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ABSTRACT

In this work, I present a Bayesian inference computational framework for the analysis

of widefield microscopy data that addresses three challenges: (1) counting and localiz-

ing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluo-

rescence profile that describes the spatially-varying rate at which fluorescent molecules

emit subsequently-detected photons (due to different illumination intensities or dif-

ferent local environments); and (3) inferring the camera gain. My general theoretical

framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes

with a Markov chain Monte Carlo sampling scheme, which I further specify and im-

plement for Total Internal Reflection Fluorescence (TIRF) microscopy data, bench-

marking the method on synthetic data. These three frameworks are self-contained,

and can be used concurrently so that the fluorescence profile and emitter locations

are both considered unknown and, under some conditions, learned simultaneously.

The framework I present is flexible and may be adapted to accommodate the infer-

ence of other parameters, such as emission photophysical kinetics and the trajectories

of moving molecules. My TIRF-specific implementation may find use in the study

of structures on cell membranes, or in studying local sample properties that affect

fluorescent molecule photon emission rates.
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Chapter 1

INTRODUCTION

Recent advances in optics have allowed the scientific community unprecedented,

beautiful access into biology down to the level of single molecules (Liu et al. (2015);

Su and Ju (2018); Sako et al. (2000); Grimm et al. (2016); Kong et al. (2016); Aguet

et al. (2016); Chen et al. (2014); Specht et al. (2017)). Often, the imaging techniques

involve molecules fluorescently labeled to contrast with the background. These flu-

orescent molecules are then excited with light at a particular wavelength, and they

subsequently emit photons at a differing wavelength, and the excitation light can

be filtered out before reaching the detector, creating images that can resolve single

molecules (Shashkova and Leake (2017); Lichtman and Conchello (2005)).

Because the point-source (the labeled molecule) emits light with a wavelength

many times larger than itself (typically two orders of magnitude larger), the image

produced by the emitting sources is diffraction-limited. That is, each point-source

(∼1-5nm) appears as a large diffraction-limited spot (∼150-300nm) called the emis-

sion point-spread function (PSF). Two point-sources of light that are sufficiently close

in space (closer than ∼200-300nm, depending on parameters such as emission wave-

length and refractive index) will appear as one coinciding object (Born and Wolf

(2013)). Strategies attempting to circumvent the diffraction limit to better count and

localize individual molecules are known as super-resolution techniques, and many

of them are applicable to biological systems (Schermelleh et al. (2010); Huang et al.

(2009); Fernández-Suárez and Ting (2008); Bates et al. (2007); Shim et al. (2012); Zhi

et al. (2018)). Many quantitative methods for counting and localization in widefield

microscopy exist already, employing techniques such as calculating centroids, fitting
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Gaussians, least-squares, deconvolution, and (frequentist) maximum likelihood; some

are simple and quick to implement, while others are more sophisticated and precise,

and many take into account other factors such as camera shot noise and background

pixel noise (Chen et al. (2014); Lee et al. (2017); Deschout et al. (2014); Lee et al.

(2012); Wöll and Flors (2017); Ovesnỳ et al. (2014)).

Despite the progress of quantitative counting and localization there are two crit-

ical issues that are often not considered, the first being how to deal with closely-

neighboring (in xy) or stacked (in z) molecules, and the second being how to account

for spatially-varying fluorescence (effective emission) properties within the region of

interest (ROI). Fundamentally these are model selection problems (Fig. C.1): how

many overlapping emission PSFs underlay the image we see? How do we select the

fluorescence profile?

In this work, we present a framework to count and localize single stationary flu-

orescent molecules (fluorophore) at super-resolution in fluorescence microscopy and

a separate, self-contained framework to infer a spatially-dependent function that de-

scribes the rate at which an extant fluorophore would emit detectable photons when

located at a particular location in the region of interest, which we call the fluores-

cence profile. With (EM)CCD cameras in mind (Mortensen and Flyvbjerg (2016)),

we also incorporate a relatively simple framework for the inference of the camera gain

parameter, which is itself worth describing. At the basis of these three methods is a

simple, general model of fluorescence microscopy. We specify this model further and

implement our inference frameworks on synthetic data for Total Internal Reflection

Fluorescence (TIRF) microscopy (Axelrod et al. (1983); Schneckenburger (2005); Fish

(2009); Mattheyses et al. (2010)). The concurrent inference of all three or any two

of the aforementioned parameters is possible, though the functionality of inferring

both emitter count/localization and fluorescence profile together is limited by fun-
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damental model nonidentifiability (App. C); that is, there exists some fundamental

and intractable ambiguity between the number and/or location of the molecules, the

fluorescence profile, and to some extent also the gain, so that the observations we

make can have come about by qualitatively differing scenarios.

Our method largly relies on Bayesian nonparametrics (Hjort et al. (2010); Ferguson

(1973); Tavakoli et al. (2019)), and in particular two separate nonparametric tools:

the Gaussian process (Rasmussen (2004); Williams and Rasmussen (2006); Wilson

and Adams (2013)) and beta-Bernoulli process (Jazani et al. (2019); MacEachern

(2016); Broderick et al. (2012)), used respectively for the inference of the fluorescence

profile and fluorophore counts/localizations (App. D). These two methods are said

to be nonparametric in the sense that they allow for inference over an infinite (or in

practice, an arbitrarily large) number of random variables. In the case of the Gaussian

process, this is an undetermined and possibly infinite number of points in a continuous

space over which we infer values for the profile, and in the case of the beta-Bernoulli

process, an infinite number of possible fluorophore counts/localizations.

Bayesian nonparametrics are relatively new and sophisticated mathematical tools,

which have been applied to other problems in fluorescence microscopy (Lee et al.

(2017); Tavakoli et al. (2019); Sgouralis et al. (2018a); Sgouralis and Pressé (2017);

Tavakoli et al. (2016); Kilic and Pressé (2019)), including tracking moving molecules

(Sgouralis et al. (2018b)) and estimating diffusion coefficients (Jazani et al. (2019))

in confocal microscopy. The specific implementation we present is aimed toward

static regimes in widefield TIRF microscopy. Our general framework, by virtue of the

Bayesian inference paradigm, allows for easy adaption to a wide variety of imaging

methods and problems.
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Chapter 2

METHODS

2.1 Description of General Model

Here, we describe our general model for fluorescence microscopy, which we further

specify and adapt to TIRF in the following section.

We have M stationary point-source emitters (fluorophore) in the ROI, with lo-

cations X1:M , [x1, x2, . . . xM ]. The fluorescence profile, which we denote F (·) and

assume to be continuous, describes the rate at which an emitter at a particular loca-

tion in space will emit “detectable” photons (photons that are subsequently detected,

though they may be emitted outside the ROI; this accounts for emission and effects

that prevent photons from being registered). The integral of the PSF over the area

covered by a pixel describes the probability that an emitted photon will be registered

to that particular pixel. The intensity of detection-events (photon arrivals) in pixel

p for some fixed period of time, which we denote Ep, is the sum of the integrals of all

M PSFs over pixel p, scaled by the value of the fluorescence profile at the locations

of the emitters. We also include Bp, a background photon-arrival rate term for pixel

p, and consider the camera-exposure time, ∆te, to be fixed:

Ep , ∆te
(
Bp +

M∑
m=1

F (xm)INTPSF(xm, p)
)
. (2.1)

Note that here, Ep is time invariant.

We choose to model the PSF as an isotropic Gaussian distribution, centered at

the location of the emitter, with FWHM parameter σPSF. This is an approximation

of the more-realistic Airy function, and allows for fast computation of the integral
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(Zhang et al. (2007); Deschout et al. (2012)):

INTPSF(xm, p) := ϕ−1/2

∫∫
p

exp[−π||X − xm||2/ϕ]dX (2.2)

ϕ = 2πσ2
PSF. (2.3)

Photon-detection intensity is not measured directly by (EM)CCD cameras, but given

in arbitrary digital units (ADUs) in a way that is stochastically related to Ep, and so

we need a statistical model for the data, that relates the intensity-reading (in ADUs)

to Ep. We denote the intensity-reading of pixel p for collection-interval t as wt
p, and the

collection of all data is represented by W . The following is a simple phenomenological

model that has been found to effectively match the signal-to-shot-noise ratio provided

by (EM)CCD camera manufacturers (Huang et al. (2013)):

wt
p :∼ Gamma(Ep/f, fg). (2.4)

The parameter f is the excess noise factor, and is a known, fixed quantity that is

specific to the camera provided by the manufacturer. The gain, g, is a constant,

physically-adjustable parameter of the camera that (not unlike a guitar amplifier)

increases the “loudness” of the signal (expected value), but also its “noisiness” (vari-

ance). It is typically not known precisely (but should be known within some range),

and so considering it unknown in an inference framework may be useful.

2.2 Description of TIRF Model

In TIRF microscopy, illuminating light is made incident to a coverslip such that

the light is totally reflected off of the coverslip, creating an evanescent wave that

travels into the sample, and decays exponentially (see Fig. 2.1). We let Z1:M ,

[z1, z2, . . . , zM ] denote the depth-in-sample of the emitters, and let X1:M represent

the xy-coordinates of the emitters. The fluorescence profile is decomposed into the
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product of separate functions Fxy(x, y) and Fz(z). We capture the behavior of the

evanescent wave excitation with Fz(z):

F (x, y, z) := Fxy(x, y)Fz(z) (2.5)

Fz(z) = exp(−z/d) (2.6)

d ,
(
λ0/(4π)

)[
n2

cssin
2(θinc)− n2

s

]− 1
2 . (2.7)

The parameter λ0 is the vacuum wavelength of the incidence light, θinc is the incidence

angle (measured from the vector normal to the coverslip surface), ncs and ns are the

coverslip and sample refractive indexes respectively.

Because the emitters take 3D coordinates, we must now take into account that the

emitters may not be located on the focal plane (z = 0), and consider the width of the

PSF to be a function of the emitter’s distance from the focal plane at the coverslip

(Zhang et al. (2007)):

ϕ(z) = (λem/ns)
2(Z/(2π)) + (1/(4Z))z2 (2.8)

Z =

7

[
1−

[
1− (N/ns)

2
] 3

4

]
4− 7

[
1− (N/ns)2

] 3
4 + 3

[
1−

[
1− (N/ns)2

] 7
4

] . (2.9)

Here, N is the detection objective numerical aperture.

2.2.1 Assumptions of the TIRF Model

We have assumed that emitter behavior is uniform, except for differing, spatially-

dependent effective fluorescence, and that there are no effective optical aberrations

on the detection path (so that our model for the PSF in z is correct). We also assume

that the focal plane is fixed perfectly at the coverslip. The coverslip and the sample

are both assumed to have uniform refractive indexes.
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Because we have formally stated the z-dependence of the fluorescence profile

with Fz(z), and will ultimately seek to infer Fxy(x, y), we assume that all spatially-

dependent fluorescence effects other than the decaying evanescent wave will depend

on xy, but not z. The ROI in z may be constricted, due to the thin samples typically

imaged in TIRF.

Emission kinetics, which is to say time-varying fluorophore chemical states during

which the emitters may fluoresce at different intensities, or cease to fluoresce at all

(dark state), either temporarily (blinking) or permanently (bleaching) are assumed

to be captured by our stochastic camera model. In other words, we assume that these

kinetics occur on time-scales that are much faster than the exposure time, and that

none of the molecules photobleach during imaging, so that there is in some sense

a photo-kinetic equilibrium assumption. Many molecules are indeed suitably stable

(Giepmans et al. (2006); Zheng et al. (2014)).

2.3 Computational Framework

We will now detail our Bayesian inference framework to infer the parameters X1:M ,

F (·), and g, when given the data W and other relevant information about the system

that we assume to know, namely in our implementation the size and coverage of the

pixels, camera exposure time, incidence light angle and wavelength, emission wave-

length, refractive indexes of the sample and coverslip, objective numerical aperture,

excess noise factor, and photon background parameter(s) (see Table A.2 for a glossary

of variables). In essence, we seek to characterize the following posterior probability

distribution:

P (X1:M , F (·), g|W ) =
P (W |X1:M , F (·), g)P (X1:M , F (·), g)

P (W )
. (2.10)
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The distribution P (W |X1:M , F (·), g) is the likelihood, and is specified by our model

(Eq. 2.11):

P (W |X1:M , F (·), g) =
T∏
t=1

P∏
p=1

Gamma(wt
p;Ep/f, fg). (2.11)

The distribution P (X1:M , F (·), g) is the prior, which is interpreted in a Bayesian

context as the distribution encapsulating our prior beliefs about the random variables

in the absence of the data, which we specify later. Because these random variables

are independent:

P (X1:M , F (·), g) = P (X1:M)P (F (·))P (g). (2.12)

The distribution P (W ), sometimes referred to in the literature as the evidence, is

a normalizing constant; typically it is unimportant, barring the case that it is zero

(signifying, in some sense, invalid data).

Our general strategy is to use Markov chain Monte Carlo (MCMC, see App. D.1),

specifically the Metropolis-Hastings algorithm, to draw samples of the variables from

the posterior distribution of interest. With a sufficiently large number of samples, we

can characterize the distributions of the individual random variables, given the data.

Overall, we use a special case of the Metropolis-Hastings algorithm, called Gibbs

sampling, to iteratively sample the individual variables conditioned on the others:

...

X
(i)
1:M ∼ P (X1:M |F (·)(i−1), g(i−1),W ) (2.13)

F (·)(i) ∼ P (F (·)|X(i)
1:M , g

(i−1),W ) (2.14)

g(i) ∼ P (g|X(i)
1:M , F (·)(i),W ). (2.15)

...

We index this sampling scheme by (i), and refer to it as the main scheme or main

loop. The method we use to sample each individual conditional distribution can be
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thought of as a self-contained framework for inferring the variable in question, given

all the others. It is trivial to add additional variables to this framework, though of

course sampling the appropriate distribution may not be.

The gain (g) is sampled using a relatively simple Metropolis-Hastings step that

is detailed in App. E.1. We choose the uniform distribution as its prior; reasons for

this choice are discussed in App. C:

P (g) := Unif(gmin, gmax). (2.16)

Our strategies for sampling the conditional distributions of X1:M and F (·) are non-

trivial nested MCMC schemes that we summarize in the following sections.

2.3.1 Sampling the Fluorescence Profile

Using Bayes’ rule with Eq. 2.14:

P (F (·)|X1:M , g,W ) ∝ P (W |F (·), X1:M , g)P (F (·)). (2.17)

We specify the prior on F (·) to be a Gaussian process (Rasmussen (2004); Williams

and Rasmussen (2006); Wilson and Adams (2013)):

P (F (·)) := GP(µ(·), K(·, ·)). (2.18)

In short, every arbitrary, finite collection of fluorescence profile values (which we

denote F1:N , [F (x1), . . . , F (xN)]) will have a joint multivariate normal distribution,

with the mean and covariance functions µ(·) and K(·, ·) describing how the mean

and covariance are to be constructed, given any arbitrary collection of input points

X1:N , [x1, x2, . . . , xN ]. Our choice of µ(·) and K(·, ·) will encapsulate our prior

assumptions about the properties of the profile (e.g., periodicity and smoothness)

because choosing a particular mean and covariance function will result in higher

probabilities for such behavior.
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Though our framework allows for flexibility in such choices, in our implementation

we have chosen a constant mean function and the squared exponential kernel with a

nugget regularizer (Mohammadi et al. (2016)) as the covariance function:

µ(·) := H (2.19)

K(·, ·) := SE(·, ·) + NR(·, ·) (2.20)

SE(x1, x2) , σ2
GPexp

(‖x1 − x2‖2

2l2GP

)
(2.21)

NR(x1, x2) ,


τ 2 x1 = x2

0 x1 6= x2

. (2.22)

App. E.2 contains a more detailed discussion of our choice for the covariance function.

In our implementation, we treat H as a random variable and refer to it as the

baseline fluorescence, choosing for it a normal distribution as the prior:

P (H) := N(H0, σ
2
H). (2.23)

To put the formulation in a slightly more convenient form, we introduce the fluores-

cence deviation profile: ∆(·) , F (·) − H. We can think of ∆(·) as the zero-mean,

spatially-dependent component of the fluorescence, which has the same covariance

properties as F (·):

P (∆(·)) := GP(0, SE(·, ·) + NR(·, ·)). (2.24)

Now that our prior is fully specified, we consider how to arrive at a sample for

F (·). First, we sample the values of the profile at locations where emitters exist

(on which our likelihood will depend), F1:M , F (X1:M), and use these values as

input to subsequently sample values for the profile on a fine, fixed grid of points

G1:N , [xg1, . . . , xgN ]. We can approximate the full function by interpolating between
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the values for the profile over the grid-points, F1:N , F (G1:N):

F1:N ∼ N(F1:N |F1:M , X1:M , G1:N). (2.25)

F (·) ≈ Interpolate(F1:N). (2.26)

The form of the distribution in Eq. 2.25 is given in App. E.2. We have that F1:M ≡

H + ∆1:M , where ∆1:M , [∆(x1), . . . ,∆(xM)], and so need a strategy to sample H

and ∆1:M . For this, we use a Gibbs subsampling scheme, indexed by (k) (not to be

confused with the main Gibbs scheme, indexed by (i)):

...

H(k) ∼ P (H|∆(k−1)
1:M , X1:M , g,W ) (2.27)

∆
(k)
1 ∼ P (∆1|H(k),∆

(k−1)
2:M , X1:M , g,W )

...

∆(k)
m ∼ P (∆m|H(k),∆

(k)
1:m−1,∆

(k−1)
m+1:M , X1:M , g,W ) (2.28)

...

∆
(k)
M ∼ P (∆M |H(k),∆

(k)
1:M−1, X1:M , g,W ).

...

Samples from the distributions in Eq. 2.27 and Eq. 2.28 are drawn using a Metropolis-

Hastings step, with the relevant equations detailed in App. E.2.

If one does not expect the fluorescence profile to be approximately uniform, such

as in the case of a structured illumination profile (Gustafsson et al. (2008); Gustafsson

(2005)), it may be wise to use a fixed, spatially varying term C(·), in the shape of

the expected fluorescence profile, and use the formulation ∆(·) , F (·)− C(·). Here,

∆(·) is zero-mean, and we do not need to use a baseline term H. In the case that

one wishes to assuming the fluorescence profile is uniform for the entire ROI, the
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problem reduces to inferring F (·) ≡ H (i.e., we need only to consider Eq. 2.27 and

no longer need the Gaussian process or the interpolation approximation). Both are

trivial changes to the above analysis.

2.3.2 Sampling Emitter Counts/Locations

In order to sample emitter counts/locations (Eq. 2.13), we utilize the beta-

Bernoulli process (Jazani et al. (2019); MacEachern (2016); Broderick et al. (2012))

(App. D.3). That is, we introduce random vector Y1:L of L load locations that one

can think of as “candidate locations” (may be 3D coordinates), along with a ran-

dom vector S1:L of Bernoulli random variables associated with the load locations that

indicate whether the load locations are active (Sj = 1 implying the existence of an

emitter at load location Yj) or inactive (Sj = 0, implying nonexistence). We treat

the probability that a load is active as a random variable itself, and thus need a

hyperprior on the probability that Sj = 1, which we denote Qj (the random vector

of probabilities corresponding to S1:L being Q1:L):

P (Qj) := beta(αq, βq) (2.29)

P (Sj = 1|Qj) , Qj (2.30)

P (Yj) ≡ P (Xj) := Unif(ROI) (2.31)

X1:M ≡
{ L⋃

i=1

Yj|Sj = 1
}
, M ≡

L∑
j=1

Sj. (2.32)

Here, αq and βq are free, fixed hyperparameters.

Now that we have fully specified the variables and their priors, we concern our-

selves with the inference of the random vectors Q1:L, S1:L, Y1:L. We use a Gibbs
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sampling scheme, which we index by (k):

...

Q
(k)
1:L ∼ P (Q1:L|S(k−1)

1:L , Y
(k−1)

1:L , F (·), g,W ) (2.33)

S
(k)
1:L ∼ P (S1:L|Q(k)

1:L, Y
(k−1)

1:L , F (·), g,W ) (2.34)

Y
(k)

1:L ∼ P (Y1:L|Q(k)
1:L, S

(k)
1:L, F (·), g,W ). (2.35)

...

We need a strategy to sample each of these three distributions. Eq. 2.33 is able to be

sampled in closed form (see App. E.3). The vector S1:L we typically sample in blocks

(which improves mixing, discussed further in App. E.3) using a Metropolis-Hastings

scheme, and Y1:L is split into two separate subsets: active and inactive loads:

M (k) ≡
L∑

j=1

S
(k)
j (2.36)

Ŷ1:M(k) ,
{ L⋃

i=1

Yj|Sj = 1
}

(2.37)

Y 1:(L−M(k)) ,
{ L⋃

i=1

Yj|Sj = 0
}

(2.38)

Y
(k)

1:L ≡ Ŷ1:M(k) ∪ Y 1:(L−M(k)). (2.39)

Individual Y j are sampled directly from the prior (as the likelihood does not depend

on these locations), thereby scrambling inactive load locations. The elements Ŷj are

sampled individually using a Metropolis-Hastings step (App. E.3). An illustration of

our method is given in Fig. E.2

2.4 Method Summary and Pseudocode

The pseudocode presented as Fig. 1 summarizes the structure of our full MCMC

scheme. The scheme for sampling X1:M is encapsulated in lines 3-8, the scheme for
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F (·) in lines 10-14, and g in line 15; note that in all of these cases, we will want many

(i) indexed samples, so each (k) loop will be executed many times (in other words,

we will always need lines 1 and 16, even if we are sampling only one of the random

variables).

A graphical model and informal break-down of all variables are presented in Fig.

2.2, and Table E.4 contains a table that summarizes all of the random variables, their

priors, and summarizes the sampling method.

2.5 Chapter Figures and Algorithms

Fig. 2.1

Illustration of TIRF, labeled with our notation for the parameters.

Alg. 1

Our full sampler algorithm. Here, ? indicates that elements of the vector are

sampled individually, and ?? indicates that elements of the vector are sampled in

randomized blocks (both cases are nested Gibbs schemes). The sampler method is

indicated in parenthesis. Variables on which the relevant distributions do not depend

are omitted from the notation.

Fig. 2.2

Graphical representations of the random variables. (a) Formal graphical

model. Blue circles indicate random variables, and the gray circle denotes obser-

vations. (b) Informal breakdown of all variables. Those with circles are model pa-

rameters, and variables that are not circled are intermediary and computational in

nature.
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(a)

Figure 2.1

(a) (b)

Figure 2.2
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Algorithm 1 Full Sampler

1: for i:

2: for k:

3: Q
(k)
1:L ∼ P (Q1:L|S(k−1)

1:L ) (Sampled directly)

4: S
(k)
1:L ∼ P (S1:L|Y (k−1)

1:L ,W, F (·)(i−1), g(i−1)) (??, Met.-Hast.)

5: Y
(k)

1:(L−M(k)) ∼ P (Y 1:(L−M(k))) (?, Sampled directly)

6: Ŷ
(k)

1:M(k) ∼ P (Ŷ1:M(k)|W,F (·)(i−1), g(i−1)) (?, Sampled directly)

7: Y
(k)

1:L = Y
(k)

1:(L−M(k)) ∪ Ŷ
(k)

1:M(k)

8: end

9: X
(i)

1:M(i) =
{ L⋃

i=1

Y
(kmax)
j |S(kmax)

j = 1
}

10: for k:

11: H(k) ∼ P
(
H|∆(k−1)

1:M(i) ,W,X
(i)

1:M(i) , g
(i−1)

)
(Met.-Hast.)

12: ∆
(k)

1:M(i) ∼ P
(
∆1:M(i)|H(k),W,X

(i)

1:M(i) , g
(i−1)

)
(?, Met.Hast.)

13: end

14: F (·)(i) ∼ P
(
F (·)|H(kmax) + ∆

(kmax)

1:M(i)

)
(Sampled directly)

15: g(i) ∼ P
(
g|W,F (·)(i), X

(i−1)

1:M(i)

)
(Met.-Hast.)

16: end
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Chapter 3

RESULTS - TIRF

First, we generate synthetic data from our TIRF model given in Sec. 2.2. We as-

sume in our analysis that emitters are located within 10nm of the focal plane (z = 0),

suggestive of an imaging experiment for a thin sample, such as a cell membrane, or for

objects stuck to the coverslip (Jaiswal and Simon (2007); Betzig et al. (2006); Yildiz

et al. (2003)); the ROI in xy is 12×12 pixels, each pixel covering a 100nm×100nm

area in image space. A table of parameters, motivated by cited literature, is provided

in App. B, and these are the values used in the simulations/analysis unless otherwise

noted. Four representative datasets are shown in Fig. 3.2, which are generated using

the fluorescence profile in Fig. 3.1a. In Fig. 3.2a and 3.2b, emitters are placed on a

diagonal line in xy with equal xy spacing, and z alternates between 0nm and 10nm.

Figure 3.2c and 3.2d were generated with 8 and 16 emitters placed randomly in the

ROI.

In the following subsections, we demonstrate the efficacy of our subsampling

scheme for g, X1:M , and Fxy(x, y), given the others, and then show results for our

method when inferring all three variables concurrently.

3.1 Inferring the Gain

Figure 3.3 shows results for our subsampling scheme on the gain g, given every

other variable/parameter (line 15 in Alg. 1). These are obtained almost instantly,

and performance (computational time and the accuracy/precision) generally does

not depend on the number or concentration of emitters or the fluorescence profile.

Varying the gain over a range of reasonable values (∼10-100) (Mortensen and Fly-

17



vbjerg (2016)), and even outside this range, also does not change the efficiency or

accuracy/precision of the inference.

3.2 Inferring the Fluorescence Profile

Figure 3.4 shows results for our subsampling scheme on Fxy, given every other

variable/parameter (lines 10-14 in Alg. 1). These results are obtained in about

5 seconds. Computational costs increase as emitters are added, but the matrices

involved in sampling Fxy need only be calculated once, because they depend on the

location of the stationary emitters, which is given in this context.

Though our likelihood depends only on the value of the profile at emitter locations,

given the assumptions about the profile encapsulated by the choice of the Gaussian

process covariance function and its hyperparameters, we are able to infer the function

over the entire ROI. The error and standard deviation of the samples typically grow

as one moves farther away from the emitters, because we have less information; more

emitters provides more information and thus improves the inference of the profile.

3.3 Inferring Emitter Locations

Figure 3.5 shows results for our subsampling scheme on X1:M (lines 2-9 in Alg. 1),

which are attained in about 15 seconds. By pooling emitter localizations from every

step in the chain, we obtain a heat map of emitter locations. As a means to obtain

point estimates for the locations of the emitters, we examine the M (i) samples and

select a value for k by hand and perform k-means clustering (Hartigan and Wong

(1979)) on the pooled samples where M (i) = k.

When emitters make distinct PSFs, they are easy to count and localize. However,

when the PSFs become muddled, localizations are more ambiguous, though typically

the count remains fairly accurate (the sampler sometimes under-count or over-count
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by 1 or 2 emitters) given that the sampler has had enough time to converge (more

ambiguity requires more sampling). Heat maps of locations for clusters of fluorophore

typically resemble the cluster, making localizations imprecise in this case. Localiza-

tion in z is particularly imprecise when there are multiple co-local emitters, but in

contrast, for unambiguously isolated emitters, the additional information we have

through the intensity of fluorescence helps to localize in z (see Fig. B.2). For this

reason, having a known and sharply-varying profile in xy may also aid in the xy

localization precision.

3.4 Inferring All Three Variables

Figure 3.6 shows results when we sample X1:M , Fxy, and g altogether (following

the pseudocode presented in Alg. 1), with additional results using a higher molecule

concentration in App. B. The computational time required to obtain good sampling

ergodicity is much higher in this case than for sampling any individual variable,

because the parameter space for all three variables, particularly in combining unknown

X1:M with Fxy, is far larger than that of any one variable; our results are obtained in

about 2 hours. The size of the grid G1:N becomes a significant factor in computation

times, because most of the matrices involved in the computations for sampling Fxy

need to be re-computed after the locations of the active emitters move (that is, at

every iteration of the main loop).

We have some degree of nonidentifiability between z depth, emitter count, Fxy

profile, and even the gain that creates difficulty for our sampler. Nonidentifiability

issues are discussed at length in App. C. With low ambiguity between these variables

(as is the case with the results in Fig. 3.6), our inference for the gain is generally

good, and xy counting/localization is quite accurate, but we can see how z depth

ambiguity affects our inference for the profile: the emitters are estimated, on average,
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in the middle of the ROI in z. The profile is overestimated where the emitters are

located at z = 0nm, and underestimated where the emitter is at z = 10nm. Shallow

ROIs in z helps to mitigate this nonidentifiability. Typically, when inferring X1:M and

Fxy together, the best results are obtained when PSFs are distinct, the fluorophore

count is unambiguous, and there is a somewhat restrictive prior on g. Figure B.1

shows results for when these conditions begin to break down.

3.5 Chapter Figures, Tables, and Algorithms

Fig. 3.1

Two different Fxy fluorescence profiles and a cross-sections of the PSF

at various z depths. The profiles are generated with one (a) or two (b) Gaussian

depressions, units in kHz. (c) A cross-section of the PSF (Eq. 2.2), the height (Eq.

2.6) and width (Eq. 2.8) of which is scaled depending on various z values. One can

think of this as a y = 0 cross-section, with the emitter centered at the origin, and

Fxy(x, y) ≡ 1. (d) An alternate visualization (contour plot) of the same profile shown

in (b).

Fig. 3.2

Maximum intensity projections of representative synthetic datasets.

Black dots correspond to actual xy locations of the emitters. (a,b) Emitters are

located equidistant on the line x = y; the distance in xy being 500nm and 150nm re-

spectively. The z values alternate between 0nm and 10nm. (c,d) Emitters (M = 8, 16)

are placed stochastically in the ROI.
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Fig. 3.3

Histograms of g(i) sampling chains for data generated with various g

values. Burn-in is considered the first 20% of the 10,000 samples. In each figure, the

emitter locations correspond to those reflected in Fig. 3.2c, and the profile is shown

in Fig. 3.1a (single Gaussian depression). We vary the ground truth gain, shown with

a dashed line in each figure.

Fig. 3.4

Mean-of-chain and/or standard error results for the inference of varying

Fxy. Burn-in is considered the first 20% of the 500 samples. The black dots are

ground-truth xy locations of the emitters. (a) The mean of the Fxy samples, analyzing

data with emitter locations represented in Fig. 3.2b, but using the xy profile shown

in Fig. 3.1b; (b) shows the standard error (mean-of-chain minus ground truth over

the sample standard deviation) of the chain represented in (a). (c) We change the

emitter locations to those reflected in Fig. 3.2c, but not the profile, and show the

standard error when analyzing the new data. (d) We change the profile to that shown

in Fig. 3.1a, and show the standard error of the subsequent results.

Fig. 3.5

Pooled scatterplots of X1:M and Z1:M samples. Burn-in was considered the

first 20% of the 10,000 samples. Small blue dots represent the pooled samples (X
(i)

1:M(i)

and Z
(i)

1:M(i)), which may be repeated, possibly a large number of times. With k set

to the mode of M (i), k-means clustering was performed. Median separation is the

median distance from the k-means clusters to the actual emitter location. The only

set for which a vast majority of M (i) did not equal the set k value was in (d), where
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there was ambiguity between counts of M =13, 14, 15, and 16. The locations of the

emitters correspond to the respective maximum intensity projections in Fig. 3.2; the

profile used in generating the data is shown in Fig. 3.1a.

Fig. 3.6

Results of sampling X1:M , Fxy, and g altogether. The data analyzed is

represented in Fig. 3.2a. Burn-in is considered the first 20% of the 250 main loop

samples. (a) Plot of pooled xyz localizations; M (i) = 4 for all samples after burn-

in. Also plotted is the maximum a posteriori estimate of the localizations, and the

resulting k-means clusters with k = 8. (b) Histogram of g(i) values. (c) Standard

error of the F
(i)
xy profile samples. (d) Standard deviation of the F

(i)
xy profile samples.
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(a) (b)

(c) (d)

Figure 3.1
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(a) (b)

(c) (d)

Figure 3.2
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(a) (b)

(c) (d)

Figure 3.3
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(a) (b)

(c) (d)

Figure 3.4
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(a) (b)

(c) (d)

Figure 3.5
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(a) (b)

(c) (d)

Figure 3.6
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Chapter 4

DISCUSSION

Our TIRF implementation is able to accurately count the number of fluorophores

in an ROI, and localize them with very high accuracy and precision (within 2nm)

if PSFs are isolated and the fluorescence profile is known (Fig. 3.5 and Fig. B.2).

Inference on the gain (Fig. 3.3) and fluorescence profile (Fig. 3.4), given emitter

locations, are also quite pleasing. Although functionality is limited, and effective

sampling orders of magnitude slower in the case that both emitter locations and

fluorescence profile are unknown, concurrent analysis may in some cases be useful

(Fig. 3.6).

This method is best applied to experiments in which either the emitter locations or

fluorescence profile is in question, with the other known and fixed. One may perhaps

be interested in performing a two-phase experiment, in which fluorophore are imaged

with a known fluorescence profile, localized, and then imaged after some kind of

change to the system that induces a new fluorescence profile that can then be inferred,

given the locations of the emitters. One may also be interested in using the method

to localize isolated fluorophores with very high precision, perhaps in techniques that

feature stochastically-activated molecules such as PALM (Patterson et al. (2007); Lee

et al. (2012); Chen et al. (2014)) and STORM (Rust et al. (2006); Hainsworth et al.

(2018)). Researchers may perhaps find our framework for the gain (detailed in App.

E.1), useful in calibrating their cameras or optical system, or perhaps want to adapt

the method for other univariate calibration parameters.

The process is highly automated, requiring as inputs known information about

the system, the data, and a few computational parameters that have to do with the
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program, like the size of the grid G1:N and the number of component subsampler

iterations. Though accurate and precise values for prior parameters will help, their

effect on the results diminishes as the number of main loop iterations grows, because

the posterior distribution tends to be characterized more by the likelihood (for this

reason, the prior(s) will matter more when W contains little information, e.g., for

small T ·∆te). Coming up with hyperparameters for the Gaussian process prior may

be a bit tricky, and one possible future direction is to use MCMC to infer values for

these hyperparameters (Titsias et al. (2008)), or even use model selection techniques

to find a covariance function that works well for the data.

The flexibility of our general framework opens up the possibility of many similar

implementations, perhaps for the inference of different parameters or applications to

different microscope set-ups. For instance, we have only considered (EM)CCD cam-

eras because they are the main workhorse, but an almost-identical scheme can be

applied with a different stochastic camera model (e.g., for sCMOS cameras). We may

also re-formulate the model for any PSF. Many exotic, engineered detection PSFs have

been developed for methods that improve localization accuracy by inducing a PSF

that provides additional information (especially in z) (Quirin et al. (2012); Berlich

et al. (2016); Pavani et al. (2009)). Also, we have not taken particular interest in

characterizing emission kinetics, but they can be modeled using Bayesian techniques

and incorporated into the framework. One could perhaps calibrate or study illumi-

nation profiles in Structured Illumination Microscopy/Mode (SIM) (Gustafsson et al.

(2008); Gustafsson (2005)) by providing some kind of fixed grid of fluorescent objects

that form distinct PSFs, as these objects will be easy to localize and thus inference

of the profile will be very accurate/precise.

Other types of spatially-varying functions may also be inferred using similar anal-

ysis, such as a refractive index map in TIRF, or a complex dielectric profile in 3D
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imaging techniques. One may also want to consider a fluorescence profile that varies

in time, and quantifying such time-varying fluorescence may aid in the study of dy-

namic local sample environments. Our general counting/localization scheme may find

application in many other applications or fields.

For our general method, the high computational cost may be a drawback, and

indeed preclude some potential applications. It is difficult, for instance, to imagine

mapping large specimens in their entirety, like a whole zebrafish, so our method is

perhaps best thought of as a precision tool for mapping smaller structures, or pos-

sibly a low-definition estimator of a smooth fluorescence profile over a large ROI.

Computational cost is difficult to quantify because it is so dependent on the indi-

vidual computer system and many program parameters, but it may be possible to

generally speed-up computation time by using the GPU to calculate larger covari-

ance matrices and their operations, allowing larger or finer G1:N grids, larger ROIs,

denser fluorophore concentration, etc. Parallel MCMC chains may also be applied for

uncorrelated components of the framework.

Ultimately, what we have presented is a general framework for inferring parameters

of a widefield fluorescence optical system where, given a specific model, we have

inferred a specific (1) univariate random variable; (2) random vector of undetermined

size; and (3) continuous, smooth function over physical space. The appropriation of

these methods may lead to a plethora of new analysis tools.
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Table A.1

Summary of notation: symbols and abbreviations.

Table A.2

Summary of notation: important quantities and variables.

Symbol Definition
, (By) mathematical definition
≡ (By) mathematical equivalency
:= “Set to” or “chosen to be”
:∼ “Chosen to be sampled from”
/ Multiplication by matrix inverse (i.e., A/B ≡ AB−1)
A1:N Vector or indexed set with elements 1 to N
A(i) Sample index i of an MCMC chain for random variable A
AT Transpose of matrix or vector A
[A1, A2, . . . ] A row vector
[A1, A2, . . . ]

T A column vector
[A1, A2, . . . ]− x ≡ [A1 − x,A2 − x, . . . ] (x is a number)
A|x=b A evaluated with the value x set to b. May be shortened to A|b.
|A|size The size (length) of a matrix (vector)
IN The N ×N identity matrix
lna Natural logarithm of a (log base e)
N(µ, σ2) Normal distribution, mean µ and variance σ2

Unif(a, b), Unif(A) Uniform distribution from a to b or over A, respectively
beta(α, β) Beta distribution with two parameters
Gamma(k, θ) Gamma distribution with shape parameter k and scale parameter θ
ROI Region of interest
MCMC Markov chain Monte Carlo
MAP Maximum a posteriori
TIRF Total internal reflection fluorescence (microscopy)
PSF Point-spread function
ADU Arbitrary digital unit
(EM)CCD (Electron multiplying) charge-coupled device
FWHM Full width (at) half maximum
SIM Structured Illumination Microscopy (or Mode)

Table A.1
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Value Definition
(i), (k) Index of main and sub- sampling schemes, respectively
M Number of emitters in the ROI
X1:M Locations of all M emitters in the ROI (xm ∈ Rn)
G1:N An arbitrarily-fine grid (Gn ∈ ROI) with N elements.
F (·) Fluorescence profile
F1:M Value of fluorescence profile at locations where emitters exist
F1:N Value of fluorescence profile at grid-point locations
H, ∆(·) Fluorescence baseline and fluorescence deviation profile (F (·) , H + ∆(·))
Ep Intensity of photon detection events
L Number of loads
Y1:L Load locations

Ŷ Active load(s)
Y Inactive load(s)
S1:L Loads
Q1:L Load prior parameter
g Camera gain
f Camera excess noise factor
Bp Background noise constant for pixel p
T Number of (collection-intervals) exposures
P Number of camera pixels
wt

p Intensity-reading in pixel p for collection-interval t
W All readings for all pixels
ϕ(·) FWHM of (Gaussian) PSF
ncs, ns Refractive indexes of coverslip and sample respectively
λ0, λem Vacuum wavelength of illumination and emission light respectively
K(·, ·) Gaussian process covariance function
KA,B A×B covariance matrix resulting in evaluating input set A against set B
∆te Camera exposure time
σPSF FWHM of the Gaussian PSF

Table A.2
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Table B.1 contains the default values of various modeling and computational pa-
rameters used in our implementation. Figure B.1 shows additional results obtained
for inference of X1:M , Fxy, and g together (discussed in Sec. 3.4). Here, some of the
conditions under which the sampler performs well (unambiguous emitter counts) be-
gin to break down, consequentially affecting the precision and accuracy of the results.

We show the precision of localization for a small ROI with one emitter for both
known fluorescence and gain (Fig. B.2) and unknown fluorescence and gain (Fig. B.3)
with data given in Fig. B.3a. When the other parameters are known, localization is
extremely precise (within 2nm) in xy and in z, aided by the additional information
we have from the exact fluorescence intensity. With an unknown fluorescence profile
and gain, we lose our ability to localize the fluorophore precisely in z, and it is shown
in Fig. B.3d how our sampler has converged to a case in which the emitter is located
at the far end of the z boundary with a higher Fxy fluorescence profile. However, we
do not seem to lose precision in xy.

B.1 Chapter Figures and Tables

Table B.1

Set (default) values of modeling and computational parameters.

Fig. B.1

Results of sampling X1:M , Fxy, and g altogether. Emitters are placed on
the line x = y and spaced 250nm apart from each other in xy, and depths alternate
between z = 0nm and z = 10nm. Burn-in is considered the first 20% of the 250 main
loop samples. (a) Histogram for M (i). (b) Plot of pooled xyz localizations, for every

X
(i)

1:M(i) and Z
(i)

1:M(i) such that M (i) = 7 (the mode). Also plotted is the MAP estimate
of the locations, and the resulting k-means clusters with k = 7. (c) Standard error of

the F
(i)
xy profile samples (mean of the chain, minus the ground truth profile, over the

sample standard deviation). (d) Histogram of g(i).

Fig. B.2

Results for the sampling scheme with one emitter in a small ROI, with
known profile and gain. The actual profile is given in Fig. 3.1a. The data is
represented in Fig. B.3a (a) Scatter plot of pooled xyz localizations (all samples
counted one emitter). (b) Histogram of (absolute) errors in xyz, with the mean and
standard deviation of errors in xyz, xy, and z.

Fig. B.3

Results for the sampling scheme with one emitter in a small ROI, with
unknown profile and gain. (a) A maximum intensity representation of the data
used. (b) Error of the mean of the function samples, over the standard deviation
profile for the samples. (c) Histogram of (absolute) errors in xyz, with the mean and
standard deviation of errors in xyz, xy, and z. (d) Plot of pooled xyz localizations.
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Also plotted is the MAP estimate of the locations, and the resulting kmeans clusters
with k = 1.

Parameter (Default) value
∆te 100ms
g 51
T 100
λem 560nm
λ0 520nm
ncs 1.52
ns 1.33
θinc 70◦

f 2
N (numerical aperture) 1.1
Bp 1 (all p)
kmax for sampling g 100
kmax for sampling X1:M 10,000
kmax for sampling F (·) 200
lGP 300
σ2

GP 2
τ 2

GP 0.15
N (size of grid) 676
L Varying (always at least double the number of actual emitters)
αq 1/L
βq 1− 1/L√
σ2
x 10nm

P (H) N(H0 = 20,
√
σ2
H = 0.5)

P (g) Unif(gmin = 45, gmax = 55)
Pixel size 100nm× 100nm

Table B.1
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(a) (b)

(c) (d)

Figure B.1
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(a) (b)

Figure B.2
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(a) (b)

(c) (d)

Figure B.3
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In this section, we discuss the possible nonidentifiability issues of our TIRF model
in depth, and also briefly discuss our consequential choice in using the uniform prior
on g. Figure C.1 shows four separate mean intensity projections that feature four
distinct scenarios in which very similar results are produced. The xy coordinates for
all emitters remains fixed, but we vary the Fxy value and refer to it in the relative
sense as: low fluorescence (Fxy ≡ 10kHz), medium fluorescence (Fxy ≡ 20kHz), and
high fluorescence (Fxy ≡ 40kHz). The evanescence profile Fz(z) remains fixed, as
we are not varying any of the parameters that constitute d (see Eq. 2.7). We vary
the number of emitters and their z locations; the z location (depth) is referred to
in relative terms as surface (z = 0nm) and deep (z = 55.1nm). A virtually infinite
number of variations in emitter count, z, and Fxy may be constructed to produce the
same or nearly same visual image.

In our implementation, the sort of nonidentifiability we see in Scenario A vs. Sce-
nario C (count/profile nonidentifiability) is rare, and the sampler tends to become
“stuck” in one of these local solutions, rather than tending to sample these distinct but
visually-similar scenarios. This is mostly due to our priors: it is typically impossible
for our fluorescence profile sampler to suddenly double or reduce to half of its previ-
ously sampled value, given our priors. This is also why we do not simply model Fxy as
a Gaussian process with prior mean set to zero (i.e., let P (Fxy(x, y)) = GP(0, K(·, ·))
and not bother with the decomposition), because the Fxy(x, y) profile will tend to zero
far away from the emitter locations, and a fluorophore under very low fluorescence
may be difficult for the sampler to discern from background, leading to overfitting
emitter counts.

However, the nonidentifiability we see in Scenario C vs. Scenario D, (depth/profile)
is more of an issue in our implementation. The smoothness assumptions embedded in
the choice for the Gaussian process covariance function and its hyperparameters are
useful here because the prior prevents the sampler from creating sharp peaks/valleys
in the profile to accommodate fewer/greater emitter counts (i.e., prevents profile over-
fitting).

There is also, in a sense, some nonidentifiability with the gain (g) and fluorescence
profile. Consider the mean and variance in our camera model:

E[Gamma(Ep/f, fg)] = Epg (C.1)

V[Gamma(Ep/f, fg)] = Epfg
2. (C.2)

The gain will linearly scale the mean of the data, in a way that may appear similar to
scaling the fluorescence profile in the same way, especially if there is low background.
However, the variance of wt

p will increase with the square of g, thus information
about the gain is manifested in the observed variance in a way that is distinct from
scaling F (·). Still, apparent small increases and decreases in the gain will be difficult
to distinguish from small apparent changes in the fluorescence profile, and for this
reason we have chosen to use our uniform prior on g, to put a “hard boundary” on
the maximum/minimum values so that the sampler doesn’t drift toward unreasonably
high or low values, affecting our inference on the profile. If one were interested only
in inferring the gain, it may be more prudent to use a different prior, such as a normal
distribution. Changing this prior is trivial in our framework.
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C.1 Chapter Figures

Fig. C.1

Four qualitatively separate scenarios that illustrate nonidentifiability
in our model. (A) One shallow emitter under medium fluorescence. (B) One deep
emitter under high fluorescence. (C) Two shallow emitters under low fluorescence.
(D) Two deep emitters under medium fluorescence.

(a)

Figure C.1
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The following is an overview of some of the mathematical concepts used in our
analysis.

D.1 MCMC, Metropolis-Hastings, and Gibbs Sampling

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used
to sample from a probability distribution, and is most useful when the distribution
in question is analytically intractable or too complicated to work with in simpler
ways. In essence, these techniques are used to form a Markov chain of samples that
randomly “walk” about a parameter space, in such a way that the chain will eventually
converge to the stationary distribution of interest, i.e., that the samples will, after
some time, be sampled from the stationary distribution. After the chain converges,
we can analyze the samples to characterize the distribution. Samples taken during
the so-called “burn-in” period, before the chain has converged, are simply discarded.
It is generally not possible to know when the chain has converged, but heuristics can
usually applied to help provide insight (Cowles and Carlin (1996)).

These methods tend to be, in practice, computationally expensive (Andrieu et al.
(2003)). Large amounts of memory may also be consumed storing the samples, par-
ticularly if the chain is very long or the random variable is something significantly
more complicated than a simple univariate, like large vectors, matrices or even in
principal something like a high definition image or video, though thinning (Link and
Eaton (2012)) can be applied and intermediary samples discarded (this also helps to
mitigate potential issues with the inherently autocorrelated samples).

Implicit to the goal of sampling from the stationary distribution of a Markov pro-
cess is that the stationary distribution exists and is unique. A sufficient (but not
necessary) condition for the existence and uniqueness of an underlining stationary
distribution is that the Markov chain preserves detailed balance. The two MCMC
techniques used in our method are techniques that generate reversible Markov chains
which, by definition, preserve detailed balance, namely the Metropolis-Hastings algo-
rithm (Chib and Greenberg (1995)) and the Gibbs sampling scheme, which is actually
a special (but very significant) case of Metropolis-Hastings (Gelfand (2000)).

In Metropolis-Hastings, we need to have a function that is proportional to the
probability density function that we are interested in sampling. This is very conve-
nient in a Bayesian context, because for random variable x (a posterior distribution
for which we want to sample) and data D, we have that P (x|D) ∝ P (D|x)P (x),
where P (D|x) and P (x) are the likelihood and prior. We propose values x (indexing
these samples x(i)) using a separate proposal distribution, which can be chosen freely,
though it can only depend on the previous sample value (x(i−1)) because of the mem-
oryless property of the Markov process. Intelligent choices for the proposal can help
reduce the inherent sample autocorrelation or help the chain converge faster.

The probability of accepting a proposed sample must only be such that detailed
balance is preserved, but the most common choice (and the one used ubiquitously in
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our analysis) is known as the Metropolis choice:

α , P (xi := x′) := min(1, p) (D.1)

p =
P (x′|D)G(xi−1|x′)
P (xi−1|D)G(x′|xi−1)

≡ P (D|x′)P (x′)G(xi−1|x′)
P (D|xi−1)P (xi−1)G(x′|xi−1)

. (D.2)

Here, x′ is the proposed sample, and G is the proposal distribution; G(xi−1|x′) should
be read as “the probability of proposing xi−1 given x′ as the current value,” where
G(x′|xi−1) is the obvious analog. The statement P (xi := x′) is read as “the probability
of accepting x′ as the new sample in the chain.” Alg. 2 details the pseudocode of the
Metropolis-Hastings sampler algorithm.

In Gibbs sampling, we consider sampling multiple random variables or a multivari-
ate random variable; we propose changes to only a subset of the variables or variable
indices, conditioned on the current value in the sampler (i.e., the most recently ac-
cepted sample) for the other variables not currently being sampled. Proposing from
such a conditional distribution intrinsically preserves detailed balance, so samples are
automatically accepted, a very powerful tool if the appropriate conditional distribu-
tions exist and can be sampled from, because it provides a theoretically guaranteed
solution to virtually any Bayesian inference inverse problem (Bishop (2006)). The
Gibbs sampling algorithm is summarized in the Alg. 3 pseudocode.

D.2 Gaussian Process

The Gaussian process is a stochastic process for which a finite and arbitrary col-
lection of random variables, most typically indexed through time or space, is assumed
to have a joint multivariate normal distribution. It is considered nonparametric in
the sense that the collection of variables, though technically finite, can be arbitrarily
large. Because variables can be indexed over continuous spaces, the Gaussian process
is used as a convenient statistical model (e.g., as a prior) for continuous functions.

The Gaussian process is defined by a prior mean function and covariance function
that instruct how the mean and covariance of the multivariate normal distribution
are to be constructed for a set of specific input points:

F (X) ∼ GP(m(X), K(X,X)) (D.3)

X , [x1, . . . , xN ].

The prior mean function describes how the function F (·) will tend in the lack of infor-
mation and is often, in practice, set to zero for computational simplicity. The covari-
ance function is usually more important, describing how “similar” any two points in
the input space will be (it is oftentimes referred to as the kernel function), determin-
ing the covariance of any two points based on this evaluation. Different covariance
functions result in different model behaviors for the same input, and choices for co-
variance functions embed prior assumptions about the latent function smoothness,
periodicity, and other qualities (Souza (2010)).
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Often, covariance functions depend on the temporal or spatial (or spaciotemporal)
distance between input points. Valid covariance functions create symmetric positive
definite matrices, and sums and products of valid covariance functions are also valid
covariance functions, allowing simpler, more generic and widely used covariance func-
tions to be combined to achieve specific behavior. Covariance functions may also
depend on some parameters, which we refer to as the Gaussian process hyperpa-
rameters; they may be chosen, inferred using Markov chain Monte Carlo techniques
(Titsias et al. (2008)), or set using optimization techniques like gradient descent.

One can use the Gaussian process to perform nonlinear regression of continuous
functions. Let us say that we have observed a function F (·) at a set of observation
points in input space, Xobs, and let Fobs , F (Xobs). In order to infer the values of
F (·) at an entirely different set of input points, which we call Xgrid (letting Fgrid ,
F (Xgrid)), we begin by stating the Gaussian process model, for some arbitrary m(·)
and K(·, ·): [

Fobs

Fgrid

]
∼ N

(
m

([
Xobs

Xgrid

])
,

[
Kobs Kobs,grid

KT
obs,grid Kgrid

])
.

Here, the KA,B matrices (KA ≡ KA,A) are constructed by evaluating input points A
against B using the covariance function K(·, ·), i.e.,:

KA,B , K(A,B) ≡


K(a1, b1) K(a1, b2) . . . K(a1, bN)
K(a2, b1) K(a2, b2) . . . K(a2, bN)

...
...

. . .
...

K(aM , b1) K(aM , b2) . . . K(aM , bN)

 (D.4)

|A|size = M, |B|size = N, |KA,B|size = M ×N.

Since we are interested in inferring Fgrid, and all of the other variables are fixed and
known in this context, the posterior probability distribution that we are interested in
constructing is of the form Fgrid conditioned on Fobs, Xobs and Xgrid. The derivation
is non-trivial, but the standard results is that this conditional normal distribution is
itself normal:

P (Fgrid|Fobs, Xobs, Xgrid) =

N(m(Xgrid) + (KT
obs,grid/Kobs)(Fobs −m(Xobs)), Fgrid − (KT

obs,grid/Kobs)Kobs,grid)
(D.5)

Letting m(·) ≡ 0 significantly simplifies this expression.
The Gaussian process is a beautiful theoretical tool, but presents some difficulty

in practice, as the construction of and operation on the covariance matrices may be
computationally expensive and numerically unstable. However, there are quite a few
tricks and approximations to mitigate these challences, and if they can be overcome,
then the Guassian process offers a robust framework for inference on functions in a
Bayesian context. See (Rasmussen (2004); Williams and Rasmussen (2006); Wilson
and Adams (2013)) for further details.
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D.3 Beta-Bernoulli Process

The beta-Bernoulli process is a Bayesian nonparametric technique used to count
a finite number of elements in a random vector (MacEachern (2016)). We introduce
a random vector S1:N with N elements that we call “loads,” which are Bernoulli
random variables, and so take values of either 0 or 1, interpreted respectively as (by
convention) inactive and active. We choose a prior on the loads: P (Si = 1) := Qi, and
treat the random vector Q1:N , called the “load priors,” as beta-distributed random
variables, such that prior P (Qi) := beta(αq, βq). The parameters αq and βq are
the load prior hyperparameters, the classic choices for which are αq := 1/N and
βq := 1− 1/N .

We can sample the values of Q1:N and S1:N in a Gibbs sampling scheme (see App.
D.1), using the appropriate conditional distributions:

P (Si = 1|Qi) ≡ Qi (D.6)

P (Qi|Si) ∝ beta
(
αq + Si, βq + (1− Si)

)
. (D.7)

In practice, it may be useful to introduce a third random vector Y1:N , the elements
of which are active or inactive, depending on the value of the corresponding loads
(i.e., S1:N are loads over Y1:N). For instance, we can count and localize the number
of objects inside an ROI by defining Y1:N as the “load locations.” Implicitly, the
locations of all the objects in the ROI are the locations Yi such that Si = 1. The
values for Y1:N may be sampled in the same Gibbs scheme in which we sample values
for S1:N and Q1:N , and one should note that in a Bayesian context, the likelihood will
typically not depend on the values of Yi where Si = 0.

It is important to mind the fact that, due to memory and time constraints, one
cannot use an infinite number of loads, and care must be taken to choose a number of
loads that exceeds the likely number of on loads that we might expect to see. However,
overshooting the number of loads may have its own associated cost in computational
efficiency. Figure E.2 is a graphical representation showing all of the steps in the
inference of Q1:L, S1:L, and Y1:L. See also: (Jazani et al. (2019); Broderick et al.
(2012)).

D.4 Chapter Algorithms

Alg. 2

Metropolis-Hastings sampler algorithm. For numerical stability, one may
want to evaluate the natural logarithm of p, in which case we sample r from an
exponential distribution such that r ∼ −exp(1).

Alg. 3

Gibbs sampler algorithm.
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Algorithm 2 Metropolis-Hastings Sampler

1: x0 = InitialGuess()
2: for i:
3: x′ ∼ G(x;xi|xi−1)

4: p = P (D|x′)P (x′)G(xi−1|x′)
P (D|xi−1)P (xi−1)G(x′|xi−1)

5: if (p ≥ 1)
6: xi = x′

7: else
8: r ∼ Unif(0, 1)
9: if (p > r)
10: xi = x′

11: else
12: xi = xi−1

13: end

Algorithm 3 Gibbs Sampler

1: [x0
1, x

0
2, . . . , x

0
M ] =InitialGuess()

2: for i:
3: for m:
4: xi1 ∼ P (x1|xi−1

2 , . . . , xi−1
M )

5:
...

6: xim ∼ P (xm|xi1, . . . , xim−1, x
i−1
m+1, . . . , x

i−1
M )

7:
...

8: xiM ∼ P (xM |xi1, . . . , xiM−1)
9: end
10: end
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In this section, we provide further details on the individual parameter inference
frameworks (i.e., to sample the distributions described in Eqs. 2.14, 2.13, and 2.15).
The information in the main text is summarized and elaborated further. It will be
noted in various sections what random variables are fixed to known values, and will
likely be omitted from the notation in that context.

E.1 Sampling the Gain

We seek to sample a value for g(i) (Eq. 2.15). In this context, X1:M and F (·) are
fixed, with known values and in the context of the full sampler, these are the samples
obtained most recently in the steps described by Eq. 2.13 and Eq. 2.14.

Using Bayes’ rule:

g(i) ∼ P (W |g)P (g). (E.1)

We have chosen a uniform prior on g, with left and right parameters gmin and gmax.
Unreasonable large or small values are precluded entirely with this prior, rather than
allowing improbable values to overfit for X1:M and F (·). The likelihood is given in
Eq. 2.11, and it is not conjugate to the prior we have chosen, nor can it be sampled
directly, even if it were to be. To draw the sample g(i), we use a Metropolis-Hastings
algorithm, which we index by (k). We may draw many g(k), and ultimately set g(i) to
the final sample in this chain. With the Metropolis-choice acceptance ratio (see App.
D.1), we choose to use the prior as our proposal distribution:

g′ :∼ Unif(gmin, gmax) (E.2)

α := min(1, p) (E.3)

p =
P (W |g′)P (g′)

P (W |g(k−1))P (g(k−1))
· P (g(k−1))

P (g′)

=
T∏
t=1

P∏
p=1

(
g(k−1)/g′

)Ep/f
exp
[
(wt

p/f)(1/g(k−1) − 1/g′)
]

(E.4)

ln(p) = (1/f)

[
T
[
ln(g(k−1))− ln(g′)

][ P∑
p=1

Ep

]
+ (1/g(k−1) − 1/g′)

[ T∑
t=1

P∑
p=1

wt
p

]]
.

(E.5)

Note that Ep does not depend on g.
This completes our sampling scheme for g. A summary of all variables and relevant

sampling information is summarized in Table E.4.

E.2 Sampling the Fluorescence Profile

In seeking a method to sample F (·)(i) from the distribution described in Eq. 2.14
(where X1:M and g are, in the context of the full sampler, the most recent samples
from Eq. 2.13 and Eq. 2.15), we have decomposed the fluorescence profile into the
form F (·) ≡ H+∆(·), where H is the baseline fluorescence and ∆(·) is the zero-mean
fluorescence deviation profile. We have chosen a Gaussian process prior for F (·),
which has the same covariance properties as ∆(·), so that P (F (·)) ≡ P (∆(·)).
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We cannot, in practice, sample a continuous function, because of the discrete
nature of computers. So we will seek to sample values F1:N , F (G1:N), where G1:N is
a fine grid over the ROI, and approximate a function by interpolating between these
grid-points. A fine enough grid and interpolation will be nearly indistinguishable from
a not-interpolated function. In our implementation, we use a linear interpolation,
because it is computationally the most efficient, but or large ROIs or grids that are
not so fine, one may want to consider a smoother interpolation that will work well with
the smoothness assumptions that one has for the function (embedded mathematically
by the choice in the Gaussian process prior mean and covariance functions). We are
provided by the Gaussian process model a method to sample such values (see App.
D.2):

P (F1:N |F1:M , X1:M , G1:N) = H + N
(
(KT

X,G/KX)∆1:M , KG − (KT
X,G/KX)KX,G

)
.

(E.6)

Here, KA,B (with KA ≡ KA,A) is a covariance matrices constructed by evaluating

input points A against input B, using the chosen covariance function, and F1:M ,
F (X1:M) ≡ H + ∆1:M is the value of the profile at locations where the M emitters
exist. The likelihood will depend on these values (and we will elaborate on how to
sample these values later).

We have defined our covariance function (kernel) as the sum of a squared exponen-
tial kernel and nugget regularizer (Eqs. 2.19-2.22). The squared exponential kernel
SE(·, ·) is translation invariant, depending on the (Euclidean) distance between input
points, along with two hyperparamters: σ2

GP and lGP. Parameter σ2
GP is a scaling

prefactor that, roughly, describes the freedom that the posterior function will have
to deviate from the prior mean function, and lGP, known as the “length scale,” de-
scribes the distance over which significant changes to the function may occur, i.e.,
the smoothness of its variations. This kernel is quite standard, and because only
two parameters need to be specified, it is flexible and intuitive (see Fig. E.1 for an
illustration of this kernel).

The nugget regularizer (Mohammadi et al. (2016)), involving the hyperparameter
τ 2, adds a constant to the variance of the fluorescence profile value, and we have chosen
to do this for two reasons: (1) to reduce column redundancy, preserving computational
stability when working with nearly-singular, ill-conditioned covariance matrices (that
are sadly common in practice) (2) to produce more varied samples of F (·).

Note that we have now introduced three new computational parameters to our
framework. In practice, one may wish to sample values for these hyperparameters
along with our other random variables, but in our implementation these are values
that we specify.

There is now the matter of inferring values F1:M , which our likelihood will depend
on. We have chosen to use a Gibbs sampling scheme (App. D.1), where we iteratively
sample H and individual ∆m ∈ ∆1:M , conditioned on the others (Eq. 2.27 and Eq.

2.28). We index these samples by (k), and may draw many H(k) and ∆
(k)
1:M before

setting H(i) and ∆
(k)
1:M to the final sample in this chain.

Consider Eq. 2.27; in this context, ∆1:M is fixed. Using Bayes’ rule:

H(k) ∼ P (W |H,∆(k−1)
1:M )P (H). (E.7)
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With the Metropolis-choice acceptance ratio (see App. D.1), we choose to use the
prior (Eq. 2.23) as our proposal distribution:

H ′ :∼ N(H0, σ
2
H) (E.8)

α := min(1, p) (E.9)

p =
P (W |H ′,∆(k−1)

1:M )P (H ′)

P (W |H(k−1),∆
(k−1)
1:M )P (H(k−1))

· P (H(k−1))

P (H ′)

=
T∏
t=1

P∏
p=1

Γ
(
(Ep|H(k−1))/f

)
Γ
(
(Ep|H′)/f

) [
wt

p

fg

](Ep|H′−Ep|H(k−1) )/f

(E.10)

ln(p) =
P∑

p=1

T
[
lnΓ(Ep|H(k−1)/f)− lnΓ(Ep|H′/f)

]
+
[
(Ep|H′ − Ep|H(k−1))/f

][
− T ln(fg) +

T∑
t=1

lnwt
p

]
. (E.11)

Now, consider Eq. 2.28. We again use the Metropolis-choice acceptance ratio, and
for the proposal we use the conditional distribution of each ∆m that is obtained by
virtue of the Gaussian process prior:

∆′m :∼ GP(∆m|∆?) ≡ P (∆m|∆?, X1:M) (E.12)

GP(∆m|∆?) , N((KT
?,m/K?)∆?, Km − (KT

?,m/K?)K?,m) (E.13)

α := min(1, p) (E.14)

p =
P (W |∆′m,∆?, H

(k))GP(∆′m|∆?)

P (W |∆(k−1)
m ,∆?, H(k))GP(∆

(k−1)
m |∆?)

· GP(∆
(k−1)
m |∆?)

GP(∆′m|∆?)

=
T∏
t=1

P∏
p=1

Γ
(
(Ep|∆(k−1)

m
)/f
)

Γ
(
(Ep|∆′m)/f

) [wt
p

fg

](Ep|∆′m−Ep|
∆

(k−1)
m

)/f

(E.15)

ln(p) =
P∑

p=1

T
[
lnΓ(Ep|∆(k−1)

m
/f)− lnΓ(Ep|∆′m/f)

]
+
[
(Ep|∆′m − Ep|∆(k−1)

m
)/f
][
− T ln(fg) +

T∑
t=1

lnwt
p

]
. (E.16)

Here, ∆? refers to the most recent sample of each element in ? ≡ 1 : M\m (all indexes
1 through M except m) so that, strictly speaking, the index of each element may be
either (k) or (k − 1). Note that X1:M is implicitly required to evaluate GP(∆m|∆?).
We have also introduced the notation lnΓ(·), which denotes the natural logarithm of
the gamma-function.

Note that limx→0 Γ(x) is undefined, so we will have computational instability as
Ep → 0. In practice however, this should not be troublesome, because background
noise is ubiquitous for virtually any fluorescence microscope system and it should
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never be the case that we expect zero photon arrivals in a realistic collection-interval.
It’s also worth noting that the covariance matrices K depend only on the elements
X1:M and associated hyperparameters, and because these values do not change at all
during this nested sampling scheme, we only need to evaluate the M ×M covariance
matrix once and draw from it the appropriate rows and columns to carry out com-
putations. We can even store every matrix (Km,?/K?) and Km − (Km,?/K?)K

T
m,? in

memory, which makes most of the computational expense up-front, allowing a large
number of samples to be taken rather quickly.

This completes our sampling scheme for F (·). A summary of all variables and
relevant sampling information is summarized in Table E.4.

E.3 Sampling Emitter Locations

We seek a method for sampling X
(i)
1:M from the distribution described in Eq. 2.13.

In this context, F (·) and g are fixed with known values (in the full sampler, the most
recent samples from Eq. 2.14 and Eq. 2.15). Previously, we have introduced three
random vectors in a beta-Bernoulli scheme (see App. D.3): loads S1:L, load locations
Y1:L, and load priors Q1:L. An active load (Si = 1) implies the existence of an emitter
at the corresponding load location (Yi). These variables are described mathematically
in Eqs. 2.29-2.32. We choose to sample these random vectors altogether in a Gibbs
sampling scheme, detailed in Eqs. 2.33-2.35. Figure E.2 features a graphic of the
sampling method.

We need a strategy to sample each equation in the Gibbs scheme. First, consider
Eq. 2.33. It is easy to show that the distribution has a closed form, and for Qj ∈ Q1:L:

Q
(k)
j ∼ beta(αq + S

(k−1)
j , βq + 1− S(k−1)

j ). (E.17)

Now, consider Eq. 2.34. With Bayes’ rule:

S
(k)
1:L ∼ P (W |S1:L, Q

(k)
1:L, Y

(k−1)
1:L )P (S1:L). (E.18)

We choose to sample values for the random vector in randomized blocks that we
periodically mix-up, in order to achieve good mixing and computational efficiency.
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For load block S
(k)
Bi

:

S ′Bi
:∼ Bern(Q

(k)
Bi

) ≡ P (SBi
|Q(k)

1:L) (E.19)

α := min(1, p) (E.20)

p =
P (W |Q(k)

1:L, S
′
Bi
, S?, Y

(k−1)
1:L )Bern(S ′Bi

|Q(k)
1:L)

P (W |Q(k)
1:L, S

(k−1)
Bi

, S?, Y
(k−1)

1:L )Bern(S
(k−1)
Bi
|Q(k)

1:L)
·

Bern(S
(k−1)
Bi
|Q(k)

1:L)

Bern(S ′Bi
|Q(k)

1:L)

=
T∏
t=1

P∏
p=1

Γ
(
(Ep|S(k−1)

Bi

)/f
)

Γ
(
(Ep|S′Bi

)/f
) [wt

p

fg

](Ep|S′
Bi

−Ep|
S

(k−1)
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)/f

(E.21)

ln(p) =
P∑

p=1

T
[
lnΓ(Ep|S(k−1)

Bi

/f)− lnΓ(Ep|S′Bi
/f)
]

+
[
(Ep|S′Bi

− Ep|S(k−1)
Bi

)/f
][
− T ln(fg) +

T∑
t=1

lnwt
p

]
. (E.22)

Here, S? refers to the current sample of each element in ? ≡ 1 : L\Bi (all indexes
1 through L except those in block Bi) so that, strictly speaking, the index of each
element may be either (k) or (k − 1). We have abused notation slightly: Eq. E.19
features a random vector sampled from a univariate distribution with a random vector
in its argument, which is meant to be interpreted as meaning “the individual elements
of this random vector are sampled from a distribution for which the corresponding
element in the argument vector is the sampling distribution parameter.”

Finally, we consider Eq. 2.35. Using Bayes’ rule:

Y
(k)

1:L ∼ P (W |Y1:L, Q
(k)
1:L, S

(k)
1:L)P (Y1:L). (E.23)

Recall that we have separated Y1:L into two subsets: those with active loads (i.e.,

S
(k)
j = 1), which we denote Ŷj ∈ Ŷ1:M(k) , and those with inactive loads (S

(k)
j = 0),

which we denote Y j ∈ Y 1:(L−M(k)), described respectively in Eq. 2.37 and Eq. 2.38.

We will sample new locations for each Ŷj and Y j individually, but treat sampling
active and inactive load locations differently, because the likelihood will depend on
the active load locations (locations of emitters), but not on the inactive load locations
(which are transient and computational in nature).

Consider now an active load location Ŷj. We will draw a new sample for the
location in a Metropolis-Hastings step, which we will not formally index; it is valid to

propose and accept/reject multiple samples, and set Ŷ
(k)
j to the final sample in this

scheme, but in our implementation we only make a single new proposal for each Ŷj.
The proposal distribution that we choose is isotropic normal centered at the current
location (the most recently accepted sample, variance σ2

x). It is unwise to sample
a new location from the prior (as we have done in most of our other Metropolis-
Hastings sampling steps), because it is reasonable to suspect that an active load will
be an actual emitter location or close to it, and also do not wish to bias any one
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direction, so the isotropic normal seems to be a reasonable choice. What we have is
otherwise much like our previous Metropolis-Hastings schemes:

Ŷ ′j :∼ N(Ŷ
(k−1)
j , σ2

x) (E.24)

α := min(1, p) (E.25)

p =
P (W |Ŷ ′j , Y?, Q

(k)
1:L, S

(k)
1:L)Unif(ROI)

P (W |Ŷ (k−1)
j , Y?, Q

(k)
1:L, S

(k)
1:L)Unif(ROI)

·
N(Ŷ ′j |Ŷ

(k−1)
j )

N(Ŷ
(k−1)
j |Ŷ ′j )

=
T∏
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P∏
p=1

Γ
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(Ep|Ŷ (k−1)
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)/f
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(Ep|Ŷ ′j )/f
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j
−Ep|

Ŷ
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(E.26)

ln(p) =
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lnΓ(Ep|Ŷ (k−1)
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/f)− lnΓ(Ep|Ŷ ′j /f)
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. (E.27)

The symmetric proposal distribution cancels in the ratio for p. The prior cancels
as well, assuming that samples for Ŷj are restricted to the ROI (i.e., P (Yj) 6= 0; a
reflective boundary when sampling new locations works well in our implementation
to achieve this restriction).

Now, we consider an inactive location Y j. The likelihood does not depend on
inactive locations, so we are left with only the prior in Eq. E.23; we will sample
inactive load locations at random from it, effectively scrambling them at this step in
the sampling scheme, thereby achieving a high level of mixing:

Y
(k)

j :∼ Unif(ROI). (E.28)

Ultimately, after we have finished the overall Gibbs sampling scheme for Q1:L, S1:L,

and Y1:L, we set X
(i)
1:M to the set of active load locations (Eq. 2.32). In our implemen-

tation, we then discard the values of Q1:L, S1:L, and Y1:L, reinitializing these variables
at function call for the subsampler (i.e., we start over with some initial values every
time we sample from Eq. 2.13), preventing localization from becoming stuck in a
local minimum and not moving.

This completes our sampling scheme for X1:M . A summary of all variables and
relevant sampling information is found in Table E.4.

E.4 Chapter Figures and Tables

Fig. E.1

The squared exponential kernel, evaluated with various values of the

hyperparameters σ2
GP and lGP. SE(x1, x2) = σ2exp

(‖x1−x2‖2
2l2

)
.

Fig. E.2

A graphical representation of our sampling scheme for X1:M .
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Table E.4

A table of our method random variables, their priors, and the proposal
or sampling distribution.

(a)

Figure E.1
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Figure E.2
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