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ABSTRACT

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things. Despite its microscopic origin chirality may also lead to ob-

servable effects in macroscopic physical systems – relativistic plasmas made of chiral

(spin-1
2
) particles. Such plasmas are called chiral. The effects include non-dissipative

currents in external fields that could be present even in quasi-equilibrium, such as the

chiral magnetic (CME) and separation (CSE) effects, as well as a number of inherently

chiral collective modes called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from hot plasma

filling the early Universe, to dense matter in neutron stars, to electronic band struc-

tures in Dirac and Weyl semimetals, to quark-gluon plasma produced in heavy-ion

collisions.

The main focus of this dissertation is a search for traces of chiral physics in the

spectrum of collective modes in chiral plasmas. I start from relativistic chiral kinetic

theory and derive first- and second-order chiral hydrodynamics. Then I establish key

features of an equilibrium state that describes many physical chiral systems and use

it to find the full spectrum of collective modes in high-temperature and high-density

cases. Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant dissi-

pative chiral hydrodynamics and the calculation of the spectrum of collective modes

in chiral plasmas. It is found that the dissipative effects and dynamical electromag-

netism play an important role in most cases. In particular, it is found that both the

CMW and the CVW are heavily damped by the usual Ohmic dissipation in charged

plasmas and the diffusion effects in neutral plasmas. These findings prompt a search
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for new physical observables in heavy-ion collisions, as well as a revision of potential

applications of chiral theories in cosmology and solid-state physics.
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Chapter 1

INTRODUCTION

Chirality is a concept in theoretical physics and mathematics that distinguishes

an object from its mirror image. In particle physics, chirality is well defined for

massless particles (anti-particles) and coincides with (differs by a sign from) their

helicity. Recall that the latter is the sign of the projection of the particle’s spin

onto its momentum. It is also connected to the parity symmetry, which interchanges

particles of opposite chiralities. Chirality can also be defined as an approximately

conserved quantity for a massive particle moving with ultra-relativistic velocity.

Although chirality is defined at the microscopic level, its effects can be significant

also in large material systems called chiral relativistic plasmas, or just chiral plas-

mas for short. Examples of such plasmas appear in many branches of physics: from

hot plasma in the early Universe and degenerate matter in neutron stars, to Dirac

and Weyl semimetals, and to quark gluon-plasma in heavy-ion collisions. In the

hydrodynamic description chiral plasmas are characterized by an approximately con-

served chiral (axial) charge, in addition to the standard exactly conserved quantities

in plasmas, namely the electric charge, the energy, the momentum, and the angu-

lar momentum. As a result, chiral plasmas in external fields demonstrate a number

of anomalous macroscopic quantum phenomena. For example, in the presence of a

magnetic field, they exhibit non-dissipative electric and axial currents called the chi-

ral magnetic effect (CME) and the chiral separation effect (CSE), respectively. In

turn, the interplay between these effects leads to novel collective excitations unique

to chiral plasmas.

Anomalous effects in chiral plasmas were first discovered in a series of papers by
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Vilenkin (1978, 1979, 1980a) in the context of astrophysics. Recent resurgence of

interest in the field is attributed to the possibility of detecting anomalous collective

modes in the multi-particle correlators in heavy-ion collisions, as well as producing

novel effects in condensed matter physics and astrophysics. Below we consider some

examples in more detail.

In the modern heavy-ion collision experiments, nuclei are accelerated to energies

between hundreds of GeV and a few TeV per nucleon pair and smashed together

to produce a shower of particles that are then analyzed in designated detectors

(Heinz and Snellings (2013); Loizides (2016); Florkowski et al. (2018a); Nagle and

Zajc (2018)). During the collision the system undergoes a series of transformations,

that may produce quasi-equilibrated states of matter, one of which is believed to be

a liquid-like soup of strongly interacting quarks and gluons, called the quark-gluon

plasma (Gyulassy and McLerran (2005); Adams et al. (2005); Adcox et al. (2005)).

At sufficiently high energies, quarks, being spin-1
2

fermions, form a chiral relativistic

plasma. Non-central collisions of positively charged ions also produce significant elec-

tromagnetic fields and carry a substantial angular momentum (locally characterized

by the fluid vorticity). Therefore, the chiral plasma of quarks is subjected to strong

external fields, thus making perfect conditions for observing anomalous quantum ef-

fects (Miransky and Shovkovy (2015); Kharzeev et al. (2016)). It is believed that

chiral effects can be useful for probing the fundamental properties of the quark-gluon

plasma, including the P- and CP-violation (Kharzeev (2006); Kharzeev et al. (2008)),

chiral anomaly in QCD, etc.. Recent findings revealed a promising signal in the elliptic

flow coefficient v2, as well as the polarization of Λ-baryons, that could be attributed to

the CME and CSE currents generated in the plasma (Kharzeev et al. (2016)). There

is also an ongoing search for the anomalous collective modes and related observables

(Kharzeev and Yee (2011); Jiang et al. (2015); Chernodub (2016)).
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Chiral systems in the condensed matter setting open the possibility of testing

relativistic quantum theories in tabletop experiments. Recently predicted and dis-

covered Dirac and Weyl semimetals possess relativistic-like quasi-particles with a

conical-shaped spectrum around several gapless nodes (valleys) (Wang et al. (2012,

2013); Xu et al. (2015); Lv et al. (2015)). Low-lying excitations around these nodes

behave exactly like relativistic fermions with their Fermi velocity playing the role

of an effective speed of light, and the valley degrees of freedom mimicking different

species. These materials can be used to probe the behavior of relativistic chiral plas-

mas in a controlled setting (Hosur and Qi (2013); Kharzeev (2014); Armitage et al.

(2018)). For example, in addition to being able to easily adjust plasma temperature

and density, it was recently proposed that the chiral imbalance in these systems can

be produced by a circularly polarized photocurrent (Kaushik et al. (2018)). More-

over, anomalous physics in condensed matter can be used for designing new tools

of manipulating various transport properties. It must be mentioned, however, that

electrons, forming the chiral plasma in Dirac and Weyl materials, are not completely

decoupled from ion lattices in those materials and may scatter on phonons and defects

in them. As a result, the outcome of some physics phenomena may be different (or

more convoluted) than in truly high-energy systems.

Physics of chiral systems on the largest of scales is studied in cosmology and as-

trophysics. Chiral effects in a hot plasma produced after the Big Bang can influence

the contemporary cosmological observables. For example, it has been suggested that

coherent large-scale magnetic fields filling the voids in between the galaxies and galac-

tic clusters can originate from the so-called inverse magnetic cascade (Christensson

et al. (2001)). In such a cascade the energy is transferred from smaller to larger dis-

tance scales by the conversion of the chirality of the early Universe plasma into the

helicity of magnetic fields (Tashiro et al. (2012); Del Zanna and Bucciantini (2018)).
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Alternatively, magnetars, which are rapidly rotating neutron stars with one of the

strongest magnetic fields found in the Universe, make ideal candidates for observing

anomalous physics. Also, chiral effects in asymmetric supernova explosions can al-

ter neutrino and photon fluxes/polarizations similar to the elliptic flows in heavy-ion

collisions (Masada et al. (2018); Obergaulinger et al. (2018)). These can be observed

either directly in observatories or indirectly via the properties of the remnants of the

explosion. Lastly, magnetohydrodynamic waves can be detected in solar jets with a

much better resolution, and may also contain chiral physics (Zhelyazkov and Chandra

(2018)).

Throughout this paper we use the units with the speed of light c = 1. We also set

~ = 1 in the introduction for simplicity, but keep it explicitly in the main text as the

quantum correction power-counting parameter. We also use the Minkowski metric

gµν = diag(1,−1,−1,−1) and the Levi-Civita tensor such that ε0123 = 1.

This dissertation is based on the original results published in Gorbar et al. (2017),

Shovkovy et al. (2018), and Rybalka et al. (2019) by the author.

1.1 Phenomenology of chiral theories

Let us now remind the definition of chirality (Peskin and Schroeder (1995)) from

the quantum mechanics. The free spin-1
2

fermions are described by the Dirac equation

(iγµ∂µ −m)ψ = 0. (1.1)

The set of four anti-commuting Dirac matrices γµ satisfies {γµ, γν} = 2gµν . It is

also supplemented by the fifth matrix γ5 = iγ0γ1γ2γ3 that anti-commutes with all

the other matrices. A particle’s chirality is defined as the eigenvalue of γ5 and equals

either +1 or −1. In the massless theory, it is equivalent to the notion of helicity, which

is a projection of spin onto the momentum. Indeed, this follows from the massless
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Dirac equation, that can be rewritten as:

2S · p
|p|

ψ = sign(p0)γ5ψ, (1.2)

where Si = i
4
εijkγjγk is the spin operator. The same relation implies that mass-

less particles have their spin aligned either along or against the momentum, which

correspond to the right-handed and the left-handed particles, respectively.

It is clear that the free-particle states that satisfy the Dirac equation have a definite

chirality only in the massless case m = 0. Strictly speaking, therefore, chiral forms

of matter are only those made of massless fermions. In reality, most of the physical

systems mentioned earlier deal with either massless excitations anyway or are subject

to high temperatures or densities, so that their characteristic energies E are much

larger than their masses m. In such cases, it can be argued that in massive theories the

chirality is an approximately conserved quantity with the chirality flipping processes

suppressed by some power of m/E. In what follows, for simplicity, we will exclusively

concentrate on the massless case.

In particle physics chiral symmetry plays a particularly important role. For ex-

ample, the pair of u and d quarks possess an approximate SU(2)L × SU(2)R chiral

symmetry that interchanges particles of different chirality. This symmetry turns out

to be spontaneously broken to a vector-like isospin subgroup SU(2)V . Such break-

ing leads to the three (in accordance with number of broken generators) Nambu-

Goldstone bosons called pions in the low-energy spectrum of QCD. This mechanism

of chiral symmetry breaking explains how the masses of protons (mp = 938.3 MeV)

and neutrons (mn = 939.6 MeV) are much larger than the current masses of quarks

(m̄u = 2.2 MeV, m̄d = 4.7 MeV) (Tanabashi et al. (2018)).

Another important feature inherent to chiral theories is the anomalous braking of

the singlet axial symmetry U(1)A, under which the field transforms as ψ → eiγ5θψ.
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This leads to the anomalous non-conservation of the axial current jµ5 = jµR−j
µ
L , where

jµR/L is the current of right- and left-handed fermions, respectively. In other words

the number of left- and right-handed fermions is not a conserved quantity. In 3+1

dimensions the anomaly takes the form (Peskin and Schroeder (1995)):

∂µj
µ
5 = − e2

16π2
εµναβFµνFαβ =

e2

2π2
(B · E), (1.3)

where Fµν is the electromagnetic field strength tensor. This non-conservation is a

purely quantum effect absent in the classical field theory and thus called an anomaly.

Chiral charge can be produced in a system of chiral fermions via co-aligned electric E

and magnetic B fields. The chiral anomaly can be used to explain the neutral pion π0

two-photon decay mode (π0 → 2γ) via the famous triangular diagram (Adler (1969);

Bell and Jackiw (1969)). On a macroscopic scale the chiral, anomaly also leads to

several interesting effects even in quasi-equilibrium.

1.1.1 Anomalous transport effects in chiral plasmas

One of the effects typical to the chiral theories is the so-called chiral magnetic

effect. It leads to the emergence of a non-dissipative electrical current in a quasi-

equilibrium plasma in a background magnetic field. The easiest way to trace the

physics behind it is the following somewhat oversimplified argument. Let us imagine

a relativistic gas of chiral fermions with chiral imbalance in an external magnetic

field. The difference between the number of right-handed and left-handed particles

in equilibrium can be modeled by a chiral chemical potential µ5 = µR − µL. Here

we implicitly assume that the spin-flipping processes are weak or, alternatively, we

consider the plasma on a time-scale small compared to the mean spin-flipping time.

Due to the paramagnetic effect the gas in the background magnetic field obtains a

spin polarization proportional to B. However, the momentum of relativistic chiral
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Figure 1.1: The figure shows the intuitive description of the chiral magnetic effect.
External magnetic field B produces a net spin polarization in plasma. If coupled with
the chiral imbalance µ5 this creates a net electric current called the chiral magnetic
effect (CME). The picture is taken from Kharzeev et al. (2016).

fermions is locked to the direction of the spin. Therefore, due to this polarization, the

right-handed particles are moving preferably along the magnetic field and left-handed

particles – in the opposite direction. Due to the difference in the numbers of particles

of different chiralities, the system acquires an electric current along the magnetic

field jCME ∝ µ5B, see Fig. 1.1. Note, that the electric current is odd, whereas the

magnetic field is even under the parity transformation. Such an effect is absent in

usual plasmas. Therefore, the CME is an anomalous transport process that is possible

only in a chirally imbalanced environment with µ5 6= 0.

Of course, the exact coefficient of proportionality in the expression for jCME has

to be determined using more rigorous theoretical arguments. In fact, analysis of

various systems ranging from a free fermion gas to infinitely strongly coupled systems

has given the same coefficient fixed by the chiral anomaly (Fukushima et al. (2008);

Kharzeev et al. (2013, 2016)). One of the short and beautiful arguments giving the

correct expression is the following. Let us consider a CME current jCME induced by

an external magnetic field B. To probe such current we turn on a small electric field E

parallel to the magnetic field. The power generated in the system due to the electric

field is given by a textbook formula
∫
V

jCME · E. Alternatively, from the viewpoint
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of the chiral anomaly, parallel electric and magnetic fields lead to the generation of

a chiral charge ∂Q5/∂t =
∫
V

e2

2π2 (B · E). Using the definition of the chiral chemical

potential µ5, the power needed to produce this imbalance is µ5∂Q5/∂t. Matching

the powers generated and consumed, we get the coefficient for the chiral magnetic

effect completely determined by the chiral anomaly: jCME = e2

2π2µ5B. Note, that the

nature of this current is qualitatively different from the conventional Ohmic current.

The CME current is non-dissipative, which means that by itself it does not produce

energy and entropy, can be present even in equilibrium, and is a direct consequence

of quantum anomaly.

Similarly to the chiral magnetic effect, an external magnetic field also generates

an axial current j5, called the chiral separation effect (CSE). The intuition behind this

effect is the same as behind the CME. The external magnetic field B produces a net

spin polarization, which drives right- and left-handed particles in opposite directions.

The number of particles is controlled by the conventional chemical potential µ and

so we get jCSE
5 ∝ µB. In fact, the coefficient of proportionality is the same as in the

CME and is also controlled by the chiral anomaly jCSE
5 = e2

2π2µB. Note, that in this

case the axial current is even under parity in agreement with the discrete symmetry

acting on both sides of the equality. In fact, considering the CME and CSE for each

chirality separately, it can be seen that they represent different sides of the same coin,

which explains the same coefficient of proportionality.

Other external fields can also produce conventional electric (fermion number) and

axial currents in a chiral plasma. In the case of an electric field the corresponding

effects are called the chiral electric and the chiral electric separation effects, respec-

tively. Unlike the CME and the CSE these effects are dissipative although also related

to the quantum nature of the plasma. They are no longer universally defined by the

chiral anomaly, but depend on the specifics of physical systems. Another important
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source of spin polarization is the global plasma rotation, also called vorticity. In sim-

ple terms vorticity is defined as the curl of the plasma velocity field ω = ∇× u. Due

to the spin-orbit coupling of particles vorticity produces a net spin polarization, that

in its turn induces the conventional and axial transport in chiral plasmas called the

chiral vortical and the chiral vortical separation effects, respectively. These effects

are expected to be the main manifestations of chiral physics in relativistic gases of

neutral fermions (such as a gas of neutrinos in supernova explosions), which do not

interact with the electromagnetic fields.

1.1.2 Anomalous collective modes in chiral plasmas

The chiral effects discussed in the previous section demonstrate the effect of quan-

tum mechanics on the equilibrium properties of the plasma. However, their direct

experimental verification and application is much more subtle than the theoretical

derivations suggest. The axial current generated by the CSE is hard to probe, whereas

a much more accessible for detection electrical CME current is generated only in the

macroscopic regions with non-zero µ5, which are hard to produce and are generally

short-lived. The most readily available confirmation of the chiral magnetic effect is a

negative magneto-resistance in Weyl semimetals (Son and Spivak (2013); Gorbar et al.

(2014); Huang et al. (2015); Li et al. (2016)). However, in the realms of high-energy

physics and astrophysics, clear observables are still lacking.

It has been predicted by Kharzeev and Yee (2011) (see also Jiang et al. (2015);

Kharzeev et al. (2016); Chernodub (2016)), that the interplay of the chiral effects

can lead to novel gapless collective excitation modes in plasma even in the absence

of an overall chiral imbalance. The most famous one is called the chiral magnetic

wave (CMW), it involves mutual fluctuations of the electric and axial charges. There

is an ongoing experimental effort to detect its presence in quadrupole correlations
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in heavy-ion collisions at the LHC and RHIC (Burnier et al. (2011); Gorbar et al.

(2011); Zhao (2018)).

The idea behind the CMW can be explained using the charge n and axial charge

n5 conservation equations. Considering a dissipationless chiral plasma in an exter-

nal magnetic field B, and neglecting all perturbations except δn and δn5, the two

conservation equations:

∂µj
µ = 0 (1.4)

∂µj
µ
5 = 0 (1.5)

take the form:

k0eδn+ (k · δjCME) = k0eδn+
e2(B · k)

2π2χ5

δn5 = 0, (1.6)

k0eδn5 + (k · δjCSE
5 ) = k0eδn5 +

e2(B · k)

2π2χ
δn = 0, (1.7)

where we introduced susceptibilities χ = ∂n/∂µ and χ5 = ∂n5/∂µ5. It is easy to

see that the system above has a wave-like solution with the dispersion k0 = ±(eB ·

k)/(2π2√χχ5). This is the chiral magnetic wave. From the physical point of view it

can be explained as follows. A charge perturbation δn induces a chiral current δj5
CSE

via the CSE. This current in its turn creates an axial charge imbalance δn5. The axial

charge then induces a charge current δjCME via the CME. This current generates δµ

and so the process sustains itself in the form of a wave. Using the analogous arguments

it can be shown that the vorticity effects also lead to a wave-like mode called the chiral

vortical wave.

It is clear, however, that such an analysis is oversimplified, as it does not account

for dissipation and dynamical electromagnetism. The role of energy-momentum con-

servation and other hydrodynamic variables of the plasma should also be carefully

addressed in the analysis of such modes. In fact, comprehensive analysis of collective
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excitation is the main focus of this dissertation, requiring a fully-consistent hydrody-

namical theory of the chiral plasma. The issue of the chiral magnetic wave will be

considered in depth in section 3.5, where we will argue that plasma conductivity and

diffusion completely overdamp the CMW in most realistic scenarios. So we find that

the chiral magnetic wave is, most probably, cannot be detected in heavy-ion collisions.

1.2 Macroscopic descriptions of chiral plasmas

Although quantum field theory can be used to derive various chiral effects, when it

comes to the description of chiral forms of matter out of equilibrium its use becomes

very difficult. It is therefore essential to derive a chiral theory that can be applicable

for large systems and non-equilibrium processes. The two common approaches are the

chiral kinetic theory (CKT), dealing with the one-particle distributions, and the chiral

magnetohydrodynamics (chiral MHD), dealing with hydrodynamic plasma variables,

such as temperature, density and flow velocity. In both frameworks, the complete

description should include dynamical electromagnetism. In this section we will discuss

common methods used in deriving these two types of theories and their common

applications.

1.2.1 Chiral kinetic theory

Let us start from the chiral kinetic theory. There exist two distinct enough ap-

proaches: one involves the world-line description and the other utilizes the Wigner

function. In this subsection we will use the former approach to illustrate the most

interesting properties of the chiral kinetic theory and only touch briefly upon the

philosophy behind the latter. We will use the full power of the Wigner function in

deriving the relativistic covariant chiral kinetic theory later in section 2.1.

Following Stephanov and Yin (2012) (see also Son and Yamamoto (2012, 2013)),
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let us start from the Hamiltonian for a right-handed Weyl fermion: Ĥ = σ·p, where σ

is a vector of Pauli matrices. It is clear that the two eigenvalues of this Hamiltonian

±|p| correspond to a particle and anti-particle states, respectively. The propaga-

tion amplitude of the fermion can be written as a path integral over all trajectories

x(t),p(t) in the phase space:

〈f |eiĤ(tf−ti)|i〉 =

∫
Dx Dp P exp

[
i

∫ tf

ti

(p · ẋ− σ · p)dt

]
. (1.8)

The path integral is a 2 by 2 matrix in the spin space. It can be diagonalized by

dividing it into small time intervals ∆t and diagonalizing each point of the trajectory

separately using a unitary matrix Vp, such that V †p (σ ·p)Vp = |p|σ3. The path integral

then becomes:

...Vp2V
†
p2

exp [−iσ · p2∆t]Vp2V
†
p2
Vp1V

†
p1

exp [−iσ · p1∆t]Vp1V
†
p1
...

= ...Vp2 exp [−iσ3|p2|∆t]V †p2Vp1 exp [−iσ3|p1|∆t]V †p1 ... (1.9)

For small ∆t the change of momentum ∆p = p2 − p1 is also small and so we can

write:

V †p2Vp1 ≈ exp [−iâp ·∆p] , âp = iV †p∇pVp. (1.10)

This additional term is a geometric phase due to the fact that fermions live in the

SU(2) spin space. It is also known as the Berry phase, and âp is the Berry connection.

The path integral then becomes:

〈f |eiĤ(tf−ti)|i〉 = Vpf

∫
Dx Dp P exp

[
i

∫ tf

ti

(p · ẋ− |p|σ3 − âp · ṗ)dt

]
V †pi . (1.11)

One can argue that, in the classical limit for particles with large momentum |p|,

the separation between the eigenstates 2|p| is also large enough to suppress the off-

diagonal spin-flipping processes. Therefore, we can take the upper diagonal element

as an effective semi-classical action for a right-handed chiral particle, with the effects
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of spin encoded in the Berry connection term. It is also possible to minimally couple

the particle to an external electromagnetic potential (Φ,A) and obtain the action:

I =

∫ tf

ti

(p · ẋ− |p| − ap · ṗ− eΦ + eA · ẋ)dt. (1.12)

Variating the trajectory one can find the following equations of motion:

ẋ = p̂ + ṗ× b, (1.13)

ṗ = e(E + ẋ×B), (1.14)

where b = ∇p × ap = p̂/(2|p|2) is called the Berry flux or Berry curvature, and

p̂ = p/|p|. From the structure of the equations it is clear that b can be viewed as

the field of a “magnetic” monopole in the momentum space (’t Hooft (1974)).

Using the equations of motion we finally end up with the chiral kinetic equation

for collisionless plasma:

∂ρ

∂t
+
∂(ρẋ)

∂x
+
∂(ρṗ)

∂p
= 2πe2E ·Bfδ3(p), (1.15)

where ρ = (1 + eB · b)f is the phase-space particle density, i.e., the usual particle

distribution function f modified by the phase-space invariant measure. The term on

the right-hand side of the equation stems from the quantum anomaly. Indeed, by in-

tegrating over the momentum we get the correct anomalous current non-conservation:

∂n

∂t
+
∂j

∂x
=

e2

4π2
E ·B, (single chirality) (1.16)

where (n, j) =
∫
p
(ρ, ρẋ) and we used fp=0 = 1, that follows from the Fermi-Dirac

distribution. Note also, that by substituting ẋ into the current definition one can

successfully reproduce the CME current. The particle non-conservation is in a strong

contrast to the classical kinetic theory, where the particle number conservation is

connected with the fact, that world-lines cannot be created or destroyed. In the chiral
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kinetic theory, on the other hand, the Berry monopole singularity at p = 0 breaks

down the classical description and allows for a creation of new particles (world-lines).

Although the chiral kinetic theory correctly predicts the CME, it gives an incorrect

value of the CVE coefficient. What is even more troubling, the Lorentz invariance

is broken in the system. It was shown in Chen et al. (2014) that CVE and Lorentz

symmetry can be restored by the introduction of an additional magnetic coupling

term in the classical action. They found that the dispersion of a chiral right-handed

particle must be corrected Ep = |p| − (eB · p̂)/(2|p|) (the sign of the correction is

opposite for a left-handed particle). The Lorentz invariance then can be rescued by

the so-called “side-jump”, which can be derived using a beautiful thought experiment

presented below.

Let us consider two identical right-handed fermions with energy |p| colliding elas-

tically in their center-of-mass frame with zero impact parameter. After the collision

they move in collinear trajectories with momentums p and −p. It is clear that both

the orbital and spin contributions to the angular momentum vanish before and after

the collision in this frame. Let us now consider the same process in a system boosted

with infinitesimal velocity β along the direction of one of the incoming particles.

The total angular momentum before the collision is still trivially zero and, therefore,

must still be zero after it. However, the trajectories of the outgoing particles are

no longer collinear and so are their spins. In fact, it is easy to show that the total

spin of the outgoing particles equals Sout = [β − p̂(β · p̂)]/|p|. This spin must be

counterbalanced by the total orbital momentum of the two outgoing particles. This

is only possible if each of them side-jumps from the point of collision by the amount

of (β× p̂)/(2|p|) into opposite directions, so that the total orbital momentum equals

Lout = β×p̂
|p| × p = −Sout. Therefore, the modified Lorentz invariance has the form:

δβt = β · x, δβx = βt+ β×p̂
2|p| .
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The chiral kinetic theory discussed above can, in principle, be generalized to a

covariant form. There is, however, another way of deriving a fully covariant ki-

netic theory from the quantum field theory written in a Wigner function formal-

ism, developed in Vasak et al. (1987). The free spin-1
2

Wigner matrix-function

Wαβ(x, p) ≡ 〈:
∫

d4y
(2π)4

e−ip·yψ̄β(x + 1
2
y)ψα(x − 1

2
y) :〉 = 〈ψ†β(x)δ4(p̂ − p)ψα(x)〉 is a

quantum analogue of a classical particle distribution function, which represents a

number of particles with the four-momentum p at position x. Using the Dirac equa-

tion for the wavefunction ψ one can derive the evolution equation for the Wigner

function. In the zeroth order in ~ it is equivalent to the classical kinetic (Boltzmann)

equation, whereas higher-order terms give quantum corrections. Using the Keldysh

formalism it can be generalized to include non-equilibrium phenomena and collisions.

The resulting covariant CKT equation for a spin-1
2

fermion with chirality λ = ±1 has

the following form (Hidaka et al. (2017, 2018)):

DµW µ(p, x) = δ(p2)p · C + λ~eF̃ µνCµpνδ
′(p2), (1.17)

where Dµ = ∂/∂xµ − eF µν∂/∂pν is the phase-space derivative, F µν and F̃ µν are the

electromagnetic field strength tensor and its dual, Cµ is the collision operator. The

Wigner function has the following form:

W µ(p, x) ≡ pµδ(p2)f + λ~Sµνδ(p2)(Dνf − Cν) + λ~eF̃ µνpνδ
′(p2)f +O(~2), (1.18)

where Sµν is the particle spin tensor and f = f(x, p) is the distribution function. The

spin tensor is defined so that Sµν = ε0µνisi in the local frame of plasma with average

spin s. The first term in the Wigner function gives the classical free-streaming, second

one gives spin-orbit coupling and side-jumps due to collisions, whereas the third one

gives the magnetic coupling correction to the dispersion. Using this approach with

a model distribution function (such as pure Fermi-Dirac distribution or Fermi-Dirac
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with a small out-of-equilibrium correction) it is then possible to derive a fully covariant

dissipative chiral magnetohydrodynamics.

1.2.2 Chiral magnetohydrodynamics

The chiral kinetic theory provides a natural starting point for deriving the hydro-

dynamic description of a chiral plasma that includes dissipation. However, hydrody-

namics by itself is a very general theory that studies large-scale low-energy phenom-

ena. It is therefore natural, that there are other more direct approaches to the low-

energy theory of chiral plasmas, which usually fall into two categories. Approaches

in the first category start from the quantum field theory and consider the evolu-

tion of some set of hydrodynamically relevant operators. Examples include a density

operator approach (Buzzegoli and Becattini (2018)), Zubarev’s non-equilibrium sta-

tistical operator method (Huang et al. (2011)), or even more abstract and general

methods (Dubovsky et al. (2012); Haehl et al. (2018)). Approaches in the other

category use thermodynamic and symmetry considerations to write the most gen-

eral hydrodynamic theory truncated at some order in derivatives (Son and Surówka

(2009); Isachenkov and Sadofyev (2011); Monnai (2018)). The advantage of the hy-

drodynamic approach is that it is universal and may be applicable to a wide range

of locally equilibrated system, i.e., when the particles are no longer free-streaming

like or weakly interacting. The usual disadvantages are excessive abstractness, inap-

plicability to thermal and dissipative cases in the first category, or proliferation of

coefficients that require additional equations of state in the second category.

Let us illustrate how thermodynamic considerations can constrain a chiral hy-

drodynamic theory (Son and Surówka (2009)). The usual ingredients of any hydro-

dynamic theory is a stress-energy (energy-momentum) tensor T µν and four-current
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jµ:

T µν = (ε+ P )uµuν + Pgµν + τµν , (1.19)

jµ = nuµ + νµ. (1.20)

The corresponding conserved quantities satisfy the continuity equations:

∂µT
µν = F νλjλ, (1.21)

∂µj
µ = CEµBµ, (1.22)

where ε is the energy density, P is the pressure, n is the charge density, uµ is the local

fluid velocity flow satisfying uµu
µ = 1, parameters τµν and νµ incorporate dissipative

contributions, and C is the quantum anomaly coefficient, which we left unspecified

for now. Here we consider the plasma with particles of only one chirality (either right-

or left-handed).

From the thermodynamic considerations we require the identity ε+ P = Ts+ µn

and the existence of an entropy current sµ such that ∂µs
µ ≥ 0. Using the conservation

equations it is possible to derive the following equality:

∂µ

(
suµ − µ

T
νµ
)

= − 1

T
∂µuντ

µν − νµ
(
∂µ
µ

T
− Eµ

T

)
− C µ

T
EB. (1.23)

In the non-anomalous case, C = 0, it is usually interpreted as the entropy production

equation. Assuming it keeps the same physical meaning in the presence of anomaly,

from the non-negativity condition one finds:

τµν = −η∆µα∆νβ(∂αuβ + ∂βuα)−
(
ζ − 2

3
η

)
∆µν(∂αu

α), (1.24)

νµ = −σT∆µν∂ν

(µ
T

)
+ σEµ, (1.25)

where ∆µν = gµν − uµuν is a transverse projector and, as usual, η and ζ are bulk

and shear viscosities, and σ is conductivity. However, the anomalous term in the
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entropy production equation can have either sign and may even dominate the others.

Therefore, in order to ensure the entropy production positivity the hydrodynamic

equations have to be modified.

The most general modification one can make to the charge and entropy currents

is:

νµ = −σT∆µν∂ν

(µ
T

)
+ σEµ + ξωω

µ + ξBB
µ, (1.26)

sµ = suµ − µ

T
νµ +Dωω

µ +DBB
µ. (1.27)

Now the entropy production positivity condition ∂µs
µ ≥ 0 produces an even more

stringent set of constraints, which completely fixes the CVE and CME coefficients:

ξω = C

(
µ2 − 2

3

nµ3

ε+ P

)
, ξB = C

(
µ− 1

2

nµ2

ε+ P

)
. (1.28)

This example illustrates how using just basic thermodynamic considerations one

can derive the chiral magnetic and the chiral vortical effects in chiral hydrodynamic

plasma without any microscopical input. In general, however, chiral magnetohy-

drodynamics requires also the equation of state and the specific knowledge of all

dissipative transport coefficients. Moreover, beyond the first order in derivatives and

fields, magnetohydrodynamic description will contain many more coefficients, which

cannot be uniquely fixed without any additional input.
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Chapter 2

DERIVATION OF CHIRAL HYDRODYNAMICS

2.1 Lorentz covariant chiral kinetic theory

In this section we derive a closed system of chiral hydrodynamic equations from

the covariant version of the CKT (Hidaka et al. (2017, 2018)). The latter was ob-

tained from the quantum-field theoretic formulation of massless QED by applying the

Schwinger-Keldysh formalism. In the corresponding description, the lesser/greater

propagators are directly connected to the Wigner function. Unlike the early heuris-

tic approaches based on the Wigner function for noninteracting fermions (Gao et al.

(2012); Chen et al. (2013)), the derivation by Hidaka et al. (2017, 2018) not only

accounts for background electromagnetic fields but also includes the effects of inter-

actions. A similar description might also be possible by using the on-shell effective

field theory that was recently proposed by Carignano et al. (2018).

When dealing with charged plasmas in the hydrodynamic regime, the electromag-

netic fields should be treated as fully dynamical, even in the static and steady-state

cases. This implies that the commonly used background field approximation is not

reliable in investigations of hydrodynamic modes. Therefore, in our study below, we

supplement the equations for the hydrodynamic variables with the coupled Maxwell

equations for the electromagnetic fields. As we will demonstrate below, such a self-

consistent treatment will be important not only for the correct description of the

hydrodynamic modes but also for identifying the global equilibrium state in a mag-

netized relativistic plasma with nonzero vorticity.

In order to capture dissipative effects, we should start our derivation from the
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CKT that takes particle interactions into account. Instead of introducing a complete

particle collision integral, however, we will utilize the so-called relaxation-time ap-

proximation. From the viewpoint of the resulting hydrodynamic description, which

assumes a local thermal equilibrium on sufficiently short distance scales, this should

be an adequate approximation. It should be noted, however, that enforcing Lorentz

invariance in the relaxation-time approximation is far from trivial (Hidaka and Yang

(2018)). Traces of this problem will also show up in our derivation below where we will

find that the consistency of hydrodynamic equations (2.18)–(2.20) requires a special

choice of the reference frame.

In order to set up the notations, let us start from a short introduction into the

formalism used by Hidaka et al. (2017, 2018). By definition, the Wigner function of

Weyl fermions is given by Wαβ(p, x) = (2π)3〈ψ†β(x)δ4(p̂− p)ψα(x)〉, where α, β = 1, 2

are the spinor indices, p̂µ ≡ i
2

(
∂µ − ∂†µ

)
, and ψ(x) is a second quantized Weyl spinor of

a given chirality. (For a general overview of the Wigner function formalism, see Vasak

et al. (1987).) Since the Wigner function is a matrix in the spinor space, it can be

conveniently represented in terms of the Pauli matrices, i.e., W (p, x) = W µ(p, x)σµ,

where σµ = (1, ~σ). The four-vector W µ(p, x) is related to the phase-space density of

the number density current of chiral fermions with momentum p at position x. As

we will see below, therefore, one can also relate the trace of the Wigner function to

the (quasi)classical distribution function of chiral particles.

In general, we will consider chiral plasmas that are made of fermions of both

chiralities, denoted by λ = ±1, where the plus (minus) sign corresponds to the right-

handed (left-handed) fermions. In the following, we will assume that fermions of

each chirality are described by independent Wigner functions or, in other words, that

W (p, x) depends on the chirality index λ. For simplicity of the notation, however,

such a dependence will not be displayed explicitly, although it will always tacitly be
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assumed.

The quasiclassical solution for the Wigner function can be obtained iteratively

by using the expansion in powers of ~ (Hidaka et al. (2017, 2018)). The zeroth

order result, in particular, is given by W µ
(0)(p, x) = pµδ(p2)f(p, x), where function

f(p, x) satisfies the relativistic Boltzmann equation for an ideal gas in a background

electromagnetic field, i.e., pµDµf(p, x) = 0. Here, the phase space derivative is defined

by Dµ = ∂/∂xµ − eF µν∂/∂pν and F µν is the electromagnetic field strength tensor.

The function f(p, x) can be interpreted as a particle distribution function.

To the linear order in ~, the distribution function f(p, x) satisfies the following

covariant CKT equation (Hidaka et al. (2017, 2018)):

DµW µ(p, x) = δ(p2)p · C + λ~eF̃ µνCµpνδ
′(p2), (2.1)

where F̃ µν = 1
2
εµναβFαβ is the dual of the field strength tensor and W µ(p, x) is the

Wigner function with the corrections up to subleading order. The explicit form of

the latter is given in terms of f(p, x) as follows:

W µ(p, x) ≡ pµδ(p2)f + λ~Sµνδ(p2)(Dνf − Cν) + λ~eF̃ µνpνδ
′(p2)f +O(~2) (2.2)

Here, Sµν = 1
2
εµναβpαuβ/(p · u) is a particle spin tensor and Cµ is a collision operator

which will be defined later. Note that the spin tensor is expressed in terms of a

timelike four-vector uµ(x) that defines the local frame.

It is instructive to review the physical meaning of the individual terms on the right-

hand side of Eq. (2.2). The first one, which gives the zeroth order result, describes the

classical free particle streaming. The second term captures the spin-orbit interaction

and the effects of collisions. It is critical for the chiral vortical effect and the current

connected with side jumps (see also Chen et al. (2014)). The third term on the right-

hand side of Eq. (2.2) describes the interaction of the magnetic moment with the
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background field and is responsible for the chiral magnetic effect. We also note that

the first two terms enforce the conventional massless dispersion relation for chiral

fermions, i.e., p2 = 0, whereas the last one accounts for quantum corrections to the

dispersion relation.

As mentioned earlier, we will treat the collisions in the CKT by employing the

relaxation-time approximation. In this approximation, the Lorentz covariant collision

operator has a particularly simple form Cµ = −uµ(f−feq)/τ , where τ is the relaxation

time and feq(p, x) is the equilibrium distribution function (Hidaka and Yang (2018)).

In this case, SµνCν ≡ 0 and, therefore, the side-jump term in the Wigner function

vanishes. After taking into account Eq. (2.2), the CKT equation (2.1) takes a rather

simple form, i.e.,

DµW µ = −
uµ(W µ −W µ

eq)

τ
, (2.3)

where W µ
eq is the Wigner function, associated with the equilibrium state. For the

equilibrium distribution function in the local frame of the fluid, we will assume the

usual Fermi-Dirac distribution, i.e.,

feq(p, x) =
1

1 + esign(p0)(εp−µλ)/T
. (2.4)

Note that the chirality index λ (not to be confused with a Lorentz index) is shown

explicitly in the chemical potential µλ ≡ µ + λµ5, where µ is the fermion number

chemical potential and µ5 is the chiral chemical potential. By definition, the particle

dispersion relation is given by

εp = uµp
µ +

λ~
2

p · ω
p · u

, (2.5)

where ωµ = 1
2
εµναβuν∂αuβ is the local vorticity (Hidaka et al. (2017, 2018)). The

vortical term in Eq. (2.5) accounts for the spin-orbit coupling and, as suggested by

its dependence on ~, has a quantum origin. In order to describe both particles (with
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p0 > 0) and antiparticles (with p0 < 0), we introduced the energy sign factor, sign(p0),

in the exponent of the distribution function (2.4).

Note, that any information about the equilibrium plasma polarization is incorpo-

rated in the vorticity in the second term of the dispersion (2.5). As we will see later

this leads to certain subtleties with the fluid velocity uµ, in particular, the necessity to

use an unconventional no-drag reference frame with a non-trivial relation between the

heat-flow and velocity in Eq. (2.20). It has been speculated by Becattini et al. (2019),

however, that in certain situations the total angular momentum of the plasma can

be promoted to an independent thermodynamic and hydrodynamic quantity with a

separate contribution to the dispersion. This may disentangle the fluid velocity from

the polarization and lead to a more intuitive physical picture.

2.2 First-order chiral hydrodynamics

As is clear from Eqs. (2.4) and (2.5), the local equilibrium state is determined by

six independent parameters, i.e., the local temperature T (x), the two local chemical

potentials µλ(x) (for the two species of fermions with opposite chiralities), and three

(out of total four) independent components of the local rest-frame velocity uµ(x),

constrained by the normalization condition uµuµ = 1. These parameters fully describe

the local thermodynamic state of a chiral plasma. It might be important to emphasize

that we will treat the plasma, which is made of two types of particles of opposite

chirality, as a one-component fluid. This means that the local equilibrium state is

characterized by the same common temperature and fluid velocity independent of

the chirality. However, we will allow for the chemical potentials of opposite chirality

fermions to be different. The corresponding hydrodynamic regime can be justified

when the chirality-changing (anomalous) processes are sufficiently rare, i.e., when

the rate of the thermal (kinetic) equilibration is much faster than the rate of the
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anomalous processes. From a theoretical viewpoint, this is a particularly interesting

regime as it allows for the chiral effects to be realized and observed in quasiclassical

systems.

In essence, the hydrodynamic equations are nothing else but the continuity equa-

tions for the conserved quantities. In the case of a charged chiral plasma, they are the

fermion number and chiral charge currents, as well as the energy-momentum tensor.

(Note that here we use the fermion number current jµ instead of the electric current

jµel ≡ ejµ.) In terms of the chiral Wigner functions, the corresponding quantities are

given as follows (Vasak et al. (1987)):

jµ = 2
∑
λ

∫
d4p

(2π~)3
W µ, (2.6)

jµ5 = 2
∑
λ

λ

∫
d4p

(2π~)3
W µ, (2.7)

T µν =
∑
λ

∫
d4p

(2π~)3
(W µpν + pµW ν). (2.8)

It might be instructive to note that these expressions contain an additional depen-

dence on the Planck constant ~ entering through the phase-space measure. Such

a dependence is not connected with the use of the quasiclassical approximation for

the Wigner function, but simply accounts for a correct number of microstates in any

given macrostate. Interestingly, the same dependence on ~ in the phase-space measure

should appear even in the classical theory, although it usually drops out from many

classical observables and thermodynamic relations. In our study of a chiral plasma,

however, an explicit dependence on ~ will remain in most thermodynamic quantities,

including the particle and energy densities, the pressure, and transport coefficients.

(For explicit expressions of some thermodynamic quantities, see Appendix A.)

Before proceeding further, it is useful to comment on several possible definitions

of the local rest frame uµ(x) in chiral fluids. In relativistic hydrodynamics, the most
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common choices of local frames are the so-called Eckart frame, connected with the

conserved charge (e.g., the fermion number or the electric charge) current (uµ ‖ jµ),

and the Landau frame, connected with the energy flow (uµ ‖ T µνuν). In the case

of chiral fluids, however, the preferred choice might be the so-called no-drag frame

introduced by Rajagopal and Sadofyev (2015); Stephanov and Yee (2016); Sadofyev

and Yin (2016). The local thermal equilibrium in the corresponding frame is described

by the usual Fermi-Dirac distribution function. This is also the choice that we assume

here.

By making use of the local rest frame of the fluid uµ, it is convenient to decompose

the currents in terms of the longitudinal and transverse components, i.e.,

jµ = nuµ + νµ, (2.9)

jµ5 = n5u
µ + νµ5 , (2.10)

where n = jµuµ and n5 = jµ5 uµ are the fermion number and chiral charge densities,

respectively. The transverse currents, νµ = ∆µνjν and νµ5 = ∆µνj5,ν , are obtained

by removing the longitudinal components of the corresponding four-currents with the

help of the projection operator ∆µν ≡ gµν − uµuν . Here it might be appropriate

to mention in passing that, in the case of chiral fluids, the currents νµ and νµ5 may

contain not only the usual dissipative contributions but also anomalous nondissipative

ones that originate from quantum anomalies.

Indeed, let us calculate the currents in the equilibrium by substituting the dis-

tribution function from Eq. (2.4) into the definitions (2.6)-(2.7). The result can be

found using the integrals from Appendix A:

neq =
µ(µ2 + 3µ2

5 + π2T 2)

3π2~3
, νµeq = σωω

µ + σBB
µ, (2.11)

n5,eq =
µ5(µ2

5 + 3µ2 + π2T 2)

3π2~3
, νµ5,eq = σ5

ωω
µ + σ5

BB
µ, (2.12)
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where the densities neq and n5,eq coincide with the ones for an ideal massless non-chiral

fluid. The chiral nondissipative contributions to the currents νµeq and νµ5,eq include the

celebrated chiral magnetic effect (Fukushima et al. (2008); Vilenkin (1980a); Metl-

itski and Zhitnitsky (2005)) and chiral vortical effect (Vilenkin (1978, 1979, 1980b);

Erdmenger et al. (2009); Banerjee et al. (2011); Son and Surówka (2009); Isachenkov

and Sadofyev (2011); Neiman and Oz (2011); Landsteiner et al. (2011)). The corre-

sponding anomalous transport coefficients are given by

σω =
µµ5

π2~2
, σB = e

µ5

2π2~2
, (2.13)

σ5
ω =

3(µ2 + µ2
5) + π2T 2

6π2~2
, σ5

B = e
µ

2π2~2
. (2.14)

The analogous decomposition for the energy-momentum tensor reads

T µν = εuµuν −∆µνP + (hµuν + uµhν) + πµν , (2.15)

where ε = T µνuµuν is the energy density, P = ∆µνT
µν/3 is the pressure, hµ =

∆µαTαβuβ is the energy flow (or, equivalently, the momentum density vector), and

πµν = ∆µν
αβT

αβ is the dissipative part of the energy-momentum tensor, which is defined

in terms of the traceless four-index projection operator ∆µν
αβ = 1

2
∆µ
α∆ν

β + 1
2
∆µ
β∆ν

α −
1
3
∆µν∆αβ.

We note that, by making use of the definition of the energy-momentum tensor (2.8)

and the Wigner function (2.2), one can derive the well-known equation of state for an

ideal gas of massless fermions: P = ∆µνT
µν/3 = ε/3. In such an approximation, the

speed of sound is cs = 1/
√

3. In a more realistic case of interacting massless fermions,

the value of c2
s is expected to be somewhat smaller than 1/3, but usually not much.

Indeed, even in a strongly interacting quark-gluon plasma, the value of c2
s is found to

be about 0.25 to 0.3 for almost all temperatures above the deconfinement transition

(Bazavov et al. (2014)). Moreover, c2
s increases with temperature and reaches within

10% of the ideal gas value already at T ' 350 MeV.
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In our study here, we address the qualitative features of collective modes and the

role of dynamical electromagnetism in the chiral hydrodynamics framework. Since a

specific value of the sound velocity in this context is not of much importance, it will

be sufficient for us to use the simplest equation of state of an ideal massless gas. It

will also be clear that none of our qualitative results will change if a more complicated

equation of state is used.

Analogously to the currents one can find the energy-momentum tensor in the

equilibrium by substituting the distribution function from Eq. (2.4) into the definition

(2.8). The resulting parameters are:

εeq =
µ4 + 6µ2µ2

5 + µ4
5

4π2~3
+
T 2(µ2 + µ2

5)

2~3
+

7π2T 4

60~3
, hµeq = ξωω

µ + ξBB
µ, (2.16)

where the energy density is again coincide with the one for the ideal non-chiral mass-

less fluid and Peq = εeq/3. The equilibrium heat current hµeq is again nondissipative

with contributions from the energy counterparts of the chiral magnetic and vortical

effects. These are controlled by the coefficients:

ξω =
µ5 (µ2

5 + 3µ2 + π2T 2)

3π2~2
, ξB = e

µµ5

2π2~2
. (2.17)

By calculating the divergences of the current densities, defined in Eqs. (2.6) and

(2.7) in terms of the Wigner function, and the energy-momentum tensor in Eq. (2.8)

and then taking also the CKT equation (2.3) into account, we obtain the following

relations:

∂µj
µ = −1

τ
(n− neq), (2.18)

∂µj
µ
5 +

e2

8π2~2
F µνF̃µν = −1

τ
(n5 − n5,eq), (2.19)

∂νT
µν − eF µνjν = −u

µ

τ

(
ε− εeq +

~
2
ων(ν

ν
5 − νν5,eq)

)
−1

τ

(
hµ − hµeq −

~
4
εµαβγuαu̇β(ν5,γ − νeq

5,γ)

)
, (2.20)
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where u̇β = uα∂αuβ. Of course, the correct forms of the corresponding continuity

equations in the chiral plasma should have the vanishing right-hand sides. This is

clearly not the case for Eqs. (2.18)–(2.20) derived from the CKT in the relaxation-

time approximation. In fact, this is a well-known artifact of such an approximation

(Anderson and Witting (1974)). The root of the problem lies in the equilibrium

distribution function, which is used in the definition, but was not fully specified

yet. The conservation laws are enforced by imposing the following self-consistency

conditions (Anderson and Witting (1974)):

n = neq, (2.21)

n5 = n5,eq, (2.22)

ε+
~
2
ωµν

µ
5 = εeq +

~
2
ωµν

µ
5,eq, (2.23)

hµ − ~
4
εµαβγuαu̇βν5,γ = hµeq −

~
4
εµαβγuαu̇βν5,eq,γ. (2.24)

These can be viewed as the defining relations for the local equilibrium parameters T ,

µλ, and uµ in terms of the local values of the fermion number density n, the chiral

charge density n5, the energy density ε, and the momentum density hµ. Alternatively,

the above conditions specify the local fermion number density, the chiral charge den-

sity, the energy density, and the momentum density, respectively, in terms of the local

equilibrium values of T , µλ, and uµ.

Before proceeding further with the derivation, it is instructive to mention that

the second term in Eq. (2.19) describes the chiral anomaly, which explicitly breaks

the conservation of the chiral charge. In principle, Eq. (2.19) may also contain a sim-

ilar anomalous contribution from the non-Abelian gauge fields. In fact, it is known

that non-Abelian topological configurations could play an important role in heavy-

ion collisions. For example, they may produce metastable P- and CP-odd domains

with a nonzero chiral imbalance that could be detected via the chiral magnetic ef-
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fect (Kharzeev (2006); Kharzeev et al. (2008)). Additionally, the non-Abelian gauge

configurations with parallel chromoelectric and chromomagnetic fields could play an

important role in the early (“glasma”) stage of heavy-ion collisions (Lappi and McLer-

ran (2006)). In the hydrodynamic description used here, however, we do not include

such effects explicitly. In the long-wavelength limit, they are captured effectively by

inclusion of a nonzero chiral chemical potential.

The dissipative components of the currents and the energy-momentum tensor,

i.e., νµ, νµ5 , and πµν , can be calculated in the first order of gradients by using the

gradient-expansion solution to the CKT equation (2.3), i.e.,

f = feq −
τ

p · u
p · Dfeq +O(τ 2D2). (2.25)

By substituting this distribution function into the definitions in Eqs. (2.6)–(2.8),

calculating the integrals over the momenta using the formulas in Appendix A, and

then extracting the longitudinal and transverse components, we derive the following

results up to terms O(~2, ~τD, τ 2D2):

νµ = νµeq +
τ

3
∇µn− τ u̇µn+

1

e
σEE

µ, (2.26)

νµ5 = νµ5,eq +
τ

3
∇µn5 − τ u̇µn5 +

1

e
σ5
EE

µ, (2.27)

πµν =
8τε

15
∆µν
αβ(∂αuβ), (2.28)

where νµeq and νµ5,eq are the anomalous nondissipative contributions present even in

the equilibrium. Their explicit form is given in Eqs. (2.13)-(2.14). Note that, by

definition, ∇µ ≡ ∆µν∂ν = ∂µ − uµuν∂ν and σE is the conventional (positive definite)

electrical conductivity that appears in Omh’s law, i.e., jµel ≡ eνµ = σEE
µ. Also, the

electric and magnetic fields in the local fluid frame are given by Eµ = F µνuν and

Bµ = F̃ µνuν , respectively.

In the relaxation-time approximation used here, the expressions for the two types
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of dissipative conductivities in Eqs. (2.26) and (2.27) are given by

σE = τe2 3(µ2 + µ2
5) + π2T 2

9π2~3
, (2.29)

σ5
E = τe2 2µµ5

3π2~3
. (2.30)

Furthermore, after taking into account the self-consistency conditions (2.21)–(2.24),

we arrive at the following first-order hydrodynamic equations:

ṅ+ n∂µu
µ + ∂µν

µ = 0, (2.31)

ṅ5 + n5∂µu
µ + ∂µν

µ
5 = − e2

2π2~2
EµBµ, (2.32)

ε̇+ (ε+ P )∂µu
µ + ∂µh

µ + uµḣ
µ − πµν∂µuν = −eEµνµ, (2.33)

(ε+ P )u̇µ −∇µP + hα∂αu
µ + hµ(∂αu

α)

+∆µ
αḣ

α + ∆µ
α∂βπ

αβ = εµναβννuαeBβ + eEµn. (2.34)

Here and later in the text we will denote a comoving derivative with a dot over a

symbol, i.e., Ẋ ≡ uµ∂
µX. Finally, by recalling that the electromagnetic fields should

be treated as fully dynamical in charged plasmas, the above set of equations should

be supplemented by the Maxwell equations, i.e.,

∂νF
νµ = enuµ + eνµ − enbgu

µ
bg, (2.35)

as well as the Bianchi identity, ∂νF̃
νµ = 0. Note that Eq. (2.35) captures both

the Gauss and the Ampere laws. In writing down the corresponding equations, we

assumed that, in general, the total electric current density may include a nonzero

contribution from a static nonchiral background, ρµbg = enbgu
µ
bg. Such a contribution

could play an important role, for example, in cases when a nonzero electric charge

of the chiral plasma is compensated by a neutralizing background charge of heavy

(possibly nonrelativistic) particles.

By taking into account the constraint for the flow velocity four-vector, uµuµ = 1,

it should be clear that not all of hydrodynamic equations (2.31)–(2.34) are truly
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independent. Also, by noting that uµEµ = uµBµ = 0, we find that two out of the total

eight equations (including the Bianchi identity) for the electromagnetic field strength

tensor are redundant. In fact, as one can check, there are a total of 12 independent

equations for 12 variables (i.e., six hydrodynamic variables and six components of

the electromagnetic field) that govern the hydrodynamic evolution of charged chiral

plasma.

2.3 Higher-order chiral hydrodynamics

The set of conservation equations (2.31)-(2.34) found in the previous section gov-

erning a chiral plasma contains eleven independent dissipative parameters νµ, νµ5 ,

and πµν , which have to be specified separately. In the first order in gradients this

can be done using the kinetic equation rewritten as Eq. (2.25); the result is given

by Eqs. (2.26)-(2.28). However, if one tries to extend the same procedure to the

second and higher orders, the resulting system generally turns out to be non-causal

and singular (Hiscock and Lindblom (1983); Denicol et al. (2008); Pu et al. (2010)).

This problem was recognized a long time ago and is usually solved by promoting

the mentioned above dissipative parameters to independent degrees of freedom - a

method proposed by Israel (1976) and Israel and Stewart (1979). In order to close the

system the evolution equations for these new degrees of freedom are then have to be

truncated using some approximation scheme. The most common schemes used are a

14-moment approximation (Denicol et al. (2012)), which truncates the system by ne-

glecting higher-order in momentum correlation functions, and the Chapman-Enskog

method (Chapman and Cowling (1970)), which uses an iterative solution to the ki-

netic equation. In this section we will follow the latter scheme in an approach similar

to that by Jaiswal (2013b), by first deriving the second-order chiral hydrodynamics

and then using it to come up with a system encapsulating effectively infinitely many
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orders. Note, however, that our analysis deals with a neutral chiral plasma, the case

of charged chiral plasma will be addressed in the future projects.

Let us start by rewriting the kinetic equation (2.3) in the following form:

δ(p2)

[
ḟ +

f

τ

]
= δ(p2)

[
feq

τ
− p · ∇f

p · u
− λ~
p · u

(∂σS
σρ)∂ρf

]
+O(~)2. (2.36)

Using the definitions for the dissipative functions, νµ = ∆µ
νj

ν , νµ5 = ∆µ
νj

ν
5 , and

πµν = ∆µν
αβT

αβ, we can express their comoving derivatives to the linear order in ~ in

the following form:

ν̇〈µ〉 = −u̇µn+ ∆µ
ν

∑
λ

∫
pν ḟ

+ ~∆µ
ν

∑
λ

λ

∫ [
Sνα∂αḟ − Sνα(∂αu

β)∂βf + Ṡνα∂αf
]
, (2.37)

ν̇
〈µ〉
5 = −u̇µn5 + ∆µ

ν

∑
λ

λ

∫
pν ḟ

+ ~∆µ
ν

∑
λ

∫ [
Sνα∂αḟ − Sνα(∂αu

β)∂βf + Ṡνα∂αf
]
, (2.38)

π̇〈µν〉 = −2∆µν
αβh

αu̇β + ∆µν
αβ

∑
λ

∫
pαpβ ḟ

+ ~∆µν
αβ

∑
λ

λ

∫ [
pαSβγ∂γ ḟ − pαSβγ(∂γuδ)∂δf + pαṠβγ∂γf

]
, (2.39)

where, by definition, the quantities with the Lorentz indices in angle brackets are

the projections of the corresponding quantities onto the subspace orthogonal to the

four-velocity, i.e., ν̇〈µ〉 ≡ ∆µ
αν̇

α and π̇〈µν〉 ≡ ∆µν
αβπ̇

αβ. We also introduced a short-hand

notation: ∫
X ≡

∫
d4p

(2π~)3
2 δ(p2)X. (2.40)

The use of projectors here is needed in order to force the dissipative current densities

and the shear stress tensor to remain consistent with their generic definitions. This

can be also viewed as a necessary condition for a self-consistent truncation of the

evolution equations.
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By making use of the kinetic equation (2.36), the relations for the comoving deriva-

tives, Eqs. (2.41)–(2.43), can be equivalently rewritten as follows:

ν̇〈µ〉 +
νµ

τ
= −u̇µn+ ∆µ

ν

∑
λ

∫
pν
(
feq

τ
− p · ∇f

p · u
− λ~
p · u

(∂σS
σρ)∂ρf

)
+ ~∆µ

ν

∑
λ

λ

∫ [
Sνα∂α

(
feq

τ
− p · ∇f

p · u

)
− Sνα(∂αu

β)∂βf + Ṡνα∂αf
]
, (2.41)

ν̇
〈µ〉
5 +

νµ5
τ

= −u̇µn5 + ∆µ
ν

∑
λ

λ

∫
pν
(
feq

τ
− p · ∇f

p · u
− λ~
p · u

(∂σS
σρ)∂ρf

)
+ ~∆µ

ν

∑
λ

∫ [
Sνα∂α

(
feq

τ
− p · ∇f

p · u

)
− Sνα(∂αu

β)∂βf + Ṡνα∂αf
]
, (2.42)

π̇〈µν〉 +
πµν

τ
= −2∆µν

αβh
αu̇β + ∆µν

αβ

∑
λ

∫
pαpβ

(
feq

τ
− p · ∇f

p · u
− λ~
p · u

(∂σS
σρ)∂ρf

)
+ ~∆µν

αβ

∑
λ

λ

∫ [
pαSβγ∂γ

(
feq

τ
− p · ∇f

p · u

)
− pαSβγ(∂γuδ)∂δf + pαṠβγ∂γf

]
,

(2.43)

These equations for dissipative functions contain the distribution function f . In order

to obtain a closed set of equations, the right-hand sides of the equations above should

be reexpressed in terms of the hydrodynamic variables and dissipative functions. To

achieve this, we replace the distribution function with its iterative solution from the

kinetic equation Eq. (2.3) in the form:

f ' feq −
τ

p · u
p · ∂feq +O(∂2), (2.44)

where only one order is sufficient for the second-order hydrodynamics. We then

further approximate the equilibrium distribution function by its expansion to the

linear order in ~ using Eq. (2.4):

feq ' f0 +
λ~
2

pµωµ
p · u

f ′0 +O(~2), (2.45)

where f0 is the equilibrium function at a vanishing vorticity and f ′0 ≡ ∂f0/∂εp,0 =

−∂f0/∂µλ. Now, by using the moments of the equilibrium distribution function from
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Appendix A, we rewrite the evolution equations for the dissipative functions in the

following form:

ν̇〈µ〉 +
νµ

τ
= −u̇µn+

∑
λ

[
1

3
∇µI3 + λ

~
τ
ωµI2

− 2τ

5
∇µ(∂ · u)I3 −

7τ

15
(∂ · u)∇µI3 + τ u̇µ(∂ · u)I3 +

4τ

5
u̇ρ(∂ρu

µ)I3 −
τ

3
∇µİ3

− 7τ

15
(∇ρu

µ)∇ρI3 −
2τ

5
(∇µuρ)u̇

ρI3 −
2τ

15
(∇µuρ)∂ρI3 −

τ

5
∆µ
ν (∂ · ∂uν)I3 +

τ

5
∆µ
ν ü

νI3

− λ14~
15

ωµ(∂ · u)I2 − λ
14~
15

ων(∂νu
µ)I2 + λ

~
15
ων(∇µuν)I2 − λ

2~
3
ωµİ2

+ λ
~
6
εµναβuαu̇β∂νI2 − λ

~
3
εµναβuβ(∂νu

ρ)(∂ρuα)I2

]
, (2.46)

ν̇
〈µ〉
5 +

νµ5
τ

= −u̇µn5 +
∑
λ

λ

[
1

3
∇µI3 + λ

~
τ
ωµI2

− 2τ

5
∇µ(∂ · u)I3 −

7τ

15
(∂ · u)∇µI3 + τ u̇µ(∂ · u)I3 +

4τ

5
u̇ρ(∂ρu

µ)I3 −
τ

3
∇µİ3

− 7τ

15
(∇ρu

µ)∇ρI3 −
2τ

5
(∇µuρ)u̇

ρI3 −
2τ

15
(∇µuρ)∂ρI3 −

τ

5
∆µ
ν (∂ · ∂uν)I3 +

τ

5
∆µ
ν ü

νI3

− λ14~
15

ωµ(∂ · u)I2 − λ
14~
15

ων(∂νu
µ)I2 + λ

~
15
ων(∇µuν)I2 − λ

2~
3
ωµİ2

+ λ
~
6
εµναβuαu̇β∂νI2 − λ

~
3
εµναβuβ(∂νu

ρ)(∂ρuα)I2

]
, (2.47)

π̇〈µν〉 +
πµν

τ
= −2∆µν

αβh
αu̇β + ∆µν

αβ

∑
λ

[
8

15
(∂αuβ)I4

− 32τ

35
(∂αuβ)(∂ · u)I4 −

8τ

15
∂α(u̇βI4)− 16τ

35
(∇ρu

α)(∇ρuβ)I4 −
8τ

21
(∂αuρ)(∂ρuβ)I4

+
2τ

15
∂α∂βI4 −

2τ

3
(∂αuβ)İ4 +

8τ

105
(∂αuρ)(∂

βuρ)I4

+ λ
~
5

(∂αωβ)I3 + λ
7~
15
ωα∂βI3 + λ

~
5
u̇αωβI3 + λ

~
10
εβσρδuδ∂σ(I3∇αuρ)

+ λ
~
10
εβσρδuδ(∂σu

α)∂ρI3 + λ
~
5
u̇αεβσρδuρ(∂σuδ)I3 + λ

~
5
εβσρδuσu̇ρ(∂δu

α)I3

]
.

(2.48)
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As is easy to check, these equations for dissipative functions are sufficient to close the

whole system of equations of the second-order dissipative hydrodynamics. Indeed, we

have Eqs. (2.31)–(2.34) for hydrodynamic variables n, n5, ε, and hµ. Note also that

the thermodynamic pressure is defined by the corresponding constitutive equation,

P = ε/3. The corresponding equations are supplemented by Eqs. (2.46)–(2.48) for

functions νµ, νµ5 , and πµν . According to Eqs. (A.8)–(A.10) in Appendix A, quantities

I2, I3, and I4 on the right-hand side of Eqs. (2.46)–(2.48) are expressed through the

local equilibrium chemical potentials µ, µ5 and temperature T , which in turn could

be expressed through the local values of n, n5, and ε, respectively; see the constraints

in Eqs. (2.21)–(2.23).

The right-hand side of the equations for dissipative functions can be further sim-

plified by making use of the following first-order relations:

νµ =
∑
λ

[
λ~ωµI2 +

τ

3
∇µI3 − τ u̇µI3

]
+O(∂2), (2.49)

νµ5 =
∑
λ

λ
[
λ~ωµI2 +

τ

3
∇µI3 − τ u̇µI3

]
+O(∂2), (2.50)

πµν =
∑
λ

8τ

15
∆µν
αβ(∂αuβ)I4 +O(∂2), (2.51)

which follow from Eqs. (2.46)–(2.48). (Let us note in passing that the above first-

order relations define the diffusion constant and the shear viscosity in terms of the

relaxation time: D = τ/3 and ζ = 8τε/15, respectively.) Indeed, by making use of

these equations as well as the continuity equations in the leading order in derivatives,

we can reexpress most of the terms with an explicit dependence on the relaxation

time in Eqs. (2.46)–(2.48) in terms of the hydrodynamic functions themselves. After

doing this, the final set of equations for dissipative functions takes a simpler form,
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i.e.,

ν̇〈µ〉 +
νµ − νµeq

τ
= −u̇µn+

1

3
∇µn− n

ε+ P
∆µν∂ρπρν − νρωρµ − (∂ · u)νµ

− 9

5
(∂〈µuρ〉)νρ +

14

15
(∇〈µuρ〉)νeq,ρ −

2

9
(∂ · u)νµeq

− 2~
3
ωµ
∑
λ

λİ2 +
∑
λ

λ
~
6
εµναβ [uαu̇β∂νI2 − 2uβ(∂νu

ρ)(∂ρuα)I2] ,

(2.52)

ν̇
〈µ〉
5 +

νµ5 − ν
µ
5,eq

τ
= −u̇µn5 +

1

3
∇µn5 −

n5

ε+ P
∆µν∂ρπρν − ν5,ρω

ρµ − (∂ · u)νµ5

− 9

5
(∂〈µuρ〉)ν5,ρ +

14

15
(∇〈µuρ〉)ν5,eq,ρ −

2

9
(∂ · u)νµ5,eq

− 2~
3
ωµ
∑
λ

İ2 +
∑
λ

~
6
εµναβ [uαu̇β∂νI2 − 2uβ(∂νu

ρ)(∂ρuα)I2] ,

(2.53)

π̇〈µν〉 +
πµν

τ
= −2h〈µu̇ν〉 + 2π〈µρ ω

ν〉ρ − 10

7
π〈µρ σ

ν〉ρ − 4

3
πµν∂αu

α

+
8

15
(∂〈µuν〉)ε+

~
5

(
(∂〈µων〉)n5 +

7

3
ω〈µ∂ν〉n5 − u̇〈µων〉n5

)
+

~
5

∆µν
αβε

βσρδ

[
1

2
uδ∂σ(n5∇αuρ) +

1

2
uδ(∂σu

α)∂ρn5 + uσu̇ρ(∂δu
α)n5

]
,

(2.54)

where σµν = ∂〈αuβ〉 = ∆µν
αβ(∂αuβ), ωµν = (∇µuν −∇νuµ)/2, and A〈µν〉 ≡ ∆µν

αβA
αβ. In

the derivation, we used the following relation:

1

ε+ P
∆µν∂ρπρν =

τ

5
∆µν(∂2uν)−

τ

5
∆µν üν +

τ

15
∇µ(∂ · u)

− 3τ

5
u̇µ(∂ · u) +

3τ

5
u̇ρ(∂ρu

µ) +
4τ

5
u̇ρ(∇µuρ) +O(∂3), (2.55)

which follows from Eq. (2.51) as well as the first-order continuity equations.

The set of second-order equations (2.52), (2.53), and (2.54) for dissipative func-

tions in a chiral plasma is the main result of this section. This is a generalization of
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the previous results by Anderson and Witting (1974); Denicol et al. (2010); Jaiswal

(2013a,b); Jaiswal et al. (2015), which were obtained for massless plasmas without a

chiral asymmetry (i.e., n5 = 0 and νµ5 = 0) and without ~ corrections due to the spin.

In the current study, in contrast, we treated the fermion chiralities as two components

of a relativistic fluid. The (approximate) conservation of the axial charge in the chiral

plasma gives rise to an additional continuity equation; see Eq. (2.53). Moreover, the

quantum effects of the chiral plasma are captured by the linear in ~ corrections in

the second-order theory.

Let us note here that by using Eqs. (2.49)–(2.51) to simplify the right hand sides

of Eqs. (2.46)–(2.48) we also effectively included higher-order terms (although not

all of them) into the system. Such an inclusion provides a “cheap” improvement

to the second-order hydrodynamics bringing it closer to higher-order approximations

without additional work (Jaiswal (2013a)). The same procedure can also be applied

to derive the third- and higher-order chiral hydrodynamics.
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Chapter 3

COLLECTIVE MODES IN CHIRAL PLASMAS

3.1 Equilibrium state

Before addressing the properties of collective modes in a magnetized chiral plasma

with nonzero vorticity, we should determine the unperturbed (equilibrium) state of

the corresponding system. In this section, we discuss how such a state is defined and

what its main properties are. We will assume that the chiral charge density n5,eq

vanishes in equilibrium (i.e., µ5 = 0). In the corresponding state, as one can see from

Eq. (2.30), the chiral electric separation effect is absent, i.e., σ5
E = 0, and several

anomalous transport coefficients are trivial, i.e., σω = σB = ξω = ξB = 0, as is clear

from Eqs. (2.13), (2.14) and (2.17).

Here it might be appropriate to mention that, despite the absence of an aver-

age chiral imbalance in equilibrium, it is still appropriate to call the corresponding

plasma “chiral.” Indeed, local fluctuations of the chirality imbalance can be generi-

cally induced by the anomalous processes triggered, for example, by collective modes.

Also, from a technical viewpoint, the use of chiral hydrodynamics in the description

implies that the additional (anomalous) chiral charge continuity relation is included

in the complete set of equations. The corresponding extra degree of freedom can

affect the dynamics and modify the properties of collective modes. We might also

add that, from a conceptual viewpoint, there is no qualitative difference between a

long-range hydrodynamic fluctuation and a nonzero local average of the chiral imbal-

ance. Formally, this is due to the fact that the hydrodynamic description assumes

local equilibrium even in the regions with slowly oscillating chiral imbalances induced
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by collective modes.

In order to address the effects of vorticity on hydrodynamic modes, we assume that

the background vorticity is approximately uniform on distance scales larger than the

wavelengths of the modes. Otherwise, of course, the vortical effects would average to

zero. In our study below, we model an isolated macroscopic region with approximately

uniform vorticity by a uniformly rotating plasma. Without loss of generality, we

assume that the plasma is confined to a cylindrical region of radius R and is uniformly

rotating with angular velocity Ω about the z axis. In this study, we will concentrate

primarily on the case with ΩR� 1. Note, however, that many considerations, at least

qualitatively, will remain valid even when ΩR . 1. For simplicity, we also assume

that the magnetic field B points along the same z axis. While this is clearly not the

most general configuration, it is expected to be relevant for applications in heavy-ion

collisions and the early universe, because the vorticity and magnetic field often tend

to be aligned.

For the uniformly rotating plasma, the local fluid velocity in the hydrodynamic

equilibrium ūν , satisfying ūν ūν = 1, is given by (Florkowski et al. (2018b)):

ūν = γ



1

−Ωy

Ωx

0


, (3.1)

where γ = 1/
√

1− Ω2r2 and r ≡ |r⊥| =
√
x2 + y2. Here and below, the notations

with bars, such as ūν , represent fields in hydrodynamic equilibrium. It should be noted

that ∂µū
µ = 0 and ∆µν

αβ(∂αūβ) = 0. At the same time, the radial component of the

acceleration is nonzero, ˙̄uµ = −γ2Ω2r⊥, as expected for a circular motion. The latter

may suggest, however, that some dissipative processes are unavoidable in a rotating

plasma (even if negligible to the linear order in Ω). Indeed, as one can see from
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Eqs. (2.26) and (2.27), a nonzero ˙̄uµ could potentially trigger dissipative currents.

As we will see below, this is not necessarily the case because the hydrodynamic

equilibrium state is radially nonuniform.

As is easy to check, the flow velocity in Eq. (3.1) is characterized by a nonzero

vorticity, i.e.,

ω̄µ =
1

2
εµναβūν∂αūβ = γ2Ωδµ3 . (3.2)

It should be mentioned here that, unless stated differently, all explicit expressions for

Lorentz vectors and tensors in the component form will be given from the viewpoint

of the laboratory frame. In order to obtain these quantities in the comoving frame,

one would need to perform the corresponding Lorentz transformation ū′µ = Λµ
ν ū

ν

and F̄ ′µν = Λµ
κΛ

ν
λF̄

κλ, where

Λµ
ν =



γ γΩy −γΩx 0

γΩy x2+γy2

r2
xy(1−γ)

r2
0

−γΩx xy(1−γ)
r2

γx2+y2

r2
0

0 0 0 1


. (3.3)

For example, for the fluid flow velocity, we obtain ū′µ = (1, 0, 0, 0), as expected in the

local comoving frame.

In the presence of a magnetic field, the definition of an equilibrium state of a

charged rotating plasma is far from trivial. For example, a naive assumption that, in

the lab frame, there is only a nonzero magnetic field pointing in the z direction is not

self-consistent. Indeed, for such a configuration, there would be nonzero electric fields

present in the comoving frame. Since such electric fields would drive nonvanishing dis-

sipative currents [see Eqs. (2.26) and (2.27)], it would imply that the thermodynamic

equilibrium is not reached in the local frame of the fluid.

In order to construct the global equilibrium state of the magnetized rotating

plasma, therefore, we require that the electric fields vanish in the local fluid frame,
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i.e., Ēµ ≡ F̄ µν ūν = 0. As for the magnetic field in the same local frame B̄µ ≡ F̃ µν ūν ,

we assume only that it points in the z direction, i.e., B̄µ = Bδµ3 , and its magnitude

may have a nontrivial dependence on the cylindrical radius coordinate, i.e., B ≡ B(r).

Then, the corresponding electromagnetic field stress tensor in the lab frame takes the

following form:

F̄ µν = εµναβūαB̄β + Ēµūν − ūµĒν =



0 γBΩx γBΩy 0

−γBΩx 0 −γB 0

−γBΩy γB 0 0

0 0 0 0


. (3.4)

As we see, this includes not only a magnetic field in the z direction, Blab = γBẑ, but

also an electric field in the radial direction, i.e., Elab = −γBΩr⊥. Alternatively, this

can be viewed as the consequence of Ohm’s law for an ideal plasma, Elab = −v×Blab.

Note that such a configuration in the lab frame is possible because the electric force

on a local element of the charged fluid is exactly compensated by the Lorentz force,

see Fig. 3.1. In order to be consistent with Ampere’s law, as we will argue below, the

magnetic field B should additionally have a very specific dependence on the radial

coordinate.

For the configuration in Eq. (3.4), the Bianchi identity is satisfied identically, while

the Maxwell equations take the following explicit form:

−δµ0 Ω [2γB + r∂r(γB)] +
(
δµ1
y

r
− δµ2

x

r

)
∂r(γB) = eneqū

µ − enbgu
µ
bg. (3.5)

Here we took into account that eνµeq = 0, which is indeed the case when µ5 = 0. Let

us note in passing that major modifications would be needed in the analysis if one

allows for a nonzero µ5. Indeed, in order to enforce the hydrodynamic equilibrium

and the absence of dissipative currents at µ5 6= 0, additional nonzero components of

the electromagnetic field would be required.
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Figure 3.1: A charged element in a rotating plasma and the local electromagnetic
fields. Note that the electric and Lorentz forces on a local element of plasma are
equal in magnitude and opposite in direction.

We assume that the background charge is at rest in the lab frame, i.e., uµbg,1 =

(1, 0, 0, 0). (It might also be interesting to consider a comoving background with

uµbg,2 = ūµ, but we will not investigate such a possibility in this paper.) As is easy to

check, the Maxwell equations require that the magnetic field and the charge density

of the plasma have the following dependence on the radial coordinate:

B(r) = γ

(
B0 −

1

2
enbgΩr2

)
' B0 −

1

2
enbgΩr2 +O

(
B0r

2Ω2
)
, (3.6)

eneq(r) = γ3 (enbg − 2B0Ω) ' enbg − 2B0Ω +O
(
enbgr

2Ω2
)
, (3.7)

where B0 is the value of the magnetic field on the rotation axis (i.e., at r = 0). An

interesting feature of this solution is that 1
3
∇µneq(r)− ˙̄uµneq(r) = 0 to all orders in Ω.

This means, in particular, that the dissipative part of the fermion number (electric)

current in Eq. (2.26) vanishes exactly. This is quite amazing considering that the

solution was obtained by solving the Maxwell equations (3.5) without any explicit

considerations of dissipative effects.

We should remark that, in the absence of a background charge (i.e., nbg = 0),

the solutions in Eqs. (3.6) and (3.7) appear to agree with the vortexlike solutions
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found by Florkowski et al. (2018b). The dependence of the plasma density on the γ

factor in Eq. (3.7) is also consistent with the findings of Becattini and Tinti (2010),

stating that the local chemical potentials and temperature should be linear in γ:

µ̄(r) = γµ0, µ̄5(r) = γµ5,0, and T̄ (r) = γT0, where µ0, µ5,0, and T0 are the values of

the corresponding parameters on the rotation axis. Indeed, in the case of a charged

plasma made of massless particles, such a linear dependence automatically leads to

the scaling law in Eq. (3.7). (It is not clear, though, whether similar arguments can

be generalized for a plasma made of massive particles.)

As we see from the solutions in Eqs. (3.6) and (3.7), the Maxwell equations require

that the local charge density is nonzero in a rotating plasma (e.g., to the leading order

in vorticity, eneq − enbg ' −2B0Ω). From a physics viewpoint, one might interpret

this as a charge separation induced by the uniform rotation. A nonzero electric charge

in the bulk is achieved by pushing the compensating charge of the opposite sign out

to the cylindrical boundary of the system. Interestingly, the sign of the induced

charge in the bulk is determined by the relative orientation of the magnetic field and

vorticity and, thus, it can easily be flipped, for example, by changing the direction of

the magnetic field.

It should be noted that a charge separation in the rotating plasma is consistent

with the fact that there is a nonzero electric field in the radial direction, Elab =

−γBΩr⊥. As mentioned earlier, the electric force of such a field on a moving element

of the charged plasma is exactly compensated by the Lorentz force from the magnetic

field, Blab = γBẑ; see Fig. 3.1. Additionally, in agreement with Ampere’s law, the

circular currents of the plasma result in a total magnetic field that depends on the

radial coordinate, see Eq. (3.6). In the presence of a background charge, moreover,

the nontrivial dependence of the field on the radial coordinate appears already at the

linear order in Ω, i.e., B(r) ' B0 − 1
2
enbgΩr2.
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3.2 Linearized equations of chiral hydrodynamics

In order to set the stage for a systematic study of hydrodynamic collective modes in

a rotating chiral plasma, here we will discuss how to derive the linearized equations for

small perturbations of the hydrodynamic quantities around their equilibrium values.

In the derivation, it is beneficial to take into account the symmetry of the unperturbed

state with respect to time translations, translations in the spatial z direction, as well

as the rotational symmetry about the z axis. (Recall that both the background

magnetic field and the vorticity are parallel to the z axis.)

By taking into account the cylindrical symmetry in the problem, it is convenient to

write down the general wavelike perturbations of (pseudo)scalar and (pseudo)vector

quantities in the following form:

δs(x) = e−ik0t+ikzz+imθδs(r), (3.8)

δv3(x) = e−ik0t+ikzz+imθδv3(r), (3.9)

δv±(x) = e−ik0t+ikzz+i(m±1)θδv±(r), (3.10)

where s is a placeholder for all scalar and pseudoscalar parameters (i.e., µ, µ5, or T ).

Similarly, the generic notations v3 and v± stand for the longitudinal (i.e., u3, B3, or

E3) and transverse (i.e., u±, B±, or E±) components of the vector quantities. Note

that the plus and minus components are defined as follows: v± = 1
2

(v1 ± iv2). Such a

separation of the longitudinal and transverse components, as well as their dependence

on the cylindrical radius r =
√
x2 + y2 and the polar angle θ = arctan(y/x), follow

from the requirement that the corresponding perturbations are the eigenstates of the

angular momentum operator Ĵz with the eigenvalues m ∈ Z. [Note that Ĵz = −i∂θ

for scalar and pseudoscalar fields and Ĵz = −i∂θ + Sz with (Sz)
i
j = −iεij3 for the

vector fields.] In agreement with the remaining translational symmetry, the only well-

defined components of the wave vector are the timelike and longitudinal ones, i.e., k0
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and kz, respectively.

By taking into account the constraints for the flow velocity and the electromagnetic

field (i.e., uµuµ = 1 and Bµuµ = Eµuµ = 0, respectively) it is clear that only three

out of the total four components in each four-vector are independent. Without loss of

generality, we assume that the spatial components are the independent ones. Then,

as is easy to check, the deviations of the zeroth components from their equilibrium

values are not independent. They are given by

δu0 = Ω
[
xδu2(x)− yδu1(x)

]
= iΩr

[
eiθδu−(x)− e−iθδu+(x)

]
, (3.11)

δE0 = Ω
[
xδE2(x)− yδE1(x)

]
= iΩr

[
eiθδE−(x)− e−iθδE+(x)

]
, (3.12)

δB0 = Ω
[
xδB2(x)− yδB1(x)

]
+Bδu3(x)

= iΩr
[
eiθδB−(x)− e−iθδB+(x)

]
+Bδu3(x). (3.13)

It should be noted, that the general form of the perturbation to the electromagnetic

field strength tensor in the lab frame can be conveniently written in terms of the

perturbations of the electric and magnetic fields as follows:

δF µν = εµναβ
(
δuαB̄β + ūαδBβ

)
+ δEµūν − ūµδEν , (3.14)

δF̃ µν = εµναβδEαūβ + δBµūν − ūµδBν + B̄µδuν − δuµB̄ν , (3.15)

where we took into account that the electric field is absent in the unperturbed state.

By making use of these relations and assuming that all perturbations are small,

it is straightforward to obtain a linearized system of hydrodynamic equations from

Eqs. (2.31)–(2.35). The corresponding linearized equations are presented in Ap-

pendix D. Note that no explicit dependence on t, z, and θ coordinates is present
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in those equations because the common exponent e−ik0t+ikzz+imθ, containing such a

dependence, was factored out.

In order to solve the hydrodynamic equations for collective modes, we should also

specify the boundary conditions for the fields. For simplicity, we will assume that

the perturbations of the scalar, pseudoscalar and longitudinal vector perturbations

vanish at the boundary, i.e., δs(R) = 0 and δv3(R) = 0, where R is the cylindrical

radius of the system. [Note, however, that δv±(R) = 0 cannot be enforced at the

same time.] It should be clear, however, that the dispersion relations for most of the

bulk modes will not be very sensitive to the choice of the boundary conditions, unless

their transverse wave vectors are very small, k⊥ ' 1/R (the exact definition of k⊥

will be specified later).

3.2.1 The linearized equations at vanishing vorticity

Before discussing any solutions in the most general case with a nonzero vorticity

and magnetic field, let us first consider a simple setup without rotation, Ω = 0, but

with the effects of dynamical electromagnetism fully accounted for. As will be clear,

in our analysis, we also include all effects associated with the dynamical vorticity

induced by collective modes themselves.

The linearized system of the hydrodynamic equations takes the following explicit
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form:

uµ∂µδn+ n∂µδu
µ +Bµ∂µδσB +

τ

3
∇µ∇µδn− τnuν∂µ∂νδuµ +

1

e
σE∂µδE

µ = 0, (3.16)

uµ∂µδn5 + σ5
B∂µδB

µ +Bµ∂µδσ
5
B +

τ

3
∇µ∇µδn5 +

e2

2π2~2
(B · δE) = 0, (3.17)

uµ∂µδε+ (ε+ P )∂µδu
µ +Bµ∂µδξB = 0, (3.18)

(ε+ P )uν∂νδu
µ −∇µδP +Bµuν∂νδξB +

8τε

15
∆µν
αβ(∂ν∂

αδuβ)

−enδEµ − εµναβ
(
τ

3
∇νδn− τnuφ∂φδuν +

1

e
σEδEν

)
uαeBβ = 0, (3.19)

which should also be supplemented by the Maxwell equations

εµναβuν∂αδEβ + uν∂νδB
µ +Bµ∂νδu

ν −Bν∂νδu
µ − uµ∂νδBν = 0, (3.20)

εµναβ(uν∂αδBβ −Bν∂αδuβ) + uµ∂νδE
ν − uν∂νδEµ − enδuµ − euµδn

−eδσBBµ − eτ

3
∇µδn+ eτnuφ∂φδu

µ − σEδEµ = 0. (3.21)

The variations of the fermion number density, as well as other functions (e.g., δε and

δσB) are assumed to be of the most general form, i.e., δn = ∂n
∂µ
δµ(x) + ∂n

∂µ5
δµ5(x) +

∂n
∂T
δT (x). They are space and time dependent, although such a dependence may not

always be shown explicitly, e.g., δn ≡ δn(x) and δn5 ≡ δn5(x).

In the case of vanishing vorticity, the independent wavelike solutions of the hydro-

dynamic equations can be conveniently expressed in terms of the cylindrical harmon-

ics. The corresponding solutions for the local perturbations are given by Eqs. (3.8)–

(3.10), with radial parts of the functions given by

δs(r) = δs Jm(k⊥r), for s = µ, µ5, T, (3.22)

δv3(r) = δv3 Jm(k⊥r), for v3 = u3, B3, E3, (3.23)

δv±(r) = δv± Jm±1(k⊥r), for v± = u±, B±, E±. (3.24)

Here Jm(k⊥r) is the Bessel function of the first kind and parameter k⊥ is an analogue

of the transverse wave vector for a system with cylindrical symmetry.
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The linearized system (3.16)–(3.21) has the general structure M̂δ ~f = 0, where M̂

is a 12×12 matrix differential operator and δ ~f is a vector consisting of all independent

plasma and EM field perturbations, i.e., δ ~f = (δµ, δµ5, δT, δu, δE, δB)T . By making

use of the ansatz in Eqs. (3.8)–(3.10) with the radial dependence in Eqs. (3.22)–

(3.24), it is easy to check that all coordinate dependence factorizes and the problem

reduces to a set of homogeneous linear equations, Mδ~f = 0, where M is a 12 × 12

algebraic matrix. For the system to have a nontrivial solution, the characteristic

equation should be satisfied, i.e., det(M) = 0. In essence, the latter is a polynomial

equation for the frequencies of collective modes. The roots for k0 define dispersion re-

lations of hydrodynamic modes. In general, the corresponding frequencies (energies)

are functions of the wave vectors k‖ and k⊥, as well as the eigenvalue m of the angu-

lar momentum operator. The associated nontrivial solutions for δ ~f (“eigenvectors”)

specify the nature of the collective modes.

It is instructive to note that the above general procedure for obtaining the disper-

sion relations of hydrodynamic modes could easily be adjusted to take into account

any boundary conditions consistent with the cylindrical symmetry. As we mentioned

earlier, we will assume that the perturbations vanish at the cylindrical boundary

of the system. Such boundary conditions are satisfied automatically when the val-

ues of the transverse wave vector are restricted to take only the following discrete

values: k
(i)
⊥ = αm,i/R, where αm,i (with i = 1, 2, ...) is the ith zero of the Bessel

function Jm(z). By making use of the asymptotic form for the Bessel function, we

can derive the following approximate expression for the large transverse wave vectors:

k
(i)
⊥ ' (i+m/2− 1/4)π/R for i� m. By imposing the periodic boundary conditions

in the z direction (with period L), the longitudinal wave vector is discretized, i.e.,

k
(j)
z = 2πj/L, where j is an integer. When the system is large, the discretized wave

vectors of both types are closely located and, thus, become almost indistinguishable
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from a continuum. In such a case, the discretization plays little role and could be

ignored.

3.2.2 The linearized equations at nonzero vorticity

In the general case of a rotating plasma, the self-consistent analysis of hydrody-

namic modes becomes much more complicated. One of the primary reasons for this

complication is the nontrivial radial dependence of the magnetic field and density in

the unperturbed state of a uniformly rotating plasma; see Eqs. (3.6) and (3.7). In

this case, the radial parts of local perturbations in Eqs. (3.22)–(3.24) can be written

in the form of Fourier-Bessel series:

δs(r) =
∞∑
i=1

δs(i) Jm(k
(i)
⊥ r), for s = µ, µ5, T, (3.25)

δv3(r) =
∞∑
i=1

δv3 Jm(k
(i)
⊥ r), for v3 = u3, B3, E3, (3.26)

δv±(r) =
∞∑
i=1

δv
(i)
± Jm±1(k

(i)
⊥ r), for v± = u±, B±, E±, (3.27)

where k
(i)
⊥ = αm,i/R is the ith discretized value of the transverse wave vector, intro-

duced in the previous subsection. The set of Bessel eigenfunctions used in the series

above is complete and orthogonal (Boas and Pollard (1947); Watson (1995)). The

orthogonality condition and other useful properties of the Bessel eigenfunctions are

discussed in Appendix C.

By substituting perturbations (3.25)–(3.27) into the complete set of hydrodynamic

equations (see Appendix D) and projecting the results onto the Bessel functions with

different k
(i)
⊥ , we arrive at an algebraic system of equations with the following block-
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matrix form: 
M (11) M (21) . . .

M (12) M (22) . . .

...
...

. . .

 ·


δ ~f (1)

δ ~f (2)

...

 =


~0

~0

...

 , (3.28)

where M (ij) are 12×12 matrices made of the ith set of coefficient functions projected

onto the jth Bessel eigenfunctions, and δ ~f (i) = (δµ(i), δµ
(i)
5 , δT

(i), δu(i), δE(i), δB(i))T .

Formally, Eq. (3.28) is an infinite system of equations. By noting, however, that the

hydrodynamic description is limited to a finite range of low energies and momenta,

the system can be truncated in a self-consistent way. In general, it is sufficient to

limit the sum in Eqs. (3.25)–(3.27) to values of the transverse wave vector k
(i)
⊥ that

are less than 1/lmfp, where lmfp is the mean free path of particles. In practice, though,

when focusing on the low-energy part of the spectrum and/or studying the limit of

small vorticity, the truncation could be even more restrictive.

Before proceeding further with the analysis, it is instructive to discuss the de-

pendence of the matrix blocks in Eq. (3.28) on the angular velocity Ω. As is clear

from the discussion in the previous subsection, in the absence of vorticity (i.e., at

Ω = 0), all off-diagonal blocks in Eq. (3.28) vanish. Indeed, in such a limit, hydro-

dynamic modes are characterized by well-defined values of k
(i)
⊥ . Also, the energies of

the corresponding modes are determined by the roots of the characteristic equations

det(M (ii)) = 0, where M (ii) are the diagonal blocks associated with specific values

k
(i)
⊥ .

At nonzero vorticity, the off-diagonal blocks in Eq. (3.28) do not vanish any more

and, as a result, all hydrodynamic modes become nontrivial mixtures of partial waves

with different values of k
(i)
⊥ . In principle, the corresponding spectrum could be ob-

tained by solving Eq. (3.28) using numerical methods. While such an approach is

straightforward conceptually, it is rather tedious and is beyond the scope of this

50



study. Instead, in the rest of this paper, we will investigate the limit of small, but

nonzero vorticity.

In order to determine the spectrum of collective modes at small Ω, we will solve

the characteristic equations det(M) = 0 to leading order in Ω. While this may seem

to be a very strong limitation, it should be noted that even rather optimistic estimates

of vorticity in heavy-ion collisions are not that large in relative terms (Becattini et al.

(2015); Jiang et al. (2016, 2017); Deng and Huang (2016)). As is easy to check, in the

limit of small Ω, nontrivial corrections to the off-diagonal blocks in Eq. (3.28) start

from the linear order terms in Ω. In the calculation of det(M), therefore, such off-

diagonal matrices contribute only starting at the quadratic order in Ω. This means,

in particular, that all linear corrections to the dispersion relations of hydrodynamic

modes are determined completely by the linear corrections to the diagonal blocks.

The corresponding characteristic equations are given by det(M (ii) + ΩM
(ii)
1 ) = 0,

where M
(ii)
1 ≡ (∂M (ii)/∂Ω)|Ω=0.

From the above general structure of the approximate characteristic equations,

it should also be clear that, to linear order in Ω, the hydrodynamic modes can be

unambiguously labeled by well-defined values of the transverse wave vector k
(i)
⊥ . In

other words, while the dispersion relations of the modes are modified by the vorticity,

their classification remains the same as in the Ω = 0 case. Of course, this is hardly

surprising and should have been expected since, in essence, we used a perturbation

theory with Ω playing the role of a small parameter. In this connection, we should

add though that, starting already from the quadratic order in Ω, the off-diagonal

blocks in Eq. (3.28) are non-negligible and a substantial mixing of partial waves with

different k
(i)
⊥ will be unavoidable.

For a detailed discussion of this question, as well as a method of finding higher-

order Ω corrections see appendix B.
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3.3 Hydrodynamic modes in high temperature plasma

In this section, we study the spectrum of hydrodynamic modes in a chiral rotating

plasma at high temperature, i.e., T � µ, or, in other words, we assume that the

fermion number chemical potential is small compared to the temperature. As is

clear, such a regime is most suitable for describing hot plasmas in the early universe

and in heavy-ion collisions. The opposite limit, i.e., T � µ, will be addressed in the

next section.

Before proceeding to the technical part of the study, it is instructive to discuss the

general validity of the hydrodynamic approach and the hierarchy of various length

scales in the problem at hand. The shortest length scale of relevance is the de Broglie

wavelength for chiral particles ld ' ~/T (at high density, it will be replaced by ld '

~/µ). Clearly, the hydrodynamic description cannot work on such short microscopic

distances. In fact, it becomes relevant only on the scales much larger than the particle

mean free path, i.e., lmfp ' τ (recall that c = 1 in the units used here), where the

definition of local equilibrium could be meaningful. In a background magnetic field,

there is an additional scale defined by the magnetic length lB =
√
~/eB. We will

assume that the field is weak in the sense that
√
~eB � T , which is usually the case

in most applications. This implies that ld � lB. The magnetic length could, however,

be comparable to the mean free path. In fact, the hierarchy between the two scales

could be used to distinguish the regime of very weak fields, i.e., lB & lmfp, from that

of moderately strong fields, i.e., lB . lmfp.

When discussing hydrodynamic modes, we will have to deal with yet another

window of length scales, defined by the wavelengths of the modes, i.e., λk ' 1/k,

where k is the corresponding wave vector. Clearly, the hydrodynamic description

for such modes makes sense only if λk � lmfp (or, equivalently, k � 1/lmfp). In a
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finite system, at the same time, the maximum wavelength is limited by the size of the

system itself, λk . R. Finally, the size of a uniformly rotating relativistic plasma is

limited by the scale of Ω−1. Therefore, in the analysis of collective modes below, we

will assume the following hierarchy of scales: ld � lB . lmfp � λk . R� Ω−1. This

hierarchy will also be used in the derivation of analytical results. In order to simplify

the task of keeping track of different scales, it will be convenient to use the following

values and ranges of dimensionless parameters:

lmfpΩ ' ξ2, ξ3/2 ' lmfp

R
. klmfp . ξ1/2,

lmfp

lB
' ξ−1/4,

lmfp

ld
' ξ−1, (3.29)

where we introduced a small parameter ξ ' 10−2 in order to easily separate all relevant

scales in the problem. While concentrating on the high-temperature regime here, it

might be interesting to see how the effects of a small chemical potential start showing

up in the spectrum of collective modes. Therefore, we also include a nonzero µ, but

assume that its value is very small, e.g., |µ| ' ξ2T (or, equivalently, |µ|ld ' ξ2~).

3.3.1 Charged plasma at Ω = 0

Before addressing hydrodynamic modes at nonzero vorticity, it is instructive to

set up the stage by first discussing the benchmark results at Ω = 0. As expected

in the hydrodynamic regime, there are generically two very different types of modes:

propagating and diffusive. The dispersion relations of the former ones have nonzero

real parts and relatively small imaginary parts. The diffusive modes, on the other

hand, have either no real parts at all, or the imaginary parts much larger than real

ones.

By solving the linearized equations (3.16)–(3.21), we find that there are two kinds

of propagating modes at Ω = 0, namely, a sound wave with the dispersion relation
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given by

k0 =
sek√

3
− 2

15
iτk2, (3.30)

and an Alfvén wave with the dispersion relation approximately given by

k
(±)
0 = se

3
√

5B~3/2kz√
7πT 2

(
1±

√
5eµ

2
√

7π~3/2k

)
− 1

10
iτk2. (3.31)

In both cases, k =
√
k2
z + k2

⊥ and se = ±1. As is clear, both choices of se (i.e., the

overall sign in front of the real part of the energy) correspond to the same mode.

In most cases, the signs se could be associated simply with different directions of

propagation. As is easy to check, in fact, this is the case for the Alfvén waves in

Eq. (3.31).

The sound wave in Eq. (3.30) describes the propagation of longitudinal elastic

deformations in plasma. The propagation of such a wave does not induce any local

oscillations of the electric charge and, as a result, there are no dynamical electromag-

netic fields induced. Also, as expected for the ultrarelativistic matter, the speed of

sound cs is determined by its compressibility, c2
s = ∂P/∂ρ = 1/3. (As we mentioned

earlier, in a more realistic case of a strongly interacting quark-gluon plasma, the value

of c2
s is expected to be somewhat smaller than 1/3 (Bazavov et al. (2014)), but there

is no reason to expect that the nature of the corresponding sound mode will change

qualitatively.)

A few words are in order about the Alfvén waves with the dispersion relations given

by Eq. (3.31). These are magnetohydrodynamic modes with two possible circular

polarizations: the left-handed one with δu+ � δu− and the right-handed one with

δu+ � δu−. From the viewpoint of the fluid flow oscillations, these are transverse

modes. The energies of the corresponding two branches of waves differ slightly because

the term with the chemical potential µ comes with opposite signs. In the limit µ→ 0,

the speed of propagation of these waves is the same for both polarizations. As is easy
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to check by neglecting the dissipative effects, the expression for the speed can also

be written as vA = B/
√
εeq + Peq, which is the standard expression for the Alfvén

waves in a relativistic plasma (Harris (1957)). It might be appropriate to mention

that the propagation of Alfvén waves is accompanied by the fluid flow oscillations

with nonzero local dynamical vorticity.

Here it might be appropriate to note that the analytical expressions in Eq. (3.31)

were obtained by using the expansion in small parameter ξ, which was introduced in

Eq. (3.29) in order to separate different scales in the problem. Therefore, while the

corresponding dispersion relations provide good analytical approximations, they can-

not be extended to the regions of very small and very large values of the wave vector.

In order to support the validity of the approximate results obtained analytically, we

compare them in Fig. 3.2 with the dispersion relations found numerically. The panels

in Fig. 3.2 show the results for the real (red lines and points) and imaginary (blue lines

and points) parts of the energy at three different fixed values of the magnetic field,

i.e., ~eB/T 2 = 0.5×10−3, ~eB/T 2 = 1×10−3, and ~eB/T 2 = 1.5×10−3, respectively.

Note that, for the model parameters used, the hydrodynamic regime breaks down in

the gray shaded regions at small and large values of kz. As is clear from Fig. 3.2,

the analytical relations approximate well the numerical results basically in the whole

region where the real part of the energy remains larger than its imaginary part, i.e.,

Re(k0) & Im(k0).

In addition to the propagating modes, there are also two types of purely diffusive

modes. The latter include the electric field decay mode with

k0 = − e2

9~3
iτT 2 (3.32)

and the chiral charge diffusive mode described by

k0 = −1

3
iτk2 − i27e2B2~2

4π4τT 4
. (3.33)
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Figure 3.2: The comparison of the approximate analytical results (solid lines) for
the real (red lines and points) and imaginary (blue lines and points) parts of the
energy for the Alfvén waves with the corresponding numerical results (points) at
Ω = 0 for three fixed values of the magnetic field: ~eB/T 2 = 0.5× 10−3 (top panel),
~eB/T 2 = 10−3 (middle panel), and ~eB/T 2 = 1.5× 10−3 (bottom panel). The real
and imaginary parts of the energy are shown in red and blue, respectively. The other
model parameters are τT/~ = 102, µ/T = 10−4, and ~k⊥/T = 10−4.
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It should be noted that there are three degenerate modes with the dispersion relation

in Eq. (3.32), which correspond to three different polarizations of the electric field.

The origin of these modes can be traced back to Ampere’s law that takes a particularly

simple approximate form ∂tE+σEE ≈ 0. This is also reconfirmed by the fact that the

imaginary part in Eq. (3.32) is completely determined by the electrical conductivity,

Im(k0) = −σE.

Before concluding this section, we would like to emphasize that there is no propa-

gating mode in the spectrum that could be identified with the chiral magnetic wave.

It is natural to ask, therefore, what is the reason for its absence. As we will ex-

plain later in more detail, the chiral magnetic wave is overdamped because of a high

conductivity of hot plasma, which causes a rapid screening of the electric charge fluc-

tuations and, thus, prevents the wave from forming. While the situation is slightly

more complicated in the strongly coupled quark-gluon plasma created in heavy-ion

collisions, the chiral magnetic wave is still strongly overdamped due to the combined

effects of electrical conductivity and charge diffusion (Shovkovy et al. (2018)).

3.3.2 Charged plasma at Ω 6= 0

Let us now discuss the spectrum of hydrodynamic modes in the case of small, but

nonzero vorticity. As mentioned earlier, in order to simplify the analysis, we will limit

ourselves only to linear order corrections to the dispersion relations in powers of Ω.

In such an approximation, the modes are classified by the same values of k
(i)
⊥ as at

Ω = 0. Since there is no mixing of partial waves with different values of k
(i)
⊥ , we will

utilize a simpler notation k⊥ instead of k
(i)
⊥ in the rest of the paper.

Let us start by noting that the dispersion relation of the sound wave receives a
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linear correction in vorticity, i.e.,

k0 =
sek√

3
− 2

15
iτk2 +mΩ

(
2

3
+

5e2µ2

14π2~3k2

)
. (3.34)

As in the case of vanishing vorticity, it remains a longitudinal wave. Its propagation

is sustained primarily by oscillations of temperature δT and velocity δuµ. However,

at nonzero µ, the wave could also excite small perturbations of the electromagnetic

fields.

To the leading linear order in the angular velocity Ω, the dispersion relations of

the Alfvén waves are given by the following approximate expression:

k
(±)
0 = mΩ + sekz

√
45B2

±~3

7π2T 4
+

(
Ω

k
− 15eB±µ

14π2T 2k

)2

± kz
(

Ω

k
− 15eB±µ

14π2T 2k

)
− iτk2

(
1

10
+

9~3

2e2τ 2T 2

)
, (3.35)

where we introduced the following shorthand notation:

B± = B − eneqΩ

6k2
⊥

[
2(m± 1)(m± 2) + k2

⊥R
2
]
. (3.36)

Note that we used nbg = neq, which enforces the electric charge neutrality in the

plasma at Ω = 0, see Eq. (3.7). As we can see, there are four different branches of

Alfvén waves. They are determined by two different circular polarizations, labeled by

the ± signs in Eq. (3.35), and two directions of propagation with respect to the z axis.

The latter are formally distinguished by se = ±1. (Recall that both the background

magnetic field and the axis of rotation are parallel to the z axis.)

By comparing the result in Eq. (3.35) with the dispersion relation at Ω = 0,

given by Eq. (3.31), we see that the inclusion of vorticity lifts the degeneracy of

modes propagating in opposite directions with respect to the background magnetic

field (and/or vorticity). Moreover, we also find that the propagation of these types

of waves is modified by the chiral vortical effect. This is most pronounced in the

58



case of small kz (i.e., kz . k⊥). In such a case, therefore, it might be suitable

to call these modes the Alfvén-vortical waves. The dispersion relations for several

modes with different values of the angular momentum m are shown in Fig. 3.3. (The

hydrodynamic regime breaks down in the gray shaded regions at small and large

values of kz.) Note that the approximate analytical expressions (represented by solid

lines) are in good agreement with the numerical results (shown with dots) in the

region of small momenta.

It is interesting to note that the energies of the circularly polarized Alfvén waves

depend on the magnetic field only via the combinations B±, defined in Eq. (3.36).

This means that one of the circularly polarized waves with a fixed angular momentum

m could be fine-tuned (e.g., by adjusting the magnetic field so that B− = 0) into a

pure chiral vortical wave with the dispersion relation given by k0 ≈ mΩ+(se−1)kz
k

Ω−
1
10
iτk2.

For completeness, let us now briefly discuss the diffusive modes. The electric field

decay mode remains the same as in Eq. (3.32). As for the chiral charge diffusive

mode, at nonzero Ω, it is given by

k0 = mΩ− i27(eB0)2~2

4π4τT 4
− 1

3
iτk2, (3.37)

where we introduced the following shorthand notation:

B0 = B − eneqΩ

6k2
⊥

[
2(m− 1)(m+ 1) + k2

⊥R
2
]
. (3.38)

Note that the energy of the chiral charge diffusive mode has a nonzero real part

proportional to Ω. One might speculate, therefore, that under certain conditions and

beyond the leading order in Ω, it may even become a propagating mode. As is easy to

check, the chiral charge diffusive mode is determined primarily by the corresponding

continuity relation. At nonzero Ω, in particular, the latter can be approximately
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Figure 3.3: The real parts of the energies of the Alfvén waves with different values
of the angular momentum: m = 0 (top panel), m = ±3 (middle panel), and m = ±6
(bottom panel). The other model parameters are τT/~ = 102, µ/T = 10−4, ~Ω/T =
10−6, ~eB/T 2 = 10−3, RT/~ = 104α0,1 ≈ 2.4× 104, and k⊥ = αm,1/R.
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given by

∂0n5 = −τ
3
∇2n5 − (Ω×∇n5) · r⊥. (3.39)

By solving this, we can indeed reproduce the first and the last terms in the dispersion

relation (3.37). This reconfirms that, while other degrees of freedom may influence

this diffusive mode in principle, their role is minor.

3.3.3 Charged plasma at Ω 6= 0 without dynamical electromagnetic fields

As we argued in the chapter 2 by using rather general arguments, a self-consistent

treatment of charged chiral plasma requires a proper inclusion of fully dynamical

electromagnetic fields. In this subsection, we test the validity of such a claim by

performing a comparative study without the inclusion of the dynamical fields. In

order to achieve such a regime in the charged chiral plasma, we will assume that

the matter is affected only by the static background magnetic field. No additional

background electric fields can be allowed because those would drive dissipative Ohm

currents. When neglecting dynamically induced electromagnetic fields, there will be

no effect from such fields on the plasma modes. As we will see, many signature

features of hydrodynamic modes will be lost in such an approximation. This finding,

therefore, will reconfirm the importance of accounting for the dynamical fields.

When dynamical electromagnetic fields are neglected, the Maxwell equations play

no role in determining the properties of hydrodynamic modes. This means that one

is left with the system of only six continuity equations (2.31)–(2.34). To leading

order in Ω, we can assume that the background values of the chemical potential and

temperature are spatially uniform. In the absence of the background electric field,

the chiral anomaly is effectively switched off. This means that both fermion number

(electric) and chiral currents are conserved and affect collective modes in similar ways.

We find that there are three kinds of propagating hydrodynamic modes: a lon-
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gitudinal sound wave, a transverse vortical wave, and a transverse chiral magnetic

wave. (Note that the terms longitudinal and transverse refer to the direction of fluid

flow oscillations with respect to the wave vector.) Their dispersion relations read

k0 =
sek√

3
+

2

3
mΩ− 2

15
iτk2, (3.40)

k0 = mΩ + se
2kzΩ

k
− 1

5
ik2τ, (3.41)

k0 = mΩ + se
3eB0~kz
2π2T 2

− 1

3
ik2τ, (3.42)

respectively. As expected, the sound mode is not affected much by omitting dynam-

ical electromagnetic fields. However, it did become completely independent of the

chemical potential. This should have been expected though since oscillations of local

electric fields from charge density perturbations are artificially switched off now.

The modes in Eq. (3.41) are substitutes for the Alfvén waves (3.35) in the fully

dynamical case. By comparing their dispersion relations, we clearly see that the

modes are drastically different. This is further confirmed by reviewing the underlying

nature of the two sets of modes. For example, the vortical wave (3.41) is driven

almost exclusively by velocity perturbations δuµ. A pair of the weakly damped chiral

magnetic waves (3.42) is driven by oscillations of either left-handed (se = −1) or

right-handed (se = 1) particles. As expected, they replace a pair of diffusive modes

found in the dynamical regime in the previous subsection. At B0 = 0, they turn again

into diffusive electric and chiral charge waves, driven by the perturbations of δµ and

δµ5, respectively.

To summarize the results of this subsection, we find that neglecting dynamical

electromagnetic fields has a profound effect on the spectrum of collective modes in the

hydrodynamic regime. One of them is the appearance of propagating chiral magnetic

waves, which are absent in the charged chiral plasma with dynamical electromag-

netism. The other qualitative difference is the absence of the correct Alfvén waves,
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which are replaced by the vortical wave with a rather different dispersion relation.

3.3.4 Plasma of neutral particles at Ω 6= 0

For completeness, it might also be interesting to discuss the hydrodynamic modes

in a chiral plasma made of neutral particles. Clearly, the Maxwell equations play no

role in this case. The hydrodynamic description is governed by Eqs. (2.31)–(2.34)

with the vanishing electromagnetic fields. To leading order in Ω, the values of the

chemical potential µ and temperature T for the uniformly rotating neutral plasma

can be assumed constant in the global equilibrium. Moreover, we can even include

an arbitrary nonzero axial chemical potential µ5.

Among the propagating modes in neutral plasma, we find the usual longitudinal

sound wave with the dispersion relation given by

k0 =
sek√

3
+

2

3
mΩ− 2

15
iτk2, (3.43)

where se = ±1, and a single circularly polarized vortical wave with the dispersion

relation

k0 = mΩ + se
2kzΩ

k
− 1

5
iτk2. (3.44)

It should be emphasized that the sign se = ±1 defines one of the two possible di-

rections of propagation of the vortical wave with respect to the z axis. For each

direction of the propagation, though, there is only one circularly polarized mode.

This differs qualitatively from the Alfvén-vortical waves in charged plasmas which

have two propagating circularly polarized modes for each direction.

The dispersions of diffusive modes associated with the fermion number charge and

the chiral charge are degenerate and resemble the zero-field limit of that in Eq. (3.37).

In particular, they are given by

k0 = mΩ− 1

3
iτk2. (3.45)
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It is rather interesting to point out that, to leading order in Ω, the equilibrium values

of the chemical potentials µ and µ5 do not affect the energy spectrum of the modes

in the neutral chiral plasma. The spectra also are not dependent on temperature.

3.4 Hydrodynamic modes in dense plasma

In this section, we study the spectrum of hydrodynamic modes in a chiral rotating

plasma at high density, i.e., µ � T . Such a regime could be realized in compact

stars and, perhaps, also in Dirac and Weyl materials, in which low-energy electron

quasiparticles behave as pseudorelativistic chiral fermions.

As in the case of hot plasma in the previous section, it is convenient to use a

specific hierarchy of all relevant scales in the problem by relating them via a single

small parameter ξ ' 10−2. In the case of dense plasma, we will use

lmfpΩ ' ξ5/2, ξ3/2 ' lmfp

R
. klmfp . ξ1/2,

lmfp

lB
' ξ−1/4,

lmfp

ld
' ξ−1.

(3.46)

It should be noted that here we consider even smaller vorticity in relative terms

than in hot chiral plasma, see Eq. (3.29). This is motivated by the need to keep

the vorticity corrections to the magnetic field (3.38) and (3.36) under control in the

regime of a large fermion number density. While considering the high-density regime,

it is instructive to see how the effects of a small temperature start showing up in the

spectrum of collective modes. For this purpose, we include a nonzero temperature,

but assume that its value is small, e.g., T ' ξµ (or, equivalently, T ld ' ξ~, where

ld = ~/µ).

3.4.1 Charged plasma at Ω = 0

Before considering the case of nonzero vorticity, we review the spectrum of hy-

drodynamic modes in the case Ω = 0 by solving the linearized system of equations
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(3.16)–(3.21). As expected, we find that there are two kinds of propagating modes

at Ω = 0, namely, plasmons and helicons. Also, there are two diffusive modes with

identical dispersions, k0 = −iτk2/3. Note that, in the regime of dense matter, there

are no usual sound waves. They are replaced by plasmons. Similarly, the Alfvén

waves are morphed into helicons.

Plasmons describe the propagation of charge oscillations sustained by dynami-

cally induced electric fields. As is well known, their frequency for the ultrarelativistic

plasma without background fields and rotation is given by ωPL = eµ√
3π~3/2 . The plas-

mon can have three degenerate modes with different polarizations. We find that the

degeneracy is lifted by the magnetic field. Indeed, from our linearized system of

equations, we find that the dispersion relations of the plasmon modes are given by

k
(s)
0 = se

eµ√
3π~3/2

+ s
eB

2µ
− ie2τT 2

18~3
− 1

10
iτk2, (3.47)

where se = ±1 and s = −1, 0, 1. In terms of the hydrodynamic variables, plasmons

are primarily driven by the oscillations of flow velocity δu± and electric field δE±.

For s = ±1, the modes have clockwise (with nonzero δu+ and δE+) and anticlockwise

(with nonzero δu− and δE−) circular polarizations, respectively. The case of s = 0

corresponds to the mode with the linear polarization in the z direction.

The dispersion relations of the helicon mode are given by

k0 = se
3π2eBkkz~3

e2µ3
− 3π2~3

5e2µ2
iτk4, (3.48)

where se = ±1. One of the signature features of such magnetohydrodynamic modes

is their quadratic dispersion relations. They are circularly polarized with a given

handedness, determined by the sign of se. In terms of the hydrodynamic variables,

the propagation of helicons is driven primarily by oscillations of flow velocity δu±,

temperature δT , and magnetic field δB±. It might be appropriate to mention that,
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for a typical choice of the model parameters with the hierarchy of scales in Eq. (3.46),

the helicons are well-defined propagating (rather than overdamped) modes in the

whole region of momenta, ξ3/2 . klmfp . ξ1/2. This remains also marginally true

even for a range of somewhat weaker magnetic fields, provided lmfp/lB & 1. However,

in the case of very weak fields, the helicons will become overdamped already at some

intermediate values of the wave vector (e.g., klmfp ' ξ3/4 when lmfp/lB ' ξ1/4).

3.4.2 Charged plasma at Ω 6= 0

Let us now proceed to the case of a rotating chiral plasma. As in the case of

hot plasma in the previous section, we will study the modifications of hydrodynamic

modes up to linear order in Ω. In this case, the modes are classified by well-defined

transverse wave vectors k⊥. (Recall that the corresponding values are discretized

k
(i)
⊥ = αm,i/R, but we will omit the superscript in order to simplify the presentation.)

We start by noting that the Ω = 0 plasmon dispersion relation given by Eq. (3.47)

remains almost the same, but the magnetic field B in the subleading term is replaced

by Bs, i.e.,

k
(s)
0 = se

eµ√
3π~3/2

+ s
eBs
2µ
− ie2τT 2

18~3
− 1

10
iτk2. (3.49)

As for the helicon mode, its dispersion relation becomes

k0 = mΩ

(
1

2
− k2

z

k2
⊥

)
+ se

√
m2Ω2

4
+

9π4(B+ + B−)2k2k2
z~5

4µ6
− 3π2~3

5e2µ2
iτk4, (3.50)

where se = ±1. As is easy to see, the positive branches of the real part of energy

(i.e., se = +1) are gapped for m > 0 and gapless for m ≤ 0. Concerning the case

of m > 0, the values of the gaps are determined by the angular velocity, mΩ. A

typical spectrum is illustrated in Fig. 3.4, where the dispersion relations for several

fixed values of the angular momentum (m = −4,−2, 0, 2, 4) are shown. Note that, in

the figure, we zoomed into the region of very small energies. By taking into account

66



Figure 3.4: The positive branches of the real part of helicon energies for several
values of the angular momentum, i.e., m = −4 (red line), m = −2 (orange line),
m = 0 (olive line), m = 2 (green line), and m = 4 (blue line). The other model
parameters are ~eB/µ2 ≈ 2× 10−3, τµ/~ = 100, ~Ω/µ = 10−7, and k⊥ = αm,1/R.

that Ω is very small, it should be clear that the complete spectrum contains a nearly

continuous range of gaps.

It is interesting to note that for certain values of the angular momentum (when

the magnetic field is fixed), the effective field (B+ +B−) could become very small, or

even zero. In this case, the first term in the dispersion relation (3.50) dominates and

leads to a quadratic dependence on kz with a negative overall coefficient. (Note that

the energies for the branches with negative values of m have opposite signs.)

From a physics viewpoint, the negative curvature of the dispersion relation as a

function of kz implies that the group velocity of such modes vz is negative. This is a

rather interesting feature that, potentially, could be important in applications. By an-

alyzing the analytical expression in Eq. (3.50), we find, however, that a negative group

velocity can be realized only for rather large magnetic fields. Indeed, by making use of

the properties of the Bessel functions, we find that the negative slope is possible only

when the magnetic field lies in the following window: eneqR
2Ω/6 < B < eneqR

2Ω/2.

This corresponds to the dimensionless ratio lmfp/lB ' ξ−7/4(e/
√
~), which is substan-

tially larger than 1 even for a rather small coupling constant, e/
√
~ = 1/

√
137. The
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Figure 3.5: The ranges of angular momenta m for which helicon modes can have
negative group velocity. The colored bands correspond to three smallest values of the

transverse momenta k
(i)
⊥ with i = 1, 2, 3 (from red to blue, respectively).

ranges of angular momenta m of the modes with vz < 0 are illustrated graphically

in Fig. 3.5. There we show three colored bands that correspond to the three small-

est values of the transverse momenta k
(i)
⊥ with i = 1, 2, 3. As we see, the ranges of

bands in m rise very steeply as B/(eneqR
2Ω) approaches 1/2. The bands also have a

tendency to shift upwards with increasing k
(i)
⊥ .

In addition to the propagating modes, there is also a pair of overdamped modes

associated with the diffusion of chiral charge and energy, i.e.,

k0 = mΩ− 1

3
iτk2, (3.51)

k0 = mΩ

(
1− e2µ2τ 2

9π2~3

)
− 1

3
iτk2, (3.52)

respectively. In the hydrodynamic regime defined by the hierarchy of length scales in

Eq. (3.46), neither of these modes has a chance of becoming a well-resolved propa-

gating mode.
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3.4.3 Charged plasma at Ω 6= 0 without dynamical electromagnetic fields

As in the case of hot plasma in the previous section, here it is also instructive to

verify that the description of hydrodynamic modes is substantially modified in the

background-field approximation, i.e., when the dynamical electromagnetic fields are

neglected.

Switching off the dynamical electromagnetic fields is equivalent to ignoring the

Maxwell equations. Then the simplified system of the six linearized equations contains

only continuity equations (2.31)–(2.34). Here we will concentrate on the propagating

modes, which are particularly interesting. As for the diffusive modes, one can verify

that there are two degenerate modes with the dispersion relation given by Eq. (3.51).

One of the immediate consequences of the approximation without dynamical elec-

tromagnetic fields is the absence of the plasmons in the spectrum. They are replaced

by the sound waves with the energy given by

k0 =
sek√

3
+

2

3
mΩ− 2

15
iτk2. (3.53)

The underlying physics of such a dramatic change is clear. While neglecting the Gauss

law, local oscillations of the electric charge density do not produce any electric field,

resulting in a gapless sound wave exactly as in the case of plasma made of neutral

particles.

While the helicon remains in the spectrum, its dispersion relation is substantially

modified. In particular, its energy in the background-field approximation is given by

k0 = mΩ +
se
5µ
eBskkzτ 2 − 1

5
iτk2, (3.54)

where se = ±1. In essence, this is a purely hydrodynamic mode, which is driven

by oscillations of the fluid velocity. Its propagation is accompanied by oscillations of

temperature, as well as small oscillations of the electric and chiral chemical potentials.
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3.4.4 Chiral plasma of neutral particles at Ω 6= 0

For completeness, let us also discuss the case of chiral plasma made of neutral

particles. Since the chiral anomaly is absent in this case, it is straightforward to

include a nonzero chiral chemical potential µ5 along with the fermion number chemical

potential µ. Note, however, that none of the hydrodynamic modes in this regime will

be modified by the values of µ5 and µ. This situation is qualitatively the same as in

the case of hot plasma made of neutral particles. Also, as in that case, the spectra

do not depend on temperature.

The energies of the sound and vortical waves are given by the following expressions:

k0 =
sek√

3
+

2

3
mΩ− 2

15
iτk2, (3.55)

k0 = mΩ + se
2kzΩ

k
− 1

5
iτk2, (3.56)

respectively. While the former is a longitudinal wave, the latter is a transverse cir-

cularly polarized one. There is also a pair of degenerate diffusion modes with the

dispersion relation given by Eq. (3.51).

3.5 The chiral magnetic wave

As was already mentioned in the first chapter the prediction of the chiral mag-

netic wave (CMW) in chiral theories (Kharzeev and Yee (2011)) started an intensive

theoretical and experimental research on the subject. However, the analysis in the

previous section showed that no such mode is realized, or at least it is heavily damped

by dissipation processes. Let us therefore concentrate on this particular collective

mode and explain using simple physical arguments why this mode cannot be realized

under the most common conditions.

Since one of the most interesting applications of the CMW was proposed in the

context of relativistic heavy-ion collisions (Gorbar et al. (2011); Burnier et al. (2011)),
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it is instructive to start our analysis from the case of chiral plasma in the regime of high

temperature. In order to sort out the key details of underlying physics, however, it

will be illuminating to first consider the simplest case of a chiral plasma made of single

flavor massless fermions. It will be also instructive to start from the case of a weakly

interacting case (which is realized, for example, at sufficiently high temperatures).

As we will see in Sec. 3.5.1, the key details of the analysis are similar also in the

nonperturbative regime of the strongly-interacting quark-gluon plasma with several

light flavors.

In order to model the conditions in the plasma produced by relativistic heavy-ion

collisions, where the typical values of the chemical potentials are much smaller than

the temperature, it is sufficient to set µ = µ5 = 0 in our analysis. (The quantitative

effects of a small nonzero chemical potential µ in the high-temperature regime were

already considered in the previous section). This also means that we don’t need a

positive background charge nbg = 0 to overcome the Coulomb repulsion.

In order to further simplify the argument we choose the plasma without the back-

ground vorticity Ω = 0 since its presence is not essential for the propagation of

the predicted in Kharzeev and Yee (2011) chiral magnetic wave. Therefore, the

background state of a one-component massless chiral plasma is characterized only

by a uniform temperature T , local velocity, which in the fluid rest frame takes the

form uµ = (1, 0, 0, 0), and a background magnetic field pointing in the ẑ direction

Bµ ≡ F̃ µνuν = (0, 0, 0, B). As is clear, there should be no electric field in equilib-

rium, i.e., Eµ ≡ F µνuν = 0.

The propagation of collective modes through a chiral plasma is generically ac-

companied by the oscillations of all available dynamical parameters: the chemical

potentials δµ and δµ5, the temperature δT , the flow velocity δuµ, as well as the elec-

tric and magnetic fields δEµ and δBµ. In the linear approximation, it is justified to

71



take them all in the form of plain waves, i.e., δX ∝ e−ik·x. Note, that using this ansatz

we neglect the effect of the geometry on the collective modes. This, however, should

not be critical in the bulk of the plasma far from the boundaries. A more rigorous

cylindrical border and oscillation profile was considered in the previous section.

For simplicity, in this section we assume that all dissipative processes in the system

are controlled by the same phenomenological relaxation-time parameter τ . In the

case of electrical conductivity, for example, one can use σE ' e2τχ/3, where χ =

∂n/∂µ is the fermion number susceptibility Gorbar et al. (2016). Similarly, the chiral

counterpart of conductivity σ5
E can be given as σ5

E ' e2τχ′, where χ′ = ∂n5/∂µ

Gorbar et al. (2016).

As is easy to show, the time-components of all three vector quantities are nondy-

namical. In fact, they can be shown to vanish identically, i.e., δu0 = δB0 = δE0 = 0,

after taking into account the constraints uµBµ = uµEµ = 0 and uµuµ = 1, as well as

the explicit definition for the local (oscillating) electromagnetic field strength tensor

in the laboratory frame, i.e.,

F µν = εµναβūα(B̄β + δBβ) + δEµūν − ūµδEν . (3.57)

After using the Maxwell equation (2.35), the linearized versions of the hydrodynamic

equations (2.31)–(2.34) can be rewritten in the following explicit form:

k0δn− (B · k)δσB + i
τ

3
k2δn− 1

e
σE(k · δE)− 1

e
σE(k · (δu×B)) = 0, (3.58)

k0δn5 − (B · k)δσ5
B + i

τ

3
k2δn5 − i

e2

2π2
(B · δE) = 0. (3.59)

k0δε−
4

3
ε(k · δu) = 0, (3.60)

4

3
εk0δu−

1

3
kδε+ i

4τε

15

(
k2δu +

1

3
k(k · δu)

)
−k0(B× δE) + (B · k)δB− k(B · δB) = 0. (3.61)
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The linearized Maxwell equations take the form:

(k · δE) + ieδn = 0, (3.62)

(k× δB) + k0δE + ieBδσB + e
τ

3
kδn+ iσE [δE + (δu×B)] = 0, (3.63)

−(k× δE) + k0δB = 0, (3.64)

(k · δB) = 0. (3.65)

As we see, after taking the Faraday’s law (3.64) into account, the dynamical oscil-

lations of the magnetic field δB can be expressed in terms of the electric field δE,

namely δB = (k × δE)/k0. In such a form, the latter also automatically satisfies

Eq. (3.65), provided k0 6= 0.

After carefully examining the general structure of the above coupled set of equa-

tions and expressing δB through δE explicitly, we find that the system can be fac-

torized into two blocks. In particular, the independent variables in one of the blocks

can be chosen as follows: δµ, δµ5, (k · δE), (B · δE), and ((k×B) · δu). This is the

block that describes the would-be CMW among other eigenmodes.

Because of the specific dependence of the CSE and CME currents on the mag-

netic field, i.e., j5
CSE = µeB/(2π2) and jCME = µ5eB/(2π

2), the propagation of the

CMW is most prominent in the direction of the magnetic field. This is also clear from

Eqs. (3.58) and (3.59), where the CSE and CME are captured by the terms propor-

tional to (B·k). For the purposes of our study, therefore, it is sufficient to concentrate

only on the case with the wave vector k parallel to the background magnetic field B.

Then, the equations for the CMW greatly simplify, i.e.,

k0δn− kBδσB + i
τ

3
k2δn− 1

e
σEkδEz = 0, (3.66)

k0δn5 − kBδσ5
B + i

τ

3
k2δn5 − i

e2

2π2
BδEz = 0, (3.67)

kδEz + ieδn = 0. (3.68)
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It might be instructive to emphasize that these equations do not contain any de-

pendence on the oscillations of the fluid velocity δu. This is the consequence of

assuming k ‖ B and is not true in general for the CMW with an arbitrary direction

of propagation.

After taking into account the explicit expressions for the number density and

chiral charge density susceptibilities, χ = ∂n/∂µ and χ5 = ∂n5/∂µ5, in the high-

temperature plasma we find

δσB
δn5

=
e

2π2χ5

=
3e

2π2T 2
, (3.69)

δσ5
B

δn
=

e

2π2χ
=

3e

2π2T 2
. (3.70)

By making use of these relations, and eliminating the electric field δEz with the help

of Gauss’s law (3.68), we then derive the following system of equations:(
k0 + i

τ

3
k2 + iσE

)
δn− 3eBk

2π2T 2
δn5 = 0, (3.71)

−
(

3eBk

2π2T 2
+
e3B

2π2k

)
δn+

(
k0 + i

τ

3
k2
)
δn5 = 0. (3.72)

By solving the corresponding characteristic equation, we finally obtain the spectrum

of collective modes

k
(±)
0 = −iσE

2
± iσE

2

√
1−

(
3eB

π2T 2σE

)2(
k2 +

e2T 2

3

)
− iτ

3
k2. (3.73)

It might be appropriate to mention here that a similar dependence of the CMW

energy on the electrical conductivity was also obtained by Abbasi et al. (2017). As is

clear, the collective modes are diffusive when the expression under the square root is

positive, i.e., when the following condition is satisfied:

eB

π2σE
√
χχ5

√
k2 + e2χ =

3eB

π2T 2σE

√
k2 +

e2T 2

3
< 1. (3.74)

For the long wavelength modes with k . eT , this inequality is easily satisfied in

sufficiently hot plasmas and/or for sufficiently weak background magnetic fields.

74



In fact, in the case of weakly coupled plasmas, Eq. (3.74) always holds true when

the hydrodynamic limit is realized. Indeed, at weak coupling, the validity of hydrody-

namics implies the following hierarchy of scales: ld � lB . lmfp � λk, where ld ' 1/T

is de Broglie wavelength, lB = 1/
√
eB is the magnetic length, lmfp ' τ ∼ ld/e

2 is the

particle mean free path, and λk ' 2π/k is the characteristic wavelength of the hydro-

dynamic modes. Note also that the electrical conductivity scales as σE ∼ T/(e2 ln e−1)

at weak coupling (Arnold et al. (2000)).

The situation in the near-critical regime of the quark-gluon plasma created in

the relativistic heavy-ion collisions is not as simple, however. First of all, because

of strong coupling, there is no clear separation between the relevant length scales,

ld ' lmfp. Additional complications arise from the fact that the plasma is created in a

rather small region of space. Nevertheless, the hydrodynamic description is expected

to be suitable for such finite-size fireballs of quark-gluon plasma. The quantitative

analysis of the corresponding case will be presented in Sec. 3.5.1.

It is instructive to study the physical reasons for the diffusive nature of the collec-

tive modes in Eq. (3.73) in the case of chiral plasmas at sufficiently high temperature

and/or sufficiently weak background magnetic fields, i.e., when the expression on

the left-hand side of Eq. (3.74) is much smaller than 1. Out of the two modes in

Eq. (3.73), the first one has a smaller imaginary part, i.e.,

k
(+)
0 ' − i

σE

(
3eB

2π2T 2

)2(
k2 +

e2T 2

3

)
− iτ

3
k2, (3.75)

and describes the chiral charge diffusion, with a small admixture of an induced electric

charge,

δn(+) ' −i 3eB

2π2T 2σE
kδn

(+)
5 . (3.76)

The other mode has a larger imaginary part, which is determined almost completely
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by the electrical conductivity, i.e.,

k
(−)
0 ' −iσE +

i

σE

(
3eB

2π2T 2

)2(
k2 +

e2T 2

3

)
− iτ

3
k2, (3.77)

and describes the electric charge diffusion, with a small admixture of an induced chiral

charge,

δn
(−)
5 ' i

3eB

2π2T 2σE

(
k +

e2T 2

3k

)
δn(−). (3.78)

Clearly, neither of the two modes resembles the conventional CMW with the expected

dispersion relation k
(CMW)
0 = ±vCMWk, where vCMW = 3eB/(2π2T 2) obtained in the

background-field approximation by Kharzeev and Yee (2011). The dramatic difference

is the result of carefully taking dynamical electromagnetism into account. In fact, it

is the high electrical conductivity of the plasma that plays the most important role.

This can be explicitly verified by considering the limit σE → 0 in Eqs. (3.66) and

(3.67). In such a formal limit, the dispersion relations become

k
(±)
0 = ± 3eB

2π2T 2

√
k2 +

e2T 2

3
− iτ

3
k2, when σE → 0. (3.79)

These describe a pair of propagating CMW modes, although they are not the con-

ventional ones because of a nonzero energy gap in the spectrum. The origin of the

gap can be traced to the last term on the left-hand side of Eq. (3.67), which is the

usual chiral anomaly term proportional to BδEz. It gives a nontrivial contribution

after the Gauss law (3.68) is taken into account. So, strictly speaking, the gap is

the result of dynamical electromagnetism as well. Note that the gap in the energy

spectrum of the CMW was also found in the context of Weyl semimetals (Sukhachov

et al. (2018)).

From a physics viewpoint, the detrimental role of electrical conductivity on the

propagation of the CMW can be relatively easily understood. The fundamental

time scale for the CMW is set by the CSE and CME, which convert the oscillat-

ing electric and chiral charge densities into each other. The corresponding time is
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tCMW ' 2π2T 2/(3eBk). However, at sufficiently high temperatures and/or low mag-

netic fields, this is much longer than the time scale for screening of the electric charge

fluctuations due to the electrical conductivity, tscr ' σ−1
E . As a result, any local charge

perturbation dissipates much quicker than the time it takes to produce a substantial

chiral charge imbalance to sustain the CMW.

3.5.1 The chiral magnetic wave in heavy-ion collisions

As we mentioned earlier, in the case of strongly coupled quark-gluon plasma cre-

ated in the relativistic heavy-ion collisions, the analysis is not so simple because there

is no clear separation between the relevant length scales in the problem. One also has

to take into account the effects associated with a small size of the system, its finite

life-time, and to use realistic values for the transport coefficients. Here we perform

the corresponding study in the nonperturbative regime of the quark-gluon plasma by

using the transport coefficients obtained in lattice calculations (Aarts et al. (2007);

Amato et al. (2013); Aarts et al. (2015)).

Let us start by writing down the complete set of chiral hydrodynamic equations

for the plasma made of two light quark flavors,

∂µj
µ
f = 0, (3.80)

∂µj
µ
f,5 = −

e2q2
f

8π2
F µνF̃µν , (3.81)

∂νT
µν = eF µν

∑
f

qfjf,ν , (3.82)

where f = u, d, and the quark charges are qu = 2/3 and qd = −1/3. Note that the

total electric current is given in terms of the individual flavor number density currents

as follows: jµel = e
∑

f qfj
µ
f . For simplicity, we ignore the effects of the strange quark,

which is considerably more massive than the two light quarks. It can be checked,

however, that the results do not change much even if the strange quarks are included
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either as (i) an additional massless flavor that contributes to both sets of continuity

relations (3.80) and (3.81), or (ii) as a sufficiently massive flavor that contributes to

Eq. (3.80), but not to Eq. (3.81).

The complete set of linearized equations that describes the longitudinal CMW in

the multi-flavor quark-gluon plasma reads

k0δnf −
eqfBk

2π2χf,5
δnf,5 + iDfk

2δnf −
1

eqf
σE,fkδEz = 0, (3.83)

k0δnf,5 −
eqfBk

2π2χf
δnf + iDfk

2δnf,5 − i
e2q2

f

2π2
BδEz = 0, (3.84)

kδEz + ie
∑
f

qfδnf = 0, (3.85)

where we used the following relations:

δσB,f ≡
eqf
2π2

δµf,5 =
eqf

2π2χf,5
δnf,5, (3.86)

δσ5
B,f ≡

eqf
2π2

δµf =
eqf

2π2χf
δnf , (3.87)

which are given in terms of the fermion number and chiral charge susceptibilities

χf ≡ ∂nf/∂µf and χf,5 ≡ ∂nf,5/∂µf,5.

In the continuity relations for the flavor number charge, we also used the partial

flavor contributions to the electrical conductivity, i.e., σE,f = cσe
2q2
fT . Note that the

total conductivity σE takes the form

σE =
∑
f

σE,f = cσC
`
emT, (3.88)

where C`
em = e2

∑
f q

2
f = 5e2/9 ≈ 5.1×10−2, where we took into account the definition

of the fine structure constant, e2/(4π) = 1/137. In the case of deconfined quark-

gluon plasma, the numerical coefficient cσ was obtained in lattice calculations by

Aarts et al. (2007); Amato et al. (2013); Aarts et al. (2015). According to the most

recent calculation of Aarts et al. (2015), its value ranges from about cσ ≈ 0.111 at
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T = 200 MeV to about cσ ≈ 0.316 at T = 350 MeV, see Table 3.1. In the study of

collective modes below, we will use these lattice values for the transport coefficients.

T cσ cχ cD

200 MeV 0.111 0.804 0.758

235 MeV 0.214 0.885 1.394

350 MeV 0.316 0.871 1.826

Table 3.1: Numerical values of coefficients cσ, cχ, and cD at three fixed temperatures
obtained from lattice calculations by Aarts et al. (2015).

We will also use the lattice results for the light-flavor number density susceptibil-

ities χf and the diffusion coefficients Df (Aarts et al. (2007); Amato et al. (2013);

Aarts et al. (2015)), i.e.,

χf = cχχ
(SB)
f , (3.89)

Df =
cD

2πT
, (3.90)

where the values of numerical coefficients are flavor independent (for the light u- and

d-quarks) and are given in Table 3.1. Note that the Stefan-Boltzmann expression for

the susceptibility is χ
(SB)
f ≡ T 2/3. We will assume that the chiral charge susceptibility

is the same as the fermion number one, i.e., χf,5 = χf .

While the structure of Eqs. (3.83)–(3.85) is very similar to Eqs. (3.66)–(3.68), one

should note that the total number of coupled equations is larger because the fermion

number and chiral charges for each flavor satisfy independent continuity relations.

With a larger number of equations, unfortunately, the characteristic equation becomes

more complicated and no simple analytical solutions can be presented. Nevertheless,

by making use of the intuition gained in the simpler model in the previous section, it is

straightforward to check numerically that the underlying physics remains essentially

the same.
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In application to quark-gluon plasma created in heavy-ion collisions, it is impor-

tant to take into account a relatively small size of the system. Such a size plays an

important role as it sets an upper bound for the wavelengths of collective modes that

could be realized, i.e., λk . R, where R is the system size. This implies, in turn, that

there is an unavoidable lower bound for the values of wave vectors, k & 2π/R. In

the numerical analysis below, we will assume that the size of the system lies between

about 12 fm and 24 fm. This would translate into an infrared cutoff for the possible

wave vectors of about 100 MeV at R ' 12 fm and 50 MeV at R ' 24 fm.

Of course, there is also an upper bound for the values of wave vectors of collective

modes. It is set by the inverse mean free part of the system. In the case of the

deconfined quark-gluon plasma in the near-critical region, the latter is likely to be of

the order of 1 fm or so. For our purposes, however, it will be sufficient to consider

the wavelength λk & 2 fm, which translates into the upper limit for the wave vectors

k . 600 MeV.

The numerical analysis reveals that there are two pairs of overdamped collective

modes. The dispersion relations for both modes take the following general form:

k
(±)
0,n = ±En(k)− iΓn(k), with n = 1, 2, (3.91)

where En(k) and Γn(k) are real and imaginary parts of the energies of collective

modes. It is interesting to note that, in the long wavelength regime, one of the modes

is the usual CMW, while the other corresponds to electrically neutral oscillations

with nd ≈ 2nu. The numerical results for the corresponding dispersion relations

are summarized in Fig. 3.6, where we show the dependence of the real parts of the

energies, as well as the ratios of the real to imaginary parts, on the wave vector

k for three fixed values of temperature T = 200 MeV, 235 MeV, and 350 MeV,

and for three fixed values of the background magnetic field, i.e., eB = (50 MeV)2,
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(100 MeV)2, and (200 MeV)2. The numerical data is presented for the wave vectors

in the range 50 MeV . k . 620 MeV, which corresponds to a rather wide window of

the wavelengths, 2 fm . λk . 24 fm. For the data in the gray shaded regions at small

values of k, the values of the wavelengths lie between λk ≈ 24 fm and λk ≈ 12 fm.

Most likely, these are already unrealistically large, but we decided to presented the

corresponding results for completeness.

In order to obtain the numerical results in Fig. 3.6, we used the lattice data for

the transport coefficients from Aarts et al. (2015). In this connection, it should be

noted that the three selected choices of the temperature, T = 200 MeV, 235 MeV,

and 350 MeV, correspond to 1.09Tc, 1.27Tc, and 1.9Tc in the notation of Aarts et al.

(2015), where Tc ≈ 185 MeV is the deconfinement critical temperature obtained from

the position of the peak in the Polyakov loop susceptibility.

As is clear from the results in Fig. 3.6, all CMW-type modes are overdamped,

although not always completely diffusive. This differs somewhat from the case of the

very high temperature and/or weak magnetic field considered before. In fact, we find

that this is largely due to the combination of the following two effects: (i) a relatively

small electrical conductivity of the quark-gluon plasma in the near-critical region of

temperatures and (ii) substantial charge diffusion effects for all wave vectors allowed

by the small size of the system, i.e., k & 50 MeV.

Because of a nonzero electrical conductivity, we find that one of the CMW modes

becomes diffusive when the magnetic fields are not very strong and the wave vectors

are not too large. Note that this is qualitatively consistent with the condition in

Eq. (3.74). Indeed, as we see from the top row of panels in Fig. 3.6, one of the modes

is diffusive (i.e., its real part of the energy is zero) in the whole range of wave vectors

shown, when the field is not very strong, eB = (50 MeV)2, but the temperature is

high, T = 350 MeV. Even with decreasing the temperature, one of the modes still
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Figure 3.6: The real parts of the energies (left panels) and the ratios of the real to
imaginary parts of the energies (right panels) of the CMW-type collective modes at
three fixed values of temperature. The three rows of panels show the results for three
choices of the magnetic field, i.e., eB = (50 MeV)2, (100 MeV)2, and (200 MeV)2,
respectively. In the gray shaded regions, the wavelengths lie outside the range 2 fm .
λk . 12 fm. The actual results are plotted down to the wave vectors as small as
k ≈ 50 MeV, which corresponds to λk . 24 fm.

remains diffusive at sufficiently small wave vectors, namely below k ' 279 MeV at

T = 235 MeV and below k ' 79 MeV at T = 200 MeV. With increasing the magnetic

field, as we see from the second and third rows of panels in Fig. 3.6, the range with

one diffusive mode is pushed to smaller values of the wave vectors. For example,
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at eB = (100 MeV)2, the CMW is diffusive below k ' 341 MeV at T = 350 MeV

and below k ' 64 MeV at T = 235 MeV. In fact, only at the smallest value of

temperature, T = 200 MeV, the real part of the energy is nonzero in the whole range

of allowed wave vectors. Nevertheless, the corresponding value of the real part remains

considerably smaller than the imaginary part. In fact, as we see from the third row

of panels in Fig. 3.6, the diffusive regime of the CMW is not completely avoided even

in a rather strong magnetic field if the temperature stays sufficiently high. Indeed,

at eB = (200 MeV)2, one of the modes is still diffusive below k ' 73 MeV at

T = 350 MeV. Only at sufficiently low temperatures, the CMW gradually revives

and becomes a propagating mode at such an extremely strong field.

The existence/absence of a completely diffusive mode in the spectrum can be

easily investigated in the whole range of relevant model parameters. In the plane of

wave vectors and magnetic field, the corresponding regions are presented graphically

in Fig. 3.7 for the three different values of temperatures. In the shaded regions (below

the “critical” lines), the spectrum contains a diffusive mode. It should be pointed out

that the corresponding regions agree qualitatively with the validity of the condition

in Eq. (3.74).

As we see from the numerical results in Fig. 3.6, the collective modes are over-

damped for all magnetic fields with the values of up to eB ' (100 MeV)2, i.e., even if

they are not completely diffusive. Indeed, the ratios of the real to imaginary parts of

the energies En(k)/Γn(k) are less than 1 in the whole range of the wave vectors down

to the smallest values allowed by the system size, i.e., k ' 50 MeV, which corresponds

to λk ' 24 fm. It easy to figure out that such strong damping cannot be explained

by the effects of the electrical conductivity alone.

As it turns out, the charge diffusion also contributes substantially to the strong

damping of the collective modes in a wide range of wave vectors. This is despite the
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Figure 3.7: The graphical representation of the parameter space regions (shaded)
where one of the modes becomes completely diffusive. Different colors (and line types)
represent the results for three fixed values of temperature.

fact that, in the strongly coupled quark-gluon plasma in the near-critical regime, the

diffusion coefficient takes a rather small value, Df ' 1/(2πT ), see Eq. (3.90) and

Table 3.1. By taking into account that the wave vector is bound from below by the

inverse system size, however, one can easily see that the relevant modes are subject

to a sizable damping.

3.6 The chiral vortical wave

The results of the previous sections show that there are substantial problems

with realization of the non-damped chiral magnetic wave in electrically charged one-

component chiral plasmas due to Ohmic dissipation. Indeed, in all but the strongest

magnetic fields dissipation damps the wave into a purely dissipative mode with no

oscillations. This poses a serious challenge for the experimental efforts to detect it

(note, however, that situation may be different for multi-component plasmas, which

may allow electrically neutral chiral modes). Because of these problems it may there-
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fore be promising to consider closely the chiral vortical wave, which may exist in

neutral plasmas without Ohmic dissipation.

The governing set of equations for the neutral chiral plasma is Eqs. (2.31)–(2.34)

with the right-hand sides set to zero. The system is obviously decoupled from the

Maxwell equations and so we will ignore them in this section. For simplicity we will

concentrate only on the collective modes in the bulk far from the boundary and neglect

the effects of geometry. In order to compare the results we choose the equilibrium

analogous to the one we used in the previous sections, albeit without the background

magnetic field, which does not influence the neutral system. In particular, we consider

a chiral neutral plasma with a constant temperature T , chemical potential µ, chiral

chemical potential µ5, and velocity profile uµ describing a uniform rotation with an

angular velocity Ω along the ẑ axis given in Eq. 3.1 (here and later we omit the bars

above the equilibrium parameters). Note, that in the case of a neutral plasma we do

not require any background charges to ensure stability against Coulomb repulsion.

Analogously, the plasma may possess a non-zero vector current in the equilibrium, as

it does not lead to a magnetic field production. Therefore, we may take a non-zero

(but uniform) chiral chemical potential µ5 6= 0 without breaking the equilibrium. As

usual, we limit our analysis up to the linear order in Ω. In short, most of the arguments

of the section 3.1 still apply to the neutral case with the only two exceptions being

that the electromagnetic field has no influence on the system and the chiral chemical

potential may be non-zero.

Having defined the equilibrium the next step is to impose a small perturbation on

top of it and search for the collective modes. We deliberately disregard the geometry

of the problem and so it makes sense to take the perturbations in the form of a

plane-wave. We then solve for the collective modes near the axis of rotation far from

the boundary. In the most general case all the chemical potentials, temperature, and
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fluid velocity will oscillate around their average values, i.e.,

δµ(x) = e−ikxδµ, δµ5(x) = e−ikxδµ5, (3.92)

δT (x) = e−ikxδT, δuµ(x) = e−ikxδuµ, (3.93)

where kµ is the wave vector, and δµ, δµ5, δT , and δuµ are the amplitudes of oscilla-

tions of the corresponding quantities. Note, that similar to the previous section we

used a plane-wave perturbation profile, which is justified close to the axis of rotation

and far from the boundaries. The velocity normalization uµuµ = 1 constrains the

corresponding oscillation to be orthogonal to the background velocity, uµδu
µ = 0.

This is automatically satisfied for the waves with the fluid velocity oscillations along

the direction of the vorticity, i.e., δuµ ‖ ωµ ‖ ẑ. Using the fact that the chiral vortical

wave propagates along the direction of vorticity (Jiang et al. (2015)) for simplicity

we also take the wave vector to be parallel to it, i.e., kµ = (k0, 0, 0, kz).

By substituting the perturbed hydrodynamic variables into the continuity equa-

tions (2.31)–(2.34) and using (2.26)–(2.28), we derive the following system of coupled
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equations:∑
ζi

(
k0
∂n

∂ζi
− iτ

3
k2
⊥
∂n

∂zi
+ kµω

µ∂σω
∂ζi

)
δζi + n (1 + iτk0) (k · δu)− 2k0σω(ωµ · δu) = 0,

(3.94)∑
ζi

(
k0
∂n5

∂ζi
− iτ

3
k2
⊥
∂n5

∂ζi
+ kµω

µ∂σ
5
ω

∂ζi

)
δζi + n5 (1 + iτk0) (k · δu)− 2k0σ

5
ω(ω · δu) = 0,

(3.95)∑
ζi

(
k0
∂ε

∂ζi
+ kµω

µ∂ξω
∂ζi

)
δζi +

4

3
ε(k · δu)− 3k0ξω(ω · δu) = 0,

(3.96)∑
ζi

(
ωµk0

∂ξω
∂ζi
− kµ⊥

1

3

∂ε

∂ζi

)
δζi +

(
4

3
εk0 +

3

4
ξω(k · ω)

)
δuµ + ξωω

µ(k · δu)

+
1

4
ξω(ω · δu)kµ⊥ −

i

2
ξωk0ε

µναβuνkαδuβ − i
8τε

15
∆µν
αβkνk

αδuβ = 0.

(3.97)

Here ωµ = (0, 0, 0,Ω) is the vorticity four-vector in accordance with Eq. (3.2) up to

the linear order in Ω, and we used a short-hand notation kµ⊥ = kµ−uµ(k ·u), and the

summation index ζi = (µ, µ5, T ).

The obtained system of homogeneous linear equations has nontrivial solutions only

when the determinant of the corresponding matrix of coefficients vanishes. Thus, by

solving the characteristic equation, we obtain dispersion relations for two different

types of waves: the sound wave and the two modes that resemble the chiral vortical

wave. As we will see, the latter differs from the simplified solutions of the chiral

vortical wave in Jiang et al. (2015) because its propagation is profoundly affected by

the hydrodynamic flow of the fluid itself.

For the sake of completeness let us first consider the sound wave. To the linear

order in Ω and τ , the resulting dispersion relation is given by

k0 =
sekz√

3
+

3

8
Ω
n5

ε
~kz −

2

15
iτk2

z , (3.98)
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where se = ±1. Comparing this result to (3.43) it is readily seen that they differ in

the vorticity correction term, which in this case vanishes for µ5 = 0.

The dispersion relations of the chiral vortical wave reads:

k0 = ~Ωv1kz −
1

3
iτk2

z , k0 = ~Ωv2kz −
1

3
iτk2

z , (3.99)

where v1,2 are the roots of a quadratic equation av2 + bv + c = 0 with the following

coefficients:

a = ε
[
7π6T 6 + 3π2T 2

(
11µ4 + 18µ2µ2

5 + 11µ4
5

)
+ 27π4T 4

(
µ2 + µ2

5

)
+ 45

(
µ2 − µ2

5

)2 (
µ2 + µ2

5

) ]
, (3.100)

b = − µ5

10π2

[
14π8T 8 − 15π2T 2

(
30µ6 + 5µ4µ2

5 − 72µ2µ4
5 − 43µ6

5

)
+ π6T 6

(
78µ2 + 127µ2

5

)
+ 45π4T 4µ2

5

(
11µ2 + 9µ2

5

)
− 225

(
µ2 − µ2

5

) (
2µ6 + 5µ4µ2

5 + 8µ2µ4
5 + µ6

5

) ]
, (3.101)

c = − 3

20π2

[
π6T 6

(
4µ2 + 21µ2

5

)
+ 5π4T 4

(
8µ4 + 45µ2µ2

5 − 13µ4
5

)
+ 25π2T 2

(
4µ6 + 27µ4µ2

5 − 6µ2µ4
5 − 9µ6

5

)
+ 75µ2

5

(
µ2 − µ2

5

) (
5µ4 + 10µ2µ2

5 + µ4
5

) ]
.

(3.102)

This result seems to qualitatively agree with the dispersion relations obtained by

Abbasi et al. (2016, 2017). From a physical point of view, the two velocities ~Ωv1,2

correspond to the two opposite directions of propagation with respect to the vorticity

and in general may be different. It is interesting to note that the two velocities are

nonzero even at µ = 0, which appears to contradict the prediction of Kalaydzhyan

and Murchikova (2017), where similar waves were analyzed. We may suggest that

this is the result of using a more general scheme in this study, in which both the

fermion-number and axial-charge conservations are enforced (see also Abbasi et al.

(2016, 2017)).
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Figure 3.8: The two parameters v1,2 that control the speed of the chiral vortical
wave in the case of high temperature (top row) and high density (bottom row).
The graph clearly shows the essential role of µ5 in splitting the speeds of the CVW
when it propagates along or against the direction of vorticity (the two coincide for
µ5 = 0). This is also in agreement with the symmetry argument that the chiral
chemical potential breaks parity.

The two parameters v1,2 = (~Ω)−1∂k0/∂kz from Eq. (3.99) of the chiral vortical

wave propagating along and against the vorticity are shown on Fig. 3.8 for the cases of

large temperature and chemical potential and different values of µ5. As can be seen

from the plots the chiral chemical potential plays an essential role in the splitting

of the two velocities, which become equal at µ5 = 0. This inequality in its turn

may produce an imbalance in the system evolution along the axis of vorticity. This

observation is in agreement with the fact that the chiral chemical potential breaks

the parity of the system.

In order to compare results with previous sections let us consider a special case of

a plasma with vanishing chiral chemical potential µ5 = 0. In this case, the dispersion
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relation for the sound wave is similar to that in Eq. (3.43), but has no correction due

to vorticity. This should not be surprising for we chose k||ẑ in this section. As for

the dispersion relation of the chiral vortical wave, it is given by the following explicit

expression:

k0 = se
Ω~Tµ(π2T 2 + 5µ2)kz

2π
√

5ε(5ε− 2T 2µ2)(π2T 2 + 3µ2)
− 1

3
iτk2

z . (3.103)

Comparing this with Eq. (3.44) one can see the general resemblance (<k0 ∝ Ωkz),

although there are significant differences in the coefficients. This may be attributed

to the fact that this result was obtained without regard to the geometry by using

a plane-wave perturbation ansatz. It may be suggested, therefore, that a proper

account of boundary effects may play a crucial part in the analysis of chiral collective

modes.
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Chapter 4

CONCLUSIONS

As we mentioned in the introduction chiral symmetry plays an important role in

the evolution of many physical systems ranging from the primordial plasma in the

early Universe, to modern solid-state systems called Dirac and Weyl materials with

relativistic-like quasi-particles, to quark-gluon plasma produced in high-energy heavy-

ion collisions at the LHC and RHIC. From the theoretical point of view the properties

of such systems are affected by the chiral anomaly, i.e., anomalous symmetry breaking.

In this dissertation we concentrated on the influence of the chiral symmetry and its

breaking on the collective modes of chiral plasmas.

In chapter 1 we examined the rapidly developing field of chiral plasmas, their

examples and applications in different branches of physics, phenomenology, and the-

oretical approaches. This research is actively pursued in computer simulations of

astrophysical phenomena, design of chiral condensed matter systems, and develop-

ment of new observables in heavy-ion collisions. We reviewed the two main methods

used in studies of chiral forms of matter, i.e., chiral kinetic theory and chiral hydro-

dynamics and discussed their range of validity. In passing, we also mentioned other

methods proposed in the literature.

In chapter 2 we used covariant relativist chiral kinetic theory to derive a closed

system of first order chiral hydrodynamic equations for a charged chiral plasma in

electromagnetic fields. In the second part of the chapter we also derived a causal

and stable second-order chiral hydrodynamics for a neutral plasma. It is interesting

to note that hydrodynamical description of chiral systems has a number of peculiar

features. For example, there may exist non-zero non-dissipative currents in a system
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even in equilibrium due to the chiral magnetic and the chiral vortical effects. An

interesting point in using the relaxation time approximation is the need for the so-

called no-drag reference frame (in contrast to the more commonly used Landau and

Eckart frames) unique for chiral systems. This is the same well-known artifact of

the relaxation time approximation as in the conventional relativistic hydrodynamics,

which is only slightly modified by the chiral effects.

In chapter 3 we started from identifying the range of validity of magnetohydrody-

namics and established the hierarchy of the relevant scales in the problem. Then we

found an equilibrium state of a uniformly rotating chiral plasma in cylindrical geom-

etry in a magnetic field, which models a situation common in high-energy heavy-ion

collisions. Using this equilibrium we then analytically found the full spectrum of

long-wavelength collective modes. It was found that in the high-temperature (low-

density) case the system carries a sound wave, an Alfvén-vortical wave and a few

diffusive modes. In the high-density (low-temperature) case the system carries a

plasmon mode, a helicon mode, and a number of overdamped diffusive modes. It is

important to emphasize here that we found no “purely” chiral modes, such as the

chiral magnetic and the chiral vortical waves predicted in chiral plasmas using less

rigorous approaches (Kharzeev and Yee (2011); Jiang et al. (2015)). We stress the

importance of the inclusion of dynamical electromagnetism and dissipation in the

analysis of chiral effects as we showed the qualitative difference in the results without

them.

We then investigated the reasons for the absence of both the CMW and CVW

in detail. We found that in charged plasmas under all but most extreme conditions

the electric conductivity overpowers any chiral propagation mechanism and damps a

local charge imbalance before it has a chance to propagate. Therefore, all theoretical

proposals for the detection of the CMW must be carefully reevaluated and, most-
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likely, substantially modified in order to find robust physical observables pointing

to the chiral nature and anomalous features of the quark-gluon plasma. In neutral

plasmas the situation is similar and the chiral modes are strongly damped by the

ordinary kinetic diffusion. The only conditions for the chiral modes to survive are

extreme magnetic fields or vorticity. Under such conditions, however, the kinetic and

hydrodynamic descriptions of the plasma break down. It is worth mentioning that

we found a significant difference in velocities of the chiral vortical waves traveling

in opposing directions (see Fig. 3.8) if even a small chiral imbalance µ5 is initially

present in the system. We argue that this may lead to physical observables even for

damped modes. It must be noted also that the analysis of the chiral vortical wave

showed that a proper account of boundary effects and geometry of the problem may

play a role in the analysis of chiral collective modes.

Despite the considerable progress there is still a lot of questions that need fur-

ther research regarding the anomalous effects in chiral plasmas. We could start by

mentioning the effects of small non-zero masses in chiral kinetic and hydrodynamic

theories. Since most (if not all) elementary particles have non-zero masses, it must

be important in some physical scenarios and can even lead to new qualitative effects.

The relevant questions also include the quantitative estimates for the range of validity

of CKT and chiral hydrodynamics and the effects of mass-induced chirality flipping

on signature anomalous phenomena. A limited progress in this direction was recently

made in recent papers by Hattori et al. (2019) and Wang et al. (2019). However, it

is fair to say that the problem has not been completely solved.

By continuing the research program started in this dissertation it would be inter-

esting to derive the second-order chiral hydrodynamics for a charged plasma. One

could use the same technique as the one used in chapter 2 for the neutral case. The

initial investigation in this direction suggests that there will be many more terms in
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constituent relations, including new qualitative features.

Having a closed set of kinetic and hydrodynamic equations begs for a direct solver

or particle-in-cell computer simulation algorithm that fully accounts for dynamical

electromagnetism and all dissipative effects. Even something basic as a gradual sub-

siding of chiral charge can be useful to model the stability and lifetime of local inho-

mogeneities in plasma. It will be even more important for reexamining the conversion

of plasma chirality to magnetic field helicity in the early Universe (inverse magnetic

cascade) (Brandenburg et al. (2017); Schober et al. (2018)). In particular, one truly

needs to establish whether finite conductivity plasma would not kill the primordial

magnetic field generation in the early Universe.

In the context of chiral effects in heavy-ion collisions it is interesting to establish

what kind of new observables can be predicted from the type and spectrum of collec-

tive modes obtained in this dissertation. Since the Alfvén waves are slightly modified

by the anomalous physics, it is plausible that some multi-particle correlators could be

sufficiently sensitive to their details and could be extracted from the observable data.

The corresponding research program is likely to be very difficult due to complications

from finite-size a short lifetime effects, non-uniform vorticity and background fields

profiles, etc..
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In the calculation of moments of the distribution function, the following integrals
are useful:∫

d4p

(2π~)3
δ(p2)(p · u)nf0 = −Γ(n+ 2)

4π2
T n+2

∑
χ=±1

χn+2Lin+2

(
−e

χµλ
T

)
≡ In+2, (A.1)∫

d4p

(2π~)3
δ(p2)(p · u)npαf0 = uαIn+3, (A.2)∫

d4p

(2π~)3
δ(p2)(p · u)npαpβf0 =

(
−1

3
gαβ +

4

3
uαuβ

)
In+4, (A.3)∫

d4p

(2π~)3
δ(p2)(p · u)npαpβpγf0 =

(
−g(αβuγ) + 2uαuβuγ

)
In+5, (A.4)∫

d4p

(2π~)3
δ(p2)(p · u)npαpβpγpδf0 =

(
1

5
g(αβgγδ) − 12

5
g(αβuγuδ) +

16

5
uαuβuγuδ

)
In+6,

(A.5)

where f0 is the equilibrium function at vanishing vorticity, i.e.,

f0 =
1

1 + esign(p0)(εp,0−µλ)/T
, (A.6)

with εp,0 = p · u, and the round brackets in superscripts denote the symmetrization
over all possible permutations of indices, e.g., A(αBβCγ) ≡ (AαBβCγ + AαBγCβ +
AβBαCγ + AβBγCα + AγBβCα + AγBαCβ)/3!.

It is easy to check that the lower moments can be obtained from the higher ones
multiplying the latter by the four-velocity uµ. As is easy to check, the explicit results
for several lowest-order moments read

I1 =
µλ

4π2~3
, (A.7)

I2 =
µ2
λ

8π2~3
+

T 2

24~3
, (A.8)

I3 =
µ3
λ

12π2~3
+
µλT

2

12~3
, (A.9)

I4 =
µ4
λ

16π2~3
+
µ2
λT

2

8~3
+

7π2T 4

240~3
. (A.10)

Note that these moments satisfy the following recurrent relation: ∂In+1/∂µλ = nIn.
Using this relation it is easy to obtain similar chains of integrals with the first deriva-
tive of the distribution function f ′0 = ∂f0/∂εp,0 = −∂f0/∂µλ if one makes a substitu-
tion In → −(n− 1)In−1. For f ′′0 , the substitution is In → (n− 1)(n− 2)In−2 and so
on.
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APPENDIX B

SEARCH FOR THE COLLECTIVE MODES IN THE PRESENCE OF
VORTICITY
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In this appendix, we present a method of finding the linear and higher order
corrections in vorticity Ω to the dispersion of the collective modes used in chapter 3.

Let us start by recalling the general formulation of the problem. The general
system of hydrodynamic equations (presented in appendix D) contains 12 differential
equations on 12 perturbations δX(r), where X = µ, µ5, T, u

µ, Bµ, Eµ. Next we ex-
pand all perturbations into the Fourier-Bessel series: δX(r) =

∑
i δXi Jm(ki⊥r), and

substitute them into the system. The equations themselves are the functions of r
and so they can be integrated with the weight rJm(kj⊥r) using the Bessel functions
orthogonality condition. In the case of zero vorticity after simplifications only the
pure Bessel functions are present in the system and so after the integration we get
an algebraic system on 12 amplitudes δXj. This system can be solved for each kj⊥
separately, i.e., different kj⊥ are independent.

Next we turn on a ”small” vorticity Ω so that the spectrum and the eigenfuctions
of the general system of differential equations do not change ”much”. Therefore, we
again substitute the same Fourier-Bessel series instead of the unknown amplitude
functions δX(r). After simplifications the system contains only a few different func-
tions of the radius: Jm(ki⊥r), rJm(ki⊥r) and r2Jm(ki⊥r). Here the straightforward

Bessel orthogonality condition fails and so different kj⊥ are no longer independent.
But the question is ”how far from being independent are they”? To answer that we
find the expansions:

rJm(kj⊥r) = ajJm(kj⊥r) +
∑
i 6=j

aiJm(ki⊥r),

r2Jm(kj⊥r) = bjJm(kj⊥r) +
∑
i 6=j

biJm(ki⊥r). (B.1)

Several sets of coeffcients ai and bi are given as a bar chart in Fig. B.1. The charts
show that both coefficients subside quite rapidly for large |i − j|. Hence, as an
approximation, we can neglect the sum in Eq. (B.1) and set rJm(kj⊥r) ≈ ajJm(kj⊥r)

and r2Jm(kj⊥r) ≈ bjJm(kj⊥r). This effectively makes different kj⊥ independent again
and so we can apply the Bessel orthogonality to get a closed algebraic system on
amplitudes with the inclusion of vorticity.

If we leave the sum in the expansion Eq. (B.1) and integrate the system with the
weight rJ(kj⊥r) we end up with an algebraic system made up of n × n blocks of the
size 12×12, each of which corresponds to the amplitudes δXi for a given ki⊥, and n is
defined from the UV cutoff ki⊥ < kUV or may even be infinite. The system of equations
can be divided into the vorticity-less and vortical parts: M = A+ ΩB, where in the
matrix A only diagonal blocks are nonzero. Let us also introduce a combined index
(i, α) to numerate the entries in the matrix, where i = 1, .. numerates the wave vector
and α = 1, .., 12 numerates the amplitude.

The system of equations M has nontrivial solutions if its determinant is zero.
Using the textbook definition of the determinant we can write:

detM = εa(1,1)a(1,2)...a(1,12)......a(n,12)M(1,1),a(1,1)M(1,2),a(1,2) ...M(1,12),a(1,12) ......M(n,12),a(n,12) ,

(B.2)
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Figure B.1: Coefficients ai and bi from the expansions in Eq. (B.1) for the few
indexes i around j = 3 at m = 0, 3, 5. As can be seen from the graph both coefficients
subside quickly for large |i− j|.

where a(i,α) enumerates all indexes and ε is a Levi-Civita tensor of an appropriate size.
Substituting M = A+ ΩB into the formula the zeroth order in Ω can be evaluated:

detMΩ0 = εa(1,1)...a(1,12)......a(n,12)A(1,1),a(1,1) ...A(1,12),a(1,12) ......A(n,12),a(n,12) (B.3)

The matrix A is block diagonal and so only the indexes from the same block survive:
a(i,α) = (i, aiα) and A(i,α),a(i,α) = Aiα,aiα , where aiα = 1, ..., 12 and Ai is the i-th 12× 12

block matrix on the diagonal. The determinant is then:

detMΩ0 = ε(1,a11)...(1,a112)......(n,an12)A1
1,a11

...A1
12,a112

......An12,an12
(B.4)

=
(
εa

1
1...a

1
12A1

1,a11
...A1

12,a112

)
...
(
εa

n
1 ...a

n
12An1,an1 ...A

n
12,an12

)
= detA1... detAn.

(B.5)

In other words the determinant of the block-diagonal matrix is a product of the block
determinants. In the first order we change one of the A to B:

detMΩ1 =
∑
i

∑
α

εa(1,1)...a(1,12)......a(n,12)A(1,1),a(1,1) ...B(i,α),a(i,α) ...A(n,12),a(n,12) . (B.6)

Using the block-diagonality of the matrix A we get:

detMΩ1 =
n∑
i=1

12∑
α=1

detA1...
(
εa

i
1...a

i
12Ai1,ai1

...Bi
α,aiα

...Ai12,ai12

)
... detAn (B.7)

=
n∑
i=1

detA1... det
(
Ai + ΩBi

)
... detAn +O(Ω2) (B.8)

= det
(
A1 + ΩB1

)
... det (An + ΩBn) +O(Ω2), (B.9)

where Bi is the i-th diagonal block of the matrix B similar to the notation Ai. There-
fore, the spectrum of the system in the linear order is found by solving each diagonal
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block separately: det (Ai + ΩBi) = 0. However, there are several complications with
this method. First of all, the trick of the determinant factorization is ambiguous.
Second, the generalization to the quadratic order is not so straightforward and may
require the summation of a large (if not infinite) number of blocks.

There is, however, another method that allows a generalization to the higher
orders. It is based on the QM perturbation theory. The idea is the following: if we
knew the eigenvalues λi of the matrix M, then the determinant could be factorized
as detM =

∏
i λi and the spectrum found from the equations λi(k0) = 0. Moreover,

if we knew just the eigenvalues and the eigenvectors of the matrix A we could use
the perturbation theory and find the first and higher corrections to the eigenvalues
in the systematic way. In this way we could get the first and higher order vorticity
corrections to the dispersion in the systematic way from the equation λi(k0) = 0.

The problem is that even in the vorticity-less case we do not know the eigenvalues.
However, we can make a trick to overcome this problem in the first order in Ω.
Let us consider the block-eigenvalue problem M|n〉 = |n〉〈Λn〉, where the block-
eigenvector |n〉 is a 12n × 12 matrix and the block-eigenvalue 〈Λn〉 is a 12 × 12
matrix. Such a problem is useful because the set of all eigenvalues of the matrices
〈Λn〉 coincide with the set of eigenvalues of M (this can be proven analogous to
the usual eigendecomposition by showing that M is similar to diag(〈Λn〉)). Note,
that unlike the usual case where the eigenvector can have variable length and the
eigenvalue is fixed in this case the block-eigenvalue is defined up to the similarity
transformation |n′〉 = |n〉P , 〈Λ′n〉 = P 〈Λn〉P−1.

In the case without vorticity the simplest eigenvector contains only one block of
the identity matrix |n0〉 = (0, 0, .., I, ..0) and the corresponding eigenvalue is one of
diagonal blocks of A, i.e., 〈Λ0

n〉 = An. Following the perturbation theory we assume
that the eigenvalues and the eigenvectors can be decomposed into a series in the
powers of Ω:

|n〉 = |n0〉+ Ω|n1〉+ ..., 〈Λn〉 = 〈Λ0
n〉+ Ω〈Λ1

n〉+ ... (B.10)

Substituting this into the equation (A+ ΩB)|n〉 = |n〉〈Λn〉 we get in the first order:

A|n1〉+B|n0〉 = |n0〉〈Λ1
n〉+ |n1〉〈Λ0

n〉. (B.11)

Assuming that the vector |n〉 is normalized to 1 similar to |n0〉 we get in the first
order 〈n0|n1〉 = 0. Multiplying the equation above by the co-vector 〈n0| we get the
first block-eigenvalue correction:

〈Λ1
n〉 = 〈n0|B|n0〉 = Bn, (B.12)

which is the n-th block on the diagonal of B. Therefore, up to the first order in the
vorticity the eigenvalues and spectrum of M can be found from the eigenvalues of
the diagonal blocks (An + ΩBn).

The second order correction is much more complicated. In order to find it we first
need to find the first-order correction to the eigenvector. It can be decomposed as
|n1〉 =

∑
k 6=n |k0〉〈αnk〉, where 〈αnk〉 is some unknown 12×12 matrix. Substituting this

into the first-order equation we get:

〈Λ0
k〉〈αnk〉 − 〈αnk〉〈Λ0

n〉+ 〈k0|B|n0〉 = 0. (B.13)
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This is a so-called Sylvester equation for the matrix 〈αnk〉. It has a unique solution if
the matrix A is non-degenerate, which is indeed the case in this problem. However, it
is very non-trivial and, probably, is much more involving than the eigenvalue problem
for Ai. Anyway, if we are able to find the solution 〈αnk〉, then we can easily find
the second-order correction to the block-eigenvalue and, therefore, the spectrum.
Proceeding in the similar fashion one can find the higher-order corrections to the
spectrum in the systematic way. Another advantage of this method is that we avoid
calculating determinants of infinite matrices and only deal with 12× 12 blocks.
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BESSEL FUNCTIONS
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In this appendix, we present some useful relations for the Bessel functions that
are needed for the analysis in the main text of the dissertation.

Let us remember that the Bessel functions Jm(z) have an infinite number of pos-
itive real zeros at z = αm,i, where i = 1, 2, .... (Note that we use a nonstandard
notation αm,i instead of the usual jm,i.)

By making use of the table integrals Gradshteyn and Ryzhik (2014)∫ 1

0

dx rJν(ax)Jν(bx) =
bJν−1(b)Jν(a)− aJν−1(a)Jν(b)

a2 − b2

=
aJν+1(a)Jν(b)− bJν+1(b)Jν(a)

a2 − b2
, (C.1)∫ 1

0

dx xJ2
ν (ax) =

1

2

(
J2
ν (a)− 2ν

a
Jν(a)Jν−1(a) + J2

ν−1(a)

)
=

1

2

(
J2
ν (a)− 2ν

a
Jν(a)Jν+1(a) + J2

ν+1(a)

)
, (C.2)

one can easily derive the following orthogonality relation:∫ 1

0

dx xJm̃(αm,ix)Jm̃(αm,jx) = δij
1

2
J2
m±1(αm,i), (C.3)

which is valid for any m̃ = m − 1,m,m + 1. In this connection, it is useful to note
that Jm−1(αm,i) = −Jm+1(αm,i). As is easy to check, the latter follows from the
well-known recurrence relation Gradshteyn and Ryzhik (2014),

xJν−1(x) + xJν+1(x) = 2νJν(x). (C.4)

After integrating Eq. (C.3) by parts and taking into account the property of the Bessel
functions Gradshteyn and Ryzhik (2014),

Jν−1(x)− Jν+1(x) = 2J ′ν(x). (C.5)

we easily derive the following two integral relations:(
1

2
J2
m±1(αm,i)

)−1 ∫ 1

0

dx x2Jm(αm,ix)Jm±1(αm,ix) =
m± 1

αm,i
, (C.6)(

1

2
J2
m±1(αm,i)

)−1 ∫ 1

0

dx x3Jm̃(αm,ix)Jm̃(αm,ix) =
1

3α2
m,i

(
2m̃(m̃2 − 1)

m
+ α2

m,i

)
,

(C.7)

where again m̃ = m− 1,m,m+ 1.
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EXPLICIT FORM OF LINEARIZED EQUATIONS
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In this appendix, we present the explicit form of the linearized equations for
the perturbations around the unperturbed equilibrium state of a uniformly rotating
charged chiral plasma.

By making use of Eqs. (2.31)–(2.35) and the ansatz in Eqs. (3.8)–(3.10) for the per-
turbations of the plasma parameters, we can derive the coupled system of linearized
equations. The electric charge conservation relation leads to∑

i

[
− i(k0 −mΩ)

∂n

∂ζi
− ikµωµ

∂σω
∂ζi
− ikµ

(
Bµ − 1

2
enωµr2

)
∂σB
∂ζi

+
τ

3

∂n

∂ζi

(
(k0 −mΩ)2 − kµkµ − ∂2

r −
1

r
∂r +

m2

r2

)]
δζi

+ n [1 + iτ(k0 −mΩ)] (−ikµδuµ +D1[δu])− 2iΩτnD2[δu]

+
1

e
σE (−ikµδEµ +D1[δE]) = 0. (D.1)

Similarly, the chiral charge conservation is given by∑
i

[
− i(k0 −mΩ)

∂n5

∂ζi
− ikµωµ

∂σ5
ω

∂ζi
− ikµ

(
Bµ − 1

2
enωµr2

)
∂σ5

B

∂ζi

+
τ

3

∂n5

∂ζi

(
(k0 −mΩ)2 − kµkµ − ∂2

r −
1

r
∂r +

m2

r2

)]
δζi

+ 2iσ5
ωk0ω

µδuµ + σ5
B (−ikµδBµ +D1[δB]) = − e2

2π2~2
δEµ

(
Bµ −

1

2
enωµr

2

)
, (D.2)

The energy-momentum conservation relations read∑
i

[
− i(k0 −

4

3
mΩ)

∂ε

∂ζi
− ikµωµ

∂ξω
∂ζi
− ikµ

(
Bµ −

1

2
enωµr

2

)
∂ξB
∂ζi

]
δζi

+
4

3
ε
[
−ikµδuµ +D1[δu]− k0Ωr

(
δu+ − δu−

)]
− 4τε

45
imΩ

(
ikzδu

3 +D1[δu]
)

− 4τε

15
iΩr

[
k2
z − ∂2

r −
1

r
∂r

] (
δu+ − δu−

)
− 4τε

15
iΩr

[
(m+ 1)2

r2
δu+ − (m− 1)2

r2
δu−

]
=
∑
i

[
e
τ

3

∂n

∂ζi
BΩr∂r

]
δζi − ik0eτnBΩr

(
δu+ + δu−

)
− σEBΩr

(
δE+ + δE−

)
− ienΩr

(
δE+ − δE−

)
, (D.3)
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∑
i

[
1

6

∂ε

∂ζi

(
∂r − s

m

r
+ 4sk0Ωr

)
− 1

2
skzBΩr

∂ξB
∂ζi

]
δζi +

2

3
isεΩr (−ikµδuµ +D1[δu])

− 4

3
iε [k0 − (m+ 2s)Ω] δus − 2τε

45

[
∂r − s

m

r
+ sk0Ωr

] (
ikzδu

3 +D1[δu]
)

+
2τε

45
k0Ωr

[
∂r − s

m− s
r

] (
δu+ − δu−

)
+

4τε

15

[
k2
z − ∂2

r −
1

r
∂r +

(m+ s)2

r2

]
δus

− 8τε

15
k0(m+ 2s)Ωδus

=
∑
i

[
e
τ

6
is

(
B − 1

2
enΩr2

)
∂n

∂ζi

(
∂r − s

m

r

)
+ e

τ

6
ik0BΩr

∂n

∂ζi

]
δζi

+ es

(
B − 1

2
enΩr2

)[
τk0nδu

s − i

e
σEδE

s

]
+ enδEs, (D.4)

∑
i

[
1

3
ikz

∂ε

∂ζi
− ik0Ω

∂ξω
∂ζi
− ik0

(
B − 1

2
enΩr2

)
∂ξB
∂ζi

+ imΩB
∂ξB
∂ζi

]
δζi

− 4

3
iε(k0 −mΩ)δu3 − 8τε

15
k0mΩδu3 +

4τε

15

[
k2
z − ∂2

r −
1

r
∂r +

m2

r2

]
δu3

+
4τε

45

(
k2
zδu

3 − ikzD1[δu] + ikzk0Ωr
(
δu+ − δu−

))
= enδE3. (D.5)

Finally, the Maxwell equations take the form

− 2ΩδE3 + ikΩr
(
δE+ + δE−

)
− Ωr∂rδE

3 − i(k0 −mΩ)δB0 + ikµδBµ −D1[δB]− ikzBδu0 = 0, (D.6)

− kzsδEs − 1

2
is
[
∂r − s

m

r

]
δE3 − 1

2
ik0ΩrδE3 − i (k0 −mΩ) δBs

− 1

2
isΩr (−ikµδBµ +D1[δB])− ikz

(
B − 1

2
enΩr2

)
δBs = 0, (D.7)

− iD2[δE] + ik0Ωr
(
δE+ + δE−

)
− i(k0 −mΩ)δB3

+

(
B − 1

2
enΩr2

)(
−ik0δu

0 +D1[δu]
)
− enΩr

(
δu+ + δu−

)
= 0, (D.8)

and

− i
(
B − 1

2
enΩr2

)
D2[δu] + 2ΩδB3 + ienΩr

(
δu+ − δu−

)
− ikzΩr

(
δB+ + δB−

)
+ Ωr∂rδB

3 − ik3δE
3 −D1[δE]

= e
∑
i

[(
1− iτ

3
Ωm
) ∂n
∂ζi

]
δζi + en(1 + iτk0)δu0 + σEδE

0, (D.9)
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sk0

(
B − 1

2
enΩr2

)
δus +

1

2
sBΩr

[
∂r − s

m− s
r

] (
δu+ − δu−

)
− 1

2
iBkzΩrδu

3 + skzδB
s +

1

2
is
[
∂r − s

m

r

]
δB3

+
1

2
ik0ΩrδB3 − i (k0 −mΩ) δEs − isΩr (−ikµδEµ +D1[δE])

= enδus + ieτn [k0 − (m+ 2s)Ω] δus

+ e
∑
i

[
1

2
isΩr

∂n

∂ζi
− τ

6

∂n

∂ζi

(
∂r − s

m

r
+ sk0Ωr

)]
δζi + σEδE

s, (D.10)

iD2[δB]− ik0Ωr
(
δB+ + δB−

)
+BΩr

[
∂r +

2

r

]
δu3 − i(k0 −mΩ)δE3

= e
∑
i

[
− τ

3
ikz

∂n

∂ζi
+ Ω

∂σω
∂ζi

+

(
B − 1

2
enΩr2

)
δσB
∂ζi

]
δζi

+ enδu3 + ie(k0 −mΩ)τnδu3 + σEδE
3. (D.11)

In these equations, the index s = ±1 labels circular polarizations and the sums
over i = 1, 2, 3 account for the variations of the three physical parameters, δζi =
δµ, δµ5, δT . Note that the variations of all quantities are assumed to have a radial
dependence, i.e., δµ = δµ(r), δT = δT (r), etc., although it is not shown explicitly. In
the linearized equations, we used the following differential operators:

D1[δv] = ∂r(δv
+ + δv−) +

m+ 1

r
δv+ − m− 1

r
δv−, (D.12)

D2[δv] = ∂r(δv
+ − δv−) +

m+ 1

r
δv+ +

m− 1

r
δv−. (D.13)

Last but not least, let us remind the reader that the zeroth components of the vector
quantities are not independent. They are expressed in terms of the spatial component;
see Eqs. (3.11)–(3.13).
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