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Abstract

Quantifying regularities in behavioral dynamics is of crucial interest for understanding collective social events such as panics
or political revolutions. With the widespread use of digital communication media it has become possible to study massive
data streams of user-created content in which individuals express their sentiments, often towards a specific topic. Here we
investigate messages from various online media created in response to major, collectively followed events such as sport
tournaments, presidential elections, or a large snow storm. We relate content length and message rate, and find a
systematic correlation during events which can be described by a power law relation—the higher the excitation, the shorter
the messages. We show that on the one hand this effect can be observed in the behavior of most regular users, and on the
other hand is accentuated by the engagement of additional user demographics who only post during phases of high
collective activity. Further, we identify the distributions of content lengths as lognormals in line with statistical linguistics,
and suggest a phenomenological law for the systematic dependence of the message rate to the lognormal mean
parameter. Our measurements have practical implications for the design of micro-blogging and messaging services. In the
case of the existing service Twitter, we show that the imposed limit of 140 characters per message currently leads to a
substantial fraction of possibly dissatisfying to compose tweets that need to be truncated by their users.
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Introduction

One of the great challenges in the social sciences is the

measurement and quantification of the hidden, statistical rules

behind our individual decisions and the link from single to

collective actions. First crucial steps in this process are the

collection and relation of data about stimulus, sensation, and

response. Here we exploit the recent widespread use of online

social media and the availability of data on collective online

reactions to wide-ranging stimuli to uncover quantitative princi-

ples in large-scale behavioral response [1]. A growing body of

communication and complex network research is making use of

microblogging services such as Twitter and of comparable online

media due to their often publicly available, massive number of

user-generated messages. The majority of these studies focuses

their analysis on either ’’macroscopic’’ properties only, usually on

the volume of the stream (number of messages per unit time) and

its temporal dynamics, or on ’’microscopic’’ processes only such as

burst-like individual activities or the cascading of information

through the social network via local diffusion mechanisms [2–17].

We are interested in the effects of arousal, i.e. the psychological

state which implies changes in the brain increasing the ’’readiness

to respond to any event external or internal’’ [18], and how

arousal is quantitatively manifested in the online response of a

large number of individuals to collectively followed, important

events. Physiological effects of arousal on the human brain have

been studied extensively [19], but the behavioral response to

emotional stimuli is a difficult to assess, largely open question. To

gain statistically meaningful insights into the matter with large

corpora of data, we measure the connection between length of

contents and rate of messages during events of collective

excitation. We find distinct regularities, using several data sets

collected from the different media of 1) Twitter, 2) a popular

online forum, 3) the Enron email corpus, 4) Facebook, and 5)

app.net, a Twitter-like service, see Section S1 in File S1. We

formulate a quantitative relation between these two features in

loose analogy to the Weber-Fechner [20,21] and Stevens [22] laws

of Psychophysics, suggesting a logarithmic relation y* log S or a

power law relation y*Sc, between subjective sensation y and

stimulus S. In Psychophysics, measurements are based on

individual subjective reports to changes in physical stimuli, such

as the perceived intensity of lifting objects with increasing weights,

to quantify the relation between stimulus and sensation in

individuals. However in our case, the relation applies first to

emotional rather than physical stimuli and second, not explicitly to

individuals but to the collective by using aggregated data,

connecting the features of length of individual messages and the

rate of messages – a proxy for excitation – in the system. The

observation of the same relation in several different communica-

tion media hints at a universal effect and allows us to distill the

essential ingredients for formulating a possibly underlying

phenomenological law. We also assess the functional distribution

of content lengths of messages as lognormals, connecting to

statistical linguistics and the relatively understudied distribution of

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e89052

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/20024951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


sentence lengths, and show that this distribution changes its shape

depending on the magnitude of excitation.

Materials and Methods

Events and data sets
We use several large data sets of online messages collected from

different media, for details on the collection process see Section S1

in File S1. Data set 1 contains around 410,000 messages from

Twitter (www.twitter.com) collected during the 2012 Masters

Tournament, a major championship in golf, held between April 5

and 8, 2012 at Augusta, Georgia, USA, organized by the PGA

Tour (named after PGA, the Professional Golfers’ Association of

America). The golfer Bubba Watson won the tournament on April

8th by defeating his opponent Louis Oosthuizen in a sudden-death

playoff which marks the finale of the event. Messages in Twitter

are called tweets and consist of up to 140 characters. Unregistered

users can read the tweets, while registered Twitter users can post

tweets through the website interface, SMS, or a range of apps for

mobile devices. Every registered user has a list of users she is

’’following’’, which generates a stream of tweets visible to the user.

At the same time, every user has a list of followers. Each user has

the possibility to create a retweet, which copies an original tweet

(or retweet). In our analysis we only consider tweets but no

retweets, since only the former contain original content. This data

set was extracted from Twitter by querying for a number of golf-

related keywords, see Section S1 in File S1.

Data set 2 includes almost 20,000 messages posted in one thread

of a popular online forum, the Something Awful (SA) forums

(forums.somethingawful.com), during the US presidential election

night of November 6, 2012, and a smaller number of messages

posted the week before the election night. The former data set,

data set 2a, has a clear climax when Barack Obama is confirmed

winning the election, the latter data set 2b contains a higher

amount of conversational content with a smaller rate of live event

comments. A third data set is constituted by the well-known Enron

email corpus, containing roughly 250,000 emails exchanged

between the employees of the Enron Corporation over 4 years,

between Oct 30th 1998 and July 19th 2002. The Enron data is not

tied to any specific event, the collapse of the company does not

become clearly visible neither in the timelines of volume nor of

email length. Data sets 4a and 4b include over 200,000 tweets and

40,000 posts on the online social networking service Facebook

(www.facebook.com), respectively, with the common topic of the

snow storm ’’Nemo’’ which struck the North-eastern coasts of US

and Canada on Feb 8th and Feb 9th, 2013. The last data set 5

contains the entire corpus of almost 3 million posts from the

Twitter-like microblogging service app.net (www.app.net) over

half a year. Similarly to the Enron data set, also here the posts are

not tied to any particular events.

The topical focus of the collected messages in several of the data

sets is on corresponding ongoing events, which enables us to study

the response of individuals and the social collective during these

phases of high excitation. Messages before or after events, or

messages unrelated to any events provide us with a baseline of no

(or low) excitation against which we can compare our measures

during phases of high excitation. In the following main text we

focus the presentation of our results on the Twitter data set 1,

similar or deviating results from the other data sets are reported

later and see Figs. S2, S3, S4, S5, S6, and S7 in File S1, stressing

the independence of the main result from the medium. Table 1

shows an overview of the key properties of all data sets. The data

used in this study are publicly available or can be shared with

other researchers upon reasonable request.

Sampling bias
Particular care has to be taken when sampling from online

media such as Twitter. First of all, population in online media is

biased towards demographic groups which have easier access to

the internet, or may be biased by different interests, in this case

interests in Golf or politics, for example. By collecting different

data sets from sources with various demographics we alleviate this

issue. Second, Twitter users may not always be tied to single

human individuals, but e.g. to corporate entities or to automated

bots [23]. We examine the issue of selective engagement of user

demographics in section ’’Contraction is not due to selective

engagement of specific user demographics’’.

Further, in the case of Twitter, due to the large amount of data

and specific approaches, various methods of extracting data from

Twitter can be found in the literature. Some studies base their data

on a user-centric approach, in which first a set of users is selected,

optionally their alters in the network (and alters of alters through

snowball sampling), and then their tweets [13]. Others first select a

hashtag or a set of hashtags to fix the topic of interest [24]. In our

case we use data in the latter form, i.e. we have a set of hashtags

available which puts our focus on the topical content of the

collective events. See Ref. [25] for an analysis of the possible ways

of selection bias introduced by these methods.

Results

Strong anti-correlation between length and rate of
messages

We measure and relate the rate of messages, a property of the

whole message stream, to message length, a property of the

individual messages. The hourly rate of tweets is shown in Fig. 1B.

It follows a characteristic diurnal progression, with more tweets

during the tournament (days one to five) and substantially less

tweets afterwards (day six and later); the dotted line separates these

two time frames. The winning move of golfer Bubba Watson on

the event’s final day triggers a large spike of messages, almost

100,000 tweets during one hour. A large part of these tweets

contain the name ’’Bubba’’ followed by a varying number of

exclamation marks. The content length, measured in number of

characters between 1 and 140, is a property associated with each

individual tweet, hourly averages are reported in Fig. 1C. We

correlate the hourly number M of tweets with the average content

length L and find a strong anti-correlation within the time frame

of the tournament (Pearson correlation coefficient r~{0:62, p-

value v10{12 for the hypothesis of no correlation). This relation

can be reasonably well fit by both a logarithmic form L* log M
and a power-law L*Ma due to the flat slope. The power-law fit is

shown in Fig. 1A via green line, the slope is a&{0:077. Slope and

correlation are robust in respect to different time windows, see

Figs. S13, S14, and Table S3 in File S1. Volume and content

length are not significantly correlated in the low-volume phase

after the tournament (r~0:10, p-value ~0:18). Correlation

coefficients obtained in a log-log scale are similar (r~{0:90, p-

value v10{44 during event, r~0:12, p-value ~0:014 after-

wards).

Lognormal content length distributions
Dividing the probability distribution of content length into

logarithmically binned classes of different volumes reveals a

smooth transition between the low-volume and high-volume

phases showing a wide variety of states, Fig. 2A. In times of low

message rates (purple and blue circles), the distribution grows

slowly until L&70, stays approximately constant until L&120 and
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peaks shortly before the maximum length of L~140. During high-

volume phases however (red and orange circles) the distribution

grows fast, peaks around L&25, then decreases to a low local

minimum around L&130 and displays a smaller peak again at

L~140. Distributions of message lengths in other data sets follow

similar shapes. The second peak however is an artifact introduced

by message length limitation, therefore it only appears in Twitter

and in data set 5.

The functional form of a lognormal P( ln L)*N (m,s2) serves as

a good fit to the distributions of content lengths L from a number

of reasonable distributions, see Fig. S8 and Table S1 in File S1.

For the Twitter data set fits were performed in the range 1 to 120

since the length limitation of Twitter introduces artificially inflated

probabilities close to the maximum length of 140 – users often

need to cut back their messages after exceeding the limitation [26],

or have their messages automatically truncated or stored externally

by apps (for example, by www.twitlonger.com). This effect is

absent for media allowing unlimited messages, see Fig. S9, S10,

and Table S2 in File S1. We report fits via dashed lines in Fig. 2A,

corresponding mean and standard deviation parameters in Fig. 2B

and C, detailed fit parameters are given in Table S1 and Table S2

in File S1. The dependence between message rate and the

lognormal parameter m is clearly decreasing, see dashed line in Fig.

2B. We denote the slope of this curve as b, values for all data sets

are reported in Table 1. The smallest bin, 100ƒMv200, pink

square, contains only values from the time after the event. The

standard deviation s2 appears independent of M in the high

message rate regime.

Contraction is not due to selective engagement of
specific user demographics

Is it the case that messages contract due to behavioral changes

in a fixed population, or does the contraction result from no

change in behavior but rather from the engagement of additional,

possibly less media-competent, user demographics that affect the

behavior of the crowd through their distinct behavioral pattern?

According to the threshold model of collective behavior [27]

each individual is modeled to have a threshold of number of peers

who must be observed of making a decision before the given

individual herself makes the decision too. For example, before you

take part in a riot, you might need to see 300 others rioting. The

distribution of these thresholds over all individuals may be

heterogeneous. In fact, in our case, already the activity rate is

highly heterogeneous – the distribution of total tweets per user

roughly follows a power law with slope {2:6, Fig. 3A. A majority

of 66% of users post exactly one tweet, only less than 2% of users

tweet more than ten times, being also the main reason why we do

not focus on studying the behavior of single users but rather the

collective activity. The maximum number of tweets made by a

single user is 1619. We define the participation threshold M0 of a

user as the smallest hourly message rate in which the user posts a

message, Fig. 3B. This definition is based on the threshold model,

assuming that the number of tweets is a rough indicator for the

feature that drives individuals to become active. As one could

expect, some users only tweet during important times of the event

– here, for example, a sizable portion of 20% of all users tweet only

during the one hour of the tournament’s finale. Otherwise, the

almost uniform increase of probabilities from high to low values of

M0 reflects the heterogeneity of posting behavior over all the

different users. The posting volume of single users does not change

substantially over time: Fig. 3D shows that the hourly number of

tweets M per unique user U is constant around M=U&1:2
during the event, and slightly higher and noisier afterwards. The

threshold M0 averaged over the hourly participating unique users,

Fig. 3C, however roughly follows the timeline of volume M
meaning that higher volume comes with a larger number of people

who only post in such high-volume phases.

Data set 1 in particular contains a mix of message types from a

highly heterogeneous set of users, where different effects may be

superimposed. For example, if a tweet includes mentions of

multiple other usernames, it might be reasonable to assume a

conversational nature of the message, e.g. a reply within an

ongoing discussion. Moreover, not all accounts may be controlled

by single human users, but instead by automated bots or corporate

entities which may display different posting behavior. By

systematically excluding subsets of messages with such specific

properties or which come from particular user groups the observed

effects can become clearer or less clear in certain cases. We study

the probability distributions of content length L for specific activity

classes of users, filtering for number of tweets, for participation

thresholds, and several other properties. Figure 4 shows that the

effect of message length contraction is clearly visible for all activity

classes except for around 6% of tweets of all users who post more

Table 1. Properties of the data sets ordered by the Pearson correlation coefficient r between length L and rate of messages M .

Data set Mtotal Range Step Event r p-value f+12 a b Lmax

2a Forum election 19,019 60h 10 m s, o {0:73 8:3|10{26 0:14 {0:32 {0:32 N/A

1 Twitter golf 411,239 14d 1h s, o {0:62 1:6|10{13 0:42 {0:08 {0:12 140

4b Facebook snow 43,516 4d 1h o {0:48 1:2|10{6 – {0:21 {0:05 N/A

4a Twitter snow 219,866 4d 1h o {0:44 8:5|10{6 – {0:03 {0:03 140

2b Forum pre-election 10,696 8.5d 10m o? {0:10 0:0008 – {0:04 {0:12 N/A

3 Enron email 154,003 4y 1d n 0:01 0:81 – 0:08 0:01 N/A

5 App.net 2:5 Mio. 0.5y 1d n 0:10 0:20 – 0:01 0:02 256

The event type denotes whether an event is unfolding over a non-singular period of time like the (o)ngoing snow storm, if there is an incisive, temporally (s)ingular
happening like the winning move in the golf event, or if there is (n)o particular event. Suffixes for ranges and time steps stand for (m)inute, (h)our, (d)ay, (y)ear. The
fraction of messages posted in the peak hour, compared with hourly fractions 12 hours prior and afterwards, is denoted by f+12 and can be interpreted as the
immediacy of the response to singular events. Exponents a and b measure the best least-squares fit slopes between log L and log M , and between m and log M ,
respectively. The symbol Lmax denotes the imposed length limitation in the respective medium. Although the fraction of peak hour messages is highest for the golf
event, correlation is stronger in the presidential election forum, possibly due to the length limitation in data set 1. All other correlations are consistent with the type of
event, i.e. correlations are less strong when there is only an ongoing event. We checked for robustness of the parameters in Section S4 in File S1.
doi:10.1371/journal.pone.0089052.t001
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than 100 tweets. The strongest peak emerges for those 31:5% of

tweets of all users who make exactly one tweet. Further, examining

the distributions for various threshold classes of users shows that

also users within almost all kinds of threshold ranges show the

contraction behavior. Only users with a high threshold,

104
vM0v105, are missing most of the contraction since they

tend to make single short tweets only, as well as the 4% of tweets of

all users with a low threshold M0v102 which are those who have

posts after the event. The number of followers or followees, and

the number of hashtags within a tweet, has a similar influence as

the number of tweets a user makes. Again, all but the most

extreme users show the contraction effect. A strong decline of the

contraction effect and its peak is observed in the jump from tweets

without mentions to tweets with 1 mention. In conclusion, we see a

mix of reasons for the observed phenomena: the contraction

phenomenon seems to naturally span over all but the most

extreme types of users independent of activity behavior or other

properties, but the one-time/high-threshold posters additionally

join during high-volume phases and provide an extra boost of

short messages. Conversational tweets tend to show less length

contraction, as they are presumably less direct reactions to the

event.

Dependence of correlation strength on event type
In Table 1 we report the different correlation parameters

measured for all studied data sets, ordered by decreasing

correlation strength r. Note that here the correlation is measured

on the raw data; when the correlation is measured on log-log scales

the r values are ordered identically, but closer to {1 and with

much higher significance levels. The ’’Event’’ column of Table 1

denotes the type of events occurring. By ’’o’’ we denote ongoing

events that are unfolding over a period of time, including the 4-day

golf tournament (data set 1), the all-night long coverage of the

presidential election night (data set 2a), and the snow storm (data

sets 4a and 4b) which is predicted earlier and lasts at least for 18

hours, from Friday, Feb 8th afternoon to Saturday, Feb 9th noon.

The week-long presidential pre-election thread (data set 2b) might

also be classified as an ongoing event. On the other hand we use

the letter ’’s’’ to depict incisive, temporally singular happenings, as

the winning of the golf tournament in the sudden death finale (data

set 1) or the confirmation of the winning of the presidential

election (data set 2a). Data sets 3 and 5, the Enron email corpus

and the app.net posts, do not encompass any specific event we are

aware of. In the case of the Enron corpus, although the collapse of

the company falls into the considered time range we found no

evidence for a particularly abnormal, sudden change in email

volume or their contents, apart from a generally decreasing rate of

emails in the end of the company’s lifetime.

Depending on the type of event, we measure different strengths

in the anti-correlation and in the two related exponents a and b.

Singular events are more anti-correlated than non-singular events,

the two data sets 3 and 5 which contain no event show no

correlation. The exponents also generally follow this trend,

however in case of the two Twitter data sets the exponents are

much lower. For a possible explanation see Section Discussion

below.

Blue bars in Fig. 5A and B show the fractions of messages posted

in each hour in the timeframe between 12 hours before and

12 hours after the peak, for the two singular events of the golf

tournament finale and the presidential election, respectively. The

symbol f+12 in Table 1 denotes the fraction of messages posted

during the peak hour, for the former event f+12~0:42, for the

latter one f+12~0:14. The progression of posts is substantially

different from the diurnal patterns during average non-event days,

displayed with red bars (we used the daily patterns averaged over

the available days after the golf event, for the presidential election

thread we used the averaged daily patterns from the pre-election

thread, data set 2b). For comparison, the fraction of messages for

the non-singular snow storm event has the low value of f+12~0:09
– this is just twice above the value f+12~1=24&0:042 which

would be expected from a uniform posting behavior. Thus, here

the posting pattern is not substantially deviating from the natural

daily pattern on the timescale of 24 hours. However, Fig. 5C

shows that the event still becomes highly visible if the timescale is

shifted from hours to days.

Discussion

Anti-correlation as a proxy for collective arousal
Generally, we measure a stronger anti-correlation between

length and rate of messages the more temporally singular the event

is, see r in Table 1. Clearly, r and p-values are lowest for the two

singular events, closer to zero but still negative for the ongoing

events, and not significant for the data sets in which no particular

event is unfolding. Together with the assumption that emotional

messages are shorter, this observation suggests that the strength of

anti-correlation might be a good proxy for the ’’collective arousal’’

Figure 1. Strong anti-correlation between length and rate of
messages posted during events. (A) The property of content length
L (number of characters per message) can be related to the property of
volume M (number of messages per time interval) via power law with
slope a&{0:077 (green line), a logarithmic fit cannot be rejected either
due to the flat slope. Blue squares are hourly average values from the
first five days in which the Masters Tournament took place, grey crosses
are the hourly average values from subsequent times. Message rate and
content length are strongly anti-correlated during the Masters

(r~{0:62, p-value v10{12 for the hypothesis of no correlation) but
not after the tournament (r~0:10, p-value ~0:18). (B) Respective
message rate and (C) content length over time, averaged hourly. Here
all plots refer to the Twitter data set 1, results are similar in other media,
see Section S2 in File S1.
doi:10.1371/journal.pone.0089052.g001

Contraction of Online Response to Major Events

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e89052



of an event, i.e. how big of an emotional response the event causes.

(Using sentiment analysis for validation purposes seems not

feasible due to the typically very short messages during high

volume phases.) We stress that our measurements cannot be

interpreted as explicit evidence for the contraction of messages due

to emotions – this is rather a reasonable assumption we make here

that has to be checked in future research. An alternative suggestion

was made in a previous study which also observed that the length

of tweets tends to decrease during important events [24], but

without referring to emotional influences. There, it was suggested

that users could have a possible increased attentiveness to the

event and a desire to spend less time typing.

Nevertheless, some issues of parameter sensitivity have to be

discussed with care. First, the correlation coefficient r shows

sensitivity to the time step used, while the exponents a and b are

more robust, see Table S3 in File S1. Second, despite the golf

Figure 2. Lognormal distribution of message lengths and dependence of its parameters on excitation. (A) Probability distributions of
content length L of messages gathered by logarithmically binned classes of different hourly volume M (circles), and corresponding lognormal fits
(dashed curves, fit ranges 0 to 120). During low-volume phases (pink and blue), the distribution grows slowly. For high-volume phases (orange and
red) however the distribution grows fast and peaks at L&25. Peaks at the maximum length of 140 are an artifact from the length limitation in the
specific medium (Twitter), absent for unlimited media, see Section S2 in File S1. For visual clarity only every third data point is shown. (B) Plot of the
lognormal fit parameter m against message rate M demonstrates the systematic relation between message rate and length, dashed line. (C) Plot of

the lognormal fit parameter s2 versus message rate M . Here the value of s2 increases with the message rate M to some point and appears
independent of the volume class in high volume regimes. Error bars denote 95% confidence intervals.
doi:10.1371/journal.pone.0089052.g002

Figure 3. Distributions of individual activity features and their timelines. (A) Distribution of number of tweets per user N during the whole
time span. The distribution follows approximately a power law with slope {2:6. (B) Cumulative distribution of absolute thresholds M0 of all users, i.e.
the smallest hourly volume for each user in which a tweet is posted. Approximately 20% of users only post during the one hour which marks the final
of the event, but roughly one fourth of the users also post during hours in which less than 1000 tweets are posted. (C) Participation thresholds M0

over time (M0 is measured separately for each user over the whole timespan; for each hour we average the M0 values of all unique users who tweet
in that hour). The curve follows roughly the volume curve of M , showing that high volume phases feature additional users who only post during
those phases. (D) Timeline of number of tweets M per unique user U , M=U . During the event, each user posts on average around 1:2 tweets per
hour, with a particular peak at the finale of the tournament, showing that single users write slightly more messages during that time of high
excitation. After the event, the individual activity increases slightly due to the departure of the masses of casual Twitter users.
doi:10.1371/journal.pone.0089052.g003
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event having the by far largest value of f+12 and therefore features

the most temporally singular response, its exponent a~{0:08 is

only the third smallest after the Forum election with a~{0:32
and the Facebook snow storm response with a~{0:21. A

straightforward explanation for this difference is the limitation

Lmax~140 in Twitter, which severely limits the possible slopes:

Note that the y-axis in Fig. 2 spans less than half a decade, while

data sets from unlimited media span one or more decades, see

Section S2 in File S1. Similarly, we find that the exponent b is

smallest for the Forum election data with b~{0:32, and only

second for the Twitter event with b~{0:12. Other slopes are in

line with the ordering, except for the slope b~{0:12 for the pre-

election forum thread. In this case the small number of four data

points for determining b may introduce inaccuracies however, see

Fig. S3 in File S1.

Although they have a time of anticipation, both the golf event

and the presidential election are exogenous, since the outcome of

the event (who is the winner?) is unknown beforehand, and

because they do not arise because of, say, endogenous viral

propagation of a meme in the social network [17]. We have no

data set of response to exogenous events available where there is

no time of anticipation, such as a tsunami or an earthquake, but

due to their exogenous nature we presume that the effect of

systematic message length contraction could be observed as well in

that case.

Phenomenological response laws
Although message length limitations that are in place in

particular media may distort some results and have to be

accounted for on a case by case basis, in general our analysis

suggests that all media are equivalent in the way their users

respond to events. To stress this point, we propose here a unifying

Figure 4. Message length distributions filtered for classes of tweets with certain properties. Colors correspond to different volume bins,
see legend in Fig 2A. The percentage shown in each subplot corresponds to the percentage of tweets within the data set matching the
corresponding criterion. The contraction effect appears throughout all classes, except for users in the highest percentiles of activity. Tweets of users
who post less than others or who have less followers or followees than others, or which contain no mentions indicating that the message is not of
conversational nature, show the strongest contraction. Users with a high threshold, 104

vM0v105 , are missing most of the contraction since they
tend to make single short tweets only. For visual clarity we applied a moving average filter of length 5 to all curves.
doi:10.1371/journal.pone.0089052.g004

Figure 5. Fraction of messages posted immediately before and
after an event peak. The fraction during the peak hour serves as a
measure for the temporal singularity of the event. (A) The largest peak
occurs during the finale of the golf tournament, data set 1, with a peak
fraction of f+12h~0:42. (B) The second singular event is the presidential
election thread, data set 2a, with a peak fraction of f+12h~0:14. (C) The
snow storm event, data set 4a, on the other hand, shows a clear peak
only when the time scale is coarsened, from hours to days. The snow
storm is thus ’’much less singular’’ than the previous events, but still a
distinct event in the broader view.
doi:10.1371/journal.pone.0089052.g005
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framework to describe the collective behavior of different online

media users, independent of the medium used. Summing up our

previous insights, we found that the length L of a message can be

related to the ongoing message rate M through two phenomeno-

logical laws. First,

SL(M)T*Ma, ð1Þ

where av0 measures the strength of the anti-correlation

between SLT and M. Second, the lognormal distribution

P( ln L)*N (m(M),s2(M)), ð2Þ

whose mean and standard deviation parameters depend on the

message rate M as follows:

m(M):S ln L(M)T~m0zb ln M~ ln M=M0ð Þb ð3Þ

s2(M)^s2
? ð4Þ

Parameters m0 and M0~ exp ({m0) are two constants corre-

sponding to a reference state, and s? is a typical parameter

characterizing the dispersion of individual responses in ‘ideal cases’

(as defined in Section S4 in File S1). The constant relation given by

Eq. (4) is verified in ideal cases, see Figs. S11 and S12 in File S1,

and in high message rate regimes, but is less clear in other cases.

Eq. (3), which is always clearly verified, interestingly provides a

link between the collective – through the aggregated measure M –

and the individual – through the random variable L – responses to

the ongoing event. This link is embodied by the exponent bv0
which is a media specific measure of the singularity of an event.

At this point, it is worth noting that the lognormal distribution

modeled in Eq. (2) is not unexpected. Lognormal distributions are

supported by works in Stylometry, the statistical study of linguistic

style, on general sentence length distributions [28–31]. They have

also been found in a variety of other areas such as file sizes or

durations of telephone calls and seem to be a universal

phenomenon [32]. In any case, the distribution of sentence

lengths in particular being relatively understudied leaves both

origin and validity of the lognormal distribution an open question.

Since they measure the same phenomenon, one can expect the

two phenomenological laws to be related. One property of the

lognormal distribution is that SL(M)T~ exp mzs2=2
� �

, which,

combining Eqs (3) and (4), leads to

SL(M)T~ M=M0ð Þbexp s2
?=2

� �
*Mb. Compatibility between

Eqs (1) and (2) thus imposes the equality a~b, which is well

backed by our measurements in case of purely singular events

(datasets 1 and 2a, see Table 1). This relation is not respected in

case of non-singular events, where s2 fluctuates and Eq. (4) does

not hold.

A response-to-stimuli relationship
As stated before, Psychophysics aims at understanding how the

subjective sensation y of an individual is related to the stimuli S he

is subjected to, and in turn how the individual response R is

related to his sensation y. Empirical laws describing such

relationships in the context of physical stimuli (such as sound,

light, temperature, etc.) have traditionally been proposed based on

the analysis of the responses of individuals. In the same spirit, the

two phenomenological laws given by Eqs. (1) and (2) can be seen as

first steps towards a psychophysic science of online collective

behavior.

Let us stress that due to the nature of the available online data,

we lack precise observation on a number of levels. Several

processes are uncertain here: Is the response based on a single-

origin stimulus, e.g. are all the users reacting to the same mass

medium broadcast, or are there collective or network effects where

users are driven by messages of other users and not always directly

by the event itself? How much do these possible network effects

depend on the particular online medium? Previous work on

youtube views suggests that both effects can play a dominant role

[17]. In that case, a power-law distributed memory kernel w(t) was

used to describe the waiting time of an individual to view a video

after a time t that she was subjected to the cause (the cause may

include any reason such as chance or a newspaper entry). In our

case we are however dealing with messages instead of views, and

with online media in which typically events are either commented

on live or discussed prior or subsequently to their time of

occurrence (except of course for the cases in which no particular

events are commented on). The explicit response to a singular

event we therefore assume as instantaneous, while messages before

or after the event we assume to stem from anticipation, discussions,

or from other ongoing events, all of which may be hard to

untangle. Further, we can reasonably assume that the driving force

for the increase in arousal is the event itself or the associated

’’hype’’ from news media or in the social networks of the users, and

we disregard secondary effects such as the circadian arousal

rhythm [33].

Being fully aware of the limitation of our observations, we

nevertheless propose a loose analogy between our phenomeno-

logical laws and psychophysics models. Indeed, the message rate

M being an indicator of the number of people following an event,

Fig. 3D, which in turn is linked to the intrinsic interest of the event

and to the probability that you hear about that event through

some of your online contacts, it can be taken as a proxy for the

stimulus S the users are subjected to. The collective response R
can be measured through SLT. Lacking any measure on the

emotional sensation of the individual, let us assume a simple

relationship between the response R and the sensation y in the

form R~SLT~y{1. Under these assumptions, we could write a

relation y~SLT{1~M{a~Sc, with c~{aw0, meaning that

the suggested phenomenological law of Eq. (1) can be understood

as a collective analogy to Stevens law [22].

Assessment of possible dissatisfaction from imposed
message length limitation

A curious side-effect of the almost perfectly followed lognormal

distribution we find in unlimited media is the possibility to assess

possible user dissatisfaction from truncation effects in media which

allow only limited messages. From its very inception, Twitter faced

complaints about its ’’trademark’’, the arbitrary character length

limitation of Lmax~140 created originally for compatibility with

SMS messaging [34,35]. A truncation of messages leads to a

deviation of the empirical density function from the theoretical

lognormal probability density function flogn(x; m,s)~

1= xs
ffiffiffiffiffiffi
2p
p� �

e
{

( ln x{m)2

2s2 , where the probability mass above Lmax is

packed into the range below the threshold. Therefore, the mass of

the fitted lognormal pdf which lies above the threshold,

pdiss~

ð?
Lmax

flogn(x; m,s)dx, gives a good approximation of the

percentage of messages that had to be truncated, i.e. the possibly
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dissatisfying to compose messages. During the special high volume

phases (50,000vMv10,000), pdiss is at 5%, however, during the

low volume phases (100vMv200), pdiss grows to a substantial

proportion of 22%. Raising the truncation threshold from 140 to

Lmax~170 by only 30 characters already halves pdiss to 11%,

another raise to Lmax~200 yields a further halving to pdiss&6%.

In comparison, applying app.net’s threshold of Lmax~256 results

in the relatively negligible proportion of pdiss&1:7%, which is 13

times lower than the pdiss determined for Twitter.

Conclusion

In this work we contributed to the understanding of the

regularities of online response to collective events using different

online media. We investigated online messages from various media

created in response to major, collectively followed events, and

found a medium-independent, systematic relation between content

length and message rate, which is amplified by aroused followers

who are getting excited by the event. Further, we identify the

distributions of content lengths as lognormals in line with statistical

linguistics, and suggest a phenomenological law for the systematic

dependence of the message rate on the lognormal mean

parameter. Our method could be re-applied to other datasets,

extended to offline forms of communication like call durations of

mobile phone users, where evidence of lognormals already exists

[36], or to economic transactions. The exact mechanism which

leads to the lognormal distribution in the context of text length is

still an ongoing debate. Current research is based on collection of

texts or sentences without discriminating between the excitement

of the authors. Our findings may provide new ingredients for the

development of future models incorporating this aspect, and might

have possible applications in marketing or spam detection.

Finally, the observation of substantial truncation effects may

have implications for user experience policies in the design of

mobile or online micro-blogging and messaging services. In the

case of the existing service Twitter, an increase of the message limit

by only 30 characters halves the number of situations where users

want to post a tweet longer than 140 characters but are

constrained by the system. Some of these situations might

correspond to cases that cause dissatisfaction to users, suggesting

that the current tradeoff between data storage and user experience

could be improvable by an increase of message length limits.

However, such a ’’relief’’ for some of the composing users could

come with an impairment of the ability of users who follow many

people to process the incoming content and to engage with it. In

this context, a number of psychological questions of user

experience need to be addressed in future research with empirical

data on the user level before coming to conclusive assessments.
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