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Abstract—We study a model for cascade effects over finite
networks based on a deterministic binary linear threshold model.
Our starting point is a networked coordination game where each
agent’s payoff is the sum of the payoffs coming from pairwise
interaction with each of the neighbors. We first establish that the
best response dynamics in this networked game is equivalent to
the linear threshold dynamics with heterogeneous thresholds over
the agents. While the previous literature has studied such linear
threshold models under the assumption that each agent may
change actions at most once, a study of best response dynamics
in such networked games necessitates an analysis that allows
for multiple switches in actions. In this paper, we develop such
an analysis. We first establish that agent behavior cycles among
different actions in the limit, we characterize the length of such
limit cycles, and reveal bounds on the time steps required to reach
them. We finally propose a measure of network resilience that
captures the nature of the involved dynamics. We prove bounds
and investigate the resilience of different network structures
under this measure.

I. I NTRODUCTION

Interactions over many different types of networks require
coordination between agents and their neighbors. For exam-
ple, in economic networks, technologies that conform to the
standards used by other related firms are more productive,
and in social networks, conformity to the behavior of friends
is valuable for a variety of reasons. The desire for such
coordination can lead to cascading behavior: the adoption
decision of some agents can spread to their neighbors and from
there to the rest of the network. One of the most commonly
used models of such cascading behavior is the linear threshold
model originally introduced by Granovetter [1]. This modelis
used to explain a variety of aggregate level behaviors including
diffusion of innovation, voting, propagation of rumors and
diseases, spread of riots and strikes, and dynamics of opinions.

Most analyses of this model assume that one of the be-
haviors adopted by the agents (represented by the nodes of
a graph) is irreversible, meaning that agents can only make
a single switch into this behavior and can never switch out
from it. This assumption may be well justified in some settings
(e.g. educational attainment), however it is restrictive for many
other applications. For example, many of the behaviors in
social networks, corresponding to product choices, opinions
and actions, change regularly.

In this paper, we study a model of cascades based on
binary linear threshold dynamics. We start from an explicit
coordination game set over a finite undirected network. The
payoff of each agent is the sum of the payoff in atwo
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player and two action coordination gamethe agent plays
pairwise with each of its neighbors (the action is fixed across
all interactions). We then study the behavior induced by
best response dynamics, whereby each agent changes the
played action to that which yields highest payoff given the
actions of the neighbors. We first establish that best response
dynamics are identical to the dynamics traced by the linear
threshold model with heterogeneous thresholds for the agents.
However, crucially, actions can change multiple times. Thus
the dynamics of interest for the set of problems posed here
cannot be studied using existing results and in fact have a
different mathematical structure. The main contribution of our
paper is to fully characterize the limiting behavior of these
dynamics.

We establish that agent behavior cycles among different
actions in the limit. Our analysis relies on first embedding the
dynamics (over any graph structure) into a bipartite structure
while preserving local properties, then transforming the paral-
lel dynamics into sequential dynamics to obtain desired results.
Using this technique, we show that the limit cycles consist
of at most two action profiles forany graph structureand
any threshold distributionover the agents. Substantively, this
means that in the limit, each player either sticks to playingone
particular action, or switches actions at every time step. We
also establish a uniform upper-bound on the time steps needed
to reach this cyclic behavior that is quadratic in the numberof
agents. We mention that similar results on convergence cycles
and quadratic convergence time for linear threshold models
(termed differently) have appeared in the literature on Cellular
Automata in [12]. We approach the problem from a different
perspective and provide different insight. We further improve
the convergence time to be uniformly not more than the size
of the network whenever the graph in concern is a tree.

Of central importance in the study of cascades over net-
works is the resilience of networks to invasion by certain types
of behavior (e.g., cascades of failures or spread of epidemics).
For the new dynamics defined by our problem, we define
a measure of resilience of a network to such invasion that
captures the the minimal ‘cost of recovery’ needed when
the model is confronted with a perturbation in the agents’
action profile. We prove achievable uniform lower-bounds and
upper-bounds on the resilience measure, we list the resilience
measure of some network structures and provide basic insight
on how different network structures affect this measure.

Our paper is related to a large literature on network dynam-
ics and linear threshold models (see e.g., [2]-[7]). A number of
papers in this literature investigate the question of whether a
behavior initially adopted by a subset of agents (i.e.,the seed
set) will spread to alarge portion of the network, focusing
on the dynamics where agents can make a single switch
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to one of the behaviors. Morris [2], while starting from a
multi-switch version of the dynamics, studied without lossof
generality the single-switch version to answer whether there
exists a finite set of initial adopters (in an infinite network
with homogeneous thresholds) such that the behavior diffuses
to the entire network. In [5], Watts derives conditions for
the behavior to spread to a positive fraction of the network
(represented by a random graph with given degree distribution)
using a branching process analysis. Similarly, Lelarge [6]
provides an explicit characterization of the expected fraction
of the agents that adopt the behavior in the limit over such
networks. Related work [4] studies how to target a fixed
number of agents (and change their behavior) in order to
maximize the spread of the behavior in the network in the
limit. In the context of network resilience, the recent paper
[7] adopts single-switch linear threshold dynamics as a model
of failures in a network. This work defines a measure of
network resilience that is a function of the graph topology
and the distribution over thresholds and studies this mea-
sure for different network structures focusing ond-regular
graphs (hence ignoring the effect of the degree distribution
of a graph on cascaded failures). Here we provide a novel
resilience measure that highlights the impact of heterogeneity
in thresholds and degrees of different agents. Finally, noisy
versions of best-response dynamics in networked coordination
games were studied in [8] and [9] (see also [10] and [11] in
the statistical mechanics literature). The random dynamics in
these models can be represented in terms of Markov chains
with absorbing states, and therefore do not exhibit the cyclic
behavior predicted by the multi-switch linear threshold model
studied in this paper.

The rest of the paper proceeds as follows. We begin by
a description of the model in section II. We then proceed
in section III to describe the general behavioral rules of the
dynamics. We branch out to characterize convergence cycles
and convergence time in sections IV and V. We finally propose
the network resilience measure in section VI.

II. M ODEL

We define a networked coordination game. For a positive
integern, we denote byIn the set ofn players.1For technical
convenience, we assume thatIn ⊂ Im for n < m.2 We define
Gn to be the class of all undirected graphsG(In, E) defined
over the vertex setIn, with edge setE. To be proper,E is a
relation3onIn, but for convenience we will consider the setE
to have cardinality exactly equal to the number of undirected
edges. We denote an undirected edge inE by {i, j}, and we
abbreviate it toij when no confusion arises. ForG(In, E)

1We use the words player, agent, node and vertex interchangeably.
2We use the lettersi and j to denote agents. We reserve the lettern for

the number of players in the game. If it is clear from the contextto which set
X an elementx belongs to, we refrain from mentioning the setX explicitly
to simplify notation. Moreover, for any functionf with domainIn, we will
denotef(i) by fi. In particular, for functionsq, k and a with domainIn,
q(i), k(i) anda(i) are denotedqi, ki andai respectively.

3A (binary) relationR on a setA is a subset ofA×A. We use the notation
aRb to denote(a, b) ∈ R.

in Gn, we useNG(i) to denote the neighborhood of playeri
in G, i.e. NG(i) = { j ∈ In : ij ∈ E }. We denote by
dG(i) the degree of playeri in G, namely the cardinality of
NG(i). We refer toNG(i) anddG(i) asNi anddi respectively,
when the underlying graph is clear from the context. We finally
defineQn to be the space of type distributions over the agents,
namely the set of maps fromIn into [0, 1]. For q in Qn, we
refer toqi as thetypeof player i.

Given a graphG(In, E), each playeri in In plays one
actionai in {B, W}. For ij ∈ E, we define the payoff received
by agenti when playingai against agentj playing aj to be

gi,j(ai, aj) =







qi if ai = aj = W

1 − qi if ai = aj = B

0 if ai 6= aj

. (1)

The utility player i gets is the sum of the payoffs from the
pairwise interactions with the players inNi, namely when
player j plays actionaj ,

ui(ai, a−i) =
∑

j∈Ni

gi,j(ai, aj), (2)

wherea−i denotes the action profile of all players excepti.
We defineAn be the space of action profiles4 played by

the agents, namely the set of maps fromIn into {B, W}.
The players are assigned an initial action profilea, we refer
to a as the action profile of the players at time step0. For
T in N,5 every player best responds to the action profile of
the players at time stepT − 1, by choosing the action that
maximizes its utility. We suppose that players play actionW

as a tie breaking rule. Formally we impose a strict order on
{W, B} such thatmin{W, B} = W. Suppose we denote by
ai,T the action played by playeri at time T , then given an
initial action configurationa in An, for every playeri, we
recursively define:

ai,0 = ai

ai,T = min argmax
ai∈{W,B}

ui(ai, a−i,T−1), for T ∈ Z
+, (3)

where themin operator breaks ties. The rule induced by the
recursive definition in (3) is equivalent to the rule provided in
the following proposition.

Proposition 1: Let a be the initial action configuration,
namely the action profile of the players at time step 0. For
every positive integerT , player i plays actionB at time step
T if and only if more thanqidi neighbors of playeri played
actionB at time stepT − 1.

Proof: We substituteui in (3) with the expressions in (1)
and (2), and get that playeri plays actionB at timeT if and
only if

∑

j∈Ni

(1 − qi)1{B}(aj,T−1) >
∑

j∈Ni

qi1{W}(aj,T−1), (4)

4We use the words profile and configuration interchangeably.
5We denote byN the set of non-negative integers, and byZ

+ the set of
positive integers.



where1Γ(x) = 1 if and only if x ∈ Γ. Equivalently, playeri
plays actionB at timeT if and only if

∑

j∈Ni

1{B}(aj,T−1) > qidi. (5)

The left-side term is essentially summing the number of
neighbors of playeri playing actionB.

As a technical clarification, every player is capable of
switching actions both fromW to B andB to W.

III. D ESCRIPTION OF THEDYNAMICS

We begin by a coarse description of the involved dynamics.
To sum up the model, we consider afinite set of playersIn

along with three mathematical objectsGn, Qn and An. An
elementG(In, E) of Gn corresponds to the network structure
imposed on the players, an elementq of Qn refers to the type
distribution over the players, and an elementa of An consists
an action profile played by the players. The tripletG, q and
a interact as dictated by Proposition 1.

A. From Types to Thresholds

Proposition 1 implies that playingB is never a best response
for playeri if no player inNi is playingB. We will generalize
our model to provide symmetry between both actionsB and
W. We do this for two reasons. The first is to consider the
linear threshold model as considered in the literature. The
second is a technical reason, mainly to ensure closure of the
setGn×Qn under certain operations. Nevertheless, any result
for the generalized version of the model is inherited by the
initial version trivially by inclusion.

We substitute the setQn by a setKn and then modify the
statement of Proposition 1. We defineKn to be the space of
threshold distributions over the agents, namely the set of maps
from In into N. We make a particular distinction between the
word typeattributed toQn and the wordthresholdattributed
to Kn. For k in Kn, we refer toki as thethresholdof player
i. Given a pair(G, k) with k ∈ Kn, we generalize Proposition
1 as follows:

Proposition 2: Let a be the initial action configuration,
namely the action profile of the players at time step0. For
every positive integerT , player i plays actionB at time step
T if and only if at leastki neighbors of playeri played action
B at time stepT − 1.

The rule in Proposition 2 supersets the rule in Proposition 1.
Indeed, for everyq in Qn there exists ak in Kn such that
qidi may be substituted with the integerki for all i without
changing the behavior of the players. It is also crucial to note
that more thanis replaced byat least.

For G(In, E) in Gn and k in Kn, we denote byGk the
map fromAn into An such that for playeri, (Gka)i = B

if and only if at leastki players are ina−1(B) ∩ Ni. From
this perspective, given an initial configurationa in An, the
sequencea,Gka,G2

ka, · · · 6corresponds to the sequence of

6Let f : A → B and g : B → C be functions, we denote bygf the
function g ◦ f : A → C. In particular, if a functionf maps a setA to itself,
for a non-negative integerm, we denote byfm the functionf◦fm−1 where
f0 is the identity map onA.

action profilesa, a1, a2, · · · where aT = GT
k a is the action

profile played by the players at timeT if they act in accordance
with the rule in Proposition 2.

B. The Limiting Behavior

To understand the limiting behavior, we note two funda-
mental properties: the spaceAn has finite cardinality, and
Proposition 2 is deterministic. SinceAn is finite, if we
let a0, a1, a2, · · · be any infinite sequence of action profiles
played by the agents according to Proposition 2, then there
exists at least one action profilêa that will appear infinitely
many times along this sequence. This follows from the pigeon-
hole principle. Since the dynamics are deterministic (andaT+1

depends only onaT ), the same sequence of action profiles
appears between any two consecutive occurrences ofâ. This
means that after a finite time step, the sequence of action
profiles will cycle among action profiles.

Let us consider a different representation of the dynamics.
We define a relation→ on An such that fora and b in An,
a → b if and only if b = Gka. Consider the graphH(An,→),
it forms a directed graph on the vertex set taken to be the space
of action profilesAn, and an action profilea is connected to
an action profileb by a directed edge(a, b) going froma to b
if and only if b = Gka. Suppose we pick a vertexa, namely
an action configuration, and perform a walk on vertices along
the edges inH starting froma. The walk eventually cycles
vertices in the same order. Every initial action profile leads to
one cycle, and two action profiles need not lead to the same
cycle. We formalize the idea in the following definitions.

Definition 1: Given (G, k) in Gn × Kn, for two action
profilesa and b in An, it is said thata can be reached from
b with respect toGk if there exists a non-negative integerT
such thata = GT

k b. Formally, we define the relationRGk
on

An such that fora and b in An, aRGk
b if and only if there

exists a non-negative integerT such thata = GT
k b.

If we construct a relationCGk
on An such that fora andb

in An, aCGk
b if and only if aRGk

b or bRGk
a, thenCGk

is an
equivalence relation onAn. Two configurations inAn are in
the same equivalence class with respect to the relationCGk

if
and only if one configuration can be reached from the other by
iteratively applyingGk. In this case, every equivalence class
consists of one cycle, we characterize the set of cycles:

Definition 2: Given a pair (G, k) in Gn×Kn, we define
CY CLEn(G, k) to be the collection of subsets ofAn, such
that for everyC in CY CLEn(G, k), we haveaRGk

b for any
a and b in C, and for everyc in An\C, there does not exist
an a in C such thataRGk

c.
We refer to the elements ofCY CLEn(G, k) asconvergence

cycles. In this paper, we characterize both the convergence
cycles length (the number of action profiles consisting the
cycles) and the minimal number of time steps required to reach
such cycles from some initial action profile. We refer to the
latter as theconvergence time.

IV. ON CONVERGENCECYCLES

We begin by characterizing the length of the cycles in
the equivalence classes as a function of the imposed graph



structure and the threshold distribution.

Theorem 1:For every positive integern, every (G, k) in
Gn ×Kn and everyC in CY CLEn(G, k), the cardinality of
C is less than or equal to2.

Put differently, given a network structureG, a threshold
distributionk and an initial action profilea, if we iteratively
applyGk on a ad infinitum to get a sequence of best response
action profiles, along the sequence of actions considered by
player i, player i will eventually either settle on playing one
action, or switch action on every new application ofGk.

To prove the theorem, we begin by a lemma. We define
Sn to be the set of all pairs(G, k) in Gn×Kn such for each
player i, di has odd cardinality andki is equal to(di + 1)/2.
We refer toSn as the set ofsymmetric models, in the sense
that for (G, k) in Sn the property is such that for any action
profile a in An, and any playeri, the action(Gk(a))i is the
action played by the majority inNi with respect to the action
profile a. In this case, the two actionsB andW are treated as
having equal weights by all players in the network.

Let us defineM to be the subset of
⋃

n Gn×Kn such that
for each(G, k) in M and everyC in CY CLEn(G, k), the
cardinality ofC is less than or equal to2.

Lemma 1: If Sn belongs toM for all n, then Gn × Kn

belongs toM for all n.

Proof: Given a pair(G, k) in (Gn×Kn)\Sn, we construct
a pair (G′, k′) in G′

n × K′
n as follows. We suppose that

G is equal to (In, E), and choose a playeri in In such
that eitherdi is even, ordi is odd andki is not equal to
(di + 1)/2. Surely such a node exists since(G, k) does not
belong toSn. We call the nodei the pivot node in the one-
step symmetric-expansion of(G, k) into (G′, k′). Let bi be
an integer equal toki, and considerwi an integer equal to
di−bi +1. In this sense, ifa is an action configuration inAn,
bi would be considered to be the least number ofB-playing
neighbors needed by playeri to play B when Gk acts ona,
whereaswi would be the least number ofW-playing neighbors
needed by playeri to play W. We shall construct an instance
(G′, k′) in Gn+3bi+3wi

×Kn+3bi+3wi
. We suppose thatG′

is equal to(In+3bi+3wi
, E′) and partitionIn+3bi+3wi

into
In, Pw

1 , · · · , Pw
bi

, P b
1 , · · · , P b

wi
where each partition different

thanIn has cardinality exactly equal3. We defineE′ to be the
undirected set of edges such thatE′ containsE. Furthermore,
for everym, supposePw

m = {j, j′, j′′}, we letE′ containjj′,
jj′′ andij. Similarly, for everyl, supposeP b

l = {j, j′, j′′} we
let E′ containjj′, jj′′ andij. To visualize the obtained graph
structureG′, we attachedbi + wi 3-node Y-shaped graphs to
nodei. Finally, we setk′ to be equal tok on In\{i},7 equal
to (di + bi + wi)/2 = di + 1 at i, equal to2 on the remaining
nodes having degree3 and equal to1 everywhere else.

We define the mapα from An into An+3bi+3wi
in such

a way that fora in An, α(a) is equal toa on In, B on

7Let X be a set. ForA andB subsets ofX, we denote byA\B the subset
of X containing elements inA that are not inB.

P b
1 ∪ · · · ∪ P b

wi
and W on Pw

1 ∪ · · · ∪ Pw
bi

. One could check
that for a in An:

α(Gka) = G′
k′α(a). (6)

Let C = {a1, · · · , ak} be a cycle inCY CLEn(G, k), then
C ′ = {α(a1), · · · , α(ak)} is a cycle in CY CLEn(G, k).
Since α is an injective map, then|C ′| = |C|. Therefore, if
(G′, k′) belongs toM, then(G, k) belongs toM. If (G′, k′)
does not belong toSn′ , choose a playerj, where dj is
even orkj is not equal to(dj + 1)/2. Repeat the procedure
described above to obtain a pair(G′′, k′′). In this case, if
(G′′, k′′) belongs toM, then(G′, k′) belongs toM. We repeat
this procedure until we obtain a pair(Ḡ, k̄) in Sn̄, we need
only repeat it finitely many times. The result then follows by
transitivity.

Definition 3: Let P be a subset ofIn, for (G, k) in Gn×Kn,
we defineGk|P to be the restriction ofGk to act on the actions
of the players inP . Formally, fora in An,

(Gk|P a)i =

{

(Gka)i if i ∈ P
ai if i /∈ P

(7)

Note that we are not restricting the domain of the function.
Proof of Theorem 1:Without loss of generality, let(G, k)

be a pair inSn (see Lemma 1). We construct a pair(G′, k′)
in S2n as follows. SupposeG′ is equal to(I2n, E′), then
partitionI2n into two setsIn andJ . We will denoteIn by I
throughout this proof. We define a bijectionφ from J into I
and we defineE′ to be the set of edges onI2n such that for
i, j in I2n, {i, j} ∈ E′ if and only if {i, φ(j)} ∈ E. Defineα
to be the map fromA2

n into A2n such thatα(aI , aJ ) is equal
to aI on In andaJ on Jn. For (aI , aJ ) in A2

n, we then get

G′
k′ |Iα(aI , aJ ) = α(GkaJ , aJ ), (8)

and therefore,

G′
k′ |J G′

k′ |Iα(aI , aJ ) = α(GkaJ , G2
kaJ ). (9)

This said, it can be checked thatCY CLEn(G, k) contains
only cycles of cardinality at most two, if and only if for every
a in A2n, there exists a pointb in A2n, such that

b = (Gk|IGk|J )T a (10)

for some non-negative integerT and

(G′
k′ |J G′

k′ |I)b = b. (11)

To show the result we seek existence of such a configuration
b. Let us define the mapE from A2n into N such thatE(a) =
|{ ij ∈ E′ : ai 6= aj }| for a in A2n. Then, for every action
configurationa in A2n, we haveG′

k′ |Ia 6= a if and only if
E(G′

k′ |Ia) < E(a). To see that, note that since(G′, k′) is in
S2n, (G′

k′a)i is equal to the majority of the actions inNi.
Then playeri switches action if and only if it can decrease
the number of players with opposite actions. By symmetry, we
get a similar claim forJ . It follows thatG′

k′ |J G′
k′ |Ia 6= a if

and only if E(G′
k′ |J G′

k′ |Ia) < E(a). SinceE(a) is bounded
above by2n2 and bounded below by0, it follows that such a
b exists.



Given a pair(G, k), we refer to thesymmetric expansionof
(G, k) as the pair(G′, k′) in ∪nSn generated by the procedure
described in Lemma 1. Given a pair(G, k), we refer to the
bipartite expansionof (G, k) as the pair(G′, k′) generated by
the procedure described in Theorem 1, whereby the graph is
first duplicated, then the two copies are cross-connected.

To explain the proof idea, let(G, k) be a pair in∪nSn, let
a0 be a point ofAn and consider the sequencea1, a2 · · · with
aT = Gk(aT−1) for every positive integerT . By performing
a bipartite expansion on(G, k) to get (G′, k′) and applying
G′

k′ |In
G′

k′ |Jn
iteratively on α(a, a), the players inIn will

play the action profiles havingevenindices in the sequence,
whereas the players inJ will play the action profiles having
odd indices in the sequence. From this perspective, it is easy
to understand that the cycles ofCY CLEn(G, k) consist of
at most two configurations if and only if iteratively applying
Gk|IGk|J , starting from any configuration, always leads to a
fixed point. It is better to think of the process as sequential,
where players inI update at even time steps, and players in
J update at odd time steps. The proof idea to follow stems
from the fact that two players updating on the same time steps
share no edges in common. Let us refer to an edge connecting
two players with opposite actions as aconflict edge. Since we
enforced the symmetric assumption on the model (i.e.(G, k)
belongs toSn), a node switches action (whenever it is allowed
to update) if and only if it can decrease the number of conflict
edges in the graph. Therefore, every player cannot switch
actions infinitely many times since the number of conflict
edges cannot keep on decreasing indefinitely.

V. ON CONVERGENCETIME

Given a graph structureG, a threshold distributionk, and
an action profilea, we characterize the number of times one
needs to applyGk on a to reach a cycle.

Definition 4: For every positive integern, and every
(G, k, a) in Gn×Kn×An, we defineδn(G, k, a) to be equal
to the smallest non-negative integerT such that there exists a
cycle C in CY CLEn(G, k) andb in C with GT

k a = b.
The quantityδn(G, k, a) denotes to the minimal number of
iterations needed until a given action configurationa reaches
a cycle, when iteratively applyingGk. We refer toδn(G, k, a)
as the convergence time froma underGk.

Theorem 2:For all positive integersn, and every(G, k, a)
in Gn×Kn×An, the convergence timeδn(G, k, a) is less than
or equal tomn2 for some positive integerm.

Proof: Let (G, k) be a point inGn ×Kn for somen, let
(G′, k′) be the symmetric expansion of(G, k) in Sn′ , and let
(G′′, k′′) be the bipartite expansion of(G′, k′) in S2n′ . Then:

δn(G, k) ≤ δn′(G′, k′) ≤ δ2n′(G′′, k′′). (12)

Moreover, we have:

δ2n′(G′′, k′′) ≤ max
a∈An′′

|{ ij ∈ E′′ : ai 6= aj }|

≤ 2|E′| ≤ 2[n2 + 3
∑

i∈In

bi + wi]. (13)

Since
∑

i∈In
bi + wi =

∑

i∈In
di + 1 = 2|E| + n, the result

follows.
The constantm in the theorem statement can be optimized,

but it is of no interest. Instead, it would interesting to prove
a bound below quadratic. In what follows, we improve the
convergence time upper-bound to be linear in the size of the
network when the graph structure is a tree.

Theorem 3:For all positive integersn and every(G, k, a)
in Gn×Kn×An where G is a tree, the convergence time
δn(G, k, a) is less than or equal ton.

Definition 5: Given a bipartite graphG(In, E) in Gn, a 2-
Partition ofIn with respect toG, is a pair(Po, Pe) of disjoint
subsets ofIn such thatPo ∪Pe = In and there does not exist
an (i, j) in P 2

o ∪ P 2
e such thatij ∈ E.

Definition 6: Given a triplet(G, k, a) in Gn×Kn×An and
a 2-Partition(Po, Pe) of In with respect toG. We identifya
with the pair(a↾Po, a↾Pe).8 It is said thata↾Po is reachable in
(G, k) if there existsa′ in An such thata↾Po = (Gk|Po

a′)↾Po.
In this case, it is said thata′↾Pe inducesa↾Po. Similarly, a↾Pe

is reachable in(G, k) if there existsa′ in An such thata↾Pe =
(Gk|Pe

a′)↾Pe. And again, it is said thata′↾Po inducesa↾Pe.

Lemma 2:For every positive integern, given a triplet
(G, k, a) in Gn×Kn×An whereG is a tree and a 2-Partition
(Po, Pe) of In with respect toG. If a↾Po is reachable and
a↾Po inducesa↾Pe both in (G, k), then there exists a playeri
in Pe, such that((Gk|Pe

Gk|Po
)T a)i = ai for all non-negative

integersT .

Whenever the graphG in concern is bipartite, wedecouple
the process. That is, we consider a 2-Partition(Po, Pe) of G,
and (instead of simultaneous update) we let the nodes inPo

update atodd time steps and the nodes inPe update ateven
time steps. The lemma claims that if the stated conditions are
met, at least one player inPe will never switch his action
along this sequential process. We refer the reader to [13] for
the proof of Lemma 2. We prove Theorem 3.

Proof of Theorem 3:Let G be a tree inGn, and consider
a 2-Partition (Po, Pe) of In with respect toG such that
|Pe| ≤ |Po|. For anyk in Kn and a in An, if we consider
(ao, ae) = (Gka↾Po, G

2
ka↾Pe), then ao is reachable, andao

inducesae. Then by Lemma 2, there exists at least one node
i in Pe such that((Gk|Pe

Gk|Po
)m(ao, ae))i = ae

i for all
non-negative integersm. We can remove this player from the
game, obtain a graphG′ and modify the threshold distribution
accordingly to obtain a threshold distributionk′ (See [13]
for details). By successive application of Lemma 2 on the
connected components, we exhaust all nodes inPe in at most
2|Pe| time steps. But since|Pe| ≤ |Po|, we get |Pe| ≤ n/2
and the result follows.

We end this section with a conjecture: the convergence time
δn(G, k, a) is less than or equal ton wheneverG is bipartite.
In this case,δn(G, k, a) will necessarily be less than or equal
to 2n whenG is non-bipartite.

8Let f be a map fromA into B, and letA′ be a subset ofA. We denote
by f↾A′ the restriction of the functionf to A′.



VI. RESILIENCE OFNETWORKS

In this section, we revert back to considertypes instead
of thresholds, namely Qn instead ofKn. All the needed
definitions in this paper includingKn naturally extend to the
setQn. Mainly, for G(In, E) in Gn and q in Qn, we denote
by Gq the map fromAn into An such that for playeri,
(Gka)i = B if and only if more thanqidi players are in
a−1(B) ∩ Ni. We further redefineGn to be the class of all
connectedundirected graphs defined over the vertex setIn.

We consider the following resilience problem. We define
||.||1 to be the map fromQn into R such that forq in Qn:

||q||1 =
∑

i∈In

qi. (14)

We restrict the analysis in the paper to||.||1. Let K be a
positive integer, we denote byAK

n the subset ofAn such
that, a is in AK

n if and only if the cardinality ofa−1(B) is
at mostK. We denote respectively byWn andB

n the points
(W, · · · , W) and (B, · · · , B) in An, and given a graphG in
Gn, defineQG,K

n to be the subset ofQn such that for every
q in QG,K

n anda in AK
n , W

nRGq
a. We define the resilience

measure of a graphG with respect toK deviations to be:

µK
n (G) = inf{ ||q||1 : q ∈ QG,K

n }. (15)

Given a graph structureG and a positive integerK, we
suppose that at mostK players in the network start playing
action B. The goal is to allocate a type distributionq to the
players, so that the dynamics depicted in Proposition 1 leadthe
agents to play actionW at the limit. From this perspective, the
measureµ captures the minimal cost of threshold investment
required to recover the networkG from a perturbation of
magnitudeK. The lower the resilience measure is for a graph
G, the more robustG is against perturbations, in that we mean
the less costly it is to allocate types to haveG recover. We
state some bounds, we refer the reader to [13] for the proofs.

Theorem 4:The resilience measureµK
n is greater than or

equal to1 for every positive integerK ≤ n.

Theorem 5:The resilience measureµK
n is less than or equal

to n/2 for every positive integerK ≤ n.

One can show that the lower-bound is achieved by the star
network for every positive integerK. The upper-bound is
achieved by the 2-regular graph forK > n/2. As a piece
of insight, high degree nodes lower the resilience measure in
the graph. One manifestation of this fact lies in the examples
that meet the bounds. However, if we consider the complete
graph, it has a resilience measure of1 for K = 1 that grows
to n/2 for K = n. This said, although high degree nodes
increase the resilience of a network, having a large number
of high degree nodes in the network makes the network more
fragile against large perturbation, and hence more costly to
ensure its recovery.

VII. C ONCLUSION

In this paper, we focus on characterizing the behavior of
a linear threshold model where agents are allowed to switch

their actions multiple times. We established that in the limit,
the agents in the network cycle among action profiles and
proceeded to characterize the lengths of such cycles, and the
required number of time steps needed to reach such cycles.
In particular, we showed that forany graph structureandany
threshold distributionover the agents, such cycles consist of
a most two action profiles. Namely, in the limit, each agent
either always plays one specific action or switches action at
every single time step. We also showed that overall graph
structure (of size n) and all threshold distributionsno more
than mn2 time steps are required to reach such cycles. Our
methods follow a combinatorial approach, and are based on
two techniques: transforming the general graph structure into a
bipartite structure, and transforming the parallel dynamics on
this bipartite structure into sequential dynamics. We further
improve the convergence time bound to be not more thann
time steps if the graph structure is a tree.

Finally, in the setting of resilience of networks, we defined
a measureµ that captures the minimal cost of threshold invest-
ment required to recover the networkG from a perturbation of
magnitudeK, whereby we suppose thatK agents will initially
deviate from actionW and play actionB. We show that this
measure is lower-bounded by1, and that this measure is upper-
bounded byn/2, where n is the size of the network. We
finally provide an interpretation of how this measure varies
with respect to the network structures. High degree nodes add
resilience to the network, however too many high degree nodes
can make the network fragile against strong perturbations.
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