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Abstract
Navigation problem in lattices with long-range connections has been widely
studied to understand the design principles for optimal transport networks;
however, the travel cost of long-range connections was not considered in
previous models. We define long-range connection in a road network as the
shortest path between a pair of nodes through highways and empirically analyze
the travel cost properties of long-range connections. Based on the maximum
speed allowed in each road segment, we observe that the time needed to travel
through a long-range connection has a characteristic time Th ∼ 29 min, while
the time required when using the alternative arterial road path has two different
characteristic times Ta ∼ 13 and 41 min and follows a power law for times
larger than 50 min. Using daily commuting origin–destination matrix data, we
additionally find that the use of long-range connections helps people to save
about half of the travel time in their daily commute. Based on the empirical
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results, we assign a more realistic travel cost to long-range connections in two-
dimensional square lattices, observing dramatically different minimum average
shortest path 〈l〉 but similar optimal navigation conditions.

1. Introduction

While each city has its specific constraints in geography, history and socio-economic
mechanisms that shape its structure [1, 2], the road networks from very diverse cities, such as
Brasilia, Cairo, London and Los Angeles, have similar topological properties measured in terms
of the efficiency and the total length of the entire network [3, 4]. To understand road network
topology, complex network studies [3–8] so far have investigated connectedness [4], spatial
accessibility [5], price of anarchy [6] and betweenness centrality [7, 8]. As another important
issue in this field, navigation problem has also drawn much attention in recent years [9–19].
Theoretical works dedicated to the problem of navigation explored the network topology
with optimal transport performance, where the average shortest path length 〈l〉 is usually
the navigation variable to be optimized [10]. On square lattices these studies discovered the
strategies to minimize the average shortest path length by adding long-range connections [9–14].
Yet, a square lattice with long-range connections, where all links have exactly the same travel
cost, is unrealistic and not able to fully represent the properties of some actual transport
networks [20].

Similar to a two-dimensional square lattice with long-range connections, the road network
in modern cities is typically composed of two layers: one layer is the highway layer formed
by highways and the other layer is the arterial layer formed by arterial roads (figure 1(a)).
The highway layer (with high-speed limit) works like the long-range connections, providing
fast channels for long-distance travel (figure 1(b)). The arterial layer (with low-speed limit) has
functions similar to a two-dimensional square lattice, densely spreading across the whole region,
connecting a location with its periphery areas (figure 1(c)). In this study, we empirically analyze
the properties of the Bay Area road network to understand how long-range connections are
embedded in the underlying arterial layer in an urban road network, which has been shaped by
complex mechanisms such as geography, history and socio-economy for a long time. Using the
daily home–work commuting origin–destination (OD) data, we further predict the traffic flows
in the road network and investigate the functionality and the usage patterns of the long-range
connections. Finally, based on the empirical results we improve the two-dimensional square
lattice model by assigning more reasonable travel costs to long-range connections.

2. The long-range connections in the Bay Area road network

The Bay Area road network is provided by NAVTEQ, a commercial provider of geographical
information systems data6. The data encapsulate the attributes of roads, such as length and
speed limit. In this road network, each link represents a road segment (24 408 in total) and each
node represents an intersection (11 309 in total). To have a preliminary understanding of the
network properties, we first measure the length l and the free travel time t (length divided by
speed limit) of each road segment. We observe that most road segments are densely located

6 Navteq Official Website (www.navteq.com/).
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Figure 1. The Bay Area road network. (a) The color and the thickness of a link show
the traffic flow on a road segment. The traffic flows are estimated based on the residents’
daily home–work commuting OD data. (b) The highway layer formed by highway road
segments (6140 in total). (c) The arterial layer formed by arterial road segments (18 268
in total). (d)–(g) The PDF of the length and the free travel time of arterial road segments
and highway road segments. The insets show the results on log–log scales.

in the cities, having a small length l, while a few long road segments are sparsely distributed
in rural areas, having a length l > 10 miles (figures 1(d) and (e)). The longest arterial road
segment and the longest highway road segment are roughly 15 miles and 6 miles, respectively.
However, given the arterial roads’ lower speed limit, the maximal free travel time of the arterial
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road segments is over 35 min, which is four times larger than that of highway road segments
(figures 1(f) and (g)). The distributions of length l and free travel time t are also plotted in
log–log graphs (insets of figures 1(d)–(g)). The length l and free travel time t of road segments
follow power-law distributions in wide ranges, showing similar topological features to many
practical networks, from the airline transportation network [21] to human communication
networks [22].

The long-range connection in the road network is not as obvious as that in a square lattice.
Some highway road segments do not share road intersections with arterial road segments, thus
they fail to define shortcuts. We explore the long-range connections in a road network by
first finding connecting nodes, which are the intersections connecting both arterial roads and
highways. Consequently, we define a long-range connection as the shortest path (measured in
travel time) in the highway layer between a pair of connecting nodes. Similarly, we define the
long-range connection’s alternative arterial road path as the shortest path between the same
pair of connecting nodes through the arterial layer. The shortest paths are calculated by the
Dijkstra algorithm [23]. The times needed to travel through a long-range connection and its
alternative arterial road path are denoted as Th and Ta, where Ta is a similar measurement to
the Manhattan distance ri j in a two-dimensional square lattice [10]. A long-range connection
or its alternative arterial road path is constituted by one or several road segments of the same
kind. As shown in figure 2(a), intersections A and B are two connecting nodes that connect both
arterial roads and highways, the long-range connection from A to B is highlighted by the thick
purple line (highway road segments h1, h2, h3, h4, h5) and its alternative arterial road path is
highlighted by the thick blue line (arterial road segments a1, a2, a3, a4).

Measuring travel time Th and Ta between each pair of connecting nodes, we find that 92%
of the long-range connections have alternative arterial road paths (8% of them serve as the
only path). An important distinction is that in previous works on a square lattice, all long-range
connections have the same travel cost regardless of the Manhattan distance ri j between their
two endpoints [9–14]. However, in the studied road network the average travel times 〈Th〉 and
〈Ta〉 are 31.36 and 54.15 min, respectively, implying that on average the time cost when we
use a long-range connection is about 58% of that cost when we use its alternative arterial road
path. Interestingly, not all long-range connections have shorter travel times than their alternative
arterial road paths (Th < Ta), we observe that 16% of the long-range connections have Th > Ta.
This could result from highways’ limited spatial coverage (see figure 1(b)), which generates
time-consuming detours (figure 2(b)).

We next analyze the probability density functions (PDFs) of Th and Ta. As figures 2(c)
and (d) show, the travel time Th follows a Gaussian distribution (fit 1) with a characteristic
time Th ∼ 29 min, while the travel time Ta has two different characteristic times Ta ∼ 13 min
and 41 min and can be approximated by two different fitting functions for large and small Ta

(dashed lines are plotted to guide the eyes):

fit 1 : P(Th) = 0.023 exp

(
−

(
Th − 28.8

26.0

)2
)

;

fit 2 : P(Ta) = 0.009 exp

(
−

(
Ta − 12.7

10.1

)2
)

+ 0.011 exp

(
−

(
Ta − 40.8

29.7

)2
)

when Ta 6 50 min;

fit 3 : P(Ta) = 21T −1.9
a when Ta > 50 min.

4



New J. Phys. 16 (2014) 013012 P Wang et al

0 50 100 150 200
0

0.01

0.02

0 50 100 150 200
0

0.01

0.02

0.03

PD
F

T  (minutes)  aT  (minutes)  h

c d

fit1

fit2 fit3fit3

h1
h2

h3

h4 h5

a1

a2

a3

a4

Highway Road Segment
Arterial Road SegmentA

B

Long Range Connection 
Alternative Arterial 
Road Path

a

PD
F

PD
F

10−2 100 102
10−4

10−3

10−2

10−1

100

101

T  /T  h a

84% 16%

b

Figure 2. The long-range connections and the alternative arterial road paths.
(a) Illustration of the long-range connection between two connecting nodes A and B.
Orange links and gray links represent highway road segments and arterial road
segments, respectively. The purple line (formed by highway road segments h1, h2, h3,
h4, h5) is a long-range connection defined in this paper. The blue line is the alternative
arterial road path (formed by arterial road segments a1, a2, a3, a4) between A and B.
(b) The times needed to travel through a long-range connection and its alternative
arterial road path are denoted as Th and Ta. For 84% of the long-range connections:
Th < Ta. (c) The PDF of Th. (d) The probability density function (PDF) of Ta.

According to these empirical results, first we can conclude that using Th to quantify a long-
range connection’s travel cost is more realistic than assuming the travel cost to be the unit for
all shortcuts. Next, we find that the distribution of the travel time Ta decays much slower than
following fit 2, which could be caused by the time-consuming detours in the alternative arterial
road paths.

3. The usage patterns of the long-range connections

To quantify the effect of long-range connections in actual road usage, we use the Bay Area
daily home–work commuting OD data. The OD data are provided by the US census bureau (see
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Figure 3. The functionality of the long-range connections is demonstrated by the daily
commuting OD data. (a) The number of daily home–work commuting trips between a
pair of ODs can be well approximated by a power-law distribution. (b) The traffic flow
generated by the daily commuting demands follows a power-law distribution. (c) The
ratio of the shortest travel time T(all) and the shortest travel time in the arterial layer
T(arterial). PDF represents the probability density function.

www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html) and record the number of trips
from residents’ home locations to work locations at a street-block level. The highly refined
spatial resolution creates too many zones, thus we group street blocks into the census tracts
(1398 in total) they are located in and generate the OD in a census tract resolution. As figure 3(a)
shows, the number of trips between a pair of ODs follows a power-law distribution P(n) ∼

n−2.88, implying that trips are heterogeneously distributed between origins and destinations.
In daily commuting, people use different transportation modes which include car (drive

alone), carpool, public transportation, bicycle and walk. Based on the mode split data [24], we
calculate the vehicle using rate (VUR) in a census tract as follows: VUR(i) = Pcar drive alone(i) +
Pcar pool(i)/S where Pcar driver alone(i) and Pcar pool(i) are the probabilities that residents in census
tract i drive alone or share a car (the average carpool size S = 2.25 in California7). We randomly
assign the transportation mode (vehicle or non-vehicle) to the residents living in each census
tract according to the calculated VUR. We then filter out the trips that are not made using
vehicles.

To assign trips to the road network, we map each OD pair from the census tract-based OD
to the intersection-based OD. We find the road intersections within a census tract and randomly
select one intersection to be the origin or destination in the intersection-based OD. When no
intersection is found in a census tract, we assign a trip’s origin or destination to a randomly
chosen intersection in the nearest neighboring census tract. With the intersection-based OD
calculated, we use the Dijkstra algorithm [23] to find the path with the shortest travel time
T (all) between the origin and destination of each trip and calculate the traffic flow in each road
segment. In figures 1(a) and 3(b), we show the estimated traffic flow, which follows a power-law
distribution P(V ) ∼ V −1.48.

To better understand the functionality of the long-range connections in people’s daily
commute, we try to find the shortest path in the arterial layer for each OD pair and compare the
travel time T (arterial) with the shortest travel time using the whole network T (all). For 51%
of the trips, we fail to find paths only composed of arterial roads, indicating the vital role that

7 State averages for private vehicle occupancy, carpool size and vehicles per 100 workers
(www.nctr.usf.edu/clearinghouse/censusavo.htm).
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Figure 4. The usage patterns of the long-range connections. (a) The fraction of
highway usage (measured in length) in the shortest paths of residents’ daily home–work
commuting trips. (b) Same as (a) but for the fraction of highway usage measured
in travel time. (c) The fraction of highway usage increases with the travel length.
The circles represent the average and the error bars stand for the standard deviation.
(d) Same as (c) but for the fraction of highway usage measured in travel time.

long-range connections play in people’s daily commute. For the other 49% of the trips, paths in
the arterial layer exist and the ratio of T (all) and T (arterial) is found to peak at 0.5, suggesting
that the use of long-range connections can help people save about half of their travel time in the
daily commute (figure 3(c)). For the shortest path of each trip, we further analyze the fraction
of highway use measured in length and in travel time. As figure 4(a) shows, for 16% of the
trips, people use arterial roads only. It is also observed that a driver is unlikely to intensively use
arterial roads and occasionally use highways in his/her trip. In another words, a driver normally
uses highways to complete a large fraction of his/her trip if he/she uses highways. As for the
highway use measured in travel time, we obtain similar results (figure 4(b)). As figures 4(c)
and (d) illustrate, the fraction of highway use increases sharply with travel length (travel time)
when the trip distance is small and gradually saturates to a value near one as the trip distance
keeps increasing. The average fraction of highway use has already reached 65% when the travel
distance is only 5 miles; note that highways only represent 25% of the road segments in the
Bay Area road network. This indicates that the paths of moderate- and long-distance trips are
dominated by highways, while arterial roads are heavily used in very short trips. This result is
consistent with the usage patterns of infinite incipient percolation cluster (superhighways) in
Erdős–Rényi networks, scale-free networks and square lattices [5].
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dimensional square lattice with long-range connections, where the travel cost of long-
range connections is assigned following l = βri j . (b) The average shortest path 〈l〉 at
different α values. When the travel cost is equal to one for all long-range connections,
the minimum 〈l〉 is found at α = 3 (the blue symbols show the average of 100
realizations). When more realistic travel cost is assigned to long-range connections,
similar α values are found for the optimal navigation conditions. The purple, green and
red symbols represent the results (100 realizations) under the low, moderate and high
travel cost scenarios.

4. Optimal navigation condition using more realistic travel cost information

In former models dedicated to the navigation problem in lattices, the travel cost of a long-range
connection is equal to one regardless of the spatial locations of the underlying nodes it connects,
thus highly overestimating the shortcuts’ ability to reduce travel length (cost). Yet, in the studied
road network the ratio of the travel times using highways and arterial roads peaks at Th/Ta ∼ 0.5,
indicating that a long-range connection typically saves about half of the travel time compared to
its alternative arterial path (figure 2(b)). Indeed, the long-range connections that connect distant
nodes in many transport networks are not so ‘short’ as previously modeled. It is necessary to
explore the optimal navigation conditions and calculate the average path length under more
realistic travel cost scenarios.

We generate a regular two-dimensional square lattice with N = 1000 000 nodes, pairs of
nodes i and j are then randomly selected to receive long-range connections with probability
proportional to the Manhattan distance r−α

i j (figure 5(a)), where α is the variable exponent
controlling the number and the length of long-range connections. The addition of the long-
range connections stops when the total length (cost)

∑
ri j reaches N . Different from the model

presented in [10], the travel cost of each long-range connection is assigned in our model. We
make a reasonable assumption that the travel length (cost) l of a long-range connection scales
linearly with the Manhattan distance between the two nodes it connects, which is denoted by
l = βri j . In a road network the scaling exponent β quantifies the fraction of travel time saved
by using highways. As illustrated in figure 5(a) the Manhattan distance between nodes i and j is
six, the travel cost of the shortcut is three when the scaling exponent β = 0.5.
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The optimal conditions were discovered at α = 0 and 2 for navigation using global or local
information if no total cost constraint exists in adding connections [9]. The optimal navigation
condition was found at α = 3 for a system subject to reconstruction cost [10], implying that
more short (low-cost) connections are preferred when one has limited resources. Similar to
former modeling frameworks, we use the average shortest path 〈l〉 as the navigation variable
to be optimized. Three scenarios β = 0.5, 0.2 and 0.8 are studied, which correspond to the
cases that long-range connections have moderate, low and high travel cost, respectively. Given
that links have different travel cost in our model, the shortest path between a pair of nodes is
calculated by the Dijkstra algorithm [23].

Although different minima 〈l〉 are found for the three scenarios due to the different travel
costs of long-range connections, similar optimal navigation conditions are found at α ∼ 3
(figure 5(b)). Comparing with the minimum average shortest path 〈l〉 found by assuming l = 1
for all connections, the minimum 〈l〉 is much larger for the moderate travel cost scenario,
again validating that long-range connections’ ability to reduce travel cost was overestimated
in previous models. Finally, as the scaling exponent β increases, the differences between the
average shortest path 〈l〉 at different variable exponent α decrease. When the scaling exponent
β reaches one, long-range connections do not improve the navigation efficiency at all. In
conclusion, the optimal navigation condition will not dramatically change when adding realistic
travel cost to long-range connections, demonstrating the generality of the classic model raised
in [10]. However, adding realistic travel cost to long-range connections will largely improve
the accuracy of the estimation of 〈l〉, indicating that travel cost is an important parameter
to be considered when a long-range connection’s transport efficiency is comparative with the
underlying lattices.

Various technological and natural networks, from transportation networks [8, 20] to social
networks [22] and epidemic spreading networks [25, 26], are characterized with two-layer
structures. For many of them, the transport efficiency of a long-range connection is comparable
with that of a short-range connection (e.g. the travel time taking a plane is comparable with
the travel time driving a car if the travel distance is small). Therefore, it is necessary to
empirically estimate the actual transport efficiency of long-range connections, and build up
models that incorporate this important information to understand how the optimal transport
condition is affected under different travel cost scenarios. In this study, we find that the travel
time using highways (Th) is about half of that using their alternative arterial paths (Ta) in this
real-world transportation network, thus this gives us a reasonable justification to assign travel
cost in long-range connections. Moreover, the empirical results on the distribution of Th/Ta and
the heterogeneously distributed travel demand allow for detailed information encapsulated in
future models. The empirical investigations of the properties and usage patterns of long-range
connections in practical networks offer us a way to introduce more realistic link properties and
guidance to generate practical models dedicated to navigation optimization.

5. Conclusions

The optimization of a transport network’s navigation efficiency has great impact not only in
traffic engineering, but also in computer science and information spreading. We define long-
range connections in a road network, analyze the time needed to travel through them and
the time needed to travel through their alternative arterial road paths, which, we believe can
enrich our understanding of the road network structure and provide useful information for the

9
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transport network’s optimal design. We investigate the navigation problem by building a new
model that encapsulates more realistic travel cost information. We find that the new optimal
transport networks have similar optimal navigation conditions but different average shortest path
compared to the scenario that all connections have equal unit travel cost. Due to the different
populations in traffic zones and the different distances between traffic zones, travel demands are
not always homogeneously distributed in an urban area [20]. In future models, not only network
properties but also travel demands are necessary ingredients that need to be considered when
evaluating or improving a transport network.

The studied road network possesses similar topological features with many practical
networks, such as the airline transportation network [21] and human communication
networks [22], where the lengths of links also follow power-law distributions. Therefore, the
empirical findings of this work could be generalized to this broader set of networks. The travel
(transport) cost of long-range connections is also ubiquitous in different kinds of networks. Our
model employs a general scaling exponent β to incorporate the adjustable travel (transport) cost
of long-range connections into the classic optimal navigation models, which we believe can
provide a general modeling framework for navigation optimization in diverse problems related
to network flows in science and engineering.
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