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ABSTRACT

The detection and segmentation of objects appearing in a natural scene, often

referred to as Object Detection, has gained a lot of interest in the computer vision

field. Although most existing object detectors aim to detect all the objects in a given

scene, it is important to evaluate whether these methods are capable of detecting the

salient objects in the scene when constraining the number of proposals that can be

generated due to constraints on timing or computations during execution. Salient

objects are objects that tend to be more fixated by human subjects. The detection of

salient objects is important in applications such as image collection browsing, image

display on small devices, and perceptual compression.

This thesis proposes a novel evaluation framework that analyses the performance

of popular existing object proposal generators in detecting the most salient objects.

This work also shows that, by incorporating saliency constraints, the number of gener-

ated object proposals and thus the computational cost can be decreased significantly

for a target true positive detection rate (TPR).

As part of the proposed framework, salient ground-truth masks are generated from

the given original ground-truth masks for a given dataset. Given an object detection

dataset, this work constructs salient object location ground-truth data, referred to

here as salient ground-truth data for short, that only denotes the locations of salient

objects. This is obtained by first computing a saliency map for the input image and

then using it to assign a saliency score to each object in the image. Objects whose

saliency scores are sufficiently high are referred to as salient objects. The detection

rates are analyzed for existing object proposal generators with respect to the original

ground-truth masks and the generated salient ground-truth masks.

As part of this work, a salient object detection database with salient ground-truth

masks was constructed from the PASCAL VOC 2007 dataset. Not only does this
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dataset aid in analyzing the performance of existing object detectors for salient ob-

ject detection, but it also helps in the development of new object detection methods

and evaluating their performance in terms of successful detection of salient objects.
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Chapter 1

INTRODUCTION

This chapter presents the motivation behind the work in the thesis and briefly sum-

marizes the contributions and organization of the thesis.

1.1 Motivation

Object detection has seen a great progress from the success of object proposal

methods (e.g., [3]), which aim at generating region proposals to cover most of the

observable objects in a given frame. A region proposal is typically described using

a bounding box that encloses the detected object. The bounding box is represented

by the location (coordinates) of one of its corners (typically top left corner) together

with its length and height in pixels. A good object proposal generator is expected

to efficiently generate as few bounding boxes as possible to reach a sufficiently high

detection rate. Although object proposal generation is the primary focus of this thesis,

it is part of a bigger problem which is object detection. Object detection involves

both localization as well as classification of the objects in a given frame. While Edge

Boxes [3] is solely an object proposal generation method based on structured decision

forests, Faster-RCNN [4], and SSD [5] train on the ground-truth data of a given object

detection dataset to learn the parameters required to generate object proposals and

to subsequently classify them.

All the above methods achieve high recall at the cost of sampling a large number

of candidate boxes, which prevents computationally expensive classifiers to be applied

in the subsequent process of object detection. For example, Edge Boxes [3] requires

one of its design parameters, α, to be high in order to have a better recall at more

1



Figure 1.1: Images from the PASCAL VOC 2007 Test Dataset [2] with Actual and

Salient Ground-Truths Indicated by Green and Red Bounding Boxes, Respectively.

challenging IoU (Intersection over Union) thresholds. But, if α is increased, the

density of the sampling is increased, resulting in more candidate boxes being evaluated

and slower runtimes [3]. Hence, the detection of all the objects, in a given frame, at

higher IoU thresholds requires a significantly much larger number of object proposals

to be generated and is also computationally expensive.

One way to overcome this problem, while ensuring that the most salient objects

in the scene are detected, is to design saliency-enhanced object proposal generation

methods that are capable of detecting salient objects in the scene with a limited

number of object proposals. Salient objects are those objects, in any given frame,

that attract more visual attention or are more fixated by human subjects than the rest.

For example, people focus most on the baby shown in Figure 1.1 as compared to other

objects in this scene. In many applications, such as image display on small devices

[15], and image collection browsing [16], it is enough to generate object proposals to

detect salient objects in that frame and to subsequently classify them rather than

aiming to detect all the objects.

2



1.2 Contributions

In this thesis, a novel saliency-enhanced evaluation framework is proposed to

analyze the performance of object proposal generators in terms of their ability to

successfully detect salient objects in the scene while restricting the number of object

proposals that can be generated. For this purpose, as part of this work, a bench-

mark database with ground-truth data corresponding to the salient object locations

is generated from the PASCAL VOC 2007 test dataset. Not only will such a database

help in finding the best performing object proposal generators for the task of salient

object detection, but it can also be used for the development and evaluation of newly

introduced object proposal generators. Using the proposed evaluation framework and

constructed dataset, the performance of popular existing object proposal generators

and object detectors including Edge Boxes [3], Faster RCNN [4] and SSD [5] are

analyzed for the task of salient object detection.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides background

material for different object proposal generation methods, the visual saliency models

used to generate saliency maps, and performance evaluation measures. Chapter 3

describes the proposed framework and the constructed dataset. The performance

evaluation results of popular existing object proposal generation and object detection

techniques are also presented in Chapter 3 using the proposed saliency-based evalua-

tion framework. Finally, in Chapter 4, the contributions of this work are summarized

and directions for future work are outlined.
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Chapter 2

BACKGROUND

This chapter provides background material that is needed to better understand the

contributions of this work. It starts with a general background on image classifica-

tion followed by a description of the state-of-art object detection methods evaluated

in this thesis, in addition to select visual saliency methods and performance evalu-

ation measures that are used in the proposed framework. Section 2.1 provides an

introduction to convolutional neural networks and their applications. Section 2.2 de-

scribes the different object proposal generation methods which have been evaluated

in this thesis for the task of salient object detection. Section 2.3 introduces various

bottom-up saliency models which have been considered for saliency map generation

in the proposed framework. Section 2.4 presents the performance evaluation mea-

sures, such as IoU and detection rate, that are used to analyze the performance of

state-of-art object proposal generators for the task of salient object detection.

2.1 Introduction to Neural Networks and CNNs

Object recognition prior to the introduction of deep learning used to be a two-

step process. First, necessary features are extracted from the image and then a

classifier is trained with those features to recognize the object. Most of the variants

of object recognition were based on the type of features and the classifiers used.

Some of the most common features include histogram of oriented gradients (HOG)

[17], scale invariant feature transform (SIFT) [18] and its variants, and bag-of-visual-

word features [19] while the classifiers varied from naive-bayes [20], to Support Vector

Machines (SVMs) [21], to logistic functions and many more.
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Histogram of Oriented Gradients (HOG) was proposed by Dalal and Triggs in

[17]. The idea was that the shape and the appearance of an object can be described

by having a histogram of the intensity gradients. So, the HOG descriptor was formed

by computing the histogram of edge orientations by dividing the image into smaller

regions. The combination of all these histograms forms a descriptor for the image.

This method was used for human detection in [17].

SIFT has been one of the most widely used feature descriptor for object recogni-

tion. This method by Lowe [18] turns images into a collection of local feature vectors

which are invariant to translation, rotation and scaling. Keypoints are detected in

the scale-space domain. Gradients and the dominant gradient are computed for each

of these keypoints over a neighbourhood of 16 x 16 and used to form a keypoint

descriptor.

SIFT produces multiple keypoints resulting in a relatively large number of key-

point features to train a classifier. To overcome this problem, a bag of words can

be used to compress the features. For this purpose, in [22], the keypoint features

undergo a pre-processing step before being used to train a classifier. All keypoint

features are collected and a clustering algorithm such as K-means is applied. Once

the clustering is complete, a histogram is computed for each image to indicate the

number of features in each cluster. The classification step operates on the histogram

produced post the clustering step. Standard classifiers like SVM [21], [20] are used

to classify the images based on the obtained histogram.

SIFT, its variants, bag of words and HOG have all been very useful in object

classification. However, there are a few major issues involved in using them. For

example, SIFT would be a weak choice for classification of circular objects. Also,

all the aforementioned methods tackle the object recognition problem as a two-step

process of feature extraction and then classification. A more robust approach would

5



Figure 2.1: Typical Architecture of a Feed-Forward Neural Network with One Hidden

Layer.

be using an end-to-end algorithm which trains both the feature extractor as well as

the classifier simultaneously. This can be performed by training a neural network for

example.

A Convolutional Neural Network (CNN) is an architectural extension of the feed-

forward multi-layer perceptron neural network. A feed-forward neural network typi-

cally has an input layer, a few hidden layers, and an output layer, wherein the number

of hidden layers and the number of units in each hidden layer are parameterizable as

shown in Figure 2.1. Each unit (artificial neuron) in the hidden layer and the output

layer behave like a biological neuron. The output of a single unit can be expressed

as:

a = f(xθ) (2.1)
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where the function f(x) is a non-linear function called Activation Function and x is

an input row vector which is augmented with 1 for the bias term, and θ is a column

vector representing the weights.

To train a neural network, the backpropagation algorithm [23] is used by altering

the weights and biases of the neural network based on the gradient of cost function

with respect to the weights and biases. Given a classification task, the input vector

is propagated through the hidden layers to the output layer using Equation (2.1)

for each neuron in each layer. When propagated to the output layer, the predicted

class is compared to the actual class and the error obtained is backpropagated to the

previous layers [7].

Although it is possible to reshape an image into a single-column vector and use

it as input vector to the feed-forward neural network, such approach is not proven to

be effective because of a lot of factors. Some of them include increase in number of

weights resulting in increase in computational burden, and loss of spatial connectivity

of data due to reshaping. In order to overcome this problem, Convolutional Neural

Networks (CNNs) were introduced and were inspired by studies of the visual cortex.

CNNs were also among one of the first networks to solve some of the most important

commercial applications and remain at the forefront of deep learning solutions offered

today [24]. In the 1990s, AT&T’s neural network research group developed a CNN

for check reading [23]. Soon by the end of the decade, this system was reading 10

percent of all the checks in the United States.

CNNs were some of the first working deep networks trained with back propagation

[24]. Also because of their computationally efficient architecture compared to fully

connected neural networks, it is easier to run multiple experiments with them and

tune their implementation and hyper parameters. With the modern hardware and

high power GPUs, large CNN architectures can be trained on very large datasets
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and achieve results which are on par with human vision in object detection and

segmentation tasks [25].

2.1.1 Visual Cortex Inspiration

Hubel and Wiesel conducted a series of experiments on the receptive fields of

cats [26] and monkeys [27] by stimulating their retinas with spots and patterns of

light. They found out the receptive fields defined by different cells. Simple cells have

receptive fields that gave a distinct on and off areas separated by parallel straight

lines for a stimulus of a spot of light. These cells were found out to be position

dependent. Then there are complex cells which responded when a specific orientation

of light shined on the field. These also had different responses to slits, edges and dark

bars. Hypercomplex cells on the other hand have a different response such that the

response drops off once the line gets off the activation area of the field. There have

been cells with specific color response, cells lacking the orientation specificity, and

cells with concentric fields.

Another interesting finding of these experiments is the architecture features of the

visual cortex. Layering of the visual cortex involves aggregation of different cell types

from simple cells, to complex cells, to lower order hypercomplex cells, to higher order

complex cells.

2.1.2 Neocognitron

The study by Hubel and Wiesel became the basis for Fukushima’s Neocognitron

[28] consisting of a cascade connection of modular structures. These structures are

made up of cascade of two structures - the S-cells and the C-cells which show the

similarities to simple cells and complex cells, respectively. Each of these layers have

multiple planes with different cells. The synapse for each receptive field in the S-cells
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is modifiable and is subjected to change while training. Also, all the cells in each cell

plane have the same distribution of input synapse.

Fukushima didn’t employ the backpropagation procedure for training this net-

work. Instead the network utilized an unsupervised competitive learning method

using reinforcement for cell planes that were selected among representative planes.

2.1.3 LeNet5

The work of LeCun et al. [7] has been inspired mainly by the work of Fukishima

[28]. LeNet5 has been the basis for the type of CNNs we see today. The main

difference between the work of LeCun et al. [7] and Fukishima’s work [28] is the use

of the backpropagation algorithm. The work of LeCun et al. [7] is based on three

main ideas of local receptive fields, shared weights, and spatial subsampling [7] to

make sure that the features captured would be invariant to shift, scale and rotation.

These three ideas have been realized by implementing an architecture, as shown in

Figure 2.2, with alternate convolutional layer C and a subsampling layer S. The input

image is convolved with three trainable filters and biases to generate three different

feature maps at layer C1. These maps are then subsampled by grouping 4 pixels

where they are added, weighted, and combined with a bias, followed by an activation

function to generate 3 feature maps at S2. After this, another convolution operation

takes place at C3 followed by a subsampling operation at S4. The resulting feature

maps are reshaped into a single column vector that is fed to a conventional feed-

forward neural network represented by the NN block in Figure 2.2. The convolution

and subsampling processes are illustrated in Figure 2.3.

The CNN architecture is parameterized by the number of layers, depth or the

number of maps generated per layer, size of the convolutional kernel, size of the sub-

sampling window, and the stride sizes. In [7], the text recognition task was addressed
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Figure 2.2: Conceptual Example of a CNN. C and S Refer to a Convolutional Layer

and a Subsampling Layer, Respectively [6].

Figure 2.3: Convolutional Maps and Subsampling Details. AF Stands for the Acti-

vation Function.

with the architecture shown in Figure 2.4. The first layer is the input layer. The input

image could either be a single-channel grayscale image or it could have 3 channels to

accommodate color. In Figure 2.4, a grayscale image is used as input to the network.

The second layer is composed of 6 feature maps. These feature maps are each the

result of a convolution operation between the input layer and a kernel along with the

addition of bias and the application of a non-linear function such as a sigmoid function

as shown in Figure 2.3. The kernels are randomly initialized and later updated after
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Figure 2.4: LeNet5 Architecture [7].

each pass of the backpropagation algorithm. Each kernel is different from one map to

the next but the same kernel is used to generate a single feature map. This method

of convolving with a kernel mimics the implementation for receptive fields and shared

weights. After the convolutional layer, interest points or features are detected whose

exact location is not needed. Thus, a subsampling layer, which computes the average

around 4 pixels, is used. The average is then multiplied by a trainable coefficient,

added with a bias term, and finally passed through an activation function.

The same combination of alternate convolution and subsampling is repeated for

the next two layers with an increase in the number of feature maps. Finally, towards

the end, a fully connected network is applied to have 10 output units predicting

the probabilities of the image having corresponding numerical value. Obtaining the

optimal weights for the kernels and biases is done using the backpropagation algorithm

after every pass.
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2.1.4 Variants

CNNs have been used in many applications and there have been variants in the

general architecture. The first variant is the number of maps used at every convolution

layer. This is sometimes referred to as the depth of the layer.

Another variant hardwires the values for some of the filters. For example, Kwolek’s

work on face detection [6] utilizes a 6-layer CNN which does not learn the convolution

kernels for the first layer. Instead, the first layer is hardwired to be a Gabor filter

so that the network could skip learning the basic edge detectors. Mutch and Lowe

adopted a similar technique for object classification on the Caltech 101 image dataset

[29]. The use of Gabor filters was perceptually motivated to mimic a primate’s visual

cortex.

One of the problems using CNNs is that they may require a large amount of

training examples per class. In some applications, the number of available training

images per class might not be sufficient. So, another variant pretrains the network

with other types of images from a larger dataset like ImageNet [30]. Once the CNN

model is pre-trained with images from ImageNet [30], it can then be fine-tuned [31]

with the images from the task-specific dataset. This process aids in faster learning

and it has been proven to be more effective than training the model from the scratch.

Finally, one of the problems with using CNNs is that, with the increase in the

number of layers, the amount of time needed to train the network increases drasti-

cally. Usually the training time can be handled through the design of the network

architecture, size of the filters, and the choice of connectivity and/or by using graphics

processing units (GPUs).
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2.1.5 Applications

CNNs have been used for various tasks. In this section, some of the applications

and the datasets used are briefly described.

The MNIST digit dataset [32] has been one of the early datasets used to benchmark

the performance of a CNN for object recognition. In the work of LeCun in [7], a 7-

layer CNN was used to perform classification. In [33], the MNIST dataset was used to

demonstrate best practices for CNNs and in [34], multi-column deep neural networks

were used to classify the digits in the MNIST dataset using GPUs.

The work of Ciresan et al. in [35] dealt with the classification of German traffic

signs. One contribution of this latter work apart from the classification of traffic signs

is that it uses a fully parameterizable GPU implementation of the CNN. Convolu-

tional layers could also be parameterized to skip convolution for some select units. A

recognition rate of 99.15 percent, which is better than the human recognition rate of

98.98 percent, was reported. The work of Kang in [36] uses a convolutional neural

network to classify documents. Popular CNNs that achieved top object classification

performance on ImageNet [30] include AlexNet [37], VGG-16 and its variants [10],

GoogleNet [25], ResNet18 and its variants [38].

2.2 Object Proposal Generation

The primary aim of an object detection system is to determine whether an object

exists in a provided image and if so, where in the image it occurs. The dominant

approach to this problem, for the past decade, has been the sliding window paradigm

in which object classification is performed at every location and scale in that im-

age [17, 39, 40]. But more recently, an alternative framework, referred to as object

proposal generation, was proposed in which a set of object-bounding box proposals
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are generated aiming to reduce the set of positions that need further analysis. This

framework was adopted in the literature [3, 37, 41–47] and led to the discovery that

object proposals can be accurately generated in a manner that is agnostic to the type

of object being detected [3].

The field of object detection has seen a great progress from the success of these

object proposal generation methods, which aim at generating an optimal number of

region proposals to cover most of the observable objects in a given image or video

frame. High recall and efficiency are important for an object proposal generator, i.e.,

an effective object proposal generator should be able to obtain a high detection rate

using a relatively modest number of candidate bounding boxes.

Object proposal generation is a subset of a bigger problem called object detection

in which the system is supposed to localize as well as classify the objects in the input

frame. While Edge Boxes [3] is solely an object proposal generation method based on

structured decision forests, Faster-RCNN [4], and SSD [5] train on the Ground-Truths

of a given dataset to learn the parameters required to generate object proposals and

classify them for new images. This section briefly describes these three object proposal

generation methods [3–5] which are evaluated later in this thesis using our proposed

evaluation framework.

2.2.1 Edge Boxes

The Edge Boxes method [3] uses edges in a given image to generate the candi-

date boxes. Given an image, an edge response for each pixel is computed using the

Structured Edge Detector [48], [49] which has a good performance in predicting ob-

ject boundaries efficiently. The single-scale variant with the sharpening enhancement

[49] was utilized in Edge Boxes in order to reduce the computation time. Given the

dense edge responses, Non-Maximal Suppression (NMS) is performed orthogonal to
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the edge response to find the edge peaks. This results in a sparse edge map, with each

pixel p having an edge magnitude mp and orientation θp [3]. Edges, according to [3],

are the pixels with mp > 0.1 while the contour is defined as a set of edges forming a

coherent boundary, curve, or a line.

When searching for the object proposals, it is important to consider the object

classification algorithm applied to these proposals. Some of these may require object

proposals with high accuracy while the others might be more tolerant to the errors

in bounding box placement. The accuracy of these proposals is typically measured

using the IoU metric described in Section 2.4.1. The IoU metric involves computing

the area of intersection of the considered candidate box with a ground-truth box

and dividing it with the area of their union. When evaluating an object detection

algorithm, an IoU threshold of 0.5 is typically used to determine if the detection is

correct.

Candidate bounding boxes are searched using a sliding window over position,

scale, and aspect ratio. The step size for each is determined such that one step size

leads to an IoU of α between the neighbouring boxes. The scale values range from a

minimum box area of 1000 pixels to the full image. Aspect ratio varies from 1/τ to

τ where the value of τ = 3 has been used in the implementation. Typical value of α

ranges from 0.5 to 0.85. An increase in α increases the density of sampling thereby

increasing the number of proposals. This leads to higher detection rates at the cost

of evaluating a large number of candidate boxes.The likelihood of the candidate box

is based on the number of contours that are wholly contained in it. This approach

uses a simple box objectness score that measures the difference between the number

of edges that exist in the box and those that are members of contours that overlap

the box's boundary.
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2.2.2 Faster-RCNN

Object proposal generation, which has been the focus element in this thesis, is a

subset of a larger problem of object detection where the task involves classification

of generated object proposals. In contrast with an image classification problem, the

object detection problem poses a need to identify a variable number of objects in an

image.

Out of the pool of proposed solutions, two classical approaches have been used

extensively. The first one is the Viola-Jones framework [39] which is relatively fast

and simple, and its algorithm aided in point-and-shoot cameras that implement real-

time face detection with little processing power. This approach works by generating

thousands of simple binary classifiers using Haar features. These classifiers are as-

sessed with a multi-scale sliding window in cascade and are dropped early in case of a

negative classification. Another traditional approach [17] uses Histogram of Oriented

Gradients (HOG) features and Support Vector Machine (SVM) for classification. Al-

though this method is superior to Viola-Jones, it is much slower.

After the evolution of deep learning techniques that are backed up by high perfor-

mance computational resources, deep learning models outperformed traditional mod-

els with respect to image classification and object detection. One of the first advances

in this area was OverFeat [50] which proposed a multi-scale sliding window algorithm

using Convolutional Neural Networks (CNNs). Just after OverFeat, the Regions with

CNN features or R-CNN method [8] was published and involved a region proposal

method [41] to extract possible objects followed by computing CNN-based features,

for each region, and using the features to perform classification using SVMs (Figure

2.5). While this achieved significantly better results when compared to the OverFeat

approach [50], the computational time was still high because of CNN feature extrac-
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Figure 2.5: Regions With CNN Features (R-CNN) [8].

Figure 2.6: Fast R-CNN [9] Architecture.

tion for each and every predicted region. A few years later, Fast RCNN [9] adopted an

approach similar to R-CNN, by using region proposals to identify prospective object

locations, but applied the CNN on the whole image and used ROI pooling on feature

maps with a final feed-forward network for classification and regression (Figure 2.6).

The biggest problem of this framework was the use of an object proposal generator

which became a bottleneck in computational time.

Subsequently, Faster-RCNN [4], the third instalment of the R-CNN series achieved

a better performance than Fast R-CNN [9] by eliminating the use of an external object

proposal generator and introducing a CNN based Region Proposal Network (RPN)
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Figure 2.7: Faster R-CNN [4] Architecture.

to make the model trainable end-to-end. RPNs output object proposals based on

an objectness score and the resulting object proposals are further processed by the

ROI pooling and fully connected layers stages for classification. Figure 2.7 illustrates

the architecture of Faster-RCNN. The input images are represented as Height x

Width x Depth tensors and are passed through a pre-trained CNN which acts as a

feature extractor, until an intermediate layer generating convolutional feature maps.

This technique is very commonly used in the context of transfer learning to train a
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classifier on a relatively small dataset using feature maps that are obtained from a

CNN that has been pre-trained on a larger dataset like ImageNet [30].

Using the features computed by CNN, an RPN predicts a predefined number of

candidate boxes which may contain objects (others are designated as background).

In order to tackle the problem of variable-length list of bounding boxes, RPN uses

anchors: fixed size reference bounding boxes that are placed uniformly throughout

the original image as shown in Figure 2.8. Instead of detecting where the objects are,

the problem is modelled into two parts. For every anchor, the two following questions

are posed: (1) Does the anchor contain a relevant object? (2) How much does it

have to be adjusted to better fit the relevant object? After localizing the relevant

objects, RoI Pooling is applied and the features corresponding to the relevant objects

are extracted into a new tensor. In the final step, the R-CNN module classifies the

content in the bounding box and adjusts the bounding box coordinates if it is not

labelled as background.

In this thesis, the primary focus is on the object localization part of Faster R-CNN

instead of the whole object detection framework. A pre-trained VGG based Faster

R-CNN architecture [4, 51], trained on the PASCAL VOC 2007 training dataset, is

used to predict the bounding boxes corresponding to objects in the PASCAL VOC

2007 test dataset.

2.2.3 Single-Shot Multibox Detector

Although every subsequent R-CNN version has advantages over its predecessors,

these versions have a few collective disadvantages which motivated for research on

new object detection frameworks. Some of those problems are as follows [52]: (1) the

training process is unwieldy and takes a lot of time; (2) multiple phases are involved

in the training process (e.g., training the RPN and the classifier in multiple steps in
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Figure 2.8: Anchors at (320,320) for a 600×800 Image.

the case of Faster R-CNN); (3) the network is slow at inference/test time. The speed

at test time is a major concern as none of the aforementioned techniques managed to

create a real-time object detector.

Single Shot Multibox Detector (SSD) [5] was released at the end of November

2016 and has successfully created new records in terms of performance and precision

for object detection tasks with a Mean Average Precision (mAP) of 74 percent and

operating speed of 59 frames per second on standard datasets like Pascal VOC [2] and

COCO [53]. SSD executes the tasks of object localization and classification in a single

forward pass of the network by utilizing the MultiBox technique [54] for bounding

box regression.
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Figure 2.9: SSD Framework [5].

Figure 2.10: VGG-16 Architecture [10].

Figure 2.9 shows the SSD framework. It can be seen that the SSD architecture

builds on the popular VGG-16 architecture [10] (Figure 2.10) but discards the final

fully connected layers. VGG-16 [10] has been used as the base network because of

its strong performance in high quality image classification tasks and also because of

the ease in transfer learning to improve results. Instead of the original VGG fully

connected layers (Figure 2.10), a set of auxiliary convolutional layers (conv6 onward)

were added to enable extraction of features at multiple scales and progressive decrease

in the size of the input to subsequent layers.

The bounding box regression technique of SSD is inspired from MultiBox [54], a

method known to predict fast class-agnostic box coordinate proposals. In [54], an
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Figure 2.11: An Illustration of the Multi-Scale Convolutional Prediction of the Loca-

tions and Confidences for Multibox.

Inception-style convolutional network has been used as shown in Figure 2.11. The

MultiBoxs loss function combined two critical components which have been incor-

porated into the SSD architecture: (1) confidence loss: measures how confident the

network is about the objectness of the computed bounding box; the loss is computed

using the categorical cross-entropy function in this case; (2) location loss: measures

how far are the ground-truths from the bounding boxes predicted by the network; the

L2 norm is used for this purpose. Similar to the anchors in Faster R-CNN, mentioned

in the previous sub-section, MultiBox regression utilizes anchors such that the IoU

between consecutive anchors is greater than 0.5.

In the SSD architecture, a few changes were made in order to make the network

even more capable of localizing and classifying the objects. Unlike [54], every feature

map cell is associated with a set of manually chosen default bounding boxes of different

dimensions and aspect ratios. Also, SSD uses the L1 norm to calculate the localization
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loss instead of the L2 norm used in [54]. Finally, apart from MultiBox's object

proposal generation, SSD has an ability to classify the predicted objects just like

Faster-RCNN [4]. Although SSD tackles the whole problem of object detection, this

thesis aims only at the evaluation of SSD as an object proposal generator and does

not delve into the classification part of it.

2.3 Visual Attention Models

A large number of visual attention models compute the saliency of a pixel giving

a measure of how much that pixel stands out from its surroundings and, as a result,

produce a 2D topological map, called saliency map, which gives the relative impor-

tance of each pixel in the given image [1]. Lots of studies [55, 56] exploit the idea

of a two-component framework for explaining how attention is deployed. Per this

framework, visual attention (VA) mechanisms can be classified into bottom-up and

top-down components.

Bottom-up attention usually occurs in the pre-attention stage and is highly in-

fluenced by center-surround operations on basic features extracted in pre-attentive

stage like colour, orientation, motion, to name a few, while the top-down component

is highly task-dependent. In general, the top-down component is not totally indepen-

dent of the bottom-up component, and the VA mechanism is considered to be the

result of an interplay of both these components [1].

Most of the VA models developed over the past decade have been targeted at

modelling the bottom-up component of visual attention because of the top-down

component being highly task-dependent. Also, in general, modelling the top-down

component of VA requires some sort of supervised learning which, in turn, requires

massive amounts of data to train. Hence, in this thesis, VA models focusing on the

bottom-up approach are chosen to generate the saliency maps which are further used
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to generate salient ground-truths. The top four bottom-up saliency models, as per

the subjective experiments from [1], are introduced in the following sub-sections.

2.3.1 Fast and Efficient Saliency

In this model, proposed by Tavakoli et al. [11], a Bayesian framework based center-

surround approach is adopted. Salieny at a point, for a given image, is considered to

be a binary random variable having the value 1 if the point is salient, and 0 otherwise.

The probability of a pixel being salient given the feature values is considered as the

saliency.

For an image I, each pixel is defined as x = (x̄, f) where x̄ represents the coor-

dinate of the pixel x in image I, and f is the feature vector for that coordinate. f

can be a colour vector or any other desired feature like SIFT, Gabor, LBP, LSK etc.

Assuming there exists a binary random variable Hx that defines pixel saliency, it can

be defined as follows:

Hx =


1 if x is salient

0 otherwise

(2.2)

The saliency of pixel x can then by computed using P (Hx = 1|f) = P (1|f). From

Bayes rule, it can be expanded as follows:

P (1|f, x̄) =
P (f |x̄, 1)P (1|x̄)

P (f |x̄, 1)P (1|x̄) + P (f |x̄, 0)P (0|x̄)
(2.3)

The FES method [11] adapts a kernel density approximation method to compute the

feature distribution and estimate P (f |x̄, 1) and P (f |x̄, 0). It utilizes a multi-scale

approach where saliency of a centre pixel is computed at different scales by changing

the radius and number of samples involved and taking their average.
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Figure 2.12: FES Saliency Illustration. (Left) Sample Image from the PASCAL VOC

2007 Test Dataset. (Right) Saliency Map Generated Using the FES Saliency Method.

Figure 2.12 shows the saliency map generated using FES [11] for a sample image

from the PASCAL VOC 2007 test dataset [2]. The higher the value of the pixel in

the saliency map, the higher the saliency of that pixel.

2.3.2 Boolean Map Saliency

In the Boolean Map Saliency (BMS) approach proposed by Zhang and Scarloff

[13], the Gestalt principle of surroundedness is used to compute the saliency. In

this method, colour-based feature maps are thresholded by varying the thresholds in

order to obtain Boolean maps. These maps are in turn used to obtain connected

regions. A binary value of 1 is assigned to the regions which exhibit surroundedness

or are closed, and a value of 0 is assigned to the rest. Maps for a given threshold

are normalized using the L2 norm and then the normalized maps are averaged over

different thresholds and different features to get the final saliency map.

For a given image I, a set of Boolean maps B = B1, B2, B3, Bn are generated by

thresholding with various threshold values. The influence of a Boolean map Bi on

visual attention is represented by an attention map Ai(Bi), which highlights regions in
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Figure 2.13: BMS Saliency Illustration. (Left) Sample Image from the PASCAL VOC

2007 Test Dataset. (Right) Saliency Map Generated Using the BMS saliency Method.

Bi that attract visual attention [13]. Saliency is then modelled by the mean attention

map Ā over the randomly generated Boolean maps. This mean attention map can be

further post-processed to form the final saliency map S for the task of salient object

detection.

Figure 2.13 shows the saliency map generated by the BMS saliency method for a

sample image from the PASCAL VOC 2007 test dataset. The pixel values close to 1

indicate higher saliency while the ones close to 0 indicate least salient pixels.

2.3.3 Covariance Saliency

The Covariance Saliency (CS) method proposed by Erdem et al. [12] uses covari-

ance matrices of simple image features as region covariance descriptors in order to

capture the local image structures and provide non-linear integration of the features.

In this approach, saliency is obtained by finding the distance between the covari-

ance matrices of a central region with its surrounding neighbourhood regions using

a non-Euclidian distance measure based on the eigen values and eigen vectors of the

covariance matrices. For an image I with F being the feature extracted, a region R
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Figure 2.14: Covariance Saliency Illustration. (Left) Sample Image from the PASCAL

VOC 2007 Test Dataset. (Right) Saliency Map Generated using the Covariance

Saliency Method.

inside F is represented with a dxd covariance matrix CR of feature points as shown

below:

CR =
1

n− 1

n∑
i=1

(fi − µ)(fi − µ)T (2.4)

where (fi)i=1,...,n denotes the d-dimensional feature points inside R and µ denotes the

mean of these points.

The distance between two covariance matrices C1 and C2 is given by:

ρ(C1, C2) =

√√√√ n∑
i=1

ln2 [λi(C1, C2)] (2.5)

where (λi(C1, C2))i=1...n are the generalized eigen values of C1 and C2.

The CS method utilizes a multi-scale approach to compute the final saliency map for

a given image. Figure 2.14 shows the saliency map that is generated using the CovSal

saliency method on a sample image from the PASCAL VOC 2007 test dataset.
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Figure 2.15: SigSal Saliency Illustration. (Left) Sample Image from the PASCAL

VOC 2007 Test Dataset. (Right) Saliency Map Generated using the Image Signature

Saliency Method.

2.3.4 Image Signature Saliency

This approach by Hou et al. [14] develops an image signature based on the sign

function of the discrete cosine transform (DCT) which is used to predict visually

noticeable pixels in a given image. Let I be the considered image. The saliency map

is computed as follows:

Î = sign(DCT (I)) (2.6)

Ī = IDCT (sign(Î)) (2.7)

m = g ∗ (Ī .Ī) (2.8)

where g is the impulse response of a two-dimensional lowpass smoothing filter and m

represents the final saliency map obtained by smoothing the squared reconstructed

image Ī. Figure 2.15 shows the saliency map generated using the Image Signature

(SigSal) method for a sample image from the PASCAL VOC 2007 test dataset.
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Figure 2.16: An Illustration of Detecting a Stop Sign in a Given Image.

2.4 Performance Evaluation Measures

This section gives a basic understanding of a few evaluation techniques that would

be necessary in understanding the proposed framework. Concepts of IoU and detec-

tion rate play a key role in better understanding the obtained results in Chapter 4.

2.4.1 Intersection Over Union

The Intersection over Union (IoU) is a popular evaluation metric used in measuring

the accuracy of an object detector on a given dataset. This evaluation metric is often

seen in object detection challenges such as the PASCAL VOC challenge. Typically,

the IoU is used to evaluate the performance of Convolutional Neural Network (CNN)

based detectors such as R-CNN, Faster-RCNN, YOLO, etc. Any algorithm that

predicts candidate boxes as an output can be evaluated using the IoU.

In order to apply the IoU to evaluate a given object detector, the following com-

ponents are expected:
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Figure 2.17: Pictorial Representation of Computing the Intersection Over Union

(IoU).

• The ground-truth bounding boxes that specify where the object is for a given

test image.

• The predicted bounding boxes from the model under evaluation.

In Figure 2.16, the ground-truth bounding box is represented with green color while

the predicted bounding box from an object detector is drawn in dark blue. In order

to compute the Intersection over Union, the ratio, shown in Figure 2.17, must be

calculated.

From Figure 2.17, the Intersection over Union can be described as the ratio of

area of overlap to the area of union between the ground-truth and predicted bounding

boxes. Areas in case of images can be computed by counting the number of pixels in

the desired region. A higher IoU value, close to 1, indicates a better prediction from

the object proposal method. Figure 2.18 shows an illustration of good and bad IoU
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Figure 2.18: IoU Scores Between Ground-Truths (in Green) and Candidate Boxes (in

Red).

scores. Typically, a score of 0.5 is used as an IoU threshold to label the object as

detected.

2.4.2 Detection Rate

The detection rate, also referred to as recall, of a system is closely associated with

the IoU threshold that is used to qualify the object as detected. For a given image

having labeled ground-truth objects, the detection rate can be computed using the

following ratio:

Detection Rate =
True Positives

Total number of ground truths
(2.9)

where True Positives is the number of ground truths that are successfully detected

by the predicted candidate boxes of the object proposal generator. It is difficult for

an object proposal generator to detect the objects at higher IoU thresholds. So, the

detection rates decrease with the increase in IoU threshold. Figure 2.19 illustrates

this phenomenon by plotting detection rate with respect to IoU threshold. In order to

compute the detection rate at a given IoU value for the entire dataset, the detection

rates are calculated for all the images of the dataset and their average is computed

to get the final detection rate at the considered IoU threshold.
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Figure 2.19: Typical Recall vs IoU Curve for an Object Proposal Generator.

2.4.3 Precision

Precision measures how accurate the predictions of the model are. It is the ratio

of true object detections to the total number of objects that the classifier classifies.

Mathematically, Precision can be defined as follows:

Precision =
True Positives

True Positives + False Positives
(2.10)

If the precision score is close to 1.0, then there is a high likelihood that whatever

classifier predicts as a positive detection is actually a correct prediction. On the other

hand, recall measures the ratio of true object detections to the number of objects in

the dataset. Average Precision (AP) is computed at a constant IoU threshold, which

is 0.5 in our case.

2.4.4 Area Under the Curve (AUC)

The Area Under the Curve (AUC) is used to compute the average recall over a

range of IoU thresholds. One way to compute the AUC is by approximating the area

using rectangles. The total area under the curve, as shown in Figure 2.20, can be
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Figure 2.20: Area Under the Curve (AUC) Calculation by Right End-Point Approx-

imation.

approximated to be the sum of individual rectangular areas. As the right end point

have been used to define the height of the approximating rectangle above each sub-

interval, it is called right end-point approximation for the AUC. For M sub-intevals

with a ∆x step size, the right end-point approximation for the AUC is given by:

AUC ≈
M∑
i=1

f(xi)∆x (2.11)

where f(xi) is the value of recall at an IoU value of xi.

As the number of sub-intervals increase, the approximate value comes closer to the

actual value. In this thesis, M was set to 400 and a step size of 0.0025 was used to

vary the IoU threshold value from 0 to 1.
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Chapter 3

SALIENT OBJECT DETECTION DATABASE AND FRAMEWORK FOR

BENCHMARKING OBJECT PROPOSAL GENERATORS FOR SALIENT

OBJECT DETECTION

This chapter presents a framework for comparing the performance of state-of-

the-art object proposal generators for the task of salient object detection. For this

purpose, a salient object detection database, referred to as SalBox database, is con-

structed as part of this work. The predictions obtained by EdgeBoxes [3], FasterR-

CNN [4], and SSD [5] are evaluated with respect to the SalBox database. The con-

structed database provides an insight into which of the existing and future object

proposal generators are better at detecting salient objects with a reduced number

of proposals. The performance results show a significant reduction in the required

number of proposals when detecting just the salient objects. These results also show

that SSD [5] provides the maximum reduction in the number of required proposals

while maintaining the same salient object detection accuracy as compared to [3] and

[4].

3.1 Introduction

Object detection has been a key problem in the field of computer vision for a long

time now. The primary aim of an object detection system is to determine whether

an object exists in a provided image and, if so, where in the image it occurs. The

dominant approach to this problem, for the past decade, has been the sliding window

paradigm in which object classification is performed at every location and scale in that

image [17, 39, 40]. But more recently, object proposal generation/detection methods
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have been proposed in which a set of object-bounding box proposals are generated

aiming to reduce the set of positions that need further analysis. These approaches

[37, 41–47] led to the discovery that object proposals can be accurately generated

in a manner that is agnostic to the type of object being detected [3]. The field of

object detection has seen a great progress from the success of these object proposal

generation methods, which aim at generating an optimal number of region proposals

to cover most of the observable objects in a given frame. A good object proposal

generator is expected to efficiently generate as few bounding boxes as possible while

reaching a sufficiently high detection rate.

Object detection involves both localization as well as classification of the ob-

jects in a given frame. While Edge Boxes [3] is solely an object proposal generation

method based on structured decision forests, Faster-RCNN [4] and SSD [5] train on

the ground-truth data of a given object detection dataset to learn the parameters

required to not only generate object proposals but to also classify those proposals.

All the above methods achieve high recall at the cost of sampling a large number of

candidate boxes, which leads to an increase in computational complexity, especially

when classification is also performed. For example, Edge Boxes [3] requires one of its

design parameters, δ, which controls the step size of the sliding window based search,

to be high in order to have a better recall at more challenging IoU (Intersection over

Union) thresholds. But, if δ is increased, the density of the sampling is increased,

resulting in more candidate boxes being evaluated and slower runtimes [3]. Similarly,

for SSD [5] and Faster R-CNN [4], an increase in the number of pivot points leads to

the same problem. Hence, the detection of all the objects, in a given frame, at higher

IoU thresholds requires a significantly much larger number of object proposals to be

generated and is computationally expensive.
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One way to overcome this problem, while ensuring that the most salient objects

in the scene are detected, is to design saliency-enhanced object proposal generation

methods that are capable of detecting salient objects in the scene while minimizing

the number of generated object proposals. In many applications, such as image dis-

play on small devices [15], and image collection browsing [16], it is enough to generate

object proposals to detect salient objects in that frame and to subsequently classify

them rather than aiming to detect all the objects. Hence, it is important to evaluate

the performance of these object proposal generators for the task of salient object

detection. This work proposes a framework to assess the performance of object pro-

posal generation and/or detection methods in terms of their ability to detect salient

objects while constraining the number of generated object proposals or the number of

non-salient object detections to a maximum allowed value. The proposed framework

can also be used to evaluate and optimize the performance of newly developed object

detection methods with a focus on increasing the accuracy of salient object detection.

In general, the IoU score between the predicted bounding boxes and the refer-

ence ground-truth bounding boxes is used to evaluate the performance of an object

proposal generator, i.e., if the IoU score between those two bounding boxes is more

than a given threshold, the proposed bounding box is labeled as a true positive. Al-

though this method of calculating recall for varying IoU thresholds helps in analyzing

the performance of an object proposal generator with respect to the ground-truth

database, there are currently no databases and no evaluation framework to assess the

performance of object proposal generation/detection methods in terms of their ability

to detect salient objects. Hence, as part of this work, a benchmark database (SalBox

database) with salient ground-truth annotations is constructed to enable such a much

needed saliency-enhanced evaluation of existing object proposal generators. Not only

will such a database help in finding the best performing object proposal generator
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for salient object detection, but also it establishes a benchmark by which other newly

introduced proposal generators can be compared.

This chapter is organized as follows. Section 3.2 describes the proposed framework

and constructed SalBox database. Performance results using the proposed framework

and the constructed SalBox database are presented in Section 3.3.

3.2 Salient Object Detection Evaluation Framework and Database

Although a large number of object proposal generators aim to predict the bound-

ing boxes enclosing most of the noticeable objects in a given frame, it is important

to evaluate whether these methods are capable of detecting the salient objects in the

scene when constraining the number of proposals that can be generated due to con-

straints on timing or computations during execution. To address this issue, a salient

object detection database, referred to as SalBox database, is constructed following

the procedure shown in Figure 3.1 for images in the PASCAL VOC 2007 test dataset.

Given an input image with corresponding ground-truth object (GTO) bounding

boxes annotations, the proposed SalBox dataset is constructed by first generating

the saliency map for the input image. The generated saliency map is thresholded to

produce a binary mask with 1 (white pixel in Figure 3.1) and 0 (black pixel in Figure

3.1) denoting a salient and non-salient location, respectively. The salient regions

are then enclosed by bounding boxes and these in turn represent the saliency map

bounding boxes. The IoU scores between the GTO bounding boxes and saliency

map bounding boxes are computed. GTO bounding boxes with an IoU score higher

than a specified threshold, expressed as a percentage δ of the maximum IoU score

in the considered image (67% in our implementation), are kept and referred to as

the salient GTO (SGTO) bounding boxes. All other bounding boxes are removed

from the annotations. The IoU scores determine the degree of saliency of the ground-
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Figure 3.1: Process Involved in Generating Salient Ground-Truths from the Provided

Ground-Truths for a Given Dataset.

truth objects for a given image. The higher the IoU score, the higher would be the

degree of saliency of that object. The IoU parameter δ, 0 ≤ δ ≤ 1, determines the

degree of overlap between a GTO bounding box and a saliency map bounding box

relative to the maximum overlap present in the considered input image. If δ equals

1, the method outputs only the most salient ground-truth in that image. When it

is 0, all the ground-truth objects in the given frame are output as salient ground-

truths. This parameter is important in analyzing the performance of object proposal

generators against objects having a certain degree of saliency. Finally, the output of

the procedure shown in Figure 3.1 would be a dataset with just the salient ground-

truths.
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The proposed SalBox database was constructed by applying the aforementioned

procedure (Figure 3.1) to all images of the PASCAL VOC 2007 test dataset. The

saliency maps were generated by using the FES saliency method [11], which ranked

among the top saliency prediction methods according to the performance evaluations

in [1]. In our implementation, the values τ = 0.5 and δ = 0.67 (Figure 3.1) were used

for thresholding the saliency map and the IoU scores, respectively.

Details about the generation of the saliency map and the determination of salient

ground-truth object bounding boxes are provided in the following subsections.

3.2.1 Saliency Map Generation

In order to determine which saliency map prediction method to adopt, we selected

the top 4 saliency prediction methods based on the work of Gide and Karam [1]. These

methods are FES [11], CovSal [12], BMS [13] and SigSal [14]. These methods were

ranked in [1] by conducting subjective evaluations comparing the predicted saliency

map to the reference ground-truth saliency map. The subjective ratings were obtained

in [1] by using a 5-point quality scale (5 being Excellent and 1 being Poor). The

mean opinion score (MOS) was computed for each saliency map prediction method by

averaging the subjective ratings over all the saliency maps produced by the considered

method. Figure 3.2 shows the resulting MOS in decreasing order. From Figure 3.2,

it can be seen that FES [11], CovSal [12], BMS [13] and SigSal [14] ranked as the

top 4 methods in terms of MOS. Figure 3.3 shows the saliency maps generated by all

the four VA models for two sample images taken from the PASCAL VOC 2007 test

dataset. Table 3.1 gives the average running time for the selected saliency prediction

methods for all the images in the Pascal VOC 2007 test dataset. All methods were

run using MATLAB 2017b on a Microsoft Surface Pro 4 with Intel Core i7-6650U

CPU running at 2.9 GHz clock frequency. Out of these methods, BMS [13] uses
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Figure 3.2: MOS Taken Over All Predicted Saliency Maps for Each VA Model and

Arranged in Descending Order by Milind S. Gide and Lina J. Karam (2017) [1].

MEX routines to speed up the saliency map generation process while the rest of the

methods call standard MATLAB functions. From Figure 3.2 and Table 3.1, it can

be seen that the FES method [11] is not only the top performing method in terms of

saliency prediction but it is also the fastest in terms of average running time when

compared to the three other considered methods (CovSal, BMS and SigSal). Hence,

FES [11] is chosen to generate saliency maps for all the images in the PASCAL VOC

2007 test dataset and these saliency maps are further used to generate the salient

ground-truth object bounding boxes.
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Figure 3.3: Example of Saliency Maps That Are Generated Using the Top Performing

Methods. From Top to Bottom Row: Two Sample Images from the PASCAL VOC

2007 Test Dataset and Corresponding Saliency Maps Generated by FES [11], CovSal

[12], BMS [13], and SigSal [14], Respectively.
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Table 3.1: Average Run Times for the Top Four VA Models in [1] for the Images

From PASCAL VOC 2007 Test Dataset.

Methods Time taken (sec)

FES [11] 0.125

BMS [13] 0.147

SigSal [14] 0.496

CovSal [12] 20.046

3.2.2 Determination of Salient Ground-Truth Objects

Once the saliency maps are generated, they are thresholded to form binary masks

as explained previously. After this, a recursive connected component labelling algo-

rithm is applied to label the salient regions in each thresholded saliency map (MAT-

LAB R2017b function regionprops was used for this step). For every labelled salient

region, a rectangular salient region bounding box is formed by enclosing it. For ev-

ery image in the dataset, IoU scores are computed between the ground-truth objects

(GTO) bounding boxes and salient regions bounding boxes. Then, salient ground-

truth objects (SGTO) bounding boxes are determined by retaining those GTO bound-

ing boxes resulting in relatively large IoU scores. The remaining GTO bounding boxes

with lower IoU scores are discarded. Figure 3.4 illustrates the process of finding the

salient ground-truth object bounding boxes using the thresholded saliency map.

LetD represent the dataset of all the images with their corresponding GTO bound-

ing boxes. Let GTOk, Sk and Tk represent, respectively, the set of GTO bounding

boxes, saliency map, and thresholded saliency map corresponding to the kth image Ik
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Figure 3.4: Generation of Salient Ground-Truth Objects (SGTOs) From Provided

Ground-Truth Objects (GTOs). From Top Row to Bottom Row: Three Sample Im-

ages From the PASCAL VOC 2007 Test Dataset with Corresponding GTO Bounding

Boxes; Binary Maps Generated by Thresholding the FES [11] Saliency Maps, and

Corresponding Salient Regions Bounding Boxes; Images with Salient GTO Bounding

Boxes.
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in D. Tk(x, y) is obtained by thresholding the saliency map Sk(x, y) as follows:

Tk(x, y) =


1, if Sk(x, y) > τ

0, if Sk(x, y) < τ

(3.1)

where τ is a specified threshold. In our implementation, the value of τ was set to 0.5.

Each connected region formed by the set of pixels (x, y) where Tk(x, y) = 1 is enclosed

by a rectangular bounding box. Let Rk be the set of rectangular bounding boxes

enclosing each connected region in the thresholded saliency map Tk (Figure 3.1 and

middle row of Figure 3.4) and let Rkj be the jth bounding box in the set Rk.

The next step is to identify which of the ground-truth objects fall within the salient

regions and to compute their degree of saliency. Let θki be the degree of saliency of

the ith GTO bounding box GTOki in the set GTOk. θki is given by:

θki = max
j

(IoU(GTOki, Rkj)) (3.2)

where IoU(GTOki, Rkj) computes the IoU score between the ith ground-truth object

and the jth rectangular salient region bounding box.

Let SGTOk ε GTOk be the set of salient GTOs in image Ik given by:

SGTOk =
{
GTOki | θki > δ.θk,max

}
(3.3)

where θk,max = maxi(θki), and δ is a relative saliency threshold. The value of δ was

set to 0.67 in our implementation.

Using Equations (3.1), (3.2), and (3.3), salient ground-truth objects can be ob-

tained for any given dataset D. Using these equations, the SalBox dataset was gen-

erated from the PASCAL VOC 2007 test dataset with the parameters τ and δ being

0.5 and 0.67, respectively. This dataset can be used along with our framework to

analyze the performance of any newly introduced object proposal technique for the
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Table 3.2: Number of GTOs per Image in the PASCAL VOC 2007 Test Dataset [2]

and SalBox Dataset.

Dataset Minimum

GTOs

Maximum

GTOs

Average GTOs

per image

Standard

deviation

PASCAL VOC 2007

test dataset [2]

1 41 3.3296 3.3895

SalBox dataset 1 9 1.2223 0.5159

salient object detection task and to compare the performance with respect to state-

of-art techniques like [3], [4] and [5]. Table 3.2 shows statistics corresponding to the

number of GTOs per image in the PASCAL VOC 2007 test dataset [2] and in the

SalBox dataset.

3.3 Experimental Results

After the generation of salient ground-truths, the object proposal generator under

evaluation is analyzed with respect to both the original ground-truths as well as the

salient ground-truths. For this purpose, the detection rate (recall) vs IoU curves are

plotted by varying the IoU threshold α for different N values, where N is the number

of proposals that can be generated. IoU threshold α determines if the proposed

bounding box, by the object proposal generator, is a true detection. If the IoU

between the ground-truth bounding box and the predicted bounding box exceeds α,

the predicted bounding box is counted as a positive detection. This process can be

visualized with the help of the block diagram shown in Figure 3.5. Figures 3.6, 3.7

and 3.8 show the recall VS IoU curves for EdgeBoxes [3], Faster R-CNN [4] and SSD

[5], respectively. The performance analysis is performed with respect to all (salient
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Figure 3.5: Detection Rates of the Object Proposal Generator Under Evaluation with

Respect to the Original Ground-Truths as Well as the Salient Ground-Truths with

Varying IoU Thresholds.

and non-salient) ground-truths as well as the salient ground-truths by varying the

number of generated proposals (N).

From Figure 3.6, it can be seen that the detection rate of EdgeBoxes [3] with

respect to SGTO bounding boxes with N = 20 proposals, at an IoU threshold of 0.5,

is similar to the detection rate of EdgeBoxes with respect to all ground-truths with

N = 100 proposals. Similarly from Figure 3.7, it can be seen that the detection rate of

Faster R-CNN [4] with respect to SGTO bounding boxes with N = 50 proposals, at an

IoU threshold of 0.5, is similar to the detection rate of Faster R-CNN with respect to

all ground-truths with N = 100 proposals. Hence, the number of proposals generated

by EdgeBoxes and Faster R-CNN can be cutdown by 80 percent and 50 percent
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Figure 3.6: Detection Rate (Recall) VS IoU Threshold for the Proposals Generated by

EdgeBoxes [3], with Respect to All Ground-Truth Objects (EB) and Salient Ground-

Truth Objects (EB Salient) for Different Numbers of Object Proposals.

respectively, when detecting just the salient ground-truths without compromising the

detection rate.

From Figure 3.8, it can be seen that the detection rate of SSD [5] with respect to

the salient ground-truths with N = 5 proposals, at an IoU threshold of 0.5, is similar

to the detection rate of SSD with respect to all ground-truths and with N = 100

proposals. This reinforces the fact that the number of proposals generated by SSD

can be cut down by 95 percent when detecting just the salient ground-truths without

any compromise in recall. Table 3.3 shows the AUC values, computed using Equa-
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tion (2.11), for different number of proposals N and for different methods including

EdgeBoxes [3], Faster R-CNN [4], and SSD [5] when detecting all GTOs and salient

GTOs. It can be seen that SSD [5] has the highest AUC value for 100 proposals when

detecting the salient ground-truths when compared to the rest of the cases. Table 3.4

shows that a significant reduction in the number of object proposals can be achieved

for a given recall rate when the detection focuses on salient objects. The best perfor-

mance is achieved by SSD [5] which requires only 5 proposals when detecting salient

objects to achieve the same recall rate as compared to 100 proposals when detecting

all objects.

For all the three methods [3–5], and for a fixed number of generated object pro-

posals (N), it can be observed from Figures 3.6, 3.7, and 3.8 that the detection rates

decrease with an increase in the IoU threshold for a fixed number of proposals gener-

ated. This is due to the difficulty involved in perfect localization of object at higher

IoU thresholds. From Table 3.4, at a typical IoU threshold of 0.5, the detection rate

is higher for SSD when compared to [3] and [4]. Also, from Table 3.5, it can be seen

that the Average Precision (AP) for [3–5] increases when proposals are aimed to de-

tect salient GTOs. The Average Precision (AP) was calculated using Equation (2.10)

with the number of proposals N set to the average number of GTOs per image for

the dataset under evaluation. These values are shown in Table 3.2.

More interesting results are observed when the detection rates are analyzed with

respect to the following cases: 1) having only one most salient object as ground-truth

for every image in dataset, 2) having only one least salient object as ground-truth for

every image in the dataset. First case is obtained by choosing GTO bounding box with

θmax degree of saliency while the second case is obtained by choosing GTO bounding

box with θmin degree of saliency for each image in the dataset. From Figure 3.9,

it can be noticed that the SSD [5] method’s detection rate increased approximately
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Figure 3.7: Detection Rate (Recall) vs IoU Threshold Using Faster R-CNN [4] with

Respect to All Provided Ground-Truths (FRCNN) and Salient Ground-Truths (FR-

CNN Salient) for Different Number of Object Proposals.

by 10 percent when detecting the most salient object, at a typical IoU value α of

0.5, as compared to detecting the least salient object. Similarly, the detection rate

using the Edge Boxes [3] method with 100 proposals to detect the most salient object

is approximately 12.5 percent greater than the detection rate with 100 proposals to

detect the least salient object. This is an interesting finding as it clearly demonstrates

the fact that the degree of saliency rather than the number of ground-truths in a given

image influence the detection rate of the object proposal system.
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Table 3.3: AUC Values for Various Number of Proposals Generated by EdgeBoxes

(EB) [3], Faster R-CNN (FRCNN) [4], and SSD [5] with Respect to All GTO Bound-

ing Boxes and SGTO Bounding Boxes.

Method Ground-Truth
Number of proposals

5 10 25 50 100

EB [3]
All GTOs 0.3961 0.4673 0.5473 0.6026 0.6352

SGTOs 0.4706 0.5510 0.6358 0.7075 0.7205

FRCNN [4]
All GTOs 0.2463 0.3237 0.4960 0.5965 0.6667

SGTOs 0.2851 0.3888 0.5809 0.7088 0.7361

SSD [5]
All GTOs 0.6461 0.6786 0.6956 0.7081 0.7280

SGTOs 0.7362 0.7523 0.7701 0.7865 0.8104

Table 3.4: Reduction in the Number of Proposals When Detecting Only Salient Ob-

jects.

Methods Detection rate

(Recall)

Number of

proposals to

detect GTs

Number of

proposals to

detect salient GTs

Percentage of

reduction in number

of proposals

EB [3] 0.74 100 25 75

FRCNN [4] 0.87 100 50 50

SSD [5] 0.91 100 5 95

Table 3.5: Average Precision (AP) Values for Salient GTs and All GTs At a δ Value

of 0.5. The AP Values Were Computed by Setting the Number of Proposals to be

Equal to the Average Number of GTOs per Image for the Considered Datasets.

Methods AP (All GTs) AP (Salient GTs)

EB [3] 0.1986 0.2672

FRCNN [4] 0.4836 0.5804

SSD [5] 0.5714 0.7278

50



Figure 3.8: Detection Rate (Recall) vs IoU Threshold Using SSD [5] with Respect to

All (SSD) and Salient Ground-Truth Objects (SSD Salient) for Different Number of

Object Proposals.
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Figure 3.9: Detection Rate (Recall) VS IoU Threshold for EdgeBoxes [3], Faster R-

CNN [4], and SSD [5] with Respect to Most Salient and Least Salient Ground-Truths.
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Chapter 4

CONCLUSION

This thesis implements an evaluation framework for salient object proposal generation

for any given image dataset. This work contributes to the field of object detection

in general and to the area of salient object proposal generation in particular. This

chapter summarizes the contributions of this thesis and proposes several directions

for future research.

4.1 Contributions

The contributions of this thesis can be summarized as follows:

• A novel evaluation framework is presented for assessing the performance of a

given object proposal generator for the task of salient object proposal genera-

tion.

• The proposed framework was used to evaluate the performance of state-of-art

object proposal generators/detectors.

• Given a labeled object dataset as input, a novel algorithm is presented to con-

struct a corresponding labeled salient object dataset.

• A benchmark dataset for salient object detection is constructed from the PAS-

CAL VOC 2007 test dataset in order to facilitate the evaluation of any newly

introduced object proposal generators for the task of salient object detection.
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4.2 Future Research Directions

Possible enhancements and future directions for the proposed framework are as

follows:

• An end-to-end salient object detector can be trained on the salient PASCAL

VOC 2007 dataset using the SSD framework. It will be interesting to see if the

resulting trained SSD network would help in generating less number of proposals

when compared to the conventional object detector for the task of salient object

detection.

• Recent advances in deep learning show that features obtained from initial layers

of a CNN trained for object detection are very useful in other computer vision

tasks. Current saliency models use either linear or non-linear combinations of

low-level features to produce saliency maps. It will be interesting to see if the

fusion of CNN features and the current bottom-up saliency models can lead to

better saliency maps.
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