
The Locality-Aware Adaptive Cache Coherence Protocol

George Kurian
Massachusetts Institute of Technology

Cambridge, MA USA
gkurian@csail.mit.edu

Omer Khan
University of Connecticut

Storrs, CT USA
khan@uconn.edu

Srinivas Devadas
Massachusetts Institute of Technology

Cambridge, MA USA
devadas@mit.edu

ABSTRACT
Next generation multicore applications will process massive
amounts of data with significant sharing. Data movement
and management impacts memory access latency and con-
sumes power. Therefore, harnessing data locality is of fun-
damental importance in future processors. We propose a
scalable, efficient shared memory cache coherence protocol
that enables seamless adaptation between private and log-
ically shared caching of on-chip data at the fine granular-
ity of cache lines. Our data-centric approach relies on in-
hardware yet low-overhead runtime profiling of the locality
of each cache line and only allows private caching for data
blocks with high spatio-temporal locality. This allows us
to better exploit the private caches and enable low-latency,
low-energy memory access, while retaining the convenience
of shared memory. On a set of parallel benchmarks, our low-
overhead locality-aware mechanisms reduce the overall en-
ergy by 25% and completion time by 15% in an NoC-based
multicore with the Reactive-NUCA on-chip cache organi-
zation and the ACKwise limited directory-based coherence
protocol.

Categories and Subject Descriptors
C.1.2.g [Processor Architectures]: [Parallel processors];
B.3.2.g [Memory Structures]: [Shared memory]

General Terms
Design, Performance

Keywords
Cache Coherence, Multicore

This work was funded by the U.S. Government under the
DARPA UHPC program, and a faculty startup grant from
the University of Connecticut. The views and conclusions
contained herein are those of the authors and should not
be interpreted as representing the official policies, either ex-
pressed or implied, of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

1. INTRODUCTION
In the era of multicores, programmers now need to in-

vest more effort in designing software capable of exploiting
multicore parallelism. To reduce memory access latency and
power consumption, a programmer can manually orchestrate
communication and computation or adopt the familiar pro-
gramming paradigm of shared memory. But will current
shared memory architectures scale to many cores? This pa-
per addresses the question of how to enable low-latency,
low-energy memory access while retaining the convenience
of shared memory.

Current semiconductor trends project the advent of single-
chip multicores dealing with data at an unprecedented scale.
Hence, in future processors, the main bottleneck shifts from
computation capabilities to data management, including on-
chip memory and communication. Memory scalability is
critically constrained by off-chip bandwidth, on-chip latency
and energy consumption [11]. Memory access latency and
energy consumption are now first-order design constraints.

A large, monolithic physically-shared on-chip cache does
not scale beyond a small number of cores, and the only prac-
tical option is to physically distribute it in pieces so that ev-
ery core is near some portion of the cache [2]. In theory this
provides a large amount of aggregate cache capacity and fast
private access for each core. Unfortunately, it is difficult to
manage distributed private caches effectively as they require
architectural support for cache coherence and consistency.

Popular directory-based protocols enable fast local caching
to exploit data locality, but scale poorly with increasing
core counts [16]. Many recent proposals (e.g., Tagless Direc-
tory [23], SPATL [25], SCD [19], and ACKwise [13]) have
addressed directory scalability in single-chip multicores us-
ing either sharer compression techniques or limited directo-
ries that require complex on-chip network capabilities [9].
But they still suffer from a major drawback, that is the pri-
vate caches are left unmanaged. A request for data allocates
and replicates a data block in the private cache hierarchy
even if the data has no spatial or temporal locality. This
leads to cache pollution since such low locality data can
displace more frequently used data, or suffer from expensive
communication due to the coherence protocol. Since on-chip
wires are not scaling at the same rate as transistors [11], un-
necessary data movement and replication not only impacts
latency, but also consumes extra power due to wasteful en-
ergy consumption of network and cache resources [16].

A popular option is to organize the last-level cache as log-
ically shared, leading to non-uniform cache access (NUCA)
[12]. Although the NUCA configuration yields better on-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/20024959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

chip cache utilization, exploiting locality using low-latency
private caching becomes even more challenging (as memory
latency is now also sensitive to data placement). To ad-
dress this problem, coarse-grain data migration and restric-
tive replication schemes have been proposed (e.g., Reactive-
NUCA [5]); however, these mechanisms typically assume pri-
vate low-level caches and still require directories that leave
the private caches unmanaged.

In this paper we propose a Locality-Aware Adaptive Co-
herence protocol to better manage the private caches in
shared memory multicores. When a core makes a memory
request that misses the private cache, the coherence pro-
tocol either brings the entire cache line using a traditional
directory protocol, or just accesses the requested word at the
shared cache location. This decision is based on the spatio-
temporal locality of a particular data block. Our approach
relies on runtime profiling of the locality of each cache line
and only allows private caching for data blocks with high
spatio-temporal locality. We propose a low-overhead (18KB
storage per core) yet highly accurate predictive mechanism
to track the locality of cache lines in hardware. This local-
ity tracking mechanism is decoupled from the sharer tracking
structures that cause scalability concerns in cache coherence
protocols.

We implement our protocol on top of an existing Private-
L1 Shared-L2 cache organization, where the shared L2 cache
is physically distributed in slices throughout the chip and
managed using Reactive-NUCA’s [5] data placement and
migration policy. We choose the ACKwise limited direc-
tory protocol because it has been shown to scale to large
core counts [13].

Our Locality-Aware Adaptive Coherence protocol is advan-
tageous because it:

1. Better exploits on-chip private caches by intelligently
controlling data caching and replication.

2. Enables lower memory access latency by trading off
unnecessary cache evictions or expensive invalidations
with much cheaper word accesses.

3. Lowers energy consumption by better utilizing on-chip
network and cache resources.

2. BACKGROUND

2.1 Related Work
Previous research on cache organizations in multicore pro-

cessors mostly focused on the last-level cache (LLC). Propos-
als have been made to organize the LLC as private, shared
or a combination of both. All other cache levels have tradi-
tionally been organized as private to a core [4, 6, 24, 5].

The benefits of having a private or shared LLC organiza-
tion depend on the degree of sharing in an application as
well as data access patterns. While private LLC organiza-
tions have low hit latencies, their off-chip miss rates are high
in applications that exhibit high degrees of sharing due to
data replication. Shared LLC organizations, on the other
hand, have high hit latencies since each request has to com-
plete a round-trip over the interconnection network. This
hit latency increases as more cores are added since the di-
ameter of most on-chip networks increases with the number
of cores. However, their off-chip miss rates are low because
data is not replicated.

Private LLC organizations limit the cache capacity avail-

able to a thread to that of the private LLC slice. This has
an adverse effect on workloads with large private working
sets and uneven distribution of working set sizes. Shared
LLC organizations are not affected by this issue since they
have the flexibility in storing the data of a thread in various
locations throughout the LLC.

Both private and shared LLC organizations incur signifi-
cant protocol latencies when a writer of a data block inval-
idates multiple readers; the impact being directly propor-
tional to the degree of sharing of the data block. Previous
research has proposed hybrid LLC organizations that com-
bine the benefits of private and shared caches. Two such pro-
posals are Reactive-NUCA [5] and Victim Replication [24].

Reactive-NUCA classifies data as private or shared using
OS page tables at page granularity and manages LLC alloca-
tion according to the type of data. For a 16-core processor,
R-NUCA places private data at the LLC slice of the request-
ing core, shared data at a single LLC slice whose location
is determined by computing a hash function of the address,
and replicates instructions at a single LLC slice for every
cluster of 4 cores using a rotational interleaving mechanism.

Victim replication starts out with a private L1 and shared
L2 organization and uses the local L2 slice as a victim cache
for data that is evicted from the L1 cache. By only replicat-
ing the L1 capacity victims, this scheme attempts to combine
the low hit latency of private designs with the low off-chip
miss rates of shared LLCs.

The above schemes suffer two major drawbacks:

1. They leave the private caches unmanaged. A request
for data allocates a cache line in the private cache hi-
erarchy even if the data has no spatial or temporal
locality. This leads to cache pollution since such low
locality data can displace more frequently used data,
or suffer from expensive communication due to the co-
herence protocol.

2. Management of on-chip data is based on coarse-grain
data classification mechanisms and/or pays no atten-
tion to the locality of the cache lines. For example,
victim replication places all L1 cache victims into the
local L2 cache irrespective of whether they will be re-
used in the future. R-NUCA has a fixed policy for
managing shared data and does not allow less or more
replication based on the usefulness of data.

There has been significant research on managing the re-
source sharing of the LLC [18, 8]. These schemes either
dynamically partition the cache to optimize for applications
that benefit from the LLC, or better manage the LLC re-
placement policy based on the locality of cache lines in the
private caches. To the contrary, our protocol focuses on in-
telligent management of private caches. Managing private
caches is important because they replicate shared data with-
out paying attention to its locality, and they are generally
capacity-stressed due to strict size and latency limitations.

Previously, researchers have studied techniques for man-
agement of private caches in the context of uniprocessors. In
Cache Bursts [15], the private cache fetches the entire cache
line on every miss and evicts it as soon as it is detected to
be a dead block. This does not accrue the network traffic
or memory access latency benefits that our protocol enables
by just fetching a single-use word for low locality data.

Selective caching has been suggested in the context of sin-
gle processors to selectively cache data in the on-chip caches

Evic%on	 vs	 U%liza%on	

15	

0%	

20%	

40%	

60%	

80%	

100%	

Ev
ic
%
on

s	
Br
ea
kd
ow

n	
(%

)	

1	 2,3	 4,5	 6,7	 >=8	

0%	

20%	

40%	

60%	

80%	

100%	
In
va
lid

a%
on

s	
Br
ea
kd
ow

n	
(%

)	
1	 2,3	 4,5	 6,7	 >=8	

Figure 1: Invalidations vs Utilization.Evic%on	 vs	 U%liza%on	

15	

0%	

20%	

40%	

60%	

80%	

100%	

Ev
ic
%
on

s	
Br
ea
kd
ow

n	
(%

)	

1	 2,3	 4,5	 6,7	 >=8	

0%	

20%	

40%	

60%	

80%	

100%	

In
va
lid

a%
on

s	
Br
ea
kd
ow

n	
(%

)	

1	 2,3	 4,5	 6,7	 >=8	 Figure 2: Evictions vs Utilization.

based on its locality [21, 10]. Our protocol is based on the
similar central idea, but differs from selective caching in two
key aspects: (1) In addition to performance we also optimize
for energy consumption in the memory system. In [10], the
referenced cache line is always brought into a set-associative
buffer. To the contrary, our protocol selectively decides
to move a cache line from the shared LLC to the private
cache or simply accesses the requested word at the shared
LLC, thereby reducing the energy consumption of moving
unnecessary data through the on-chip network. (2) All prior
selective caching proposals have focused on uniprocessors,
while in this paper, we target large-scale shared memory
multicores running multithreaded applications with shared
data. In addition to the traditional private data, our pro-
tocol also tracks the locality of shared data and potentially
converts expensive invalidations into much cheaper word ac-
cesses that not only improve memory latency but also reduce
the energy consumption of the network and cache resources.

2.2 Motivation
In this paper we motivate the need for a locality-aware

allocation of cache lines in the private caches of a shared
memory multicore processor. The locality of each cache line
is quantified using a utilization metric. The utilization is de-
fined as the number of accesses that are made to the cache
line by a core after being brought into its private cache hi-
erarchy and before being invalidated or evicted.

Figures 1 and 2 show the percentage of invalidated and
evicted cache lines as a function of their utilization. We ob-
serve that many cache lines that are evicted or invalidated
in the private caches exhibit low locality (e.g., in stream-
cluster, 80% of the cache lines that are invalidated have
utilization < 4). To avoid the performance penalties of inval-
idations and evictions, we propose to only bring those cache
lines that have high spatio-temporal locality into the private
caches. This is accomplished by tracking vital statistics at

the private caches and the on-chip directory to quantify the
utilization of data at the granularity of cache lines. This
utilization information is subsequently used to classify data
as cache line or word accessible.

3. LOCALITY-AWARE ADAPTIVE CACHE
COHERENCE PROTOCOL

We describe how the Locality-Aware Adaptive Coherence
protocol works by implementing it on top of a Private-L1
Shared-L2 cache organization with R-NUCA’s data place-
ment and migration mechanisms and ACKwise limited di-
rectory coherence protocol.

3.1 Baseline System
The baseline system is a tiled multicore with an electrical

2-D mesh interconnection network as shown in Figure 3.
Each core consists of a compute pipeline, private L1 in-
struction and data caches, a physically distributed shared
L2 cache with integrated directory, and a network router.
The coherence directory is integrated with the L2 slices by
extending the L2 tag arrays and tracks the sharing status of
the cache lines in the per-core private L1 caches. The pri-
vate L1 caches are kept coherent using the ACKwise limited
directory-based coherence protocol [13]. Some cores have a
connection to a memory controller as well.

The ACKwise protocol maintains a limited set of hard-
ware pointers (p) to track the sharers of a cache line. It
operates like a full-map protocol when the number of shar-
ers is less than or equal to the number of hardware pointers.
When the number of sharers exceeds the number of hardware
pointers, the ACKwisep protocol does not track the identi-
ties of the sharers anymore. Instead, it tracks the number
of sharers and performs a broadcast invalidate on an exclu-
sive request. However, acknowledgments need to be received
from only the actual sharers of the data. In conjunction with
a broadcast network, the ACKwise protocol has been shown
to scale to large numbers of cores [13]. Our 2-D mesh net-
work is also augmented with broadcast support. Each router
selectively replicates a broadcast’ed message on its output
links such that all cores are reached with a single injection.

3.2 Protocol Operation
We first define a few terms to facilitate describing our

protocol.

• Private Sharer: A private sharer is a core which is
granted a private copy of a cache line in its L1 cache.

• Remote Sharer: A remote sharer is a core which is
NOT granted a private copy of a cache line. Instead,
its L1 cache miss is handled at the shared L2 cache
location using word access.

• Private Utilization: Private utilization is the num-
ber of times a cache line is used (read or written) by
a core in its private L1 cache before it gets invalidated
or evicted.

• Remote Utilization: Remote utilization is the num-
ber of times a cache line is used (read or written) by
a core at the shared L2 cache before it is brought into
its L1 cache or gets written to by another core.

• Private Caching Threshold (PCT): The private
utilization above or equal to which a core is“promoted”
to be a private sharer, and below which a core is “de-
moted” to be a remote sharer of a cache line.

Adap%ve	 Coherence	

1	

Router	

L1	 I-‐Cache	 L1	 D-‐Cache	

	 	 	 	 	 L2	 Shared	 Cache	 2	 Home	

1	

Mem	
Ctrl	

Home	

3	

Core	

Compute	 Pipeline	

Directory	 	

Figure 3: 1©, 2© and 3© are mockup requests show-

ing the two modes of accessing on-chip caches using our

locality-aware protocol. Since the black data block has

high locality with respect to the core at 1©, the directory

at the home-node hands out a private copy of the cache

line. On the other hand, the low-locality red data block

is always cached in a single location at its home-node,

and all requests (2©, 3©) are serviced using roundtrip

remote-word accesses.

4	

Remote	 Private	

U.liza.on	 <	 PCT	

U.liza.on	 >=	 PCT	

Ini.al	 Remote	 U.liza.on	 <	 PCT	

Remote	 U.liza.on	 >=	 PCT	

Figure 4: Each cache line is initialized to Private with

respect to all sharers. Based on the utilization counters

that are updated on each memory access to this cache

line and the parameter PCT, the sharers are transitioned

between Private and Remote modes. Here utilization =

(private + remote) utilization.

Note that a cache line can have both private and remote
sharers. We first describe the basic operation of the protocol.
Later, we present heuristics that are essential for a cost-
efficient hardware implementation. Our protocol starts out
as a conventional directory protocol and initializes all cores
as private sharers of all cache lines (as shown by Initial in
Figure 4). Let us understand the handling of read and write
requests under this protocol.

Read Requests: When a core makes a read request and
misses in its private L1 cache, the request is sent to the L2
cache. If the cache line is not present in the L2 cache, it is
brought in from off-chip memory. The L2 cache then hands
out a private read-only copy of the cache line if the core is
marked as a private sharer in its integrated directory (1© in
Figure 3). (Note that when a cache line is brought in from
off-chip memory, all cores start out as private sharers). The
core then tracks the locality of the cache line by initializing
a private utilization counter in its L1 cache to 1 and incre-
menting this counter for every subsequent read. Each cache
line tag is extended with utilization tracking bits for this
purpose as shown in Figure 5.

6	

State	 LRU	 Tag	
Private	

U0liza0on	

State	 Tag	
ACKwise	
Pointers	

1	 …	 p	

Remote	
U0liza0on1	

Remote	
U0liza0onn	

…	 P/R1	

…	

P/Rn	

State	 Tag	
ACKwise	
Pointers	

1	 …	 p	

Core	 ID1	

Remote	
U0liza0on1	

Core	 IDk	

Remote	
U0liza0onk	

…	

…	 P/R1	

…	

P/Rk	

Last	 Access	
Timestamp	

Last	 Access	
Timestampn	

Last	 Access	
Timestamp1	

RAT-‐Level1	 RAT-‐Levelk	 …	

…	

Figure 5: Each L1 cache tag is extended to include ad-

ditional bits for tracking (a) private utilization, and (b)

last-access time of the cache line.

6	

State	 LRU	 Tag	
Private	

U0liza0on	

State	 Tag	
ACKwise	
Pointers	

1	 …	 p	

Remote	
U0liza0on1	

Remote	
U0liza0onn	

…	 P/R1	

…	

P/Rn	

State	 Tag	
ACKwise	
Pointers	

1	 …	 p	

Core	 ID1	

Remote	
U0liza0on1	

Core	 IDk	

Remote	
U0liza0onk	

…	

…	 P/R1	

…	

P/Rk	

Last	 Access	
Timestamp	

Last	 Access	
Timestampn	

Last	 Access	
Timestamp1	

RAT-‐Level1	 RAT-‐Levelk	 …	

…	

Figure 6: ACKwisep - Complete classifier directory entry.

The directory entry contains the state, tag, ACKwisep

pointers as well as (a) mode (P/R), (b) remote utilization

counters and (c) last-access timestamps for tracking the

locality of all the cores in the system.

On the other hand, if the core is marked as a remote
sharer, the integrated directory either increments a core-
specific remote utilization counter or resets it to 1 based
on the outcome of a Timestamp check (that is described
below). If the remote utilization counter has reached PCT,
the requesting core is promoted, i.e., marked as a private
sharer and a copy of the cache line is handed over to it (as
shown in Figure 4). Otherwise, the L2 cache replies with
the requested word (2© and 3© in Figure 3).

The Timestamp check that must be satisfied to incre-
ment the remote utilization counter is as follows. The last-
access time of the cache line in the L2 cache is greater
than the minimum of the last-access times of all valid
cache lines in the same set of the requesting core’s
L1 cache. Note that if at least one cache line is invalid
in the L1 cache, the above condition is trivially true. Each
directory entry is augmented with a per-core remote uti-
lization counter and a last-access timestamp (64-bits wide)
for this purpose as shown in Figure 6. Each L1 cache tag
also contains a last-access timestamp (shown in Figure 5)
and this information is used to calculate the above mini-
mum last-access time in the L1 cache. This minimum is
then communicated to the L2 cache on an L1 miss.

The above Timestamp check is added so that when a cache
line is brought into the L1 cache, other cache lines that are
equally or better utilized are not evicted, i.e., the cache line
does not cause L1 cache pollution. For example, consider a
benchmark that is looping through a data structure with low
locality. Applying the above Timestamp check allows the
system to keep a subset of the working set in the L1 cache.
Without the Timestamp check, a remote sharer would be
promoted to be a private sharer after a few accesses (even if
the other lines in the L1 cache are well utilized). This would
result in cache lines evicting each other and ping-ponging
between the L1 and L2 caches.

Write Requests: When a core makes a write request that
misses in its private L1 cache, the request is sent to the
L2 cache. The directory performs the following actions if
the core is marked as a private sharer: (1) it invalidates all
the private sharers of the cache line, (2) it sets the remote
utilization counters of all its remote sharers to ‘0’, and (3)
it hands out a private read-write copy of the line to the
requesting core. The core then tracks the locality of the
cache line by initializing the private utilization counter in
its L1 cache to 1 and incrementing this counter on every
subsequent read/write request.

On the other hand, if the core is marked as a remote
sharer, the directory performs the following actions: (1) it
invalidates all the private sharers, (2) it sets the remote uti-
lization counters of all remote sharers other than the request-
ing core to ‘0’, and (3) it increments the remote utilization

counter for the requesting core, or resets it to 1 using the
same Timestamp check as described earlier for read requests.
If the utilization counter has reached PCT, the requesting
core is promoted and a private read-write copy of the cache
line is handed over to it. Otherwise, the word to be written
is stored in the L2 cache.

When a core writes to a cache line, the utilization counters
of all remote sharers (other than the writer itself) must be
set to ‘0’ since they have been unable to demonstrate enough
utilization to be promoted. All remote sharers must now
build up utilization again to be promoted.

Evictions and Invalidations: When the cache line is re-
moved from the private L1 cache due to eviction (conflict
or capacity miss) or invalidation (exclusive request by an-
other core), the private utilization counter is communicated
to the directory along with the acknowledgement message.
The directory uses this information along with the remote
utilization counter present locally to classify the core as a
private or remote sharer in order to handle future requests.

If the (private + remote) utilization is ≥ PCT, the core
stays as a private sharer, else it is demoted to a remote sharer
(as shown in Figure 4). The remote utilization is added be-
cause if the cache line had been brought into the private L1
cache at the time its remote utilization was reset to 1, it
would not have been evicted (due to the Timestamp check
and the LRU replacement policy of the L1 cache) or invali-
dated any earlier. Therefore, the actual utilization observed
during this classification phase includes both the private and
remote utilization.

Performing classification using the mechanisms described
above is expensive due to the area overhead, both at the
L1 cache and the directory. Each L1 cache tag needs to
store the private utilization and last-access timestamp (a 64-
bit field). And each directory entry needs to track locality
information (i.e., mode, remote utilization and last-access
timestamp) for all the cores. We now describe heuristics to
facilitate a cost-effective hardware implementation.

In Section 3.3, we remove the need for tracking the
last-access time from the L1 cache and the directory.
The basic idea is to approximate the outcome of the Times-
tamp check by using a threshold higher than PCT for switch-
ing from remote to private mode. This threshold, termed
Remote Access Threshold (RAT) is dynamically learned by
observing the L1 cache set pressure and switches between
multiple levels so as to optimize energy and performance.

In Section 3.4, we describe a mechanism for predicting the
mode (private/remote) of a core by tracking locality infor-
mation for only a limited number of cores at the directory.

3.3 Predicting Remote→Private Transitions
The Timestamp check described earlier served to preserve

well utilized lines in the L1 cache. We approximate this
mechanism by making the following two changes to the pro-
tocol: (1) de-coupling the threshold for remote-to-private
mode transition from that for private-to-remote transition,
(2) dynamically adjusting this threshold based on the ob-
served L1 cache set pressure.

The threshold for remote-to-private mode transition, i.e.,
the number of accesses at which a core transitions from a re-
mote to private sharer, is termed Remote Access Threshold
(RAT). Initially, RAT is set equal to PCT (the threshold for
private-to-remote mode transition). On an invalidation, if
the core is classified as a remote sharer, RAT is unchanged.

6	

State	 LRU	 Tag	
Private	

U0liza0on	

State	 Tag	
ACKwise	
Pointers	

1	 …	 p	

Remote	
U0liza0on1	

Remote	
U0liza0onn	

…	 P/R1	

…	

P/Rn	

State	 Tag	
ACKwise	
Pointers	

1	 …	 p	

Core	 ID1	

Remote	
U0liza0on1	

Core	 IDk	

Remote	
U0liza0onk	

…	

…	 P/R1	

…	

P/Rk	

Last	 Access	
Timestamp	

Last	 Access	
Timestampn	

Last	 Access	
Timestamp1	

RAT-‐Level1	 RAT-‐Levelk	 …	

…	

Figure 7: The limited locality classifier extends the di-

rectory entry with mode, utilization, and RAT-level bits

for a limited number of cores. A majority vote of the

modes of tracked cores is used to classify new cores as

private or remote sharers.

This is because the cache set has an invalid line immediately
following an invalidation leading to low cache set pressure.
Hence, we can assume that the Timestamp check trivially
passes on every remote access.

However, on an eviction, if the core is demoted to a remote
sharer, RAT is increased to a higher level. This is because
an eviction signifies higher cache set pressure. By increas-
ing RAT to a higher level, it becomes harder for the core
to be promoted to a private sharer, thereby counteracting
the cache set pressure. If there are back-to-back evictions,
with the core demoted to a remote sharer on each of them,
RAT is further increased to higher levels. However, RAT
is not increased beyond a certain value (RATmax) due to
the following two reasons: (1) the core should be able to
return to the status of a private sharer if it later shows good
locality, and (2) the number of bits needed to track remote
utilization should not be too high. Also, beyond a particular
RAT, keeping the core as a remote sharer counteracts the
increased cache pressure negligibly, leading to only small im-
provements in performance and energy. The protocol is also
equipped with a short-cut incase an invalid cache line exists
in the L1 cache. In this case, if remote utilization reaches or
rises above PCT, the requesting core is promoted to a private
sharer since it will not cause cache pollution. The number
of RAT levels used is abbreviated as nRATlevels. RAT is
additively increased in equal steps from PCT to RATmax,
the number of steps being equal to (nRATlevels −1).

On the other hand, if the core is classified as a private
sharer on an eviction or invalidation, RAT is reset to its
starting value of PCT. Doing this is essential because it pro-
vides the core the opportunity to re-learn its classification.
Varying the RAT in this manner removes the need to track
the last-access time both in the L1 cache tag and the direc-
tory. However, a field that identifies the current RAT-level
now needs to be added to each directory entry. These bits
now replace the last-access timestamp field in Figure 6. The
efficacy of this scheme is evaluated in Section 5.2. Based on
our observations, RATmax = 16 and nRATlevels = 2 were
found to produce results that closely match those produced
by the Timestamp-based classification scheme.

3.4 Limited Locality Classifier
The classifier described earlier which keeps track of local-

ity information for all cores in the directory entry is termed
the Complete locality classifier. It has a storage overhead of
60% (calculated in Section 3.6) at 64 cores and over 10× at
1024 cores. In order to mitigate this overhead, we develop
a classifier that maintains locality information for a limited
number of cores and classifies the other cores as private or
remote sharers based on this information.

The locality information for each core consists of (1) the
core ID, (2) a mode bit (P/R), (3) a remote utilization
counter, and (4) a RAT-level. The classifier that maintains
a list of this information for a limited number of cores (k)
is termed the Limitedk classifier. Figure 7 shows the in-
formation that is tracked by this classifier. The sharer list
of ACKwise is not reused for tracking locality information
because of its different functionality. While the hardware
pointers of ACKwise are used to maintain coherence, the
limited locality list serves to classify cores as private or re-
mote sharers. Decoupling in this manner also enables the
locality-aware protocol to be implemented efficiently on top
of other scalable directory organizations. We now describe
the working of the limited locality classifier.

At startup, all entries in the limited locality list are free
and this is denoted by marking all core IDs’ as INVALID.
When a core makes a request to the L2 cache, the directory
first checks if the core is already being tracked by the limited
locality list. If so, the actions described in Section 3.2 are
carried out. Else, the directory checks if a free entry exists.
If it does exist, it allocates the entry to the core and the
actions described in Section 3.2 are carried out.

Otherwise, the directory checks if a currently tracked core
can be replaced. An ideal candidate for replacement is a
core that is currently not using the cache line. Such a core
is termed an inactive sharer and should ideally relinquish
its entry to a core in need of it. A private sharer becomes
inactive on an invalidation or an eviction. A remote sharer
becomes inactive on a write by another core. If a replace-
ment candidate exists, its entry is allocated to the requesting
core. The initial mode of the core is obtained by taking a
majority vote of the modes of the tracked cores. This is done
so as to start off the requester in its most probable mode.

Finally, if no replacement candidate exists, the mode for
the requesting core is obtained by taking a majority vote of
the modes of all the tracked cores. The limited locality list
is left unchanged.

The storage overhead for the Limitedk classifier is directly
proportional to the number of cores (k) for which locality
information is tracked. In Section 5.3, we will evaluate the
accuracy of the Limitedk classifier. Based on our observa-
tions, the Limited3 classifier produces results that closely
match and sometimes exceeds those produced by the Com-
plete classifier.

3.5 Selection of PCT

The Private Caching Threshold (PCT) is a parameter to
our protocol and combining it with the observed spatio-
temporal locality of cache lines, our protocol classifies data
as private or remote. The extent to which our protocol im-
proves the performance and energy consumption of the sys-
tem is a complex function of the application characteristics,
the most important being its working set and data shar-
ing and access patterns. In Section 5, we will describe how
these factors influence performance and energy consumption
as PCT is varied for the evaluated benchmarks. We will
also show that choosing a static PCT of 4 for the simulated
benchmarks meets our performance and energy consumption
improvement goals.

3.6 Overheads of the Locality-Based Protocol
Storage: The locality-aware protocol requires extra bits at
the directory and private caches to track locality informa-

tion. At the private L1 cache, tracking locality requires 2
bits for the private utilization counter per cache line (assum-
ing an optimal PCT of 4). At the directory, the Limited3
classifier tracks locality information for three sharers. Track-
ing one sharer requires 4 bits to store the remote utilization
counter (assuming an RATmax of 16), 1 bit to store the
mode, 1 bit to store the RAT-level (assuming 2 RAT levels)
and 6 bits to store the core ID (for a 64-core processor).
Hence, the Limited3 classifier requires an additional 36 (= 3
× 12) bits of information per directory entry. The Complete
classifier, on the other hand, requires 384 (= 64 × 6) bits of
information. The assumptions stated here will be justified
in the evaluation section.

The following calculations are for one core but they are
applicable for the entire system since all cores are identical.
The sizes for the per-core L1-I, L1-D and L2 caches used
in our system are shown in Table 1. The directory is in-
tegrated with the L2 cache, so each L2 cache line has an
associated directory entry. The storage overhead in the L1-I
and L1-D caches is 2

512
× (16 + 32) = 0.19KB. We neglect

this in future calculations since it is really small. The stor-
age overhead in the directory for the Limited3 classifier is
36×256
64×8

= 18KB. For the Complete classifier, it is 192KB.
Now, the storage required for the ACKwise4 protocol in this
processor is 12KB (assuming 24 bits per directory entry)
and that for the Full-Map protocol is 32KB. Adding up all
the storage components, the Limited3 classifier with the
ACKwise4 protocol uses less storage than the Full-
map protocol and 5.7% more storage than the base-
line ACKwise4 protocol (factoring in the L1-I, L1-D and
L2 cache sizes also). The Complete classifier with ACKwise4
uses 60% more storage than the baseline ACKwise4 protocol.

Cache Accesses: Updating the private utilization counter
in a cache requires a read-modify-write operation on every
cache hit. This is true even if the cache access is a read.
However, the utilization counter, being just 2 bits in length,
can be stored in the tag array. Since the tag array already
needs to be written on every cache hit to update the re-
placement policy (e.g. LRU) counters, our protocol does
not incur any additional cache accesses.

Network Traffic: The locality-aware protocol could create
network traffic overhead due to the following three reasons:

1. The private utilization counter has to be sent along
with the acknowledgement to the directory on an in-
validation or an eviction.

2. In addition to the cache line address, the cache line
offset and the memory access length has to be com-
municated during every cache miss. This is because
the requester does not know whether it is a private or
remote sharer (only the directory maintains this infor-
mation as explained previously).

3. The data word(s) to be written has (have) to be com-
municated on every cache miss due to the same reason.

Some of these overheads can be hidden while others are
accounted for during evaluation as described below.

1. Sending back the utilization counter can be accom-
plished without creating additional network flits. For
a 48-bit physical address and 64-bit flit size, an invali-
dation message requires 42 bits for the physical cache
line address, 12 bits for the sender and receiver core

Architectural Parameter Value

Number of Cores 64 @ 1 GHz
Compute Pipeline per Core In-Order, Single-Issue
Physical Address Length 48 bits

Memory Subsystem

L1-I Cache per core 16 KB, 4-way Assoc., 1 cycle
L1-D Cache per core 32 KB, 4-way Assoc., 1 cycle
L2 Cache per core 256 KB, 8-way Assoc., 7 cycle

Inclusive, R-NUCA
Cache Line Size 64 bytes
Directory Protocol Invalidation-based MESI

ACKwise4 [13]
Num. of Memory Controllers 8
DRAM Bandwidth 5 GBps per Controller
DRAM Latency 100 ns

Electrical 2-D Mesh with XY Routing

Hop Latency 2 cycles (1-router, 1-link)
Contention Model Only link contention

(Infinite input buffers)
Flit Width 64 bits
Header 1 flit
(Src, Dest, Addr, MsgType)
Word Length 1 flit (64 bits)
Cache Line Length 8 flits (512 bits)

Locality-Aware Coherence Protocol - Default Parameters

Private Caching Threshold PCT = 4
Max Remote Access Threshold RATmax = 16
Number of RAT Levels nRATlevels = 2
Classifier Limited3

Table 1: Architectural parameters for evaluation.

IDs and 2 bits for the utilization counter. The remain-
ing 8 bits suffice for storing the message type.

2. The cache line offset needs to be communicated but
not the memory access length. We profiled the memory
access lengths for the benchmarks evaluated and found
it to be 64 bits in the common case. Memory accesses
that are ≤ 64 bits in length are rounded-up to 64 bits
while those > 64 bits always fetch an entire cache line.
Only 1 bit is needed to indicate this difference.

3. The data word to be written (64 bits in length) is al-
ways communicated to the directory on a write miss
in the L1 cache. This overhead is accounted for in our
evaluation.

3.7 Simpler One-Way Transition Protocol
The complexity of the above protocol could be decreased

if cores, once they were classified as remote sharers w.r.t.
a cache line would stay in the same mode throughout the
program. If this were true, the storage required to track
locality information at the directory could be avoided except
for the mode bits. The bits to track private utilization at
the cache tags would still be required to demote a core to
the status of a remote sharer. We term this simpler protocol
Adapt1-way and in Section 5.4, we observe that this protocol
is worse than the original protocol by 34% in completion
time and 13% in energy. Hence, a protocol that incorporates
dynamic transitioning between both modes is required for
efficient operation.

4. EVALUATION METHODOLOGY
We evaluate a 64-core shared memory multicore. The de-

fault architectural parameters used for evaluation are shown
in Table 1.

4.1 Performance Models
All experiments are performed using the core, cache hier-

archy, coherence protocol, memory system and on-chip inter-
connection network models implemented within the Graphite
[17] multicore simulator. All the mechanisms and protocol
overheads discussed in Section 3 are modeled. The Graphite
simulator requires the memory system (including the cache
hierarchy) to be functionally correct to complete simulation.
This is a good test that all our cache coherence protocols are
working correctly given that we have run 21 benchmarks to
completion.

The Locality-Aware Adaptive Coherence protocol requires
two separate access widths for reading or writing the shared
L2 caches i.e., a word for remote sharers and a cache line
for private sharers. For simplicity, we assume the same L2
cache access latency for both word and cache line accesses.

4.2 Energy Models
We evaluate just dynamic energy. For energy evaluations

of on-chip electrical network routers and links, we use the
DSENT [20] tool. Energy estimates for the L1-I, L1-D and
L2 (with integrated directory) caches are obtained using Mc-
PAT [14]. The evaluation is performed at the 11 nm tech-
nology node to account for future technology trends.

When calculating the energy consumption of the L2 cache,
we assume a word addressable cache architecture. This al-
lows our protocol to have a more efficient word access com-
pared to a cache line access. We model the dynamic energy
consumption of both the word access and the cache line ac-
cess in the L2 cache.

4.3 Application Benchmarks
We simulate six SPLASH-2 [22] benchmarks, six PAR-

SEC [3] benchmarks, four Parallel-MI-Bench [7], a Travelling-
Salesman-Problem (tsp) benchmark, a Depth-First-Search
(dfs) benchmark, a Matrix-Multiply (matmul) benchmark,
and two graph benchmarks (connected-components &
community-detection) [1] using the Graphite multicore
simulator. The graph benchmarks model social networking
based applications.

4.4 Evaluation Metrics
Each application is run to completion using the input sets

from Table 2. For each simulation run, we measure the Com-
pletion Time, i.e., the time in parallel region of the bench-
mark; this includes the compute latency, the memory access
latency, and the synchronization latency. The memory ac-
cess latency is further broken down into four components.
(1) L1 to L2 cache latency is the time spent by the L1
cache miss request to the L2 cache and the corresponding
reply from the L2 cache including time spent in the network
and the first access to the L2 cache. (2) L2 cache waiting
time is the queueing delay incurred because requests to the
same cache line must be serialized to ensure memory consis-
tency. (3) L2 cache to sharers latency is the roundtrip
time needed to invalidate private sharers and receive their
acknowledgments. This also includes time spent request-
ing and receiving synchronous write-backs. (4) L2 cache
to off-chip memory latency is the time spent accessing
memory including the time spent communicating with the
memory controller and the queueing delay incurred due to
finite off-chip bandwidth.

We also measure the energy consumption of the memory

Application Problem Size

SPLASH-2

radix 1M Integers, radix 1024

lu 512 × 512 matrix, 16 × 16 blocks

barnes 16K particles

ocean 258 × 258 ocean

water-spatial 512 molecules

raytrace car

PARSEC

blackscholes 64K options

streamcluster 8192 points per block, 1 block

dedup 31 MB data

bodytrack 2 frames, 2000 particles

fluidanimate 5 frames, 100,000 particles

canneal 200,000 elements

Parallel MI Bench

dijkstra-single-source Graph with 4096 nodes

dijkstra-all-pairs Graph with 512 nodes

patricia 5000 IP address queries

susan PGM picture 2.8 MB

UHPC

connected-components Graph with 218 nodes

community-detection Graph with 216 nodes

Others

tsp 16 cities

dfs Graph with 876800 nodes

matrix-multiply 512 × 512 matrix

Table 2: Problem sizes for our parallel benchmarks.

system which includes the on-chip caches and the network.
One of the important memory system metrics we track to

evaluate our protocol is the various cache miss types. They
are as follows: (1) Cold misses are cache misses that occur
to a line that has never been previously brought into the
cache, (2) Capacity misses are cache misses to a line that
was brought in previously but later evicted to make room
for another line, (3) Upgrade misses are cache misses to a
line in read-only state when an exclusive request is made for
it, (4) Sharing misses are cache misses to a line that was
brought in previously but was invalidated or downgraded
due to an read/write request by another core, and (5) Word
misses are cache misses to a line that was remotely accessed
previously.

5. RESULTS
We have compared the baseline ACKwise4 with a full-

map directory protocol and the average performance and
energy consumption were found to be within 1% of each
other. Since the ACKwise protocol scales well with increas-
ing core counts, we use that as a baseline throughout this
section. The architectural parameters from Table 1 are used
for the study unless otherwise stated.

In Section 5.1, we perform a sweep study to understand
the trends in Energy and Completion Time for the evaluated
benchmarks as PCT is varied. In Section 5.2, we evaluate
the approximation scheme for the Timestamp-based classifi-
cation and determine the optimal number of remote access
threshold levels (nRATlevels) and maximum RAT threshold
(RATmax). Next, in Section 5.3, we evaluate the accuracy
of the limited locality tracking classifier (Limitedk) by per-
forming a sensitivity analysis on k. Section 5.4 compares

the Energy and Completion Time of the protocol against
the simpler one-way transition protocol (Adapt1-way).

5.1 Energy and Completion Time Trends
Figures 8 and 9 plot the energy and completion time of

the evaluated benchmarks as a function of PCT. Results are
normalized in both cases to a PCT of 1 which corresponds
to the baseline R-NUCA system with ACKwise4 directory
protocol. Both energy and completion time decrease initially
as PCT is increased. As PCT increases to higher values,
both completion time and energy start to increase.

5.1.1 Energy
We consider the impact that our protocol has on the en-

ergy consumption of the memory system (L1-I cache, L1-D
cache, L2 cache and directory) and the interconnection net-
work (both router and link). The distribution of energy
between the caches and network varies across benchmarks
and is primarily dependent on the L1-D cache miss rate. For
this purpose, the L1-D cache miss rate is plotted along with
miss type breakdowns in Figure 10.

Benchmarks such as water-sp and susan with low cache
miss rates (∼0.2%) dissipate 95% of their energy in the L1
caches while those such as concomp and lu-nc with higher
cache miss rates dissipate more than half of their energy in
the network. The energy consumption of the L2 cache com-
pared to the L1-I and L1-D caches is also highly dependent
on the L1-D cache miss rate. For example, water-sp has
negligible L2 cache energy consumption, while ocean-nc’s
L2 energy consumption is more than its combined L1-I and
L1-D energy consumption.

At the 11nm technology node, network links have a higher
contribution to the energy consumption than network routers.
This can be attributed to the poor scaling trends of wires
compared to transistors. As shown in Figure 8, this trend is
observed in all our evaluated benchmarks.

The energy consumption of the directory is negligible com-
pared to all other sources of energy consumption. This mo-
tivated our decision to put the directory in the L2 cache tag
arrays as described earlier. The additional bits required to
track locality information at the directory have a negligible
effect on energy consumption.

Varying PCT impacts energy by changing both network
traffic and cache accesses. In particular, increasing the value
of PCT decreases the number of private sharers of a cache
line and increases the number of remote sharers. This im-
pacts the network traffic and cache accesses in the follow-
ing three ways. (1) Fetching an entire line on a cache miss
in conventional coherence protocols is replaced by multiple
word accesses to the shared L2 cache. Note that each word
access at the shared L2 cache requires a lookup and an up-
date to the utilization counter in the directory as well. (2)
Reducing the number of private sharers decreases the num-
ber of invalidations (and acknowledgments) required to keep
all cached copies of a line coherent. Synchronous write-back
requests that are needed to fetch the most recent copy of a
line are reduced as well. (3) Since the caching of low-locality
data is eliminated, the L1 cache space can be more effectively
used for high locality data, thereby decreasing the amount
of asynchronous evictions (leading to capacity misses) for
such data.

Benchmarks that yield a significant improvement in en-
ergy consumption do so by converting either capacity misses

Energy	

8	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	

RADIX	 LU-‐NC	 BARNES	 OCEAN-‐NC	 WATER-‐SP	 RAYTRACE	 BLACKSCH.	 STREAMCLUS.	 DEDUP	 BODYTRACK	 FLUIDANIM.	

En
er
gy
	 B
re
ak
do

w
n	

	 L1-‐I	 Cache	 	 L1-‐D	 Cache	 	 L2	 Cache	 	 Directory	 	 Network	 Router	 	 Network	 Link	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	

CANNEAL	 DIJKSTRA-‐SS	 DIJKSTRA-‐AP	 PATRICIA	 SUSAN	 CONCOMP	 COMMUNITY	 TSP	 DFS	 MATMUL	 AVERAGE	

En
er
gy
	 B
re
ak
do

w
n	

Figure 8: Variation of Energy with PCT. Results are normalized to a PCT of 1. Note that Average and not
Geometric-Mean is plotted here.

7	

Comple)on	 Time	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	

1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	

RADIX	 LU-‐NC	 BARNES	 OCEAN-‐NC	 WATER-‐SP	 RAYTRACE	 BLACKSCH.	 STREAMCLUS.	 DEDUP	 BODYTRACK	 FLUIDANIM.	

Co
m
pl
e'

on
	 T
im

e	
Br
ea
kd

ow
n	

	 Compute	 	 L1Cache-‐L2Cache	 	 L2Cache-‐Wai)ng	 	 L2Cache-‐Sharers	 	 L2Cache-‐OffChip	 	 Synchroniza)on	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	 1	 2	 3	 4	 5	 6	 7	 8	

CANNEAL	 DIJKSTRA-‐SS	 DIJKSTRA-‐AP	 PATRICIA	 SUSAN	 CONCOMP	 COMMUNITY	 TSP	 DFS	 MATMUL	 AVERAGE	

Co
m
pl
e'

on
	 T
im

e	
Br
ea
kd

ow
n	

Figure 9: Variation of Completion Time with PCT. Results are normalized to a PCT of 1. Note that Average
and not Geometric-Mean is plotted here.

(in bodytrack and blackscholes) or sharing misses (in
dijkstra-ss and streamcluster) into cheaper word misses.
This can be observed from Figure 8 when going from a PCT
of 1 to 2 in bodytrack and blackscholes and a PCT
of 2 to 3 in dijkstra-ss and streamcluster. While a
sharing miss is more expensive than a capacity miss due to
the additional network traffic generated by invalidations and
synchronous write-backs, turning capacity misses into word
misses improves cache utilization (and reduces cache pol-
lution) by reducing evictions and thereby capacity misses
for other cache lines. This is evident in benchmarks like

blackscholes, bodytrack, dijkstra-ap and matmul in
which the cache miss rate drops when switching from a PCT
of 1 to 2. Benchmarks like lu-nc, and patricia provide en-
ergy benefit by converting both capacity and sharing misses
into word misses.

At a PCT of 4, the geometric mean of the energy con-
sumption across all benchmarks is less than that at a PCT
of 1 by 25%.

5.1.2 Completion Time
As shown in Figure 9, our protocol reduces the completion

9	

0	

0.1	

0.2	

0.3	

0.4	

1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	

WATER-‐SP	 SUSAN	

Ca
ch
e	
M
is
s	 R

at
e	

Br
ea
kd

ow
n	
(%

)	

0	
0.5	
1	

1.5	
2	

2.5	
3	

1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	

BLACKSCH.	 FLUIDANIM.	 CANNEAL	 COMMUNITY	

	 Cold	 	 Capacity	 	 Upgrade	 	 Sharing	 	 Word	

0	

5	

10	

15	

1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	

RAYTRACE	 PATRICIA	 TSP	 DFS	

0	

2	

4	

6	

8	

1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	

RADIX	 BARNES	 STREAMCLUS.	 DEDUP	 BODYTRACK	 DIJKSTRA-‐SS	 DIJKSTRA-‐
AP	

Ca
ch
e	
M
is
s	 R

at
e	

Br
ea
kd

ow
n	
(%

)	

0	

10	

20	

30	

40	

1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	 1	 2	 3	 4	 6	 8	

LU-‐NC	 OCEAN-‐NC	 MATMUL	

0	
10	
20	
30	
40	
50	
60	

1	 2	 3	 4	 6	 8	

CONCOMP	

Figure 10: L1 Data Cache Miss Rate and Miss Type Breakdown vs PCT. Note that in this graph, the miss
rate increases from left to right as well as from top to bottom.

time as well. Noticeable improvements (>5%) occur in 11
out of the 21 evaluated benchmarks. Most of the improve-
ments occur for the same reasons as discussed for energy,
and can be attributed to our protocol identifying low lo-
cality cache lines and converting the capacity and sharing
misses on them to cheaper word misses. Benchmarks such
as blackscholes, dijkstra-ap and matmul experience a
lower miss rate when PCT is increased from 1 to 2 due to
better cache utilization. This translates into a lower comple-
tion time. In concomp, cache utilization does not improve
but capacity misses are converted into almost an equal num-
ber of word misses. Hence, the completion time improves.

Benchmarks such as streamcluster and tsp show com-
pletion time improvement due to converting expensive shar-
ing misses into word misses. From a performance stand-
point, sharing misses are expensive because they increase:
(1) the L2 cache to sharers latency and (2) the L2 cache
waiting time. Note that the L2 cache waiting time of one
core may depend on the L2 cache to sharers latency of an-
other since requests to the same cache line need to be serial-
ized. In these benchmarks, even if cache miss rate increases
with PCT, the miss penalty is lower because a word miss is
much cheaper than a sharing miss. A word miss does not
contribute to the L2 cache to sharers latency and only con-
tributes marginally to the L2 cache waiting time. Hence, the
above two memory access latency components can be signif-
icantly reduced. Reducing these components may decrease
synchronization time as well if the responsible memory ac-
cesses lie within the critical section. streamcluster and
dijkstra-ss mostly reduce the L2 cache waiting time while
partricia and tsp reduce the L2 cache to sharers latency.

In a few benchmarks such as lu-nc and barnes, comple-
tion time is found to increase after a PCT of 3 because the
added number of word misses overwhelms any improvement
obtained by reducing capacity misses.

9	

0.6	
0.7	
0.8	
0.9	
1	

1.1	
1.2	

1	 2	 3	 4	 5	 6	 7	 8	 10	 12	 14	 16	 18	 20	
Private	 Caching	 Threshold	 (PCT)	

Comple3on	 Time	 Energy	

Figure 11: Variation of Geometric-Means of Comple-
tion Time and Energy with Private Caching Thresh-
old (PCT). Results are normalized to a PCT of 1.

At a PCT of 4, the geometric mean of the completion
time across all benchmarks is less than that at a PCT of 1
by 15%.

5.1.3 Static Selection of PCT
To put everything in perspective, we plot the geometric

means of the Completion Time and Energy for our bench-
marks in Figure 11. We observe a gradual decrease of com-
pletion time up to PCT of 3, constant completion time till
a PCT of 4, and an increase in completion time afterward.
Energy consumption decreases up to PCT of 5, then stays
constant till a PCT of 8 and after that, it starts increas-
ing. We conclude that a PCT of 4 meets our goal of si-
multaneously improving both completion time and energy
consumption. A completion time reduction of 15% and an
energy consumption improvement of 25% is obtained when
moving from PCT of 1 to 4.

5.2 Tuning Remote Access Thresholds
As explained in Section 3.3, the Timestamp-based classifi-

cation scheme was expensive due to its area overhead, both

11	

0.98	

1.03	

1.08	

1.13	

Timestamp	 L-‐1	 L-‐2,	 T-‐8	 L-‐2,	 T-‐16	 L-‐4,	 T-‐8	 L-‐4,	 T-‐16	 L-‐8,	 T-‐16	

Comple9on-‐Time	 Energy	

Figure 12: Remote Access Threshold sensitivity
study for nRATlevels (L) and RATmax (T)

at the L1 cache and directory. The benefits provided by this
scheme can be approximated by having multiple Remote Ac-
cess Threshold (RAT) Levels and dynamically switching be-
tween them at runtime to counteract the increased L1 cache
pressure. We now perform a study to determine the optimal
number of threshold levels (nRATlevels) and the maximum
threshold (RATmax).

Figure 12 plots the completion time and energy consump-
tion for the different points of interest. The results are
normalized to that of the Timestamp-based classification
scheme. The completion time is almost constant through-
out. However, the energy consumption is nearly 9% higher
when nRATlevels = 1. With multiple RAT levels (nRATlevels

> 1), the energy is significantly reduced. Also, the energy
consumption with RATmax = 16 is found to be slightly lower
(2%) than with RATmax = 8. With RATmax = 16, there
is almost no difference between nRATlevels = 2, 4, 8, so we
choose nRATlevels = 2 since it minimizes the area overhead.

5.3 Limited Locality Tracking
As explained in Section 3.4, tracking the locality infor-

mation for all the cores in the directory results in an area
overhead of 60% per core. So, we explore a mechanism that
tracks the locality information for only a few cores, and clas-
sifies a new core as a private or remote sharer based on a
majority vote of the modes of the tracked cores.

Figure 13 plots the completion time and energy of the
benchmarks with the Limitedk classifier when k is varied as
(1, 3, 5, 7, 64). k = 64 corresponds to the Complete classifier.
The results are normalized to that of the Complete classifier.
The benchmarks that are not shown are identical to water-
sp, i.e., the completion time and energy stay constant as k
varies. The experiments are run with the best static PCT
value of 4 obtained in Section 5.1.3. We observe that the
completion time and energy consumption of the Limited3

classifier never exceeds by more than 3% the completion
time and energy consumption of the Complete classifier.

In streamcluster and dijkstra-ss, the Limited3 classi-
fier does better than the Complete classifier because it learns
the mode of sharers quicker. While the Complete classifier
starts off each sharer of a cache line independently in pri-
vate mode, the Limited3 classifier infers the mode of a new
sharer from the modes of existing sharers. This enables the
Limited3 classifier to put the new sharer in remote mode
without the initial per-sharer classification phase. We note
that the Complete locality classifier can also be equipped
with such a learning short-cut.

Inferring the modes of new sharers from the modes of ex-
isting sharers can be harmful too, as is illustrated in the
case of radix and bodytrack for the Limited1 classifier.
While radix starts off new sharers incorrectly in remote
mode, bodytrack starts them off incorrectly in private

12	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	

En
er
gy
	 (n

or
m
al
iz
ed

)	

Limited-‐1	 Limited-‐3	 Limited-‐5	 Limited-‐7	 Complete	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	

Co
m
pl
e3

on
	 T
im

e	
(n
or
m
al
iz
ed

)	

Limited-‐1	 Limited-‐3	 Limited-‐5	 Limited-‐7	 Complete	

Figure 13: Variation of Completion Time and Energy

with the number of hardware locality counters (k) in the

Limitedk classifier. Limited64 is identical to the Com-

plete classifier. Benchmarks for which results are not

shown are identical to WATER-SP, i.e., the Completion

Time and Energy stay constant as k varies.

mode. This is because the first sharer is classified as re-
mote (in radix) and private (in bodytrack). This causes
other sharers to also reside in that mode while they actually
want to be in the opposite mode. Our observation from the
above sensitivity experiment is that tracking the locality in-
formation for three sharers suffices to offset such incorrect
classifications.

5.4 Simpler One-Way Transition Protocol
In order to quantify the efficacy of the dynamic nature of

our protocol, we compare the protocol to a simpler version
having only one-way transitions (Adapt1-way). The simpler
version starts off all cores as private sharers and demotes
them to remote sharers when the utilization is less than
the private caching threshold (PCT). However, these cores
then stay as remote sharers throughout the lifetime of the
program and can never be promoted. The experiment is run
with the best PCT value of 4.

Figure 14 plots the ratio of completion time and energy
for the Adapt1-way protocol over our protocol (which we term
Adapt2-way). Higher the ratio, higher is the need for two-way
transitions. We observe that the Adapt1-way protocol is worse
in completion time and energy by 34% and 13% respectively.
In benchmarks such as bodytrack and dijkstra-ss, the
completion time ratio is worse by 3.3× and 2.3× respectively.

6. CONCLUSION
In this paper, we have proposed a locality-aware adaptive

cache coherence protocol that enables seamless adaptation
between private and logically shared caching at the fine gran-
ularity of cache lines. Our data-centric approach relies on in-
hardware runtime profiling of the locality of each cache line
and only allows private caching for data blocks with high
spatio-temporal locality. We have proposed low-overhead
locality tracking mechanisms and used extensive simulation
results to verify their accuracy. We implemented our proto-

13	

0	
0.5	
1	

1.5	
2	

Comple.on	 Time	 Energy	
3.3	 2.3	

Figure 14: Ratio of Completion Time and Energy of Adapt1-way over Adapt2-way

col on top of a Private-L1, Shared-L2 implementation that
uses the Reactive-NUCA data management scheme and the
ACKwise4 limited directory protocol. The results indicate
that our protocol reduces the overall Energy Consumption
in a 64-core multicore by 25%, while improving the Comple-
tion Time by 15%. Our protocol can be implemented with
only 18 KB storage overhead per core when compared to
the ACKwise4 limited directory protocol, and has a lower
storage overhead than a full-map directory protocol.

7. REFERENCES
[1] DARPA UHPC Program BAA. https://www.fbo.gov/spg/

ODA/DARPA/CMO/DARPA-BAA-10-37/listing.html, March
2010.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown,
M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook. Tile64 - processor:
A 64-core soc with mesh interconnect. In International
Solid-State Circuits Conference, 2008.

[3] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC
benchmark suite: characterization and architectural
implications. In Int’l Conference on Parallel Architectures
and Compilation Techniques, 2008.

[4] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak,
and B. Hughes. Cache Hierarchy and Memory Subsystem of
the AMD Opteron Processor. In IEEE Micro, 30(2):16–29,
2010.

[5] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches. In Int’l Symposium on
Computer Architecture, 2009.

[6] H. Hoffmann, D. Wentzlaff, and A. Agarwal. Remote Store
Programming: A memory model for embedded multicore.
In International Conference on High Performance
Embedded Architectures and Compilers, 2010.

[7] S. Iqbal, Y. Liang, and H. Grahn. ParMiBench - an
open-source benchmark for embedded multiprocessor
systems. Computer Architecture Letters, 2010.

[8] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and
J. Emer. Achieving non-inclusive cache performance with
inclusive caches: Temporal locality aware (TLA) cache
management policies. In Int’l Symposium on
Microarchitecture, 2010.

[9] N. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual circuit tree
multicasting: A case for on-chip hardware multicast
support. In Int’l Symposium on Computer Architecture,
2008.

[10] T. L. Johnson and W.-M. W. Hwu. Run-time adaptive
cache hierarchy management via reference analysis. In Int’l
Symposium on Computer architecture, 1997.

[11] H. Kaul, M. Anders, S. Hsu, A. Agarwal,
R. Krishnamurthy, and S. Borkar. Near-threshold voltage
(NTV) design - opportunities and challenges. In Design
Automation Conference, 2012.

[12] C. Kim, D. Burger, and S. W. Keckler. An Adaptive,

Non-Uniform Cache Structure for Wire-Delay Dominated
On-Chip Caches. In Int’l Conference on Architectural
Support for Programming Languages and Operating
Systems, 2002.

[13] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. Kimerling, and A. Agarwal. ATAC: A 1000-Core
Cache-Coherent Processor with On-Chip Optical Network.
In Int’l Conference on Parallel Architectures and
Compilation Techniques, 2010.

[14] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In Int’l Symposium on
Microarchitecture, 2009.

[15] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache Bursts:
A new approach for eliminating dead blocks and increasing
cache efficiency. In Int’l Symposium on Microarchitecture,
2008.

[16] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip
cache coherence is here to stay. Commun. ACM,
55(7):78–89, July 2012.

[17] J. E. Miller, H. Kasture, G. Kurian, C. G. III,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A Distributed Parallel Simulator for Multicores.
In Int’l Symposium on High Performance Computer
Architecture, 2010.

[18] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In Int’l Symposium
on Microarchitecture, 2006.

[19] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coherence
Directory with Flexible Sharer Set Encoding. In Int’l
Symposium on High Performance Computer Architecture,
2012.

[20] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L.-S. Peh, and V. Stojanovic. DSENT - a tool
connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling. In Int’l
Symposium on Networks-on-Chip, 2012.

[21] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. In Int’l
Symposium on Microarchitecture, 1995.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Int’l Symposium on
Computer Architecture, 1995.

[23] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and
A. Moshovos. A tagless coherence directory. In Int’l
Symposium on Microarchitecture, 2009.

[24] M. Zhang and K. Asanović. Victim Replication:
Maximizing Capacity while Hiding Wire Delay in Tiled
Chip Multiprocessors. In Int’l Symposium on Computer
Architecture, 2005.

[25] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan.
SPATL: Honey, I Shrunk the Coherence Directory. In Int’l
Conference on Parallel Architectures and Compilation
Techniques, 2011.

