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ABSTRACT

High Voltage Direct Current (HVDC) Technology has several features that make

it particularly attractive for specific transmission applications. Recent years have

witnessed an unprecedented growth in the number of the HVDC projects, which

demonstrates a heightened interest in the HVDC technology. In parallel, the use

of renewable energy sources has dramatically increased. For instance, Kuwait has

recently announced a renewable project to be completed in 2035; this project aims to

produce 15% of the countrys energy consumption from renewable sources. However,

facilities that use renewable sources, such as solar and wind, to provide clean energy,

are mostly placed in remote areas, as their installation requires a massive space of

free land. Consequently, considerable challenges arise in terms of transmitting power

generated from renewable sources of energy in remote areas to urban areas for further

consumption.

The present thesis investigates different transmission line systems for transmitting

bulk energy from renewable sources. Specifically, two systems will be focused on: the

high-voltage alternating current (HVAC) system and the high-voltage direct current

(HVDC) system. In order to determine the most efficient way of transmitting bulk

energy from renewable sources, different aspects of the aforementioned two types of

systems are analyzed. Limitations inherent in both HVAC and HVDC systems have

been discussed.

At present, artificial intelligence plays an important role in power system control

and monitoring. Consequently, in this thesis, the fault issue has been analyzed in

transmission systems, with a specific consideration of machine learning tools that can

help monitor transmission systems by detecting fault locations. These tools, called

models, are used to analyze the collected data. In the present thesis, a focus on

such models as linear regression (LR), K-nearest neighbors (KNN), linear support
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vector machine (LSVM) , and adaptive boost (AdaBoost). Finally, the accuracy of

each model is evaluated and discussed. The machine learning concept introduced

in the present thesis lays down the foundation for future research in this area so

that to enable further research on the efficient ways to improve the performance of

transmission line components and power systems.
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NOMENCLATURE

HVDC High voltage direct current.

HV AC High voltage alternating current.

ROW Right-of-way.

CB Circuit breaker.

N/A Not Applicable.

LR Linear regression.

KNN K nearest neighbor.

LSVM Linear support vector machine.

AdaBoost Adaptive Boost.

DC Direct current.

AC Alternating current.

KNEC Kuwait national electricity company.

Kw Kilo watt.

KOC Kuwait oil company.

RMS Root mean square.

RPM Revolution per minute.

OCR Optical character recognition.

EDA Exploratory data analysis.

RTD Real time data.
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1. INTRODUCTION

1.1 Kuwait Electrical System 1

1.1.1 Electrical History of Kuwait

The discovery of oil in Kuwait, which remains a major source of national wealth,

ushered the nation into the era of cultural awakening and revival in different walks

of life, including social, structural, educational, and economical. Power supply has

played a vital role in laying down the foundations for this awakening and in meeting

the needs and requirements of such cultural march. A brief historical review pro-

vided below demonstrates the extent to which power supply has developed over the

last several years. Before the construction of the first small (DC) electric plant by

the Kuwait National Electricity Company (KNEC) in 1934, most people in Kuwait

used kerosene lamps for lighting. After 1934, production started with two (30 kW)

generators, and the power was distributed by +200 V DC line. At first, the number

of consumers was rather small–in fact, by the end of the first year after the plant was

constructed, there were only 60 consumers. However, by 1940, the number of elec-

tricity consumers increased to 700, which required increasing the installed capacity to

340 kW. After a period of stagnation during the Second World War, the KNEC de-

cided to phase out the direct current system and introduced a three-phase 380/220V,

50 Hertz alternating current. Accordingly, in early 1949, a new plant comprising

two (200 kW) generators was erected at Murgab (Centre of Kuwait); a year later, in

1950, a third (200kW) generator was added while the DC system was also phased

out. To cope with the increasing demand for electricity, the KNEC obtained a used

1The information of this section were taken directly from “Kuwait Yearly Statistical report,
2017”[1]
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(500 kW) generator from the Kuwait Oil Company (KOC), thereby bringing up the

installed generation capacity to 1100 kW (1.1 MW). Owing the rapid progress and

growth of the country, demand for electricity dramatically increased, rendering then

the available plants unable to cope with this demand.

In 1951, the Government bought the shares of the KNEC and founded the De-

partment of Electricity to adequately provide and distribute electricity supply. Since

then, the Kuwait electric system has tremendously grown. At present, electricity in

Kuwait is produced in three types of generation plants. In what follows, these three

types of electricity generation plants are discussed in further details.

1.1.2 Kuwait Current Generating Sources

Kuwait generation plants can be broadly categorized into three types–namely, (1)

gas turbine units; (2) steam turbine units; (3) and combined cycle units. Steam

and combined cycle units are large capacity units, while gas units are typically small

capacity units. Fig. 1.1 shows the available generation units in Kuwait as of 2017.

Fig. 1.1. Kuwait Available Generation Units
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1.1.3 Kuwait Future Demand Estimation

At present, Kuwait is facing a rapid growth of population, which has a direct

impact on the growth of the demand for electricity. Fig. 1.2 shows an estimate of the

future growth of demand for electricity in the country[1].

Fig. 1.2. Kuwait Future Estimation of Peak Demand

As can be seen in fig. 1.2, electricity consumption is expected to grow from 12,229

MW in 2018 to 19,927 MW in 2025. The continued industrial and urban development

necessitates a considerable expansion of power production, which entails relying on

natural sources of energy as part of the power production expansion.

1.1.4 Kuwait Renewable Project in 2035

As shown in fig. 1.1 in Section 1.1.2, the current Kuwait power system heavily

depends on steam turbines, gas turbines, and combined cycle turbines, with each type

making a different contribution to the total electricity generation (47.5%, 40.2%, and

12.2%, respectively). Of note, as can be seen in fig. 1.1, the generation of renewable

energy in Kuwait remains very low, comprising mere 0.1% of the total generation.
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However, by 2035, Kuwait aims to satisfy 15% of its total electricity demand

by the energy obtained from renewable sources [2]. The factors that underpin this

determination include the natural increase in the electricity consumption, the worlds

strong interest in renewable sources of energy, and supportive climate in Kuwait (with

sunny weather most of the year). Therefore, from the total expected demand of

19,927 MW in 2025 (see fig. 1.2), the power expected to be generated from renewable

sources by 2035 should be around 3000MW. Moreover, Kuwait aims on investing in

five islands in the country as a part of the 2035 project, which could increases the

estimated demand in fig. 1.1 to more than 20,000MW.

1.1.5 Renewable Location and Transmission

An important factor in exporting the power from renewable energy producing

facilities to the urban areas is the location of those facilities. Due to the fact that

renewable farms require a massive land space, most renewable farms are located far

away from urban areas. For instance, the facilities planned within the aforementioned

renewable project in Kuwait will be constructed in the North West of Kuwait, near

Saudi Arabias boarder. Consequently, in order to decrease losses in transmission oper-

ation, installation of high voltage transmission lines has to be planned. Mathematical

equations for transmission losses are discussed in [3].

1.2 Transmission Lines Overview

Transmission line is conventionally defined as a conductor that transmits power

from point A to point B. Overall, there are two types of current in transmission lines:

alternating current (AC) and direct current (DC).

Alternating current (AC), as is clear from its name, is an electric current that

which periodically reverses direction. By contrast, direct current features a constant

4



current and voltage. A detailed description for the characteristics of AC and DC is

provided in [4].

In terms of the transmission concept, transmission operation is usually performed

at a high voltage level to reduce losses, and a high voltage level is conventionally

defined as the one that starts with 100 kilo-volts. Therefore, typical electrical net-

works have transmission line at the highest voltage level through all system stages.

Consequently, two terms are introduced: high- voltage alternating current (HVAC)

and high-voltage direct current (HVDC). In the present thesis, more focus will be

given to HVDC. However, due to such advantages as easiness in control, easiness in

generation, cheaper equipment, and ability of stepping up/down voltage easily using

a simple transformer, HVAC is more popular than HVDC [4].

1.2.1 What Is HVDC?

The high-voltage direct current (HVDC) system is a system used for bulk power

transmission over long distances with minimum losses using overhead transmission

lines or submarine cable crossings. Moreover, the technology is adopted to inter-

connect different power systems with varying frequencies (asynchronous interconnec-

tions). In essence, due to the limitations of HVAC such as reactive power loss, sta-

bility, current carrying capacity, operation and control, HVDC is a system of interest

[5]. In the HVDC system, the transformer steps-up the generated AC voltages to the

required level. The converter station takes up the electric power from one point in

the three-phase AC network and rectifies it to DC, which is then transmitted through

overhead lines or cables [6]. At the receiving end, an inverter converts the DC voltage

back to AC, which is stepped down to the distribution voltage levels at various con-

sumer ends. This technology is suitable for transmitting rated power range between

100-10,000MW. Fig. 1.3 shows the HVDC component configuration.

5



Fig. 1.3. Component Configurations of an HVDC System

1.2.2 HVDC Configurations

Depending on several factors, such as reliability, location, the arrangement of the

pole and earth return, as well as the capacity to transmit bulk power, the following

five HVDC system configurations can be discerned: (1) monopolar; (2) bipolar; (3)

homopolar; (4) back-to-back; and (5) multi-terminal. In what follows, we discuss

each of these configurations in further detail.

1.2.2.1 Monopolar Link Configuration:

A monopolar HVDC system consists of a single conductor connected to one ter-

minal of the converter, while the other terminal is connected to the ground to form

a return path. This system is conventionally used to transmit power over the sea to

reduce cost [7]. The subsea cables installed using a monopolar scheme employ special

electrodes for the earth return. However, this earth return path through the sea may

lead to environmental concerns, such as corrosion of metallic objects. Another limi-

tation of this system is that it is not suitable for cable crossings in freshwater and in

the areas of high sensitivity of the earth. In order to overcome these challenges, the

system can use a low-voltage conductor as a return path, while the DC circuit can

use its own grounding. The advantages of this system configuration are as follows:

1. The system requires less conductor material, as the ground acts as the return

path.
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2. There is a less corona effect on the DC line due to the negative polarity of the

conductor with respect to the ground.

3. The system reduces insulation costs.

Fig. 1.4 shows the Monopolar link configuration.

Fig. 1.4. Monopolar HVDC Configuration

1.2.2.2 Bipolar Link Configuration:

A bipolar HVDC system is a two-pole system where one conductor has a positive

polarity, while the other one has a negative polarity. The advantage of this scheme

over monopolar link configuration is that, whenever a fault occurs in one of the

conductors, the other pole sustains the operation by acting as a monopolar link

with the ground [8]. Furthermore, a bipolar link system transmits more power than

a monopolar link system. In addition, there are no corrosion concerns, since the

current flows in a loop and does not go through the grounded return. However,

despite its advantages, the bipolar system is more expensive than a monopolar HVDC

configuration due to the high cost of terminal equipment; another limitation of this

system is that there are high corona losses [9]. Fig. 1.5 shows a bipolar HVDC system

configuration.
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Fig. 1.5. Bipolar HVDC Configuration

1.2.2.3 Homopolar Link Configuration:

A homopolar HVDC system consists of two conductors of the same polarity, usu-

ally negative. The configuration adopts either earth or metal for its return, and its

shunted poles reduce insulation cost [10]. However, this link is unpopular in the

current transmission systems. Fig. 1.6 shows the configuration of a homopolar link.

Fig. 1.6. Homopolar HVDC Configuration

1.2.2.4 Back-to-Back Configuration:

One of the primary functions of the HVDC system is asynchronous interconnec-

tion. A back-to-back HVDC configuration is a system used to connect power systems

with different frequencies [11]. The back-to-back scheme is usually small and consists
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of two converters close to each other, as this system is mostly used for only connecting

asynchronous interconnection (see figure 1.7).

Fig. 1.7. Back-to-Back HVDC Configuration

1.2.2.5 Multi-Terminal Configuration:

Multi-Terminal HVDC configuration is a transmission system that consists of

more than two converter stations (see fig. 1.8). This scheme is more complicated than

monopolar and bipolar link configurations and is applied for offshore interconnections

of wind farms and oil rigs [12]. Advantages of a Multi-Terminal HVDC configuration

are as follows:

1. This configuration requires less conductor material, as the ground acts as a

return path.

2. This configuration has low insulation cost.

3. There is less corona effect in negative polarity conductors.

4. It is possible to achieve reversal power and avoid power interruptions by trans-

mitting power through other conductors in the event of a fault.

However, a disadvantage of Multi-Terminal HVDC configuration is that the return

path can cause corrosion of metal structures, such as underground communication

cables.
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Fig. 1.8. Multi-Terminal HVDC Configuration

1.2.3 Converters Types

Modern HVDC systems use two basic converters: (1) the line-commutated cur-

rent source converters (CSC) and (2) the self-commutated voltage source converters

(VSCs). In Sections 1.2.3.1 and 1.2.3.2, we discuss these converters in further detail.

1.2.3.1 Current Source Converters (CSCs):

The conventional current source converter (CSC) uses thyristor valves and requires

a source of potential to operate. Its building block is a three-phase, full-wave bridge

called a six-pulse [5]. Figure 1.9 shows this configuration.

In the HVDC systems, the CSC converter generates harmonic currents from the

surrounding AC network by absorbing reactive power, which affects electrical systems.

Consequently, the filter circuit limits the AC harmonic currents and compensates the

amount of reactive power absorbed by the converter. The correct converter operation

depends on the AC system voltage. The control system for the DC circuit reverses this

voltage in order to change the direction of power flow, while the reactor smoothens

the DC current and reduces the peak current in the event of a fault [13]. The HVDC

stations that use CSC converter experience a power loss of 0.5-1% per converter
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Fig. 1.9. Current Source Converters (CSCs)

station.

1.2.3.2 Voltage Source Converters (VSCs):

Voltage source converters are HVDC components that, instead of relying on line

commutation for their operation, require the systems DC side to have a voltage source.

Despite the polarity or the amount of current flows, the voltage source maintains the

required potential across its terminals [14]. Fig. 1.10 shows the operation of a single

phase two-level VSC.

Fig. 1.10. Two-Level Basic Operation (VSC)

The system above is a half-bridge consisting of two switching cells, each with a con-

trollable and unidirectional insulated gate bipolar transistor (IGBT). These switches
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are self-commutated and connected to a diode facing an anti-parallel direction, which

ensures that the bridge potential has only one polarity and current can flow in both

directions. Moreover, the circuit configurations allow for ON and OFF switching of

the IGBTs using a Pulse Width Modulation (PWM) control scheme [13]. The split

capacitors help to maintain the net voltage. Along with the two-level converter, there

are other VSC configurations, such as three-level converters and modular multilevel

converters. The advantages of the VSC system are as follows:

1. It has control capability for both active and reactive power.

2. Due to its flexibility from its control capability, the converter can be placed on

any network.

3. Self-commutation of VSC allows for a back start, enabling the component to

handle balanced three-phase voltages.

4. The converter improves voltage stability.

5. Unlike conventional line converters, VSC has no reactive power demand, but

can control it to regulate the AC system.

Table 1 shows a summary of the comparison of CSC and VSC.

1.2.4 HVDC Applications

The HVDC system is effectively applied the following applications:

1. Bulk power transmission over long distances.

2. Underground and submarine cable crossings for transmission systems above

30km.
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3. The asynchronous connection of the AC system with different frequencies.

4. Control and stabilization of the power system with the power flow control.

Table 1.1. Comparison Between CSC and VSC

Current Source Converter (CSC) Voltage Source Converter (VSC)

The technology is already developed The technology is still developing

Uses thyristor valves that depend on

AC voltage for commutation

Uses IGBT and the system has self-

commutation

Commutation failure can occur Commutation failure can not occur

Requires reactive compensation Does not require reactive compensation

Requires switchable AC harmonic fil-

ters

Does not require switchable AC har-

monic filters

Requires converter transformers of spe-

cial design

It can use conventional transformers

Requires DC voltage polarity reversal No reversal of DC voltage polarity re-

quired because power flow can be con-

trolled in both directions

Incurs 0.5% to 1% conversion losses of

transmitted power

Incurs 1-2% conversion losses of trans-

mitted power

1.2.5 Brief Cost Analysis for HVAC and HVDC

A key factor to consider in constructing a transmission line is the cost, including

both the construction cost of the system components needed and long-term costs

generated by losses. Therefore, comparing HVAC or HVDC transmission systems,

many aspects should be carefully considered. Several previous studies have analyzed

the HVAC and HVDC transmission line costs [14]-[15].
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Based on the results of previous research [14]-[15], a study has been done on the

Nelson River project in Manitoba, Canada, which started the construction in 1966 for

Phase I and completed its Phase 3 in 2018 [16]. HVAC transmission line consists of

three conductors (i.e. three phases), which directly impacts the right-of-way (ROW).

By contrast, HVDC consists of only two conductors, which decreases the costs of the

ROW as compared to HVAC. While Nelson River AC transmission line cost amounts

to $955k/mile[17], the cost of the transmission line for the DC line in the same project

ranges between $345k/mile and $370k/mile for ±400kV to ±700kV. Therefore, the

cost of the HVDC transmission line is considerably lower than the cost of HVAC

transmission line in terms of the line itself. However, the main components of HVDC

that consume over 50% of the whole system cost are the converters [17], including the

rectifier and the inverters at each end. Many other comparison elements are being

considered when comparing costs. Several previous studies have performed a detailed

comparative analysis of the elements in the two transmission systems [18]-[19] (see

Table 1.2 for a summary).

In terms of distance, the break-even distance for overhead transmission lines (see

Figure 1.9) has been discussed in terms of line distance in [20]. As can be seen

in Figure 1.9, with regard to overhead transmission line, the break-even distance is

between 400 and 700 km. Therefore, in cases where the overhead transmission line is

less than 400km, the AC transmission system would be the most appropriate system.

On the other hand, with regard to the underwater cable, a different analysis has to be

performed. In [21], a detailed comparison of an underwater cable of both HVAC and

HVDC has been undertaken (see Figure 1.10 for a summary of the results). As can be

seen in the figure, the underwater cable break-even distance is very short compared

to the overhead transmission line break-even.

In summary, in transmission line planning, many aspects have to be considered.
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Table 1.2. System Cost Elements For a Constant Power (MW) Transmitted and a
Constant Transmission Length [19]

HVAC Cost Terms HVDC Cost Terms

Right-of-Way Right-of-Way

Load density per acre of ROW Load density per acre of ROW

Transmission voltage Transmission voltage

Conductor specifications (Size and type

)

Conductor specifications (Size and type

)

Substations equipment, switching sta-

tions breakers, transformers, and sta-

tion civil work

Rectifier, inverter, filters, DC circuit

breakers, smoothing reactors and sta-

tion civil work

System reinforcement System reinforcement

Environmental impact Environmental impact

N/A Conversion of voltage from AC to DC

and Vice-a-Versa

The results in Figures 1.9-1.10 focus only on system losses, construction costs, and

distance of the line. However, in real-life applications, many other aspects–such as

the stability of the added and connected systems–should also be considered.
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Fig. 1.11. Costs of AC and DC Overhead Lines Based on Distance [20]

Fig. 1.12. Costs of AC and DC Underwater Cable Based on Distance [21]
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1.2.6 Disadvantages of HVDC and HVAC

Both HVDC and HVAC systems have several limitations. More specifically, the

disadvantages of HVDC are as follows:

1. Compared to converter stations used in the HVAC systems, converter stations

used in the HVDC are expensive and complicated.

2. The design and operation of multi-terminal HVDC systems are sophisticated

compared to HVAC.

3. Current and voltage harmonics are generated during conversion, which requires

expensive filters.

4. The presence of high-frequency constituents in the DC transmission causes in-

terference in the communication systems near the HVDC system.

5. The grounding of the HVDC system is complex and complicated.

In its turn, the HVAC systems have the following limitations:

1. Compared to HVDC, HVAC has a very high interference with communication

lines

2. It is impossible to connect two unsynchronized HVAC (e.g., a 60Hz to a 50Hz

line).

3. Compared to the HVDC systems, the HVAC systems are more likely to experi-

ence corona effects during bad weather compared to HVDC.

4. Unlike in HVDC, inductive and capacitive parameters are a limiting factor in

the HVAC systems.
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Therefore, both HVAC and HVDC systems have their specific advantages and

disadvantages. For a better visualization and analysis on a specific electric system,

and in order to obtain a conclusion for the appropriate selection, a software simulation

considering the details of both systems has to be performed.

1.3 Research Purpose

The present thesis focuses on both HVAC and HVDC systems in the specific

context of the Kuwait system, particularly the countrys 2035 renewable sources and

islands project. We also consider the applications of artificial intelligence in the

selected system. At present, Kuwait does not have any HVDC systems in its interior

power system. Due to the difference in the operating frequency in Kuwait and Saudi

Arabia (50Hz and 60Hz, respectively), the former is connected to the latter through

a back-to-back HVDC system.

Both HVDC and HVAC systems are widely used around the world. However, in

each specific case, a careful analysis is needed to determine which of the two sys-

tems would best fit the needs of a specific country or region. Consequently, despite

the many and varied advantages that have made HVAC transmission more popular

globally, the HVDC transmission would be preferred in numerous other cases. For

instance, the elimination of challenges of synchronizing various control system oper-

ations within many power systems could become a reality. On HVDC transmission

lines, there is usually a fast-acting emergency control systems, which is essential in

terms of enhancing reliability and stability of power systems. However, many pre-

vious studies have demonstrated that HVDC is not necessarily the best option for

transmission system.

Therefore, the present thesis aims to assess the validity and test the advantages

of the HVDC system in the Kuwait context. The results are expected to benefit not
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only on Kuwaits system, but also those of the countrys neighbors and, more globally,

demonstrate the efficiency of having an interconnected system through HVDC links

in the Middle East region.

The selection of the transmission system will be based on the simulation results

and analysis. Moreover, an important issue for the selected system will be analyzed

and solved using artificial intelligence.

Artificial intelligence, which allows to fix a common problem at a minimal cost,

can be meaningfully applied in the HVDC project. Nowadays, data are available all

the time, particularly in a power system where measurement devices are installed

almost everywhere in the system. However, in Kuwait, the main purpose of those

measurement devices is only monitoring the power grid. However, enhancing and

modernizing the power system operation in Kuwait using artificial intelligence would

benefit not only Kuwait, but also its neighbor countries.

Recently, artificial intelligence applications in the Middle East region have become

an object of considerable research. However, the power system is not among the prior-

ity fields for application of artificial intelligence. To illustrate, at a recent conference

entitled Artificial Intelligence Week of Middle East held in Dubai, the United Arab

Emirates, the main focus was on involving artificial intelligence in the government,

banking and finance, and health care. In this context, the main research purpose

of the present thesis is to demonstrate that artificial intelligence applications can be

meaningfully used to enhance and improve Kuwaits power system. Specifically, by

proposing a solution using machine learning tools, this thesis seeks to lay down the

foundation for further work in the same field.
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1.4 Thesis Structure

The remainder of the present thesis is structured as follows. Chapter 2 illustrates

current challenges and issues of transmitting bulk energy over long distances. To this

end, we compare the efficiency of the HVDC and HVAC systems in terms of necessary

construction elements, delivered power, and other pertinent characteristics of those

two systems. Furthermore, we also discuss the importance of stability in the power

system and the factors that lead to instability of this system. The chapter concludes

with the fault analysis in the power transmission system.

Chapter 3 outlines the methodology and the research design of the experiment

performed in the present thesis. To this end, we start by presenting the simula-

tion software used for studying the HVAC and HVDC systems. This is followed by a

detailed presentation of the experimental set-up of the power system and the assump-

tions made. Finally, the system set-up is validated to ensure reliability and validity

of the results.

Chapter 4 provides further detail on all steps of the experiments. Specifically, this

chapter presents all types of experiments carried out throughout this thesis, discusses

the results obtained from each experiment, and draws conclusions for the experimental

results.

Chapter 5 focuses on the concept of artificial intelligence. We start by introducing

machine learning and discuss its functionality vis-à-vis solving real-world problems.

Secondly, we recapitulate on the importance of fault detection discussed in Chapter

2 and propose a machine learning tools to solve the issue at stake. For using machine

learning tool, Section 5.4 describes the data collection process. Furthermore, Section

5.5 explains the tools and methods applied to the analysis of the collected data.

Finally, we summarize the results, evaluate them in terms of accuracy, and discuss
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the findings to highlight the importance of machine learning in the power system

operation and control.

21



2. RENEWABLE SOURCES INTEGRATION CHALLENGES AND

ISSUES

2.1 Efficiency

Efficiency plays a huge role in power systems. The goal in power systems is to

obtain the highest efficiency possible out of a particular system. However, many

challenges could arise while trying to obtain high efficiency.

In order to decrease the losses, transmission of bulk energy either from renewable

sources or from conventional generators has to be performed through the high voltage

level. According to the electric loss equations discussed in [3], for both DC or AC

transmission, a high level voltage for the same amount of sent power decreases the

current, which, in turn, decreases the loss across the line. Therefore, in terms of

efficiency, a smaller amount of energy is lost in HVDC, and DC eliminates reactive

power; therefore, there is no reactive power in the DC line, so that only active power

is flowing [22]. A DC line consists of two conductors for transmitting power: namely,

the negative (-) conductor and the positive (+) conductor. On the other hand, the

AC line for transmission consists of three lines (or three phases). Therefore, HVDC

would require fewer conductors and narrower right-of-way, which results in less land

uses and cheaper conductor equipment.

The main uses of HVDC include connecting offshores wind farms to onshore sub-

stations and transmitting power across the sea, where overhead lines are not ap-

plicable. This constitutes another considerable advantage of HVDC over HVAC.

Specifically, the AC cables have large capacitance, which results in limiting the power

transferred through the cable; therefore, in the AC case, the cable is carrying both

load current and capacitive current. By contrast, a DC cable carries only load current
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with eliminating the capacitive current, which justifies using HVDC submarine cables

for power transmission across the sea [23]. Another advantage of HVDC over HVAC

is that the former eliminates the inductive voltage drop.

Given that DC voltage is constant in the whole operation, HVDC conductors carry

more power compared to their HVAC counterparts. However, AC alternates period-

ically. Therefore, in AC, the root mean square (RMS) is considered the standard,

where RMS is only about 75% of ACs peak voltage [22]. The insulation thickness

and conductor spacing of the HVAC system are based on the peak voltage, rather

than on the RMS value. On the other hand, since DC operates at a constant voltage,

it allows the insulation and the conductor size to carry 100% of the power.

2.2 Stability and Fault Analysis

In this section, we investigate the role of system stability in the electric power

system and determine the reasons of a systems instability. Stability of the system

is the top priority in any secure operational electrical setup. Due to power system

failures, systems can undergo major blackouts. In this context, it is essential to focus

on stability of the system. In this section, we also provide an explanation about the

high voltage direct current (HVDC) and how it helps the connected AC system to

remain stable. Furthermore, we also introduce the fault analysis in the AC system

with HVDC connected, as well as discuss the effects of the fault on the AC system

and HVDC individually. Finally, this section discusses the importance of determining

the fault location on a line.

2.2.1 Stability

System stability is a state of equilibrium between contradicting powers [24]. Power

system instability refers to the capacity of an electric power system to maintain a given
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starting working condition and to recover a condition of working equilibrium after the

systems exposure to an unsettling physical influence. The power system setup is an

exceedingly nonlinear system that works in constantly changing conditions, with al-

ternating loads, generator yields, topology, and key working parameters. Depending

on the conditions, a disturbing influence might be little or extensive. Due to volt-

age fluctuations or recurrence variance which might affect the interconnected power

system, an electric power system might start having stability issues [25]. There are

various other factors, such as lightning, weather conditions, inappropriate wiring,

vandalism, trees falling over transmission lines, aircraft collisions, excessive load, and

collision of vehicles, which are harmful to the power system. These instability issues

are referred to as faults in the system.

In the event of a fault, if the regular recurrence of swaying corresponds to the

recurrence wavering of the generators, the engine loses synchronism, which is a fun-

damental condition for a power system.

Overall, for the transmission of electrical power, a high voltage direct current

(HVDC) transmission system makes use of the coordinate flow with a more typical

alternating current (AC) system [26]. The reasons for using high voltage direct cur-

rent lines as connections in the AC transmission systems include stability, security,

and affordability of these lines. It is considerably easier to control the current on

the HVDC side by using terminating circuits of the thermistors installed in the two

rectifiers and inverters. Exchanging activities can be performed on the AC side using

AC circuit breakers (CB).

In essence, HVDC permits control transmission between unsynchronized AC trans-

mission systems. Since power flows through an HVDC connection can be freely con-

trolled at the stage point among the source and the load, this can settle a system

against unsettling influences generated by quick changes in power [27]. In addition,
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HVDC permits the exchange of intensity between systems running at various frequen-

cies, thereby enhancing the strength and economy of every electric system and thus

permitting the trade of intensity between inconsistent systems.

Therefore, for transmission work and activities at longer distances, the HVDC

systems might be more affordable, in that they are capable of reducing system insta-

bility and ensuring higher security. For submerged power links, HVDC keeps away

from the overwhelming flows required to charge and release the link capacitance in

each cycle. Therefore, in this case, the use of high voltage direct current is advisable

in most electric power systems.

2.2.2 Fault analysis

A fault is basically defined as an unusual or abnormal condition in a power frame-

work. Fault analysis, which includes determining security hardware and evaluation of

the system unwavering quality, is among the key objectives in the power system setup

with the AC supply and the HVDC lines [28]. At present, most is done using the

high-voltage transmission system. In the event of a fault in the system, the working

state of the entire system is disturbed, thereby halting the entire process. If the fault

is a persistent, a serious loss of load and property harm may occur due to the blast,

short circuit or fire. This can lead to dramatic economic losses.

Whenever a fault occurs in the AC system connected to the HVDC lines, the

HVDC transmission lines suffer an immense loss in terms of energy and power. A

transmission failure interrupts the entire power supply process [29]. Even when the

system comprises a single phase, there is an estimated power loss of 30%. Despite the

fact that the HVDC can bear twice its voltage before causing a failure, huge faults

can still disrupt the entire system. However, when the fault is removed quickly, the

power returns to its original value.
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The main reason behind the fault reaching a higher level is that the AC transmis-

sion system becomes overloaded, which results in disconnection. This disconnection

leads to an increased load on other lines, which has a dramatic negative impact on

the entire system. The system shuts down, which causes major power failures in most

regions. Main reasons for faults happening in a power include a protection failure,

flashover, physical harm, or human mistake. In addition, deficiencies may be caused

by either short circuits to the earth or between live conductors or might be caused

by broken conductors in at least one phase.

Taken together, a short review of major factors causing faults in power systems

and the consequences of these faults underscore the importance of appropriate and

adequate fault analysis in power systems. In fact, fault analysis is the basic precon-

dition to ensure security and reliability of power systems.

2.2.3 Importance of Determining Fault Location

To eliminate a fault, a crucial step is to determine the fault location in any electric

system, particularly as concerns very long transmission lines. Faults might lead to fire

breakouts that, in turn, can result in loss of property, death toll, and decimation of a

power system. Moreover, failures can cut off power supply in various zones past the

fault point in transmission and circulation arrange, prompting power outages [29]. In

this context, it is essential to perform estimations of system voltages and flows amid

faulty conditions, setting defensive gadgets capable of recognizing and limiting the

destructive impacts of faults. Once the fault location is determined, the problem can

be fixed easier, and the damages associated with the fault can be effectively reduced.

In view of the above, system stability must be the utmost priority of the electric

system engineers, and all measures discussed above should be carefully considered be-

fore finalizing an electric system design and installation. Faults can be life-threatening
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and have a dramatically adverse impact on the economy. Therefore, it is very neces-

sary to have a stable and secure system.
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3. EXPERIMENTAL MODELLING

Research conducted in the present thesis is based on simulation. The experimental

setups were simulated to better visualize the behavior of the system. Further detail

on each system setup is provided in Chapter 4.

3.1 Simulation Software

In this section, we explain three software programs used in the present thesis.

Sections 3.1.1-3.1.3 provide further detail on each software, clarify the reasons for

choosing them, and specify our research purposes for using them in the present study.

3.1.1 ETAP

ETAP is defined as “a full spectrum analytical engineering software company spe-

cializing in the analysis, simulation, monitoring, control, optimization, and automa-

tion of electrical power systems”[30]. In industry, ETAP is one of the best simulation

tools used on a daily basis. In a recent customer survey, ETAP scored 99% in overall

customer satisfaction [30]. Moreover, in 2018, ETAP was awarded the product of the

year by Consulting-Specifying Engineer Magazine [31]. In the present thesis, the role

of ETAP is building the entire electric power system, including renewable sources,

step-up transformers, HVDC link, HVAC link, step-down transformers, and loads.

We use ETAP to visualize the results using its features of running power flows, both

AC and DC, system efficiency, fault analysis, and system stability.

3.1.2 DigSILENT Power Factory

DigSILENT PowerFactory is defined as “a leading power system analysis software

application for use in analyzing generation, transmission, distribution, and industrial
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systems”[32]. Its features are very similar, if not identical, to that of ETAP. However,

in the present study, our purpose for using the PowerFactory simulation tool was not

to build a power system or to test it. Instead, we used PowerFactory to collect Real

Time Data (RTD) of the built system on ETAP. PowerFactory has the excellence

function of the RTD collection and system monitoring. The real-time data were

needed for our machine learning research (see Chapter 5). Without such data, testing

the machine learning tool would not have been possible.

3.1.3 Python

Python is defined as “an interpreted, object-oriented programming language that

has gained popularity because of its clear syntax and readability”[33]. An online

platform called Anaconda was used to perform Python coding, as this platform con-

tains all Python libraries needed for the present research. Python was mainly used

at two stages. The first stage was the data analysis stage, while the second stage was

building the required models and testing them. Detailed descriptions of the setup

are provided in Chapter 5. An alternative in programming tool for machine learning

could have been Matlab. However, we opted for Python, as it has many advantages

over Matlab. Specifically, compared to Matlab, the coding statements in Python are

more compact and readable. Furthermore, Python can be implemented on many plat-

forms, such as Anaconda in our case, and it is free. Moreover, Python provides many

choices and more graphics packages than Matlab, as well as provides controllability

over the coding structures.

3.2 Experimental System Set-up

System setup was developed using ETAP; therefore, the electric power systems

built in the present thesis are not a real existing systems. However, the topology of
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the system, ratings, frequency, and components of the built systems are typical of

the Kuwaits system. For instance, in the built system, frequency was 50Hz; we also

considered loads distances from the planned renewable sources location as the five

islands that are going to be part of the Kuwait 2035 project. The distances selected

for these five loads were estimated based on Google Maps. The reason this setup was

underpinned by our consideration of the Kuwait 2035 project that involves a huge

amount of renewable generation and five islands investment. Therefore, studying the

power deliverability to those islands, which is a must project, and using the renewable

project, our results would contribute not only to the planning stage of the project,

but would also provide valuable insights in terms of the scenarios available for feeding

those islands, and how are these scenarios could affecting the existing Kuwaits AC

system.

Fig. 3.1 is a schematic representation of the first stage of the setup. First, a re-

newable farm was initially built consisting 4 photovoltaic (PV) arrays; then, inverters

were used to convert DC power generated to AC power, so that a transformer can

be used to step-up the voltage for the transmission purpose. Second, two transmis-

sion lines–HVAC and HVDC–were also added. However, only HVAC was actually

connected in the schematic, since the switches of HVDC were disconnected. Then, a

distribution substation was considered where the voltage was distributed to the five

loads. The transmission line length was set at 180KM between the renewable farm

and the nearest substation. The details of the transmission line parameters on ETAP

matched those of real Kuwait transmission lines, so that to ensure that realistic re-

sults could be obtained from the simulation. In the setup, the 400kV transmission line

voltage level and quadruple bundle conductors were also considered (see Fig. 3.1).
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Fig. 3.1. First Stage Schematic

3.2.1 System Set-up Validation

In this section, we validate the setup shown in fig. 3.1 using the concept of

voltage drop. In essence, voltage drop is the amount of electricity wasted due to the

resistance of the transmission line. Previous studies have demonstrated that voltage

drop increases with an increase in distance [34]. Therefore, in order to validate the

system shown in fig. 3.1, the voltage drop was measured across the loads. The loads

were labelled Load 1, Load 2, Load 3, Load 4, and Load 5 with the distance of 10KM,

30KM, 60KM, 75KM, and 90KM, respectively. Fig. 3.2 shows the expected results,

i.e. that the load located far away from the substation would have more voltage drop

percentage than the one located closer to the substation.

As can be seen in fig. 3.2, the validity of the system in terms of voltage drop is con-

firmed, since the tested system behaved in line with our expectation and consistently

with previous research.

31



Fig. 3.2. Voltage Drop Vs. Distance

At this point, we have verified the validity of the setup shown in fig. 3.1. Therefore,

further experiments will be performed on different setups (see Chapter 4 for further

detail).
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4. EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter, we report the results of several experiments performed after a series

of modifications of the setup shown in fig. 3.1 (see Chapter 3). In the first compar-

ison experiment, a voltage drop and losses were studied for both HVAC and HVDC

transmission lines shown in fig. 3.1. Each transmission line was tested separately by

connecting it and disconnecting the other one. After connecting a transmission line,

using the ETAP features, the losses and voltage drop across the transmission line

were measured. Different transmission lengths in the range from 180Km to 700Km

were considered, with a step of 50Km. The major aim of this experiment was to

investigate the performance of both HVAC and HVDC in terms of distance, and how

the distance affected voltage drop and losses in both systems.

4.1 Voltage Drop and Losses for HVAC Line

In this section, we report the results of the experiment when the HVAC line was

connected, while the HVDC line was disconnected (see fig. 3.1). Table 4.1 reports the

voltage drop values (in percent) and losses in megawatt (MW) for the HVAC system.
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Table 4.1. HVAC Result Values for Losses and Voltage Drop

AC POWER FLOW

TRANSMISSION SYSTEM SUMMARY

LENGTH (Km) Losses (MW) Voltage Drop (%)

180 2.91 2.58

230 3.49 3.2

280 4.03 3.6

330 4.57 3.78

380 5.12 3.75

430 5.73 3.51

480 6.4 3.07

530 7.17 2.43

580 8.08 1.59

700 11 -1.2

4.2 Voltage Drop and Losses for HVDC Line

In this section, we report the results of the experiment when the HVDC line was

connected, while the HVAC line was disconnected (see fig. 3.1). Table 4.2 reports the

voltage drop values (in percent) and losses in megawatt (MW) for the HVDC system.
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Table 4.2. HVDC Result Values for Losses and Voltage Drop

DC POWER FLOW

TRANSMISSION SYSTEM SUMMARY

LENGTH (Km) Losses (MW) Voltage Drop (%)

180 1.61 1.01

230 1.771 1.11

280 1.992 1.21

330 2.074 1.3

380 2.23 1.4

430 2.39 1.49

480 2.544 1.59

530 2.71 1.69

580 2.86 1.78

700 3.25 2.02

4.3 HVAC vs. HVDC Visualization Plots

For a better visualization of the data points obtained in Tables 4.1-4.2, two plots

that compare the behavior of the two systems were drawn (see fig. 4.1).
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(a) Losses in AC and DC Lines (b) Voltage Drop Across AC and DC Lines

Fig. 4.1. Visualization Plots for Data Points in Table 4.1 and Table 4.2

System Stability

Further detail on system stability is provided in Chapter 2. In Sections 4.4,

4.5, and 4.6, we focus on the system stability by studying the behavior of several

parameters in the event of a fault. In this experiment, a separate small AC system

consisting of 4 AC generators and 4 step-up transformers was built. This system was

connected to the same bus the renewable energy was being fed to. The idea was to

apply a fault at the distribution line near one of the loads–in particular, the second

load from the bottom in fig. 3.1, and the behaviors of three factors (namely, generator

speed, distribution bus voltage, and load bus frequency) were studied. First, the

three factors were analyzed without considering the integration of renewable sources,

assuming that the AC system with its four generators was feeding the five loads by

itself. Second, we analyzed the three factors upon integration of renewable energy

using the HVAC transmission line along with the AC system feeding the five loads.

Finally, we analyzed the three factors upon integration of renewable energy using the

HVDC transmission line and considering the existence of the added AC system. The

main idea in these three experiments was to visualize the results in the event of a fault

in a connected AC system and to investigate how the fault would affect the system
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in the following three conditions: (1) without the integration of renewable energy;

(2) integrating renewable energy using HVAC; and (3) integrating renewable energy

using HVDC. The visualization results are presented and the conclusions are drawn

in Section 4.7. Fig. 4.2 shows a modified schematic representation of the setup that

was used in the experiments. In essence, this new setup is similar to the one shown

in fig. 3.1, except for the fact that an AC part consisting of 4 AC generators was

added.

Fig. 4.2. Modified Schematic Including AC Generators Part

4.4 System Stability Without Renewable Integration

In this experiment, renewable sources and transmission lines were not included,

meaning that the top left part of the schematic representation of the setup shown in

fig. 4.2 was not considered. A fault was applied at the distribution line of the second

load from bottom (Load 13). The fault was applied at 1.5 seconds and was cleared

at 1.8 seconds.
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4.4.1 Observations and Simulation Results

Fig. 4.3 shows the behavior of the three factors, including (a) the frequency

oscillation for a period that included the fault time; (b) the substation bus voltage

oscillation for a period that included the fault time; and (c) generator speed oscillation

that resulted from the application of the fault (see fig. 4.3).

4.5 System Stability with Integrating Renewable Sources Through the

HVAC Transmission System

In this experiment, the renewable sources and transmission line were included,

meaning that the schematic representation of the setup shown in fig. 4.2 was fully

considered. However, while the HVAC line was connected, the HVDC line was discon-

nected. A fault was applied at the distribution line of the second load from bottom

(Load 13). The fault was applied at 1.5 seconds and was cleared at 1.8 seconds.

4.5.1 Observations and Simulation Results

Fig. 4.4 shows the behavior of the three factors, including (a) the frequency

oscillation for a period that included the fault time; (b) the substation bus voltage

oscillation for a period that included the fault time, and (c) generator speed oscillation

that resulted from the application of the fault (see fig. 4.4).

38



(a) Frequency oscillation during fault

(b) Substation Bus voltage Oscillation

(c) Generator speed oscillation during the

fault

Fig. 4.3. Visualization Plots for Stability Analysis for the Case in Section 4.4
(Without Renewable Integration)
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(a) Frequency Oscillation During the Fault

(b) Substation Voltage Bus Oscillation

(c) Generator Speed Oscillation During the

Fault

Fig. 4.4. Visualization Plots for Stability Analysis for the Case in Section 4.5
(Renewable Integration Through HVAC)
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4.6 System Stability With Integrating Renewable Sources Through the

HVDC Transmission System

In this experiment, the renewable sources and transmission line were included,

meaning that the schematic representation of the setup shown in fig. 4.2 was fully

considered. However, while the HVDC line was connected, the HVAC line was discon-

nected. A fault was applied at the distribution line of the second load from bottom

(Load 13). The fault was applied at 1.5 seconds and was cleared at 1.8 seconds.

4.6.1 Observations and Simulation Results

Fig. 4.5 shows the behavior of the three factors, including (a) the frequency

oscillation for a period that included the fault time; (b) the substation bus voltage

oscillation for a period that included the fault time; and (c) generator speed oscillation

that resulted from the application of the fault (see fig. 4.5).
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(a) Frequency Oscillation During the Fault

(b) Substation Bus Voltage Oscillation

(c) Generator Speed Oscillation During the

Fault

Fig. 4.5. Visualization Plots for Stability Analysis for the Case in Section 4.6
(Renewable Integration Through HVDC)
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4.7 Summary

To summarize, the visualizations results obtained in the three experiments out-

lined in Sections 4.4-4.6 are as follows.

In the first experiment described in Section 4.4 (see also fig. 4.3), frequency

oscillated around the 100%, i.e. 50Hz in our case. The total simulation time was

18 seconds, and the frequency continued oscillating until the end of the simulation,

which resulted in unstable frequency; even when the fault was cleared 10 seconds

earlier, the oscillation was still observed. As can be seen in fig. 4.3(b), the bus

voltage of the substation, which is a distribution bus, was predictably affected by the

fault. However, the affection stayed for around 13 seconds after the fault clearance

until it returned to its nominal value. Furthermore, as can be seen in fig. 4.3(c),

one of the AC generators was chosen to test its speed (i.e. revolutions per minute,

RPM), as a result of the fault. Ignoring the characteristic of the generator and inertia,

the speed of the generator was tested to see how the affect would differ in the three

experimental conditions. The result in fig. 4.2(c) shows an oscillation in the speed:

specifically, it increased at the fault time and started to decrease after the fault was

cleared. However, the speed ended up with a lower value than the initial one.

Furthermore, in the second experiment described in Section 4.5, the frequency

oscillated around the 100%, i.e. 50Hz in our case. The total simulation time was

18 seconds, and the frequency continued oscillating 12.2 seconds after the fault was

cleared, which predictably resulted in an unstable frequency for a very short period of

time. As can be seen in fig. 4.4(b), the bus voltage of the substation was predictably

affected by the fault. However, the impact was observed for around 14 seconds after

the fault clearance until it returned to its nominal value. Finally, fig. 4.4(c) shows

the results of testing the speed of one of the AC generators (same as for the first
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experiment, as discussed above, see also fig. 4.3(c)). The results show a smooth

oscillation around the original value and, at the end, it returned to a very close value

to the initial one.

Finally, in the third experiment described in Section 4.6, the voltage had a sharp

drop at the fault period and after the fault clearance; voltage oscillated slightly around

the 100% and reached about 100% at the end of the simulation. The frequency, as

can be seen in fig. 4.5(a), the impact was not visible, and the frequency remained

stable around 100% of the frequency value. Furthermore, fig. 4.5(c) shows the result

of testing the speed of one of the AC generators (same as for the first and second

experiments, see fig. 4.3(c) and fig. 4.4(c)). The result clearly shows that the speed

value remained unchanged and that, at the end, the speed value was identical to the

initial value before the fault. The generator speed also justifies the stability of the

frequency.

In summary, in term of frequency oscillation, the third experimental condition

(where renewable sources were integrated and the HVDC line was used) proved to be

the most stable case, as frequency in this case were stable the whole period (see fig.

4.5(a)). Likewise, in terms of voltage stability, the third experimental condition again

proved to be the most stable case, as where voltage stability persisted around 100%

of the nominal voltage after the fault was cleared. This finding can be attributed to

the fact that, as compared to HVAC lines, HVDC lines are characterized by a faster

acting response and more transmitted power, so the voltage at the distribution bus

could be fed faster than in the case when the HVAC line was used. Therefore, in

the case of a quick fault (.3 second), using a HVDC line helps stabilizing the entire

grid. The same holds true for the last case, where the third experimental condition

again proved to be the most optimal, as the RPM was not affected at all, remaining

constant the entire period (see fig 4.5(c)).
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5. MACHINE LEARNING FOR FAULT DETECTION

Deriving from the importance of determining the fault location (see Section 2.2.3),

in this chapter, we illustrate an artificial intelligence method to analyze and solve the

problem. Recent studies have demonstrated the effectiveness of artificial intelligence

in many fields, including but not limited to marketing, banking, power system, health

care, and so forth. Among the well-known methods in artificial intelligence is machine

learning.

5.1 What is Machine Learning?

Machine learning refers to the use of artificial intelligence that offers systems the

capacity to robotically learn and advance from experience devoid of being overtly

programmed. More specifically, machine learning focuses on the advancement of

computer programs that can obtain data and use these data to learn in a self-reliant

way [35]. The aim of machine learning is to comprehend the structure of the data and

use them to construct models that can be comprehended and used by humans. While

machine learning is a subdivision of computer science, it differs from conventional

computational strategies. In conventional computing, a programmer sets specific

algorithms of clearly programmed instructions used by computers to solve a problem.

Instead, machine learning has algorithms that permit computers to learn from data

inputs and to use statistical analysis to produce values within a particular range [36].

For that reason, machine learning enables computers to develop models from sample

data and to make decisions based on the obtained data inputs.

In present-day world, machine learning has many and varied practical applica-

tions. For instance, machine learning is applied in the facial recognition technology

used in social media sites to assist users in tagging themselves and their friends on
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photos. Moreover, the optical character recognition (OCR) system enables conversion

of text images into movable types [36]. Furthermore, the machine learning technol-

ogy is also used in navigation of self-driving automobiles to navigate in the roads. In

fact, due to the changes that require higher efficacy and efficiency in manufacturing,

custom execution of algorithms is normally needed for production systems. Firms are

continually looking for systems that are faster, better, and require less effort to oper-

ate and have lower costs of production. Using machine learning tools helps businesses

achieve higher revenue [37]. Importantly, executing algorithms help to enhance the

skills necessary to find these solutions.

The machine learning technology is also used in electrical power systems–more

specifically, in power transmission, generation, and maintenance. Accordingly, power

firms widely use the statistical and discovery methods of machine learning for pre-

emptive maintenance [38]. Among other applications, machine learning systems and

methods are used to convert historical data from the electrical data into predictive

models. Furthermore, machine learning can be used to generate transformer rankings,

cable, feeder failure rankings, as well as to compute the mean time between failure

estimations [39]. Machine learning also has interfaces for business management that

allows for a directly incorporation of the prediction ability into decision support and

corporate planning [36]. Machine learning is also beneficial in maintenance operations

of power companies. Interestingly, it assists in fixing a problem proactively, instead

of fixing an issue when it has already occurred. Said differently, machine learning

makes it possible to prevent failures, rather than to cope with their consequences,

such as cascading failures, fires and expensive emergency repairs.

A major requirement for a machine learning algorithm is data analysis. In fact,

data analysis is the prerequisite for beginning a machine learning algorithm. Data

analysis is a process of data collection, cleaning, aggregating, visualizing, and explor-
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ing. All these processes help in making appropriate predictions [39] and acquiring

data from flat-files, spreadsheets, and databases, conducting exploratory data anal-

ysis (EDA), data reshaping, and data visualization. Furthermore, data exploration

involves pursuing correlations, determining the missing content, and visualizing [36].

The building of models also includes visualization of the results, development of model

diagnostics, and residual diagnostics. The machine learning algorithms can use the

models to predict the future. Machine learning algorithms also require understanding

of Python codes and R codes and how to operate them. To this end, Pandas library,

which is useful for reshaping and aggregating the data, and Matplotlib library, which

is important for data visualization, are frequently used. Similarly, Seaborn library

can be used for advanced analytical processes [38]. Several basic data visualization

techniques include bar charts, histograms, heat maps, and scatterplots. At this stage,

the selection of the algorithm is implemented. A researcher should be specific in the

selection of type and class of algorithm, as well as in the description of the system

to execute. The next step of selecting a set of problems to validate and test the

execution of the algorithm is available on [35]. Finally, the results of the performance

of the built algorithm are evaluated based on several parameters, such as precision,

F1-score, and recall (see Sections 5.4.1.1-5.4.4.1) for further detail.

5.2 Proposed Solution and Data Collection

From the definition of machine learning, it can be clearly seen that the main

part of machine learning is preparing data, so that learning from data can be pro-

ductive. Due to the availability of data nowadays, machine learning has become an

attractive opportunity to many large companies, such as Amazon, Google, Apple,

among others. In the present thesis, the fault detection problem was chosen for a

machine learning tools to be performed on. The first step was to collect data of the
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system. Using DigSILENT PowerFactory simulation software, real-time data (RTD)

feature was used to collect real-time data over the system. Fig. 5.1 shows a schematic

representation of the HVDC system on the DigSILENT software.

Fig. 5.1. The Schematic in DigSILENT PowerFactory for Data Collection

The problem at stake solved using machine learning, where the model was trained

using existing datasets to predict the location of the fault for future cases. The

proposed solution is that the model would be trained using supervised learning, which

is basically a branch of machine learning that deals with pre-training the model using

inputs with known output, thereby enabling the model to compute a mathematical

function that can gradually learn to generalize on future unknown problems from

further training on more data.
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The data were collected on the HVDC line (see fig. 5.1), i.e. between the rectifier

and inverter. Ten faults were applied to the HVDC line at different locations, starting

from the rectifier bus and up to 99.99% of the HVDC link, which is almost at the

inverter. Voltage measurements of 7 buses were taken with the step of 5 from 5%

to 100% of the HVDC line length and at each fault location. The buses were the

inverter bus, rectifier bus, two 300Kv buses, two 15Kv buses, and 132Kv bus (see fig.

5.1). The motivation to perform voltage measurements was to study the behavior of

each bus in the event of a fault and make the model notice the observed behavior for

future prediction. In machine learning terms, these seven buses were considered as

features of the problem.

In all fault locations in the HVDC link, a fault was applied at 0.1 second and

was cleared 0.1 second later, assuming a typical clearing time of 5 cycles at the 50Hz

system frequency. Initially, 20 files of measurements were collected, where each file

represented a fault location and its corresponding features. The data recording length

was 6 seconds, from 0 second to 6 seconds with the step of 0.0002 to precisely measure

the voltage behavior of the seven features. Consequently, the total number of data

points obtained at the initial stage was around 60,000, with 3,000 data points for each

fault location.

5.3 Data Analysis Stage

Data analysis is the first stage of machine learning before building a model. Fea-

ture reduction or, as it is frequently called, data cleaning is the most important part

of the entire machine learning concept. The reason behind its importance is that this

action studies all parameters and features of the dataset (buses voltages, in our case)

Moreover, it will take the most effective features to determine the label to be con-

sidered in building the model. To find out the correlation between different features,
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Principal Component Analysis is generally used. Principal Component Analysis is

basically a statistical procedure that uses an orthogonal transformation to convert

a set of observations of possibly correlated features into a set of values of linearly

uncorrelated features called principal components [40]. However, in present thesis,

different angle of data reduction is being seen.

5.3.1 Data Analysis Introduction

In the present thesis, several actions were tested before doing the elimination

or data reduction. First, considering that, in reality, faults could happen anytime,

different times of fault occurrences were tested. The results showed that, regardless

of the time of occurrence of a fault, voltages behaviors remained stable for the same

clearing time. Second, in all cases where the fault occurred at 0.3 or 0.4 or 0.2 second,

the instances in the outer period of the fault remained the same. For example, if the

fault happened at 0.3s and cleared at 0.4s, instances in the outer period, i.e. before

0.3s and after 0.4s, were equal to the nominal value of that particular bus.

Accordingly, based on the finding mentioned above, all instances before and af-

ter the fault occurrences were manually eliminated. Initially, the dataset was very

redundant, as it had repetitive values and contained the values for instances with no

faults. These values were removed, and the dataset containing only those instances

when a fault was present were retained. Later on, we noticed many fluctuations even

in those instances (e.g., such there were more than 1000 of such instances for each

case). Further analysis showed that, in all of 20 cases, the 1000 data instances that

covered the occurrence of the fault, there would come a point where the values would

show very slight fluctuation. This was exactly what was needed to develop a good

classifier, as, if all values were considered, too many outliers would appear and, hence,

the classifier model would have performed really poorly.
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Finally, after all steps of of manual reduction, further data analysis using Python

was performed to find out if there was any variable which did not contribute to finding

out the label/target determining the fault location.

5.3.2 Data Analysis Set-up and Results

In order to compare faulty locations and see whether they overlapped (i.e. ex-

hibited identical behavior), graphs for all fault locations were made for all features

(7 buses) shown in fig. 5.1. Overlapping features will be eliminated, as they did not

really contribute much to determining the target.

Several Python libraries, such as Pandas, Seaborn, and Maplotlib, were used to

draw graphs and analyze the dataset further. Our aim was to determine which fea-

tures would show a weak correlation with the target class. Afterwards, if there is any

weak correlation columns, those columns will be removed from the dataset.

Figures 5.2-5.8 summarize the results of testing for overlaps of the seven features.

Fig. 5.2. Overlap Result for the Inverter Bus
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Fig. 5.3. Overlap Result for the Rectifier Bus

Fig. 5.4. Overlap Result for the 300Kv Bus After the HVDC Link
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Fig. 5.5. Overlap Result for the 300Kv Bus

Fig. 5.6. Overlap Result for the 15Kv Bus 1
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Fig. 5.7. Overlap Result for the 15Kv Bus 2

Fig. 5.8. Overlap Result for the 132Kv Bus
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As can be seen in Figures 5.2-5.8, no overlap occurred in all features, which could

be due to the data cleaning and instances reduction (see Section 5.3.1).

Finally, the correlation between the features was checked with the correlation

matrix using the Seaborn library on Python. Using the Seaborn library, a heat map

representing the contribution of each feature to finding the target label was created

(see fig. 5.9).

Fig. 5.9. Heatmap of the System Features

The heat map shows a clear visualization on the correlation between the features

and the label. This kind of maps is particularly useful in the cases when it is necessary

to eliminate several features for the training stage. In these cases, from the heat map,

engineers can choose and eliminate the features that have dark spots with the label.

In the present thesis, according to our heat map in fig. 5.9, the strongest features in
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determining the label were Bus 15Kv, BusR HVDC, and Bus 300Kv. On the other

hand, the weakest features in determining the label were BusI HVDC, Bus300Kv

afterHVDC, Bus15Kv 2, and Bus132Kv.

The data cleaning, processing, and analysis phase provides an insight into the ways

to approach the problem at stake. At this point, all features were included in the

next stage for redundant purpose in determining the target. This would conclude the

data analysis stage that helps the training stage and makes the model more accurate

and efficient.

5.4 Machine Learning Methods and Results

The proposed solution for the problem described in Section 5.3 is supervised learn-

ing in machine learning. Overall, there are several learning algorithms of this type,

such as classification and regression. In the present thesis, the following four meth-

ods were applied to the prepared data: linear regression (LR), K-nearest neighbors

(KNN), linear support vector machine (LSVM) , and adaptive boost (AdaBoost).

All methods and the mathematical concepts behind them are explained in detail

in Sections 5.4.1-5.4.4. Next, each method was tested and its precision result was

assessed. The test data were taken from the existing dataset. To this end, the

dataset was split at the ration 70:30 ratio, with 70% used for training and 30% used

for testing.

The performances of the built models were evaluated based on several factors.

The results of the built models were based on the matrix called the confusion matrix,

which is defined as a table that is frequently used to describe the performance of a

classification model on a set of test data for which the true values are known [41].

To better understand the confusion matrix, the following four parameters have to

be introduced: true positive (TP), true negative (TN), false positive (FP), and false
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negative (FN).

True positive (TP) is when the model predicts a label for instances, and this

label is present in the actual dataset.

True negative (TN) is when the model does not predict a label for instances,

and the label is absent in the actual dataset.

False Positive (FP) is when the model predicts a label for instances, and this

label is absent in the actual dataset.

False Negative(FN) is when the model does not predict a label for instances,

and this label is present in the actual dataset.

Next, the following three new parameters were introduced for the real performance

testing: precision, recall, and F1 score.

Mathmatically,

Precision =
TP

TP + FP
. (5.1)

Precision is basically the ratio of true positive values over the total positive values.

Precision shows how of all predicted instances were actually predicted correctly.

Recall =
TP

TP + FN
. (5.2)

Recall, or sensitivity, is the ratio of true positive over true positive and false

negative of a class. This parameter basically shows how many out of all instances in

the dataset were labeled.

F1 score =
2× (Recall × Precision)

(Recall + Precision)
. (5.3)

Another important term relevant for the present study is the cost function. The

cost function measures how close the predicted values match the actual real values,

which is important at the data training stage.
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For each classifier model, Eq. (5.1)-(5.3) were used to calculate respective param-

eters of each model.

Finally, the targets/classes of the problem were numbered from 0 to 19, instead of

location percentages, where 0 represents 5% and 19 represents 100% of the HVDC line

length, with the step of 5%. Tables 5.1-5.4 summarize the results of each classifier.

5.4.1 Linear Regression

Linear regression is a relatively old and straightforward supervised machine learn-

ing algorithm that helps to a linear relationship between the input and the output of

the problem, i.e. the instances and the target class.

A linear regression representation/relationship can be expressed as follows (see

Eq. (5.4)):

y = β0 + β1x1 + β2x2 + ...+ βnxn. (5.4)

Where y is the target class, the x’s are the input features, β0 is the intercept, and β1

to βn are regression coefficients. During training, the goal is to find coefficients which

minimize the cost function. To this end, gradient descent equation, an optimization

algorithm to minimize the cost, was used (see Eq. (5.5)).

minimize
1

n

n∑
i=1

(predi − yi)2. (5.5)

Initially, all coefficients are set at 0 and then gradually increase after each iteration

to reduce the cost function. Therefore, linear regression helps to find the coefficient

values for each feature that gives a good accuracy.
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5.4.1.1 Linear Regression Results

Table 5.1 shows the performance of the linear regression classifier. Table 5.1

consists of 5 columns and 21 rows. The last row represents the average of each

column individually and the total of the last column, which is the support column.

Further analysis of the result is discussed in Section 5.5.
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Table 5.1. Linear Regression Classification Result

Classification report

Target Precision Recall F1-score Support

0 1.00 1.00 1.00 154

1 1.00 1.00 1.00 148

2 1.00 1.00 1.00 151

3 0.00 0.00 0.00 156

4 0.51 1.00 0.67 161

5 1.00 1.00 1.00 150

6 1.00 1.00 1.00 142

7 1.00 1.00 1.00 152

8 1.00 1.00 1.00 161

9 0.65 1.00 0.79 146

10 1.00 0.49 0.65 150

11 1.00 1.00 1.00 153

12 0.97 1.00 0.99 148

13 1.00 0.97 0.99 150

14 1.00 1.00 1.00 165

15 1.00 1.00 1.00 156

16 1.00 1.00 1.00 155

17 1.00 1.00 1.00 160

18 1.00 1.00 1.00 142

19 1.00 1.00 1.00 147

Avg/Total 0.90 0.92 0.90 3047
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5.4.2 K-Nearest Neighbor

K-nearest neighbors (KNN) is one of the simplest and fastest classifications and

regression algorithms; however, in our case, it was used only for classification. More

specifically, KNN has three advantages that make it one of the first choices before

considering any complex machine learning algorithms for a classification problem:

1. Ease of interpretation of the output

2. High speed of training and prediction

3. Strong predictive power

As suggested by its name, KNN works, by taking a vote from K-nearest neighbors

of a data instance for which the model trying to find its actual class. It makes a circle

that covers all K points from which a vote is needed. After taking a vote from these

data instances, it can be definitely concluded that the data instance that is being

considered belongs to class X. To compare with the nearest neighbors, KNN uses a

relatively simple formula of distance. Some of the mostly commonly used equations

are provided below (see Eq. (5.6)-(5.7)):

• Euclidian Distance

d(xi, xj) =

√√√√ k∑
k=1

(xi(k)− xj(k))2. (5.6)

• Manhattan Distance

d(xi, xj) =
k∑

k=1

| (xi(k)− yj(k) | . (5.7)
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To relate Eq. (5.6) and (5.7) with the problem case, the initial data analysis stage

showed that, for each particular fault location, the instance values were in a certain

range and showed a different behavior, making some sort of a cluster; therefore, the

easiest way to predict a test data instance would be by finding its neighbors using

one of the distance formulas shown in Eq.(5.6) and Eq. (5.7), which would allow us

to find out which cluster it belongs to and thus would most likely be from that class

as well.

Furthermore, the value of K has to be decided. For the value consideration, two

things have to be considered:

(a) Training error rate.

(b) Validation error rate.

The training error rate is always zero at K = 1 (as the nearest point to a data

instance is always that data instance itself), and it increases with an increase of the

value of K. Fig. 5.10(a) shows a graph which illustrates this statement.

Validation error rate is the reason why data scientists do not always go with the

value of K = 1. It is because it shows a different behavior; specifically, it decreases

in the beginning and, on reaching a minimum point, its error rate starts to increase

as well (see fig. 5.10(b) for an illustration).

Said differently, if K is chosen to be equal to 1, the model would end up overfitted.

Therefore, the goal here is to find a value of K at which the validation error reaches

its minima.
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(a) Training Error Rate

(b) Validation Error Rate

Fig. 5.10. K-value Consideration Factors [42]

5.4.2.1 KNN Result

Table 5.2 shows the performance of the KNN classifier. Table 5.2 consists of 5

columns and 21 rows. The last row represents the average of each column individually

and the total of the last column, which is the support column. Further analysis of

the result is discussed in Section 5.5.
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Table 5.2. KNN Classification Result

Classification report

Target Precision Recall F1-score Support

0 1.00 1.00 1.00 91

1 1.00 1.00 1.00 94

2 1.00 1.00 1.00 85

3 0.21 0.23 0.22 106

4 0.28 0.26 0.27 123

5 1.00 1.00 1.00 105

6 1.00 1.00 1.00 108

7 1.00 1.00 1.00 113

8 1.00 1.00 1.00 106

9 1.00 1.00 1.00 118

10 1.00 1.00 1.00 108

11 1.00 1.00 1.00 90

12 1.00 1.00 1.00 96

13 1.00 1.00 1.00 105

14 1.00 1.00 1.00 84

15 1.00 1.00 1.00 98

16 1.00 1.00 1.00 105

17 1.00 1.00 1.00 106

18 1.00 1.00 1.00 99

19 1.00 1.00 1.00 92

Avg/Total 0.92 0.91 0.91 2032
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5.4.3 Linear Support Vector Machine

Linear support vector machine (LSVM) is the fastest machine learning algorithm

for multiclass classification problems, like the one addressed in the present study;

LSVM is particularly useful for large datasets, as it creates a model which scales

linearly with the size of the training dataset. The dataset used in the present study

was not very large, as it was reduced. However, we decided to test the problem on

a small scale first and test it to a higher level. Moreover, since the expected dataset

was in millions, linear SVM was the perfect choice for its ability to deal with large

datasets with a linear increase in computation power required, as well as the fact that

the data in this problem display a clear pattern. Finally, at this point, the problem

setup is using less than 10 features to predict the target class. However, in the future,

predictions would need to be based on a larger number of features, and linear SVM

can work with higher dimensional data with thousands of features and attributes

in both sparse and dense format; therefore applying linear SVM in further research

would offer many advantages in terms of scalability. To summarize, linear SVM is

not only fitting the size of the current dataset, but can also be expected to perform

well on a much larger dataset from the same domain.

LSVM seeks to draw a margin line between class instances. Similarly to KNNs,

the current dataset was divided into clusters; therefore, what LSVM would do is draw

lines to separate these classes/clusters from each other as accurately as possible, so

that when user inputs a test data instance, it would fall in one of the 20 classes in

our dataset, and the prediction would be very simple. A support vector is basically a

frontier that best segregates the classes (see fig. 5.12 for an illustration of the concept

for two classes).

Support Vector Machine works by trying to minimize the error function given in
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Fig. 5.11. Support Vector Machine Mechanism [43]

Eq. (5.8).

1

2
wTw + C

N∑
i=1

ξi. (5.8)

subject to the following constraint (see Eq. (5.9)):

yi(w
T∅(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N. (5.9)

“Where C is the capacity constant, w is the vector of coefficients, b is a constant,

and ξi represents parameters for handling non-separable data (inputs). The index i

labels the N training cases. Note that “y ∈ ±1”represents the class labels and xi

represents the independent features. The kernel ∅ is used to transform data from the

input (independent) to the feature space. It should be noted that the larger the C,

the more the error is penalized. Thus, C should be chosen with care to avoid over
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fitting”[44].

5.4.3.1 Linear Support Vector Machine Result

Table 5.3 shows the performance of the LSVM classifier. Table 5.3 consists of 5

columns and 21 rows. The last row represents the average of each column individually

and the total of the last column, which is the support column. Further analysis of

the result is discussed in Section 5.5.
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Table 5.3. Linear SVM Classification Result

Classification report

Target Precision Recall F1-score Support

0 1.00 1.00 1.00 91

1 1.00 1.00 1.00 94

2 1.00 1.00 1.00 85

3 0.46 1.00 0.63 106

4 0.00 0.00 0.00 123

5 1.00 1.00 1.00 105

6 1.00 1.00 1.00 108

7 1.00 1.00 1.00 113

8 1.00 1.00 1.00 106

9 1.00 1.00 1.00 118

10 1.00 1.00 1.00 108

11 1.00 1.00 1.00 90

12 1.00 1.00 1.00 96

13 1.00 1.00 1.00 105

14 1.00 1.00 1.00 84

15 1.00 1.00 1.00 98

16 1.00 1.00 1.00 105

17 1.00 1.00 1.00 106

18 1.00 1.00 1.00 99

19 1.00 1.00 1.00 92

Avg/Total 0.91 0.94 0.92 2032
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5.4.4 AdaBoost

AdaBoost is short for adaptive boosting, which is a sequential ensemble method

in machine learning [45]. AdaBoost combines multiple models to improve the final

predictive performance. The term boosting here means combining many weak learners

to create an accurate prediction; weak learners would be the classifiers that do slightly

better than random guessing, i.e. have the prediction accuracy �50%. This step is

performed in a sequential manner; the first classifier performs unsatisfactorily, and

the second one tries to correct the errors in the first one and tries to predict harder

to classify examples in the training data and so on, until accuracy gets reasonably

highthen, the number of iterations is over. Each of the instance in the training dataset

is weighted. The initial weight is set as follows (see Eq. (5.10)):

Weight(xi) =
1

n
. (5.10)

Where xi is the ith training instance, and n is the number of training instances.

The misclassification rate is calculated for the trained model. Typically, it is calcu-

lated as shown in Eq. (5.11).

Error =
correct−N

N
. (5.11)

Where error is the misclassification rate, Correct is the number of training in-

stances correctly predicted by the model, while N is the total number of training

instances[46].
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5.4.4.1 AdaBoost Result

Table 5.4 shows the performance of the AdaBoost classifier. Table 5.4 consists of 5

columns and 21 rows. The last row represents the average of each column individually

and the total of the last column, which is the support column. Further analysis of

the result is discussed in Section 5.5.
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Table 5.4. AdaBoost Classification Result

Classification report

Target Precision Recall F1-score Support

0 1.00 1.00 1.00 135

1 1.00 1.00 1.00 140

2 1.00 1.00 1.00 107

3 0.31 1.00 0.47 104

4 0.00 0.00 0.00 121

5 0.00 0.00 0.00 132

6 0.00 0.00 0.00 116

7 1.00 1.00 1.00 127

8 0.00 0.00 0.00 155

9 0.00 0.00 0.00 109

10 0.00 0.00 0.00 133

11 0.00 0.00 0.00 118

12 0.00 0.00 0.00 131

13 1.00 1.00 1.00 126

14 0.00 0.00 0.00 132

15 0.08 1.00 0.15 117

16 0.00 0.00 0.00 124

17 0.00 0.00 0.00 135

18 1.00 1.00 1.00 124

19 1.00 1.00 1.00 151

Avg/Total 0.33 0.40 0.34 2539

71



5.5 Summary

In summary, in this chapter, we used four classifiers to obtain results. The results

showed that not all classifiers performed well on the problem, as each classifier has

its own way of training on the data and subsequent testing. Therefore, based on the

data structure and the behaviors of the data features, the following conclusions can

be made.

Firstly, linear regression classifier performed in a good way: specifically, it yielded

precision of 90%, recall of 92%, and F1 score of 90%. The reason why linear regression

performed well on the problem addressed in the present thesis is that, in principle,

this method seeks to find a linear relationship among all the features the problem has

and the target class. Once it finds such linear relationship, it can easily do the rest

of building the right algorithm of the model and then produce a model characterized

by high accuracy.

Secondly, KNN has performed slightly better than the linear regression, as its

precision, recall, and F1 score amounted to 92%, 91%, and 91%, respectively. The

reason why KNN yielded results similar to those of linear regression is that KNN is

also a regression algorithm (see Section 5.4.1). However, KNN has a different role,

which yields the slightly different results by taking a vote from data instances after

circling the nearest neighbors of instances.

Thirdly, LSVM also performed slightly better than the KNN classifier, when tak-

ing the average of the three columns in Table 5.2, and its precision, recall, and F1

score amounted to 91%, 94%, and 92%, respectively. The reason behind the similarity

of results between KNN and LSVM is that LSVM behaves similarly to KNN in terms

of separating instances, where LSVM also draws a line between clusters and separate

them from each other. In the results reported in Tables 5.2 and 5.3, a considerable
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similarity of the results in each class can be observed. In the present thesis, it would

have 20 clusters/classes and, when testing, the testing data would fall into one of

those 20 classes to make the prediction.

Fourthly, AdaBoost demonstrated the worst performance, with precision of 33%,

recall of 40%, and F1 score of 34%. In our case, applying AdaBoost has several limi-

tations, as AdaBoost requires several conditions that need to be fulfilled, and, in our

case, these conditions were not fully met. First, AdaBoost should be provided with

a quality dataset, as it attempts to sequentially classify the misclassified instances,

improving after each iteration (see Section 5.4). However, not only our dataset was

insufficient for this algorithm, but also fluctuations between data for different classes

were insignificant, which made it hard for AdaBoost to perform well. Second, Ad-

aBoost should not have outliers–otherwise, the classifier would spend a significant

amount of time trying to correct these cases, which makes the task almost infeasible.

Yet, in the problem addressed in the present study, outlier values are of importance,

as equal data instances for each class, in the same time range were selected to ensure

consistency in the data. Therefore, it would be unreasonable to trade off consistency

and pattern data for good accuracy in this algorithm. Therefore, the data values for

each instance of a class had a wide range of up to 10, so AdaBoost predictable did

not work very well on them.
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6. CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Performance of a transmission line can be taken into a higher level. The process of

testing the two systems in Chapter 4 can be easily scaled up to testing a real system.

In terms of efficiency, stability, and fault analysis, our results demonstrated that the

high voltage direct current (HVDC) transmission system shows a better performance

than the high voltage alternating current (HVAC) system. However, disadvantages

of HVDC, such as expensive converter stations, expensive filters, and challenges of

integrating HVDC with existing AC systems make considering the HVDC system to

be unlikely in many cases. Therefore, a long-term vision is needed in this case.

System losses and voltage drop in the HVDC system are significantly lower than

those in the HVAC system. Specifically, for the 180Km transmission line, losses

in HVAC (2.91MW) were 180% higher than losses in HVDC (1.61MW). Moreover,

voltage drop across the HVAC line was about 2.5 times higher than that across the

HVDC line (2.58% vs. 1.01%, respectively). Moreover, in terms of system stability,

HVDC proved to be much better than HVAC for integrating renewable sources. In

the event of a fault, HVDC helps to stabilize the connected AC system generators,

voltage buses, and frequency deviation (see Section 4.6).

Machine learning gives the HVDC system another vote over the other system.

When HVDC is in service, machine learning can be meaningfully used to determine

location of a fault. Armed with this information, an operator can take quick action

as to prevent further damages or blackout. When a major problem occurs, making

use of the power system data for prediction instead of using it for mere monitoring

purposes enables taking many preventive actions.
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Finally, Linear support vector machine (LSVM) showed the best performance

among the three tested classifiers. Taken together, our results suggest that not every

classifier can perform well on a particular problem, as was the case of AdaBoost in the

present thesis. Therefore, a careful selection of a classifier after a detailed analysis of

a problem can optimize the way of solving a machine learning problem. Moreover, in

real case problem, predictions would need to be based on a larger number of features,

and linear SVM can work with higher dimensional data with thousands of features

and attributes in both sparse and dense format; therefore applying linear SVM in

further research would offer many advantages in terms of scalability.

6.2 Recommendation

In the present thesis, we aimed to propose the best electrical system solution for

the Kuwait 2035 project. At present, Kuwait does not have a single HVDC system

in its interior power system yet, and there can be some reluctance to build such

new system. However, there are several arguments in support of building the HVDC

system particularly in Kuwait.

The Kuwait 2035 project aims to produce a huge amount of renewable energy

and to develop five islands–and, accordingly, to invest in them by providing smart,

reliable, efficient, and cost-effective power in the long term. Through an HVDC link

integrating a massive amount of renewable sources in a remote area, these five islands,

along with other AC systems connected, can be reliably fed. According to a recent

estimate by the government, the economic turnover of the five islands project would

reach $2.2 trillion/year [47]. Therefore, in this case, building an expensive system

that is cost-effective in the long term would be efficient. Therefore, supporting the

islands requires undersea cables. In this respect, the HVDC transmission cables were

proven to be better in transmission due to the high capacitance in AC cables that
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causes additional losses, as shown by our simulation results.

At present, Kuwait is part of the Gulf Countries Council (GCC) interconnected

electrical network. This network includes Qatar, Bahrain, and Saudi Arabia. The

overarching goal of this interconnection is to achieve electrical security and stability

among GCC members by offering shared spinning reserve in case of emergencies

[48]. Moreover, the project established a commercial energy market that benefits

GCC countries by selling power. Consequently, the connection between Kuwait and

Saudi Arabia is through the back-to-back HVDC system, as the two countries have

two different operating frequencies–50 Hz and 60 Hz, respectively. Furthermore,

the back-to-back HVDC system connection is between the South of Kuwait and the

East of Saudi Arabia. Therefore, building an HVDC system in the West of Kuwait

for integrating renewable sources will offer a valuable possibility of having another

interconnection to the North of Saudi Arabia, which would increase stability in the

event of emergencies either by importing or exporting power. Secondly, having more

interconnection will in all probability have a strong positive impact on the commercial

energy market through selling energy to the north side of Saudi Arabia instead of

restricting to its Eastern side. Moreover, it would give the government an option to

connect even to Iraq, which is located behind the renewable farms across the border.

In conclusion, the results of the present thesis convincingly demonstrate that

installing the HVDC system can be strongly recommended for the Kuwait electric

system, particularly when we consider the 2035 country’s project on renewable sources

and the five islands project. Considering the HVDC system will not only save money,

but will also open up many opportunities for making profit, particularly through the

interconnection option and through exchanging power with the asynchronous electric

systems of the neighboring countries.
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