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⬛ We report on a series of new platforms and events dealing 

with AI evaluation that may change the way in which AI 

systems are compared and their progress is measured. The 

introduction of a more diverse and challenging set of tasks in 

these platforms can feed AI research in the years to come, 

shaping the notion of success and the directions of the field. 

However, the playground of tasks and challenges presented 

there may misdirect the field without some meaningful 

structure and systematic guidelines for its organization and 

use.  Anticipating this issue, we also report on several 

initiatives and workshops that are putting the focus on 

analyzing the similarity and dependencies between tasks, 

their difficulty, what capabilities they really measure and – 

ultimately – on elaborating new concepts and tools that can 

arrange tasks and benchmarks into a meaningful taxonomy. 

 

 

 

AI experimentation and evaluation 
 

Through the integration of more and better techniques, 
more computing power, and the use of more diverse and 
massive sources of data, AI systems are becoming more 
flexible and adaptable, but also more complex and 
unpredictable. There is thus increasing need for a better 
assessment of their capacities and limitations, as well as 
concerns about their safety [1]. Theoretical approaches 
might provide important insights, but only through 
experimentation and evaluation tools will we achieve a 
more accurate assessment of how an actual system 
operates over a series of tasks or environments. 

Several AI experimentation and evaluation 
platforms have recently appeared, setting a new 
“cosmos” of AI environments. These facilitate the 
creation of various tasks for evaluating and training a 
host of algorithms. The platform interfaces usually 
follow the reinforcement learning (RL) paradigm, 
where interaction takes place through incremental 
observations, actions, and rewards. This is a very 
general setting and seemingly every possible task can be 
framed under it.  

These platforms are different from the Turing Test - 
and other more traditional AI evaluation benchmarks 
proposed to replace it – as summarized by an AAAI 
2015 workshop and a recent special issue of the AI 
Magazine. Actually, some of these platforms can 
integrate any task and hence in principle they supersede 
many existing AI benchmarks [2] in their aim to test 
“general problem solving ability”. 

This is also a new arena for the Tech Giants, which 
has attracted mainstream attention. For instance, the 
Nature journal has recently featured a news article on 
the topic [3]. All in all, a new and uncharted territory for 
AI is emerging, which deserves more attention and 
effort within AI research itself. 

In this report, we first give a short overview of the 
new platforms, and briefly report about two 2016 events 
focusing on (general-purpose) AI evaluation (using 
these platforms or others). 

 

New playground, new benchmarks 
 

Many different general-purpose benchmarks and 
platforms have recently been introduced, and they are 
increasingly adopted in research and competitions to 
drive and evaluate AI progress. 

The Arcade Learning Environment, is a  
platform for developing and evaluating general AI 
agents using a variety of Atari 2600 games. The 
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platform is used to compare, among others, approaches 
such as RL (see, e.g., [4]), model learning, model-based 
planning, imitation learning and transfer learning. A 
limitation of this environment is the reduced number of 
games, leading to overspecialization. The Video Game 
Definition Language (VGDL) follows a similar 
philosophy, but new 2D arcade games can be generated 
using a flexible set of rules. 

OpenAI Gym [5] provides a diverse collection of RL 
tasks and an open-source interface for agents to interact 
with them, as well as tools and a curated web service for 
monitoring and comparing RL algorithms. The 
environments, formalized as partially observable 
Markov decision processes, range from classic control 
and toy text to algorithmic problems, 2D and 3D robots, 
as well as Doom, board and Atari games. 

OpenAI Universe is a software platform intended 
for training and measuring the performance of AI 
systems on any task where a human can complete with 
a computer, and in the way a human does: looking at 
screen pixels and operating a (virtual) keyboard and 
mouse. In Universe, any program can be turned into a 
Gym environment, including Flash games, browser 
tasks, and games like slither.io and GTA V. The current 
release consists of 1000 environments ready for RL.  

Microsoft's Project Malmo [6] gives users 
complete freedom to build complex 3D environments 
within the block-based world of the Minecraft video 
game. It supports a wide range of experimentation 
scenarios for evaluating RL agents and provides a 
playground for general AI research. Tasks range from 
navigation and survival to collaboration and problem 
solving. 

GoodAI's Brain simulator and school is a 
collaborative platform to simulate artificial brain 
architectures using existing AI modules, like image 
recognition and working memory.  

DeepMind Lab is a highly customisable and 
extensible 3D game-like platform for agent-based AI 
research. Agents operate in 3D environments using a 
first-person viewpoint and can be evaluated over a wide 
range of planning and strategy tasks, from maze 
navigation to playing laser tag. Somewhat similarly, the 
ViZDoom [7] research platform allows RL agents to 
interact with customizable scenarios in the world of the 
1993 first-person shooting video game “Doom” using 
only the screen buffer. 

Facebook’s TorchCraft [8] is a library enabling 
machine learning research on real-time strategy games. 
These games’ high-dimensional action space is quite 
different from those previously investigated in RL 
research and provides a useful bridge to the richness of 
the real-world. To execute something as simple as 
“attack this enemy base”, one must coordinate mouse 
clicks, camera, and available resources. This makes 
actions and planning hierarchical, which is challenging 
in RL. TorchCraft’s current implementation connects 
the Torch machine learning library to StarCraft: Brood 
War, but the same idea can be applied to any video game 
and library. Meanwhile, DeepMind is also collaborating 
with Blizzard Entertainment to open up StarCraft II 
as a testing environment for AI research.  

Facebook’s CommAI-env [9] is a platform  for 
training and evaluating AI systems from the ground up, 
to be able to interact with humans via language. An AI 
learner interacts in a communication-based setup via a 
bit-level interface with an environment that asks the 
learner to solve tasks presented with incremental 

difficulty. Some tasks currently implemented include 
counting problems, memorizing lists and answering 
questions about them, and navigating from text-based 
instructions. 

The introduction of all these platforms offers many 
new possibilities for AI evaluation and 
experimentation, but it also poses many questions 
about how benchmarks and competitions can be 
created using these platforms, especially if the goal is to 
assess more general AI. Two new venues were set up to 
explore these issues in 2016, as we discuss next. 

 
1st Workshop on Evaluating General-

Purpose AI 2016 
 

EGPAI 2016 was the first workshop focusing on the 
Evaluation of General-Purpose Artificial Intelligence. It 
was a satellite workshop of ECAI, the 22nd European 
Conference on AI, held in August 2016. EGPAI 2016 
promoted several discussions on (General) Artificial 
Intelligence and looked into state-of-the-art research 
questions such as: “Can the various tasks and 
benchmarks in AI provide a general basis for evaluation 
and comparison of a broad range of such systems?”, 
“Can there be a theory of tasks, or cognitive abilities, 
enabling a more direct comparison and characterization 
of AI systems?”, and “How does the specificity of an AI 
agent relate to how fast it can approach optimal 
performance?” 

The most relevant outcome of this workshop was the 
identification of the challenging and urgent demands 
relevant to general-purpose AI evaluation, such as 
understanding the relation between tasks (or classes of 
tasks), the notion of (task and environment) difficulty, 
and the relevance of how observations are presented to 
AI agents, including rewards and penalties. The 
workshop also served to illustrate how several 
algorithms compare in terms of their generality. 

 

The Machine Intelligence Workshop 
at NIPS 2016 

 

The Machine Intelligence Workshop at NIPS 
(December 2016) focused on the parallel questions of 
what is general AI and how to evaluate it. Concerning 
evaluation, there was a general agreement that we need 
to test systems for their ability to tackle new tasks that 
they did not encounter in their training phase. The 
speakers also agreed that an important characteristic to 
be tested is the degree to which systems are 
“compositional”, in the sense that they can creatively 
recompose skills that they have learned in previous 
tasks to solve a new problem.  

Some speakers argued for tasks to be defined from 
first principles in a top-down manner, whereas others 
suggested looking at nature (humans and other 
intelligent beings) for inspiration in formulating the 
tasks (with further discussion on whether the 
inspiration should come from ontogenesis or 
phylogenesis).  

The role of human language was also debated, with 
some speakers stressing that it is hard to conceive of 
useful AI without a linguistic communication channel, 
while others pointed to animal intelligence as a more 
realistic goal, and to possible applications for non-
linguistic AI. 
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AI and evaluation — the future 
 

A recurrent issue in general intelligence evaluation is 
based on the old view of intelligence as the capability to 
succeed in a range of tasks or, ultimately, performing 
relatively well in all possible tasks. Nevertheless, the 
notion of “all tasks” is meaningless if the concept is not 
accompanied by a probability distribution. While [10] 
advocate a distribution based on Solomonoff’s universal 
prior on task descriptions (higher probability to tasks of 
short encoding), [11] advocates a distribution based on 
task difficulty (measuring difficulty as the complexity of 
the simplest solution for each task, and ensuring 
solution diversity for each difficulty). Alternative 
distributions could be derived from the set of tasks that 
humans and other animals face on a daily basis.  

When compared to these theoretical distributions, 
can we say anything about the distribution of tasks that 
compose any of the new platforms? Is their actual 
diversity really covering general abilities? And what 
about their properties with respect to transfer, or 
gradual, learning? 

As more tasks are integrated, different “universes” 
of tasks are created and the whole set of tasks in all 
platforms configure the cosmos for AI. At present, this 
is just an unstructured collection of tasks with no clear 
criteria for inclusion, exclusion or relative weight. This 
bears similarity to the early years of psychometrics 
(among other disciplines) that have been dealing with 
behavioral evaluation for over a century, putting some 
order in the space of tasks and abilities. 

To move ahead, the space of tasks must be analyzed. 
This can be done in terms of a hierarchy linking tasks 
and abilities [11] or in terms of a “task theory” [12], 
using theoretical approaches to task similarity and 
difficulty, or a more empirical strategy, by analyzing the 
results of a population of AI systems with Item 
Response Theory (IRT) or other psychometric 
techniques [13].  

In summary, evaluation is becoming crucial in AI 
and will become much more sophisticated and relevant 
in the years to come. New events in 2017, including 
challenges (e.g., the General AI challenge), 
competitions and workshops (e.g., EGPAI2017 at 
IJCAI2017), will delve much further into how general-
purpose AI should be evaluated now and in the future. 
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