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ABSTRACT

We developed a gesture salience based hand tracking method,
and a gesture spotting and recognition method based on con-
catenated hidden Markov models. A 3-fold cross validation
using the ChAirGest development data set with 10 users
gives an F1 score of 0.907 and an accurate temporal seg-
mentation rate (ATSR) of 0.923. The average final score is
0.9116. Compared with using the hand joint position from
the Kinect SDK, using our hand tracking method gives a
3.7% absolute increase in the recognition F1 score.

Categories and Subject Descriptors

H.5.2 [Information Systems]: Information Interfaces and
Presentation—User Interfaces
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1. INTRODUCTION
With the introduction of relatively low-cost sensors for

tracking body or hand movement, such as Microsoft’s Kinect
and the Leap Motion sensor, we are observing an increasing
interest in using these sensors for natural human computer
interaction. Gesture input is a main part of natural inter-
action, and as a result, improving the accuracy of continu-
ous gesture spotting and recognition remains an important
topic.
We present our approach to the gesture spotting and recog-

nition problem, highlighting two main contributions: im-
proved hand position detection based on gesture salience and
gesture spotting using concatenated hidden Markov models
(HMMs).
Our work builds on several related works. Marcos-Ramiro

et al. [4] developed a method of computing hand likelihood
maps based on RGB videos. Our hand tracking method is
similar, but we use both RGB and depth data. In com-
mon with [8, 10], we use hidden Markov models (HMMs)
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to model dynamic gestures, but we train models separately
for the pre-stroke, nucleus and post-stroke phases, concate-
nate them together and use Viterbi decoding to optimally
segment the gesture sequences.

In the following sections, we explain our system in three
main parts: feature extraction, temporal segmentation, and
gesture spotting and recognition.

2. HAND FEATURE EXTRACTION
We use both the Kinect and the Xsens data from the

ChAirGest corpus [7] to extract hand motion feature vectors
for gesture modeling. It is relatively easy to obtain features
from the Xsens data. We choose to use linear acceleration
(x, y, z), angular velocity (x, y, z) and Euler orientation
(yaw, pitch, roll) from the Xsens unit on the hand to form
a 9-dimensional feature vector xxsens

t for every time frame t.
From the Kinect sensor, we extract the position of the ges-
turing hand in (x, y, z) relative to the shoulder center joint
to form a 3-dimensional vector xkinect

t . Combining the two,
we have a 12-dimensional feature vector xt = [xkinect

t , xxsens
t ].

We use the Kinect skeleton tracking result for the shoul-
der center joint position, but do not use it for the hand
position because it is not accurate when the hands are close
to the body or when the hands are moving fast. We de-
veloped an improved method for hand tracking based on
gesture salience using both RGB and depth data.

2.1 Gesture Salience Detection
Similar to Marcos-Ramiro et al. [4], we define gesture

salience as a function of both the closeness of the motion
to the observer (e.g., the camera) and the magnitude of the
motion. There are 4 steps in our method (Figure 1).

2.1.1 Skin Segmentation

We use an off-the-shelf simple skin color detection method
to compute a binary skin mask at time t, MS

t , based on the
RGB image. We also find the user mask, MU

t obtained from
the Kinect SDK based on the depth image. We align the two
to find their intersection MS∧U

t , which indicates the user’s
skin region.

2.1.2 Motion Detection

We compute the motion mask for the current depth frame
based on 3 frames. We first filter each depth frame by the
user and skin mask MS∧U

t , and then smooth it through
a median filter to obtain Dt (Figure 1(b)). Equation (1)
computes the binary mask, MM

t∨t−1, indicating pixels whose
depth values have changed from time t−1 to t (Figure 1(c)).
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(a) (b) (c) (d) (e)

Figure 1: Gesture salience detection steps: (a) RGB image under low lighting condition; (b) depth map Dt filtered by skin
and user mask, MS∧U

t . False detection of skin is due to the similar colors between clothes and skin; (c) motion mask, MM
t∨t−1,

indicating moved pixels for time t and t − 1; (d) salience map with red color indicating high probability of the salience; (e)
final gesture salience bounding box, Bt. (Best viewed in color. Based on data from ChAirGest corpus [7].)

Dt∨t−1 is the absolute difference between Dt and Dt−1, and
T is the threshold operator that filters out small changes
in depth value (with a threshold of 15mm). To obtain the
motion mask, MM

t for time t only, we use MM
t−1∨t−2, the

motion mask for t − 1 and t − 2 as well (see Equation (2),
AND and XOR are indicated by ∧ and ⊕).

M
M
t∨t−1 = T (Dt∨t−1) (1)

M
M
t = M

M
t∨t−1 ⊕ (MM

t∨t−1 ∧M
M
t−1∨t−2) (2)

2.1.3 Salience Map

We compute histograms of depth values in both Dt and
Dt∨t−1 and then apply histogram normalization to obtain
cumulative distributions Ht and Ht∨t−1. Ht represents the
probability of salience given a depth value, whileHt∨t−1 rep-
resents the probability of salience given a depth difference
value. The lower the depth value or the higher the depth
difference value, the higher the salience probability. We use
histogram equalization to reduce the effect of outliers, so
that a single large depth value will not suppress the salience
probabilities of other depth values. The salience map (Fig-
ure 1(d)) can then be computed for each pixel (x, y):

St(x, y) = Ht(Dt(x, y))×Ht∨t−1(Dt∨t−1(x, y))×M
M
t

The multiplication of the binary motion mask MM
t allows

us to consider only the motion due to the user at t.

2.1.4 Salience Location

The final step of locating the most salient region in a frame
is finding the contour, Ct, from the salience map St that has
a perimeter greater than the smallest possible hand perime-
ter and with the highest average salience for all the pixels
inside the contour.
When motion is slow, the motion mask usually indicates

the edge of the moving object. As a result, the center of Ct

may not be the center of the moving object (in our case, the
user’s hand). Hence, we use 2 iterations of Camshift [2] on
the depth image Dt with a starting search location at the
center of Ct to refine the final bounding box, Bt, of gesture
salience (Figure 1(e)).
Figure 2 shows examples of our hand tracking result (red

regions). It is more reliable than the hand joint locations
from the Kinect SDK. In the Experimental Evaluation sec-
tion (Section 5), we show that using our salience detection
method to extract hand position features gives 3.7% abso-
lute increase in gesture recognition F1 score compared to
using the hand joint position from the Kinect SDK.

Figure 3: Temporal gesture model with different phases.
Each phase can be modeled as an HMM. Dashed arrows
represent initial state transitions and double circles repre-
sent end states.

3. TEMPORAL SEGMENTATION
We used all the training data from all the users to create a

Gaussian model for the rest positions and a Gaussian model
for non-rest positions.

During recognition, an observation xt is first classified as
a rest or a non-rest position. It is a non-rest position if

N(xt;µNON-REST,ΣNON-REST) ≥ N(xt;µREST,ΣREST)

where N represents the Gaussian probability. Sequences of
continuous observations from non-rest positions longer than
d seconds are further classified into different gestures based
on trained HMMs. The threshold value d is the lower bound
of gesture duration, and can be varied for different gesture
sets. We set it to be 0.25s for our evaluation data set based
on empirical result.

4. GESTURE SPOTTING AND RECOGNI-

TION

4.1 Temporal Gesture Modeling and Training
Previous research suggests that a gesture consists of three

phases: pre-stroke, nucleus, and post-stroke [6]. The pre-
stroke phase consists of a preparatory movement that sets
the hand in motion from some resting position. The nucleus
of a gesture has some “definite form and enhanced dynamic
qualities” [3]. Finally, the hand either returns to the resting
position or repositions for the new gesture phase. Each ges-
ture phase includes a sequence of hand/arm movement that
can be modeled using HMMs (see Figure 3).
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Figure 2: Comparison of hand tracking results. Our method (red region) gives more reliable result on hand tracking compared
to the off-the-shelf Kinect software (green line). (Best viewed in color. Based on data from ChAirGest corpus [7].)

Because we have the ground truth labeling of pre-stroke,
nucleus and post-stroke phases, we can train an HMM for
each phase for each gesture.
As each phase can have variable length, we model the

termination probability for each hidden state s as t(END|s).
Given a sequence of observation XT

1 = x1 . . . xT , and the
corresponding hidden states sequence ST

1 = s1 . . . sT , we
define the probability

p(XT
1 , S

T
1 ; θ) = t(s1)t(END|sT )

T∏

t=2

t(st|st−1)

T∏

t=1

e(xt|st)

where θ represents the model parameter vector which in-
cludes the initial state probabilities t(s), the state transition
probabilities t(s′|s), and the emission probabilities e(x|s) for
s, s′ ∈ {1, 2, . . . k}. We use a mixture of 6 Gaussians for the
emission probability to model user variations.
Given N training sequences, we use the expectation max-

imization (EM) algorithm to estimate the model parame-
ters. In particular, the update for the termination probabil-
ity during the ith iteration is

t
i(END|s) =

∑N

j=1
count(j, s → END; θi−1)

∑N

j=1

∑
s′
count(j, s → s′; θi−1)

where count(j, s → END; θi−1) is the expected count of s
being the end state. We can use the usual forward-backward
algorithm to compute all the expected sufficient statistics by
adding a dummy END state to the end of each sequence.
Because there are 3 rest positions, we use 3 hidden states

for both the pre-stroke and post-stroke phases. Each hidden
state can be the start state and can only remain in its own
state or go to the end state.
For the nucleus phase, we use 6 hidden states (chosen

through cross validation) for all the gestures and use a mod-
ified Bakis [1] model to constrain the transition probabilities
among the hidden states. Instead of allowing only left-right
transition, we allow the last hidden state to go back to the
initial state (Figure 4). This is particularly important for
modeling gestures with arbitrary number of repetitions such
as waving and shaking hands.

4.2 Gesture Recognition
During the recognition phase, we concatenate the HMMs

trained for each phase together to form one HMM for each
gesture. The transition probability from the previous phase
to the next phase can be computed by multiplying the ter-
mination probabilities of the previous phase and the initial
state probabilities of the next phase. Using the superscript c

start s1 s2 s3 s4 end
t(s1)

Figure 4: A state transition diagram of a modified 4-state
Bakis model for the nucleus phase.

to denote the model parameters in the concatenated HMM,
we have

t
c(snucleus|sprestroke) = t(END|sprestroke)× t(snucleus)

where sphase denotes the hidden state variable in a particular
phase. We add small transition probabilities from the pre-
stroke phase to the post-stroke phase to model movements
that do not have the nucleus phase.

As new state transition probabilities are added, the transi-
tion probabilities among states in the same phase also need
to be modified so that

∑K

s′=1
t(s′|s) = 1 (where K is the

total number of combined hidden states) is ensured. For
example

t
c(s′nucleus|snucleus) = t(s′nucleus|snucleus)×(1−t(END|snucleus))

We also add a rest state to the end of the HMM and allow
the rest state to transit to the pre-stroke and the post-stroke
phase with uniform probabilities (Figure 3) to accommodate
short pauses during the gesture. As a result, the final HMM
for each gesture has 13 hidden states. Let θg be the final
concatenated HMM parameters for gesture g. The classi-
fication of an observation sequence from non-rest positions
is

ĝ = argmax
g

log p(XT
1 ; θg)

4.3 Gesture Spotting
Because the non-rest positions include both pre-stroke and

post-stroke phases, we need to detect the start of the actual
gesture (nucleus). We use the Viterbi algorithm to find the
most probable hidden state sequence ŝ1 . . . ŝT for a given
observed sequence using the mostly likely gesture model θĝ.
The start and the end time for a gesture nucleus are the first
and the last time frame t where ŝt ∈ snucleus respectively.
Note that we are able to identify whether a hidden state
belongs to the nucleus phase because we trained the three
phases separately.

Figure 5 shows a recognition result visualization for one
batch sequence. The first row is the ground truth with differ-
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Figure 5: Visualization of a gesture recognition sequence.
The pre-stroke and post-stroke phases are indicated by two
orange colors (see the color bar).
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Figure 6: Visualization of the most probable hidden states
of a gesture recognition sequence. Colors 1-3 indicate the
pre-stroke hidden states, colors 4 - 9 indicate the nucleus
hidden states, colors 10 - 12 indicate the post-stroke hidden
states, and color 14 indicates the rest state.

ent colors indicating different gesture phases or the rest po-
sition. The second row is our segmentation and recognition
result. Figure 6 shows the color-coded most probable hidden
states for the same sequence. If a non-rest sequence does not
contain hidden states belonging to the nucleus phase, it is
ignored (see the blue bar at t ∼ 30700 in Figure 6). In this
way, we can spot the actual gestures while filtering out other
movements.

5. EXPERIMENTAL EVALUATION
We evaluate our method based on the development data

set from the ChAirGest corpus [7] with gestures captured
from 10 users. There are 900 total gesture occurrences (3
recording sessions for each user) in the development data set
representing three forth of the entire corpus. The remaining
one forth of the corpus are not released to the public, and
can be used for final evaluation on unseen data.
Table 1 compares the gesture recognition performance us-

ing different methods of computing feature vectors while
keeping the recognition method the same. They are the av-
erage results of 3-fold cross validations where, in each fold,
the model is trained on 2 sessions and tested on 1 session
from every user. The results help to answer the following
questions:

1. Does our salience based hand tracking method give
better performance? The first column in Table 1 shows
the results from using the salience based method to
compute relative hand positions, and the second col-
umn are the results from using the hand joint positions
from the Kinect SDK’s skeleton tracking (version 1.6).

Hand position
from salience
detection &
Xsens

Hand po-
sition from
Kinect
skeleton &
Xsens

Xsens Only

F1 Score 0.907 (0.01) 0.870 (0.02) 0.890 (0.02)
ATSR Score 0.923 (0.02) 0.930 (0.03) 0.920 (0.01)
Final Score 0.912 (0.01) 0.881 (0.01) 0.895 (0.01)

Table 1: Comparison of the average 3-fold cross validation
results for different feature vectors. Values in parentheses
are standard deviations.

Hit 259 Missed 33 Mislabel 7
Precision 0.86 Recall 0.87 F1 0.86

Avg. estarti 0.28% Avg. estopi -3.17% ATSR 0.91
Final Score 0.871

Table 2: Final test result on unseen data.

The salience base method gives 3.7% absolute increase
in the F1 score.

2. Does including the relative hand position in the fea-
ture vector help to increase performance? The third
column shows the results from using only Xsens fea-
tures. We observe that including the relative hand po-
sition computed using our hand tracking method gives
1.7% absolute increase in the F1 score. However, us-
ing the hand positions from the Kinect SDK actually
decreases the performance.

The ATSR score in Table 1 stands for the accurate tem-
poral segmentation rate which represents the performance
of accurately detecting the start and stop points of gesture
events [7]. Let estarti be the start error rate for a detected
gesture nucleus i, and

e
start
i =

ground truth start time− detected start time

ground truth duration of the gesture nucleus i

The stop error rate, estopi , is defined similarly. Let nhit be
the number correctly recognized gestures (i.e., the label of
the gesture nucleus i is correct, and the absolute start error
and the stop error rates are less than 50%). The formula for
ATSR is

ATSR = 1−

∑nhit

i=1
|estarti |+ |estopi |

2 · nhit

The per frame classification confusion matrix (Figure 7)
shows that the most easily confused gestures are “take from
screen” and “push to screen”. These two gestures are very
similar except for hand poses. This suggest that by includ-
ing hand pose features may further improve the recognition
accuracy. There are also more confusions at the boundary
between phases, e.g., from rest to pre-stroke and from post-
stroke to rest.

Table 2 shows the final test result on unseen data based
on the model trained on all the development data using fea-
ture vectors computed from our salience based hand tracking
method. This result is provided by the ChAirGest organizer
after running our program. The decrease in performance
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Figure 7: Per frame classification confusion matrix based
on result from 3-fold cross validation using both Kinect and
Xsens features. The numbers are percentages. The darker
the color the higher the percentage.

may be due to the overfitting of the model on the develop-
ment data.

6. CONCLUSIONS AND FUTURE WORKS
Our gesture spotting and recognition method based on

concatenated HMMs trained for the three gesture phases and
Viterbi decoding gives good results on the data set. Using
hand position features computed from our gesture salience
detection method also helps to increase the gesture recogni-
tion accuracy. Compared with using the hand position from
the Kinect SDK, using our hand tracking method gives a
3.7% absolute increase in the recognition F1 score.
For future works, we are going to apply discriminative

training for learning the parameters of HMMs. We are also
going to compare the HMM based method with the hidden
conditional random field (HCRF) based methods [5, 9]. It
would be interesting to explore whether we can also concate-
nate the HCRF models.
For hand tracking, we can apply temporal smoothing to

depth data to see whether that helps to improve accuracy.
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