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ABSTRACT  
   

Cognitive deficits often accompany language impairments post-stroke. Past 

research has focused on working memory in aphasia, but attention is largely 

underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke 

before investigating whether preserved cognitive abilities, including attention, can 

improve auditory sentence comprehension post-stroke. In Experiment 1a, three 

components of attention (alerting, orienting, executive control) were measured in persons 

with aphasia and matched-controls using visual and auditory versions of the well-studied 

Attention Network Test. Experiment 1b then explored the neural resources supporting 

each component of attention in the visual and auditory modalities in chronic stroke 

participants. The results from Experiment 1a indicate that alerting, orienting, and 

executive control are uniquely affected by presentation modality. The lesion-symptom 

mapping results from Experiment 1b associated the left angular gyrus with visual 

executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area 

(pars opercularis) with auditory orienting attention post-stroke. Overall, these findings 

indicate that perceptual modality may impact the lateralization of some aspects of 

attention, thus auditory attention may be more susceptible to impairment after a left 

hemisphere stroke.  

Prosody, rhythm and pitch changes associated with spoken language may improve 

spoken language comprehension in persons with aphasia by recruiting intact cognitive 

abilities (e.g., attention and working memory) and their associated non-lesioned brain 

regions post-stroke. Therefore, Experiment 2 explored the relationship between 

cognition, two unique prosody manipulations, lesion location, and auditory sentence 



  ii 

comprehension in persons with chronic stroke and matched-controls. The combined 

results from Experiment 2a and 2b indicate that stroke participants with better auditory 

orienting attention and a specific left fronto-parietal network intact had greater 

comprehension of sentences spoken with sentence prosody. For list prosody, participants 

with deficits in auditory executive control and/or short-term memory and the left angular 

gyrus and globus pallidus relatively intact, demonstrated better comprehension of 

sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that 

following a left hemisphere stroke, individuals need good auditory attention and an intact 

left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive 

deficits are present and this fronto-parietal network is damaged, list prosody may be more 

beneficial.  
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CHAPTER 1 

INTRODUCTION 

Aphasia is classically thought to be a language-specific disorder, yet, several studies also 

identify individuals with aphasia to have co-occurring cognitive impairments including 

impairments in attention, short-term memory, working memory, executive functions, and 

processing speed (Caplan, DeDe, Waters, Michaud, & Tripodis, 2011; Caplan, Michaud, 

& Hufford, 2013; Caplan & Waters, 2013; Fridriksson, Nettles, Davis, Morrow, & 

Montgomery, 2006; Mayer & Murray, 2012; Moser, Fridriksson, & Healy, 2007; Murray, 

2012; Nicholas, Hunsaker, & Guarino, 2015; Villard & Kiran, 2017). Of the potential 

cognitive impairments, much emphasis has been placed on understanding the role of 

working memory in language deficits post-stroke. Replicating work in neurotypical 

adults (see Just & Carpenter, 1992; King & Just, 1991 for a review), these studies largely 

conclude that individuals with aphasia with deficits in working memory exhibit poorer 

language abilities than those with relatively good working memory abilities (Caplan et 

al., 2011, 2013; Caplan & Waters, 2013; Mayer & Murray, 2012).  

Working memory is a complex process that includes the maintenance and 

manipulation of information. Working memory is also known to interact with other 

cognitive functions including attention. For example, one prominent model of working 

memory details a central executive component that is necessary for directing attention 

towards information contained within either the phonological loop or visuospatial 

sketchpad (i.e., the working memory components of the model) (Baddeley, 2003, 2010). 

This prominent model of working memory nicely highlights how attention is a more 

rudimentary ability underlying more complex processes such as working memory and 
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language and further suggests that some of the deficits observed in working memory 

post-stroke may be related to attention. This necessitates the need to more clearly 

understand the nature of attention deficits in patients with aphasia and/or chronic stroke.  

In terms of attention and aphasia, research is beginning to link attention deficits 

with language deficits post-stroke (Murray, 2012; Villard & Kiran, 2017). These studies 

largely conclude that individuals with aphasia who have poorer attention abilities 

demonstrate poorer language abilities than individuals with aphasia who have relatively 

preserved attention (Laures, 2005; Murray, 2012; Murray, Holland, & Beeson, 1997; 

Peach, Nathan, & Beck, 2017; Peach, Rubin, & Newhoff, 1994). Collectively, these 

studies clearly outline patients with aphasia to have attention deficits, yet attention is not 

a homogenous process.  

Several models of attention exist which break attention into various 

subcomponents. One such prominent model includes dividing attention into three 

components: alerting, orienting, and executive control (Petersen & Posner, 2012; Posner 

& Petersen, 1990). Alerting attention is involved in the initial engagement of attentional 

resources and vigilance towards an external stimulus, orienting attention includes 

selecting specific information from a given stimulus, and executive control involves 

mitigating conflict when relevant and irrelevant information conflict within a stimulus 

(Petersen & Posner, 2012; Posner & Petersen, 1990). Subdividing attention into these 

smaller components, prompts the question: Do persons with aphasia and/or chronic stroke 

demonstrate equal deficits in all three aspects of attention? 

The Attention Network Test (ANT) was developed with the goal of assessing 

alerting, orienting, and executive control using a single cued flanker task (Fan, 
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McCandliss, Sommer, Raz, & Posner, 2002). The ANT has been found to reliably assess 

all three aspects of attention in both neurotypical adults and patient populations, 

including stroke (Chica et al., 2012; Fan et al., 2002; Fan & Posner, 2004; Ishigami & 

Klein, 2011; Roberts, Summerfield, & Hall, 2006; Spagna, Mackie, & Fan, 2015; Stewart 

& Amitay, 2015). One limitation of the traditional ANT test is that it solely assesses all 

three components of attention in the visual modality. A matched-version of the visual 

ANT has since been developed in the auditory modality (Roberts et al., 2006). Results 

from neurotypical adults completing the auditory ANT are mixed with one study 

identifying significant auditory alerting, orienting, and executive control effects (Roberts 

et al., 2006) and another just significant executive control effects (Stewart & Amitay, 

2015). This suggests that auditory and visual attention are not necessarily equivalent and 

should be separately assessed in all perceptual modalities of interest. Assessing attention 

in all perceptual modalities of interest is particularly important in patients with aphasia 

and/or chronic stroke as stroke lesion patterns may differentially affect visual and 

auditory attention. Therefore, the first purpose of this dissertation is to quantify visual 

and auditory attention using matched-versions of the well-studied ANT in chronic stoke 

participants with and without aphasia and matched-controls. In Experiment 1a, alerting, 

orienting, and executive control will be assessed behaviorally in both the visual and 

auditory modalities. In Experiment 1b, the neural resources supporting visual and 

auditory attention will be explored using lesion-symptom mapping techniques. 

A wealth of research has focused on characterizing language and cognitive 

deficits in patients with aphasia and/or chronic stroke, as well as how to treat these 

deficits. Much of the treatment research focuses on treating language production with 
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fewer studies focusing on how to improve auditory comprehension in patients with 

aphasia (Adelt, Hanne, & Stadie, 2018). This is concerning since auditory comprehension 

abilities are the number one predictor of quality of life post-stroke (Charidimou et al., 

2014; Elman & Bernstein-Ellis, 1995; Thompson & Mckeever, 2014). Therefore, the 

second purpose of this dissertation is to investigate methods to improve language 

comprehension post-stroke. 

Clinicians use several methodologies to improve auditory comprehension in 

persons with aphasia. These methodologies include reducing speech rate and using 

simpler sentence structures while speaking. Prosody, rhythm and pitch changes 

associated with spoken language, has also been shown to improve spoken language 

comprehension in neurotypical adults and persons with aphasia. In neurotypical adults, 

regular sentence prosody improves sentence comprehension (i.e., faster and more 

accurate responses) compared to irregular prosodic patterns (Carlson, 2009; Kjelgaard & 

Speer, 1999; Roncaglia-Denissen, Schmidt-Kassow, & Kotz, 2013; Speer, Kjelgaard, & 

Dobroth, 1996). In persons with aphasia, exaggerated linguistic stress has been shown to 

improve auditory comprehension of sentences and paragraphs independent of speech rate 

(Lasky, Weider, & Johnson, 1976; Pashek & Brookshire, 1982). Collectively, this 

evidence indicates that prosody manipulations likely improve auditory comprehension 

post-stroke, yet the exact mechanisms driving this phenomenon are understudied.  

Previous research indicates that prosody may improve comprehension by 

reducing demands placed on cognitive resources during sentence comprehension (Cohen, 

Douaire, & Elsabbagh, 2001; Kjelgaard & Speer, 1999; Roncaglia-Denissen et al., 2013; 

Speer et al., 1996). The relationship between cognition and prosody has largely been 
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studied using syntactically ambiguous sentence structures. In syntactically ambiguous 

sentences, prosody manipulations have been found to bias the listener to one 

interpretation over another (Kjelgaard & Speer, 1999; Price, Ostendorf, & Fong, 1991; 

Speer et al., 1996), with prosody being particularly beneficial for syntactically complex 

sentence structures compared to syntactically simple sentence structures (Roncaglia-

Denissen et al., 2013). This ability of prosody to bias interpretations of ambiguous 

sentences may also extend to other types of sentences, specifically complex non-

canonical sentences (i.e., sentences with subject-object-verb word order), in which 

persons with aphasia have relatively specific comprehension deficits (Caramazza & 

Zurif, 1976). Therefore, in Experiment 2a the relationship between cognition, prosody, 

and comprehension of non-canonical sentence structures will be investigated in persons 

with chronic stroke with and without aphasia and matched-controls. 

In addition to behaviorally improving auditory comprehension abilities, unique 

prosodic manipulations have also been shown to recruit distinct neural computations (den 

Ouden, Dickey, Anderson, & Christianson, 2016; Geiser, Zaehle, Jancke, & Meyer, 

2008; Humphries, Love, Swinney, & Hickok, 2005; Meyer, Steinhauer, Alter, Friederici, 

& von Cramon, 2004). For example, typical sentence prosody has been shown to recruit 

left frontal and anterior temporal cortices while left posterior temporal and inferior 

parietal cortices respond to irregular prosodic patterns such as monotone prosody and/or 

list prosody (i.e., monotone prosody which lacks pitch inflections and meaningful 

prosodic boundaries) (den Ouden et al., 2016; Humphries et al., 2005; Meyer et al., 

2004). This ability of different prosody manipulations to engage distinct neural 

computations may be particularly advantageous following stroke. More specifically, 
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unique prosodic manipulations may be able to engage relatively intact brain regions post-

stroke to improve auditory comprehension. Experiment 2b will therefore identify stroke 

lesion patterns associated with prosody manipulations that result in improved sentence 

comprehension for persons with aphasia and/or chronic stroke. Before discussing each 

experiment, I have included a review of the literature which details existing research 

related to these experiments. 
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CHAPTER 2 

LITERATURE REVIEW 

Sentence Comprehension 

Sentence structure, or syntax, is essential for sentence comprehension as it provides 

information regarding the hierarchical grouping of individual words and phrases (Frazier 

& Rayner, 1990). For example, to successfully comprehend the following sentence While 

Chris washed the dog played outside, the listener needs to identify that there are two 

clauses, a main clause and a subordinate clause, and that the main verb of the subordinate 

clause (i.e., played) is intransitive (i.e., verbs that do not take direct objects) and reflexive 

(i.e., verbs in which the direct object is the same as the subject) to correctly identify the 

main clause (i.e. While Chris washed) and the subordinate clause (i.e., the dog played 

outside).  

The above example also highlights the role of syntactic ambiguity in sentence 

processing. Sentence structures which are ambiguous (e.g., garden-path sentences) have 

increased processing demands (e.g., longer reading times) compared to unambiguous 

sentence structures as the location of the syntactic boundary is not initially clear (Frazier 

& Rayner, 1982). In the above example, the sentence structure is ambiguous as the word 

dog can function as the object of the main clause or the subject of the subordinate clause. 

The sentence remains ambiguous until the verb played is encountered, at which point the 

sentence’s meaning is disambiguated and reanalysis occurs.  

It is also well-established that comprehension performance is typically better 

when sentences have a canonical structure (e.g., subject-verb-object in English) 

compared to a non-canonical structure (e.g., subject-object-verb in English) (Caramazza 
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& Zurif, 1976; Ferreira, 2003; Gleason, Goodglass, Green, Ackerman, & Hyde, 1975; 

Goodglass & Berko, 1960; Kean, 1977, 1995; King & Just, 1991; Rogalsky et al., 2018; 

Roncaglia-Denissen et al., 2013; Wilson et al., 2010; Wilson et al., 2014; Wilson et al., 

2016). In general, simple sentence structures, including canonical, subject-first, and right-

branching sentences, are easier to parse than their complex counterparts (i.e., non-

canonical, object-first, center-embedded sentences). In control subjects, comprehension 

of canonical sentence structures is marked by decreased reaction times and increased 

accuracies compared to non-canonical structures (Ferreira, 2003; King & Just, 1991; 

Wilson et al., 2010). Similarly, patients with aphasia, including Broca’s aphasia and 

conduction aphasia, demonstrate declines in accuracy for non-canonical sentence 

structures compared to canonical structures (Bradley, Garrett, & Zurif, 1980; Caramazza 

& Zurif, 1976). These differences in accuracy as well as reaction time between canonical 

and non-canonical structures likely reflects an increase in processing load associated with 

complex sentence structures (Caplan, Alpert, Waters, & Olivieri, 2000; Caplan & Waters, 

1999; Gibson, 1998). This relationship between cognitive resources and sentence 

comprehension will be discussed below in the “Cognitive Resources Supporting Sentence 

Comprehension” section.  

Neurobiology of Sentence Comprehension 

Language is primarily supported by a left lateralized fronto-temporo-parietal network 

(Friederici, 2012; Hickok & Poeppel, 2007). Prominent models of speech processing, 

including Hickok and Poeppel’s (2007) dorsal-ventral model, characterize two pathways 

supporting language within this network. The first pathway, the dorsal stream, is left 

lateralized and involved in auditory-motor integration and speech production. The second 
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pathway, the ventral stream is more bilaterally organized and maps sound to meaning, 

thereby facilitating speech comprehension. Within the dorsal stream, speech information 

moves from primary auditory cortex to the temporal-parietal junction to the frontal cortex 

(premotor, anterior insula, and inferior frontal gyrus). Information flow within the ventral 

stream is bilateral and begins in primary auditory cortex before simultaneously moving to 

the temporal-parietal junction and to middle and inferior temporal gyri; speech 

information additionally moves back and forth between the temporal-parietal junction 

and primary auditory cortex and the temporal-parietal junction and middle and inferior 

temporal gyri. It also is noteworthy that, within the left hemisphere, speech information 

additionally moves between the left inferior temporal gyrus and left anterior temporal 

lobe (Hickok & Poeppel, 2007). 

Evidence used to develop the dorsal-ventral model of speech processing largely 

stems from the functional neuroimaging and lesion literatures. Functional neuroimaging 

studies of language comprehension, particularly fMRI studies, either identify language to 

be supported by a left lateralized fronto-temporo-parietal network (Ben-Shachar, 

Hendler, Kahn, Ben-Bashat, & Grodzinsky, 2003; Ben-Shachar, Palti, & Grodzinsky, 

2004; Blank, Balewski, Mahowald, & Fedorenko, 2016; Constable et al., 2004; Goucha 

& Friederici, 2015; Obleser, Meyer, & Friederici, 2011; Price, 2012; Santi & Grodzinsky, 

2007) or solely left temporal and parietal cortices (Brennan et al., 2012; Brennan, Stabler, 

Van Wagenen, Luh, & Hale, 2016; Crinion, Lambon-Ralph, Warburton, Howard, & 

Wise, 2003). While functional neuroimaging studies of language provide great insights 

into the neurobiology of language, they are limited in that they can solely identify brain 

regions involved in language. Alternatively, lesion studies in both chronic and acute 
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stroke patients can tell us which brain regions are critical to language comprehension.1 

Crucially, results from lesion-symptom mapping studies consistently identify the left 

temporal and parietal cortices to be critical to language comprehension (Dronkers, 

Wilkins, Van Valin, Redfern, & Jaeger, 2004; Magnusdottir et al., 2013; Pillay, Binder, 

Humphries, Gross, & Book, 2017; Rogalsky et al., 2018; Thothathiri, Kimberg, & 

Schwartz, 2012) with the left anterior temporal and posterior temporal cortices gaining 

the most attention.  

The left posterior superior temporal cortex and sentence comprehension. The 

left posterior superior temporal cortex has classically been associated with language 

comprehension deficits. This is because patients with damage to this brain region are 

thought to have Wernicke’s aphasia, which is characterized by poor comprehension of 

even the simplest sentence structures (Goodglass, 1993). Recent large-scale lesion-

symptom mapping studies have largely confirmed the association between Wernicke’s 

area in the left posterior superior temporal and inferior parietal cortices and sentence 

comprehension deficits. For example, in 79 patients with chronic aphasia, Thothathiri et 

al. (2012) identified posterior temporal and inferior parietal regions to be associated with 

processing both canonical and non-canonical sentences. Rogalsky et al. (2018) found the 

same pattern in 66 patients with chronic stroke, but not necessarily aphasia. Furthermore, 

in patients with acute stroke, Magnusdottir et al. (2013) found similar findings: canonical 

sentence comprehension was supported by left posterior and inferior parietal regions 

                                                
1 Lesion studies in chronic stroke patients can be confounded by functional 
reorganization and neural compensation, however, results from lesion studies in chronic 
stroke patients largely align with results in patients with acute stroke (e.g., Magnusdottir 
et al., 2013; Rogalsky et al., 2018; Pillay et al., 2017). 
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while non-canonical sentence comprehension was supported by the left anterior and 

inferior temporal cortices (plus the left inferior frontal gyrus).  

This classic association of the left posterior superior temporal cortex and 

comprehension deficits is also supported by functional neuroimaging studies as bilateral 

temporal cortices reliably activate when contrasting auditory speech/language versus rest 

(Price, 2012). However, the exact role of the left posterior superior temporal cortex in 

language comprehension is not entirely clear from functional neuroimaging studies as 

this increase in activation could be attributed to phonological, semantic, and/or syntactic 

computations. For example, increased left posterior superior temporal gyrus activation is 

reliably observed for sentences compared to word lists, sentences containing an error 

compared to grammatically correct sentences, and complex sentences compared to simple 

sentence structures (Bornkessel-Schlesewsky & Schlesewsky, 2013; Friederici, 2011). 

Regarding semantics, the left posterior superior temporal gyrus demonstrates increased 

activation in response to semantically ambiguous sentences and sentences containing 

semantic errors (e.g., errors related to verb-argument agreement) compared to 

unambiguous sentences and sentences without semantic errors (Friederici, Rüschemeyer, 

Hahne, & Fiebach, 2003). In terms of phonological processing, pseudowords reliably 

activate the left posterior superior temporal gyrus, suggesting it may also play a role in 

phonological processing, separate from semantic and syntactic computations 

(Buchsbaum, Hickok, & Humphries, 2001; Graves, Grabowski, Mehta, & Gupta, 2008).  

Lesion studies also provide mixed evidence regarding the role of the left posterior 

temporal cortex in language comprehension. For example, in a recent lesion-symptom 

mapping study, Hickok and colleagues (2018) identified the left posterior superior 
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temporal cortex (plus left frontal and parietal regions) to be involved in processing the 

auditory syllable /pa/; supporting fMRI findings indicating the involvement of this region 

in phonological processing. In terms of semantics, Baldo, Schwartz, Wilkins, and 

Dronkers (2006) associated the left posterior temporal cortex with semantic-based word 

retrieval (i.e., performance on a category fluency task). Regarding sentence structure, 

Pillay et al. (2017) suggest a role for the left posterior superior temporal cortex in 

processing sentence structure as this region of the brain still contributed to sentence 

comprehension deficits even after controlling for some cognitive and language processes 

(e.g., semantics, phonological processes associated with a picture naming task). 

Collectively, functional neuroimaging and lesion-symptom mapping studies suggest that 

the left posterior superior temporal cortex has a multifaceted contribution to language 

comprehension. 

The left anterior temporal lobe and sentence comprehension. The left anterior 

temporal lobe has also been implicated in language comprehension, yet similar to the left 

posterior superior temporal cortex, its exact involvement in somewhat unclear. Numerous 

neuroimaging studies, including lesion studies, largely associate the left anterior temporal 

lobe with comprehending sentence structures, particularly complex sentence structures 

(Dronkers et al., 2004; Magnusdottir et al., 2013) and many functional neuroimaging 

studies confirm these findings by showing that the left anterior temporal lobe consistently 

activates more in response to sentences compared to word lists (Friederici, Meyer, & von 

Cramon, 2000; Humphries, Binder, Medler, & Liebenthal, 2006; Humphries et al., 2005; 

Mazoyer, Tzourio, Frak, & Syrota, 1993) and pseudosentences compared to pseudoword 

lists and scrambled pseudoword sentences (Friederici et al., 2000; Humphries et al., 2006, 
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2005; Rogalsky, Rong, Saberi, & Hickok, 2011). Error detection paradigms also tie the 

left anterior temporal lobe to processing sentence structure. In a study looking at event-

related potentials, Friederici and colleagues (2003) demonstrated syntactic anomalies to 

elicit an early left anterior negativity, which has been previously associated with the left 

anterior temporal and left inferior frontal gyrus (Friederici & Kotz, 2003). Similarly, 

fMRI studies demonstrate increased activation in response to sentences containing 

syntactic violations (Friederici et al., 2003; Meyer, Friederici, & von Cramon, 2000). 

Collectively, these findings suggest that at least a portion of the left anterior temporal 

lobe responds selectively to sentence structure.  

It has also been hypothesized that the role of the left anterior temporal lobe in 

language comprehension may be due to combinatorial semantics, i.e., the process of 

combining semantic and syntactic information to deduce the meaning of a sentence. For 

example, in addition to identifying a sub-region of the left anterior temporal lobe which 

preferentially responded to sentence structure, Vandenberghe, Nobre, and Price (2002) 

also found a second, separate sub-region within the left anterior temporal lobe which 

responded more for semantically coherent sentences compared to their scrambled 

versions but not for semantically incoherent sentences compared to their scrambled 

versions. Humphries and colleagues (2006) found similar results, although their sub-

regions differed from Vandenberghe et al. (2002): semantically congruent sentences 

resulted in greater activation compared to sentences with random semantic content and/or 

pseudoword sentences in one sub-region of the left anterior temporal lobe; importantly, 

this sub-region differed from the sub-region they showed to support syntactic processing. 

Vandenberghe et al. (2002) and Humphries et al. (2006) both suggest that this 
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preferential response of distinct sub-regions of the left anterior temporal lobe to sentence 

structures with meaningful semantic content suggests that the left anterior temporal lobe 

also supports sentence/language comprehension by combining semantic and syntactic 

information (Vandenberghe et al., 2002). 

Broca’s area and sentence comprehension. Another region within the dorsal-

ventral model of speech processing that has gained considerable attention for its role in 

sentence comprehension is Broca’s area (defined as the posterior two-thirds of the left 

inferior frontal gyrus; pars opercularis and triangularis). The classic agrammatic pattern 

associated with Broca’s aphasia was first attributed to sentence production, however, 

more recent evidence identifies persons with Broca’s aphasia to also demonstrate 

agrammatic comprehension, i.e., greater comprehension of sentences with canonical 

compared to non-canonical word order (Bradley et al., 1980; Caramazza & Zurif, 1976; 

Rogalsky et al., 2018). This distinctive characteristic of Broca’s aphasia, and to a lesser 

extent conduction aphasia, is particularly pronounced when sentences are semantically 

reversible and have a complex sentence structure as meaning can only be deduced from 

the syntactic information (Bradley et al., 1980; Caramazza & Zurif, 1976). These classic 

results demonstrating agrammatic comprehension to be associated with lesions to Broca’s 

area has led to the view that Broca’s area contributes to language comprehension due to 

language-specific computations. However, we now know that focal lesions to Broca’s 

area do not result in classic Broca’s aphasia (Dronkers, Shapiro, Redfern, & Knight, 

1992) and that damage to Broca’s area is not necessary for Broca’s aphasia (Fridriksson, 

Bonilha, & Rorden, 2007; Mohr et al., 1978). Furthermore, individuals with Broca’s 

aphasia have relatively preserved abilities in making grammaticality judgments, 
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suggesting some level of preserved syntactic knowledge (Linebarger, Schwartz, & 

Saffran, 1983; Wulfeck, 1988) and an alternative role for Broca’s area in sentence 

processing.  

As previously outlined, functional neuroimaging studies of language provide 

mixed results regarding the exact role of given brain regions in sentence comprehension 

and no region has produced more seemingly discrepant results than Broca’s area. For 

example, some fMRI studies identify a left lateralized fronto-temporo-parietal network to 

support sentence comprehension (Ben-Shachar et al., 2003, 2004; Blank et al., 2016; 

Constable et al., 2004; Goucha & Friederici, 2015; Obleser et al., 2011; Santi & 

Grodzinsky, 2007) while others solely identify left temporal and parietal cortices 

(Brennan et al., 2012; Brennan et al., 2016; Crinion et al., 2003). This discrepancy 

regarding the involvement of the left frontal cortex in sentence comprehension may at 

least partially stem from task demands. For example, studies which identify the left 

frontal cortex to support language comprehension largely employ active tasks (i.e., tasks 

such as comprehension probes, which require participants to make a response) (Ben-

Shachar et al., 2003, 2004; Blank et al., 2016; Buchsbaum et al., 2001; Constable et al., 

2004; Goucha & Friederici, 2015; Obleser et al., 2011; Santi & Grodzinsky, 2007; 

Uchiyama et al., 2008) while studies using passive listening paradigms (i.e., participants 

listen to the speech stimulus as naturally as possible) identify just left temporal and 

parietal regions to be involved in language comprehension (Brennan et al., 2012; Brennan 

et al., 2016; Crinion et al., 2003). Furthermore, the use of active tasks is known to 

confound neuroimaging results in the frontal cortex (Hasson, Nusbaum, & Small, 2006). 

Therefore, this discrepancy within the functional neuroimaging literature may be 
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explained by the fact that active tasks recruit additional cognitive resources that are not 

necessarily critical to comprehending language, but are critical to completing the 

associated task (e.g., comprehension probe, n-back, grammaticality judgment). 

As previously mentioned, functional neuroimaging studies of language provide 

great insights into the neurobiology of language but are limited in that they can solely 

identify brain regions involved in sentence comprehension. Alternatively, lesion studies 

in both chronic and acute stroke patients can tell us which brain regions are critical. 

Notably, results from lesion-symptom mapping studies largely align with the research 

from functional neuroimaging studies which do not use any tasks in that they consistently 

identify the left temporal and parietal cortices to be critical to language comprehension 

(Dronkers et al., 2004; Magnusdottir et al., 2013; Pillay et al., 2017; Rogalsky et al., 

2018; Thothathiri et al., 2012).  

Importantly, lesion-symptom mapping studies do identify the left frontal cortex as 

being involved in language comprehension, however, they identify its involvement to be 

due to cognitive resources. For example, Rogalsky et al. (2018) recently associated 

response bias with the left frontal cortex, specifically Broca’s area. Response bias has 

previously been associated with cognitive deficits (Venezia, Saberi, Chubb, & Hickock, 

2012) likely because inhibiting the preferred response draws on cognitive resources 

including executive functions (Friedman & Miyake, 2017; Miyake et al., 2000). An 

example of response bias in Rogalsky et al.’s (2018) plausibility judgment task is a 

patient primarily saying all sentences are plausible, even when the sentence is 

implausible. This inability to inhibit a preferred response in favor of the correct, non-

preferred response suggests these patients likely have underlying deficits in executive 
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functions. These results additionally align with the subset of functional neuroimaging 

studies which do not use active tasks; collectively linking Broca’s area with domain-

general cognitive resources recruited during sentence comprehension to support task 

demands. 

To better understand the role of domain-general cognitive processes in sentence 

comprehension, Thothathiri et al. (2012) contrasted one-proposition (i.e., active and 

passive) and two-proposition (i.e., subject-relative and object-relative) sentences. 

Importantly, their sentence constructions did not require participants to process the 

second proposition in the two-proposition sentences in order to successfully comprehend 

the sentences during a sentence-picture matching task. Therefore, they propose that 

regions involved in processing two-proposition but not one-proposition sentences should 

be cognitive in nature as the longer duration of the two-proposition sentences will require 

them to be maintained in memory for a longer period of time. Their results indicate that 

damage to Broca’s area was associated with two-proposition but not one-proposition 

sentence comprehension suggesting that Broca’s area is not being recruited due to the 

more complex construction of the sentence, but instead because of additional domain-

general task demands such as maintaining the sentence in memory until the pictures 

appear or comparing the results of the picture analysis with a stored representation of the 

sentence; Waters, Rochon, and Caplan (1998) have previously linked processing two-

proposition sentences with working memory resources. These results further link the 

recruitment of Broca’s area in language comprehension to domain-general cognitive 

processes and once again nicely align with the functional neuroimaging literature which 

do not use active tasks.  
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Controversy over the role of Broca’s area and adjacent regions in sentence 

comprehension largely stems from functional neuroimaging studies which contrast 

sentences with canonical and non-canonical structures. In these studies, canonical 

sentences largely activate left temporal and parietal cortices while non-canonical sentence 

constructions additionally activate Broca’s area in the left inferior frontal gyrus (Ben-

Shachar et al., 2003, 2004; Blank et al., 2016; Constable et al., 2004; Goucha & 

Friederici, 2015; Obleser et al., 2011; Santi & Grodzinsky, 2010). This relatively specific 

activation of Broca’s area for non-canonical sentences is often interpreted to mean that 

Broca’s area is involved in sentence comprehension via language-specific computations 

(e.g., linguistic-specific computations which are needed for thematic role assignment). 

However, this interpretation is not without fault. Not only does evidence from lesion 

studies not support the idea that Broca’s area’s role in sentence comprehension is 

language-specific, but behavioral studies also suggest that Broca’s area supports sentence 

comprehension as a function of domain-general cognitive processes. In general, 

behavioral studies which compare canonical and non-canonical sentence processing find 

shorter response times and greater accuracy for canonical sentences in both neurotypical 

adults and patients with aphasia (Fiebach, Schlesewsky, Lohmann, von Cramon, & 

Friederici, 2005; Kinno, Kawamura, Shioda, & Sakai, 2008; Rogalsky, Matchin, & 

Hickock, 2008; Wilson et al., 2010; Wilson et al., 2014). Notably, these processing 

differences may be accounted for by individual differences in cognitive capacity. For 

example, studies comparing individuals with low and high working memory capacity 

show individuals with higher working memory capacities to have greater comprehension 

of complex sentence structures (e.g., object-relative) compared to individuals with low 
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working memory capacities, however, no comprehension differences exist for relatively 

simple sentence structures (e.g., subject-relative) (King & Just, 1991). These results 

suggest that extra cognitive resources are required to successfully comprehend complex 

sentence structures and these extra cognitive resources may further explain the activation 

differences between simple and complex sentences observed in Broca’s area during 

functional neuroimaging. 

To better understand the relationship between cognition and sentence 

comprehension within Broca’s area, January, Trueswell, and Thompson-Schill  (2009) 

compared syntactic (sentence comprehension task with syntactically ambiguous 

sentences) and non-syntactic (Stroop task) conflict during fMRI. Their results indicate a 

domain-general conflict resolution mechanism to subserve both syntactic and non-

syntactic conflict resolution as the same pattern of conflict resolution was observed for 

both the Stroop and sentence comprehension tasks within the Stroop and sentence 

comprehension region of interests (both of which were within Broca’s area). For 

example, for the Stroop task, participants demonstrated the greatest activation for 

incongruent trials and the least activation for neutral trials in both the Stroop and sentence 

comprehension regions of interest. For the sentence comprehension task, sentences with 

high syntactic ambiguity had the greatest levels of activation while sentences with low 

syntactic ambiguity elicited the least amount of activation within both the sentence 

comprehension and Stroop regions of interest (January et al., 2009). These findings, in 

conjunction with results from lesion studies indicate that the role of the left frontal cortex, 

specifically Broca’s area in sentence comprehension is secondary to cognitive processes 

such as working memory, attention, and executive functions, and therefore the increased 
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activation in response to non-canonical sentences is likely due to the recruitment of 

additional cognitive resources needed to parse the sentence (e.g., mentally manipulating 

the sentence to assign thematic roles). This interpretation also explains the discrepancy 

between functional neuroimaging results and lesion-symptom mapping results which 

demonstrate left temporal and parietal cortices to be critical to sentence comprehension, 

while the left inferior frontal gyrus supports sentence comprehension via cognitive 

resources which support task demands. 

Cognitive Resources Supporting Sentence Comprehension  

Cognitive abilities play an important role in sentence comprehension and are believed to 

be particularly important for comprehension of complex sentence structures. In a study 

comparing individuals with low and high working memory capacity, King and Just 

(1991) demonstrated that individuals with lower working memory capacities had longer 

reading times and lower accuracies for complex object-relative sentences; no 

comprehension differences between the groups were observed for the simpler subject-

relative sentences. Furthermore, individuals with high working memory capacities 

demonstrated reduced sentence comprehension when asked to simultaneously complete a 

working memory task (King & Just, 1991). These results indicate that a reduction in the 

cognitive resources available for comprehending language results in an overall decrease 

in comprehension.  

In addition to comparing individuals with high and low cognitive capacities, 

another population of interest is older adults as approximately three-quarters of all strokes 

occur in adults over the age of 65 (Centers for Disease Control and Prevention, 2017); 

therefore, it is important to understand cognitive changes associated with the normal 
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aging process. Cognitive capacity, including working memory, attention, and other 

executive functions are known to decrease due to the normal aging process. In older 

adults, more basic aspects of attention such as orienting attention (i.e., the ability to select 

specific information from a given stimulus) appear to be stable across the lifespan (Zhou, 

Fan, Lee, Wang, & Wang, 2011). However, more complex aspects of attention, including 

selective attention, i.e., the ability to attend to a target stimulus while disregarding 

irrelevant/distracting stimuli, appear to decline with advancing age (Geerligs, Saliasi, 

Maurits, Renken, & Lorist, 2014; Glisky, 2007). For example, on selective attention tasks 

such as the Stroop color word task, older adults are slower to respond (Glisky, 2007) and 

have greater difficulty suppressing irrelevant information on incongruent trials when 

compared to younger adults (Geerligs et al., 2014; Zhou et al., 2011). Older adults also 

demonstrate deficits in divided attention: the ability to process more than one set of 

stimuli or perform more than one task at the same time. Under dual task conditions, older 

adults perform more slowly and have decreased accuracy compared to younger adults and 

compared to older adults performing each task in isolation; these differences are 

exacerbated as task demands increase (Glisky, 2007). 

Older adults also demonstrate declines in working memory as part of the normal 

aging process (Park et al., 2002). Of the two components of working memory, 

maintenance and manipulation of information, older adults are believed to have specific 

deficits in the manipulation of information and not maintenance of information. For 

example, age did not predict performance on simple span tasks such as forward and 

backward digit span, which are primarily maintenance tasks, however, age was a 

significant predictor of performance on n-back tasks (Dobbs & Rule, 1989), letter 
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rotation, line span, computation span, and reading span tasks, which all require 

maintenance plus manipulation of information (Park et al., 2002). Given the relatively 

preserved nature of short-term memory in older adults (as measured by simple span 

tasks), it is largely believed that older adults demonstrate deficits in the manipulation of 

information and not maintenance of information. 

Older adults also demonstrate deficits in elements of executive functions 

including inhibition. Deficits in inhibition are postulated to underlie the deficits observed 

in working memory (Hasher, Rose, & May, 1999) and attention (Geerlings et al., 2014). 

For example, Hasher and colleagues (1999) suggest that older adults demonstrate deficits 

in working memory because they have difficulty suppressing irrelevant stimuli, which 

may build up in working memory trial after trial. The same occurs for attention: on 

incongruent trials in the Stroop color word task, older adults are unable to inhibit reading 

the word while focusing on saying the color of the ink the word is printed in (Geerlings et 

al., 2014). Since older adults demonstrate deficits in updating, they are unable to remove 

the irrelevant information resulting in a reduced capacity for target stimuli.  

 Processing speed, i.e., how efficiently a person can process information, is also 

susceptible to the normal aging process (Salthouse, 1996). For example, in digit symbol 

coding task, participants match a series of symbols to a corresponding number. This is a 

timed task and the number of digits and symbols that a person can match is a measure of 

their processing speed (i.e., more matches indicates greater processing speed). Overall, 

older adults perform more slowly and less accurately on tests of processing speed 

compared to younger adults suggesting that processing speed is vulnerable to age-related 

declines associated with the normal aging process. Importantly, Salthouse (1996) 
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postulates that deficits in processing speed underlie all the cognitive deficits associated 

with aging. 

These declines in cognitive abilities observed in older adults likely stem from 

structural and functional changes that occur in the brain as people age. For example, the 

fronto-parietal network has been associated with attention (Dosenbach et al., 2007; Power 

et al., 2011; Yeo et al., 2011). More specifically, the fronto-parietal network is activated 

when tasks require cognitive control and goal-directed cognition, both of which rely 

heavily on attention (Dosenbach et al., 2007; Geerligs et al., 2014). With advancing age, 

the fronto-parietal network demonstrates decreased within network connectivity and 

increased between network connectivity, indicating declines in efficiency as a result of 

increasing age (Geerlings et al., 2014). Therefore, the vulnerability of the fronto-parietal 

network likely underlies selective and divided attention deficits in older adults as declines 

in the neural resources result in declines in behavioral performance. 

Working memory is believed to be supported by regions in the frontal and parietal 

lobes, including prefrontal cortex (Cappell, Gmeindl, & Reuter-Lorenz, 2010). Grey and 

white matter volume within the frontal cortices are known to decrease as a function of 

increasing age (Head et al., 2004; Raz, Rodrigue, Head, Kennedy, & Acker, 2004). 

Furthermore, functional patterns of activation differ between older adults with high and 

low working memory capacities and also younger adults. For example, high performing 

older adults demonstrate a more bilateral pattern of activation in prefrontal cortex 

compared to low performing older adults and young adults (Cappell et al., 2010; Reuter-

Lorenz & Park, 2010). This over activation observed in high performing older adults 

suggests that high performing older adults maintain task performance by demonstrating 
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cognitive flexibility and recruiting additional neural resources. Comparatively, low 

performing older adults demonstrate a pattern of activation on par with younger adults 

(i.e., left prefrontal cortex activation), however, their working memory behavioral 

performance is significantly worse. These distinct patterns of activation provide evidence 

for neural decline in prefrontal cortices underlying deficits in working memory as when 

older adults do not recruit additional resources their behavioral performance is 

significantly worse than younger adults, likely due to structural changes in prefrontal 

cortex such as decreased grey and white matter volume (Martins, Joanette, & Monchi, 

2015). 

In summary, neuroimaging and neuropsychological measures suggest a 

relationship between brain and behavior as vulnerability in one generally corresponds 

with vulnerabilities in the other. Notably, this relationship can be disrupted when older 

adults demonstrate the ability to recruit additional neural resources, which prevent 

declines in behavioral performance, thus making the associated cognitive function 

resilient to age-related declines. 

Cognition and Language in Aphasia 

Aphasia is classically thought of as a language specific disorder; however, more and 

more evidence suggests persons with aphasia demonstrate additional deficits in cognition 

and that these deficits in cognition may at least partially account for some of the deficits 

observed in terms of communication abilities. Over the last ten years, the link between 

cognition and language has become clearer with several studies demonstrating 

associations between behavioral measures of cognition (Caplan et al., 2013; Fridriksson 

et al., 2006; Murray, 2012; Murray et al., 1997; Villard & Kiran, 2017), brain activation 
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(Brownsett et al., 2014), functional connectivity (Geranmayeh, Brownsett, & Wise, 2014; 

Geranmayeh & Wise, 2015; Saur et al., 2006), and structural integrity (Gläscher et al., 

2009; Leff et al., 2008) with communication abilities in aphasia. 

Several studies have demonstrated a relationship between behavioral measures of 

cognition and overall communication abilities. Fridriksson and colleagues (2006) 

investigated the relationship between executive functioning skills and functional 

communication abilities in 25 persons with aphasia. Functional communication abilities 

were assessed using the ASHA FACS, a measure of an individual’s ability to use any 

modality to produce and comprehend communication. The Color Trails Test was used to 

assess executive functioning abilities including sequencing, inhibition, planning, 

cognitive flexibility, working memory, sustained attention, and perceptual tracking. 

Executive functioning was also assessed using the Wisconsin Card Sorting Task, which 

measures abstract reasoning ability, cognitive set shifting abilities, and working memory. 

Results indicate that performance on the Color Trails Test significantly correlated with 

functional communication abilities in that participants who made more errors and 

required more prompts to complete the Color Trails Test demonstrated poorer functional 

communication abilities. The relationship between executive functions as measured by 

the Wisconsin Card Sorting Task and functional communication abilities largely 

confirmed the previous results, suggesting greater executive functioning abilities 

correspond with greater functional communication abilities.  

 Like Fridriksson et al. (2006), Murray and colleagues (1997, 2012) have 

identified a similar relationship between attention and communication abilities. Murray et 

al. (1997) investigated the relationship between attention and auditory processing of 
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single words in 16 persons with aphasia and eight controls. All participants completed 

semantic and lexical judgment tasks in isolation and under dual task conditions (designed 

to tap focused and divided attention). Results indicate that persons with aphasia perform 

similarly to controls when tasks are completed in isolation, however, when tasks require 

focused and divided attention (i.e., dual task conditions), persons with aphasia perform 

more poorly than controls. These results indicate that deficits in attention correspond with 

deficits in auditory processing abilities. To extend these findings, Murray (2012) looked 

at the relationship between attention and more complex language abilities. Attention was 

assessed using the Test of Everyday Attention and language and communication abilities 

were measured using the Aphasia Diagnostic Profiles and ASHA FACS, respectively. 

Results indicate that performance on the Test of Everyday Attention significantly 

predicted language and communication abilities as measured by the Aphasia Diagnostic 

Profiles and ASHA FACS; persons with aphasia with more impaired attention abilities 

demonstrated more severe deficits in language and functional communication, suggesting 

language and communication deficits may partially stem from deficits in attention.  

 Memory has additionally been associated with speech comprehension abilities in 

aphasia. In 61 persons with aphasia, Caplan et al. (2013) assessed the relationship 

between short-term memory and working memory abilities with the ability to 

comprehend simple and complex sentence structures. Short-term memory was assessed 

using tasks that require immediate serial recall such as the forward digit span. Working 

memory was assessed using tasks that require maintenance plus manipulation of 

information such as the backward digit span. Regardless of the task employed, both 

short-term memory and working memory abilities significantly predicted sentence 
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comprehension performance: persons with aphasia with greater short-term memory and 

working memory abilities demonstrated greater auditory sentence comprehension, 

indicating a relationship between working memory performance and auditory sentence 

comprehension in persons with aphasia. Collectively, these behavioral studies 

demonstrate cognitive deficits, including deficits in executive functioning skills, 

attention, short-term memory, and working memory, partially underlie the language and 

communication deficits associated with aphasia and further suggest that aphasia is not a 

language specific disorder.   

 Lesion-symptom mapping techniques nicely compliment results from behavioral 

studies of cognitive deficits and language/communication abilities in aphasia. For 

example, Leff et al. (2010) quantified language and cognitive abilities in 210 stroke 

patients. Language abilities were assessed using the Comprehensive Aphasia Test and 

cognitive abilities, i.e., short-term memory, were measured using the forward digit span. 

The results identified a common neural substrate, the left posterior superior temporal 

gyrus to subserve both language comprehension and auditory short-term memory. 

Furthermore, the structural integrity of the left posterior superior temporal gyrus 

predicted both auditory short-term memory capacity and auditory sentence 

comprehension: patients with greater grey matter density in left posterior superior 

temporal gyrus performed better on the forward digit span and on a measure of auditory 

sentence comprehension. These findings identify a shared neural substrate for auditory 

short-term memory and sentence comprehension and further confirm the notion that 

cognitive deficits at least partially subserve language deficits in aphasia. 
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 Using similar methodologies, Gläscher and colleagues (2009) identified a similar 

structure-function relationship between cognition and language abilities post-stroke. 

Gläscher et al. (2009) tested 241 stroke patients on the Wechsler Adult Intelligence Scale-

III. Lesion-deficit maps overlapped for the working memory and vocabulary indices in 

left anterior frontal cortices (including Broca’s area), left posterior temporal cortex, and 

left parietal cortex. Importantly, patients with lesions to these areas performed worse on 

each index, while patients with lesions sparing these regions demonstrated higher 

performance on each index. These results identify common neural substrates supporting 

working memory and vocabulary and further implicate deficits in cognitive resources to 

at least partially contribute to the language deficits observed in aphasia. 

 Functional connectivity analyses of functional MRI data further support the 

notion that deficits in cognitive processes partially underlie deficits in language abilities 

in aphasia. The cingulo-opercular network is one network believed to support cognitive 

skills such as maintaining task goals. Nodes within the cingulo-opercular network include 

the dorsal anterior cingulate cortex and the adjacent medial superior frontal gyrus, 

bilateral anterior insula, and bilateral inferior frontal gyrus (Geranmayeh et al., 2014). In 

a study of 16 chronic stroke patients, Brownsett and colleagues (2014) investigated the 

relationship between the cingulo-opercular network and communication abilities. Prior to 

scanning participants completed a picture description task. During scanning, participants 

listened and repeated sentences. Region of interest analyses using two nodes within the 

cingulo-opercular network, the dorsal anterior cingulate cortex and superior frontal gyrus, 

revealed that activation of the dorsal anterior cingulate cortex and superior frontal gyrus 

significantly predicted picture description scores: patients with greater activation had 
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more complex picture descriptions. Collectively, these results suggest that preserved 

functional connectivity of cognitive networks results in greater communication abilities 

post-stroke and further suggests that deficits in language secondary to aphasia may at 

least partially stem from cognitive deficits. 

 A study of language recovery provides further support for the relationship 

between the cingulo-opercular network and communicative abilities. Saur et al. (2006) 

scanned patients at three time points: a few days post-stroke, two weeks post-stroke, and 

one year post-stroke. The primary task of interest was patient’s abilities to detect 

semantic violations within auditory sentences. Results indicated that in the acute stage, 

language scores significantly correlated with activation in bilateral inferior frontal gyri 

and anterior insula. However, by the second scan, language scores correlated with 

activation of nodes within the cingulo-opercular network. These results indicate an initial 

reliance on language networks to support language functions immediately post-stroke, 

however, as recovery occurs, there is a shift towards regions involved in more domain-

general cognitive processes supporting language abilities. Furthermore, the results from 

Saur et al. (2006) in the subacute phase largely support the findings of Brownsett et al. 

(2014) and Geranmayeh and Wise (2015) in chronic stroke patients.  

 The fronto-parietal network is a second cognitive network which has also been 

shown to support language functions. The fronto-parietal network is thought to support 

language via adaptive control (i.e., the ability to adjust control moment to moment) and 

includes bilateral dorsolateral prefrontal cortex, inferior parietal lobule, precuneus, and 

middle cingulate cortex (Dosenbach et al., 2007; Power et al., 2011; Yeo et al., 2011). In 

a study of 13 patients with aphasia, Zhu et al. (2014) investigated the relationship 
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between the left fronto-parietal network and language comprehension one-month and 

two-months post-stroke. Their results indicate stronger within network functional 

connectivity of the left fronto-parietal network to be associated with greater language 

comprehension abilities in persons with aphasia (Zhu et al., 2014). Furthermore, their 

results associate increases in within network connectivity of the left fronto-parietal 

network with recovery of language comprehension abilities (Zhu et al., 2014). 

Collectively, these resting-state and task-based fMRI studies link the presence of intact 

cognitive networks with greater language functioning in aphasia, suggesting language 

deficits in aphasia may not be language specific and instead may stem from cognitive 

deficits as well. 

Prosody and Sentence Comprehension 
 
In addition to sentence structure and cognitive abilities, prosody (i.e., rhythm and pitch 

changes associated with spoken language) also affects how we comprehend sentences. 

Behavioral studies of prosody demonstrate that regular prosodic patterns facilitate 

sentence comprehension compared to irregular patterns in neurotypical adults (Carlson, 

2009; Carlson, Frazier, & Clifton, 2009; Kjelgaard & Speer, 1999; Roncaglia-Denissen et 

al., 2013; Speer et al., 1996). This may be because prosodic cues, including pitch 

inflections and prosodic boundaries perceptually divide sentences into smaller phrases 

and focus listener attention to critical time points within a sentence. Additionally, the 

strategic placement of prosodic boundaries can influence the less preferred meaning of 

syntactically ambiguous sentence structures (Beach, 1991; Kjelgaard & Speer, 1999; 

Speer et al., 1996). For example, participants demonstrate faster response times for the 

less preferred meaning of the sentence Whenever the guard checks the door it’s/is locked 
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(i.e., Whenever the guard checks, the door is locked) when a prosodic boundary is placed 

after checks as they do not need to reanalyze the sentence when the disambiguating word 

is is encountered. Without the prosodic boundary after checks participants will favor the 

preferred meaning of the sentence Whenever the guard checks the door, it’s locked as this 

meaning does not require reanalysis at the point of disambiguation. 

Prosody may facilitate sentence comprehension by reducing cognitive demands 

associated with sentence processing (Cohen et al., 2001; Kjelgaard & Speer, 1999; Speer 

et al., 1996; Roncaglia-Denissen et al., 2013). For example, prosody may serve as a 

placeholder in working memory while other linguistic analyses (i.e., syntactic and 

semantic) occur (Schafer, 1997). Once linguistic analyses are complete, the information 

is reintegrated into working memory and the presence of a prior mental representation of 

prosodic cues facilitates comprehension (Cohen et al., 2001; Frazier et al., 2006; 

Kjelgaard & Speer, 1999; Speer et al, 1996). This interaction between prosody and 

cognition may be particularly important for complex sentences, such as the syntactically 

ambiguous sentence discussed in the preceding paragraph, as the strategic placement of 

pitch inflections and prosodic boundaries may help listeners to parse the sentence 

correctly on the first pass, preventing the need for reanalysis which draws heavily on 

cognitive resources (Caplan & Waters, 1999). 

In a recent study, Roncaglia-Denissen and colleagues (2013) compared simple 

(i.e., subject-first) and complex (i.e., object-first) sentences spoken with regular and 

irregular speech rhythms. The regular rhythm condition consisted of one stressed syllable 

followed by three unstressed syllables; note, the rhythm was metrically regular, but is not 

considered normal sentence prosody. Sentences with irregular rhythm were created by 
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replacing proper and common nouns in the regular rhythm sentences with proper and 

common nouns which differed in terms of lexical stress and number of syllables (e.g., 

replacing the proper noun Antonio with Nicole). Their behavioral results demonstrate that 

the addition of irregular speech rhythms decreases comprehension of both syntactically 

ambiguous subject-first and object-first sentences (Roncaglia-Denissen et al., 2013). 

While the rhythmic manipulation did not interact with sentence structure behaviorally (as 

measured by reaction time; the interaction statistics were not reported for accuracy), 

simultaneous electrophysiological recordings identified an interaction driven by a 

decreased P600 mean amplitude for rhythmically regular object-first sentences compared 

to their irregular counterparts, but no differences in amplitude between rhythmically 

regular and irregular subject-first sentences (Roncaglia-Denissen et al., 2013). These 

findings suggest that irregular rhythms are costly to language comprehension as they 

require increased processing time, however, they do not inhibit comprehension as a 

successful parse is eventually achieved.  

Prosody not only impacts behavioral measures of sentence comprehension, but 

also the neural computations supporting sentence comprehension. For example, the 

closure positive shift is an event related potential sensitive to prosodic information and 

demonstrates a right hemisphere bias for prosodic information as well as larger event 

related potentials in response to irregular rhythms compared to regular rhythms 

(Honbolygó, Török, Bánréti, Hunyadi, & Csépe, 2016). While prosody is classically 

associated with the right hemisphere (Friederici & Alter, 2004; Gandour et al., 2004; 

Ross, 1981; Sammler, Kotz, Eckstein, Ott, & Friederici, 2010; Wildgruber et al., 2004; 

Wildgruber, Ethofer, Grandjean, & Kreifelts, 2009), different functions of prosody 
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appear to be differentially lateralized (Kristensen, Wang, Petersson, & Hagoort, 2013). 

For example, fMRI indicates affective or emotional prosody to be more right lateralized 

while linguistic prosody (e.g., prosody which determines the form of an utterance) is 

more left lateralized (Belyk & Brown, 2014; Wildgruber et al., 2004). These findings 

align with the asymmetric sampling in time hypothesis, which proposes left hemisphere 

dominance for short temporal information (e.g., phonemes, syllables, pitch inflections, 

prosodic boundaries) and right hemisphere dominance for longer temporal segments 

(e.g., sentence level prosody) (Poeppel, 2003). Furthermore, this specialization of each 

hemisphere for particular temporal durations may be advantageous for patients with brain 

damage, including aphasia, as manipulating the temporal structure of a sentence may alter 

the brain regions recruited during sentence processing.  

Functional neuroimaging studies provide some insight into the response of 

specific brain regions to different prosodic patterns. In general, acoustically rich 

sentences activate bilateral temporal and parietal regions, with greater activity in the right 

hemisphere when compared to sentences with less spectral detail (Lee, Min, Wingfield, 

Grossman, & Peelle, 2016). Within this bilateral temporal-parietal network, specific brain 

regions have been identified to preferentially respond to specific prosodic patterns. For 

example, Humphries et al. (2005) identified list prosody (i.e., monotone prosody lacking 

pitch inflections and prosodic boundaries) to activate the left posterior superior temporal 

gyrus while typical sentence prosody activated the left anterior temporal lobe. Meyer et 

al. (2004) found flattened speech to activate bilateral posterior superior temporal gyri and 

inferior parietal lobe, left middle frontal gyrus, left superior parietal lobe, and right 

inferior frontal gyrus. A direct comparison of typical sentence prosody and monotone 
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prosody in neurotypical adults revealed increased activation of the left superior frontal 

cortex, left anterior temporal lobe, left insula, left Heschl’s gyrus, and bilateral anterior 

cingulate cortex for sentence prosody compared to monotone prosody (den Ouden et al., 

2016). These studies largely highlight the following pattern in neurotypical adults: left 

frontal and anterior temporal cortices respond preferentially to typical prosodic cues 

while left posterior temporal and inferior parietal cortices respond to irregular prosodic 

patterns such as monotone prosody and list prosody. Collectively, these results suggest 

that the brain networks involved in sentence processing may be modulated to some extent 

by prosody. 

Prosody and Aphasia 

Pitch inflections may facilitate sentence comprehension by providing cues about new or 

contrasting information (Dahan, 2015; Dahan, Tanenhaus, & Chambers, 2002; Ito & 

Speer, 2008; Weber, Braun, & Crocker, 2006). Failure to perceive these pitch inflections 

may lead to comprehension deficits. For example, individuals with left hemisphere 

lesions demonstrate decreased sensitivity to prosodic cues such as rising pitch contours 

differentiating a question from a statement (Heilman, Bowers, Speedie, & Coslett, 1984; 

Pell & Baum, 1997; Perkins, Baran, & Gandour, 1996). This decreased sensitivity to 

prosodic cues suggests communication impairments associated with left hemisphere 

lesions (which are traditionally associated with deficits in sentence comprehension, 

particularly for non-canonical sentences) may actually stem from a combination of 

deficits in processing prosody and non-canonical sentence structures, as prosodic cues 

may fail to initially guide the listener to a correct interpretation. Given this finding, 

prosodic cues, including pitch inflections and prosodic boundaries, may be particularly 
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important during sentence comprehension for individuals with reduced cognitive 

capacities as their ability to maintain the representation of a sentence in working memory 

is diminished (Caplan & Waters, 1999; Haarmann, Just, & Carpenter, 1997; Just & 

Carpenter, 1992; King & Just, 1991; Miyake, Carpenter, & Just, 1994). Therefore, using 

typical prosodic cues to reduce the processing loads associated with sentence processing 

may be particularly important for this clinical population.   

Previous research suggests that patients with aphasia benefit from prosodic 

cueing: patients with aphasia demonstrate increased comprehension accuracy when 

sentences (Lasky et al., 1976) and paragraphs (Pashek & Brookshire, 1982) are presented 

with a reduced speech rate and exaggerated linguistic stress. Importantly, exaggerated 

linguistic stress increased sentence comprehension independent of speech rate (Lasky et 

al., 1976; Pashek & Brookshire, 1982). The exaggerated linguistic stress (i.e., 

exaggerated pitch inflections) may be facilitating auditory comprehension as prosodic 

cues may be used by intact attentional resources to direct the patient’s attention to 

important sentential information; however, the relationship between prosody and 

cognition is unclear from this study as cognition was not measured.  

Prosody may also facilitate sentence comprehension in aphasia through temporal 

expectancy. Previous research indicates that temporal expectancy can be created through 

rhythmic cueing prior to the stimulus, which subsequently improves speech 

comprehension (Cason & Schön, 2012). Temporal expectancy may also be embedded 

within the speech stimulus itself (e.g., regular intervals created by placing equal emphasis 

and stress on each word within a sentence). Temporal expectancy may facilitate 

comprehension in patients with aphasia by helping them to chunk words/phrases into 
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smaller, more manageable units, that can be maintained by intact working memory 

resources (Gilbert, Boucher, & Jemel, 2014), particularly when attentional control is 

diminished and thus typical prosodic information cannot be utilized as attentional cues. 

As previously discussed, prosody may improve language comprehension in 

neurotypical adults by reducing cognitive demands associated with sentence processing 

(Cohen et al., 2001; Kjelgaard & Speer, 1999; Roncaglia-Denissen et al., 2013; Speer et 

al., 1996). However, for persons with aphasia, who may have cognitive deficits, prosodic 

cues may instead help to selectively engage relatively intact cognitive resources. 

Furthermore, different prosody manipulations have been shown to recruit distinct brain 

regions (den Ouden et al., 2016; Humphries et al., 2005; Meyer et al., 2004). 

Collectively, this evidence suggests that prosody may be able to improve auditory 

comprehension post-stroke by selectively engaging relatively preserved cognitive 

resources and/or distinct brain regions. 

Present Study  

Cognitive deficits frequently co-occur with language deficits in aphasia. Much of this 

research has focused on more complex processes such as working memory and executive 

functions, leaving attention largely unexplored. Previous research does identify some 

relationship between attention and overall communication abilities: persons with aphasia 

with poorer attention abilities demonstrate poorer overall communication (Laures, 2005; 

Murray, 2012; Murray et al., 1997; Villard & Kiran, 2017). These studies further detail 

that different types of attention are differentially affected by stroke, likely due to 

somewhat distinct neural resources supporting each type of attention. Furthermore, 

somewhat distinct neural resources are also known to support attention in different 
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perceptual modalities (Fritz, Elhilali, David, & Shamma, 2007; Petersen & Posner, 2012; 

Roberts & Hall, 2008; Thiel & Fink, 2007). Yet, questions remain regarding the effects of 

presentation modality on attention post-stroke, particularly since auditory attention has 

been mostly unstudied in stroke patients. Therefore, Experiment 1a will explore the 

effects of presentation modality (visual and auditory) on attention post-stroke. 

Experiment 1b will then investigate the neural resources supporting attention in each 

domain.  

Patients with aphasia who have better cognitive abilities typically demonstrate 

better overall communication abilities. Therefore, Experiment 2 will explore whether 

relatively preserved cognitive abilities, including attention, can be used to improve 

sentence comprehension post-stroke. In neurotypical adults, prosody has been shown to 

possibly improve language comprehension by reducing demands placed on the cognitive 

resources associated with sentence processing (Cohen et al., 2001; Kjelgaard & Speer, 

1999; Roncaglia-Denissen et al., 2013; Speer et al., 1996). However, in aphasia, prosody 

may instead improve language comprehension by recruiting relatively preserved 

cognitive resources. For example, sentence prosody may recruit attentional control 

resources during sentence comprehension as the pitch inflections and prosodic boundaries 

may direct listener attention towards important sentential information (Schafer, 1997). 

Alternatively, list prosody may recruit relatively preserved working memory resources by 

creating temporal expectancy effects that facilitate the chunking of sentence-level 

information within working memory resources (Gilbert et al., 2014). Therefore, 

Experiment 2a will behaviorally investigate the relationship between cognition, prosody, 

and auditory sentence comprehension in persons with chronic stroke (with and without 
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aphasia) and matched-controls. Experiment 2b will extend the findings from Experiment 

2a by identifying stroke lesion patterns associated with prosody manipulations that result 

in improved sentence comprehension for persons with chronic stroke (with and without 

aphasia).  
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CHAPTER 3 

EXPERIMENT 1A: VISUAL AND AUDITORY ATTENTION IN PERSONS WITH 

APHASIA 

Introduction 

Aphasia is classically thought to be a language-specific disorder. Yet, it is well 

established that persons with aphasia demonstrate impaired performance on a variety of 

cognitive skills including attention (Murray, 2012; Murray et al., 1997), memory (Caplan 

et al., 2013), and executive functions (Fridriksson et al., 2006). Of these cognitive skills, 

attention is particularly important for studies of aphasia as it is a necessary foundation for 

other executive functions. For example, attention allows an individual to maintain 

alertness while completing a task or selectively respond to an incoming stimulus (e.g., 

language), while ignoring irrelevant and/or distracting information (e.g., background 

noise); both of which are basic abilities necessary for the execution of more complex 

tasks such as language.  

Attention was once thought to be a uniform construct, however, three distinct 

subsets have since been identified: alerting, orienting, and executive control (Petersen & 

Posner, 2012; Posner & Petersen, 1990). Alerting involves maintaining vigilance towards 

external stimuli while orienting is the selection of specific information from a given 

stimulus (Fan et al., 2002; Fan & Posner, 2004; Posner & Petersen, 1990). Executive 

control is hypothesized to be a more complex form of attention and is a measure of how 

efficiently a correct response is achieved when relevant stimulus information conflicts 

with irrelevant stimulus information (Fan et al., 2002; Posner & Petersen, 1990). 
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Each type of attention has traditionally been assessed in neurotypical adults using 

cueing tasks in both the visual and auditory modalities. Collectively, these studies 

indicate that levels of alertness can be modulated by both visual and auditory cues 

(Fernandez-Duque & Posner, 1997). Similarly, one’s ability to orient to specific 

information has been observed in both the visual (Rosen et al., 1999) and auditory 

(McDonald & Ward, 1999) modalities. In control subjects, the executive control 

component of attention has traditionally been studied in the visual modality using tasks 

such as the flanker, Stroop, and Simon paradigms (MacLeod, 1991), but similar 

behavioral results also have been produced in the auditory modality (McClain, 1983). 

Neuroimaging and lesion evidence indicate that each type of attention is 

associated with a unique neural network: alerting with the thalamus, brainstem, and right 

fronto-parietal cortices (Petersen & Posner, 2012; Rinne et al., 2013; Sturm & Willmes, 

2001); orienting with the right temporal-parietal junction, interparietal sulcus, superior 

parietal lobe, and frontal eye fields (Petersen & Posner, 2012; Rinne et al., 2013); and 

executive control with bilateral prefrontal cortex (Rinne et al., 2013) as well as the 

fronto-parietal and cingulo-opercular networks (Dosenbach, Fair, Cohen, Schlaggar, & 

Petersen, 2008; Petersen & Posner, 2012). However, the exact neural resources 

supporting each type of attention can vary depending on sensory modality (Fritz et al., 

2007; Petersen & Posner, 2012). For example, visual alerting cues activate bilateral 

inferior occipital gyri and posterior parietal cortices while auditory alerting cues activate 

bilateral superior temporal gyri and frontal cortices (Thiel & Fink, 2007). These 

modality-specific effects on the neural resources supporting attention indicate the need 

for reliable assessments of each subtype of attention within both the auditory and visual 
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modalities as stroke lesions may differentially impact visual and auditory attention, with 

the latter being particularly important for spoken language comprehension. 

Clinically, attention is commonly assessed using visual tests such as the color-

word Stroop or Attention Network Test (ANT) (Stewart & Amitay, 2015). Solely 

assessing attention in the visual domain is problematic because both alerting and 

orienting attention have been shown to be domain-specific processes (Roberts et al., 

2006; Spagna et al., 2015). The Test of Everyday Attention (TEA) is an improvement on 

visual-only assessments as it assesses attention in both the visual and auditory domains 

(Robertson, Ward, Ridgeway, & Nimmo-Smith, 1994). However, the TEA is limited in 

that it assumes attention to be domain-general and therefore does not fully measure 

attention in either modality (i.e., visual and auditory subtests are combined to provide 

measures of each type of attention). The lack of a reliable assessment of auditory 

attention in clinical populations is problematic, particularly for aphasia patients, for 

whom it is important to understand how cognitive deficits such as attention may be 

contributing to their auditory-dependent language impairments (i.e., impairments in 

speech production and auditory speech comprehension).  

The ANT was developed to measure alerting, orienting, and executive control 

attention using a cued flanker task in the visual modality (Fan et al., 2002). Clinically, the 

ANT has been used to assess the integrity of each subtype of attention in a variety of 

populations including stroke (Fan & Posner, 2004; Rinne et al., 2013). An auditory-visual 

combination ANT, which tests alerting in the auditory modality and orienting and 

executive control in the visual modality has been used with stroke patients with right 

hemisphere disorder; alerting, orienting, and executive control effects were reliably 
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identified (Chica et al., 2012). A similar version of the auditory-visual ANT, the double-

modality ANT, which tests alerting in the auditory and visual domains, but only tests 

orienting and executive control in the visual modality has been used on younger and older 

adults and reliably finds auditory alerting, visual alerting, visual orienting, and visual 

executive control effects (Callejas, Lupiàñez, Funes, & Tudela, 2005; Ishigami et al., 

2016; Ishigami & Klein, 2011). An auditory-only version of the ANT, based on Fan et 

al.’s (2004) visual ANT, has been developed which uses a cued auditory Stroop task 

(Roberts et al., 2006; Stewart & Amitay, 2015), but to our knowledge it has not been 

implemented in aphasia patients or after stroke more generally.  

Further evidence for the need to assess attention in both auditory and visual 

modalities is that studies of neurotypical adults comparing matched versions of the visual 

and auditory ANT produce conflicting results. While studies typically find significant 

alerting, orienting, and executive control effects in the visual domain (Roberts et al., 

2006; Spagna et al., 2015; Stewart & Amitay, 2015), results differ within the auditory 

modality. For example, Roberts and colleagues (2006) found significant alerting, 

orienting, and executive control effects in the auditory modality. However, Spagna et al. 

(2015) solely identified significant alerting and executive control effects and Stewart and 

Amitay (2015) found just significant executive control effects in the auditory modality.   

In these studies of neurotypical adults, correlations between the two modalities 

further suggest a separation of visual and auditory attention. Both Roberts et al. (2006) 

and Spagna et al. (2015) found executive control to be correlated across the two 

modalities suggesting it is unaffected by test modality and likely a domain-general 

cognitive process. Roberts et al. (2006) found similar results for alerting across the two 
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modalities, however, Spagna and colleagues (2015) did not find alerting attention 

abilities to correlate across modalities. Both Roberts et al., (2006) and Spagna et al. 

(2015) identified orienting attention to be uncorrelated across the two modalities 

suggesting it may be a domain-specific process. Using a factor analysis approach, Stewart 

and Amitay (2015) found that only auditory and visual executive control (“conflict 

resolution” in their terms) load on the same component. These findings further 

necessitate separate examination of visual and auditory attention in persons with chronic 

aphasia, particularly when trying to relate attentional abilities to auditory language 

performance. Thus, the purpose of the present study was to determine whether alerting, 

orienting, and executive control attention abilities are influenced by presentation 

modality in persons with chronic aphasia and matched control subjects. This study is the 

first, to my knowledge, to examine auditory attention in aphasia patients using the well-

studied ANT paradigm. It was hypothesized that: (1) the aphasia group would perform 

significantly worse on all trial types (longer reaction times and more errors) than age-

matched controls on both the visual and auditory ANTs; (2) both alerting and orienting 

attention will not correlate across the visual and auditory modalities, but executive 

control attention will correlate; and (3) significant effects of alerting, orienting, and 

executive control will be measured by both the visual and auditory ANTs in both groups, 

which would indicate that the auditory ANT is a feasible and potentially informative 

clinical measure. 

 

Method 

Participants 



  44 

Participants were 22 chronic aphasia patients (12 females) who experienced a single left 

hemisphere cerebral stroke2 at least 6 months prior to testing (Table 1). Aphasia 

participants ranged in age from 28 to 80 years (M = 54.64, sd = 12.97). Aphasia 

participants were pre-morbidly right-handed, native speakers of American English, 18+ 

years of age, with no history of neurological disease, head trauma, or psychiatric 

disturbances prior to their stroke. An additional 20 controls (14 females) ranging in age 

from 31 to 79 years (M = 51.40, sd = 12.82) who were also right-handed, native speakers 

of American English, 18+ years of age, with no history of neurological disease, head 

trauma, or psychiatric disturbances were also recruited. There were no significant 

differences between the aphasia and control groups in age, gender, education, or hearing 

status (Table 2). All participants were monetarily compensated for their participation. 

Arizona State University’s Institutional Review Board approved all procedures. 

 

Table 1. Aphasia group demographics. 

                                                
2 One participant (AZ1033) had two strokes ten years apart. 

 Gender Age Months Post 
Stroke 

Years of 
Education 

Aphasia 
Diagnosis 

AZ1003 Female 48 110 19 Broca’s 
AZ1006 Male 60 138 14 Broca’s 
AZ1011 Female 73 53 16 Anomic 
AZ1012 Male 77 85 16 Wernicke’s 
AZ1013 Female 47 258 17 Broca’s 
AZ1016 Male 37 142 14 Broca’s 
AZ1018 Female 43 29 14 Broca’s 
AZ1022 Female 46 79 14 Broca’s 
AZ1028 Female 80 19 24 Wernicke’s 
AZ1030 Male 56 32 16 Broca’s 
AZ1031 Female 40 63 20 Broca’s 
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Table 2. Demographic comparisons between aphasia and control groups. 

 Aphasia 
(n=22) 

Controls 
(n=20) 

Statistic 

Age 54.64 (12.97) 51.40 (12.82) t(40)=.81, p=.42 
Gender (male/female) 10/12 6/14 c2(1)=1.06, p=.30 
Education (years) 15.54 (2.67) 15.20 (2.17) t(40)=.46, p=.65 
Hearing Statusa 16.53 (12.15) 13.44 (9.07) t(40)=.93, p=.36 
aPure tone average for better ear; 500-4000 Hz 

 

Experimental Design 

Participants completed the visual (Fan et al., 2002; Roberts et al., 2006) and auditory 

ANTs (Roberts et al., 2006) as part of a larger neuropsychological test battery. In both 

ANTs, each trial begins with the presentation of a cue (double cue, center cue, spatial 

cue, no cue) and asks participants to make a judgment about a target within a specific 

task (visual: flanker task; auditory: Stroop task). This setup allows each trial to be 

analyzed by cue type (double cue, center cue, spatial cue, no cue) and target condition 

(congruent, incongruent, and neutral). Comparing different combinations of cues 

provides measures of alerting (no cue – double cue trials) and orienting (center cue – 

spatial cue trials) attention. Comparing different target conditions provides a measure of 

executive control attention (incongruent – neutral trials). For alerting and orienting 

AZ1032 Male 28 20 13 Anomic 
AZ1033 Male 57 180; 60 14 Global 
AZ1034 Female 59 110 15 Anomic 
AZ1035 Female 41 72 17 Broca’s 
AZ1036 Male 65 158 15 Broca’s 
AZ1037 Male 57 13 16 Broca’s 
AZ1038 Male 54 155 14 Broca’s 
AZ1039 Female 66 48 14 Anomic 
AZ1040 Female 54 45 14 Broca’s 
AZ1041 Female 59 24 12 Anomic 
AZ1042 Male 55 37 14 Broca’s 
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attention, larger scores indicate faster responses for the alerting or orienting cue 

compared to the comparison cue (i.e., no cue for alerting and center cue for orienting). 

For executive control, scores closer to zero reflect better executive control attention as 

this indicates participants have similar mean correct reaction times for the incongruent 

and neutral trials (Fan & Posner, 2004). Specifics of the visual and auditory tasks are 

described below.  

Visual Attention Network Task (ANT). The visual ANT set-up was modeled after 

Roberts et al., (2006) and was very similar to the visual ANT reported by Fan et al. 

(2002) (Figure 1). Each trial began with a fixation cross jittered between 2400-3600 

milliseconds. Following the offset of the fixation cross, a visual cue was presented in the 

middle of the screen for 100 milliseconds. Visual cue conditions were as follows: (1) 

center cues (single asterisk presented in the middle of the screen), (2) double cues 

(simultaneous presentation of one asterisk above the fixation cross and one asterisk below 

the fixation cross), (3) spatial cue (single asterisk presented either above or below the 

fixation cross; spatial cues always predicted the location of the flanker task), and (4) no 

cue (fixation cross remains in the middle of the screen, but no cueing is provided). 

Following the offset of the visual cue, the fixation cross was presented on the screen for 

400 milliseconds after which time participants completed the flanker task. In the flanker 

task, participants saw a series of five arrows and indicated via button press whether the 

center arrow was pointing left or right. A congruent trial occurred when the center arrow 

was pointing the same direction as the flanking arrows. An incongruent trial occurred 

when the center arrow was pointing the opposite direction of the flanking arrows. A 

neutral trial occurred when the center arrow was not flanked by any arrows. Participants 
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completed a total of 180 trials where all cue types and flanker conditions were presented 

equally. Trial presentation was randomized for each participant. Verbal and written 

instructions, examples of all stimuli, and 10 practice trials preceded the start of the 

experiment.  

Auditory Attention Network Task (ANT). The auditory ANT set-up was modeled 

after the auditory ANT used by Roberts et al. (2006) (Figure 1). In the auditory ANT, the 

flanker task is replaced by an auditory Stroop task; participants are instructed to ignore 

the meaning of the stimulus and determine whether the stimulus was spoken in a high or 

low pitched voice. Each trial began with a 500 Hz fixation tone jittered between 400-

1600 milliseconds. Following the offset of the fixation tone, an auditory cue was 

presented for 50 milliseconds. Auditory cues were bursts of speech-shaped noise, cosine 

gated for 10 milliseconds at the onset and offset. Auditory cue conditions were as 

follows: (1) center cues (correlated noise bursts perceived in the center of the head), (2) 

double cues (uncorrelated noise burst perceived as separate signals in each ear), (3) 

spatial cue (single noise burst) presented in the left or right ear (spatial cue always 

predicted the location of the auditory Stroop task), and (4) no cue. Conflict to measure 

executive control was generated using an auditory Stroop task. In this task, participants 

heard the words “high,” “low,” and “day” spoken in either a high pitched or a low pitched 

voice. A single female speaker recorded each word in a high and low pitch. The average 

fundamental frequency of the high pitch words was 353.67 Hz; the average for the low 

pitch words was 217 Hz. The participants’ task was to ignore the semantic content (i.e., 

the spoken word “high,” “low,” or “day”) and indicate via a button press whether the 

speaker's voice was high or low in pitch. Participants completed a total of 180 trials 
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where all cue types and Stroop conditions were presented equally. Trial presentation was 

randomized for each participant. Verbal and written instructions, examples of all stimuli, 

and 10 practice trials preceded the start of the experiment.  

 

 

Figure 1. Illustration of the procedure, cue conditions, and target conditions for the visual 

and auditory ANTs. Adapted from Roberts et al. (2006). 

 

Data Analysis 

Reaction times associated with incorrect responses and those greater than 2.5 standard 

deviations from each participant’s mean were excluded from the analyses; this data 

trimming procedure was determined a priori based on it being a standard, well-studied 

approach in psycholinguistic research (Baayen & Milin, 2010; Lachaud & Renaud, 2011; 

Ratcliff, 1993). This approach aims to capture the middle 85% of the distribution of the 

reaction time measurements and is based on the assumption that the process of interest is 
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being captured, not other extraneous factors (e.g., brief distractions, button press 

mistakes, etc.). Consistent with this aim, 14.56% of the data was removed for the 

auditory ANT and 3.47% for the visual ANT for the aphasia group. For the control group, 

4.39% of the data was removed for the auditory ANT and 2.58% for the visual ANT. 

Reaction times from the remaining correct responses were used to calculate measures of 

alerting, orienting, and executive control. 

To facilitate comparisons with previous studies (e.g. Roberts et al., 2006; Spagna 

et al., 2015; Stewart & Amitay, 2015), we first used paired samples t-tests to determine, 

within each group, if significant effects of alerting (no cue versus double cue), orienting 

(center cue versus spatial cue), and executive control (incongruent versus neural) were 

evident in each modality. We then transformed these contrasts into relative difference 

scores (i.e., ratio scores) to compare the two groups. Relative difference scores are more 

advantageous for patient versus control group comparisons than absolute difference 

scores (i.e., a subtraction of reaction times between the two conditions of interest) 

because the relative difference approach scales the score such that individual differences 

related to the speed of general response selection processes and motor planning and 

execution are controlled. Independent samples t-tests were used to compare alerting ((no 

cue – double cue)/double cue), orienting ((center cue – spatial cue)/spatial cue), and 

executive control ((incongruent – neutral)/neutral) attention between the aphasia and 

control groups. Paired samples t-tests and Pearson correlations were used to analyze the 

relationship across modality between alerting, orienting, and executive control attention, 

respectively, within each group.  
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Results 

Visual and Auditory ANT in Patients with Aphasia and Matched-controls  

Mean reaction times and standard deviations of the mean for all cues and targets in the 

visual and auditory modality are reported in Table 3 for both groups. Replicating 

previous work using the visual ANT, the control group demonstrated significant effects 

of alerting (i.e., better performance on double cue trials compared to no cue trials), 

orienting (i.e., better performance on spatial cue trials compared to center cue trials), and 

executive control (i.e., slower responses for incongruent trials compared to neutral trials). 

For the aphasia group, significant orienting and executive control effects were observed, 

however, unlike in controls, the alerting effect was not significant in the visual modality. 

In the auditory modality, significant executive control effects were observed for both 

groups, but the alerting and orienting effects were not significant for either group (Table 

4). 

 

Table 3. Mean reaction times and standard deviations of the mean for all cues and targets 

in the visual and auditory modality for both groups. 

 Condition Visual Modality 
Mean (sd) 

Auditory Modality 
Mean (sd) 

Control Group 
(n = 20) 

No Cue 634.24 (174.44) 804.50 (149.51) 
Double Cue 597.59 (173.45) 796.59 (157.46) 
Center Cue 601.32 (172.62) 803.09 (169.06) 
Spatial Cue 571.53 (171.36) 809.52 (165.54) 
Congruent Target 570.55 (165.34) 743.47 (153.21) 
Incongruent Target 670.27 (177.83) 902.55 (185.84) 
Neutral Target 565.09 (162.60) 776.55 (149.95) 

Aphasia Group 
(n = 22) 

No Cue 1253.10 (692.75) 1233.78 (407.77) 
Double Cue 1185.45 (618.01) 1207.52 (376.38) 
Center Cue 1212.23 (628.63) 1222.30 (387.35) 
Spatial Cue 1171.84 (649.23) 1197.64 (355.81) 
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Congruent Target 1160.04 (614.29) 1160.20 (384.88) 
Incongruent Target 1344.77 (758.43) 1328.85 (414.33) 
Neutral Target 1115.53 (578.99) 1183.12 (370.85) 

 

 

The Effect of Presentation Modality 

For the control group, alerting benefits (i.e., better performance on double cue trials 

compared to no cue trials) significantly differed between the two modalities with the 

control group benefiting more from the alerting cue (i.e., double cue) in the visual than 

the auditory modality [t(19)=2.67, p=.02]. Orienting benefits (i.e., better performance on 

spatial cue trials compared to center cue trials) also significantly differed between the two 

modalities for the control group with participants benefiting more from the orienting cue 

(i.e., spatial cue) in the visual than the auditory modality [t(19)=3.93, p<.001]. Note, that 

auditory orienting attention had a negative mean (Figure 2) suggesting control 

participants were actually distracted by the spatial cue in the auditory modality but the 

spatial cue in the visual modality facilitated responses as expected. Executive control 

costs (i.e., slower responses for incongruent trials compared to neutral trials) did not 

significantly differ between the two modalities for the control group [t(19)=1.52, p=.15]. 

For the aphasia group, alerting [t(21)=.91, p=.38], orienting [t(21)=1.01, p=.32], and 

executive control [t(21)=1.50, p=.15] did not significantly differ between the two 

modalities. 

For the control group, there were no significant correlations across the two 

modalities for alerting [r(18) = -.08, p=.74], orienting [r(18) = .17, p=.49], and executive 

control [r(18) = -.35, p=.13]. For the aphasia group, alerting positively correlated across 
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the two modalities [r(20) = .46, p=.03], however, the correlations for orienting [r(20) = -

.18, p=.42] and executive control [r(20) = .10, p=.65] were not significant (Figure 2). 

 

 

Figure 2. Alerting, orienting, and executive control between modality correlations for the 

control and aphasia groups. 

 

Aphasia versus Control 

Overall, the control group was significantly faster than the aphasia group in both the 

auditory [t(40) = 3.78, p<.001] and visual [t(40) = 4.13, p<.001] modalities. But, alerting 

benefits [auditory: t(40) = .39, p=.70; visual: t(40) = .58, p=.57], orienting benefits 

[auditory: t(40) = 1.09, p=.28; visual: t(40) = .52, p=.61], and executive control costs 

[auditory: t(40) = .73, p=.47; visual: t(40) = .02, p=.99] did not significantly differ 

between the two groups in either modality (Figure 3). The aphasia group made more 

errors than the control group on the auditory ANT overall [t(40) = 2.78, p=.008], but 

Control 
Group

Aphasia 
Group

r =-.08, p= .74 r =.17, p= .49 r =-.35, p= .13 

r = .46, p= .03 r = -.18, p= .42 r = .10, p= .65 

Alerting Orienting Executive Control
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overall error rate did not significantly differ between the two groups in the visual 

modality [t(40) = .53, p=.60]. 

 

Table 4. Alerting benefits, orienting benefits, and executive control costs for each group 

in each modality. For alerting, cue 1 is no cue and cue 2 is double cue. For orienting, cue 

1 is center cue and cue 2 is spatial cue. For executive control, cue 1 is incongruent target 

and cue 2 is neutral target.  

   Cue 1 Cue 2 Paired t-test  
Control 
Group 
(n=20) 

Visual 
ANT 

Alerting 
(no cue- double) 

634.24 
(39.00) 

597.59 
(38.78) 

t(19)=3.92, 
p<.001* 

Orienting 
(center – spatial) 

601.32 
(38.60) 

571.53 
(38.32) 

t(19)=3.37, 
p=.003* 

Executive Control 
(incongruent – neutral) 

670.27 
(39.76) 

565.09 
(36.36) 

t(19)=15.61, 
p<.001* 

Auditory 
ANT 

Alerting 
(no cue- double) 

804.50 
(33.43) 

796.59 
(35.21) 

t(19)=.80, 
p=.43 

Orienting 
(center – spatial) 

803.09 
(37.80) 

809.52 
(37.01) 

t(19)=.64, 
p=.53 

Executive Control 
(incongruent – neutral) 

902.55 
(41.55) 

776.55 
(33.53) 

t(19)=10.85, 
p<.001* 

Aphasia 
Group 
(n=22) 

Visual 
ANT 

Alerting 
(no cue- double) 

1253.10 
(147.70) 

1185.45 
(131.76) 

t(21)=1.82, 
p=.08 

Orienting 
(center – spatial) 

1212.23 
(134.02) 

1171.58 
(138.36) 

t(21)=2.21, 
p=.04* 

Executive Control 
(incongruent – neutral) 

1344.77 
(161.70) 

1115.53 
(123.44) 

t(21)=4.77, 
p<.001* 

Auditory 
ANT 

Alerting 
(no cue- double) 

1233.78 
(86.94) 

1207.52 
(80.24) 

t(21)=.55, 
p=.59 

Orienting 
(center – spatial) 

1222.30 
(82.58) 

1200.27 
(76.50) 

t(21)=.83, 
p=.42 

Executive Control 
(incongruent – neutral) 

1328.85 
(88.34) 

1183.12 
(79.06) 

t(21)=3.04, 
p=.006* 

*significant at p<.05 
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Figure 3. Aphasia and control group measures of alerting ((no cue – double cue)/double 

cue), orienting ((center cue – spatial cue)/spatial cue), and executive control 

((incongruent – neutral)/neutral) from the visual and auditory ANT. Error bars represent 

+/- one standard error. 

 

Discussion 

The purpose of this study was to investigate whether alerting, orienting, and executive 

control are domain-specific or domain-general subsets of attention in patients with 

chronic aphasia and matched-controls. To this end, aphasia patients and matched-control 

participants completed visual and auditory versions of the well-studied Attention 

Network Test (ANT).  

For the control group, significant effects of alerting and orienting were only 

observed in the visual modality, while executive control costs were observed in both the 
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visual and auditory modalities. The significant effects of alerting, orienting, and 

executive control in the visual modality replicate previous work (Fan et al., 2002; Roberts 

et al., 2006; Spagna et al., 2015; Stewart & Amitay, 2015). The lack of a significant 

alerting and orienting effect in the present auditory task coincides with Stewart and 

Amitay’s (2015) results but not with Roberts et al.’s (2006) and Spagna et al.’s (2015) 

results who found significant alerting effects but non-significant orienting effects. The 

fact that this study replicates the findings from one previous study but not others is likely 

due to differences in statistical procedures, namely using mean versus median reaction 

times to calculate the three attention measures; this is discussed in more detail below.  

The aphasia group demonstrated a similar pattern of results as the control group: 

orienting benefits were observed in the visual modality, but not the auditory modality, 

and executive control costs were present in both modalities. However, unlike the control 

group, significant alerting benefits were not observed in either modality in the aphasia 

group. The failure to identify significant alerting and orienting effects (in either group) in 

the auditory ANT likely stems from the increased difficulty of this task compared to the 

visual version leading to greater variability in individual subject performance and 

suggests that modifications (discussed below) may need to be considered when 

administering the auditory ANT to clinical populations.  

The Effect of Presentation Modality 

Significant modality differences for the control group were identified for alerting and 

orienting with controls benefiting more from the alerting (i.e., double cue) and orienting 

(i.e., spatial cue) cues in the visual than auditory modality. The difference between 

executive control abilities (i.e., scores closer to zero for incongruent trials minus neutral 
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trials) across modalities in the control group was not significant. The between modality 

difference for orienting in the control group appears to be driven by a lack of spatial cue 

benefits in the auditory domain. Hearing levels could possibly explain the decreased 

spatial cue benefit; however, pure tone averages did not correlate with the auditory spatial 

cues for either ear. Therefore, a more likely explanation is that neurotypical adults benefit 

equally from the cues used to calculate orienting attention: both the spatial cue and the 

center cue may serve as auditory orienting cues for the upcoming stimulus, thus no 

further significant gain is provided by the spatial orienting cue (i.e., spatial cue).  

In the control group, the between-modality correlations for alerting, orienting, and 

executive control were non-significant suggesting each construct (at least as it is 

operationally defined by the ANT) is domain-specific. This conclusion corresponds with 

previous work for alerting and orienting attention (Roberts et al., 2006; Spagna et al., 

2015; Stewart & Amitay, 2015), but, the executive control conclusions differ somewhat. 

While previous work concludes that executive control is a domain-general construct 

(Roberts et al., 2006; Spagna et al., 2015; Stewart & Amitay, 2015), the non-significant 

correlation across modalities for executive control suggests that the auditory and visual 

executive control tasks may be engaging domain-specific attention resources. This 

discrepancy between previous findings in younger adults and our aphasia and control 

results could be due to age-related changes. For example, on the visual ANT, older adults 

demonstrate greater difficulty mitigating the conflict generated by incongruent trials 

compared to younger adults (Zhou et al., 2011). Executive control performance also 

interacts with cue type in older adults: relative to congruent trials, orienting cues improve 

performance on incongruent trials but alerting cues do not (Mahoney, Verghese, Goldin, 
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Lipton, & Holtzer, 2010). Older adults have also been shown to employ executive control 

resources differently than younger adults based on task demands (Isingrini et al., 2015) 

and this difference in resource allocation could be due to structural changes in the frontal 

cortex, which supports executive control (Raz, 2000; Resnick, Pham, Kraut, Zonderman, 

& Davatzikos, 2003). However, future work is needed to better understand age-related 

changes in executive control; specifically regarding the influence of task and perceptual 

modality effects.  

The modality effects within the aphasia group differed from the control group in a 

few notable ways. For the aphasia group, there were no significant differences in alerting, 

orienting, or executive control effects between the visual and auditory modalities (unlike 

the control group that exhibited significant differences in alerting and orienting effects 

across modalities). The significant modality differences in alerting and orienting in 

controls but not in the aphasia group indicate that both alerting and orienting attention in 

each modality may engage distinct, yet likely adjacent, neural resources in neurotypical 

adults. Proximity, or at least shared arterial pathways, between anatomically distinct 

auditory and visual attention resources may mean that a specific type of attention (e.g., 

alerting or orienting) in both modalities is affected by the same stroke despite being 

behaviorally dissociable in controls. It also is notable that a significant positive 

correlation was observed for alerting between the two modalities in the aphasia group, 

whereas no significant correlations were found between modalities for the control group. 

This may suggest that post-stroke functional reorganization may include shared resources 

that support both auditory and visual alerting. Future work is needed to better understand 

the neural resources supporting each type of attention following brain injury, but these 
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findings indicate that in older populations, alerting, orienting, and executive control 

performance are each affected by modality, and that this relationship between auditory 

and visual attention abilities, particularly alerting, may be different in patients with 

aphasia. Altogether these findings indicate that it is necessary to asses all three aspects of 

attention in all perceptual modalities of interest, and that the auditory ANT may be a 

promising clinical tool to provide a more complete picture of attention abilities in patient 

populations. 

The Auditory Modality 

While the present study’s auditory ANT effects coincide with Stewart and Amitay’s 

(2015) results, the failure to reliably identify significant alerting effects (in either group) 

in the auditory domain is notable as it contradicts other previous studies in controls 

(Callejas et al., 2005; Chica et al., 2012; Ishigami et al., 2016; Ishigami & Klein, 2011; 

Roberts et al., 2006; Spagna et al., 2015), which all found either an alerting or orienting 

effect, or both. The lack of a significant auditory alerting effect in the present experiment 

may be due to the auditory ANT being more difficult overall than the visual ANT, and/or 

statistical procedures used to calculate the measures of attention. We will begin by 

comparing statistical procedures among studies using the same auditory ANT task and 

then discuss studies using the double-modality ANT: Roberts et al. (2006) calculated 

each of their attention effects using trimmed median reaction times (and found a 

significant alerting effect) while Stewart and Amitay (2015) used trimmed mean reaction 

times (and found a non-significant alerting effect). In the present study, we utilized 

trimmed mean reaction times, like Stewart and Amitay (2015), and find no alerting effect 

in the auditory modality. Median reaction times are often used when data is skewed, 
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however, because of this, median reaction times can be more easily biased by skewed 

data and can lead to an inflation in the probability of finding significant effects (Miller, 

1988; Whelan, 2008). The data in the present experiment have a normal distribution, 

making mean reaction time the more appropriate approach. Since the present study’s 

statistical procedure corresponds with Stewart and Amitay’s (2015) and the same 

auditory effects are observed, it is possible that the discrepancy in alerting findings 

between this study and Roberts et al. (2006) may be due to differences in how the 

attention measures were calculated (i.e., median versus mean reaction times).   

Age-related changes are another possible explanation for why significant auditory 

alerting effects were not observed in the present experiment. To my knowledge, the 

version of the auditory ANT utilized in this experiment has not been used in older adults 

or patients with aphasia. However, a double-modality ANT has been used to investigate 

the three measures of attention in older adults (Chica et al., 2012; Ishigami et al., 2016; 

Ishigami & Klein, 2011) and stroke patients with right hemisphere disorder (Chica et al., 

2012). The double-modality ANT does not allow for a direct comparison with the present 

study’s auditory ANT as it measures alerting in the auditory and visual modalities, but 

solely measures orienting and executive control in the visual domain; yet, it does provide 

some insight into auditory alerting effects. Using the double-modality ANT, significant 

alerting effects have been identified by comparing auditory cue trials to no cue trials in 

both older adults (Chica et al., 2012; Ishigami et al., 2016; Ishigami & Klein, 2011) and 

stroke patients with right hemisphere disorder (Chica et al., 2012). These findings suggest 

that the integrity of auditory alerting attention may not necessarily decline with age, but 

healthy aging is associated with deterioration of the frontal lobes (Raz, 2000; Resnick et 
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al., 2003) which have also been shown to support auditory alerting attention (Thiel & 

Fink, 2007). Therefore, age-related declines in the frontal cortex may still explain the 

lack of a significant auditory alerting effect in the present experiment (in either group), 

especially since older adults demonstrate reduced visual alerting abilities compared to 

younger adults (Zhou et al., 2011). However, future work is needed to parse the 

relationship between auditory attention and healthy aging using behavioral and 

neuroimaging methodologies. 

Discrepancies between our findings and the findings from the double-modality 

ANT may be due to differences in statistical/experimental procedures. While all the 

double-modality ANT studies utilize trimmed mean reaction times to calculate the 

measures of attention, they differ from our trimmed means in that the double-modality 

ANT procedure forces participants to respond within 1700 milliseconds (Ishigami et al., 

2016; Ishigami & Klein, 2011) and 4000 milliseconds (Chica et al., 2012). Forcing a 

response within a given time frame reduces reaction time variability leading to decreased 

standard deviations and a greater likelihood of detecting statistically significant effects. 

The standard deviations for the auditory ANT in the present experiment are much greater 

than the standard deviations for the double-modality ANT, likely because a response was 

not forced and participants were instead instructed to make fast and accurate responses. 

Furthermore, visual inspection of the means on this study’s auditory ANT conditions 

indicates that there were faster reaction times on the alerting cue (i.e., double cue) trials 

compared to the no cue trials for both the aphasia and matched-control group. So, 

although the effect is not significant, a similar trend is observed; further suggesting 
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differences in experimental paradigms and statistical procedures may be contributing to 

the discrepant results. 

Another plausible explanation for the discrepancy in auditory alerting findings on 

this study’s task compared to the double-modality ANT in older adults and right 

hemisphere stroke patients could possibly be hearing abilities. Hearing levels are known 

to decrease with age (Lin, Niparko, & Ferrucci, 2011; Lin, Thorpe, Gordon-Salant, & 

Ferrucci, 2011). Presumably, if participants have a hearing loss, they may not be able to 

reliably perceive the alerting cue, leading all trials to be perceived as “no cue” trials. This 

may subsequently prevent an auditory alerting effect from being identified. I screened the 

hearing of all participants from 500 to 4000 Hz and pure tone averages did not correlate 

with reaction times for trials with any of the auditory cues for either group, but hearing 

did correlate with auditory alerting in the aphasia group only. The non-significant 

correlations between auditory cues and hearing levels indicate that all participants were 

able to perceive the cues. However, the fact that hearing levels did positively correlate 

with auditory alerting in the aphasia group indicates that hearing abilities, perhaps related 

to stroke-induced brain lesions, still may be contributing to auditory alerting 

impairments. Thus, future work is needed to explore the relationship between hearing 

loss, brain injury, and higher order cognitive abilities, including attention, especially 

since hearing loss is linked to cognitive decline more generally (Lin et al., 2013).  

 The time frame between cue offset and target onset in the auditory ANT is 

another possible explanation for the failure to find a significant alerting effect in the 

present experiment. Alerting effects have been shown to peak around 300-400 

milliseconds and last no more than 900 milliseconds (Callejas et al., 2005; Fuentes & 



  62 

Campoy, 2008; Wang et al., 2014). In the present experiment, there was 600 milliseconds 

between cue offset and target onset; corresponding to previous work using this version of 

the auditory ANT in controls (Roberts et al., 2006; Stewart & Amitay, 2015). While 600 

milliseconds is within the 900 millisecond timeframe for alerting benefits, it is greater 

than the 300-400 millisecond peak. Therefore, it is possible that the alerting cue has 

diminished prior to the onset of the target, essentially making all conditions “no cue” 

conditions. Older adults and individuals with brain damage may experience increased 

alerting cue decay rates compared to younger neurotypical adults. Again, future work is 

needed to better understand how auditory alerting attention changes with hearing loss, 

age, and brain injury. 

Aphasia versus Control 

As expected, aphasia participants had slower response rates than the control group in both 

presentation modalities; however, error rates only differed for the auditory ANT with 

aphasia participants making more errors overall. The effects of alerting, orienting, and 

executive control did not significantly differ between the control group and the aphasia 

group in either modality. This likely reflects the bilateral organization of attention 

resources (Cieslik, Mueller, Eickhoff, Langner, & Eickhoff, 2015; Derrfuss, Brass, 

Neumann, & von Cramon, 2005; Laird et al., 2005). 

Visual inspection of the auditory executive control measure reveals the aphasia 

group to have a lower mean (i.e., better executive control) and greater variability 

compared to the control group. The lack of a significant between group difference is 

likely driven by increased variability within the aphasia group, but the seemingly better 

performance of the aphasia group on the auditory executive control measure warrants 
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some discussion, especially since both groups have nearly identical executive control 

abilities in the visual modality. 

 The seemingly better executive control abilities in the aphasia group in the 

auditory modality may arise because of inherent differences in the demands of the visual 

and auditory neutral trials. In the auditory ANT, to make the correct response on the 

neutral trials, participants need to selectively attend to the relevant auditory information 

(i.e., the pitch of the voice) while inhibiting the irrelevant auditory information (i.e., the 

semantic content of the stimulus day). Even though day does not contain pitch 

information like high and low, its presence does add additional irrelevant information, 

which makes the auditory neutral trials inherently more complex than the visual neutral 

trials, which solely contain a single left or right pointing center arrow, but no flankers. 

The need to ignore irrelevant information in the auditory ANT neutral trials likely makes 

these trials function more closely to incongruent trials than true neutral trials. This is 

problematic when using the auditory ANT to measure executive control abilities as 

aphasia participants and others with reduced cognitive abilities may appear to have better 

auditory executive control abilities than they really do (i.e., they are more likely to have a 

difference score closer to zero for incongruent – neutral trials). This may be because 

similar demands are being placed on their executive control attention by both the 

incongruent and neutral trials in the auditory modality and prompts the question: Is there 

a better baseline condition that can be used to measure auditory executive control in 

patients with aphasia? While the present experiment is not designed to specifically 

address this question, I do suggest that calculating “executive control” using a baseline 

which is less attentionally demanding (e.g., incongruent – congruent) may be more 
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appropriate when trying to compare the performance of a clinical group with a control 

group and/or executive control abilities across different perceptual modalities. In the 

current dataset, when auditory executive control is calculated using congruent trials as the 

baseline instead of neutral trials, I find that the non-significant difference between 

auditory and visual executive control in the aphasia group becomes even smaller, with 

nearly identical means (and standard deviations) in each modality. However, additional 

studies are needed to further explore the potential processing differences between 

auditory and visual neutral trials and how to best quantify executive control in each 

modality. 

Conclusion 

The present study compares visual and auditory attention measures in patients with 

aphasia and matched-controls using auditory and visual ANT paradigms to assess the 

alerting, orienting, and executive control components of attention. The results indicate 

that alerting, orienting, and executive control effects in each modality did not 

significantly differ between the control and aphasia groups. Furthermore, none of the 

three components significantly correlated between the auditory and visual modalities in 

the control group and only alerting had a significant between-modality correlation in the 

aphasia group, indicating that visual and auditory attention measures are poor predictors 

of one another, and that their relationship may differ in controls versus aphasia patients. 

The lack of a correlation between executive control in the auditory and visual paradigms 

is particularly interesting given that previous literature suggests executive control is a 

domain-general resource; the lack of correlation in the present study may be related to 

inherent differences in measuring auditory and visual attention that need to be 
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considered. Overall these findings demonstrate the need to separately assess all three 

components of attention in all perceptual modalities of interest in both neurotypical older 

adult and patient populations to gain a complete picture of an individual’s attention 

abilities. The auditory ANT may be an effective measurement of attention in aphasia 

when administration and scoring modifications are considered. 
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CHAPTER 4 

EXPERIMENT 1B: NEURAL RESOURCES SUPPORTING VISUAL AND 

AUDITORY ATTENTION POST-STROKE 

Introduction 
 

Various theoretical frameworks exist regarding the division of attention into distinct 

subtypes. One prominent theoretical framework proposed by Posner and Peterson (1990) 

breaks attention into three separate components: alerting, orienting, and executive 

control. Alerting attention includes the initial engagement of attentional resources as well 

as vigilance towards an external stimulus. Orienting attention involves selecting specific 

information from a given stimulus. Executive control is a measure of how well conflict 

can be mitigated when a stimulus contains both relevant information and conflicting 

irrelevant information (Fan, McCandliss, Sommer, Raz, & Posner, 2002; Fan & Posner, 

2004; Petersen & Posner, 2012; Posner & Petersen, 1990).  

 The Attention Network Test (ANT) was developed to measure all three subtypes 

of attention using a single cued flanker task (Fan et al., 2002). The ANT has been 

traditionally presented in the visual modality and found to reliably identify alerting, 

orienting, and executive control effects in neurotypical adults and patient populations, 

including stroke (Fan et al., 2002; Fan & Posner, 2004; Roberts, Summerfield, & Hall, 

2006; Spagna, Mackie, & Fan, 2015; Stewart & Amitay, 2015). An auditory version of 

the ANT has since been developed based on Fan et al.’s visual ANT. In the auditory 

modality, the cued flanker task is replaced by a cued auditory Stroop task (Roberts et al., 

2006). While significant alerting, orienting, and executive control effects are consistently 

observed in the visual ANT, the identification of these effects using the auditory ANT in 
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neurotypical adults is more variable with one study identifying significant alerting, 

orienting, and executive control effects (Roberts et al., 2006) and another only significant 

executive control effects (Stewart & Amitay, 2015).3  

Studies looking at the relationship between the visual and auditory versions of the 

ANT conclude that alerting and orienting attention are domain-specific processes while 

executive control is a domain-general process (Roberts et al., 2006; Stewart & Amitay, 

2015). The results from Experiment 1a confirm that alerting and orienting are modality-

specific processes, but we additionally conclude that executive control becomes 

modality-specific as a function of age and that the independence of alerting attention 

across modalities is altered post-stroke. These discrepancies in findings between our 

results in stroke patients and previous findings in neurotypical young adults indicates a 

need to understand whether the neural resources supporting alerting, orienting, and 

executive control are affected by presentation modality (visual and auditory) post-stroke. 

 Both neuroimaging and lesion-based analyses have been used to study alerting, 

orienting, and executive control as defined by Fan et al.’s (2004) visual ANT. These 

studies generally conclude that visual attention is supported by a bilateral network, yet a 

right hemisphere bias is observed (Fan, McCandliss, Fossela, Flombaum, & Posner, 

2005; Petersen & Posner, 2012; Posner & Petersen, 1990; Power et al., 2011; Rinne et al., 

2013; Yeo et al., 2011). This bilateral visual attention network can be subdivided based 

on the specific aspects of attention being investigated. More specifically, alerting 

                                                
3 The results from Experiment 1a correspond with the results from Stewart and Amitay 
(2015): only significant auditory executive control effects were observed in patients with 
aphasia and matched-controls. 
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attention has been shown to be supported by the thalamus, brainstem, and bilateral 

fronto-parietal cortices including bilateral dorsolateral prefrontal cortex, left inferior and 

superior parietal gyri, and the right posterior superior temporal gyrus (Fan, Mccandliss, 

Fossella, Flombaum, & Posner, 2005; Petersen & Posner, 2012; Rinne et al., 2013; Sturm 

& Willmes, 2001); orienting with the right temporal-parietal junction, interparietal 

sulcus, superior parietal lobe, and frontal eye fields (Fan et al., 2005; Petersen & Posner, 

2012; Rinne et al., 2013); and executive control with bilateral prefrontal cortex (Rinne et 

al., 2013) and anterior cingulate gyrus (Fan et al., 2005). Additionally, executive control 

has been associated with the functional connectivity of both the fronto-parietal and 

cingulo-opercular networks as measured by resting-state functional MRI (Dosenbach et 

al., 2008; Petersen & Posner, 2012). Diffusion tensor imaging studies reveal similar 

relationships: visual alerting is associated with the integrity of white matter tracts 

connecting the right thalamus and right supplementary motor area, visual orienting with 

the structural integrity of white matter connecting the bilateral inferior parietal lobes, and 

visual executive control with the integrity of white matter underlying the right 

supramarginal gyrus (Yin et al., 2012). In regards to cortical thickness, visual alerting has 

been associated with the thickness of the left superior parietal lobe (Westlye, Grydeland, 

Walhovd, & Fjell, 2011), visual orienting with the thickness of the right angular gyrus 

(Yin et al., 2012), and visual executive control with the thickness of bilateral anterior 

cingulate cortex, left superior temporal gyrus, and right middle temporal gyrus (Westlye 

et al., 2011). Collectively, this evidence indicates that alerting, orienting, and executive 

control are at least partially supported by distinct neural resources located within both 
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hemispheres; however, questions remain regarding the effects of presentation modality 

on attention. 

 In neurotypical control subjects, functional neuroimaging studies indicate that 

sensory modality influences the specific neural resources supporting each type of 

attention (Fritz et al., 2007; Petersen & Posner, 2012). For example, visual alerting is 

supported by bilateral inferior occipital gyri and posterior parietal cortices while auditory 

alerting is supported by bilateral superior temporal gyri and frontal cortices (Thiel & 

Fink, 2007). While many studies indicate that executive control is a domain-general 

resource (Cieslik et al., 2015; Dosenbach et al., 2008; Marek & Dosenbach, 2018; 

Petersen & Posner, 2012), some modality differences are reported. For example, bilateral 

prefrontal cortex is involved in conflict resolution in both the visual and auditory 

modalities, however, visual and auditory conflict resolution activate distinct sub-regions 

of the right parietal lobe (Roberts & Hall, 2008). These modality-specific findings 

regarding the neural resources supporting visual and auditory attention in neurotypical 

adults, plus behavioral findings in stroke patients indicating altered cross-modal 

relationships between alerting, orienting, and executive control (compared to 

neurotypical adults), necessitate the need to more fully understand the neural resources 

supporting both visual and auditory attention post-stroke.  

Understanding the neural resources supporting alerting, orienting, and executive 

control in the auditory modality is critical for developing a complete picture of the neural 

bases of attention and how the neural resources supporting attention may change post-

stroke. Thus, the purpose of this study was to determine whether the neural resources 

supporting alerting, orienting, and executive control attention are influenced by 
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presentation modality in persons with chronic stroke. To my knowledge, this is the first 

study to examine the neural networks supporting visual and auditory attention post-stroke 

using matched-versions of the well-studied ANT paradigm. While both visual and 

auditory attention are known to be supported by bilateral neural networks (Power et al., 

2011; Yeo et al., 2011), the present experiment focuses on left hemisphere brain regions 

that contribute to visual and auditory attention because my overall interest is in 

understanding the interplay between attention and language and how they are affected by 

left hemisphere stroke lesion patterns. It was hypothesized that visual alerting would be 

supported by the left supramarginal gyrus, left angular gyrus, left superior parietal gyrus, 

and left thalamus. Auditory alerting was hypothesized to be supported by more anterior 

brain regions including Broca’s area (pars opercularis) and the left middle frontal gyrus. 

Both visual and auditory orienting attention are hypothesized to be supported by the left 

supramarginal gyrus, left angular gyrus, and left superior parietal gyrus. Auditory 

orienting attention is expected to be additionally associated with the left anterior 

cingulate cortex, Broca’s area (pars opercularis), and the left middle frontal gyrus. 

Previous literature suggests that executive control is a domain-general cognitive resource, 

so in both modalities it is hypothesized to be supported by left prefrontal cortices 

including the left dorsolateral prefrontal cortex, left middle frontal gyrus, and Broca’s 

area (pars opercularis).  

 

Method 

Participants 



  71 

Twenty-one chronic stroke participants (12 females) who experienced a single left 

hemisphere cerebral stroke4 at least six months prior to testing were included in the 

present study. Participants ranged in age from 28 to 80 years (M = 55, sd = 13.86), were 

pre-morbidly right-handed, native speakers of American English, 18+ years of age, with 

no history of neurological disease, head trauma, or psychiatric disturbances prior to their 

stroke (Table 5; Figure 4). Participants were monetarily compensated for their 

participation. Arizona State University’s Institutional Review Board approved all 

procedures. 

 

Table 5. Stroke group demographics. 

                                                
4 One participant (AZ1033) had two strokes ten years apart. 

 Gender Age 
Months 

Post 
Stroke 

Years of 
Education 

Aphasia 
Diagnosis 

AZ1001 Female 57 77 18 None 
AZ1003 Female 48 110 19 Broca’s 
AZ1006 Male 60 138 14 Broca’s 
AZ1011 Female 73 53 16 Anomic 
AZ1012 Male 77 85 16 Wernicke’s 
AZ1016 Male 37 142 14 Broca’s 
AZ1018 Female 43 29 14 Broca’s 
AZ1022 Female 46 79 14 Broca’s 
AZ1026 Male 70 50 16 None 
AZ1028 Female 80 19 24 Wernicke’s 
AZ1029 Female 34 174 14 None 
AZ1030 Male 56 32 16 Broca’s 
AZ1031 Female 40 63 20 Broca’s 
AZ1032 Male 28 20 13 Anomic 
AZ1033 Male 57 180; 60 14 Global 
AZ1034 Female 59 110 15 Anomic 
AZ1037 Male 57 13 16 Broca’s 
AZ1038 Male 54 155 14 Broca’s 
AZ1039 Female 66 48 14 Anomic 
AZ1040 Female 54 45 14 Broca’s 
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Figure 4. Lesion overlap map for all 21 stroke participants. 

 

Experimental Design 

Visual and auditory ANT tasks. The visual and auditory ANT tasks from 

Experiment 1a provided the measures of visual and auditory alerting (reaction time 

difference for no cue – double cue trials), orienting (reaction time difference for center 

cue – spatial cue trials), and executive control (reaction time difference for incongruent – 

neutral trials).  

AZ1041 Female 59 24 12 Anomic 
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MRI data collection. Stroke participants underwent MRI scanning using a 3T 

Phillips Ingenia MRI scanner equipped with a 32 channel radiofrequency head coil 

located at the Keller Center for Imaging Innovation at the Barrow Neurological Institute 

in Phoenix, Arizona. Chronic stroke lesions were demarcated on a high-resolution 

anatomical T1 image (FOV = 270 X 252, TR = 6.7, flip angle = 9, voxel size = 1 x 1 x 1 

mm) in MRIcron (Rorden & Brett, 2000).  

Lesion identification and normalization. Lesion maps were smoothed with a 

3mm full-width half maximum Gaussian kernel to remove jagged edges associated with 

manual drawing. Enantiomorphic normalization (Nachev, Coulthard, Jäger, Kennard, & 

Husain, 2008) was conducted using SPM12 in accordance with procedures at the 

University of South Carolina (Rorden, Bonilha, Fridriksson, Bender, & Karnath, 2012) 

(i.e., NiiStat’s “nii_harvest”). First, a mirrored image of the T1 image (reflected across 

the midline) was co-registered to the native T1 image. Then, a chimeric image based on 

the native T1 image with the lesioned tissue replaced by tissue from the mirrored image 

(using the smoothed lesion map to modulate this blending, feathering the lesion edge) 

was created. SPM12's unified segmentation-normalization (Ashburner & Friston, 2005) 

was used to transform this chimeric image to standard space; the resulting spatial 

transformation was subsequently applied to the T1 image. The normalized lesion map 

was then binarized, using a 50% probability threshold. 

 Lesion symptom mapping. Lesion maps were segmented into regions of interest 

based on the JHU brain atlas, which uses structural-anatomical boundaries to define 189 

individual regions of interest (Faria et al., 2012). Nine regions of interest were selected 

from the JHU brain atlas based on previous literature and a priori hypotheses. The nine 
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regions of interest included the left dorsolateral prefrontal cortex (defined by the JHU 

atlas as the anterior half of the left middle and superior frontal gyri), the posterior half of 

the left middle frontal gyrus, Broca’s area (pars opercularis), left supramarginal gyrus, 

left angular gyrus, left superior parietal gyrus, left precuneus, left anterior cingulate 

gyrus, and left thalamus5 (Figure 5). The percent of each region of interest that was intact 

was extracted from each patient’s lesion map using an “in house” Matlab (MathWorks, 

Natick, MA) script.  

Data Analysis 

Multiple regression analyses were used to predict the effects of alerting (reaction time 

difference for no cue – double cue trials), orienting (reaction time difference for center 

cue – spatial cue trials), and executive control (reaction time difference for incongruent – 

neutral trials) attention in both the visual and auditory modalities. The predictors for each 

regression analysis were the percent of intact tissue within each of the nine regions of 

interest. 

 

 

                                                
5 Several other left hemisphere brain regions other than the nine identified by this study 
are known to support visual and auditory attention including, but not limited to the left 
superior frontal lobe (prefrontal cortex) and left posterior cingulate cortex. However, due 
to a small sample size resulting in a limited number of degrees of freedom, we are 
restricting our analyses to these nine prominent regions. 



  75 

 

Figure 5. Anatomical regions of interest derived from the JHU atlas (Faria et al., 2012). 

Peak coordinates for each region of interest are as follows: L ACC (-6, 41, 7); BA pars 

opercularis (-45, 13, 15); L DLPFC (-35, 47, 12); L MFG (-36, 18, 38); L SMG (-52, -29, 

32); L AG (-42, -52, 38); L SPG (-24, -48, 51); L Precuneus (-8, -55, 43); L Thalamus (-

12, -18, 7).  

Key: L: left; ACC: anterior cingulate cortex; AG: angular gyrus; BA: Broca’s area; 

DLPFC: dorsolateral prefrontal cortex (comprised of the left middle and superior frontal 

gyri); MFG: middle frontal gyrus; SMG: supramarginal gyrus; SPG: superior parietal 

gyrus.  

 

Results 

Mean reaction times and standard deviations of the mean for alerting, orienting, and 

executive control in the visual and auditory modalities are reported in Table 6. 

 

 

L DLPFC

L MFG

BA 
(pars opercularis)
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Table 6. Mean reaction times and standard deviations of the mean for alerting, orienting, 

and executive control in the visual and auditory modalities. 

Attention 
Component 

Visual Modality 
Mean (sd) 

Auditory Modality 
Mean (sd) 

Alerting 70.00 (178.75) 58.00 (173.37) 
Orienting 32.73 (84.05) 36.97 (112.23) 
Executive Control 235.90 (228.93) 168.47 (221.84) 

 

Visual Attention 

The overall model predicting visual alerting attention was significant [R2 =.79, 

F(9,11)=4.45, p=.01], however, no individual predictors reached significance. The overall 

model predicting visual orienting attention was not significant [R2 =.27, F(9,11)=.45, 

p=.88]. For visual executive control, the overall model was significant [R2 =.71, 

F(9,11)=2.92, p=.05] with the left angular gyrus being the sole significant predictor (b= -

1.16, p=.02); the left thalamus was also trending towards significance (b= -.37, p=.06) 

(Table 7). 

 

Table 7. Multiple regression models predicting visual attention. 

Visual Alerting (No Cue – Double Cue RT) 
Predictors b t p 

Left anterior cingulate cortex -.42 -1.94 .08 

Left middle frontal gyrus .29 .65 .53 
Left dorsolateral prefrontal cortex .30 1.06 .31 

Broca’s area (pars opercularis) -.16 -.59 .57 
Left superior parietal gyrus .40 .74 .47 
Left supramarginal gyrus .09 .40 .70 

Left angular gyrus -.09 -.27 .80 

Left precuneus -.21 -.57 .58 
Left thalamus -.76 -5.17 <.001a 

Visual Orienting (Center Cue – Spatial Cue RT) 
Left anterior cingulate cortex .23 .58 .58 
Left middle frontal gyrus -.15 -.18 .86 
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Left dorsolateral prefrontal cortex -.04 -.08 .94 
Broca’s area (pars opercularis) .39 .78 .45 
Left superior parietal gyrus .33 .33 .75 
Left supramarginal gyrus -.28 -.64 .54 
Left angular gyrus .27 .42 .68 
Left precuneus -.75 -1.09 .30 
Left thalamus .22 .82 .43 
Visual Executive Control (Incongruent – Neutral RT) 
Left anterior cingulate cortex .52 2.06 .06 
Left middle frontal gyrus -.36 -.71 .50 
Left dorsolateral prefrontal cortex -.15 -.44 .67 
Broca’s area (pars opercularis) .34 1.07 .31 
Left superior parietal gyrus 1.38 2.21 .05a 

Left supramarginal gyrus -.33 -1.20 .26 
Left angular gyrus -1.16 -2.84 .02* 
Left precuneus -.26 -.60 .56 
Left thalamus -.37 -2.11 .06 
*significant at p<.05 
a Region of interest elicits a statistically significant finding in the unexpected direction 
(i.e., larger percent of intact tissue predicting worse performance). This is a common 
finding in lesion-symptom mapping and aphasia research due to lesion locations not 
being independent of one another, but should not be interpreted as intact tissue 
equaling impairment. 

 

Auditory Attention 

The overall model predicting auditory alerting attention was significant [R2 =.89, 

F(9,11)=9.58, p<.001] with the left supramarginal gyrus being the sole significant 

predictor (b= .50, p=.01). The overall model predicting auditory orienting attention was 

also significant [R2 =.84, F(9,11)=6.30, p=.003] with Broca’s area (pars opercularis; 

b=.72, p=.01) being the significant predictor. For auditory executive control, the overall 

model was not significant [R2 =.31, F(9,11)=.54, p=.82] (Table 8). 
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Table 8. Multiple regression models predicting auditory attention. 

Auditory Alerting (No Cue – Double Cue RT) 
Predictors b t p 

Left anterior cingulate cortex .008 .05 .96 

Left middle frontal gyrus .31 .96 .36 
Left dorsolateral prefrontal cortex .04 .21 .84 

Broca’s area (pars opercularis) -.12 -.63 .54 
Left superior parietal gyrus -.003 -.008 .99 
Left supramarginal gyrus .50 2.91 .01* 
Left angular gyrus -.90 -3.55 .005a 
Left precuneus .50 1.85 .09 
Left thalamus -.93 -8.70 <.001a 

Auditory Orienting (Center Cue – Spatial Cue RT) 
Left anterior cingulate cortex .30 1.61 .14 
Left middle frontal gyrus -.94 -2.48 .03a 
Left dorsolateral prefrontal cortex .45 1.86 .09 
Broca’s area (pars opercularis) .72 3.11 .01* 
Left superior parietal gyrus .16 .35 .73 
Left supramarginal gyrus -.45 -2.19 .05a 
Left angular gyrus -.25 -.82 .43 
Left precuneus .58 1.78 .10 
Left thalamus -.50 -3.91 .002a 
Auditory Executive Control (Incongruent – Neutral RT) 
Left anterior cingulate cortex .32 .84 .42 
Left middle frontal gyrus  -.79 -1.01 .34 
Left dorsolateral prefrontal cortex .21 .41 .69 
Broca’s area (pars opercularis) .48 1.00 .34 
Left superior parietal gyrus 1.53 1.60 .14 

Left supramarginal gyrus -.18 -.43 .67 
Left angular gyrus -.19 -.31 .76 
Left precuneus -1.02 -1.52 .16 
Left thalamus .12 .46 .66 
*significant at p<.05 
a Region of interest elicits a statistically significant finding in the unexpected direction 
(i.e., larger percent of intact tissue predicting worse performance). This is a common 
finding in lesion-symptom mapping and aphasia research due to lesion locations not 
being independent of one another, but should not be interpreted as intact tissue 
equaling impairment. 
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Discussion 

The purpose of this experiment was to identify the relationship between relatively intact 

brain regions post-stroke, presentation modality, and three well-studied aspects of 

attention (alerting, orienting, and executive control). In the visual domain, there were no 

significant predictors of alerting or orienting attention. Visual executive control was 

predicted by having a greater proportion of the left angular gyrus intact. For auditory 

attention, a more intact left supramarginal gyrus predicted alerting attention and a more 

intact Broca’s area (pars opercularis) predicted orienting attention; there were no 

significant predictors of auditory executive control.  

Visual Attention 

Visual attention is generally supported by a bilateral neural network (Corbetta & 

Shulman, 2002; Petersen & Posner, 2012; Posner & Petersen, 1990; Ungerleider & 

Haxby, 1994; Vossel, Geng, & Fink, 2014). However, lateralization of the specific neural 

resources differs depending on the subtype of attention being investigated. For example, 

in neurotypical controls, visual alerting attention is frequently associated with the right 

prefrontal and parietal cortices, orienting attention with the right parietal cortex, and 

executive control with the left prefrontal cortex and anterior cingulate cortex (Fan, 

Mccandliss, Fossella, Flombaum, & Posner, 2005; Petersen & Posner, 2012; Posner & 

Petersen, 1990; Rinne et al., 2013). This bilateral organization of visual attention likely 

makes visual attention more resilient to stroke lesions and may have contributed to fewer 

brain regions in the left hemisphere being associated with visual attention.  

  In the present study, stroke patients with a larger proportion of the left angular 

gyrus intact demonstrated greater visual executive control abilities. The left angular gyrus 
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is not routinely associated with executive control attention in control subjects. But, 

impairments filtering out irrelevant visual information have been associated with both the 

left and right angular gyri (Friedman-Hill, Robertson, Desimone, & Ungerleider, 2003; 

Schiff, Bardi, Basso, & Mapelli, 2011; Studer, Cen, & Walsh, 2014). For example, 

Friedman-Hill and colleagues (2003) identified a patient with bilateral lesions to the 

angular gyri to have deficits making visual discriminations in the presence of distractors. 

Similarly, decision-making deficits have been observed when transcranial magnetic 

stimulation was applied over both the left and right angular gyri (Schiff et al., 2011; 

Studer et al., 2014). This evidence suggests that the left angular gyrus is involved in 

visual executive control to some extent. 

 The left angular gyrus may support visual executive control via the bilaterally 

organized fronto-parietal network. While the angular gyrus is traditionally associated 

with the default mode network (Greicius, Krasnow, Reiss, & Menon, 2003; Power et al., 

2011), it has also been linked to the fronto-parietal network (Yeo et al., 2011). The 

fronto-parietal network plays a role in selecting and maintaining goal relevant 

information in the presence of distractors (Cieslik et al., 2015). Collectively, this 

evidence suggests that the left angular gyrus is an important component of a larger neural 

network that maintains visual executive control abilities post-stroke.  

Auditory Attention 

Alerting attention is the process of being ready to act on a stimulus and can be 

deconstructed into tonic and phasic alertness. Tonic alertness is intrinsic alertness, which 

naturally fluctuates throughout the day (i.e., circadian rhythms) while phasic alertness is 

the rapid change in attention due to the onset of an external event (Petersen & Posner, 
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2012). Phasic alertness is commonly studied using paradigms in which a warning cue 

precedes the target stimulus (as in the current experiment). Visual and auditory tonic and 

phasic alertness are both associated with the thalamus, brainstem, and bilateral fronto-

parietal cortices (Fan, Mccandliss, Fossella, Flombaum, & Posner, 2005; Petersen & 

Posner, 2012; Rinne et al., 2013; Sturm & Willmes, 2001). Yet, phasic alertness 

measured using both visual and auditory warning cues has additionally been associated 

with a left lateralized fronto-parietal network (Coull, Frackowiak, & Frith, 1998; Sturm 

& Willmes, 2001). Sensory modality has additionally been shown to affect the neural 

resources supporting alerting attention. Thiel and Fink (2007) associated visual alerting 

with the bilateral inferior occipital gyri and posterior parietal cortices and auditory 

alerting with the bilateral superior temporal gyri and frontal cortices. The results from the 

present experiment partially correspond with Coull et al.’s (1998) and Thiel and Fink’s 

(2007) findings: stroke participants with a larger proportion of the left supramarginal 

gyrus intact demonstrated better auditory alerting attention abilities.  

 The other noteworthy finding regarding auditory attention was the relationship 

between Broca’s area (pars opercularis) and auditory orienting attention: participants with 

a larger proportion of the pars opercularis intact demonstrated greater auditory orienting 

attention abilities. Visual and auditory orienting attention, characterized as the selection 

of specific information from a given stimulus (Fan et al., 2002; Posner & Petersen, 1990), 

is most commonly associated with the bilateral temporal-parietal junction, bilateral 

interparietal sulcus, bilateral superior parietal lobe, and bilateral frontal eye fields, with a 

more right hemisphere bias observed in both modalities (Bareham et al., 2018; Fan et al., 

2005; Petersen & Posner, 2012; Pugh et al., 1996; Rinne et al., 2013). Auditory orienting 
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has additionally been associated with activation in the bilateral inferior frontal gyrus (pars 

opercularis) and middle frontal gyrus (Alho, Salmi, Koistinen, Salonen, & Rinne, 2015; 

Pugh et al., 1996). The findings from the present study associating Broca’s area (pars 

opercularis) with auditory orienting attention align with the work from Alho et al. (2015) 

and Pugh et al. (1996), and indicate that left prefrontal cortices may be more involved in 

auditory orienting attention than visual orienting attention. 

Orienting attention, in either domain, is supported by a combination of top-down 

and bottom-up processes: bottom-up processes are engaged in reflexive orienting when 

cues are not predictable while top-down processes are likely engaged when previously 

established relationships exist between cues and targets (Chica, Bartolomeo, & Valero-

Cabré, 2011). In the present version of the auditory ANT, the spatial cues always 

predicted the location of the target; no “invalid” cues were presented. The use of only 

valid cues may reduce demands on bottom-up processes as participants quickly learn that 

the spatial cue location always predicts the location of the target. Invalid cues may utilize 

bottom-up and/or post-hoc reorienting processes more than valid cues as they are not 

predictable and stimulus-driven, therefore the prior knowledge provided by the cue will 

not necessarily aid in predicting the location of the target. Previous work indicates that 

when both valid and invalid cues are utilized, Broca’s area is not associated with 

orienting cues (i.e., valid cues), but instead is associated with reorienting cues (i.e., 

invalid cues) (Mayer, Harrington, Stephen, Adair, & Lee, 2007; Mayer et al., 2009). 

Stroke patients frequently demonstrate deficits in orienting attention (Villard & Kiran, 

2017) and these deficits may inhibit their ability to correctly orient towards the location 

of the cue in the ANT task. This failure to correctly orient to the cue may cause the 
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presentation of the target stimulus to engage post-hoc reorienting processes, which are 

partially supported by Broca’s area. The results from the present experiment suggest that 

having a larger proportion of Broca’s area intact may be beneficial for reorienting 

towards the target after failing to first orient towards the location of the cue. However, 

future work is needed to more clearly parse apart the contributions of top-down and 

bottom-up processing in auditory orienting attention post-stroke.  

 In general, auditory attention may be more lateralized to the left hemisphere than 

visual attention due to the types of stimuli used in the visual flanker (i.e., non-linguistic 

stimuli; arrows) and auditory Stroop tasks (i.e., linguistic stimuli; high, low, day). The 

linguistic nature of the auditory Stroop may have caused greater engagement of left 

hemisphere brain regions which can support both attention and speech processing. Sub-

regions of both the left supramarginal gyrus and Broca’s area (pars opercularis) are both 

implicated in attention (alerting and orienting, respectively) (Alho et al., 2015; Coull et 

al., 1998; Petersen & Posner, 2012; Pugh et al., 1996; Sturm & Willmes, 2001; Thiel & 

Fink, 2007), and speech and language processing (Hickok & Poeppel, 2007; Oberhuber et 

al., 2016). Thus, the intactness of these regions may be more advantageous for 

completing the auditory Stroop task compared to the flanker task as the auditory Stroop 

likely draws upon speech processing resources to some extent, even though participants 

are instructed to focus on the pitch of the voice, not the semantic content of the word. 

However, single word comprehension did not correlate with any measure of auditory 

attention (alerting, orienting, executive control), suggesting that distinct left hemisphere 

regions [likely within the left supramarginal gyrus and Broca’s area (pars opercularis)] 

are supporting general auditory attention and the more linguistic aspects of the task. 
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Nonetheless future work should specifically measure auditory attention using both 

linguistic (like in the present experiment) and non-linguistic auditory (e.g., determining if 

the pitch of two sequentially presented tones is congruent or incongruent) stimuli. This 

comparison will ultimately provide a clearer understanding of the relationship between 

auditory attention and auditory language processing. 

The utilization of primarily left hemisphere regions during the auditory ANT may 

also explain the increased errors stroke participants made on the auditory ANT compared 

to the visual ANT in Experiment 1a. Stroke participants may have made increased errors 

on the auditory ANT as this task primarily relies on a left hemisphere attention network 

that is disrupted and therefore less efficient post-stroke. Alternatively, their visual 

attention abilities may remain stable post-stroke because the visual attention network is 

more bilaterally organized (Corbetta & Shulman, 2002; Petersen & Posner, 2012; Posner 

& Petersen, 1990; Ungerleider & Haxby, 1994; Vossel et al., 2014), and therefore can 

more adequately be supported by right hemisphere networks when left hemisphere brain 

regions are damaged post-stroke. However, further quantification of the neural resources 

supporting both visual and auditory attention is needed in a larger cohort that includes 

patients with right hemisphere lesions to test this possibility.  

Conclusion 

The present experiment investigated the relationship between three components of 

auditory and visual attention and the neural resources supporting each post-stroke. Using 

well-studied versions of the ANT task in the visual and auditory modalities, a more intact 

left angular gyrus was associated with better visual executive control abilities while a 

more intact left supramarginal gyrus predicted better auditory alerting attention, and a 
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more intact Broca’s area (pars opercularis) predicted better auditory orienting attention 

abilities. Overall, these findings indicate that auditory alerting and orienting attention 

may be more left lateralized in the auditory than the visual domain, thus these aspects of 

auditory attention may be more susceptible to impairment after a left hemisphere stroke. 
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CHAPTER 5 

EXPERIMENT 2A: PROSODY, COGNITION, AND SENTENCE COMPREHENSION 

POST-STROKE 

Introduction 

Sentence structure and prosody (i.e., rhythm and pitch changes associated with spoken 

language) interact to facilitate sentence comprehension in neurotypical adults. For 

example, the comprehension of some complex, non-canonical sentence structures has 

been shown to be facilitated when complex sentences are presented with a typical 

prosody compared to an atypical prosody (LaCroix et al., in revision; Roncaglia-Denissen 

et al., 2013). It is hypothesized that this interaction is driven by prosody reducing 

demands placed on cognitive resources such as attention and working memory involved 

in sentence comprehension (Kjelgaard & Speer, 1999; Roncaglia-Denissen et al., 2013; 

Speer et al., 1996). However, for persons with aphasia, who may have cognitive deficits, 

prosodic cues may instead help to selectively engage relatively intact cognitive resources, 

and thus, facilitate sentence comprehension. The purpose of this experiment was to 

identify the relationship between prosody and cognition during sentence comprehension 

in persons with aphasia and matched-controls.  

The overall prosody of a sentence may facilitate sentence comprehension by 

allowing for more efficient use of specific cognitive resources. For example, typical 

sentence prosody, which contains meaningful pitch inflections and prosodic boundaries, 

may facilitate sentence comprehension by directing listener attention towards important 

elements of the sentence (Schafer, 1997). In general, prosodic boundaries (i.e., pauses) 

aid in the division of sentences into smaller, more manageable units, while pitch 
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inflections focus listener attention. For example, changes in pitch have been shown to cue 

listeners about new or contrasting information (Dahan, 2015; Dahan et al., 2002; Ito & 

Speer, 2008; Weber et al., 2006). Pitch inflections have also been shown to resolve 

ambiguities related to pronoun and clause attachment (Lakoff, 1971; Schafer, 1996). 

Like sentence prosody, list prosody (i.e., prosody in which equal emphasis and 

stress is placed on each word) may also facilitate sentence comprehension. However, 

instead of directing listeners’ attention, list prosody may create temporal expectancy 

effects that aid the chunking of information within working memory resources (Gilbert et 

al., 2014). Previous research indicates that temporal expectancy can be created through 

rhythmic cueing prior to the stimulus, which subsequently improves speech 

comprehension (Cason & Schön, 2012). Temporal expectancy can also be embedded 

within the speech stimulus itself; the equal emphasis and stress associated with list 

prosody creates regularly timed intervals and this leads to the creation of temporal 

expectation. Individuals naturally group the speech signal into three to four units/chunks 

of meaningful information (e.g., syllables, words) (Broadbent, 1975; Cowan, 2001). 

Therefore, the temporal expectancy effects created by list prosody may facilitate sentence 

comprehension by helping an individual to correctly group information in the sentence in 

real time. Collectively, this evidence suggests that using prosody to more efficiently 

engage cognitive resources may be advantageous to sentence comprehension, perhaps 

because an initial correct parse prevents the need for re-analysis. 

Using prosody to prevent the need for re-analysis is particularly important for 

complex sentence structures. When the sentence structure is simple and contains subject-

verb-object word order (e.g., The boy is kissing the girl who is tall), prosodic cues may 
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not be important as the linear structure makes it easy to deduce who is doing what to 

whom as well as determining who is tall. However, for more complex sentence structures 

with subject-object-verb word order (e.g., The boy who the girl is kissing is tall), prosodic 

cues are important as the sentence structure is non-linear making the thematic roles and 

who is tall initially unclear. Without sufficient prosodic cues, re-analysis will be required, 

which may be costly to sentence comprehension as it places extra demands on cognitive 

resources. For example, to re-analyze the sentence, The boy who the girl is kissing is tall, 

and deduce the relationship between the agent and patient, the listener must actively 

maintain the sentence in focal attention while simultaneously manipulating the sentence 

(i.e., attaching is tall to the boy and assigning kissing to the girl) in working memory. Re-

analysis of the aforementioned complex sentence can be prevented if a prosodic boundary 

(i.e., pause) is placed after boy and kissing as this will help the listener assign thematic 

roles and successfully attach is tall to the boy during the first presentation of the sentence.  

Using prosody to more efficiently engage cognitive resources during sentence 

comprehension may be particularly important for individuals with reduced cognitive 

capacities, including individuals with aphasia.6 Previous research suggests that patients 

with aphasia benefit from prosodic cueing (Lasky et al., 1976; Pashek & Brookshire, 

1982). Patients with aphasia demonstrated increased sentence comprehension accuracy 

when sentences (Lasky et al., 1976) and paragraphs (Pashek & Brookshire, 1982) were 

presented with a reduced speech rate and exaggerated linguistic stress. Importantly, 

                                                
6 While aphasia is classically thought to be a language-specific disorder, ample evidence 
indicates that cognitive deficits frequently co-occur (Caplan, Michaud, & Hufford, 2013; 
Fridriksson, Nettles, Davis, Morrow, & Montgomery, 2006; Murray, 2012). 
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exaggerated linguistic stress increased sentence comprehension performance independent 

of speech rate (Lasky et al., 1976; Pashek & Brookshire, 1982). While cognition was not 

explicitly measured in this study, the results suggests that strategic placement of pitch 

inflections and prosodic boundaries in the exaggerated linguistic stress conditions may 

have increased sentence comprehension as the prosodic cues drew the patients’ attention 

to important sentential information. 

Similar findings have been observed regarding working memory and sentence 

comprehension in neurotypical adults. In a study comparing individuals with low and 

high working memory capacity, King and Just (1991) demonstrated that individuals with 

lower working memory capacities had longer reading times and lower comprehension 

accuracies for complex object-relative sentences; no comprehension differences between 

the groups were observed for the simpler subject-relative sentences. Furthermore, 

individuals with high working memory capacities demonstrated reduced sentence 

comprehension when asked to simultaneously complete a working memory task. These 

results indicate that a reduction in the cognitive resources available for processing 

language results in an overall decrease in comprehension for complex non-canonical 

sentence structures.  

Another notable finding from King and Just (1991) was when sentences contain 

meaningful pragmatic information (i.e., the use of verbs that give clues as to which of the 

two actors in the sentence completed the task), individuals with low working memory 

capacity experienced gains in comprehension. An example of a sentence containing 

meaningful pragmatic information is as follows: “The robber that the fireman rescued 

stole the jewelry.” Here the words rescued and fireman are associated because firemen 
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are more likely to rescue than robbers. The same is true of the verb stole and its 

association with robber. However, when the sentence does not contain meaningful 

pragmatic information, e.g., “The robber that the fireman detested watched the program,” 

it is less obvious who is watching the program as both actors in the sentence are equally 

likely to do so. King and Just’s (1991) results demonstrate that all participants have 

greater comprehension when sentences contained meaningful pragmatic information 

compared to when they did not; however, the gains were greatest for individuals with low 

working memory capacity. These results suggest that individuals with lower cognitive 

abilities are less likely to be able to effectively utilize syntactic cues, possibly because 

they place greater demands on cognitive resources; and instead, depend more on word-

level semantic information, which may be less cognitively taxing during sentence 

comprehension. Prosodic cues may function similarly to word-level semantic information 

for individuals with impaired cognitive resources (i.e., prosodic cues may provide 

additional information, beyond syntax, that helps parse the sentence). However, this 

relationship between prosody and cognition in relation to sentence comprehension has yet 

to be explored.  

The following experiment will examine how prosody-related sentence 

comprehension differences may be related to working memory and/or attentional control 

abilities in persons with aphasia and matched-controls. This relationship between prosody 

and cognition was specifically explored within the context of non-canonical sentence 



  91 

comprehension because patients with aphasia7 have relatively specific deficits in 

comprehension of complex, non-canonical sentence structures (Bradley et al., 1980; 

Caramazza & Zurif, 1976). It was hypothesized that: (1) attentional control abilities will 

best predict comprehension of non-canonical sentences spoken with sentence prosody 

while (2) working memory abilities will best predict comprehension of non-canonical 

sentences spoken with list prosody.  

 

Method 

Participants 

Participants were 25 chronic stroke patients (14 females) who experienced a single left 

hemisphere cerebral stroke8 at least 6 months prior to testing (Table 9). Stroke 

participants ranged in age from 28 to 80 years (M = 54.20, sd = 13.23). Stroke 

participants were pre-morbidly right-handed, native speakers of American English, 18+ 

years of age, with no history of neurological disease, head trauma, or psychiatric 

disturbances prior to their stroke. An additional 20 controls (14 females) ranging in age 

from 31 to 79 years (M = 51.40, sd = 12.82) who were also right-handed, native speakers 

of American English, 18+ years of age, with no history of neurological disease, head 

trauma, or psychiatric disturbances were also recruited. The stroke and control groups did 

not significantly differ from each other in terms of age, gender, education, and hearing 

                                                
7 Agrammatic comprehension (i.e., complexity-related sentence comprehension deficits) 
has primarily been studied in persons with Broca’s aphasia, but this same phenomenon is 
also reported in conduction aphasia (Caramazza & Zurif, 1976). 
8 One participant had two strokes ten years apart and a second participant had a single 
stroke resulting in a bilateral lesion. 
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status (Table 10). All participants were monetarily compensated for their participation. 

Arizona State University’s Institutional Review Board approved all procedures. 

 
Table 9. Stroke group demographics. 

 

 

 

 

 

 Gender Age 
Months 

Post 
Stroke 

Years of 
Education 

Aphasia 
Diagnosis 

AZ1001 Female 57 77 18 None 
AZ1003 Female 48 110 19 Broca’s 
AZ1006 Male 60 138 14 Broca’s 
AZ1011 Female 73 53 16 Anomic 
AZ1012 Male 77 85 16 Wernicke’s 
AZ1013 Female 47 258 17 Broca’s 
AZ1016 Male 37 142 14 Broca’s 
AZ1018 Female 43 29 14 Broca’s 
AZ1022 Female 46 79 14 Broca’s 
AZ1026 Male 70 50 16 None 
AZ1028 Female 80 19 24 Wernicke’s 
AZ1029 Female 34 174 14 None 
AZ1030 Male 56 32 16 Broca’s 
AZ1031 Female 40 63 20 Broca’s 
AZ1032 Male 28 20 13 Anomic 
AZ1033 Male 57 180; 60 14 Global 
AZ1034 Female 59 110 15 Anomic 
AZ1035 Female 41 72 17 Broca’s 
AZ1036 Male 65 158 15 Broca’s 
AZ1037 Male 57 13 16 Broca’s 
AZ1038 Male 54 155 14 Broca’s 
AZ1039 Female 66 48 14 Anomic 
AZ1040 Female 54 45 14 Broca’s 
AZ1041 Female 59 24 12 Anomic 
AZ1042 Male 55 37 14 Broca’s 
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Table 10. Demographic comparisons between stroke and control groups. 

 Stroke 
(n=25) 

Controls 
(n=20) 

Statistic 

Age 54.52 (13.23) 51.40 (12.82) t(43)=.80, p=.43 
Gender (male/female) 11/14 6/14 c2(1)=.93, p=.34 
Education (years) 15.6 (2.57) 15.20 (2.17) t(43)=.56, p=.58 
Hearing Statusa 15.45 (12.42) 13.43 (9.07) t(43)=.61, p=.55 
aPure tone average for better ear; 500-4000 Hz 

 

Stimuli 

Sentences. Stimuli were a subset of sentences (10 syllables each) representing 

two sentence structures (canonical and non-canonical) previously reported by Wilson et 

al. (2010, 2014, 2016). All sentences contained two nouns (boy, girl), one of seven verbs 

(hit, push, kick, kiss, wash, pull, hug), and one of three color adjectives (blue, green, red); 

thematic role assignment, verb, and adjective use were balanced across all sentence 

structures. See Table 9 for descriptions and examples.  

Prosody manipulations. All sentences were spoken with both sentence prosody 

(i.e., natural prosody) and list prosody (i.e., monotone prosody which lacks pitch 

inflections and meaningful prosodic boundaries). Stimuli were digitally recorded by a 

classically trained female vocalist in Audacity sound editing software using a 32-bit 

resolution and 44,100 Hz sampling rate. Loudness was matched across all stimuli. 

To generate the sentences with sentence prosody, the speaker spoke each sentence 

with natural intonation. The speaker was instructed to accentuate key words needed to 

parse the sentence with pitch inflections and prosodic boundaries. Sentences with list 

prosody were generated by recording each word in isolation, out of sentence context, and 

then concatenating the individual words in the order of the experimental sentence. The 
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inter-word interval for the list prosody sentences was 20 milliseconds. Durations for 

sentences spoken with sentence prosody and sentences spoken with list prosody are 

reported in Table 11.  

 

Table 11. Sentence stimuli. 
 

Sentence 
Structure* 

Example Syntactic Parsing Sentence Prosody 
Duration 

List Prosody 
Duration 

Canonical The boy who 
is red is 
kissing the 
girl. 

Subject-verb-
object word order. 
Active modifying 
clause can only be 
attached to the 
subject. 

3.81-4.45 seconds 
(M=4.07, sd= .13) 

4.52-4.79 
seconds 
(M=4.68, sd= 
.07). 

Non-
Canonical 

The girl who 
the boy is 
kissing is red. 

Subject-object-
verb word order. 
Active modifying 
clause can be 
attached to either 
the subject or 
object; correct 
parsing leads to 
attachment of 
modifying clause 
to the subject. 

3.88-4.73 seconds 
(M=4.29, sd= .15) 

4.53-4.80 
seconds 
(M=4.72, sd= 
.07). 

*The canonical sentences correspond to one of the two types of sentences within 
Wilson et al.’s (2010) “long easy” sentences. The non-canonical sentences correspond 
to Wilson et al.’s (2010) “long medium.” 

 

Experimental Design 

As part of a larger test battery, participants completed a sentence-picture matching task, 

the auditory Attention Network Test (ANT) from Experiment 1, the Wechsler Adult 

Intelligence Scale-IV Working Memory Index, the Immediate Memory and Attention 

indices from the Repeatable Battery for the Assessment of Neuropsychological Status 

(RBANS), and the short form of the Boston Diagnostic Aphasia Examination-III (BDAE-
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III) single-word auditory comprehension subtest. Pure tone audiometric thresholds (500-

4000 Hz) were also measured on all participants. 

Sentence-picture matching task. The sentence-picture matching task has 

previously been used by Wilson et al. (2010; 2014). Like the task in Wilson et al. (2010; 

2014), each trial began with the simultaneous presentation of an auditory sentence and a 

target and foil picture (positioned left and right respectively and counterbalanced across 

trials). Foils were either thematic (i.e., role reversal of agent and patient) or color based 

(i.e., color assigned to wrong agent/patient) and were counterbalanced across trials. 

Participants were instructed to decide which picture matched the target sentence as 

quickly and accurately as possible, with accuracy being emphasized over speed. 

Response accuracy and reaction time were recorded for each trial via a keyboard button 

press. After the participant responded, a black fixation cross appeared for one second 

before initiation of the next trial (Figure 6A). Stimulus presentation was randomized for 

each participant. Verbal and written instructions, examples of all stimuli, and three 

practice trials preceded the start of the experiment. 

The entire paradigm consisted of 80 experimental trials and 10 rest trials. Of these 

80 trials, 40 trials were of interest to this experiment, resulting in four experimental 

conditions (two sentence structures x two prosody manipulations) with each condition 

containing 10 sentence presentations. From these four experimental conditions, we 

isolated the additional processing load associated with non-canonical sentence processing 

using absolute difference scores to create two dependent variables: (1) non-canonical 

sentence reaction time – canonical sentence reaction time within sentence prosody and 

(2) non-canonical sentence reaction time – canonical sentence reaction time within list 
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prosody. For both dependent variables, reaction time difference scores closer to zero 

reflect better sentence comprehension abilities.  

Auditory Attention Network Task (ANT).  The same auditory ANT used in 

Experiment 1 was used to measure alerting (no cue reaction time – double cue reaction 

time), orienting (center cue reaction time – spatial cue reaction time), and executive 

control (incongruent target reaction time – congruent target reaction time) attention 

(Figure 6B). Executive control was calculated using congruent trials as the baseline 

condition based on the conclusions from Experiment 1 indicating that auditory neutral 

trials function similarly to auditory incongruent trials, especially for stroke patients. 

Calculating executive control by subtracting congruent trials from incongruent trials has 

been implemented in several previous studies (Chica et al., 2012; Ishigami et al., 2016; 

Ishigami & Klein, 2011; Jennings, Dagenbach, Engle, & Funke, 2007; Spagna et al., 

2015; Stewart & Amitay, 2015; Wang et al., 2014; Zhou et al., 2011). As in Experiment 

1, larger alerting and orienting reaction time difference scores indicate better alerting and 

orienting attention abilities (i.e., participants respond faster to the alerting or orienting 

cue compared to the comparison cue), while reaction time difference scores closer to zero 

reflect better executive control attention (i.e., similar levels of executive control are 

necessary for incongruent and congruent trials). 
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Figure 6. Illustration of the (A) sentence-picture matching task and (B) auditory ANT 

procedures. 

 

Wechsler Adult Intelligence Scale-IV (WAIS-IV). Working memory was 

measured using the WAIS-IV Working Memory Index. The WAIS-IV Working Memory 

Index is an age-adjusted standardized measure (M=100, sd=±15) where larger scores 

represent better working memory abilities. The WAIS-IV Working Memory Index is 

comprised of the Digit Span and Arithmetic subtests. In the Digit Span subtest, 

participants are read a series of numbers of increasing length and asked to recall the 

numbers in either the order presented, reverse order, or ascending order. The Arithmetic 

subtest has participants mentally solve auditorily presented mathematical problems of 

increasing complexity. 

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). 

Memory and attention were additionally assessed using two indices from the RBANS. The 
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Immediate Memory index, comprised of the list learning and story memory subtests is 

primarily a measure of short-term memory9 while the Attention index, comprised of the 

digit span and coding subtests, is a measure of basic attentional processes (e.g., sustained 

attention). The RBANS was chosen because it is an age-adjusted standardized assessment 

(with each index being centered around a mean of 100 and standard deviation of ±15; 

larger scores indicate better cognitive abilities). Additionally, the RBANS is routinely 

available in clinical settings, has a short completion time (30 minutes), and is preferable 

to other similar tests such as the Cognitive-Linguistic Quick Test as it contains a measure 

of both attention and memory making it a useful screener of initial deficits. The RBANS 

also contains parallel forms, making it easier to track progress over the course of therapy. 

Therefore, in addition to standard laboratory assessments, attention and memory were 

assessed using the RBANS to meaningfully extend the results into speech-language 

pathology clinical practice, specifically in the rehabilitation setting.  

 Boston Diagnostic Aphasia Examination-III (BDAE-III) Short Form. The 

BDAE-III short form was used to assess auditory single-word comprehension. In this 

subtest, participants point to various familiar objects/pictures (e.g., body parts, animals, 

vehicles, etc.) following a verbal prompt from the examiner (e.g., Point to your shoulder). 

Participants could achieve a maximum raw score of 16; larger scores represent better 

single word comprehension. The BDAE-III short form does not provide cut-off scores 

indicating impairment, however, the raw scores do correspond with percentiles to 

                                                
9 Short-term memory has been previously linked to sentence comprehension deficits in 
aphasia (Caplan et al., 2013; Pettigrew & Hillis, 2014; Potagas, Kasselimis, & 
Evdokimidis, 2011). 



  99 

facilitate comparison with the norming sample. For example, a score of 15 out of 16 is 

equivalent to the 60th percentile (i.e., participants achieving a score of 15, score better or 

the same as 60% of the population; this indicates that some degree of impairment is 

associated with one erroneous response on the BDAE-III short form). Importantly, 

auditory single-word comprehension on the BDAE-III short form positively correlates 

(r=.77) with the BDAE-III standard form, indicating the short form is a reliable measure 

of auditory single-word comprehension. 

Data Analysis 

Sentence-picture matching task analysis. Previous work consistently associates 

increased processing demands with non-canonical sentences (i.e., longer reactions times 

and decreased accuracy) compared to canonical sentences in both controls (Ferreira, 

2003; King & Just, 1991; Roncaglia-Denissen et al., 2013; Wilson et al., 2010) and 

patients with aphasia (Caplan et al., 2013; Caramazza & Zurif, 1976; Rogalsky et al., 

2018). Similarly, typical sentence prosody is associated with faster reaction times and 

higher accuracy compared to irregular prosodic patterns (Kjelgaard & Speer, 1999; 

Roncaglia-Denissen et al., 2013; Speer et al., 1996). To facilitate comparison with 

previous work, we first analyzed the reaction time data using a repeated-measures 

ANOVA with two levels of sentence structure (non-canonical, canonical) and two levels 

of prosody (sentence prosody, list prosody). 

Cognitive measures to predict sentence comprehension. The purpose of this 

study was to investigate the relationship between cognition, prosody, and sentence 

comprehension. The data was analyzed in two-steps. In step one, bivariate correlations 

were evaluated between potential covariates [auditory single word comprehension, pure 



  100 

tone audiometry (500-4000 Hz better ear), age, education, time post-stroke] and the 

dependent variables: (1) non-canonical sentence reaction time – canonical sentence 

reaction time within sentence prosody (hereafter non-canonical sentences spoken with 

sentence prosody) and (2) non-canonical sentence reaction time – canonical sentence 

reaction time within list prosody (hereafter non-canonical sentences spoken with list 

prosody). Covariates which significantly correlated with at least one of the dependent 

variables were included in the multiple regression analyses. In step two, multiple 

regressions were used to predict the dependent variables (non-canonical sentences spoken 

within sentence prosody and non-canonical sentences spoken within list prosody) from 

the independent variables (alerting attention, orienting attention, executive control 

attention, WAIS-IV Working Memory Index, RBANS Immediate memory and Attention 

indices).  

Reaction times associated with incorrect responses and those greater than 2.5 

standard deviations from each participant’s mean were excluded from the analyses; this 

data trimming procedure was determined a priori based on it being a standard, well-

studied approach in psycholinguistic research (Baayen & Milin, 2010; Lachaud & 

Renaud, 2011; Ratcliff, 1993). This approach aims to capture the middle 85% of the 

distribution of the reaction time measurements and is based on the assumption that the 

process of interest is being captured, not other extraneous factors (e.g., brief distractions, 

button press mistakes, etc.). Consistent with the above procedure, 14.56% of the data was 

removed for the auditory ANT and 24.08% from the sentence-picture matching task for 

the aphasia group; however, it should be noted that the majority of the trials removed 

were due to errored responses and only .41% of trials were removed due to standard 
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deviations being greater than 2.5 times an individual participant’s mean. For the control 

group, 4.39% of the data was removed for the auditory ANT and 4.0% from the sentence 

picture matching task.  

 

Results 

Sentence-Picture Matching Task 

Replicating previous work, main effects of sentence structure [stroke: F(1, 24)=5.99, 

p=.02; control: F(1, 19)=30.84, p<.001] and prosody [stroke: F(1, 24)=6.59, p=.02; 

control: F(1, 19)=73.31, p<.001] were observed in both the stroke and control groups 

with faster correct responses being observed for canonical sentence structures and 

sentences spoken with sentence prosody (Figure 7; Table 12); this indicates increased 

processing demands associated with non-canonical sentences and sentences spoken with 

list prosody. The interaction between sentence structure and prosody was not significant 

in either group [stroke: F(1, 24)= .23, p= .64; control: F(1, 19)=1.62, p=.22]. 

 

 

Figure 7. Mean reaction times (milliseconds) for the stroke group (left) and control group 

(right) for sentence structure separated by prosody. Error bars show SEM. 
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Table 12. Mean reaction times and standard deviations of the mean for canonical and 

non-canonical sentences spoken in sentence prosody and list prosody. 

 Condition Sentence Prosody 
Mean (sd) 

List Prosody 
Mean (sd) 

Control Group 
(n=20) 

Canonical 3895.75 (637.60) 4355.56 (647.05) 
Non-Canonical 4618.34 (726.63) 5254.79 (833.28) 
RT Difference Score 786.60 (2189.26) 1059.43 (2628.75) 

Stroke Group 
(n=25) 

Canonical 6118.55 (2592.96) 6966.18 (3392.18) 
Non-Canonical 6905.15 (2173.53) 8042.40 (2460.26) 
RT Difference Score 722.60 (758.55) 899.24 (686.06) 

 

Cognitive Measures Predicting Sentence Comprehension 

Means and standard deviation of the means for each cognitive variable are reported in 

Table 13 for both groups. Separate multiple regression models were conducted for each 

group to determine the relationship between short-term memory (RBANS Immediate 

Memory index), working memory (WAIS-IV Working Memory Index), and auditory 

attention (alerting, orienting, and executive control as measured by the auditory ANT and 

RBANS Attention index), and comprehension of non-canonical sentences spoken with 

sentence prosody and non-canonical sentences spoken with list prosody while accounting 

for the potential covariates [auditory single word comprehension, pure tone audiometry 

(500-4000 Hz better ear), age, education, time post-stroke]. 

 

Table 13. Means and standard deviations of the mean for each cognitive variable. 

Cognitive Variable Control Group 
Mean (sd) 

Stroke Group 
Mean (sd) 

Auditory Alerting 7.91 (44.28) 21.27 (209.35) 
Auditory Orienting -6.43 (44.75) 20.37 (119.24) 
Auditory Executive 
Control 

123.09 (56.77) 183.15 (232.22) 
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WAIS-IV Working 
Memory Index 

108.15 (13.06) 70.96 (17.14) 

RBANS Immediate 
Memory Index 

96.59 (24.39) 65.24 (19.46) 

RBANS Attention Index 102.25 (28.89) 64.12 (19.39) 
 

Stroke group. Of the potential covariates, only auditory single-word 

comprehension significantly correlated with the dependent variables (Table 14). The 

overall regression model predicting non-canonical sentences spoken with sentence 

prosody was significant [R2 =.55, F(7,17)=2.96, p=.03] with auditory single word 

comprehension (b=.61, p=.02) and auditory orienting attention (b= -.47, p=.04) being the 

significant predictors (Table 15). For non-canonical sentences spoken with list prosody, 

the overall regression model was significant [R2 =.65, F(7,17)=4.44, p=.006] with the 

RBANS Immediate Memory index being the strongest significant predictor (b=.66, 

p=.008) followed by auditory executive control (b= -.37, p=.03) (Table 15).  

 

Table 14. Bivariate correlations between potential covariates and the dependent variable 

for each group. 

Non-Canonical - Canonical Sentences with Sentence Prosody RT 
Covariate Stroke Group Control Group 
Age r(23)= -.07, p=.75 r(18)= -.09, p=.70 
Single Word Comprehension r(23)= .58, p=.003* r(18)= -.07, p=.77 
Hearing Status r(23)= -.08, p=.70 r(18)= .14, p=.57 
Years of Education r(23)= .03, p=.89 r(18)= .21, p=.37 
Months Post Stroke r(23)= -.26, p=.21 n/a 
Non-Canonical - Canonical Sentences with List Prosody RT 
Age r(23)= -.04, p=.84 r(18)= -.19, p=.43 
Single Word Comprehension r(23)= .41, p=.04* r(18)= -.08, p=.74 
Hearing Status r(23)= .01, p=.97 r(18)= .09, p=.71 
Years of Education r(23)= -.26, p=.21 r(18)= .07, p=.78 
Months Post Stroke r(23)= -.26, p=.20 n/a 
*significant at p<.05 
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Table 15. Multiple regression models for stroke group. 

Non-Canonical - Canonical Sentences with Sentence 
Prosody RT 

Predictors b t p 
Single Word Comprehension .61 2.65 .02* 
WAIS-IV Working Memory Index -.60 -1.44 .17 
RBANS Immediate Memory Index .02 .07 .95 
RBANS Attention Index .42 1.04 .31 
Alerting Attention .28 1.31 .21 
Orienting Attention -.47 -2.19 .04* 
Executive Control Attention -.01 -.08 .94 
Non-Canonical - Canonical Sentences with List Prosody RT 
Single Word Comprehension .10 .47 .65 
WAIS-IV Working Memory Index -.67 -1.82 .09 
RBANS Immediate Memory Index .66 2.98 .008* 
RBANS Attention Index .63 1.76 .10 
Alerting Attention .37 1.95 .07 
Orienting Attention .03 .16 .88 
Executive Control Attention -.37 -2.30 .03* 
*significant at p<.05 

 

Control group. There were no significant correlations between the potential 

covariates and the dependent variables for the control group (Table 14). The overall 

regression model predicting non-canonical sentences spoken with sentence prosody was 

significant [R2 =.59, F(6,13)=3.17, p=.04] with the RBANS Immediate Memory index (b= 

.69, p=.05) being the strongest significant predictor followed by auditory orienting 

attention (b= -.43, p=.04) (Table 16). For non-canonical sentences spoken with list 

prosody, the overall regression model was not significant [R2 =.45, F(6,13)=1.75, p=.19] 

(Table 16). 
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Table 16. Multiple regression models for control group. 

Non-Canonical - Canonical Sentences with Sentence 
Prosody RT 

Predictors b t p 
WAIS-IV Working Memory Index -.04 -.16 .87 
RBANS Immediate Memory Index .69 2.16 .05* 
RBANS Attention Index -.61 -1.95 .07 
Alerting Attention -.25 -1.14 .27 
Orienting Attention -.43 -2.23 .04* 
Executive Control Attention .28 1.40 .19 
Non-Canonical - Canonical Sentences with List Prosody RT 
WAIS-IV Working Memory Index -.38 -1.42 .18 
RBANS Immediate Memory Index .77 2.05 .06 
RBANS Attention Index -.64 -1.74 .11 
Alerting Attention .006 .03 .98 
Orienting Attention -.16 -.70 .50 
Executive Control Attention .28 1.19 .26 
*significant at p<.05 

 

Discussion 

The present experiment looked at the relationship between cognition (short-term 

memory, working memory, and auditory attention), prosody, and sentence 

comprehension in stroke participants and matched-controls. The findings indicate that in 

stroke participants, auditory orienting attention (i.e., being able to select specific 

information from a stimulus) predicts non-canonical sentence comprehension when 

sentences are spoken with sentence prosody. More specifically, stroke patients with 

relatively preserved auditory orienting attention demonstrated greater comprehension of 

sentences spoken with sentence prosody. Regarding list prosody, both auditory executive 

control and short-term memory predicted comprehension of non-canonical sentences 

spoken with list prosody. Interestingly, it was stroke participants with poor auditory 
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executive control and/or short-term memory abilities that demonstrated gains in 

comprehension when sentences were spoken with list prosody. These results suggest that 

good auditory attention abilities are necessary to benefit from the cues characteristic of 

typical sentence prosody following a left hemisphere stroke. However, when stroke 

participants have cognitive deficits in auditory attention and/or short-term memory, they 

may not be able to capitalize on typical prosodic cues, and instead appear to benefit from 

the list prosody manipulation. 

Attention and Sentence Prosody 

As hypothesized, attention abilities significantly predicted comprehension of non-

canonical sentences spoken with sentence prosody in the stroke participants. Of the four 

measures of attention entered in the model, orienting attention was the sole significant 

attention predictor indicating that stroke participants with relatively preserved orienting 

attention benefit when non-canonical sentences are spoken with sentence prosody. A 

similar pattern was observed in the control group: participants with better orienting 

attention demonstrated greater comprehension of sentences spoken with sentence 

prosody.  

 In the present experiment, attention was measured using Posner and Petersen’s 

(1990) three measures of attention, alerting, orienting, and executive control, as well as 

the RBANS Attention index. Alerting measures the ability to maintain vigilance towards 

external stimuli, orienting attention is the ability to select specific information from a 

given stimulus, and executive control looks at the efficiency of obtaining a correct 

response when information conflicts within a stimulus (Fan & Posner, 2004; Posner & 
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Petersen, 1990). The RBANS Attention index is a measure of more basic attentional 

processes (i.e., sustained attention) and processing speed.  

 Given the intended underlying construct of each attentional process, it is not 

surprising that orienting attention was the strongest predictor of comprehension of non-

canonical sentences spoken with sentence prosody. Sentence prosody contains 

meaningful pitch inflections and prosodic boundaries that are designed to direct listener 

attention towards important aspects of the sentence (Dahan, 2015; Schafer, 1997). 

Therefore, intact orienting attention resources are likely able to capitalize on the 

meaningful pitch inflections and prosodic boundaries as orienting attention is involved in 

selecting specific and relevant information from the stimulus (Fan & Posner, 2004; 

Posner & Petersen, 1990). This suggests that sentence prosody can engage relatively 

preserved orienting attention abilities in stroke patients to improve their comprehension 

of non-canonical sentences.  

 Basic attentional processes such as alerting attention may not be specifically 

recruited by sentence prosody (or list prosody) per se, but may instead be involved in 

more global aspects of speech comprehension more generally. Alerting attention is 

involved in the initial engagement following stimulus presentation as well as maintaining 

vigilance towards external stimuli (Fan et al., 2002; Posner & Petersen, 1990). This 

suggests that alerting attention is likely engaged by the initial onset of the sentence, but 

once engagement is established, it may not be crucial for sentence comprehension. 

Therefore, alerting attention is likely a necessary precursor for speech comprehension in 

general (single-word, sentence, discourse level, etc.) and not a prosody-specific attention 

function. The lack of a significant relationship between the RBANS Attention index and 
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sentence prosody is likely explained similarly as the RBANS Attention index measures a 

more basic attentional process (i.e., sustained attention). The ability to sustain attention 

may also be a necessary precursor to sentence comprehension, regardless of prosody, and 

consequently, will not be specifically engaged by either sentence or list prosody.  

Like alerting and sustained attention, executive control may also not be 

selectively engaged by a specific sentence structure or prosody manipulation. Executive 

control involves selecting relevant stimulus information while inhibiting irrelevant 

stimulus information (Fan & Posner, 2004; Posner & Petersen, 1990). In the present 

experiment, each single sentence only contained relevant information; this possibly 

equates executive control attentional demands across sentence structures and 

subsequently negates any potential executive control processing benefits non-canonical 

sentence structures may gain from sentence prosody. While good executive control 

abilities are not crucial in the present experiment for comprehending sentences spoken 

with sentence prosody, good executive control attention is likely necessary when 

potentially distracting information is presented simultaneously with the sentence as 

illustrated by (1) the cocktail-party effect, which simulates listening in a restaurant (i.e., a 

sentence is presented while multiple speakers talk in the background), and (2) sentences 

that contain semantic or syntactic ambiguities. Regarding the cocktail-party effect, good 

executive control abilities are likely necessary when participants need to selectively 

attend to the target stimulus (e.g., a sentence) while inhibiting the irrelevant background 

information (e.g., multiple background talkers) (Bronkhorst, 2000). Importantly, good 

executive control abilities have been linked to comprehension of sentences in noisy 

backgrounds (e.g., restaurants) (Bronkhorst, 2000, 2015). Similarly, good executive 
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control abilities are likely necessary when sentences contain semantic and/or syntactic 

ambiguities as participants need to inhibit the alternative meaning to correctly select the 

intended meaning (January et al., 2009).  

 In addition to auditory orienting attention, the RBANS Immediate Memory Index 

additionally predicted comprehension of sentences spoken with sentence prosody in the 

control group. Interestingly though, it was control participants with poor short-term 

memory who demonstrated better comprehension of non-canonical sentences spoken 

with sentence prosody. It has been hypothesized that typical prosodic cues may facilitate 

sentence comprehension in neurotypical adults by reducing demands placed on cognitive 

resources during sentence comprehension (Cohen et al., 2001; Kjelgaard & Speer, 1999; 

Roncaglia-Denissen et al., 2013; Speer et al., 1996). Given this hypothesis, these findings 

indicate that in addition to directing listener attention to important aspects of the 

sentence, typical prosodic cues may also improve sentence comprehension by helping 

participants compensate for deficits in cognitive functions (e.g., short-term memory) that 

support complex sentence processing. For example, the exaggerated pitch inflections and 

prosodic boundaries characteristic of sentence prosody may provide participants with a 

clearer framework for how to group sentence-level information; this subsequently 

facilitates sentence comprehension by making information easier to maintain while 

higher-order comprehension processes occur (e.g., thematic role assignment, clause 

attachment). This function of prosody may be particularly important when the cognitive 

resources supporting complex sentence comprehension are damaged.  

 The identification of two predictors (with opposite directionalities) spanning 

multiple cognitive domains in control participants likely reflects some independence 
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among cognitive resources such as memory and attention in neurotypical adults, and thus 

affects how each cognitive process relates to sentence prosody. This discrepancy in the 

directionality of the two predictors (i.e., good orienting attention and poor short-term 

memory being associated with sentence prosody) may reflect distinct changes in the 

neural resources supporting each cognitive function. Attention and working memory are 

at least partially supported by distinct functional networks; attention has been associated 

with a fronto-parietal network and working memory with the cingulo-opercular network 

(Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015). Therefore, changes to one of these 

networks, possibly due to age, may lead to a dissociation in the relationship between 

specific cognitive predictors and typical sentence prosody. However, future work is 

needed to better understand how the neural resources supporting sentence prosody 

change as a function of age. 

Cognitive Deficits and List Prosody 

Working memory, measured by the WAIS-IV Working Memory Index, did not 

significantly predict comprehension of non-canonical sentences spoken with list prosody 

for either group. Instead, auditory executive control and short-term memory (i.e., RBANS 

Immediate Memory index) both predicted comprehension of non-canonical sentences 

spoken with list prosody for the stroke group. In the control group, the overall regression 

model was not significant. However, the RBANS Immediate Memory subtest (i.e., short-

term memory) trended (p=.06) towards significantly predicting comprehension of 

sentences spoken with list prosody.  

Contrary to what was expected, stroke participants with poor auditory executive 

control demonstrated better comprehension of sentences spoken with list prosody. 
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Executive control is a measure of how well conflict can be consciously mitigated when 

competing information is presented and is largely supported by the dorsolateral prefrontal 

cortex (Cieslik et al., 2015; Domenech & Koechlin, 2015; January et al., 2009; Kane & 

Engle, 2002; MacDonald, Cohen, Stenger, & Carter, 2000), but also the parietal lobe 

(Cieslik et al., 2015; Rinne et al., 2013; Yin et al., 2012) and functional connections 

between these two regions (Dosenbach et al., 2007; Seeley et al., 2007). Typical sentence 

prosody has also been shown to be supported by the left dorsolateral prefrontal cortex, 

particularly Broca’s area (den Ouden et al., 2016; Meyer et al., 2004). The similarities in 

the neural substrates supporting both sentence prosody and executive control attention 

make it likely that a stroke lesion affecting the dorsolateral prefrontal cortex could 

potentially result in a stroke patient having poor executive control abilities, as well as 

deficits in processing typical sentence prosody. Consequently, it is not surprising that 

persons with stroke with poor executive control attention demonstrate improved 

comprehension when sentences are spoken with list prosody; this is likely to be 

particularly true when attentional control abilities are reduced and therefore typical 

prosodic information cannot be utilized as attentional cues. However, future work is 

needed to better understand the neural resources supporting each type of prosody. 

In addition to deficits in auditory executive control attention, stroke participants 

with poor short-term memory abilities also demonstrate greater comprehension of 

sentences spoken with list prosody. Speech processing relies on a combination of top-

down and bottom-up processing mechanisms (de Heer, Huth, Griffiths, Gallant, & 

Theunissen, 2017). Top-down processes, including short-term memory and attention, 

likely facilitate sentence comprehension by using previous experiences with language 
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(e.g., knowledge of how prosodic cues group sentence-level information) to parse the 

sentence’s structure. Bottom-up processing mechanisms are used when linguistic 

information is absent or distorted as individuals are not able to draw upon their previous 

experiences with language to parse the sentence (Davis, Marslen-Wilson, & Gaskell, 

2002). The consistent rhythm of list prosody disrupts the expected prosodic cues and, 

subsequently, knowledge of how to chunk sentence-level information; therefore, 

individuals may rely more on bottom-up processing mechanisms to comprehend 

sentences spoken with list prosody. This ability of list prosody to recruit bottom-up 

processing mechanisms may be particularly beneficial for individuals with cognitive 

deficits (e.g., attention, short-term memory) as these individuals are not able to use their 

previous experience with language (e.g., pitch inflections) to parse the sentence’s 

structure, and may instead need to rely on alternative non-linguistic aspects of language 

(e.g., rhythm) to parse sentence-level information.  

   The consistent rhythm generated by list prosody may also facilitate non-

canonical sentence comprehension by creating temporal expectancy effects that aid the 

chunking of information within damaged short-term memory resources. Rhythmic cueing 

prior to a stimulus has been shown to create temporal expectation and improve speech 

perception (Cason & Schön, 2012). The results from the present experiment suggest that 

temporal expectation can also be embedded within the speech stimulus itself and may be 

generated by the consistent rhythm associated with list prosody. Temporal expectancy 

may aid stroke patients in managing sentence-level information as having a clear 

expectation for when new information (e.g., words) will be added may help individuals 

compensate for deficits in the cognitive resources involved in chunking and the 
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temporary storage of information. Importantly, previous work indicates that information 

is stored as chunks within short-term memory (Cowan, 2001; Miller, 1956). Therefore, 

the ability of list prosody’s rhythm to generate temporal expectations may be particularly 

beneficial for individuals with deficits in the cognitive resources supporting the grouping 

and storage of information (e.g., short-term memory). However, further work is needed to 

better understand the relationship between list prosody, rhythm, and bottom-up 

processing mechanisms following a left hemisphere stroke. 

As previously mentioned, the relationships between alerting attention and both 

sentence prosody and list prosody were non-significant. However, it should be noted that 

although non-significant, the relationship between list prosody and alerting attention was 

trending towards significance in the stroke group (p=.07). Similar to what was observed 

regarding auditory executive control, stroke participants with poorer auditory alerting 

abilities demonstrated greater gains in comprehension when sentences were spoken with 

list prosody. Alerting attention is involved in maintaining vigilance towards external 

stimuli (e.g., sentences) (Fan et al., 2002; Posner & Petersen, 1990) and is likely engaged 

by the initial onset of a sentence, regardless of prosody, indicating that alerting attention 

is a necessary precursor to speech comprehension in general. Yet, the relationship 

between alerting attention and list prosody may be stronger due to the structure of list 

prosody. List prosody is structured so that there are 20-milliseconds between each word. 

The structure of list prosody may lead to the re-engagement of alerting attention at the 

onset of each new word. Given this hypothesis, the trend towards persons with poorer 

alerting attention having greater comprehension when non-canonical sentences are 

spoken with list prosody is plausible as the structure of the list prosody (i.e., 20-
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milleseconds of pausing between words) consistently re-engages alerting attention, 

helping patients to overcome potential deficits in alerting attention. Alternatively, the 

structure of sentence prosody (i.e., normally fluent prosody with natural pausing) does 

not afford a person with reduced alerting attention the same assistance as list prosody 

since sentence prosody solely engages alerting attention at the onset of the sentence. 

However, future work is needed to better understand the specific aspects of each prosody 

that recruit each type of attention. 

Conclusion 

The present study investigated the relationship between cognition, prosody, and sentence 

comprehension in stroke participants and matched-controls. Using measures of auditory 

alerting, orienting, and executive control attention, and verbal short-term and working 

memory, it was found that stroke participants with better auditory orienting attention 

demonstrated greater comprehension of sentences spoken with sentence prosody. 

Regarding list prosody, it was found that stroke participants with deficits in auditory 

executive control and/or short-term memory demonstrated greater comprehension of 

sentences spoken with list prosody. Overall, these findings indicate that following stroke, 

individuals need good auditory attention to benefit from the cues characteristic of typical 

sentence prosody. However, when cognitive deficits (e.g., auditory executive control, 

short-term memory) are present, stroke participants are not able to capitalize on typical 

prosodic cues, and instead benefit from the list prosody manipulation. 
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CHAPTER 6 

EXPERIMENT 2B: NEURAL RESOURCES SUPPORTING PROSODY, 

COGNITION, AND SENTENCE COMPREHENSION POST-STROKE 

Introduction 
 

It is largely accepted that a left lateralized fronto-temporo-parietal network supports 

sentence comprehension and language more generally (Hickok & Poeppel, 2007). 

Classically, the suprasegmental aspects of speech, including prosody, are associated with 

the right hemisphere (Friederici & Alter, 2004; Gandour et al., 2004; Sammler, Grosbras, 

Anwander, Bestelmeyer, & Belin, 2015; Wildgruber et al., 2004; Wildgruber, Ethofer, 

Grandjean, & Kreifelts, 2009). Yet, more recent work indicates distinct contributions of 

each hemisphere to prosodic processing (Kreitewolf, Friederici, & von Kriegstein, 2014). 

More specifically, the left hemisphere is associated with processing linguistic prosody 

(i.e., prosody used to emphasize words/clauses or determine the form of an utterance) 

while the right hemisphere is more involved in affective or emotional prosody (Belyk & 

Brown, 2014; Wildgruber et al., 2004). Linguistic prosody (hereafter referred to as 

prosody) is of particular interest in aphasia research, as different prosodic manipulations  

have been shown to modulate specific neural resources within brain networks known to 

support sentence comprehension  (den Ouden et al., 2016; Geiser et al., 2008; Humphries 

et al., 2005; Meyer et al., 2004), including the left inferior frontal gyrus (pars 

opercularis), left middle frontal gyrus, left posterior superior temporal gyrus, and left 

anterior temporal cortex  (Belyk & Brown, 2014). This suggests that different types of 

prosody manipulations may be able to differentially engage relatively intact brain regions 

post-stroke to improve sentence comprehension. The purpose of this study was to 
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investigate the relationship between unique prosodic patterns, lesion location, and 

sentence comprehension in chronic stroke patients. 

In Experiment 2a, it was concluded that stroke participants with good auditory 

attention demonstrated better comprehension of sentences spoken with sentence prosody 

while stroke participants with deficits in auditory attention and/or short-term memory 

benefited when sentences were presented with list prosody. This post-stroke behavioral 

dissociation regarding cognition and prosody is likely driven in part by stroke lesion 

location suggesting that there may also be a unique relationship between prosody and 

lesion location. Importantly, previous work demonstrates specific brain regions to 

preferentially respond to specific types of prosody within neurotypical adults. For 

example, Humphries et al. (2005) identified list prosody (i.e., monotone prosody lacking 

pitch inflections and prosodic boundaries) to activate the left posterior superior temporal 

gyrus while typical sentence prosody activated the left anterior temporal lobe. Meyer et 

al. (2004) found flattened, monotone speech to activate bilateral posterior superior 

temporal gyri and inferior parietal lobe, left middle frontal gyrus, left superior parietal 

lobe, and right inferior frontal gyrus. A direct comparison of typical sentence prosody 

and monotone prosody revealed increased activation of the left superior frontal cortex, 

left anterior temporal lobe, left insula, left Heschl’s gyrus, and bilateral anterior cingulate 

cortex for sentence prosody compared to monotone prosody (den Ouden et al., 2016). 

These studies in neurotypical adults largely highlight the following pattern: left frontal 

and anterior temporal cortices respond preferentially to typical prosodic cues while left 

posterior temporal and inferior parietal cortices respond to irregular prosodic patterns 

such as monotone prosody and list prosody. Collectively, these results suggest that the 
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brain regions involved in sentence processing may be modulated to some extent by 

prosody.  

This preferential response of specific brain regions within the larger sentence 

comprehension network to unique types of prosody may be advantageous to improving 

sentence comprehension, particularly when a stroke lesion affects only part of the 

language network. Thus, the purpose of this study is to serve as a foundational step 

towards identifying the relationship between lesion location, prosody, and sentence 

comprehension post-stroke. It was hypothesized that (1) stroke patients with lesions 

sparing the left middle frontal gyrus and Broca’s area (defined as the posterior two-thirds 

of the left inferior frontal gyrus; pars opercularis and triangularis) would demonstrate 

greater comprehension of non-canonical sentences spoken with sentence prosody (as 

sentence prosody should engage their relatively intact left frontal cortex), and (2) stroke 

patients with lesions sparing the left posterior superior temporal and inferior parietal 

cortices would demonstrate greater comprehension of sentences spoken with list prosody 

(as list prosody should engaged their relatively intact left posterior temporal and inferior 

parietal cortices). Additionally, the overall goal of Experiment 2 was to identify 

cognitive-neuroanatomical profiles associated with each type of prosody. Therefore, the 

results from Experiment 2a and 2b will be combined and interpreted together. It is 

hypothesized that (1) stroke patients with lesions sparing the left middle frontal gyrus and 

Broca’s area and relatively preserved orienting attention will demonstrate greater 

comprehension of sentences spoken with sentence prosody, while (2) stroke patients with 

lesions sparing the left posterior temporal and inferior parietal cortices and poor auditory 
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executive control and/or short-term memory will demonstrate improved comprehension 

when sentences are spoken with list prosody.   

 

Method 

Participants 

Twenty-one participants (12 females) from Experiment 2a with MRI scans were included 

in the present study. Participants ranged in age from 28 to 80 years (M = 55, sd = 13.86) 

and met the same inclusion criteria as in Experiment 2a (Table 17; Figure 8). 

 

Table 17. Stroke group demographics. 

 

 Gender Age 
Months 

Post 
Stroke 

Years of 
Education 

Aphasia 
Diagnosis 

AZ1001 Female 57 77 18 None 
AZ1003 Female 48 110 19 Broca’s 
AZ1006 Male 60 138 14 Broca’s 
AZ1011 Female 73 53 16 Anomic 
AZ1012 Male 77 85 16 Wernicke’s 
AZ1016 Male 37 142 14 Broca’s 
AZ1018 Female 43 29 14 Broca’s 
AZ1022 Female 46 79 14 Broca’s 
AZ1026 Male 70 50 16 None 
AZ1028 Female 80 19 24 Wernicke’s 
AZ1029 Female 34 174 14 None 
AZ1030 Male 56 32 16 Broca’s 
AZ1031 Female 40 63 20 Broca’s 
AZ1032 Male 28 20 13 Anomic 
AZ1033 Male 57 180; 60 14 Global 
AZ1034 Female 59 110 15 Anomic 
AZ1037 Male 57 13 16 Broca’s 
AZ1038 Male 54 155 14 Broca’s 
AZ1039 Female 66 48 14 Anomic 
AZ1040 Female 54 45 14 Broca’s 
AZ1041 Female 59 24 12 Anomic 
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Figure 8. Lesion overlap map for all 21 stroke participants. 

 

Experimental Design 

Sentence-picture matching task. The sentence stimuli and sentence-picture 

matching task from Experiment 2a provided the measures of auditory sentence 

comprehension. As in Experiment 2a, the focus is on non-canonical sentence 

comprehension because patients with aphasia10 have relatively specific deficits in 

comprehension of complex, non-canonical sentence structures (Bradley et al., 1980; 

Caramazza & Zurif, 1976). Therefore, the sentence comprehension dependent variables 

                                                
10 Agrammatic comprehension (i.e., complexity-related sentence comprehension deficits) 
has primarily been reported in persons with Broca’s aphasia, but this same phenomenon 
is also observed in conduction aphasia (Caramazza & Zurif, 1976).	
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were (1) non-canonical sentence reaction time – canonical sentence reaction time within 

sentence prosody (hereafter referred to as non-canonical sentences spoken with sentence 

prosody) and (2) non-canonical sentence reaction time – canonical sentence reaction time 

within list prosody (hereafter referred to as non-canonical sentences spoken with list 

prosody). Reaction time difference scores closer to zero reflect better sentence 

comprehension abilities. 

Cognitive measures. The cognitive measures from Experiment 2a which 

significantly predicted comprehension of sentences spoken with sentence prosody and list 

prosody were included in the analyses to facilitate the development of cognitive-

neuroanatomical profiles associated with comprehending each type of prosody. The 

cognitive measures included auditory alerting attention (reaction time difference for no 

cue – double cue trials), auditory orienting attention (reaction time difference for center 

cue – spatial cue trials), and auditory executive control (reaction time difference for 

incongruent – congruent trials) measured using the same auditory ANT from the previous 

experiments, and short-term memory (RBANS Immediate Memory index). Larger scores 

for auditory alerting, orienting, and short-term memory represented better cognitive 

abilities while scores closer to zero represented better auditory executive control abilities. 

 MRI data collection. Stroke participants underwent MRI scanning using a 3T 

Phillips Ingenia MRI scanner equipped with a 32 channel radiofrequency head coil 

located at the Keller Center for Imaging Innovation at the Barrow Neurological Institute 

in Phoenix, Arizona. Chronic stroke lesions were demarcated on a high-resolution 

anatomical T1 image (FOV = 270 X 252, TR = 6.7, flip angle = 9, voxel size = 1 x 1 x 1 

mm) in MRIcron (Rorden & Brett, 2000).  
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Lesion identification and normalization. Lesion maps were smoothed with a 

3mm full-width half maximum Gaussian kernel to remove jagged edges associated with 

manual drawing. Enantiomorphic normalization (Nachev et al., 2008) was conducted 

using SPM12 in accordance with procedures at the University of South Carolina (Rorden 

et al., 2012) (i.e., NiiStat’s “nii_harvest”). First, a mirrored image of the T1 image 

(reflected across the midline) was co-registered to the native T1 image. Then, a chimeric 

image based on the native T1 image with the lesioned tissue replaced by tissue from the 

mirrored image (using the smoothed lesion map to modulate this blending, feathering the 

lesion edge) was created. SPM12's unified segmentation-normalization (Ashburner & 

Friston, 2005) was used to transform this chimeric image to standard space; the resulting 

spatial transformation was subsequently applied to the T1 image. The normalized lesion 

map was then binarized, using a 50% probability threshold. 

 Lesion symptom mapping. Lesion maps were parcellated into regions of interest 

using the JHU brain atlas, which uses structural-anatomical boundaries to define regions 

(Faria et al., 2012). From the 189 potential regions of interest defined by the JHU brain 

atlas, nine regions were chosen based on previous literature and a priori hypotheses 

detailing their involvement in either sentence comprehension and/or cognition (i.e., 

attention, short-term memory). Regions of interest extracted from the JHU atlas include 

the left dorsolateral prefrontal cortex (defined by the JHU atlas as the anterior half of the 

left middle and superior frontal gyri), the posterior half of the left middle frontal gyrus, 

Broca’s area (pars opercularis), Broca’s area (pars triangularis), left posterior superior 

temporal gyrus, left supramarginal gyrus, left angular gyrus, left superior parietal gyrus, 

and left anterior cingulate cortex (Figure 9). The percent of each region of interest that 
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was intact was extracted from each patient’s lesion map using an “in house” Matlab 

(MathWorks, Natick, MA) script.  

 

Figure 9. Sentence comprehension and cognitive anatomical regions of interest derived 

from the JHU atlas (Faria et al., 2012). Peak coordinates for each region of interest are as 

follows: L ACC (-6, 41, 7); BA pars triangularis (-43, 26, 10); BA pars opercularis (-45, 

13, 15); L DLPFC (-35, 47, 12); L MFG (-36, 18, 38); L pSTG (-51, -34, 12); L SMG (-

52, -29, 32); L AG (-42, -52, 38); L SPG (-24, -48, 51).  

Key: L: left; ACC: anterior cingulate cortex; AG: angular gyrus; BA: Broca’s area; 

DLPFC: dorsolateral prefrontal cortex (comprised of the left middle and superior frontal 

gyri); MFG: middle frontal gyrus; pSTG: posterior superior temporal gyrus; SMG: 

supramarginal gyrus; SPG: superior parietal gyrus.  

 

Data Analysis 

Sentence comprehension regions of interest. 
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Sentence comprehension brain regions predicting prosody. The sentence 

comprehension regions of interest included the left dorsolateral prefrontal cortex, left 

middle frontal gyrus, Broca’s area (pars opercularis), Broca’s area (pars triangularis), left 

posterior superior temporal gyrus, left angular gyrus, and left supramarginal gyrus 

(Figure 9). Of these seven sentence comprehension regions of interest, sentence prosody 

was expected to be associated with the left dorsolateral prefrontal cortex, the posterior 

half of the left middle frontal gyrus, and Broca’s area (pars opercularis and triangularis). 

List prosody was hypothesized to be supported by left posterior temporal and inferior 

parietal cortices, specifically the left posterior superior temporal gyrus, left angular gyrus, 

and left supramarginal gyrus. Multiple regression analyses were used to predict 

comprehension of non-canonical sentences spoken with sentence prosody and non-

canonical sentences spoken with list prosody from the percent of intact tissue in the seven 

regions of interest after controlling for the significant covariates in Experiment 2a. Of the 

potential covariates from Experiment 2a [auditory single word comprehension, pure tone 

audiometry (500-4000 Hz better ear), age, education, time post-stroke], only auditory 

single word comprehension significantly related to the sentence comprehension 

dependent variables (Experiment 2a, Table 10) and was therefore the only covariate 

included in the regression models.  

Sentence comprehension brain regions predicting cognitive performance. Given 

our overall interest in identifying cognitive-neuroanatomical profiles supporting 

comprehension of sentences spoken with distinct prosodies, we also used multiple 

regression analyses to predict performance on the cognitive measures that significantly 

predicted sentence comprehension in Experiment 2a from the percent of intact tissue in 
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each of the seven sentence comprehension regions of interest. As in the previous multiple 

regression analyses, significant covariates [auditory single word comprehension, pure 

tone audiometry (500-4000 Hz better ear), age, education, time post-stroke] were 

included in the model and the percent of intact tissue in each of the seven sentence 

comprehension regions of interest were the predictors. The cognitive measures (i.e., the 

significant cognitive tasks from Experiment 2a) included were the three measures within 

the auditory ANT (alerting, orienting, and executive control) and the RBANS Immediate 

Memory index (i.e., short-term memory)].  

Cognitive regions of interest. While the neural resources supporting sentence 

comprehension and cognition largely overlap, at the resolution of standard MRI 

protocols, (Cieslik et al., 2015; January et al., 2009; Novick, Trueswell, & Thompson-

Schill, 2010), some differences also are observed (Wallis et al., 2015). Regarding 

overlapping resources, sentence comprehension and cognition both recruit six of the 

seven sentence comprehension regions of interest previously discussed. Specifically, the 

left dorsolateral prefrontal cortex, left middle frontal gyrus (posterior portion), Broca’s 

area (pars opercularis), Broca’s area (pars triangularis), left supramarginal gyrus, and left 

angular gyrus (Cieslik et al., 2015; Domenech & Koechlin, 2015; Kane & Engle, 2002; 

MacDonald et al., 2000). In addition to these six regions of interest, three additional 

regions of interest more specific to cognition were identified including the left precuneus, 

left superior parietal gyrus, and the left anterior cingulate cortex; this resulted in a total of 

nine cognitive regions of interest (Figure 9).11  

                                                
11 Several other left hemisphere brain regions other than the nine identified by this study 
are known to support cognitive processes including, but not limited to the left superior 
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The left precuneus, left superior parietal gyrus, and left anterior cingulate cortex 

are all consistently associated with the default mode network (Power et al., 2011; Yeo et 

al., 2011). In addition, sub-regions of the left precuneus and left superior parietal gyrus 

have also been associated with the more bilateral fronto-parietal network (Dosenbach et 

al., 2007). The dorsal portion of the anterior cingulate cortex has additionally been 

associated with the cingulo-opercular network (Dosenbach et al., 2007). The fronto-

parietal and cingulo-opercular networks are both known to support cognitive control 

(Dosenbach et al., 2008, 2007; Marek & Dosenbach, 2018; Sheffield et al., 2015; Wallis 

et al., 2015), which is known to utilize both attention and short-term memory resources 

(D’Esposito & Postle, 2015; Mackie, Van Dam, & Fan, 2013; McCabe, Roediger, 

McDaniel, Balota, & Hambrick, 2010). But the two networks make different 

contributions: the fronto-parietal network plays a more prominent role in selective 

attention and the cingulo-opercular network the maintenance of task-relevant goals over 

time (Dosenbach et al., 2007; Sheffield et al., 2015; Yeo et al., 2011); this function of the 

cingulo-opercular network may implicate it in short-term memory (Gordon, Stollstorff, & 

Vaidya, 2012).  

Cognitive brain regions predicting prosody. Multiple regression analyses were 

used to predict comprehension of non-canonical sentences spoken with sentence prosody 

and list prosody from the percent of intact tissue in the nine cognitive regions of interest 

after controlling for auditory single word comprehension.  

                                                
frontal lobe (prefrontal cortex), left posterior cingulate cortex, left posterior superior 
temporal gyrus, and thalamus. However, due to a small sample size resulting in a limited 
number of degrees of freedom, we are restricting our analyses to these nine prominent 
cognitive regions.  
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Cognitive brain regions predicting cognition. To further support the 

identification of cognitive-neuroanatomical profiles supporting comprehension of 

sentences spoken with unique prosodic patterns, multiple regression analyses were used 

to predict performance on the cognitive measures that significantly predicted sentence 

comprehension in Experiment 2a (auditory ANT, RBANS Immediate Memory index). 

Like the previous regression analyses, the predictors were the percent of intact tissue 

within each region of interest. Additionally, covariates which significantly correlated 

with the dependent variables were included in the models; the potential covariates 

included auditory single word comprehension, pure tone audiometry (500-4000 Hz better 

ear), age, education, and time post-stroke. 

 

Results 

Means and standard deviations of the mean for each sentence condition and cognitive 

variable are reported in Table 18. 

 

Table 18. Means and standard deviations of the mean for each sentence condition and 

cognitive variable. 

Cognitive Variable Stroke Group 
Mean (sd) 

RT Difference Score Sentence Prosody 817.32 (2383.78) 
RT Difference Score List Prosody 1589.44 (1882.58) 
Auditory Alerting 58.00 (173.37) 
Auditory Orienting 36.97 (112.23) 
Auditory Executive Control 187.29 (237.78) 
RBANS Immediate Memory Index 67.05 (19.47) 

 

Sentence Comprehension Regions of Interest 
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Sentence comprehension brain regions predicting prosody. The overall model 

predicting comprehension of non-canonical sentences spoken with sentence prosody was 

significant [R2 =.77, F(8,12)=4.95, p=.007] with the anterior portion of the left 

dorsolateral prefrontal cortex (b= -1.00, p=.02), Broca’s area (pars opercularis; b= -1.72, 

p=.006), and the left angular gyrus (b= -.93, p=.03)] being the significant predictors 

(Table 19). The overall model predicting comprehension of non-canonical sentences 

spoken with list prosody was also significant [R2 =.78, F(8,12)=5.42, p=.005] with the 

left dorsolateral prefrontal cortex (b= -1.49, p=.001) being the sole significant predictor 

(Table 19).  

 

Table 19. Multiple regression models for prosody predicted from sentence 

comprehension regions of interest. 

Non-Canonical - Canonical Sentences with Sentence Prosody RT 
Predictors b t p 

Single Word Comprehension .06 .17 .87 
Left middle frontal gyrus 1.31 2.47 .03a 

Left dorsolateral prefrontal cortex -1.01 -2.70 .02* 
Broca’s area (pars opercularis) -1.72 -3.29 .006* 
Broca’s area (pars triangularis) 1.67 3.18 .008a 

Left supramarginal gyrus .89 4.10 .001a 

Left angular gyrus -.93 -2.46 .03* 
Left posterior superior temporal gyrus .21 .61 .55 
Non-Canonical - Canonical Sentences with List Prosody RT 
Single Word Comprehension -.34 -1.03 .33 
Left middle frontal gyrus 1.18 2.29 .04a 

Left dorsolateral prefrontal cortex -1.49 -4.13 .001* 
Broca’s area (pars opercularis) -.96 -1.88 .09 
Broca’s area (pars triangularis) .97 1.90 .08 
Left supramarginal gyrus .27 1.29 .22 
Left angular gyrus -.61 -1.65 .13 
Left posterior superior temporal gyrus .72 2.18 .05a 

*significant at p<.05 
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a Region of interest elicits a statistically significant finding in the unexpected direction 
(i.e., larger percent of intact tissue predicting worse performance). This is a common 
finding in lesion-symptom mapping and aphasia research due to lesion locations not 
being independent of one another, but should not be interpreted as intact tissue 
equaling impairment. 

 

Sentence comprehension brain regions predicting cognitive performance. Of 

the potential covariates from Experiment 2a [auditory single word comprehension, pure 

tone audiometry (500-4000 Hz better ear), age, education, time post-stroke], only 

auditory single word comprehension significantly correlated with the RBANS Immediate 

Memory index (r(19)= .57, p=.007); no other predictor-covariate correlations were 

significant. The overall model predicting the RBANS Immediate Memory index was 

marginally significant [R2 =.65, F(8,12)=2.72, p=.058] with the left posterior superior 

temporal gyrus being the sole significant predictor (b= .93, p=.05) (Table 20). 

 For auditory attention, the overall models predicting alerting [R2 =.17, 

F(7,13)=.37, p=.91], orienting [R2 =.52, F(7,13)=2.00, p=.13], and executive control [R2 

=.26, F(7,13)=.66, p=.70] were non-significant. However, given the trend towards 

significance for the orienting attention model, the findings from Experiment 2a 

implicating orienting attention in sentence comprehension, and my a priori hypotheses, I 

decided to cautiously explore the orienting attention model and found the left angular 

gyrus to be a significant predictor (b= 1.13, p=.03) (Table 20).  
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Table 20. Multiple regression models for cognitive performance predicted from sentence 

comprehension regions of interest. 

Auditory Orienting Attention 
Predictors b t p 

Left middle frontal gyrus -1.68 -2.67 .02a 

Left dorsolateral prefrontal cortex .77 1.57 .14 
Broca’s area (pars opercularis) .98 1.56 .14 
Broca’s area (pars triangularis) -.08 -.13 .90 
Left supramarginal gyrus -.61 -2.15 .05a 

Left angular gyrus 1.13 2.49 .03* 
Left posterior superior temporal gyrus -.52 -1.84 .09 
RBANS Immediate Memory Index (Short-term Memory) 
Single Word Comprehension -.37 -.86 .40 
Left middle frontal gyrus 1.34 2.05 .06 
Left dorsolateral prefrontal cortex -1.09 -2.37 .04a 

Broca’s area (pars opercularis) -1.07 -1.64 .13 
Broca’s area (pars triangularis) 1.05 1.62 .13 
Left supramarginal gyrus .15 .57 .58 
Left angular gyrus -.47 1.00 .34 
Left posterior superior temporal gyrus .93 2.21 .05* 
*significant at p<.05 
a Region of interest elicits a statistically significant finding in the unexpected direction 
(i.e., larger percent of intact tissue predicting worse performance). This is a common 
finding in lesion-symptom mapping and aphasia research due to lesion locations not 
being independent of one another, but should not be interpreted as intact tissue 
equaling impairment. 

 

Cognitive Regions of Interest 

Cognitive brain regions predicting prosody. The overall model predicting 

comprehension of non-canonical sentences spoken with sentence prosody was significant 

[R2 =.86, F(10,10)=6.05, p=.004] with Broca’s area (pars opercularis; b= -1.33, p=.03) 

and the left anterior cingulate cortex (b= -.54, p=.05)] being the significant predictors 

(Table 20). The overall regression model predicting comprehension of non-canonical 

sentences spoken with list prosody was also significant [R2 =.81, F(10,10)=4.26, p=.02] 



  130 

with the left dorsolateral prefrontal cortex (b= -1.19, p=.03) being the sole significant 

predictor (Table 21).  

 

Table 21. Multiple regression models for prosody predicted from cognitive regions of 

interest. 

Non-Canonical - Canonical Sentences with Sentence Prosody RT 
Predictors b t p 

Single Word Comprehension .06 .21 .84 
Left middle frontal gyrus 1.13 3.01 .01a 

Left dorsolateral prefrontal cortex -.51 -1.27 .23 
Broca’s area (pars opercularis) -1.33 -2.61 .03* 
Broca’s area (pars triangularis) 1.08 1.83 .10 

Left anterior cingulate cortex -.54 -2.26 .05* 
Left superior parietal gyrus .04 .08 .94 
Left supramarginal gyrus .70 2.62 .03a 

Left angular gyrus -.38 -.90 .39 
Left precuneus -.23 -.72 .47 
Non-Canonical - Canonical Sentences with List Prosody RT 
Single Word Comprehension -.13 -.39 .70 
Left middle frontal gyrus .73 1.69 .12 
Left dorsolateral prefrontal cortex -1.19 -2.54 .03* 
Broca’s area (pars opercularis) -.74 -1.26 .24 
Broca’s area (pars triangularis) .63 .93 .38 
Left anterior cingulate cortex -.34 -1.23 .25 
Left superior parietal gyrus -1.33 -2.05 .07 
Left supramarginal gyrus .51 1.65 .13 
Left angular gyrus .61 1.25 .24 
Left precuneus .59 1.62 .14 
*significant at p<.05 
a Region of interest elicits a statistically significant finding in the unexpected direction 
(i.e., larger percent of intact tissue predicting worse performance). This is a common 
finding in lesion-symptom mapping and aphasia research due to lesion locations not 
being independent of one another, but should not be interpreted as intact tissue 
equaling impairment. 

 

 Cognitive brain regions predicting cognitive performance. The overall models 

predicting the RBANS Immediate Memory index [R2 =.63, F(10,10)=1.70, p=.21], 
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auditory alerting attention [R2 =.16, F(9,11)=.16, p=1.0], auditory orienting attention [R2 

=.62, F(9,11)=1.99, p=.14], and auditory executive control [R2 =.42, F(9,11)=.88, p=.57] 

were non-significant.  

 

Discussion 

The purpose of Experiment 2b was to investigate the relationship between lesion 

location, prosody, and sentence comprehension. This relationship was explored in two 

sets of regions of interest: sentence comprehension and cognitive. As hypothesized, 

sentence prosody was associated with the left inferior and middle frontal regions in the 

sentence comprehension regions of interest: stroke participants with a larger proportion 

of the left dorsolateral prefrontal cortex and Broca’s area (pars opercularis) intact 

demonstrated greater comprehension of non-canonical sentences spoken with sentence 

prosody. Additionally, a more intact left angular gyrus was also associated with better 

comprehension of non-canonical sentences spoken with sentence prosody. Within the 

cognitive regions of interest, greater comprehension of non-canonical sentences spoken 

with sentence prosody was associated with a larger proportion of Broca’s area (pars 

opercularis) and the left anterior cingulate cortex being intact. Regarding list prosody, it 

was hypothesized that list prosody would be associated with the left posterior temporal 

and inferior parietal cortices. This hypothesis was not supported in either the sentence 

comprehension or cognitive regions of interest. Instead, within both sets of regions of 

interest, the regression models indicated that stroke participants with a more intact left 

dorsolateral prefrontal cortex demonstrated greater comprehension of non-canonical 

sentences spoken with list prosody. 
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 The overall goal of Experiment 2 was to combine the results from Experiments 2a 

and 2b to identify cognitive-neuroanatomical profiles associated with comprehension of 

non-canonical sentences spoken with each prosody. Therefore, the intactness of the 

sentence comprehension and cognitive regions of interest were additionally used to 

predict performance on the significant cognitive predictors from Experiment 2a. Within 

the sentence comprehension regions of interest, a more intact left angular gyrus was 

associated with better auditory orienting attention, while having a larger proportion of the 

left posterior superior temporal gyrus intact was associated with better short-term 

memory (i.e., RBANS Immediate Memory Index). There were no significant predictors of 

auditory alerting, orienting, executive control, or short-term memory within the cognitive 

regions of interest.  

Left Dorsolateral Prefrontal Cortex and Sentence Comprehension 

Participants with larger proportions of the left dorsolateral prefrontal cortex (defined by 

the JHU atlas as the anterior half of the middle and superior frontal gyri) intact 

demonstrated better comprehension of non-canonical sentences spoken with both 

sentence prosody and list prosody. This finding suggests that the left dorsolateral 

prefrontal cortex likely supports sentence comprehension processes, regardless of 

prosody. It is widely accepted that the left dorsolateral prefrontal cortex is a domain-

general resource known to support cognitive functions including attention, short-term 

memory, working memory, cognitive control, and executive functions (Cieslik et al., 

2015; Fiez et al., 1996; Henson, Burgess, & Frith, 2000; January et al., 2009; Kane & 

Engle, 2002; MacDonald et al., 2000). The left dorsolateral prefrontal cortex has 

additionally been implicated in speech comprehension (Hickok & Poeppel, 2007). 
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Specifically, the left dorsolateral prefrontal cortex appears to be implicated in sentence 

comprehension because it supports cognitive resources such as working memory and 

cognitive control (Hagoort, 2013; Hsu, Jaeggi, & Novick, 2017; Klaus & Schutter, 2018). 

Collectively, these findings indicate that the left dorsolateral prefrontal cortex is likely 

recruited post-stroke to facilitate sentence comprehension because of its role in more 

general cognitive functions. However, it may also be that sentence prosody and list 

prosody are recruiting distinct sub-regions within the left dorsolateral prefrontal cortex. 

Future work is needed to more precisely characterize how prosody may be modulating 

the left dorsolateral prefrontal cortex’s involvement in sentence comprehension, but this 

overall finding of involvement regardless of prosody type is in line with previous work 

implicating dorsolateral prefrontal cortex in almost any cognitive task.  

Left Fronto-Parietal Network Supports Sentence Prosody 

In addition to the left dorsolateral prefrontal cortex, participants having a larger 

proportion of the left pars opercularis, left anterior cingulate cortex, and left angular 

gyrus intact had better comprehension of sentences spoken with sentence prosody post-

stroke. Previous work indicates that persons with unilateral left hemisphere lesions have 

specific deficits in processing linguistic prosody (Baum & Dwivedi, 2003; Baum & Pell, 

1999; Pell, 1998), but that they also demonstrate gains in comprehension when sentences 

(Lasky et al., 1976) and paragraphs (Pashek & Brookshire, 1982) are spoken with an 

exaggerated linguistic stress. The results from the present study expand upon this 

previous work by indicating that a left fronto-parietal network, which not only includes 

the domain-general left dorsolateral prefrontal cortex but also the anterior portion of 

Broca’s area (pars opercularis), anterior cingulate cortex, and angular gyrus, appears to 
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be engaged in processing typical sentence prosody post-stroke and that persons with 

aphasia with these brain regions preserved may benefit from exaggerated prosodic cues.12  

 Typical sentence prosody has been hypothesized to facilitate sentence 

comprehension by reducing demands placed on cognitive resources (Kjelgaard & Speer, 

1999; Roncaglia-Denissen et al., 2013; Speer et al., 1996). Behaviorally, the use of 

sentence prosody is associated with greater accuracy and decreased response times. 

However, within the brain, sentence prosody appears to recruit a more disperse cognitive-

linguistic network, which includes brain regions implicated in both non-canonical 

sentence comprehension (Broca’s area) and attention (anterior cingulate cortex, angular 

gyrus). This suggests that sentence prosody is primarily beneficial if it can engage this 

extended network of cognitive-linguistic resources. However, if these resources are 

lesioned, then sentence prosody may not be helpful and could possibly, even be 

distracting. 

Two prominent features of sentence prosody are pitch inflections and prosodic 

boundaries, both of which are considered to be linguistic elements of prosody (Rosen, 

1992). Pitch inflections and prosodic boundaries are proposed to facilitate sentence 

comprehension by directing listener attention towards important sentential information 

(Schafer, 1997). Attention is commonly associated with a bilateral fronto-parietal 

network (Dosenbach et al., 2008; Petersen & Posner, 2012; Wallis et al., 2015), including 

the left dorsolateral prefrontal cortex, Broca’s area (pars opercularis), and left angular 

                                                
12 The sentence prosody manipulation utilized in the sentence prosody is exaggerated in 
that the pitch inflections and prosodic boundaries are over emphasized, but still perceived 
to be within the range of normal. 



  135 

gyrus. The anterior cingulate cortex is part of the well-studied cingulo-opercular network 

(Dosenbach et al., 2007). While the fronto-parietal network is frequently implicated in 

selective attention, the cingulo-opercular network is thought to be more involved in 

sustained attention (i.e., tonic alertness) (Petersen & Posner, 2012) and the maintenance 

of task-relevant goals over time (Dosenbach et al., 2007). Therefore, the pitch inflections 

and prosodic boundaries characteristic of sentence prosody may additionally engage 

sustained attention, which is a necessary precursor of higher order attention and linguistic 

processes.  

Collectively, this evidence suggests that sentence prosody may recruit two 

separate neural networks to facilitate sentence comprehension post-stroke. Sentence 

prosody may facilitate sentence comprehension by engaging the cingulo-opercular 

network to support more basic attentional processes, i.e., sustained attention, and the left 

fronto-parietal network to preemptively direct the listener’s attention to important 

clauses, i.e., selective attention. However, future work is needed to parse apart the 

specific functions of each aspect of sentence prosody (e.g., pitch inflections, prosodic 

boundaries, word stress, etc.) and how they individually relate to sentence comprehension 

and the supporting neural correlates. 

Left Dorsolateral Prefrontal Cortex and List Prosody 

The left dorsolateral prefrontal cortex was the sole region associated with comprehension 

of non-canonical sentences spoken with list prosody. Beyond being involved in 

comprehending sentences spoken with list prosody because of basic sentence 

comprehension processes discussed above, the left dorsolateral prefrontal cortex may also 

be associated with list prosody due to its rhythm. List prosody is generated by inserting 
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20-milisecond intervals between each word; this procedure creates a consistent beat, 

which subsequently makes rhythm a prominent linguistic feature of list prosody. The 

ability to process speech rhythms has previously been linked to the left dorsolateral 

prefrontal cortex (Grahn, 2012). Therefore, list prosody may be improving sentence 

comprehension post-stroke by recruiting the rhythm processing abilities of the intact left 

dorsolateral prefrontal cortex.  

The consistent rhythm of list prosody disrupts the expected structure of the 

sentence. This disruption may force individuals to draw upon bottom-up processing 

mechanisms to chunk sentence-level information since typical prosodic cues are 

unavailable to help parse the sentence. This ability of list prosody to recruit bottom-up 

processing mechanisms may be particularly important for individuals with stroke lesion 

patterns which disrupt the left lateralized fronto-parietal network shown to support 

sentence prosody as these individuals may not be able to capitalize on the typical 

prosodic cues characteristic of sentence prosody (e.g., pitch inflections), and may instead 

need to rely on the more rhythmic aspects of language. This suggests that patients with 

relatively preserved rhythm processing abilities post-stroke may be benefitting from the 

list prosody manipulation since both rhythm and list prosody are supported, at least in 

part, by the left dorsolateral prefrontal cortex. 

In addition to the left dorsolateral prefrontal cortex, the basal ganglia have 

additionally been associated with processing linguistic rhythm (Grahn, 2012). There were 

no specific hypotheses regarding the relationship between prosody and the basal ganglia 

in the present experiment, however, an exploratory analysis (Table 22) indicates that a 

more intact left globus pallidus predicts better comprehension of non-canonical sentences 
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spoken with list prosody. Importantly, the overall model predicting comprehension of 

non-canonical sentences spoken with sentence prosody from the nuclei of the left basal 

ganglia was not significant. This relationship between brain structures known to process 

speech rhythm and those associated with list prosody further suggests that rhythm is a 

critical feature of list prosody and necessary for improving comprehension. Thus, 

individuals with intact rhythm abilities may experience gains in comprehension when list 

prosody is used as list prosody may facilitate the chunking of information within 

cognitive resources specialized for processing speech rhythm (e.g., the left dorsolateral 

prefrontal cortex and basal ganglia).  

 

Table 22. Predicting sentence comprehension from the left basal ganglia. The overall 

model predicting sentence prosody was not significant [R2 =.47, F(5,15)=2.64, p=.07]. 

The overall model predicting list prosody was significant [R2 =.66, F(5,15)=5.83, 

p=.003]. 

Non-Canonical - Canonical Sentences with Sentence Prosody RT 
Predictors b t p 

Single Word Comprehension .36 1.23 .24 
Left Caudate -.67 -1.46 .17 
Left Putamen -.05 -.12 .90 
Left Globus Pallidus .51 1.27 .22 
Left Thalamus .22 .75 .47 
Non-Canonical - Canonical Sentences with List Prosody RT 
Single Word Comprehension .68 2.91 .01* 
Left Caudate .45 1.21 .24 
Left Putamen .02 .05 .96 
Left Globus Pallidus -1.18 -3.72 .002* 
Left Thalamus .18 .76 .46 
*significant at p<.05 
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The fact that list prosody solely recruited the left dorsolateral prefrontal cortex in 

both the sentence comprehension and cognitive regions of interest indicates that more 

bilateral brain regions may be involved in processing sentences spoken with list prosody. 

The right hemisphere demonstrates a preferential response to slower temporal 

information (Poeppel, 2003). While the fine-grained pitch changes associated with 

sentence prosody rely more on neural resources within the left hemisphere, the longer 

temporal duration associated with the overall sentence is likely processed, at least 

partially, by right hemisphere resources. Therefore, list prosody may additionally be 

improving sentence comprehension post-stroke by recruiting right hemisphere resources. 

Interestingly, in terms of speech production, rhythmic tapping of the left-hand is a 

prominent feature of Melodic Intonation Therapy (Albert, Sparks, & Helm, 1973; Norton, 

Zipse, Marchina, & Schlaug, 2009) and shown to improve speech production independent 

of melodic intoning (Boucher, Garcia, Fleurant, & Paradis, 2001; Laughlin, Naeser, & 

Gordon, 1979; Stahl, Kotz, Henseler, Turner, & Geyer, 2011). Given rhythm’s ability to 

improve speech production, it is also likely that rhythm is able to improve speech 

comprehension independent of pitch. However, future work is needed to parse apart the 

specific aspects of list prosody (e.g., rhythm, stress, pitch, etc.) that may be improving 

comprehension as well as the neural resources supporting each aspect of list prosody. 

As previously mentioned, list prosody disrupts the expected structure of the 

sentence, which may bias participants towards utilizing bottom-up processing 

mechanisms to comprehend sentences spoken with list prosody. Bottom-up processing 

mechanisms are typically used during speech comprehension when linguistic information 

is absent or distorted (Davis et al., 2002); in the present study, typical sentence prosody is 
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distorted to create list prosody. The neural resources associated with bottom-up 

processing of speech primarily include bilateral anterior-medial auditory cortices (de 

Heer et al., 2017). From primary auditory cortex, speech processing moves into the 

bilateral posterior temporal-inferior parietal cortices before recruiting more top-down 

regions in the frontal cortex, including prefrontal cortices (de Heer et al., 2017). In 

neurotypical adults, irregular prosodic patterns such as list prosody and monotone 

prosody have been associated with left posterior superior temporal and inferior parietal 

regions (Humphries et al., 2005; Meyer et al., 2004). Together, this evidence suggests 

that list prosody may first recruit bottom-up neural resources including the left posterior-

inferior parietal cortices prior to engaging the left dorsolateral prefrontal cortex to 

improve sentence comprehension. Although not quite significant, the present study does 

observe a relationship between the left angular gyrus and list prosody: stroke participants 

with a more intact left angular gyrus demonstrated greater comprehension of sentences 

spoken with list prosody (p=.13). 

 Collectively, these findings demonstrate that list prosody may recruit a 

multifaceted network of neural resources, including subcortical and right hemisphere 

regions, to improve sentence comprehension. This ability of list prosody to engage a 

broader neural network may be advantageous to improving sentence comprehension post-

stroke as individuals with a wider range of stroke lesion patterns may be able to benefit 

from it. However, the structural intactness of a given brain region is not the sole measure 

of brain function. Therefore, future work is needed to investigate both structural and 

functional connectivity among different brains regions, in order to better understand the 
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contributions of specific neural networks to comprehension of sentences spoken with 

both sentence and list prosody.  

Cognitive-Neuroanatomical Profiles Predicting Non-Canonical Sentence 

Comprehension 

The overall goal of Experiment 2 was to identify cognitive-neuroanatomical profiles 

predicting comprehension of non-canonical sentences spoken with sentence prosody and 

list prosody. Therefore, I also investigated the relationship between the brain regions of 

interest and auditory attention and short-term memory; the two cognitive measures from 

Experiment 2a associated with better comprehension of sentences spoken with sentence 

and list prosody, respectively. The cognitive regression models in Experiment 2b were 

non-significant, nonetheless I decided to explore potential neural predictors for orienting 

attention and short-term memory given the models trend towards significance, the 

findings from Experiment 2a, and my a priori hypotheses. This exploration identified an 

intact left posterior superior temporal gyrus to be associated with better short-term 

memory while an intact left angular gyrus was linked to better orienting attention. 

Attention, and to a lesser extent short-term memory, are largely supported by a bilateral 

fronto-parietal network (Corbetta & Shulman, 2002; Marek & Dosenbach, 2018; Posner 

& Petersen, 1990; Ungerleider & Haxby, 1994; Vossel et al., 2014; Wallis et al., 2015). 

This bilateral organization of attention and short-term memory may allow stroke patients 

to compensate for damage to left hemisphere regions by relying more on their right 

hemisphere homologues to support cognitive functions post-stroke, and subsequently 

language performance too. However, future work is needed to better understand how 
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neural resources, particularly in the right hemisphere, adapt post-stroke to support both 

cognition, language, and their interaction. 

In Experiment 2a, a unique behavioral relationship was identified between 

specific cognitive functions and prosody manipulations. Specifically, participants with 

intact attentional control (i.e., orienting) resources benefited from sentence prosody while 

participants with deficits in attentional control (i.e., alerting, executive control) and short-

term memory benefited from list prosody. From these results, it was concluded that the 

pitch inflections and prosodic boundaries characteristic of sentence prosody likely 

facilitated non-canonical sentence comprehension by directing listener attention towards 

important aspects of the sentence. However, for list prosody, it was concluded that the 

consistent rhythm generated by list prosody created temporal expectations that facilitated 

the chunking of information when typical prosodic cues could not be perceived. This 

unique relationship between specific aspects of auditory attention and prosodic 

manipulations suggests that depending on an individual’s attentional strengths and 

weakness, unique prosodic patterns can be used to improve sentence comprehension post-

stroke. 

Experiment 2b provides a neuroanatomical basis for this post-stroke behavioral 

dissociation regarding specific aspects of attention and the effects of prosody on sentence 

comprehension observed in Experiment 2a. In Experiment 2b, attention, specifically 

orienting attention which was found in Experiment 2a to be linked to improved sentence 

comprehension when sentences were spoken with sentence prosody, was associated with 

the left angular gyrus; this region is a node within the larger well-studied bilateral fronto-

parietal network that supports several aspects of attention (Cieslik et al., 2015; Domenech 
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& Koechlin, 2015). Alternatively, deficits in short-term memory, which were found in 

Experiment 2a to be linked to improved sentence comprehension when sentences were 

spoken with list prosody, was associated with the left posterior superior temporal gyrus. 

The posterior superior temporal gyrus as well as the adjacent left inferior parietal lobe 

have previously been implicated in verbal short-term memory in both control subjects 

and stroke patients (Beeson, Bayles, Rubens, & Kaszniak, 1993; Buchsbaum et al., 2011; 

Gläscher et al., 2009; Leff et al., 2009).  

Regarding prosody, previous work demonstrates specific brain regions to 

preferentially respond to specific types of prosody within neurotypical adults. For 

instance, sentence prosody is frequently associated with the left frontal and anterior 

temporal cortices and list prosody with left posterior temporal and inferior parietal 

cortices (den Ouden et al., 2016; Humphries et al., 2005; Meyer et al., 2004). My own 

work using the present experiment’s sentence and list prosody manipulations identifies a 

similar pattern of dissociation in neurotypical adults: sentence prosody recruits the left 

middle frontal gyrus and list prosody the bilateral posterior superior temporal gyrus and 

inferior parietal cortex (LaCroix et al., in prep). While Experiment 2b confirms and 

extends these findings in terms of sentence prosody,13 it failed to identify a similar 

prosodic dissociation for list prosody, likely due at least in part to insufficient power 

provided by the sample size; however, a more intact left angular gyrus trended towards 

significantly predicting comprehension of non-canonical sentences spoken with list 

prosody and an exploratory analysis also details an association between the left globus 

                                                
13 Sentence prosody was associated with a more intact left dorsolateral prefrontal cortex, 
left anterior cingulate cortex, Broca’s area (pars opercularis), and left angular gyrus. 
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pallidus and list prosody. Collectively, this evidence indicates that the brain regions 

involved in sentence processing may be modulated to some extent by prosody to improve 

sentence comprehension post-stroke. 

Overall, the results from Experiment 2b indicate that the brain regions supporting 

prosody may dissociate similarly to the brain regions supporting attention and short-term 

memory. Specifically, attention is supported by a left fronto-parietal network and 

sentence prosody was found to also be associated with similar regions. The relationship is 

not as clear for short-term memory and list prosody, yet, short-term memory was 

associated with a more intact left posterior superior temporal gyrus and list prosody with 

a more intact left angular gyrus (p=.13), suggesting more posterior temporal and inferior 

parietal regions may be important for comprehending sentences spoken with list prosody. 

Collectively, this evidence suggests that cognitive-neuroanatomical profiles may exist 

that relate to better comprehension of sentences spoken with each prosody manipulation. 

More specifically, stroke patients with relatively preserved orienting attention (i.e., 

selective attention) and a more intact left frontal-parietal network (i.e., left dorsolateral 

prefrontal cortex, the pars opercularis of Broca’s area, and left angular gyrus) appear to 

benefit when complex non-canonical sentences are spoken with sentence prosody. For list 

prosody, stroke patients with deficits in auditory executive control attention and/or short-

term memory, who also have a larger proportion of the left posterior superior temporal 

gyrus and left angular gyrus intact, appear to benefit when complex non-canonical 

sentences are spoken with list prosody. Since the neuroanatomical relationship for list 

prosody appears to be mixed, possibly due to its ability to recruit more right hemisphere 

and subcortical resources, I further propose a second cognitive-neuroanatomical profile 
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for list prosody: stroke patients who may have good rhythm perception, and an intact left 

dorsolateral prefrontal cortex and/or left basal ganglia may also benefit when non-

canonical sentences are spoken with list prosody. However, future work is needed to 

better understand the cognitive-neuroanatomical relationship between attention, memory, 

lesion location, and list prosody. 

Conclusion 

The present study investigated the relationship between stroke lesion location, prosody, 

and sentence comprehension post-stroke. Using the sentence comprehension regions of 

interest, the left dorsolateral prefrontal cortex was identified to support comprehension of 

sentences spoken with both sentence prosody and list prosody; likely due to the left 

dorsolateral prefrontal cortex’s role in supporting basic sentence comprehension via more 

domain-general cognitive processes. A left fronto-parietal network including the left 

dorsolateral prefrontal cortex, Broca’s area (pars opercularis), and left angular gyrus was 

further identified to support sentence prosody. Regarding list prosody, the left 

dorsolateral prefrontal cortex was the sole significant predictor for list prosody, however, 

the left angular gyrus trended towards significance and an additional exploratory analysis 

indicates that the left globus pallidus may also be implicated in comprehending sentences 

spoken with list prosody. This evidence suggests that different prosodic patterns may be 

used to improve sentence comprehension post-stroke by engaging distinct brain regions. 

Overall, the findings from Experiment 2 indicate that unique prosodic patterns may be 

able to improve non-canonical sentence comprehension post-stroke through their 

association with distinct cognitive resources and their corresponding neural correlates.  
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CHAPTER 7 

GENERAL CONCLUSION 

The purpose of this dissertation was twofold: (1) determine the interaction between three 

components of attention (alerting, orienting, and executive control) and presentation 

modality in persons with aphasia and matched-controls, and (2) whether distinct prosodic 

manipulations can be used to improve auditory sentence comprehension post-stroke by 

recruiting relatively preserved cognitive functions (including components of attention and 

working memory) and non-lesioned brain regions. To this end, persons with aphasia and 

matched-controls completed matched-versions of the Attention Network Test (ANT) in 

the visual and auditory modalities in Experiment 1. The results from Experiment 1a 

indicate that while the aphasia group was slower overall in both modalities, the two 

groups did not differ in any of the three components in either modality. Furthermore, the 

three components did not significantly correlate between the auditory and visual 

modalities in the control group; for the aphasia group, the only significant between-

modality correlation was the alerting component. These findings from Experiment 1a 

indicate that visual and auditory attention measures are poor predictors of one another. In 

Experiment 1b, lesion-symptom mapping methodologies extended the understanding of 

the neural resources supporting visual and auditory attention and revealed visual 

executive control abilities to be associated with a more intact left angular gyrus, auditory 

alerting to be associated with the left supramarginal gyrus, and auditory orienting 

attention to be associated with Broca’s area (pars opercularis). Overall, the findings from 

Experiment 1b indicate that auditory and visual attention are supported in part by distinct 

neural resources. Collectively, the results from Experiment 1 indicate the need to 
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separately assess all three components of attention in all perceptual modalities of interest 

to gain a complete picture of an individual’s attention abilities. Assessing visual and 

auditory attention separately post-stroke is particularly important as stroke lesion patterns 

likely impact the neural resources supporting each type of attention differently. 

 The second goal of this dissertation was to identify the relationship between 

prosody, cognition, stroke lesion patterns, and auditory sentence comprehension. 

Therefore, in Experiment 2, chronic stroke participants and matched-controls completed a 

cognitive-linguistic battery that assessed auditory attention using the auditory ANT from 

Experiment 1, working memory, short-term memory, and comprehension of sentences 

spoken with sentence prosody and list prosody. The results from Experiment 2a indicate 

that stroke participants and matched-controls with better auditory orienting attention had 

better comprehension of sentences spoken with sentence prosody while stroke 

participants with poor auditory executive control and/or short-term memory abilities 

demonstrate better comprehension of sentences spoken with list prosody. Experiment 2b 

extended the results from Experiment 2a by identifying stroke lesion patterns associated 

with better comprehension of sentences spoken with each prosody. Overall, Experiment 

2b demonstrated that while the left dorsolateral prefrontal cortex supports auditory 

sentence comprehension in general, a left fronto-parietal network which includes the left 

anterior cingulate cortex, Broca’s area (pars opercularis), and left angular gyrus 

particularly supports the comprehension of sentences spoken with sentence prosody. The 

relationship between lesion location and list prosody was not as clear, however, a more 

intact left angular gyrus and basal ganglia (globus pallidus) were associated with better 

comprehension of sentences spoken with list prosody. Collectively, the results from 
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Experiment 2 indicate unique cognitive-neuroanatomical profiles to support 

comprehension of sentences spoken with sentence prosody and list prosody. More 

specifically, chronic stroke patients with relatively preserved auditory orienting attention 

and a larger proportion of the left fronto-parietal network intact, which includes the left 

anterior cingulate cortex, Broca’s area (pars opercularis), and left angular gyrus, 

demonstrate better comprehension of sentences spoken with sentence prosody. 

Alternatively, chronic stroke patients with deficits in auditory executive control and 

short-term memory, who likely have lesions affecting the fronto-parietal network 

identified to support sentence prosody, may benefit from sentences spoken with list 

prosody, especially when they have a larger proportion of the left inferior parietal cortex 

(i.e., left angular gyrus) and/or left basal ganglia intact.  
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Table A1. Raw data for control participants. 

 Pa
rti
cip

an
t
Ag
e
Ge

nd
er

He
ar
ing

	
Sta

tu
s	(
50

0-
40

00
	H
z,	

be
tte

r	e
ar
)
Ed
uc
ati
on

	
(Ye

ars
)

Au
di
to
ry
	

Sin
gle

	
W
or
d	C

om
p	

(B
DA

E-
III)

Ca
no

ni
ca
l	

(Se
nt
en
ce
	

Pr
os
od

y)

Ca
no

ni
ca
l	

(Li
st	

Pr
os
od

y)

No
n-

Ca
no

ni
ca
l	

(Se
nt
en
ce
	

Pr
os
od

y)

No
n-

Ca
no

ni
ca
l	

(Li
st	

Pr
os
od

y)

RT
	

Di
ffe

re
nc

e	S
co
re	

(Se
nt
en
ce
	

Pr
os
od

y)

RT
	

Di
ffe

re
nc

e	S
co
re	

(Li
st	

Pr
os
od

y)
Au

di
to
ry
	

Al
er
tin

g
Au

di
to
ry
	

Or
ien

tin
g

Au
di
to
ry
	

Ex
ec
ut
ive

	
Co

nt
ro
l	

(In
co
ng
ru
en

t	-
Ne

ut
ra
l	

RT
)

Au
di
to
ry
	

Ex
ec
ut
ive

	
Co

nt
ro
l	

(In
co
ng
ru
en
t	

-C
on

gr
ue
nt
	

RT
)

Vi
su
al	

Al
er
tin

g
Vi
su
al	

Or
ien

tin
g

Vi
su
al	

Ex
ec
ut
ive

	
Co

nt
ro
l	

(In
co
ng
ru
en

t	-
Ne

ut
ra
l	

RT
)

Vi
su
al	

Ex
ec
ut
ive

	
Co

nt
ro
l	

(In
co
ng
ru
en

t	-
Co

ng
ru
en
t	

RT
)

RB
AN

S	
Im
m
ed
iat

e	M
em

or
y	

Ind
ex

RB
AN

S	
At
te
nt
io
n	

Ind
ex

W
AIS

-IV
	

W
or
kin

g	
M
em

or
y	

Ind
ex

PR
OC

10
01

51
Fe
ma

le
8.
75

16
1

31
67

.4
42

50
.8
8

65
03

.7
1

63
32

.2
2

33
36

.3
1

20
81

.3
5

-5
7.
22

-1
36

.2
1

19
2.
39

26
6.
83

10
9.
68

45
.6
1

11
4.
94

89
.9
4

94
82

86
PR

OC
10

02
43

Fe
ma

le
6.
25

16
0.
94

42
30

.6
50

63
.9

53
19

.7
53

12
.9

10
89

.1
24

9
9.
05

42
.2
2

14
3.
01

17
7.
32

1.
98

75
.5
3

79
.8
7

99
.4
5

90
11

2
11

7
PR

OC
10

03
49

Fe
ma

le
8.
75

14
1

47
44

.4
48

82
.1

46
51

.3
3

53
33

.1
1

-9
3.
07

45
1.
01

-3
0.
3

-0
.4
8

89
.4
5

13
0.
09

8.
76

11
.7
7

97
.6
6

75
.9
1

90
10

6
10

2
PR

OC
10

04
51

Fe
ma

le
12

.5
16

1
32

48
.9

34
10

.6
39

20
.8
8

45
13

67
1.
98

11
02

.4
-1
4.
65

29
.4
8

33
.6
8

51
.9
2

47
.3
8

38
.2

10
8.
07

10
1.
05

14
8

13
2

13
6

PR
OC

10
05

44
Fe
ma

le
11

.2
5

16
1

47
09

.8
51

24
.8

46
52

.5
55

22
.3

-5
7.
3

39
7.
5

13
.3
9

-5
2.
39

15
5.
38

11
8.
39

10
.4
4

14
.9

81
.4
5

81
.0
1

94
12

5
10

2
PR

OC
10

07
50

Fe
ma

le
10

18
0.
94

31
48

.5
36

98
.5

38
02

.7
43

39
.3

65
4.
2

64
0.
8

37
.5
2

-2
.6
6

97
.9
9

13
0.
69

61
.9
7

21
.3
7

84
.5
8

83
.4
6

11
4

11
5

11
7

PR
OC

10
08

64
M
ale

11
.2
5

16
1

40
26

46
91

.8
40

21
.8
9

44
85

.9
-4
.1
1

-2
05

.9
1.
36

-2
0.
12

10
3.
65

18
9.
85

-7
0.
75

-6
9.
44

14
2.
65

16
9.
45

87
12

2
11

1
PR

OC
10

09
65

Fe
ma

le
12

.5
12

1
45

53
.7

51
92

.2
52

04
.3
3

71
59

.3
65

0.
63

19
67

.1
8.
6

-6
13

6.
57

29
5.
92

12
.6
3

-3
0.
35

16
0.
99

12
2.
99

94
10

9
97

PR
OC

10
10

66
Fe
ma

le
12

.5
14

1
41

08
.9

45
73

.5
40

31
.3

47
05

.5
-7
7.
6

13
2

10
.6
7

71
.0
6

14
4.
91

76
.2
4

72
.6
2

83
.3
6

12
2.
84

14
4.
18

90
11

2
97

PR
OC

10
11

79
Fe
ma

le
32

.5
12

1
48

30
.3

50
16

.4
4

52
30

.8
51

88
.6
3

40
0.
5

17
2.
18

-1
9.
63

-5
.0
6

13
9.
52

19
5.
9

42
.5
4

74
.3
9

11
2.
81

98
.3
9

10
3

91
11

9
PR

OC
10

12
52

Fe
ma

le
6.
25

14
1

43
58

.4
49

12
.7

47
96

.8
55

38
.7

43
8.
4

62
6

80
.6
1

13
.8

19
4.
38

31
2.
11

41
.7
1

18
.1
7

14
6.
33

12
8.
31

94
88

11
1

PR
OC

10
13

68
M
ale

42
.5

20
1

36
44

.4
41

70
.6

49
78

.2
55

19
13

33
.8

13
48

.4
-1
9.
05

-5
5.
89

18
1.
29

21
8.
5

69
.1
1

10
2.
39

54
.1

62
.4
6

97
10

6
10

8
PR

OC
10

14
44

Fe
ma

le
5

15
1

45
51

.1
49

51
.1

47
69

.2
5

66
21

.3
21

8.
15

16
70

.2
41

.0
4

-2
2.
12

10
3.
26

14
9.
77

27
.2
6

47
.0
8

11
5.
07

12
6.
3

85
91

95
PR

OC
10

15
47

M
ale

10
15

1
42

86
.2

47
19

.6
48

86
.4
4

53
00

.8
9

60
0.
24

58
1.
29

20
.7
7

16
.2
7

16
8.
72

18
7.
23

66
.3
9

17
.6

14
1.
38

12
9.
25

10
0

11
2

10
2

PR
OC

10
16

31
Fe
ma

le
6.
25

16
1

36
34

.3
44

00
.4

43
93

.2
50

86
.3
3

75
8.
9

68
5.
93

26
.4
9

-2
.5
2

78
.5

61
.9
7

10
5.
05

40
.1
8

95
.9
9

82
.1
5

10
3

10
6

12
2

PR
OC

10
17

31
M
ale

18
.7
5

16
0.
94

37
31

.6
39

00
.2
2

51
94

.1
1

60
27

14
62

.5
1

21
26

.7
8

-1
14

.2
2

47
.3
5

13
1.
74

14
8.
21

55
.3
9

9.
54

13
9.
32

11
5.
71

94
75

83
PR

OC
10

18
41

M
ale

10
16

1
37

10
.5

35
96

.9
45

22
.4

50
68

.5
81

1.
9

14
71

.6
80

.9
2

21
.7
4

16
5.
72

18
1.
85

53
.8
5

55
.3
7

80
.9

60
.3
2

10
9

12
2

12
5

PR
OC

10
19

61
Fe
ma

le
16

.2
5

12
1

34
76

.9
39

09
.3

44
73

.4
4

51
16

.7
8

99
6.
54

12
07

.4
8

40
.7

-4
8.
19

18
1.
99

19
3.
05

-4
.8

-4
.3
5

64
.1

85
.3
4

10
9

13
8

11
1

PR
OC

10
20

56
Fe
ma

le
13

.7
5

12
1

31
12

.2
33

54
.9

38
76

.9
39

67
.6

76
4.
7

61
2.
7

25
.5
9

-1
.6
5

9.
87

-0
.4
6

-6
.9
5

18
.4
5

87
.3
2

74
.5
9

12
3

10
0

10
8

PR
OC

10
21

35
M
ale

13
.7
5

18
1

26
40

.8
32

90
.7

31
37

39
57

.6
49

6.
2

66
6.
9

16
.6

-1
7.
31

9.
87

96
.3
6

28
.6
9

25
.8
8

73
.2
7

64
.1
4

83
10

0
11

4



  174 

APPENDIX B 

RAW DATA FOR STROKE PARTICIPANTS 
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Table B1. Raw data for stroke participants. 
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