuries after training. 

Although the results of PBT are promising, the efficacy of such interventions is not 

well understood. Most studies report the improvement in some measures of the reactive 

recovery response after the training, which may not be transferable to another type of 

perturbation. In other words, there is paucity of data revealing the effects of PBT on 

improving dynamic stability of walking and gait flexible adaptability as a whole. 

Additionally, most of these studies apply perturbations while subjects walk over ground by 

utilizing some method like movable platform (Y. C. Pai et al. 2014; Parijat & Lockhart 

2012). Therefore, perturbations occur at the same location each time. This might give 

subjects external cues and cause adaption in gait due to predictions about the location of a 
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possible perturbation, which would affect the results of laboratory induced falls and alter 

measures of the reactive recovery response to the perturbations.  

The main difficulties associated with using PBT as an intervention method to 

reduce fall incidences are the requirements of this training method (equipment and space). 

The common method to induce perturbations during walking requires an instrumented 

walkway and overhead harness system which takes up a large space. Additionally, subjects 

can predict the location of perturbations in PBT training (e.g. slip induced perturbation by 

movable platform) since perturbations occur in the exact same location. Furthermore, the 

starting point of subject’s walking needs to be adjusted before starting a training session to 

secure that foot lands at the exact same location of applied perturbations. These difficulties 

hinder the use of PBT during walking in the clinical and community settings. In contrast, 

treadmills offer several advantages such as reduced space requirements, standardized 

components, and reproducibility in training protocols (Yang et al. 2013). Most importantly, 

precise foot placement is no longer necessary since every step is recorded. Furthermore, 

harness systems need to cover a smaller space during treadmill training. Thus, application 

of a treadmill design may facilitate PBT during walking in the clinical and community 

settings. 

2.5 Adaptive control and training 

Previous studies have shown that humans adapt to unpredictable changes or 

perturbations in environment during different activities, such as standing or walking (Bhatt 

et al. 2006; Nashner 1976; Horak et al. 1989; Owings et al. 2001; Parijat & Lockhart 2012). 

A new association between external perturbation (e.g. slip) and motor action is required 
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for this adaptation. For example, experiencing repeated slip perturbations may elicit 

increased transitional acceleration at the time of heel contact, reducing the risk of backward 

balance loss and fall upon further perturbation (Lockhart et al. 2003a). This type of change 

in gait pattern is acquired by repeating movements in the presence of an external 

perturbation to reconstruct the performance of a task when external perturbations exist (Pai 

& Bhatt 2007).   

Sensory information is integrated by the CNS to calculate required motor 

commands for postural control and prevent balance loss during movement. For this 

purpose, CNS constructs internal representation of the world by integrating different 

sensory systems. This internal representation is known as the internal model (Kandel & 

Schwartz 2013). The internal model includes two main components; the inverse model and 

feedforward model. The inverse model computes the motor commands by considering the 

desired state (preventing balance loss), while the forward model operates as a predictor to 

estimate the next state based on a copy of the current motor commands (efferent copy). 

During walking, the inverse model calculates the required motor commands for the desired 

body position to control stability. The commands from inverse model are sent to neuro-

mechanical apparatus (muscles) to control the location of each limb. Additionally, a copy 

of these commands (efferent copy) are sent to forward models to predict the future 

state/position. The sensory feedback information is integrated and compared with the 

predicted posture from the forward model. The comparison gives the error (corollary 

discharge). If there is an error, it will be fed to the adaptive controller (inverse and forward 

models) to update the motor commands (Sicre et al. 2008). In this proposal, the internal 

model is considered as a feedforward control of balance control.  



19 
 

By repeating exposure to perturbations, a new predictive control is developed 

which reduces the risk of balance loss in the presence of perturbations. The CNS builds, 

refines, or updates an internal representation of the potential threats that may occur in the 

external environment (Pai & Bhatt 2007; Kandel & Schwartz 2013). When sensory 

prediction is consistent with the actual sensory information, there is little command from 

the feedback controller. Otherwise, these sensory inputs not only elicit corrective 

commands from the feedback controller but also are utilized to regulate the sensory 

representation of the environment and the motor commands in a feedforward controller 

(Pai & Bhatt 2007; Kandel & Schwartz 2013; Morasso et al. 1999). This improves 

performance in the future motor actions under similar contexts. Thus, PBT decreases 

dependency on the feedback mechanism as the adaptation process is further developed over 

repeated exposures to perturbations (Pai & Bhatt 2007; Y. Pai et al. 2003). Furthermore,  

the CNS explores all the possible patterns of motor neuron requirements for fulfilling a 

movement task in the presence of an external perturbation (Pearson 2000; Prochazka & 

Ellaway 2012). Thus, PBT refines neural pathways to effectively recruit motor neuron in 

order to reduce the risk of balance loss and fall.     

2.6 Local dynamic stability  

Dynamic stability during gait is defined as the resilience of a subject to infinitesimal 

perturbations during walking (Dingwell et al. 2000). Perturbations in human gait might 

have an internal source like sensory or motor noise or an external source such as an uneven 

surface. If an individual is unstable, they might be at high risk of losing balance and fall 

when there is larger perturbation. Local dynamic stability is a method that measures the 

ability of the walking subject to resilience of these perturbations (Toebes et al. 2012). Local 
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dynamic stability is quantified by the maximum Lyapunov exponent (Lmax). Lmax measures 

the average logarithmic rate of divergence and specifies how a system responds to a very 

small perturbation (Dingwell & Cusumano 2000; Rosenstein ’ et al. 1993; Stergiou 2016a). 

The general concept is that if a system is at nearly the same state as the current state one of 

these sates might be considered a perturbation for the other state. By tracing the distance 

between these two states in time, it could be seen whether this distance increases 

exponentially, an indicator of instability, or decreases, which implies that the system is 

more stable. One of the advantages of this method is that any source of kinematic data can 

be utilized to calculate this measure regardless of the reference frame (Bruijn et al. 2010; 

Gates & Dingwell 2010). Additionally, it doesn’t need an actual gross perturbation as 

walking itself produces a very small perturbation with every step. The disadvantage of this 

method is that it needs relatively large amount of data (Dingwell & Cusumano 2000; 

Rosenstein ’ et al. 1993; Stergiou 2016a).  

Maximum Lyapunov exponents have been used for a while to assess human gait 

stability by comparing patients to healthy controls, or by comparing younger to elderly 

subjects (Lockhart & Liu 2008; Buzzi et al. 2003; Dingwell & Cusumano 2000; Kang & 

Dingwell 2009; Dingwell et al. 2000; Stergiou et al. 2004; Moraiti et al. 2007). Results of 

LDS (quantified by Lmax) on older adults show that they are more unstable during walking 

than young subjects, which is consistent with the association between age and decreased 

ability of keeping balance (Buzzi et al. 2003; Kang & Dingwell 2009). Additionally, Lmax 

could discriminate elderly fallers from elderly non-fallers and young subjects (Lockhart & 

Liu 2008).  
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Lmax defines how the system responds to small perturbations (Dingwell & 

Cusumano 2000; Rosenstein ’ et al. 1993; Stergiou 2016a) but it does not provide any 

insight about how it relates to more common sense notions of stability, such as the ability 

to overcome larger external perturbations. By considering this assumption that patients or 

elder adults are less stable in the aforementioned studies, this can be a support for this 

concept. Lockhart et. al. tried to address this by calculating Lmax for individuals with known 

balance problems (Lockhart & Liu 2008). They report greater Lmax for elderly subjects with 

a history of falling compared to ones without such a history. Another way to assess how 

well Lmax relates to notion of stability is to assess Lmax when there is external perturbation. 

Young et al. applied random perturbations during walking to put subjects in unstable 

walking condition. Their results showed an increase in Lmax which indicates that Lmax is 

sensitive to unstable walking (Young 2011). 

2.7 Adaptability and complexity 

Human movement requires adaptability to different demands since human face 

different challenges every day. It is hypothesized that variations in human movement might 

be essential to provide flexible adaptations to everyday disturbances experienced by the 

body (Goldberger et al. 2002; Otero-Siliceo & Arriada-Mendicoa 2003; Georgoulis et al. 

2006; Stergiou & Decker 2011). On the other hand, a lack of this complexity is associated 

with rigidity and inability to adapt to different demands and challenges. The loss of 

adaptability is related to lack of complexity and greater regularity in the dynamics of daily 

living activities (Paraschiv-Ionescu et al. 2012; Ihlen et al. 2016). In human movements, 

higher levels of entropy reflect a more complex mechanism and greater adaptability to 

different demands (Stergiou 2016a; Costa & Healey 2003; Costa et al. 2005; Costa et al. 
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2003; Manor et al. 2010; Karmakar et al. 2007). High level of entropy points to a higher 

flexibility (complexity) in selecting an action requires for a task at a certain condition. 

Alternatively, lower entropy determines repetitive behavior and a limited amount of 

flexibility or complexity. A study of acceleration signals during walking have indicated 

that older-adult-fallers have lower entropy level in comparison to ones without the history 

of falls (Ihlen et al. 2016). A decrease in entropy is also shown in toe clearance during 

walking for older adults at the risk of fall (Karmakar et al. 2007). Additionally, Georgoulis 

et al. have showed that subject with ACL injuries have lower entropy than controls 

(Georgoulis et al. 2006). They conclude that deficient knee due to ACL injuries exhibits 

more regular patterns and therefore, reduces the adaptability of subject to adjust to 

perturbations. These findings support the hypothesis that lower entropy level leads to loss 

of complexity in the gait dynamics and accordingly lessens the adaptability of daily life 

walking and increase the risk of falls (Goldberger et al. 2002; Otero-Siliceo & Arriada-

Mendicoa 2003; Georgoulis et al. 2006; Paraschiv-Ionescu et al. 2012; Ihlen et al. 2016). 

One speculation regarding how PBT reduces risk of falls could be that it might 

increase the flexible adaptation of human gait to adapt to different daily challenges. Hence, 

this speculation is yet to be attested and investigated. A deeper understanding of the reasons 

is important to suggest new approaches and employ PBT in more effective ways. Evidence 

to date suggests that the loss of adaptability is associated with lack of complexity and 

greater regularity in the dynamics of daily living activities (Paraschiv-Ionescu et al. 2012; 

Ihlen et al. 2016). In human movements, entropy measures are a key indicator of 

complexity in the system (Stergiou 2016a; Costa & Healey 2003; Costa et al. 2005; Costa 

et al. 2003; Manor et al. 2010; Karmakar et al. 2007). Therefore, analyzing gait complexity 
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after PBT could evaluate gait flexible adaptability and give us a glimpse of how 

perturbation training can reduce the risk of falls (i.e., by increasing complexity and 

improving dynamic stability). 

2.8 Nonlinear analysis  

Hardware and computing advances have enabled long time-series data to be 

collected, stored, and analyzed efficiently allowing researchers to utilize complex 

algorithms in a variety of capacities. Recently, long time-series of biomechanical data have 

been analyzed using mathematical techniques commonly reserved for dynamical systems 

(Granata & Lockhart 2008; Bruijn et al. 2009; Young 2011; Dingwell et al. 2001). Gait 

and postural stability have received a large amount of attention with these new tools in an 

attempt to understand the motor control strategies of human movements. These specific 

actions have demonstrated chaotic structure and produced results that are not seen with 

traditional biomechanical analysis (Terry et al. 2012; Dingwell et al. 2000; McAndrew 

Young & Dingwell 2012; Georgoulis et al. 2006; Granata & Lockhart 2008; Bruijn et al. 

2009; Young 2011; Dingwell et al. 2001; Ihlen et al. 2016; Karmakar et al. 2007).   

2.8.1 Lyapunov exponent  

Lyapunov exponents determine the average exponential rate of divergence of 

neighboring trajectories in state space (Rosenstein ’ et al. 1993; Kantz & Schreiber 2003; 

Stergiou 2016). The first step in calculating a Lyapunov exponent is the creation of a state 

space. A time delay state space is constructed using the original data and its time-delayed 

copies.  
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𝑆(𝑡) = [𝑣(𝑡), 𝑣(𝑡 + 𝜏), … , 𝑣(𝑡 + (𝑑𝐸

− 1)𝜏)] 

(2-1) 

where S(t) is the dE-dimensional state vector, v(t) is the original 1-dimensional data, τ is 

the time delay and dE is the embedding dimension. Time delays are determined from the 

first minimum of the Average Mutual Information function (Stergiou 2016b). The 

embedding dimension can be calculated using false nearest neighbors algorithm. The 

embedding dimension of dE=5 is mainly used in previous studies on analyzing walking 

dynamics (Dingwell & Marin 2006; Dingwell & Cusumano 2000; McAndrew et al. 2011). 

The maximum Lyapunov exponent can be defined by using: 

𝑑(𝑡) = 𝑑0𝑒𝜆1𝑡 (2-2) 

where d(t) is the mean displacement between neighboring trajectories in state space at time 

t and d0 is the initial separation between neighboring points. λ1 which is true Lyapunov 

exponents are only defined at the limits of t→∞ and d0 → 0 in above formula. Since 

experimental data can’t reach to these limits,  an algorithm for estimating maximum finite-

time Lyapunov exponents (𝜆∗) are proposed (Rosenstein ’ et al. 1993). By taking the natural 

log of both sides of Equation (3), 𝜆∗ is defined from: 

ln[𝑑𝑗(𝑖)] ≈ ln[𝑑0𝑗] + 𝜆∗(𝑖∆𝑡) (2-3) 

where dj(i) is the Euclidean distance between the jth pair of nearest neighbors after i 

discrete time-steps (i.e. iΔt). The maximum finite-time Lyapunov exponents 𝜆∗ can then 

be estimated from the slope of the linear fit to the curve of: 
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𝑦(𝑖) =
1

∆𝑡
〈ln[𝑑𝑗(𝑖)]〉 

(2-4) 

where 〈.〉 is the average over all values of j (Stergiou 2016; Rosenstein et al. 1993).  

2.8.2 Entropy  

 

Sample entropy (SampEn) analysis is a nonlinear technique for quantifying the 

regularity of time series data. This method which is an estimate of actual entropy for finite 

number of data points represents the tendency of a system to visit different states rather 

than being an a few states. In other words it indicates the complexity of a system (Pincus 

& Goldberger 1994; Stergiou 2016a; Kantz & Schreiber 2003). Lower values of SampEn 

reflect more regular time series (less complex) while higher values indicates more complex 

time series.  

Mathematically, SampEn is computed as follows: 

Let {𝑈𝑖} = {𝑢1, 𝑢2, … , 𝑢𝑖 , … , 𝑢𝑁} represent a time series of length N. There are also two 

input parameters, m and r. m is the length of compared runs, and r is a tolerance radius. 

Vector sequences of 𝑥1  through 𝑥𝑁−𝑚−1 are formed from {𝑈𝑖} , defined by 𝑥𝑖 =

[𝑢1, … , 𝑢𝑖+𝑚−1] . These vectors are basically consecutive 𝑢  values beginning with 𝑖𝑡ℎ 

point. The largest difference between corresponding elements of two vectors 𝑥𝑖 and 𝑥𝑗 is 

defined the distance between two vectors (𝑑[𝑥𝑖 , 𝑥𝑗]). Based on this definition of distance 

𝐶𝑖
𝑚(𝑟) is defined as follow: 

𝐶𝑖
𝑚(𝑟) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥(𝑖)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑥𝑖, 𝑥𝑗] ≤ 𝑟 

𝑁𝑖𝑚 − 1
 

(2-5) 
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Natural logarithm summation of all 𝐶𝑖
𝑚(𝑟) is used to define Φ𝑚(𝑟): 

Φ𝑚(𝑟) =
∑ ln 𝐶𝑖

𝑚(𝑟)𝑁−𝑚+1
𝑖=1

𝑁 − 𝑚 + 1
 

(2-6) 

The calculation of SampEn is then given by the difference: 

𝑆𝑎𝑚𝑝𝐸𝑛 = Φ𝑚(𝑟) − Φ𝑚+1(𝑟) (2-7) 
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CHAPTER 3: TOWARDS REAL-TIME DETECTION OF FREEZING OF 

GAIT USING WAVELET TRANSFORM ON WIRELESS 

ACCELEROMETER DATA 

Abstract 

Injuries associated with fall incidences continue to pose a significant burden to 

persons with Parkinson’s disease (PD) both in terms of human suffering and economic loss. 

Freezing of gait (FOG), which is one of the symptoms of PD, is a common cause of falls 

in this population. Although a significant amount of work has been performed to 

characterize/detect FOG using both qualitative and quantitative methods, there remains 

paucity of data regarding real-time detection of FOG, such as the requirements for 

minimum sensor nodes, sensor placement locations, and appropriate sampling period and 

update time. Here, the continuous wavelet transform (CWT) is employed to define an index 

for correctly identifying FOG. Since the CWT method uses both time and frequency 

components of a waveform in comparison to other methods utilizing only the frequency 

component, I hypothesized that using this method could lead to a significant improvement 

in the accuracy of FOG detection. I tested the proposed index on the data of 10 PD patients 

who experience FOG. Two hundred and thirty seven (237) FOG events were identified by 

the physiotherapists. The results show that the index could discriminate FOG in the 

anterior–posterior axis better than other two axes, and is robust to the update time 

variability. These results suggest that real time detection of FOG may be realized by using 

CWT of a single shank sensor with window size of 2 s and update time of 1 s (82.1% and 

77.1% for the sensitivity and specificity, respectively). Although implicated, future studies 

should examine the utility of this method in real-time detection of FOG. 
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3.1 Introduction 

Injuries associated with fall incidences continue to pose a significant burden to 

persons with Parkinson’s disease (PD) both in terms of human suffering and economic loss. 

Annual fall incidence rates range from 50% to 70% in patients with PD, and recurrent falls 

are a major cause of disability in PD (Allen et al. 2013). The resulting loss of independence 

and treatment costs add substantially to the healthcare expenditures in PD which is 

estimated to be $27 billion annually in the U.S. (Obeso et al. 2000). This number may rise 

substantially in the coming decades as the entire U.S. population ages. Furthermore, 

recurrent falls usually occur later in PD (Allen et al. 2013; Matinolli et al. 2011). Indeed, 

among the top three priorities presented to the National Institute of Neurological Disorders 

and Stroke (NINDS) Council (NINDS PD2014) as final recommendations of critical needs 

for advancing PD research, is to develop effective treatments for dopa-resistant features of 

PD. These features include motor symptoms such as gait and balance problems and 

freezing of gait leading to falls. 

Freezing of gait (FOG) is one of the cardinal symptoms of the PD which is defined 

as an inability of a person to move one’s feet in spite of the fact that he/she intends to move 

(Giladi 2008; Nutt et al. 2011). FOG usually occurs during gait initiation and turning or, 

encountering an obstacle (Moore, D. a Yungher, et al. 2013). The occurrence of FOG 

increases at the later stage of PD and, the PD patients with mild and advanced stages 

experience FOG about 10% and 80%, respectively (Macht et al. 2007). Not only FOG 

causes a negative impact on the activity of daily living, but also it is a common cause of 

falls in this population (Bloem et al. 2004). As such, specifying a treatment and finding a 

biomarker of FOG is considered as a goal of the PD clinical research. Several 
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questionnaires have been utilized to assess the severity of FOG conditions. One of the well-

known and widely used questionnaires is Unified Parkinson’s Disease Rating Scale 

(UPDRS), Activities of Daily Living (ADL) part 14 (Fahn et al., 1987). This questionnaire 

rates FOG from scale 0 (no FOG) to 4 (frequent falls from freezing) based on the patient 

history. The accuracy and validity of this method for detecting FOG is completely 

subjective and dependent on patient and caregiver’s assessments and, they are not as 

accurate as the objective methods (Shine et al. 2012). As such, objective measures of FOG 

have been developed and employed utilizing wearable sensors. These methods use pressure 

sensors or inertial monitoring units (IMU) along with waveform analysis to characterize 

the episodes of FOG. These studies indicate that the spectral component in the range of 3–

6 Hz was associated with FOG episodes (Jeffrey M Hausdorff et al. 2003). Recent wearable 

sensors, such as inertial measurement unit, could quickly and inexpensively deliver 

accurate measurements. Due to the form factor they also enable users to wear sensors on 

the various parts of body (Horak 2013). Additionally, these sensors can be used in any 

environment rather than the controlled environments (Muro-de-la-Herran et al. 2014). The 

portability and widespread use of cell phones (with embedded IMUs) may make this 

method useful and universal. 

Furthermore, sensor placement locations as well as calibration methods may 

influence the accuracy of FOG detection (Nutt et al. 2011). As such, there are several 

requirements that must be considered prior to designing any real-time FOG detection 

systems—such as minimum sensor nodes, sensor placement locations, and appropriate 

sampling period and update time (Moore et al. 2008; Bachlin & Plotnik 2010). For 

example, FOG episodes have different durations (from 0.5 s to 128 s) (Moore et al. 2008; 
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Bachlin & Plotnik 2010), and given a short duration of the FOG episodes, use of fast 

Fourier transform (FFT) with the minimum sample window size of 4 s will erroneously 

miss the FOG in the signal. However, methods such as continuous wavelet transform 

(CWT) which employ time domain information in a smaller sample window size may 

detect the short-duration FOG better than FFT method. The objective of this study is to 

assess the effects of sampling duration and update time using the CWT for correctly 

identifying the FOG events in lieu of different sensor placements. The advantage of this 

method in comparison to other waveform methods (e.g., FFT) is that the CWT method uses 

both time and frequency components of a waveform and may improve the accuracy of FOG 

detection. Unlike Fourier transform, the continuous wavelet transform could construct a 

time-frequency representation of a signal which delivers the time and frequency 

localization. Furthermore, continuous wavelet transform (CWT) could assess how the 

frequency content (the power amplitude of specific frequency) of a signal changes over 

time. This detailed time-frequency analysis provides the ability to localize the transient 

state of a signal in time well better than FFT method. It is hypothesized that CWT analysis 

will objectively identify FOG better than the traditional method using power spectral 

analysis by incorporating appropriate sampling periods and update time with optimal 

sensor number/placement locations. 

3.2 Method 

The present work consists of novel analyses performed on the complete dataset 

obtained from previously published data (Bächlin, Plotnik, Roggen, Maidan, Jeffrey M 

Hausdorff, et al. 2010). Bachlin and colleagues recruited 10 PD patients (three females; 

age: 66.5 ± 4.8 years; disease duration: 13.7 ± 9.67 years; H & Y in ON: 2.6 ± 0.65) with 
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the history of FOG and could walk during the “off-medication” stage without additional 

assistance. All participants except for two individuals (who had frequent FOG experience 

during the “on-medication” state) performed the tasks in the “off” stage of medication. 

Different walking conditions were provided to the participants (walking back and forth in 

a straight line, random walk with several stops and 360˝ turns, and walking simulating 

activities of daily living). All trials were recorded on a video camera. Two physiotherapist 

analyzed the videos of the patients to detect four different activities: walking, standing, 

turning, and freezing. The term no-freeze included the activities of walking, standing, and 

turning. For each FOG episode, they specified the start and end times of FOG. 

Additionally, three 3-D accelerometers were used to collect the accelerations of shank (just 

above the ankle), thigh (just above the knee), and lower back. The accelerometers were 

sampled at 64 Hz sampling rate. In this dataset, there were totally 8 h and 20 min of data 

with 237 FOG events which were identified by the physiotherapists.  

Previous studies (Moore et al. 2008; Bachlin & Plotnik 2010) used Fourier 

transform to elicit information from the frequency domain of acceleration data in order to 

detect the FOG episodes. In this study, I applied CWT on acceleration data to extract 

further features. CWT method provides the information not only in frequency domain but 

also in temporal domain that may help in defining a better FOG index using an appropriate 

window size and update rate.  

The CWT constitutes a set of scaled and shifted wavelets in the frequency and time 

domain, respectively (Mojtahedi et al. 2015). Each wavelet is generated by mother wavelet 

and has a finite length with zero average. Each wavelet could be constructed by stretching 
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or compressing (s, scale) the mother wavelet and transferring it in temporal domain (τ, 

translational time). The CWT of the acceleration signal (a(t)) is defined as the integral of 

multiplication of acceleration signal and wavelets over the duration of window: 

C(s, τ) = ∫ a(t)Ψ∗ (
t − τ

s
) dt

window

0

 (3-1) 

where Ψ is a mother wavelet function. Ψ∗ (
t−τ

s
)  is the conjugate of mother wavelet which 

is shifted in temporal domain and scaled. The CWT of acceleration signal (C(s, τ), CWT 

coefficients) is the function of both scale and translational time. Since the scale is inversely 

proportional to the frequency, the corresponding pseudo-frequency for a specific scale 

could be computed by: 

𝐹𝑠 =
𝐹𝑐

𝑠. ∆
 

 

(3-2) 

where Fc is the center frequency of mother wavelet. ∆ is the sampling time in data collection 

from hardware specification and Fs is the pseudo-frequency which corresponds to a 

specific scale (i.e., s). Throughout the manuscript, I have used the term “frequency” to refer 

to pseudo-frequency.  

 During FOG there were frequency components in 3–6 Hz (Jeffrey M. Hausdorff et 

al. 2003b). Accordingly, I defined two scale ranges to capture the spectral components 

separately. The two scale ranges which correspond to frequency ranges of 0.5–3 Hz and 3–

8 Hz were considered as locomotor and freeze scales, respectively. I computed the 

locomotor (LC(τ) in equation (3-3)) and freeze (FC(τ) in equation (3-4)) components at 

each translational time as the summation of CWT coefficient values of correspondent scale 
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ranges. Therefore, I introduced the percentage ratio (R(τ) in equation (3-5)) of locomotor 

component to the sum of locomotor and freeze components. The FOG index was defined 

as the average of R(τ) over the sampled window. 

Locomotor component: LC(τ) = ∑ C(s =5
i=0

Fc

0.5(1+i)×∆
, τ) 

(3-3) 

Freeze component: FC(τ) = ∑ C(s =
Fc

0.5(1+i)×∆
, τ)15

i=5  (3-4) 

Ratio: R(τ) =
LC(τ)

LC(τ)+ FC(τ)
× 100 (3-5) 

As I mentioned above, the two frequency ranges of 0.5–3 Hz and 3–8 Hz were 

considered for locomotor and freeze components, respectively. I tried different step sizes 

(e.g., 0.1, 0.25, 0.5, 1, 1.5 Hz) in frequency ranges for calculating the locomotor and freeze 

components. For any step size above 0.5 Hz, the frequency resolution was not enough to 

lead to different values for locomotor and freeze components. So, these step sizes were not 

good at discriminating these two components. However, the discrimination results were 

obtained by choosing any step sizes equal or below 0.5 Hz. Therefore, I chose 0.5 Hz as 

the proper step size. Consequently, I needed to calculate CWT coefficients for 6 and 11 

frequencies (or scales) in order to compute the locomotor and freezing components, 

respectively. Note that 0.5 in the denominators of equations (3-3) and (3-4) is the step size 

in frequency. As in equation (3-2), I could calculate the correspondent scale of each 

frequency. For example, the term of 0.5(i + 1) for the values of i = 0, 1, 2,  . . . , 5 generates 

the frequencies of 0.5, 1, 1.5, . . . , 3 Hz in the denominator to select the correspondent 

scales of these 6 frequencies for locomotor component in equation (3-3). In the current 

study several sample window sizes (1 s, 2 s, 3 s, and 4 s) have been applied to assess the 
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effects of sampling duration on the FOG detection with CWT method. The same sample 

window size was always used for the locomotor and freezing components in order to 

calculate the ratio. The smallest sample window size in previous studies (Bächlin et al. 

2010) were 4 s. I also want to assess smaller window sizes in order to not miss the short 

FOG episodes. 

The optimal decision threshold for discriminating FOG from the other activities 

was selected according to the accuracy of diagnostic tests using an interactive dot diagram 

in MedCalc software (MedCalc statistical software, version 13). In the graph, I defined two 

groups “FOG” and “No FOG” (the other activities) which were plotted on two vertical axes 

by dots. A horizontal line in the graph indicated a threshold which illustrates the best 

separation between the two groups (via obtaining minimal false negative and false positive 

results). The signals of three axes in each accelerometer were considered as independent 

variables. 

These signals were low-pass filtered using a fourth order, zero lag, Butterworth 

filter at a cut off frequency of 10 Hz. The FOG index for each axis was calculated. I 

assumed the clinical assessment from (Bächlin et al. 2010) as the ground-truth and assessed 

the performance of FOG index via sensitivity and specificity criteria. The sensitivity was 

the probability that the index detected FOG when FOG was present. Specificity indicated 

the probability that the index detected normal movement when there was not a FOG. 

The type of the mother wavelet (Ψ(t)) could also influence the CWT coefficients. I 

chose db4 (Daubechies wavelets of 4th order) as the mother wavelet in the current study 

(Martin 2011). I applied CWT on 2 subjects with other wavelet families and orders (e.g., 
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db10, Morlet, Haar, Mexican Hat, and Gaussian) to find the appropriate wavelet. Results 

showed that db4 could discriminate locomotor and freezing components better and gave a 

larger values for the sensitivity and the specificity.  

3.3 Results 

The CWT coefficient values are plotted in Figure 3.1. The profile of accelerations 

changed during FOG episode (left column, Figure 3.1.) and CWT of accelerations (right 

column, Figure 3.1.) magnify these changes in order to capture them computationally 

better. The inside of the red dash rectangle box specifies the FOG episode. The white 

horizontal line discriminates the two scale ranges of locomotor and freezing activities. In 

other words, below and above the white line corresponds directly to the frequency ranges 

of 3–8 Hz and 0.5–3 Hz, respectively. The CWT coefficients in Figure 1 shows relatively 

larger values (lighter blue values appeared in the below of white line) in the scales 

corresponding to the pseudo-frequency 3–8 Hz during the FOG episode (in the red dash 

rectangle box) in comparison to other activities (out of the red dash rectangle box) in all 

three axes of shank accelerometer. In contrast, the CWT coefficients had larger values in 

the pseudo-frequency 0.5–3 Hz (lighter blue values appeared in the above of white line) 

during the normal movement. 
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Figure 3.1. Shank acceleration signal and corresponding continuous wavelet transform of 

25 s signal extracted from subject 2. The red dash rectangles denoted the true freezing of 

gait (FOG) episode period which physiotherapists identified by watching the video of a 

patient during the trials. At each continuous wavelet transform (CWT) plot, the white 

horizontal dash line indicated scale 15.2 which corresponded to 3 Hz and defined the border 

between locomotor and freeze scale ranges. The upper and lower sides of the white line 

indicated the locomotor and freeze scale ranges which corresponded to frequency ranges 

of 0.5–3 Hz and 3–8 Hz, respectively. The frequencies of 0.5, 3, and 8 correspond to the 
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scales of 91.4, 15.2, and 5.7, respectively. Milli-gravitational acceleration is denoted by 

mg (980.665 mm/s2). 

The receiver operating characteristic (ROC) curves of FOG index for all sensors 

and all of the three axes were provided in Figure 3.2. According to the area under the ROC 

curve, anterior–posterior direction could discriminate FOG better than the other two axes 

in any sensor placement locations (Table 3.1.). As such, the anterior–posterior axis of 

acceleration signal maybe a good candidate for detecting the FOG. 

 

Figure 3.2. Receiver operating characteristic (ROC) curves for all sensors and all the three 

axes. 
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Table 3.1. Area under ROC curve across all the subjects for the different sensor positions 

and axes. 

Sensor position Anterior-posterior Vertical Medial-lateral 

Shank 

Thigh 

Lower back 

0.890 

0.857 

0.821 

0.786 

0.759 

0.738 

0.815 

0.842 

0.793 

The threshold which discriminated FOG from the other activates was defined from 

the average data of all subjects based on the results of interactive dot diagram. The 

interactive dot diagram of FOG index for shank senor of subject 2 is illustrated in Figure 

3.3. The horizontal line in each graph shows the best threshold which could discriminate 

FOG from other activities. In Figure 3, each circle shows the value of the proposed FOG 

index which are classified in two groups based on the ground truth clinical assessments. 

So, all circles in the “FOG” group indicate true FOG events and those in the “No FOG” 

group are true no FOG events (other movements). The overlap between the two sections 

indicate the false negative (circles located above threshold line in “FOG” group) and false 

positive (circles located below threshold line in “No FOG” group) of the proposed index.

Figure 3.3. Interactive dot diagram of the FOG index for the shank senor of subject 2 for 

three different axes. 
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Furthermore, in terms of the real-time detection of the FOG episodes, the 

assignment of the window size and update time may be critical. Utilizing the results 

(Bächlin et al. 2010), I used the window length of 4 s with the update time of 0.5 s and 

applied CWT to all three sensors locations in order to find the best sensor position for 

detecting the FOG event. The averages of sensitivity and specificity across all subjects are 

presented in Table 3.2. The results indicate that the shank was the best placement location 

to detect FOG episodes rather than lower back or thigh positions. 

Table 3.2. Sensitivity, specificity, and area under ROC curve across all the subjects for the 

different sensor positions with the time window size 4 s and the update time 0.5 s. 

Sensor position Sensitivity (%) Specificity (%) Area under ROC curve 

Shank 

Thigh 

Lower back 

84.9 

73.6 

83.5 

81.0 

79.6 

67.2 

0.890 

0.856 

0.821 

In order to verify the appropriate window size and update times, I applied the FOG 

detection method on various window sizes that were smaller than 4 s (3, 2 or 1 s) on the 

anterior–posterior acceleration of the different sensor placements. I also employed larger 

update time (1 s) to examine the case in which the access to the processor could be limited 

and fast calculation was not available which would require the larger update time. The 

averages of sensitivity and specificity of various window sizes, update times, and sensor 

placements were presented in Figure 3.4. 
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Figure 3.4. The averages of sensitivity and specificity across all subjects as a function of 

window size, update time, and sensor placement. 

The results indicated that the acceptable sensitivity and specificity on the anterior–

posterior shank acceleration sensor was achievable even for shorter window sizes (i.e., 2 s; 

Figure 3.4.) by employing the proposed FOG index. Importantly, the proposed index 

showed strong robustness to the update time variability. In other words, the sensitivity and 

specificity were robust to the changes of update time from 0.5 s to 1 s. 

One of the design aspects in online detection is the number of false positive rates 

that may influence user compliance. Since I had different sample window sizes and update 
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times, I provide average false positive percentages of the test results per minute for FOG 

index in Table 3.3. 

Table 3.3. Average false positive percentage of the test results per minute for FOG index, 

across all the subjects for the anterior–posterior axis of shank senor. 

Sample window size (s) Update time 0.5 s (%) Update time 1 s (%) 

4 16.42 16.35 

3 16.52 17.05 

2 15.49 18.11 

1 15.40 17.78 

 

3.4 Discussion 

I applied the CWT on wireless accelerometer signals to acquire real-time FOG 

detection. The novel FOG index was created to capture the time and frequency components 

of acceleration signal. To the best of my knowledge, this paper is the first attempt to utilize 

CWT for real-time detection of FOG events. Additionally, I evaluated the optimal sensor 

placement locations for identifying FOG. The efficiency of real-time detection of FOG was 

further investigated by assessing window size and update time. These two variables can be 

highly important when real time feedback (e.g., auditory, vibratory stimulations) is applied 

in order to overcome FOG (Lee et al. 2012; Heremans et al. 2013; Bächlin, Plotnik, 

Roggen, Maidan, Jeffrey M Hausdorff, et al. 2010). The current findings from applying 

CWT to linear acceleration signals were compared with previous studies (Moore et al. 

2008; Jeffrey M. Hausdorff et al. 2003b) and it was found that there was an increase in 

amplitudes in the frequencies from 3–8 Hz in comparison with normal movements during 

FOG.  



42 
 

Very small shuffling steps with minimum forward movement and leg trembling in 

place (some leg trembling but no effective forward motion) were the most common 

manifestations of FOG (Schaafsma et al. 2003). The previous studies concentrated only on 

leg trembling in place (Schaafsma et al. 2003; Nutt et al. 2011) and used the frequency 

information of acceleration signal in the vertical axis which was the axis where the 

trembling occurred. The current study showed that I could also distinguish FOG by using 

the capability of the CWT to capture information from both time and frequency domain 

(Figure 3.1). Interestingly, the novel FOG index could detect FOG in anterior–posterior 

axis better than the other two axes. Since the shuffling steps had minimum forward 

movement and the axis of minimum forward movement corresponded to anterior–posterior 

axis, the proposed index could discriminate FOG in anterior–posterior better. The proposed 

FOG index detected FOG with 84.9% sensitivity and 81.01% specificity for sensor placed 

at shank with a window size of 4 s and update time of 0.5 s. Using the proposed method, 

the sensitivity was much higher than the previously reported result of 73.1%, applying FFT 

to the same dataset, but the specificity was similar (81.6%) (Bächlin, Plotnik, Roggen, 

Maidan, Jeffrey M Hausdorff, et al. 2010).  

In terms of the location of the sensor placements, shank and lower back positions 

were preferred as these locations did not interfere with normal walking and produced best 

results. However, the lower back position could not represent trembling in place effectively 

during FOG events. As such, detection of FOG events using the shank sensor was better 

than the lower back sensor location (Figure 3.4). These results were in agreement with the 

other studies which evaluated sensor placement at the lower back for FOG detections 

(Moore et al. 2013; Tripoliti et al. 2013). In conclusion, a single sensor at the shank location 
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may be the best sensor placement location for identifying FOG events, as this sensor 

location will not interfere with gait and allows easy installation of the sensors. In the current 

study, 48.1% of FOG events lasted less than 5 s. Thus, it was necessary to detect the FOG 

events with a shorter window size. Additionally, the efficiency of real-time detection could 

be improved with lowering sampling window and increasing update time. None of the 

previous studies have reported false positive per minute of their method. This value should 

be considered during early design phase since false positive signals will limit the usability 

of the device (i.e., “cry-wolf” effect for user compliance—users may turn the system off if 

too many false alarms are engaged). Based on the results from Table 3, false positive per 

minute values might be high from the design aspect, but it should be considered that these 

results were obtained from global threshold (all subjects have same threshold). By 

determining the threshold for each subject (i.e., calibrate index for each individual), the 

false positive rate will notably be decreased. Since I didn’t have access to other activity 

conditions (walking, standing, and turning), I were limited to improve the proposed index 

to identify FOG events from all other conditions. The current framework (window size of 

2 s and update time of 1 s) achieved the levels of 82.1% and 77.1% for sensitivity and 

specificity, respectively. This framework had several special characteristics: First, the 

smaller window size, such as 2 s, allowed detection of short-duration FOG episodes better 

than a larger window size, since the larger window size can average out shorter FOG 

episodes. Second, the smaller window size could also decrease the processing time and 

send the signal to the third party faster (e.g., an assistive device) to help patients overcome 

the FOG episodes. Third, the robustness due to the update time variability did not attenuate 
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the levels of detection. These characteristics are promising for real time application as these 

settings will decrease the calculation time and increase the efficiency. 

The current work indicates that real-time detection of FOG using CWT of 

acceleration data is attainable with a small window length of 2 s and the larger update time 

of 1 s using the single shank sensor. Since a single shank sensor did not interfere with 

walking and was placed easily, it facilitated gait analysis as well as real-time FOG 

detection. Although the requirements for FOG detection were well resolved, future studies 

should implement and examine the utility of this method in real-time detection of FOG and 

associated feedback stimulations. In other words, future studies should implement this 

method in a real time fashion to validate the results. One of the limitations of this work was 

that the data-sets were demarcated as only freezing and non-freezing conditions, limiting 

the details about non-freezing conditions such as walking, standing, and turning. Given this 

information, detection of FOG events could be better ascertained by characterizing and 

distinguishing other non-freezing features/activities prior to applying CWT. 
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CHAPTER 4: MOTOR SUBTYPES OF PARKINSON’S DISEASE CAN 

BE IDENTIFIED BY FREQUENCY COMPONENT OF POSTURAL 

STABILITY 

Abstract 
 

Parkinson’s disease (PD) can be divided into two subtypes based on clinical 

features—namely tremor dominant (TD) and postural instability and gait difficulty 

(PIGD). This categorization is important at the early stage of PD, since identifying the 

subtypes can help to predict the clinical progression of the disease. Accordingly, correctly 

diagnosing subtypes is critical in initiating appropriate early interventions and tracking the 

progression of the disease. However, as the disease progresses, it becomes increasingly 

difficult to further distinguish those attributes that are relevant to the subtypes. In this study, 

I investigated whether a method using the standing center of pressure (COP) time series 

data can separate two subtypes of PD by looking at the frequency component of COP (i.e., 

COP position and speed). Thirty-six participants diagnosed with PD were evaluated, with 

their bare feet on the force platform, and were instructed to stand upright with their arms 

by their sides for 20 s (with their eyes open and closed), which is consistent with the 

traditional COP measures. Fast Fourier transform (FFT) and wavelet transform (WT) were 

performed to distinguish between the motor subtypes using the COP measures. The TD 

group exhibited larger amplitudes at the frequency range of 3–7 Hz when compared to the 

PIGD group. Both the FFT and WT methods were able to differentiate the subtypes. COP 

time series information can be used to differentiate between the two motor subtypes of PD, 

using the frequency component of postural stability. 
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4.1 Introduction 

In 2010, approximately 630,000 people in the U.S. were diagnosed with Parkinson’s 

disease (PD), a number estimated to double by 2040 (Kowal et al. 2013). PD is a 

progressive neurodegenerative disorder which includes motor and non-motor features 

(Fahn et al. 2011). PD can be further divided into two subtypes based on clinical features: 

tremor dominant (TD), and postural instability and gait difficulty (PIGD) (Chen et al. 2015; 

Fahn et al. 2011; Thenganatt & Jankovic 2014; Jankovic et al. 1990a). This categorization 

is predominant at the early stage of PD since identifying PD subtypes can help to predict 

the clinical progression of the disease. Several studies have confirmed that the PIGD 

subtype has a faster disease progression, greater motor function impairment (Jankovic & 

Kapadia 2001a), and is less responsive to levodopa and deep brain stimulation compared 

to the TD subtype (Jankovic et al. 1990a; Rajput et al. 1993; Mehanna & Lai 2013; Chen 

et al. 2015). It has also been reported that there is a correlation between freezing of gait 

score and PIGD score (Rajput et al. 1993). Additionally, the PIGD subtype can place PD 

patients at a higher risk for falls  compared to TD patients (Rudzińska et al. n.d.). It has 

been shown that PIGD patients have worse postural control in compare to TD patients 

(Rudzińska et al. n.d.; Herman et al. 2013). Accordingly, correctly diagnosing subtypes 

can help caregivers to initiate early amenable interventions and track the progression of the 

disease. Note that diagnosis would not lead to a different medical treatment. However, 

another treatment needs to be taken for PIGD patients to reduce loss of balance and fall 

along with medical treatment since dopaminergic medications may result in limited 

improvement in postural instability and gait (Stebbins et al. 2013). Thus, diagnosis 

specifically leads to which path should be taken for the patient to manage symptoms.  
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Differentiation of TD from PIGD is currently based on sub-scores of the Unified 

Parkinson's Disease Rating Scale (UPDRS) (Stebbins et al. 2013; Chen et al. 2015). The 

UPDRS is scored by clinicians and is subjective and prone to error (Mds et al. 2003).  

Subtype-specific biomarkers may improve the accuracy of diagnoses relevant to PD 

subtypes and PD progression.  

Center of pressure (COP) measure, which is widely employed in assessing postural 

control, has been utilized for analyzing the disease-related features in PD patients 

(Schlenstedt et al. 2016; Schmit et al. 2006; Rocchi et al. 2006; Diab et al. 2014). Results 

of different studies have showed that COP was more variable for PD patients relative to 

control participants (Schmit et al. 2006; Rocchi et al. 2006) and COP derived velocity were 

abnormally large for PD patients with freezing of gait in compare to the patients without 

FOG (Schlenstedt et al. 2016). Thus, COP is considered as a good measure that can 

represent PD disease-related postural characteristics. 

PD tremor is present at the rest and typically dampened with kinetic movement. So, 

proposing a static test sounds more appropriate in compare to a dynamic task to distinguish 

between two subtypes (Hallett 1998). Several studies have reported a frequency range of 

3-7 Hz for PD tremor (Hallett 1998; Lemstra et al. 1999; Timmermann et al. 2003). It is 

also demonstrated that the whole body Center Of Pressure (COP) signal has a frequency 

lower than 2 Hz (Freitas et al. 2005; Vieira et al. 2009; Kanekar et al. 2014). Subtype-

specific postural instability in PD may be better identified by the frequencies that make up 

the COP signal. I hypothesized that the whole body COP frequency may be a better and 

more objective means of identifying PD subtypes. The most common method to investigate 

the tremor in PD is Fast Fourier Transformation (FFT) (Jankovic et al. 1990b; Jankovic & 
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Kapadia 2001b). This mathematical technique transfers a signal from the time domain to 

the frequency domain. In this method all time information is lost after the transformation. 

So, a method like wavelet transformation (WT) which includes both time and frequency 

information of the signal (Rajput et al. 1993) might help to diagnose subtypes better than 

FFT.  

4.2 Method 

4.2.1 Participants 

 Thirty-six participants that were diagnosed with PD by specialists at the 

Muhammad Ali Parkinson Center at the Barrow Neurological Institute (Phoenix, AZ, 

USA) were recruited for this study. The participants’ demographic information is presented 

in Table 4.1. The Movement Disorder Society Unified Parkinson’s Disease Rating Scale 

(MDS-UPDRS) was employed to identify the TD and PIGD groups (Goetz et al. 2008). 

The designated items for TD (kinetic and postural tremor in both the right and left hand; 

tremor—while at rest—of either the face and lips or the chain, arms, and legs) and PIGD 

(freezing, walking, posture, gait, and postural stability) were used to calculate the mean 

TD and PIGD scores. The ratio of the mean TD score to the mean PIGD score was used to 

identify the TD group. The patients with a ratio greater than or equal to 1.5 were classified 

as TD, while those with a ratio less than or equal to 1.0 were classified as PIGD. The 

patients with ratios ranging from 1.0 to 1.5 were classified as mixed-type, and were 

considered as an exclusionary criterion for this study (Stebbins et al. 2013; Jankovic et al. 

1990b; van der Heeden et al. 2016). 
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Table 4.1. Demographics of the tremor dominant (TD) and postural instability and gait 

difficulty (PIGD) groups (mean ± standard deviation—SD). MDS-UPDRS: Movement 

Disorder Society-Unified Parkinson’s Disease Rating Scale. 

 TD (n=13) PIGD (n=23) 

Gender (F:M) 

Age (years) 

Disease duration (month) 

MDS-UPDRS III (ON) 

0:13 

59.92±9.63  

20.23±19.14 

14.85±9.85 

9:14 

70.43±6.18 

37.78±54.69  

15.08±8.48 

The study was approved by the Institutional Review Board at the Barrow 

Neurological Institute and Arizona State University, Tempe, AZ, USA. The participants 

provided informed consent prior to their inclusion in the study. All of the assessments were 

performed while subjects were in the “on” medication status—approximately 1 to 1.5 h 

after taking the PD medication. 

4.2.2 Experimental Procedure  

The participants were placed with their bare feet on the force platform and were 

instructed to stand upright with their feet shoulder width apart and their arms by their sides 

for 20 s, and look straight ahead during the experiment. They were instructed not to talk or 

bend their knees throughout the experimental trials. Harnesses were fitted onto the 

participants to avoid falls. This task was performed under two conditions—namely eyes 

open and eyes closed. For the eyes closed condition, the subjects were asked to close their 

eyes during the experiment. Each participant performed the experiment under both 

conditions. Each condition had three trials. 

4.2.3 Data Analysis  

COP data were derived using force plate data sampled at 100 Hz. Both anterior–

posterior (AP) and medial–lateral (ML) COP data were low-pass-filtered using a fourth-
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order, zero lag Butterworth filter with a cut-off frequency of 10 Hz. Five traditional COP 

measures were calculated to assess whether or not the two subtypes of PD can be 

distinguished by using the time domain information. The measures included the following: 

COP range (the range of COP displacement), resultant COP path length (the total COP 

trajectory length), resultant mean velocity (the resultant path length divided by the total 

duration), and a 95% confidence ellipse area (the smallest ellipse that will cover 95% of 

the points of the COP diagram). Based on previous studies, these traditional parameters are 

good indicators of postural instability (Schmit et al. 2006; Cavalheiro et al.) and were 

considered as variables that might help us to distinguish PIGD from TD. All of the analyses 

were performed in MATLAB version 2015a. 

4.2.4 TD vs. PIGD Detection Method  

In order to distinguish between the TD and PIGD subtypes, the following two 

methods were utilized: fast Fourier transform (FFT) and wavelet transform (WT). In the 

FFT method, the PD subtypes were identified by the frequency spectra of COP signals. 

Two frequency bands were introduced (Rezvanian et al. 2016; Mojtahedi et al. 2015; 

Rezvanian et al. 2017): the COP band and the tremor band. The COP and tremor bands 

were defined as the frequency components from 0–3 Hz to 3–7 Hz, respectively. The 

detection method was defined as the ratio of the area under the power spectra of the tremor 

band to the summation of the areas under the power spectra of the COP band and the tremor 

band. COP data were transformed into the wavelet domain using daubechies mother 

wavelet (db6). It was chosen because it has been widely employed in different human 

posture and movement studies (Rezvanian et al. 2016; Lockhart et al. 2013). Various 

mother wavelets were also applied to ensure that the optimal selection was made 
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appropriately. The results supported the notion that daubechies mother wavelet was the 

best choice. In the WT method, the COP and tremor bands were defined as the scales that 

corresponded to the frequency ranges of 0–3 Hz and 3–7 Hz, respectively. The detection 

method was defined in a similar manner to the way it was defined in the FFT method: the 

ratio of the averaged WT coefficients of the tremor band to the summation of the averaged 

WT coefficients of the COP band and the tremor band. This ratio was unit-less because it 

was a ratio of values with the same unit. In both methods, the defined ratio was multiplied 

by 100 in order to obtain a value between 0 and 100. Values that were closer to 100 

indicated a higher possibility of the TD subtype, while the possibility of the PIGD subtype 

increased as the values approached 0. The first time derivative of COP time series was 

defined as COP velocity (V-COP). The ratio that was defined above was applied to COP 

(RCOP) and COP velocity (RVCOP) in both the AP and ML directions. 

4.2.5 Statistical Analysis  

Analysis of variance (ANOVA) with repeated measures on the traditional COP 

measures and the proposed detection ratio (using both the FFT and WT methods) were 

performed. Different factors—such as condition (two levels: eyes open (EO) and eyes 

closed (EC)) and group (or subtype) of PD (two levels: TD and PIGD)—were considered 

as within-subject and between-subject factors, respectively. Comparisons of interest 

exhibiting statistically significant differences (p < 0.05) were further analyzed using post 

hoc tests with Bonferroni corrections. In all analyses, sphericity assumptions were tested 

(Greenhouse–Geisser analysis). The diagnostic performance of the proposed method—or 

the accuracy of a test to discriminate between the subtypes—was further evaluated using 

receiver operating characteristic (ROC) curve analysis [31] for the directions and factors 
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of both methods. In a ROC curve, the true positive rate (sensitivity) is plotted as a function 

of the false positive rate (100—specificity) at different cut-off points. Therefore, each point 

on the ROC curve corresponds to a sensitivity/specificity pair for a particular decision 

threshold. Therefore, the upper-left corner denotes a test with perfect discrimination (no 

overlap in the two distributions) in a ROC curve analysis. Accordingly, the closer the ROC 

curve is to the upper-left corner, the higher the overall accuracy of the test (Zweig & 

Campbell 1993). In this study, PD subtypes were diagnosed by utilizing UPDRS and were 

considered as a correct diagnosis. All of the statistical analyses were performed based on 

this assumption. In all tests, p < 0.05 was considered as a significant level. Statistical 

analyses were performed using IBM SPSS Statistics 22. 

4.3 Results 

The results of the traditional COP measures—under both the eyes open and eyes 

closed conditions—are provided in Table 4.2. All of the variables had larger values in the 

eyes closed condition compared to the eyes open condition. Because these parameters did 

not have a normal distribution, a Box-Cox transformation was applied and parametric 

methods were performed. There was no significant difference between the two groups for 

all the variables. However, there was a significant difference between the conditions for all 

of the parameters (range AP: F(1,34) = 4.252, p = 0.047; range ML: F(1,34) = 60.34, p = 0.001; 

path length: F(1,34) = 29.797, p = 0.001; mean velocity: F(1,34) = 29.795, p = 0.001; area: 

F(1,34) = 11.847, p = 0.002). 
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Table 4.2. Selected postural stability parameters. Range anterior–posterior (AP): center of 

pressure (COP) range in the AP direction, range medial–lateral (ML): COP range in the 

ML direction, path length: resultant COP path length, mean velocity: resultant COP mean 

velocity, and area: 95% ellipse area. The symbols * or ** denote which of the two variables 

were significantly different at each parameter (p < 0.05). 

  
Range AP 

(cm) 

Range ML 

(cm) 

Mean 

velocity 

(cm/s) 

Path Length 

(cm) 

Area (cm2) 

Eyes 

open  

TD 

PIGD  

0.81±0.15* 

1.06±0.13** 

1.49±0.10* 

1.81±0.16** 

1.46±0.27* 

1.48±0.23** 

29.28 ±5.49* 

29.62±4.57** 

0.92±0.22* 

1.53±0.32** 

Eyes 

closed 

TD 

PIGD  

1.15±0.24* 

1.14±0.14** 

2.81±0.39* 

2.75±0.36** 

2.56±0.66* 

2.01±0.20** 

51.23±13.16* 

40.23±4.01** 

2.95±1.05* 

2.51±0.45** 

A power spectral analysis of the COP and COP velocity of a TD patient and a PIGD 

patient are plotted in Figure 4.1, revealing that both patients had frequency components 

ranging from 0 to 2 Hz in their COP and COP velocity signals. However, only the TD 

patient had an increase in power spectrum in the frequency band of 3–7 Hz. This increase 

was larger in the ML direction. 
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Figure 4.1. Power spectrum of COP and COP velocity of a tremor dominant (TD) patient 

and a postural instability and gait difficulty (PIGD) patient for both the medial–lateral (ML) 

and anterior–posterior (AP) directions. The graphs on the left and right sides of the page 

present the power spectrum signal of a TD patient and a PIGD patient, respectively. 

COPML: COP in the ML direction, COPAP: COP in the AP direction, V-COPML: COP 

velocity in the ML direction, and V-COPAP: COP velocity in the AP direction. 

The WT of COP and COP velocity of a TD patient and a PIGD patient in both the 

ML and AP directions are plotted in Figure 4.2. The horizontal white lines in each figure 

indicate the PD tremor scale range corresponding to the frequency range of 3–7 Hz. The 

WT coefficients in Figure 2 display relatively larger values in the PD tremor scale range 

(i.e., lighter blue values appeared in between two horizontal white lines) for the TD patient 

when compared to the PIGD patient. Similar to the power spectral analysis (Figure 4.1), 

these increases were larger in the ML direction. 
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Figure 4.2. Wavelet transform (WT) of COP and COP velocity of a TD patient and a PIGD 

patient for both the ML and AP directions. The horizontal white lines in each plot indicate 

the PD tremor scale range corresponding to the frequency range of 3–7 Hz. The frequencies 

of 3 Hz and 7 Hz correspond to the scales of 24 and 10, respectively. COPML: COP in the 

ML direction, COPAP: COP in the AP direction, V-COPML: COP velocity in the ML 

direction, and V-COPAP: COP velocity in the AP direction. 
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Figure 4.3. The results of proposed detection ratio for FFT method for COP and its velocity 

and for both medial-lateral (ML) and anterior-posterior (AP) directions. (A) RCOP_ML: 

detection ratio using COP data in medial-lateral direction, (B) RVCOP_ML: detection ratio 

using COP velocity data in medial-lateral direction, (C) RCOP_AP: detection ratio using COP 

data in anterior-posterior direction, and (D) RVCOP_AP: detection ratio using COP velocity 

data in anterior-posterior direction. The asterisks (*) placed over the vertical bars show that 

a significant difference (p < 0.05). 

The results of the proposed detection ratio for COP and its velocity in both 

directions using FFT are presented in Figure 4.3. Neither the ratio of COP (RCOP_ML) nor 

its velocity (RVCOP_ML) in the ML direction were significantly different across the different 

conditions (RCOP_ML: F(1,34) = 2.006, p = 0.112; RVCOP_ML: F(1,34) = 2.67, p = 0.112). 

However, a statistically significant difference in RVCOP_ML across the groups (F(1,34) = 

7.978, p = 0.008) was observed, although no significant difference was found in RCOP_ML 
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(F(1,34) = 3.449, p = 0.072). In both RCOP_ML and RVCOP_ML, there was no significant 

interaction between the condition and the group (RCOP_ML: F(1,34) = 1.181, p = 0.285; 

RVCOP_ML: F(1,34) = 2.037, p = 0.163). RVCOP_ML was larger for the TD group than for the 

PIGD group (Figure 4.3-A,B). This indicated that there were larger amplitudes in the 

frequency range of 3–7 Hz in this group. In the AP direction, there was no significant 

difference across the groups (RCOP_AP: F(1,34) = 0.498, p = 0.485; RVCOP_AP: F(1,34) = 0.628, 

p = 0.433) and the conditions (RCOP_AP: F(1,34) = 1.306, p = 0.201; RVCOP_AP: F(1,34) = 3.45, 

p = 0.08) in both RCOP_AP and RVCOP_AP. 

 

Figure 4.4. The results of proposed detection ratio for WT method for COP and its velocity 

and for both medial-lateral (ML) and anterior-posterior (AP) directions. (A) RCOP_ML: 

detection ratio using COP data in medial-lateral direction, (B) RVCOP_ML: detection ratio 

using COP velocity data in medial-lateral direction, (C) RCOP_AP: detection ratio using COP 

data in anterior-posterior direction, and (D) RVCOP_AP: detection ratio using COP velocity 
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data in anterior-posterior direction. The asterisks (*) placed over the vertical bars show that 

a significant difference (p < 0.05). 

The explained WT method was applied to COP and its velocity in both directions. 

The results are presented in Figure 4.4. I found a significant difference between the groups 

for RCOP_ML and RVCOP_ML (RCOP_ML: F(1,34) = 7.589, p = 0.009; RVCOP_ML: F(1,34) = 10.066, 

p = 0.003), but no significant difference between the conditions (RCOP_ML: F(1,34) = 0.373, 

p = 0.814; RVCOP_ML: F(1,34) = 2.5, p = 0.123). There was no significant interaction between 

the conditions and the groups (RCOP_ML: F(1,34) = 3.044, p = 0.09; RVCOP_ML: F(1,34) = 2.828, 

p = 0.102). Both RCOP_ML and RVCOP_ML had larger values for the TD group than for the 

PIGD group (Figure 4.3-A,B). These increases occurred because of the larger amplitude 

values in the scales corresponding to the frequency range of 3–7 Hz. In the AP direction, 

there were no significant differences across the groups (RCOP_AP: F(1,34) = 0.004, p = 0.952; 

RVCOP_AP: F(1,34) = 0.854, p = 0.362) or conditions (RCOP_AP: F(1,34) = 0.011, p = 0.916; 

RVCOP_AP: F(1,34) = 3.047, p = 0.091) in both RCOP_AP and RVCOP_AP. 

(A) 

 

(B) 

 

Figure 4.5. Receiver operating characteristic (ROC) curves of proposed detection ratio 

using FFT method for COP and its velocity; (A) medial-lateral (ML) direction, (B) 

anterior-posterior (AP) direction. EO-RCOP_ML: detection ratio using COP data in ML 

direction in eyes open condition, EC-RCOP_ML: detection ratio using COP data in ML 

direction in eyes closed condition, EO-RVCOP_ML: detection ratio using COP velocity data 
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in ML direction in eyes open condition, EC-RVCOP_ML: detection ratio using COP velocity 

data in ML direction in eyes closed condition, EO-RCOP_AP: detection ratio using COP data 

in AP direction in eyes open condition, EC-RCOP_AP: detection ratio using COP data in AP 

direction in eyes closed condition, EO-RVCOP_AP: detection ratio using COP velocity data 

in AP direction in eyes open condition, EC-RVCOP_AP: detection ratio using COP velocity 

data in AP direction in eyes closed condition. 

The ROC curves of the proposed detection ratio for COP and its velocity in both 

directions and under both conditions are plotted in Figures 4.5 and 4.6 for the FFT and WT 

methods, respectively. In both methods, the ROC curves were closer to the upper-left 

corner in the ML direction than they were in the AP direction, which indicated a higher 

overall accuracy of the test in the ML direction (Zweig & Campbell 1993). 

(A) 

 

(B) 

 

Figure 4.6. Receiver operating characteristic (ROC) curves of proposed detection ratio 

using WT method for COP and its velocity; (A) medial-lateral (ML) direction, (B) anterior-

posterior (AP) direction. EO-RCOP_ML: detection ratio using COP data in ML direction in 

eyes open condition, EC-RCOP_ML: detection ratio using COP data in ML direction in eyes 

closed condition, EO-RVCOP_ML: detection ratio using COP velocity data in ML direction 

in eyes open condition, EC-RVCOP_ML: detection ratio using COP velocity data in ML 

direction in eyes closed condition, EO-RCOP_AP: detection ratio using COP data in AP 

direction in eyes open condition, EC-RCOP_AP: detection ratio using COP data in AP 

direction in eyes closed condition, EO-RVCOP_AP: detection ratio using COP velocity data 

in AP direction in eyes open condition, EC-RVCOP_AP: detection ratio using COP velocity 

data in AP direction in eyes closed condition. 
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The ROC curves were further analyzed by calculating areas under each curve. 

Results were presented in Table 4.3. Only COP velocity data in ML direction could 

significantly discriminate between two subtypes using FFT method. Results of area under 

the ROC curves also showed that WT method could significantly discriminate two 

subtypes by using either COP or COP velocity data in ML direction regard less of eyes 

conditions.  

Table 4.3. Area under the ROC curves of proposed detection ratio for COP and its velocity 

for both FFT and WT methods, medial-lateral (ML) and anterior-posterior (AP) directions, 

and two conditions; Eyes open (EO) and eyes closed (EC). Significance levels or P-values 

of each value are presented in parenthesis. The asterisks (*) indicates the area under the 

ROC curve is significantly different from 0.5 (p < 0.05). 

 FFT WT 

COP V_COP COP V_COP 

ML-Direction EO 0.689 

(p=0.05) 

0.779 * 

(p=0.001) 

0.809 * 

(p=0.001) 

0.823 * 

(p=0.001) 

EC 0.602 

(p=0.343) 

0.712 * 

(p=0.023) 

0.706 * 

(p=0.033) 

0.726 * 

(p=0.016) 

AP-Direction EO 0.562 

(p=0.542) 

0.555 

(p=0.5873) 

0.562 

(p=0.529) 

0.569 

(p=0.482) 

EC 0.555 

(p=0.578) 

0.592 

(p=0.358) 

0.579 

(0.442) 

0.595 

(p=0.363) 

 

4.4 Discussion  

The present study addressed subtype-specific biomarkers to classify the inherent 

heterogeneity of Parkinson disease. This categorization can help to predict the clinical 

progression of the disease. Thus, correctly diagnosing subtypes can assist caregivers to 

initiate early amenable interventions and manage symptoms. The COP time series of PD 

patients were analyzed to distinguish the subtypes of PD. To the best of my knowledge, 

this study is the first to attempt to objectively diagnose TD and PIGD subtypes of PD. 

Postural stability is maintained through neuromuscular feedback loops and open loop 
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control processes that constantly adapt to internal and external perturbations (Y.-C. Pai et 

al. 2003; Nallegowda et al. 2004). Utilizing specific statistical and numerical tools, these 

control mechanisms can be quantified to identify neuromuscular changes that occur with 

pathology. Thus, traditional linear postural measures and Fourier transformation were 

applied to the COP time series and the increment of the COP time series both in the AP 

and ML directions. Furthermore, to quantify the changes in COP dynamics that occur at 

multiple timescales, a wavelet transform was employed to infer the underlying nature and 

control mechanisms involved in balance maintenance and disease state.   

Traditional measures of postural sway, parameters that denote the magnitude of 

postural movements, were unable to discriminate the TD and PIGD subtypes (Table 2). 

However, when visual information was occluded a coincident decrease in postural stability 

was reflected in both subtypes for the linear postural measures i.e., COP range, mean 

velocity, path length, and 95% confidence ellipse area; results consistent with previous 

investigations regarding postural stability in PD patients (Błaszczyk et al. 2007).  

Both power spectral density and wavelet transform of the COP time series and its 

velocity (Figure 1. and 2) revealed an increase in the 3-7 Hz frequency range of the TD 

group; a frequency spectra reportedly symptomatic of parkinsonian tremor (Hallett 1998; 

Lemstra et al. 1999; Timmermann et al. 2003). In fact, the ML COP data exhibited greater 

frequency content than the AP COP, which is consistent with previous investigations that 

reported PD patients exhibited increased ML sway amplitude, decreased AP sway 

amplitude and, possibly, postural inflexibility in the AP direction. (Mitchell et al. 1995; 

van Wegen et al. 2001; Rocchi et al. 2006; Viitasalo et al. 2002). In this context, the 

preponderance of the ML frequency in the ML direction coupled with the impaired 
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movement in the AP direction suggests an underlying postural inflexibility in PD patients, 

where the tremor reflected in the ML time domain may be a consequence of the AP 

direction’s inability to contain movements in a higher frequency range (Mitchell et al. 

1995; Horak et al. 1992; Schieppati et al. 1994). The proposed ratio wasn’t able to show a 

statistically significant difference between TD and PIGD patients in the AP direction using 

both methods, even accounting for both the COP and the COP velocity. The reason was 

that tremor frequency had larger amplitude in ML direction in compare to AP direction as 

it was shown in the Figure 1 and 2. However, both the FFT and WT methods were able to 

discriminate TD from PIGD patients using the ML-COP velocity signal, but only the WT 

method was able to specify the subtype with the COP position time-series was utilized. 

This could be explained by the fact that FFT method used only frequency information of 

signals while WT method employed both frequency and time components. Utilized 

information of signals by WT enabled us to specify subtypes of PD by using both COP and 

COP velocity. Additionally, FFT showed a significant results when it employed COP 

velocity not COP in itself. The reason was that a velocity of a signal was a first derivation 

of the signal which showed more variation of signal. In this way, FFT could assess more 

information about signals when it employed its velocity. The results of the proposed 

method was consistent across both conditions (EO and EC) and for both methods (FFT and 

WT). This consistency indicated the strength of the proposed diagnostic method by using 

the proposed ratio. Although, proposed method can diagnose TD from PIGD subtypes, 

further studies are needed to define the threshold value ranges which can classify the 

patients. 
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CHAPTER 5: THE EFFECTS OF DIFFERENT TYPES OF 

PERTURBATION TRAINING ON DYNAMIC STABILITY AND 

COMPLEXITY 

Abstract 

Our motor patterns are adaptable to unpredictable changes or perturbations in 

various environments during different activities (e.g. standing or walking). Unexpected 

perturbation-based training (PBT) is an intervention method which shows promising 

results in regard to improving balance and reducing falls. Although PBT has shown 

promising results, the efficacy of such interventions in improving dynamic stability during 

walking remains to be evaluated. Numerous studies have reported the improvement in 

some measures of the reactive recovery responses after the training which might not be 

transferable to another type of perturbations. In other words, there was paucity of data 

revealing the effects of PBT on improving dynamic stability of walking and flexible gait 

adaptability. As such, an experiment was conducted to assess the effects of treadmill 

delivered translational perturbations training on improving dynamic stability while 

walking, and adaptability of locomotor system in resisting the perturbations (via evaluating 

dynamic stability as measured by nonlinear measures of stability and movement 

complexity as measured by entropy analysis). Three types of PBT were evaluated; medial-

lateral (ML), slip-like, and mix (including both medial-lateral and slip-like ones) 

perturbations. Seventy two participants were randomly assigned into four experimental 

groups: NPT (control group-receiving no PBT), MLPT (receiving only ML PBT), SPT 

(receiving only slip-like PBT), and MPT (receiving both ML and slip-like PBT). Results 

indicated that all types of perturbation training protocols improved dynamic stability as 

compared to one’s prior training level. Additionally, PBT was able to increase the 
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complexity of the movement and consequently improve flexible gait adaptability. 

Improved stability and flexible adaptation appear to be brought on by reducing the stiffness 

of lower extremities as measured by EMG muscle co-contraction index. Understanding the 

effects of different directional perturbations on gait stability and complexity will pave the 

way to developing a better intervention for those who are at a higher risk of losing balance 

and falls as a result of gait instability.  

5.1 Introduction 

Previous studies have shown that humans are adaptable to unpredictable changes 

or perturbations in environment during different activities, such as standing or walking 

(Bhatt et al. 2006; Nashner 1976; Horak et al. 1989; Owings et al. 2001; Parijat & Lockhart 

2012). This adaptation is developed by repeating movements in the presence of an external 

perturbation to reconstruct the performance of a task when external perturbations exist (Pai 

& Bhatt 2007). Unexpected perturbation-based training (PBT) has been proposed based on 

this notion and shows promising results in regards to reducing the incidence of loss of 

balance and falls (Mansfield et al. 2015; Mccrum et al. 2017).  

In this training method, individuals were exposed to repeated postural perturbations 

during walking. PBT not only enhances reactions to balance loss with practice but also 

enriches neuro-mechanical control of stability to prevent balance loss and falls (Pai & Bhatt 

2007). A decrease in occurrence of falls in the laboratory from the pre- to post-perturbation 

training has been reported (Parijat & Lockhart 2012; Y. C. Pai et al. 2014; Tanvi et al. 

2012; Mansfield et al. 2015; McCrum et al. 2017). Different studies have shown that there 

are improvement in control of voluntary movements (Rogers et al. 2003), an increase in 
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the speed of balance reaction (Parijat & Lockhart 2012; Tanvi et al. 2012; Mansfield et al. 

2010), and improvement in some measure of the reactive recovery response to 

perturbations (e.g., recovery step) (Parijat & Lockhart 2012; Y. C. Pai et al. 2014; Tanvi et 

al. 2012; Lurie et al. 2013; Pai et al. 2010; Bierbaum & Peper 2010; Bierbaum et al. 2011; 

Mansfield et al. 2015). PBT also shows positive outcomes within the field of athletic 

training. It yields promising results in performance, preventing injury, and rehabilitation 

(mainly athletes with knee injuries) (Zech et al. 2010). Rehabilitation with PBT also helps 

individuals to return to functional activity sooner and maintains their functional status for 

longer periods as compared to the standard rehabilitation program (Hurd et al. 2006; 

Chmielewski et al. 2005; Fitzgerald et al. 2000; Rudolph et al. 2000; Williams et al. 2001; 

Zech et al. 2010).  

Although PBT has shown promising results, the efficacy of such interventions is 

not well understood and evaluated. Most of studies report the improvement in some 

measures of the reactive recovery responses after the training which may not be 

transferable to another type of perturbations. In other words, there is paucity of data 

revealing the effects of PBT on improving dynamic stability of walking and flexible gait 

adaptability. Additionally, most of the studies applied perturbations while subjects walked 

over-ground by utilizing the method of movable platform perturbations occurring at the 

same place which may lead to proactive walking pattern limiting the understanding of the 

true characteristics associated with motor learning (Y. C. Pai et al. 2014; Parijat & Lockhart 

2012).  
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In this study, dynamic stability as measured by nonlinear measures of stability 

(maximum Lyapunov exponent) and movement complexity as measured by entropy 

analyses were evaluated to assess the effects of treadmill delivered translational 

perturbations training on improving dynamic stability while walking, and adaptability of 

locomotor system in resisting to perturbations. Previous studies have shown that gait 

stability measures in particular direction have changed in greater extend when a 

perturbation occurred in the same direction (McAndrew et al. 2011; Young 2011; Martelli 

et al. 2016). As such, a hypothesis that PBT at a specific direction would considerably 

improve stability measure at that direction was tested. The objective of this study was to 

evaluate the effects of medial-lateral (ML) and slip-like perturbation training methods on 

dynamic stability and gait flexible adaptability. Central hypothesis was that (ML) 

perturbations would influence ML dynamic stability, and slip-like perturbations would 

influence anterior-posterior (AP) dynamic stability, and that combination of translations 

perturbations could improve both ML as well as AP dynamic stability. Furthermore, 

receiving PBT on treadmill would improve dynamic stability during over-ground walking 

as well. Finally, PBT would increase complexity and consequently improve gait flexible 

adaptability. Understanding the effects of different directional perturbations on gait 

stability and complexity will pave the way to developing a better intervention for those 

who are at a higher risk of losing balance and falls as a result of gait instability.    

5.2 Method  

5.2.1 Participants 

Seventy two healthy young adults were recruited for the study. A written consent 

form, approved by the Institutional Review Board (IRB) of Arizona state university, was 
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obtained from the participants before participation. Exclusionary criteria included 

cardiovascular, respiratory, neurological, and musculoskeletal abnormalities as well as any 

other difficulties hindering normal gait. Participants were randomly assigned into four 

experimental groups: NPT (control group-receiving no PBT), MLPT (26 lateral 

perturbation during PBT), SPT (26 slip-like perturbation during PBT), and MPT (13 ML 

and 13 slip-like perturbations during PBT). No significant differences were found in the 

demographics of participants between groups (Table 5.1). 

Table 5.1. Participants’ demographics (Mean ± SD) 

 Group 

 NPT(18) MLPT (18) SPT (18) MPT (18) P-value 

Age (year) 23.43±4.12 22.86±2.73 24.10±3.19 23.86±5.48 0.79 

Weight (kg) 71.08±12.16 66.85±10.38 71.14±12.18 64.02±11.79 0.16 

Height (m) 1.66±0.09 1.74±0.08 1.71±0.08 1.75±.09 0.15 

Note. The P value represents the results of an ANOVA test comparing the groups 

5.2.2. Apparatus  

For this study, GRAIL system (GRAIL, Motek Medical BV, Netherlands) was used 

to simulate different perturbations. GRAIL was instrumented with dual-belt treadmill with 

two force plates underneath of each belt (Figure 5.1.). Synchronized VR environment was 

projected on a semi-cylindrical screen in front of treadmill. A motion capture system 

((Vicon Bonita, Vicon, USA) and wireless EMG system (Delsys Trigno Wireless, Delsys 

Inc.) were incorporated in this system. 

Two types of translational perturbations were employed in this study; slip and ML 

perturbations (Yang et al. 2013; Hurd et al. 2006). To simulate slip perturbation, the 
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method utilized by Yang et al. has been employed (Yang et al. 2013). Initiation of the 

perturbation was triggered when right heel contact occurs. The perturbation was provided 

by the treadmill belt for slip types of perturbation (acceleration in opposite direction 

(12m/s2) for 200ms then quickly accelerates to the initial direction (15 m/s2) and back to 

specified treadmill speed). During ML perturbation, the entire treadmill moved laterally to 

the right side with a speed of 0.2 m/s and a displacement of 0.05 m. Treadmill was then 

returns back to its initial position. These perturbations were initiated by right heel contact 

(Hurd et al. 2006).  

 

Figure 5.1. Schematic drawing and photo of GRAIL system (Motek medical). 
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5.2.3 Protocol  

All subjects, regardless of group, performed five trials; two over ground walking, 

two treadmill walking, and one PBT for training groups or just a treadmill walk for control 

group. Experimental procedure was similar for all groups except for the type of 

perturbations which they were experienced. At the beginning of the experiment, subjects 

were asked to walk on a long level indoor walking track at his/her own self-selected 

walking speed (OG1) and have been instructed “to walk with their regular pace and not to 

walk very fast or slow”. This was considered as their over-ground walking baseline. In the 

second trial, subjects walked on treadmill for three minutes (TW1). After this trial, there 

were a treadmill walking trial with mechanical perturbations for subjects in MLPT, SPT, 

and MPT groups and no perturbation for participants in control group. Twenty six 

perturbations with random time intervals were applied. This number was chosen  based on 

the  previous studies showing that there were improvement in some measures of the 

reactive recovery responses or number of falls when they applied about twenty four 

perturbations in their PBT (Mccrum et al. 2017; Tanvi et al. 2012; Y.-C. Pai et al. 2014; 

Pai et al. 2010; Y. C. Pai et al. 2014). Participants in MLPT group received 26 lateral 

perturbations and participants in SPT group experienced 26 slip perturbations during PBT. 

Perturbations in MPT group included 13 lateral and 13 slip perturbations with random 

order. At the beginning of this trial, subjects in all groups were informed that they might 

or might not experience lateral or slip perturbations to prevent any prediction. They were 

instructed if a perturbation happened, they should try to recover their balance and avoid a 

fall. After this, subjects again walked on treadmill for another three minutes (TW2). Each 

subject wore a full-body harness during treadmill walking trial and the length of its tether 
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was set so that, in the event of a fall, the subject's hands and knees would not contact the 

treadmill surface. Before starting treadmill walking trials, participants were instructed to 

walk on the treadmill for a few minutes to get familiarized with the harness and GRAIL 

system. The speed of treadmill’s belts was set to the subjects’ over ground walking speed. 

The last trial was another over ground walking similar to the first trial (OG2). Graphical 

depiction of the experimental procedure was presented in Figure 5.2.  

Figure 5.2. Graphical depiction of the experimental procedure. 

5.2.4 Measurement 

Lower body kinematic were recorded at 100 Hz using a ten-camera motion capture 

system (Vicon Bonita, Vicon, USA). Reflective markers were placed over participants’ 

bony landmarks to capture gait parameters (van den Bogert et al. 2013) during treadmill 

walking trials. Subjects were instrumented with 3-D inertial measurement units (IMU –

Xsens MTW, Xsens, Netherlands) secured to individuals’ sternum with elasticized straps 

during the whole trials. Its sampling frequency was set to 100 Hz. Six Wireless surface 

EMG electrodes (Delsys Trigno Wireless, Delsys Inc.) were also placed over Vastus 

Lateralis (VL), Medial Hamstring (MH), Tibialis Anterior (TA), Medial Gastrocnemius 

(MG), Gluteus Medius (G-Med), and Gluteus Maximus (G-Max) muscles of right leg to 

capture muscle activations.  

Over-ground 
walking 
(OG1)

Treadmill 
walking 
(TW1)

Perturbation 
training

Treadmill 
walking 
(TW2)

Over-ground 
walking (OG2)
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5.2.5 Data Analysis  

For dynamic stability and complexity measures, unfiltered data were utilized since 

the spatio-temporal fluctuations within these signals have been considered for the 

examination and, to get a more accurate representation of variations within the system 

(Mees & Judd 1993). To calculate gait parameters and estimate the whole body center-of-

mass (COM) velocity, marker data were low-pass filtered using a fourth order, zero lag, 

Butterworth filter at a cut off frequency of 7 Hz (Winter et al. 1990; Lockhart et al. 2003b). 

5.2.5.1 Local dynamic stability 

Lyapunov exponents determine the average exponential rate of divergence of 

neighboring trajectories in state space (Figure 5.3.) (Rosenstein ’ et al. 1993; Kantz & 

Schreiber 2003; Stergiou 2016). The first step in calculating a Lyapunov exponent is the 

creation of a state space. A time delay state space is constructed using the original data and 

its time-delayed copies.  

𝑆(𝑡) = [𝑣(𝑡), 𝑣(𝑡 + 𝜏), … , 𝑣(𝑡 + (𝑑𝐸 − 1)𝜏)] (5-1) 

where S(t) is the dE-dimensional state vector, v(t) is the original 1-dimensional data, τ is 

the time delay and dE is the embedding dimension. Time delays were determined from the 

first minimum of the Average Mutual Information function (Stergiou 2016b), yielding 

average time lags of 15, 20 and 10 samples for the AP, ML and VT directions, respectively. 

An embedding dimension of dE=5 was used as previously employed by other studies on 

analyzing walking dynamics (Dingwell & Marin 2006; Dingwell & Cusumano 2000; 

McAndrew et al. 2011). For local dynamic stability analysis, each gait cycle was 
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normalized to 100 data points (Bruijn et al. 2009; Dingwell & Marin 2006; England & 

Granata 2007). 

 

Figure 5.3. Schematic representation of local dynamic stability analysis. (A) 

Reconstruction of a 3-dimensional attractor for a time series like x(t) such that S(t) = [x(t), 

x(t+τ), x(t+2τ)]. (B) Expanded view of a local section of the attractor shown in A. An initial 

naturally occurring local perturbation to a given trajectory (its nearest neighbor) diverges 

across time steps as measured by 𝑑𝑗(𝑖). 

The maximum Lyapunov exponent can be defined by using: 

𝑑(𝑡) = 𝑑0𝑒𝜆1𝑡 (5-2) 

where d(t) is the mean displacement between neighboring trajectories in state space at time 

t and d0 is the initial separation between neighboring points. λ1 which is true Lyapunov 

exponents are only defined at the limits of t→∞ and d0 → 0 in above formula. Since 
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experimental data cannot reach to these limits,  an algorithm for estimating maximum 

finite-time Lyapunov exponents (𝜆∗) are proposed (Rosenstein ’ et al. 1993). By taking 

natural log of both sides of Equation (5-2), 𝜆∗ is defined from: 

ln[𝑑𝑗(𝑖)] ≈ ln[𝑑0𝑗] + 𝜆∗(𝑖∆𝑡) (5-3) 

where dj(i) is the Euclidean distance between the jth pair of nearest neighbors after i 

discrete time-steps (i.e. iΔt). The maximum finite-time Lyapunov exponents 𝜆∗ can then 

be estimated from the slope of the linear fit to the curve of: 

𝑦(𝑖) =
1

∆𝑡
〈ln[𝑑𝑗(𝑖)]〉 

(5-4) 

where 〈.〉 is the average over all values of j (Stergiou 2016; Rosenstein et al. 1993).  

 

5.2.5.2 Entropy analysis 

Sample entropy (SampEn) analysis is a nonlinear technique for quantifying the 

regularity of time series data. This method which is an estimate of actual entropy for finite 

number of data points represents the tendency of a system to visit different states rather 

than being an a few states. In other words it indicates the complexity of a system (Pincus 

& Goldberger 1994; Stergiou 2016a; Kantz & Schreiber 2003). Lower values of SampEn 

reflects more regular time series (less complex) while higher values indicates more 

complex time series.  

Mathematically, SampEn is computed as follows: 
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Let {𝑈𝑖} = {𝑢1, 𝑢2, … , 𝑢𝑖 , … , 𝑢𝑁} represent a time series of length N. There are also 

two input parameters, m and r. m is the length of compared runs, and r is a tolerance radius. 

Vector sequences of 𝑥1  through 𝑥𝑁−𝑚−1 are formed from {𝑈𝑖} , defined by 𝑥𝑖 =

[𝑢1, … , 𝑢𝑖+𝑚−1] . These vectors are basically consecutive 𝑢  values beginning with 𝑖𝑡ℎ 

point. The largest difference between corresponding elements of two vectors 𝑥𝑖 and 𝑥𝑗 is 

defined the distance between two vectors (𝑑[𝑥𝑖 , 𝑥𝑗]). Based on this definition of distance 

𝐶𝑖
𝑚(𝑟) is defined as follow: 

𝐶𝑖
𝑚(𝑟) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑥(𝑖)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑥𝑖, 𝑥𝑗] ≤ 𝑟 

𝑁𝑖𝑚 − 1
 

(5-5) 

Natural logarithm summation of all 𝐶𝑖
𝑚(𝑟) is used to define Φ𝑚(𝑟): 

Φ𝑚(𝑟) =
∑ ln 𝐶𝑖

𝑚(𝑟)𝑁−𝑚+1
𝑖=1

𝑁 − 𝑚 + 1
 

(5-6) 

The calculation of SampEn then given by the difference: 

𝑆𝑎𝑚𝑝𝐸𝑛 = Φ𝑚(𝑟) − Φ𝑚+1(𝑟) (5-7) 

To calculate SampEn, stride time interval is employed based on previous studies 

(Costa et al. 2003; Georgoulis et al. 2006). It is recommended that the selected value for m 

(length of compared runs) depends on N (total number of data points) where N needs to be 

at least 10m (Pincus & Goldberger 1994; Stergiou 2016a). Tolerance radius, r, is suggested 

to be a value of about 0.1-0.25 times the standard deviation in the data (Pincus & 

Goldberger 1994; Stergiou 2016a). Since the length of the data is 100, m=2 is chosen and 

0.2 times the mean of standard deviation across all subjects’ data is utilized for r. In 
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previous studies on human movement similar values were also used (Vaillancourt & 

Newell 2000; Georgoulis et al. 2006; Stergiou 2004).  

5.2.5.3 EMG measures 

EMG data are band pass filter at 10-45 Hz then are rectified and low pass filtered 

by using fourth-order, zero lag, Butterworth filter at 7 Hz to create linear envelop (Parijat 

et al. 2015; Chambers & Cham 2007). Each EMG channel are peak normalized within 

subject by using the average of maximum (peak) activity of that channel from all gait cycles 

in the first trial (Kadaba et al. 1989).  

Co-contraction index (CCI) or coactivity is calculated based on the integrated 

from (-20% to 20% into stance, with HC being 0%)  ratio of the EMG activity of 

antagonist/agonist muscle pairs (TA/MG and VL/MH) multiplied by the sum of activity 

found in the two muscles using the following equation proposed by Rudolph et al. 

(Rudolph et al. 2001). The ratio was multiplied by the sum of activity found in the two 

muscles. This value is calculated for both ankle and knee flexor and extensor muscles for 

each gait cycle. 

𝐶𝐶𝐼 = ∫
Antagonist EMG𝑖

Agonist EMG𝑖

𝑖=20%

𝑖=−20%

× (Antagonist EMG𝑖 + Agonist EMG𝑖) 
(3-3) 

Power of muscle activation (PMA) were calculated for G_Med and G-Max because of 

inability to collect hip adductor muscles and calculate CCI. The power of muscle activity 

was determined from the integrated EMG, calculated by taking the integral from -20% to 

20% into stance, with HC being 0% (Chambers & Cham 2007). 
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5.2.5.4 Gait parameters 

Step length (SL) was calculated as the distance between the heel markers in the AP 

direction at heel strike. Step width (SW) was calculated as the lateral distance between the 

two heel markers at heel strike. Stride time (ST) was the amount of time between 

consecutive heel strikes of the same foot. Means and standard deviations of SL, SW and 

ST were then calculated for TW trials. Center of mass (COM) position was estimated as 

the average position of the four pelvis markers (right and left anterior and posterior superior 

iliac spine) (Whittle 1997; McAndrew Young et al. 2012; Peebles et al. 2016). COM 

velocity was found by computing the first derivative of the COM position. 

5.2.6 Statistical analysis 

To test the hypotheses, a repeated-measure analysis was performed using a mixed 

designed ANOVA model on the defined variables (dynamic stability AP and ML 

directions, complexity, co-contraction index at ankle and knee, power of muscle activation, 

center of mass velocity in ML and AP, and gait parameters). In this model subjects were 

considered as random effects. Types of PBT were considered as between-subject factor (4 

groups: NPT, MLPT, SPT, and MPT) and before and after PBT (treadmill walking before 

and after PBT and over-ground walking before and after PBT) have been recognized as 

within-subject factors. Comparisons of interest for statistically significant differences (p= 

0.05) were further analyzed using post hoc with Tukey test. All statistical analyses have 

been performed using JMP Pro 14 (SAS Institute Inc, Cary, NC). 
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5.3 Results 

All subjects participated in a single session of PBT protocol. Experimental 

procedure were consistent across trials and participants to eliminate the possible 

confounding factors. The results indicated that PBT could change gait dynamic stability 

since there were no changes in NPT group. In addition, there were an increase in gait 

flexible adaptability after receiving PBT which enhances individuals in selecting an action 

requires for a task at a certain condition. 

Acceleration data collected from subjects’ sternum have been used to calculate Lmax 

in ML and AP directions for TW1 and TW2 trials. Lmax results for both directions of 

treadmill walking before and after PBTs were presented in Figure 5.4. There were 

interactions between groups and TW trials for both ML (F(3,68)=5.51, p=0.002) and AP 

(F(3,68)=4.85, p=0.004) directions. This could be concluded that the difference between 

measurements depends on group membership. Post-hoc analysis revealed that there were 

no significant changes in gait dynamic stability of control group for both ML (p=0.999) 

and AP (p=0.987) directions. However, all types of PBT could significantly improve 

dynamic stability in ML direction (MLPT: p=0.020; SPT: p=0.001; MPT: p=0.002) but 

only SPT and MPT could significantly decrease Lmax and improve dynamic stability in AP 

direction (SPT: p=0.001; MPT:  p=0.001).  
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Figure 5.4. Treadmill walking gait dynamic stability before and after receiving a PBT for 

(A) Medial-lateral (ML) and (B) Anterior-posterior (AP) directions. NPT: NO Perturbation 

Training, MLPT: Medial-lateral Perturbation Training, SPT: Slip Perturbation Training, 

MPT: Mix Perturbation Training. The asterisks (*) placed over the vertical bars denote a 

significant difference (p < 0.05).  
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Figure 5.5. Overground walking gait dynamic stability before and after receiving a PBT 

for (A) Medial-lateral (ML) and (B) Anterior-posterior (AP) directions. NPT: NO 

Perturbation Training, MLPT: Medial-lateral Perturbation Training, SPT: Slip Perturbation 

Training, MPT: Mix Perturbation Training. The asterisks (*) placed over the vertical bars 

denote a significant difference (p < 0.05).  
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Dynamic stability of subjects have been calculated during over-ground walking 

trials (OG1 and OG2) to assess whether changes in Lmax can be transferred to over-ground 

walking. Results are shown in Figure 5.5. There were no interaction between groups and 

OG trials for ML direction. (F(3,68)=1.09, p=0.36) and trials had significant effect on Lmax 

(F(1,68)=19.69, p < 0.001). Results of post-hoc analysis haven’t shown any statistical 

significant change of dynamic stability in ML direction for each experimental group. In 

AP direction there were an interaction between groups and trials (F(3,68)=5.04, p=0.003). 

Similar to treadmill walking trials, post-hoc analysis have indicated that only SPT and MPT 

could significantly improve dynamic stability in AP direction (SPT: p=0.004; MPT: 

p=0.001). 

SampEn analysis was applied on the stride interval times series derived from TW1 

and TW2 of each participant to assess the effect of PBT on individual’s flexible gait 

adaptability. Results were presented in Figure 5.6. PBT effects were investigated using 

mixed linear ANOVA conducted on the SampEn values. Statistical analysis showed an 

interaction between PBTs (between subject factors) and treadmill walking trials (within 

subject factors), (F(3,68)=3.58, p=0.018). Therefore, post-hoc analysis was conducted. 

Results indicated that all types of PBTs significantly increased the complexity level 

(MLPT: p=0.044; SPT: p=0.004; MPT: p=0.009) while no statistically significant change 

have shown for NPT group.  
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Figure 5.6. Sample entropy analysis (SampEn) before and after PBT. NPT: NO 

Perturbation Training, MLPT: Medial-lateral Perturbation Training, SPT: Slip Perturbation 

Training, MPT: Mix Perturbation Training. The asterisk (*) denote a significant difference 

(p < 0.05). 

EMG signals of only fifty six subjects (fourteen per group) could be utilized for 

EMG measure analysis because of some technical issues during data collection. Results of 

ankle and knee CCI were shown in Figure 5.7. Both ankle and knee CCI reduced after 

receiving PBTs regardless of types of it. Statistical analysis indicated that all types of PBT 

could significantly reduce ankle CCI (MLPT: p=0.026; SPT: p=0.045; MPT: p=0.019) 

while only SPT and MPT could significantly change knee CCI (MLPT: p=0.103; SPT:  

p=0.034; MPT: p=0.029). Both ankle and knee CCIs haven’t changed in NPT group. 
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Figure 5.7. Ankle (A) and Knee (B) CCI before and after PBT. NPT: NO Perturbation 

Training, MLPT: Medial-lateral Perturbation Training, SPT: Slip Perturbation Training, 

MPT: Mix Perturbation Training. The asterisks (*) denote a significant difference (p < 

0.05).  
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Power of muscle activation around heel contact were calculated for G_Med and 

G_Max muscles around HC for treadmill walking trials. Their results were presented in 

Figure 5.8. The ANOVA indicated no statistically significant change in PMA of 

participants’ G_Max muscle after receiving any types of PBT (TW*group: F(3,52)=6.79, 

p=0.485; TW: F(1,52)=0.26, p=0.613). However, PMA of participants’ G_Med muscle 

significantly decreased only after receiving MLPT (NPT: p=0.999; MLPT: p=0.039; SPT:  

p=0.99; MPT: p=0.818). 

Average position of the four pelvis markers (right and left anterior and posterior 

superior iliac spine) were utilized to calculate COM_Vel in ML and AP directions. These 

values were plotted in Figure 5.9. There was no interactions between groups and TW trials 

for COM_Vel in AP direction (F(3,68)=2.57, p=0.06) while there was a significant effect of 

TW trials (F(1,68)=14.69, p=0.001). Post-hoc analysis indicated that COM_Vel statistically 

increased in AP direction after SPT (SPT: p=0.018) and very close to significant level after 

MPT (MPT: p=0.053). In ML direction, there was an interactions between groups and TW 

trials for COM_Vel (F(3,68)=4.065, p=0.01). Further analysis showed that only individuals 

who have received MLPT could statistically decrease their COM_Vel in ML direction 

(p=0.028). 
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Figure 5.8. PMA of G_Med (A) and G_Max (B) before and after PBT. PMA: power of 

muscle activation, NPT: NO Perturbation Training, MLPT: Medial-lateral Perturbation 

Training, SPT: Slip Perturbation Training, MPT: Mix Perturbation Training. The asterisks 

(*) denote a significant difference (p < 0.05).  

 

10

15

20

25

30

PMA_G_Med

10

15

20

25

30

PMA_G_Max

Before PBT After PBT 

NPT MLPT SPT MPT 

NPT MLPT SPT MPT 

* 

(A) 

(B) 



85 
 

 

Figure 5.9. Center of mass velocity (cm/s) at the time of heel contact in (A) Medial-lateral 

(ML) and (B) Anterior-posterior (AP) directions before and after receiving a PBT. NPT: 

NO Perturbation Training, MLPT: Medial-lateral Perturbation Training, SPT: Slip 

Perturbation Training, MPT: Mix Perturbation Training. The asterisks (*) placed over the 

vertical bars denote a significant difference (p < 0.05). 

6

10

14

18

NPT MLPT SPT MPT

COM_Vel_ML

6

10

14

18

NPT MLPT SPT MPT

COM_Vel_AP

Before PBT After PBT 

(A) 

(B) 

* * 

* 



86 
 

Participants’ step width and stride time haven’t changed after receiving PBT. 

However, subjects in SPT and MPT groups significantly reduced their step length after 

receiving PBT (SPT: p=0.001; MPT: p=0.01). These results were shown in Table 5.2. 

Table 5.2. Mean ± SD of gait parameters during TW1 and TW2 trials for all training group. 

Asterisks (*, **) placed close by each of two values denote a significant difference between 

those two values (p < 0.05). 

 

Gait parameters 

NPT MLPT SPT MPT 

TW1 TW2 TW1 TW2 TW1 TW2 TW1 TW2 

Step length 

(cm) 

59.51 

±4.77 

60.05 

±5.41 

59.16 

±4.17 

59.62 

±3.79 

* 60.35 

±3.61 

*58.52 

±3.94 

**60.82 

±4.09 

**59.26 

±3.32 

Step width 

(cm) 

13.98 

±2.01 

13.83 

±2.17 

14.63 

±3.54 

14.10 

±2.79 

14.53 

±2.33 

15.23 

±2.26 

14.74 

±2.17 

14.30 

±2.22 

Stride time (s) 1.14 

±0.055 

1.15 

±0.059 

1.11 

±0.062 

1.11 

±0.061 

1.16 

±0.067 

1.15 

±0.068 

1.14 

±0.060 

1.14 

±0.046 

 

5.4 Discussion  

This study examined the effects of PBT on dynamic stability and gait complexity. 

Three types of PBT interventions were studied. The findings from the study support the 

hypotheses that PBT could improve gait stability. Additionally, there were an increase in 

gait flexible adaptability which may enhance the ability of an individual in selecting 

appropriate motor actions required for a certain fall-risk condition.  As such, the PBT 

intervention appears to support fall prevention effort by improving one’s dynamic stability 

and to resist perturbations associated with daily activities. 

Previous studies have shown that humans adapt to unpredictable changes or 

perturbations in environment during different activities, such as standing or walking (Bhatt 

et al. 2006; Nashner 1976; Horak et al. 1989; Owings et al. 2001; Parijat & Lockhart 2012). 
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A new association between external perturbation (e.g. slip) and motor action is required 

for this adaptation. Some changes such as increasing transitional acceleration at the time 

of heel contact after experiencing repeated slip perturbations is an example of these 

adaptations which reduces the risk of backward balance loss and the fall (Lockhart et al. 

2003). This type of changes in gait pattern is acquired by repeating movements in the 

presence of an external perturbation to reconstruct the performance of a task when external 

perturbations exist (Pai & Bhatt 2007).   

By repeating exposure to perturbations, a new predictive control is developed 

which reduces the risk of balance loss in the presence of future perturbations. For this, CNS 

builds, refines, or updates an internal representation of the potential threats that may occur 

in the external environment (Pai & Bhatt 2007; Kandel & Schwartz 2013). When sensory 

prediction is consistent with the actual sensory information, there is a little commands from 

the feedback controller. Otherwise, these sensory inputs not only elicit corrective 

commands from the feedback controller but also are utilized to regulate the sensory 

representation of the environment and the motor commands in a feedforward manner (Pai 

& Bhatt 2007; Kandel & Schwartz 2013; Morasso et al. 1999). This improves performance 

in the future motor actions under similar contexts. Thus, PBT decreases dependency on 

feedback mechanism as the adaptation process is further developed over repeated 

exposures to perturbations (Pai & Bhatt 2007; Pai et al. 2003). Furthermore, CNS explores 

all the possible patterns of motor neuron requirements for fulfilling a movement task in the 

presence of an external perturbation (Pearson 2000; Prochazka & Ellaway 2012). Thus, 

PBT refines neural pathways to effectively recruit motor neuron in order to reduce the risk 

of loss of balance and fall. 
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Dynamic stability results indicated that PBT can change Lmax. All three types of 

PBT (MLPT, SPT, and MPT) improved gait dynamic stability in ML direction while SPT 

and MPT could improve it in AP direction (Figure 5.4.). Previous studies have shown that 

gait stability measures in particular direction have changed in greater extend when a 

perturbation occurred in the same direction (McAndrew et al. 2011; Young 2011; Martelli 

et al. 2016). For example, Lmax has significantly larger value in AP direction while AP 

perturbations were applied during walking but not during ML perturbations and, 

significantly larger Lmax in ML direction while ML perturbations were applied during 

walking but not during AP perturbations (McAndrew et al. 2011). This may indicate that 

applied perturbations at each direction significantly changed the stability of that direction. 

As such, PBT at a specific direction would considerably change Lmax at that direction. 

Accordingly, MLPT, SPT, and MPT would substantially change Lmax in ML, AP, and both 

directions, respectively. This was the hypothesis. However, the results for SPT was not 

supported. Lmax in both directions increased. Movement of left belt at the time of 

perturbation might be a potential reason for this “dual” training. Once a slip perturbation 

is triggered, right belt start to accelerate in opposite direction to simulate a slip like 

perturbation while the left belt is still moving at the same speed and direction. So, there 

would be a rotational movement if subjects put down their contralateral foot while a 

perturbation movement is still occurring (which is true in most of cases) because left and 

right belts have opposite direction. In this case, perturbation doesn’t occur in only AP 

direction but also on ML component as well. Although, further study is needed to 

understand the mechanisms associated with the improvement of gait dynamic stability in 

both directions after slip like perturbation.  
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Similar changes in gait dynamic stability in AP direction occurred during over-

ground walking after PBT. Individuals who received SPT and MPT have shown an 

improvement in their gait dynamic stability during over-ground walking (Figure 5.5-B). It 

indicates that changes in gait dynamic stability in AP direction acquired from treadmill-

PBT successfully transferred to over-ground walking. Similar finding has been reported by 

Yang et. al. 2013 (Yang et al. 2013). They have assessed whether treadmill-slip training 

could reduce the likelihood of falls during a novel slip in over-ground walking. Their 

results clearly demonstrated the feasibility of fall reduction during a novel slip in an over-

ground walking after treadmill-slip training which is consistent with this study’s finding. 

However, improvement of gait dynamic stability in ML direction acquired from any types 

of treadmill-PBTs wasn’t significantly improved during over-ground walking (Figure 5.5-

B). A study of waist-pull perturbations during walking has reported the similar results 

(Martelli et al. 2016). In this study, healthy young subjects were divided into two groups 

and were exposed to a single training session. Each group received perturbations in ML or 

AP direction applied to subjects’ pelvis when a heel strike was detected. They found that 

the margin of stability change has been observed only in the first minutes after exposing to 

ML perturbations during unperturbed walking and got closer to base line level toward the 

end (about seven minutes after receiving ML perturbations). However, the margin of 

stability improvement in AP direction was preserved during unperturbed walking after 

exposing to AP perturbations. This could be explained by control mechanism which is 

employed at each direction. Mathematical modeling suggests that human walking could be 

passively stable when restricted to sagittal plane (2-D model) (McGeer 1990). However, 

lateral motion is unstable (with high tendency to fall laterally) when lateral motion was 
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considered in the model (3-D model) (Kuo 1999; Bauby & Kuo 2000). Hence, there was a 

need for active feedback control of lateral motion. It has been suggested that feedback 

control of lateral foot placement is an effective method for stabilizing lateral balance (Kuo 

1999). Accordingly, lateral motions requires higher-level integration of sensory inputs 

(mainly, vision vestibular and proprioceptive systems) during gait (Dean et al. 2007). As 

such, it increases the computational and metabolic costs. Bauby et al. has evaluated this 

notion by assessing the effect of removing visual feedback of foot placement (Bauby & 

Kuo 2000). Their results have shown an inappropriate lateral foot position when visual 

feedback was removed compared to AP foot position. This suggests that humans actively 

stabilize lateral motion using medio-lateral foot placement and that this active control 

mechanism was less precise when there was less sensory information. If subjects were 

passively stable, they would be expected to have no sensitivity to sensory information 

(Bauby & Kuo 2000). Another experiment assessed lateral active control by externally 

stabilizing subjects’ posture (Donelan et al. 2004). They applied external lateral 

stabilization, through elastic cords attached to subjects at the waist and pulling laterally 

during treadmill walking. Their results showed a decrease in metabolic cost when subjects 

were externally stabilized. They concluded that external stabilization of the body would 

reduce the active control needed and decrease metabolic cost. Similarly, when walking 

during continuous pseudo-random perturbations, subjects were more sensitive to ML 

perturbations than to AP perturbations (McAndrew et al. 2011). As such, active control 

from higher centers is necessary for lateral stabilization of gait, but the limbs and spinal 

cord are sufficient to provide other passively stable properties for AP motion during 

walking. Based on this, sensory inputs do not send any source of perturbation during 
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unperturbed walking. As a result of that, adaptation mechanism acquired from PBT are not 

required. So, stability starts to get back to its baseline level (before receiving PBT). This 

doesn’t happen immediately and it takes time based on the previous study (Martelli et al. 

2016). Therefore, ML stability improvement could not been seen during over-ground 

walking but it was observed during treadmill walking. Accordingly, the extent of 

adaptation mechanisms to repeated perturbations are dependent on the direction. Further 

study is needed to assess this mechanism in AP direction. 

It is hypothesized that variations in the human movement might be essential to 

provide flexible adaptations to everyday disturbances placed on the human body 

(Goldberger et al. 2002; Otero-Siliceo & Arriada-Mendicoa 2003; Georgoulis et al. 2006; 

Stergiou & Decker 2011). The loss of adaptability is related to lack of complexity and 

greater regularity in the dynamics of daily living activities (Paraschiv-Ionescu et al. 2012; 

Ihlen et al. 2016). So, a lack of this complexity is associated with rigidity and inability to 

adapt to different demands and challenges. The higher level of entropy reflects a more 

complex mechanism in human movements which empowers it to have a greater 

adaptability to different demands (Stergiou 2016a; Costa & Healey 2003; Costa et al. 2005; 

Costa et al. 2003; Manor et al. 2010; Karmakar et al. 2007). In other words, high level of 

entropy points to a higher flexibility in selecting an action requires for a task at a certain 

condition. Alternatively, lower entropy determines repetitive behavior and a limited 

amount of flexibility or complexity. Results of Sample entropy analysis has shown an 

increase in this measure after perturbation training (Figure 5.6). This indicates that PBT 

increases complexity which enables individuals to have higher level of flexible 

adaptability. This empowers an individuals to have a quick reaction to a perturbation since 
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it is more flexible to adapt to a new situation. This flexibility is required since a rigid system 

cannot react very fast and it may cause a fall.  

According to the EMG assessments, increased gait flexible adaptability might be 

attained by reducing co-contraction and power of muscles around heel contact (Figure 5.7. 

and Figure 5.8.). PBTs affected muscle co-contractions around heel contact of the gait 

cycle (Figure 5.7.). Increased muscle co-contraction is beneficial to decrease the risk of a 

hazardous fall (Chambers & Cham 2007) but too much co-contraction would result in 

stiffening a joint and hindering a quick reaction. According to the previous studies during 

a PBT there is an initial (approximately first three trials) increase and subsequent decrease 

in muscle co-contractions which remained unaffected after 6-7 training trials (Parijat & 

Lockhart 2012; Parijat et al. 2015; Carolan & Cafarelli 1992; Enoka 1997). As a result, 

stabilization strategy change from stiffening pattern to a pattern that may allow individuals 

to dynamically stabilize themselves to unexpected perturbations. The initial increase in 

muscle co-contraction is a primitive strategy when mastering a new skill which freezes 

degrees of freedom. When learning and skill acquisition take place, rigid control over the 

degrees of freedom is released. Therefore, a more selective pattern to react to a perturbation 

would be available by lowering muscle co-contraction (Bernstein 1967; Chmielewski et al. 

2005; Kandel & Schwartz 2013). Accordingly, during PBT the CNS chose the most 

effective muscle synergy organization to achieve a common goal which is keeping balance 

and avoid a fall (Kandel & Schwartz 2013). Ankle and step strategies are the main tactics 

which individuals employed to maintain their lateral balance during walking (Hof et al. 

2010). Results of current study support this by showing a reduction in ankle CCI in the 

case of ML PBT. 
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In the presented study, there was an increase in the COM velocity at the time of 

heel contact in AP direction after SPT (Figure 5.9.). It has been reported that increased 

COM velocity helps individuals to maintain their balance when experiencing a slip (Pai & 

Patton 1997; Lockhart et al. 2003a; Lockhart et al. 2005a; Parijat & Lockhart 2012; You 

et al. 2001). Body weight should be transfer to the leading foot at the time of heel contact 

during a normal gait. When there is a slipping condition at time of heel contact and stability 

cannot be regained, it would result in a backward fall. During this time, the whole body 

COM moves from behind to ahead of the base of support. So, faster COM velocity would 

result in a faster transferring body weight and reduce the likelihood of a backward fall. 

However, velocity of COM in ML direction reduced after MLPT and MPT at the time of 

heel contact (Figure 5.9.B). Similar finding has been reported in a study of applying 

repeated multidirectional waist-pull perturbations which subjects have reduced the ML 

displacement of the extrapolated center of mass after repeated ML perturbations (Martelli 

et al. 2016). Subjects may have reduced their COM velocity in ML direction in order to 

adjust to a slower proactive adjustment of ML perturbations applied at heel strike. 

Additionally they might use less energy to stop lateral displacement of COM and bring it 

to medial direction when a lateral perturbation occurs. Reduction in PMA of G_Med 

around heel contact might be the mechanism which reduces COM velocity in ML direction 

after MLPT based on the results (Figure 5.10.). 

Our results have shown that individuals who received SPT or MPT reduced their 

step length after PBT (Table 5.2). It has been reported that people of all ages shorten step 

length to reduce the likelihood of slipping (Fong et al. 2005; Chang et al. 2017; Lockhart 

et al. 2005b; Bhatt 2006; Cham & Redfern 2002). As the step length is increased the ratio 
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of shear to horizontal forces at heel contact would increases (Redfern et al. 2001). Ratio of 

shear to horizontal forces represented the general friction demand at the shoe floor interface 

to prevent initiation of forward slipping (Redfern and Andres 1984). In other words, this 

ratio defines the minimum coefficient of friction that must be available or ‘required to 

avoid a slip (Lockhart et al. 2003a; Perkins 1978). Thus, reducing step length was an 

approach to reduce the likelihood of a slip during walking (Redfern et al. 2001). In addition, 

a longer step length puts COM more posterior to the leading foot at the time of heel contact. 

It increases required displacement of COM to prevent a slip and increase the likelihood of 

a slip (Pai & Patton 1997; Bhatt et al. 2005). 

In summary, findings from this study indicated that PBT could improve gait 

dynamic stability. Results also supported the hypothesis that these improvements can be 

transfer to over-ground walking. In addition, there were an increase in gait flexible 

adaptability which enhances individuals in selecting an action requires for a task at a certain 

condition. One of the significant contributions of this study is assessing gait dynamic 

stability of individuals which has not been evaluated in the previous PBT studies. One of 

the main advantage of gait dynamic stability is that individuals can measure themselves by 

just using a smartphone. Nowadays, smartphones are affordable and majority of people use 

them. So, gait dynamic stability can be measured at certain time points to assess when an 

individuals need to repeat PBT. In this way a more customized training will be provided 

although further studies are needed to assess the retention of the training effects after a 

period of time. 
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Several limitations exist in the study. Due to the location of hip adductor muscles, 

collection of those muscle activities to calculate co-contraction at hip level was difficult. 

Furthermore, simulated slip perturbation was not exactly similar to over-ground slip. 

Additionally, current system which was used in this study did not have the capability of 

making vertical movement. As a result, vertical perturbation couldn’t be applied. Future 

studies can address this. Despite its limitations, employing a treadmill for PBT training on 

treadmill is highly beneficial. Being portable and versatile overcome space limitations in 

most of clinical setup by using a treadmill. Additionally, the treadmill can deliver precise 

and reproducible perturbations and, avoids the possibility of predicting obstacles or 

slippery surfaces.   

Future studies may examine the effects of proposed PBT on different populations 

(athletes or older adults who are at high risk of injuries due to high chance of losing their 

balance).  Additionally, future studies may explore the retention of the training effects after 

a period of time. Furthermore, future studies may explore and compare the effects of over-

ground PBT vs treadmill PBT on dynamic stability and gait complexity. 
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CHAPTER 6: SUMMARY AND CONCLUSION  

6.1 Summary and conclusion 

Injuries and death associated with fall incidences pose a significant burden to 

society, both in terms of human suffering and economic losses. Finding methods to reduce 

the risk of falls and improve individuals’ stability is paramount in our society. In this 

dissertations, a few methods were studied that may reduce the risk of falls in both PD 

patients and healthy individuals.  

FOG is one of the main causes of falls in PD patients. Previous studies have shown 

that external cues like auditory cues could help patients to overcome FOG (Bächlin, 

Plotnik, Roggen, Maidan, Jeffrey M. Hausdorff, et al. 2010; Okuma 2006; Nieuwboer & 

Giladi 2013).  As such, a fall due to FOG could be prevented by detecting FOG 

immediately after it starts. In the first study of this dissertation, a new method to detect 

FOG in real time by using wearable sensor has been proposed. Three different sensor 

locations: shank, thigh, and back were also assessed. Wavelet transform was utilized to 

define an index to detect FOG. Two hundred and thirty seven FOG events collected from 

ten PD patients were employed to evaluate the proposed FOG detection index. Suggested 

index could detect FOG smaller sampling window of data in compare to previous studies. 

Smaller window size of data allows for better detection of short-duration FOG episodes, 

since larger window size can average out shorter FOG episodes. In addition, smaller 

window size could decrease processing time and allow for faster triggering of external cues 

to help patients overcome the FOG episodes. In addition changing update time from 0.5 s 

to 1 s didn’t attenuate the levels of detection. In terms of the location of the sensor 

placements, shank sensor showed better sensitivity and specificity in compare to two other 
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locations. In conclusion, the results suggested that real time detection of FOG could be 

realized by using wavelet transform of a single shank acceleration data with window size 

of 2 s and update time of 1 s with 82.1% and 77.1% sensitivity and specificity, respectively.  

In the second study of this dissertation, a new method was proposed to identify PD 

motor subtypes. This categorization was important at the early stage of PD, since 

identifying the PD subtypes could help to predict the clinical progression of the disease. 

Thirty-six participants diagnosed with PD were evaluated, with their bare feet on the force 

platform, and were instructed to stand upright with their arms by their sides for 20 s. 

Standing center of pressure time series data were utilized to separate two subtypes of PD 

by looking at the frequency component of COP. Fast Fourier transform and wavelet 

transform were performed to distinguish between the motor subtypes using the COP 

measures. Both the power spectral density and the wavelet transform of the COP time series 

and its velocity revealed an increase in the 3–7 Hz frequency range of the TD group, a 

frequency spectra that has reportedly been symptomatic of parkinsonian tremor. This 

finding was employed to define a ratio to identify PD motor subtypes. Results indicated 

that both the FFT and WT methods were able to differentiate the subtypes. Therefore, COP 

time series information can be used to differentiate between the two motor subtypes of PD, 

using the frequency component of postural stability. 

In the last study, the effects of treadmill delivered translational perturbations 

training on improving dynamic stability while walking and adaptability of locomotor 

system in resisting to perturbations were evaluated by using nonlinear measures of stability 

and movement complexity. Three types of PBT were studied; medial-lateral (ML), slip-

like, and mix (including both medial-lateral and slip-like ones) perturbations. Seventy two 
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healthy young adults were recruited for the study and randomly assigned into four 

experimental groups: NPT (control group-receiving no PBT), MLPT (receiving only ML 

PBT), SPT (receiving only slip-like PBT), and MPT (receiving both ML and slip-like 

PBT). Results indicated that all types of perturbation training protocols improved dynamic 

stability as compared to prior training level. Additionally, PBT could increase complexity 

and consequently improve gait flexible adaptability. Improved stability and flexible 

adaptation appear to be brought on by reducing the stiffness of lower extremities as 

measured by EMG muscle co-contraction index. Understanding the effects of different 

directional perturbations on gait stability and complexity will pave the way to developing 

a better intervention for those who are at a higher risk of losing balance and falls as a result 

of gait instability.     

6.2 Future recommendations  

While outcomes from this study have shown promising results in reducing the risk 

of falls, there are areas that still need further investigation. Employing proposed FOG and 

PD motor subtype detections on larger population is one of them. Specifically, FOG section 

should be tested in at home environment since it has been shown that some patients doesn’t 

exhibit FOG episodes in clinical environments.  

In PBT study, vertical perturbation haven’t been assessed due to system limitation. 

Future studies can assess and evaluate the effect of vertical perturbation on dynamic 

stability and gait complexity. Future studies may examine the effects of proposed PBT on 

different population like athletes or older adults who are at high risk of injuries due to high 

chance of losing their balance.  Additionally, future studies may explore the retention of 

the training effects after a period of time. Furthermore, future studies may explore and 
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compare the effects of over-ground PBT vs treadmill PBT on dynamic stability and gait 

complexity. 
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APPENDIX A 

 HOEHN AND YAHR SCALE 
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The Hoehn and Yahr scale is a commonly used system for describing how the symptoms 

of Parkinson's disease progress.  

 

Stage Hoehn and Yahr Scale 

1 Unilateral involvement only usually with minimal or no functional disability 

2 Bilateral or midline involvement without impairment of balance 

3 
Bilateral disease: mild to moderate disability with impaired postural reflexes; 

physically independent 

4 Severely disabling disease; still able to walk or stand unassisted 

5 Confinement to bed or wheelchair unless aided 

 

  

https://en.wikipedia.org/wiki/Parkinson%27s_disease
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APPENDIX B 

UPDRS SCALE 
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Unified PARKINSON Disease Rating Scale (UPDRS) 

The UPDRS is a rating tool to follow the longitudinal course of Parkinson's disease. 

It is made up of the 1) Mentation, Behavior, and Mood, 2) ADL and 3) Motor sections. 

These are evaluated by interview. Some sections require multiple grades assigned to 

each extremity. 

 

I. Mentation, Behavior, Mood 

 

o Intellectual Impairment 

0-none 

1- Mild (consistent forgetfulness 

with partial recollection    of    

events    with    no    other 

difficulties) 

2- Moderate memory loss with 

disorientation and moderate 

difficulty handling complex 

problems 

3-severe memory loss with 

disorientation to time and often 

place, severe impairment with 

problems 

4-severe memory loss with 

orientation only to person, unable 

to make judgments or solve 

problems 

 

o Thought 

Disorder 

0-none 

1-vivid dreaming 

2-"benign" hallucination with 

insight retained 

3-occasional to frequent 

hallucination or delusions without 

insight, could interfere with daily 

activities 

4-persistent hallucination, 

delusions, or florid psychosis. 

 

o Depression 

0-not present 

1-periods of sadness or guilt greater 

than normal, never sustained for 

more than a few days or a week 

2-sustained depression for >1 week 

3-vegetative symptoms (insomnia, 

anorexia, abulia, weight loss) 

4-vegetative symptoms with 

suicidality 

 

o Motivation/Initiative 
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0-normal 

1-less of assertive, more passive 

2-loss of initiative or disinterest in 

elective activities 

3-loss of initiative or disinterest in 

day to say (routine) activities 

4-withdrawn, complete loss of 

motivation 

 

 

II. Activities of Daily Living 

 

o Speech 

0-normal 

1-mildly     affected, no difficulty 

being understood 

2-moderately affected, may be asked to 

repeat 

3-severely affected, frequently asked to 

repeat 

4-unintelligible most 

of time 

 

o Salivation0-normal 

1-slight but noticeable increase, 

may have nighttime drooling 

2-moderately excessive saliva, hay 

minimal drooling 

3-marked drooling 

 

o Swallowing 

0-normal 

1-rare choking 

2-occasional choking 

3-requires soft food 

4-requires NG tube or G-tube 

 

o Handwriting 

0-normal 

1-slightly small or slow 

2-all words small but legible 

3-severely affected, not all words 

legible 

4-majority illegible 

 

o Cutting Food/Handing Utensils 

0-normal 

1-somewhat slow and clumsy but 

no help needed 

2-can cut most foods, some help 

needed 

3-food must be cut, but can feed 

self 

4-needs to be fed 

 

o Dressing 

0-normal 

1-somewhat slow, no help needed 

2-occasional help with buttons or 

arms in sleeves 

3-considerable   help   required but 

can do something alone 

4-helpless 



118 
 

 

o Hygiene 

0-normal 

1-somewhat slow but no help 

needed 

2-needs help with shower or bath or 

very slow in hygienic care 

3-requires assistance for washing, 

brushing teeth, going to bathroom 

4-helpless 

 

o Turning in Bed/ Adjusting Bed Clothes 

0-normal 

1-somewhat slow no help needed 

2-can turn alone or adjust sheets but 

with great difficulty 

3-san initiate but not turn or adjust 

alone 

4-helplesso Falling-Unrelated to 

Freezing 

0-none 

1-rare falls 

2-occasiona, less than one per day 

3-average of once per day 

4->1 per day 

 

o Freezing When Walking 

0-normal 

1-rare, may have start hesitation 

2-occasional falls from freezing, 

3-frequent freezing, occasional 

falls 

4-frequent falls from freezing 

 

o Walking 

0-normal 

1-mild difficulty, day drag legs or 

decrease arm swing 

2-moderate difficultly requires no 

assist 

3-severe disturbance requires 

assistance 

4-cannot walk at all even with 

assist 

 

o Tremor 

0-absent 

1-slight and infrequent, not 

bothersome to patient 

2-moderate, bothersome to patient 

3-severe, interfere with many 

activities 

4-marked, interferes with many 

activities 

 

o Sensory Complaints Related to 

Parkinsonism 

0-none 

1-occasionally has numbness, 

tingling, and mild aching 

2-frequent, but not distressing 

3-frequent painful sensation 

4-excruciating pain 
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III. Motor Exam 

 

o Speech 

0-normal 

1-slight loss of expression, diction, 

and, volume 

2-monotone, slurred but 

understandable, mod impaired 

3-marked impairment, difficult to 

understand 

4-unintelligible 

 

o Facial Expression 

0-Normal 

1-slight hypomymia, could be 

poker face 

2-slight but definite abnormal 

diminution in expression 

3-mod. hypomimia, lips parted 

some of time 

 

4-masked or fixed face, lips parted 

1/4 of inch or more with complete 

loss of expression 

 

o Tremor at Rest 

+ Face 

0-absent 

1-slight and infrequent 

2-mild and present most of time 

3-moderate and present most of 

time 

4-marked and present most of 

time 

 

 

+ Right Upper Extremity (RUE) 

0-absent 

1-slight and infrequent 

2-mild and present most of time 

3-moderate and present most of 

time 

4-marked and present most of 

time 

 

+ LUE 

0-absent 

1-slight and infrequent 

2-mild and present most of time 

3-moderate and present most of 

time 

4-marked and present most of 

time 

 

+ RLE 

0-absent 

1-slight and infrequent 

2-mild and present most of time 

3-moderate and present most of 

time 
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4-marked and present most of 

time 

 

+ LLE 

0-absent 

1-slight and infrequent 

2-mild and present most of time 

3-moderate and present most of 

time 

4-marked and present most of 

time 

 

o Action or Postural Tremor 

+ RUE 

0-absent 

1-slight, present with action 

2-moderate, present with action 

3-moderate present with action 

and posture holding 

4-marked, interferes with feeding 

 

+ LUE 

0-absent 

1-slight, present with action 

2-moderate, present with action 

3-moderate present with action 

and posture holding 

4-marked, interferes with 

feeding 

 

o Rigidity 

+ Neck 

0-absent 

1-slight or only with activation 

2-mild/moderate 

3-marked, full range of motion 

4-severe 

 

+ RUE 

0-absent 

1-slight or only with activation 

2-mild/moderate 

3-marked, full range of motion 

4-severe 

 

+ LUE 

0-absent 

1-slight or only with activation 

2-mild/moderate 

3-marked, full range of motion 

4-severe 

 

+ RLE 

0-absent 

1-slight or only with activation 

2-mild/moderate 

3-marked, full range of motion 

4-severe 

 

+ LLE 

0-absent1-slight or only with 

activation 
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2-mild/moderate 

3-marked, full range of motion 

4-severe 

 

o Finger taps 

+ Right 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

 

+ Left 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

o Hand Movements (open and close 

hands in rapid succession) 

+ Right 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

+ Left 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

o Rapid Alternating Movements (pronate 

and supinate hands) 

+ Right 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 
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3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

+ Left 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

o Leg Agility (tap heel on ground, amp 

should be 3 inches) 

+ Right 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

+ Left 

0-normal 

1-mild slowing, and/or reduction 

in amp. 

2-moderate impaired. Definite 

and early fatiguing, may have 

occasional arrests 

3-severely impaired. Frequent 

hesitations and arrests. 

4-can barely perform 

 

o Arising From Chair (pt. arises with 

arms folded across chest) 

0-normal 

1-slow, may need more than one 

attempt 

2-pushes self-up from arms or seat 

3-tends to fall back, may need 

multiple tries but can arise without 

assistance 

4-unable to arise without help 

 

o Posture 

0-normal erect 

1-slightly stooped, could be normal 

for older person 

2-definitely abnormal, mod. 

Stooped, may lean to one side 

3-severely stooped with kyphosis 

4-marked flexion with extreme 

abnormality of posture 

 

o Gait 
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0-normal 

1-walks slowly, may shuffle with 

short steps, no festination or 

propulsion 

2-walks with difficulty, little or no 

assistance, some festination, short 

steps or propulsion 

3-severe disturbance, frequent 

assistance 

4-cannot walk 

o Postural Stability (retropulsion test) 

0-normal 

1-recovers unaided 

2-would fall if not caught 

3-falls spontaneously 

4-unable to stand 

 

o Body Bradykinesia/ Hypokinesia 

0-none 

1-minimal slowness could be 

normal, deliberate character 

2-mild slowness and poverty of 

movement, definitely    abnormal,    

or    some reduced amplitude    of 

movement 

3-moderate slowness, poverty, or 

small amplitude 

4-marked slowness, poverty, or amplitude

 

 


