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ABSTRACT
In cloud-computing systems, network-bandwidth guarantees
have been shown to improve predictability of application
performance and cost [1, 30]. Most previous work on cloud-
bandwidth guarantees has assumed that cloud tenants know
what bandwidth guarantees they want. However, applica-
tion bandwidth demands can be complex and time-varying,
and many tenants might lack sufficient information to re-
quest a bandwidth guarantee that is well-matched to their
needs. A tenant’s lack of accurate knowledge about its future
bandwidth demands can lead to over-provisioning (and thus
reduced cost-efficiency) or under-provisioning (and thus poor
user experience in latency-sensitive user-facing applications).

We analyze traffic traces gathered over six months from
an HP Cloud Services datacenter, finding that application
bandwidth consumption is both time-varying and spatially
inhomogeneous. This variability makes it hard to predict
requirements. To solve this problem, we develop a prediction
algorithm usable by a cloud provider to suggest an appro-
priate bandwidth guarantee to a tenant. The key idea in
the prediction algorithm is to treat a set of previously ob-
served traffic matrices as “experts” and learn online the best
weighted linear combination of these experts to make its pre-
diction. With tenant VM placement using these predictive
guarantees, we find that the inter-rack network utilization in
certain datacenter topologies can be more than doubled.

1. INTRODUCTION

This report introduces predictive guarantees, a new ab-
straction for bandwidth guarantees in cloud networks. A
predictive guarantee improves application-performance pre-
dictability for network-intensive applications, in terms of
expected throughput, transfer completion time, or packet la-
tency. A provider of predictive guarantees observes traffic
along the network paths between virtual machines (VMs),
and uses those observations to predict the data rate require-
ments over a future time interval. The provider can offer a
tenant a guarantee based on this prediction.

Why should clouds offer bandwidth guarantees, and why
should they use predictive guarantees in particular? Cloud
computing infrastructures, especially public “Infrastructure-
as-a-Service” (IaaS) clouds, such as those offered by Amazon,

HP, Google, Microsoft, and others, are being used not just
by small companies, but also by large enterprises. For dis-
tributed applications involving significant network inter-node
communication, such as in [1], [24], and [25], current cloud
systems fail to offer even basic network performance guaran-
tees; this inhibits cloud use by enterprises that must provide
service-level agreements (SLAs).

Others have proposed mechanisms to support cloud band-
width guarantees (see §2.2); with few exceptions, these works
assume that tenants know what guarantee they want, and re-
quire the tenants to explicitly specify bandwidth requirements,
or to request a specific set of network resources. But do cloud
customers really know their network requirements? Applica-
tion bandwidth demands can be complex and time-varying,
and not all application owners accurately know their band-
width demands. A tenant’s lack of accurate knowledge about
its future bandwidth demands can lead to over- or under-
provisioning.

For many (but not all) cloud applications, future bandwidth
requirements are in fact predictable. In this report, we use
network traces from HP Cloud Services1 to demonstrate that
tenant bandwidth demands can be time-varying and spatially
inhomogeneous, but can also be predicted, based on auto-
mated inference from their previous history.

We argue that predictive guarantees provide a better ab-
straction than prior approaches, for three reasons. First, the
predictive guarantee abstraction is simpler for the tenant, be-
cause the provider automatically predicts a suitable guarantee
and presents it to the tenant.

Second, the predictive guarantee abstraction supports time-
varying and space-varying demands. Prior approaches typ-
ically offer bandwidth guarantees that are static in at least
one of those respects, but these approaches do not capture
general cloud applications. For example, we expect temporal
variation for user-facing applications with diurnally-varying
workloads, and spatial variation in VM-to-VM traffic for
applications such as three-tier services.

Third, the predictive guarantee abstraction easily supports
fine-grained guarantees. By generating guarantees automat-
ically, rather than requiring the tenant to specify them, we
can feasibly support a different guarantee on each VM-to-

1http://hpcloud.com
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Figure 1: Cicada’s architecture.

VM directed path, and for relatively short time intervals.
Fine-grained guarantees are potentially more efficient than
coarser-grained guarantees, because they allow the provider
to pack more tenants into the same infrastructure.

Recent research has addressed these issues in part. For
example, Oktopus [1] supports a limited form of spatial
variation; Proteus [30] supports a limited form of temporal-
variation prediction. But no prior work, to our knowledge,
has offered a comprehensive framework for cloud customers
and providers to agree on efficient network-bandwidth guar-
antees, for applications with time-varying and space-varying
traffic demands.

We place predictive guarantees in the concrete context of
Cicada, a system that implements predictive guarantees. Ci-
cada observes a tenant’s past network usage to predict its
future network usage, and acts on its predictions by offering
predictive guarantees to the customer, as well as by placing
(or migrating) VMs to increase utilization and improve load
balancing in the provider’s network. Cicada is therefore ben-
eficial to both the cloud provider and cloud tenants. Figure 1
depicts Cicada’s architecture, which we describe in detail in
§4.

Our primary contributions are the introduction of predic-
tive guarantees, and trace-based analyses of the motivation
for, and utility of, our approach. We answer the following
questions:

1. Do real applications exhibit bandwidth variability? We
show that they do, using network traces from HP Cloud
Services, and thus justify the need for predictions based
on temporal and spatial variability in application traf-
fic. While such variability is not surprising, it has not
previously been quantified for cloud networks.

2. How well does Cicada predict network demands? We
describe Cicada’s prediction algorithm. The algorithm
treats certain previously observed traffic matrices as “ex-
perts” and computes a weighted linear combination of
the experts as the prediction. The weights are computed
automatically using online learning. Using our network
traces, we show that the median prediction errors of the
algorithm are 90% lower than other methods. Moreover,
we can often predict when the prediction is likely to
be wrong (and avoid making guarantees in such cases).
The algorithm can predict parameters for Oktopus’ Vir-
tual Oversubscribed Cluster (VOC) model [1] nearly as

well as a perfect oracle.

3. Can a provider use Cicada’s predictions to better uti-
lize its network infrastructure? We present a greedy
VM-placement heuristic, which uses these predictions.
For well-provisioned networks, a provider using this
heuristic can improve inter-rack bandwidth utilization
by over 2× in certain datacenter topologies, compared
to Oktopus.

2. RELATED WORK

We begin by putting Cicada in context of other, related
systems. We discuss related work on traffic prediction algo-
rithms in §5.

2.1 Definitions
We use the following definitions. A provider refers to an

entity offering a public cloud (IaaS) service. A customer is
an entity paying for use of the public cloud. We distinguish
between customer and tenant, as tenant has a specific mean-
ing in OpenStack.2: operationally “a collection of VMs that
communicate with each other.” A single customer may be
responsible for multiple tenants. Finally, application refers
to software run by a tenant; a tenant may run multiple appli-
cations at once.

2.2 Cloud-Network Bandwidth Guarantees
Recent research has proposed various forms of cloud net-

work guarantees. Oktopus supports a two-stage “virtual over-
subscribed cluster” (VOC) model [1], intended to match a typ-
ical application pattern in which clusters of VMs require high
intra-cluster bandwidth and lower inter-cluster bandwidth.
VOC is a hierarchical generalization of the hose model [6];
the standard hose model, as used in MPLS, specifies for
each node its total ingress and egress bandwidths. The finer-
grained pipe model specifies bandwidth values between each
pair of VMs. Cicada supports any of these models.

The Proteus system [30] profiles specific MapReduce jobs
at a fine time scale, to exploit the predictable phased behavior
of these jobs. It supports a “temporally interleaved virtual
cluster” model, in which multiple MapReduce jobs are sched-
uled so that their network-intensive phases do not interfere
with each other. Proteus assumes uniform all-to-all hose-
model bandwidth requirements during network-intensive
2http://docs.openstack.org/trunk/openstack-
compute/admin/content/users-and-projects.
html
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phases, although each such phase can run at a different pre-
dicted bandwidth. Unlike Cicada, it does not generalize to a
broad range of enterprise applications.

Kim et al. describe a system that measures the time-varying
traffic for a tenant’s VMs for a month, then uses a stable-
marriage algorithm to place these VMs to reduce network
oversubscription [14]. They evaluated this scheme using
synthetic traffic, showing an improvement over random or
first-fit VM placement. Other recent work has focused on
making traffic predictions to produce short-term (10-minute)
guarantees for video streaming applications [20]. Although
this work considers VM-to-VM guarantees, it is not clear
that the approach generalizes to long-term guarantees, or to
applications beyond video streaming.

None of the papers discussed above, except for Proteus,
address the problem of how the desired bandwidths are cho-
sen. Hajjat et al. [10] describe a technique to decide which
application components to place in a cloud datacenter, for
hybrid enterprises where some components remain in a pri-
vate datacenter. Their technique tries to minimize the traffic
between the private and cloud datacenters, and hence rec-
ognizes that inter-component traffic demands are spatially
non-uniform. In contrast to Cicada, they do not consider
time-varying traffic nor how to predict it, and they focus pri-
marily on the consequences of wide-area traffic, rather than
intra-datacenter traffic.

Cicada does not focus on the problem of enforcing guaran-
tees. Though this issue would arise for a provider using Ci-
cada, it can be addressed with numerous existing techniques.
For example, SecondNet [9] supports either pipe-model or
hose-model guarantees (their “type-0” and “type-1” services,
respectively), and focuses on how to place VMs such that
the guarantees are satisfied. Distributed Rate Limiting [23]
supports a tenant-aggregate limit (similar to a hose model),
and focuses on enforcing a limit at multiple sites, rather than
within one cloud datacenter. GateKeeper [26] provides a pure
hose-model guarantee, with the option of allowing additional
best-effort bandwidth; its goal is to protect each VM’s input-
bandwidth guarantee against adversarial best-effort traffic.
NetShare [16] focuses on how to provide enforcement mech-
anisms for cloud network guarantees; it may be viewed as a
good way to achieve the “enforce rate limits” step of Figure 1.

Similarly, Cicada does not focus on the tradeoff between
guarantees and fairness. Cloud providers could address this
issue by using an existing system such as FairCloud [22],
which develops mechanisms that support various points in
the tradeoff space.

2.3 Datacenter Network Measurement Studies
Despite the importance of datacenter networks, the re-

search community has had scant access to measurements,
because of the difficulty of gathering large-scale measure-
ments, the privacy and security risks created by these data
sets, and the proprietary value that providers place on un-
derstanding what goes on in their networks. We know of
no published measurement studies on IaaS traffic matrices

(except perhaps [2], discussed below).
Prior studies on similar networks have detected temporal

and spatial variability. Benson et al. [3] analyzed link-level
SNMP logs from 19 datacenters, finding “temporal and spa-
tial variations in link loads and losses.” These, we believe,
were not cloud (IaaS) networks per se (they may have been
SaaS/PaaS datacenters), although their applications may be
similar to those of cloud tenants. Benson et al. [2] gathered
SNMP statistics for ten datacenters and packet traces from
a few switches in four datacenters. They describe several of
these as “cloud data centers,” but it is unclear whether they
are actually IaaS networks. They report that “diurnal patterns
[in link utilization] exist in all [ten] data centers,” and that
“time-of-day and day-of-week variation exists in many of the
data centers,” especially in the cores of these networks.

Greenberg et al. [8] report on SNMP and NetFlow data
from a “large cloud service provider.” We believe this, too, is
not an IaaS provider. They report a distinct lack of short-term
predictability for traffic matrices, but do not say whether this
datacenter experiences diurnal variations. Kandula et al. [13]
found considerable short-term spatial variation in a 1500-
server data-mining cluster, but did not investigate whether
this variation is predictable. Bodík et al. [4] also found spatial
variation in inter-service traffic in a datacenter, as a result of
the fact that machines responsible for different services did
not typically communicate with one another.

2.4 Internet QoS
QoS on the Internet was a vibrant research area for many

years, with architectures such as IntServ developed for end-
to-end guarantees. End-to-end Internet QoS has seen little
practical deployment, in part because most Internet paths in-
volve multiple providers, making the economics and payment
structure of any end-to-end guaranteed QoS scheme difficult.
In contrast, a cloud network is run by a single operator, and
inherently has a mechanism to bill its customers.

Another drawback of proposals such as IntServ is that
they force the application, or end point, to make explicit
reservations and to specify traffic characteristics. For all
but the simplest of applications, this task is challenging, and
many application developers or operators have little idea what
their traffic looks like over time. Cicada resolves this issue
through its use of predictions.

Cicada’s predictive approach resembles ISP traffic engi-
neering, which ISPs deploy in practice. Traffic engineering
uses estimates of traffic to map flows or aggregates to paths
in a network. The primary difference is that Cicada makes
predictions about the future, and uses these to offer predic-
tive guarantees to tenants, and/or to place VMs so as to shift
traffic. Cicada does not deal with the problem of estimating
traffic matrices from noisy link measurements, which many
traffic engineering schemes address.

3. MEASUREMENT RESULTS

We designed Cicada under the assumption that the traffic
from cloud tenants is predictable, but in ways that are not
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captured by existing models (e.g., VOC-style allocations [1],
static, all-to-all traffic matrices, etc.). Before building Cicada,
we collected data from HP Cloud Services, to analyze the
spatial and temporal variability of its tenants’ traffic.

3.1 Data
We have collected sFlow [28] data from HP Cloud Services,

which we refer to as the HPCS dataset. Our dataset consists
of about six months of samples from 71 Top-of-Rack (ToR)
switches. Each ToR switch connects to either 48 servers via
1GbE NICs, or 16 servers via 10GbE NICs. In total, the data
represents about 1360 servers, spanning several availability
zones (portions of a datacenter that are isolated from failures
in other parts of the same datacenter). This dataset differs
from those in previous work—such as [2, 3, 8]—in that it
captures VM-to-VM traffic patterns. It does not include any
information about what types of applications were running
(e.g., MapReduce jobs, webservers, etc.), as that information
is not available from packet headers.

Under the agreement by which we obtained this data, we
are unable to reveal information such as the total number of
tenants, the number of VMs per tenant, or the growth rates
for these values.

3.1.1 Dataset Limitations
During data collection, the physical network was generally

over-provisioned. Hence, our measurements reflect the actual
offered loads at the virtual interfaces of the tenant VMs. Some
of the smaller VMs were output-rate-limited at their virtual
interfaces by HPCS; we do not know these rate limits.

Because the HPCS dataset samples come from the ToR
switches, they do not include any traffic between pairs of VMs
when both are on the same server. We believe that we still
get samples from most VM pairs, because, in the measured
configuration (OpenStack Diablo), VMs are placed on servers
uniformly at random. Assuming such placement on n servers,
the probability of any two of a tenant’s k VMs being on the
same server is 1/n; with n = 1360, the probability that we will
miss any given VM-pair’s traffic is less than .001%.3

We aggregate the data over five-minute intervals, to pro-
duce datapoints of the form 〈timestamp, source, destination,
number of bytes transferred from source to destination〉. We
keep only the datapoints where both the source and desti-
nation are private IPs of virtual machines, and thus all our
datapoints represent traffic within the datacenter. Making
predictions about traffic traveling outside the datacenter or
between datacenters is a challenging task, which we do not
address in this work.

For privacy reasons, our dataset does not include informa-
tion associating VMs with tenants or applications. Instead,
we define tenants by using the connected components of
the full traffic matrix, which is in line with the OpenStack
definition of tenants.
3The expected number of unordered pairs of k VMs sharing n servers
is 1

n
(k

2
)
. There are

(k
2
)

possible unordered pairs among k VMs, so
the probability that any VM-pair shares the same server is 1
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Figure 2: Spatial variation in the HPCS dataset.

3.1.2 Measurement-Interval Granularity
Cicada’s predictive guarantees are parameterized on two

values: H, the amount of time the guarantee is good for,
and δ , the peak-bandwidth measurement interval. During
a period of H hours, Cicada’s prediction reflects what the
peak-bandwidth should be in any δ -second interval (e.g., if
H = 1 and δ = 300, Cicada’s prediction reflects the maximum
amount of bandwidth that it expects the application to use
in any 300-second interval for the next hour). For latency-
sensitive applications, predictions for δ << H are useful; for
latency-insensitive applications, δ ≈ H.

Because our data collection samples samples over 5-minute
intervals, for our datasets, δ ≥ 300 seconds. Real applications
might require guarantees with δ < 1 second; our implemen-
tation supports these small δ values (§8.1).

3.1.3 Over-sampling
Some of the paths in the HPCS dataset are over-sampled.

If A and B are VMs on the same ToR switch S1, traffic on
A ; B will only be sampled at S1. But if VM C resides on a
different ToR S2, traffic on A ; C will be sampled at both S1
and S2, twice as often as A ; B.

We correct this problem by noting which switches we see
on each path (sFlow samples are tagged with the ToR’s own
address). If we see two switches on a path, we know that this
flow has been oversampled, so we scale those measurements
down by a factor of two.

3.2 Spatial Variability
To quantify spatial variability, we compare the observed

tenants to an ideal, static, all-to-all tenant (this tenant is ideal
as it is the easiest to make predictions for: every intra-tenant
connection uses the same amount of bandwidth all of the
time). Let Fi j be the fraction of this tenant’s traffic sent from
V Mi to V M j. For the “ideal” all-to-all tenant, the distribution
of these F values has a standard deviation of zero, since every
VM sends the same amount of data to every other VM.

For each tenant in the HPCS dataset, we calculate the dis-
tribution of its F values, and plot the coefficient of variation
(standard deviation over mean) in Figure 2. The median
cov value is 1.732, which suggests nontrivial overall spatial
variation.
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Figure 3: Temporal variation in the HPCS dataset.

Some VMs communicate much more than others: one
tenant with cov > 10 has eight VMs, with a few pairs that
send modest amounts of data, and all other pairs sending little
to no data. These results suggest that a uniform, all-to-all
model is insufficient for making traffic predictions; given
the high cov values in Figure 2, a less strict but not entirely
general model such as VOC [1] may not be sufficient either.

3.3 Temporal Variability
To quantify temporal variability, we first pick a time in-

terval H. For each consecutive non-overlapping interval of
H hours, we calculate the sum of the total number of bytes
sent between each pair p of VMs. This gives us a distribution
Tp of bandwidth totals. We then compute the coefficient of
variation for this distribution, covp. The temporal variation
for a tenant is the weighted sum of these values, where the
weight for covp is the bandwidth used by pair p. This scaling
reflects the notion that tenants where only one small flow
changes over time are less temporally-variable than those
where one large flow changes over time.

For each tenant in the HPCS dataset, we calculate its tem-
poral variation value, and plot the CDF in Figure 3. Like the
spatial variation graph, Figure 3 shows that most tenants have
high temporal variability. This variability decreases as we
increase the time interval H, but we see variability at all time
scales. Tenants with high temporal variation are typically
ones that transfer little to no data for long stretches of time,
interspersed with short bursts of activity.

The results so far indicate that typical cloud tenants may
not fit a rigid model. In particular, Figure 3 shows that most
tenants exhibit significant temporal variation. Thus, static
models cannot accurately represent the traffic patterns of the
tenants in the HPCS dataset.

4. THE DESIGN OF CICADA

The goal of Cicada is to free tenants from choosing be-
tween under-provisioning for peak periods, or over-paying for
unused bandwidth. Predictive guarantees permit a provider
and tenant to agree on a guarantee that varies in time and/or
space. The tenant can get the network service it needs at a
good price, while the provider can avoid allocating unneeded
bandwidth and can amortize its infrastructure across more

tenants.

4.1 An Overview of Cicada
Cicada has several components, corresponding to the steps

in Figure 1. After determining whether to admit a tenant—
taking CPU, memory, and network resources into account—
and making an initial placement (steps 1 and 2), Cicada mea-
sures the tenant’s traffic (step 3), and delivers a time series of
traffic matrices to a logically centralized controller. The con-
troller uses these measurements to predict future bandwidth
requirements (step 4). In most cases, Cicada converts a band-
width prediction into an offered guarantee for some future
interval. Customers may choose to accept or reject Cicada’s
predictive guarantees (step 5). The customer might also pro-
pose its own guarantee, for which the provider can offer a
price. Because Cicada collects measurement data continu-
ally, it can make new predictions and offer new guarantees
throughout the lifetime of the tenant.

Cicada interacts with other aspects of the provider’s infras-
tructure and control system. The provider needs to rate-limit
the tenant’s traffic to ensure that no tenant undermines the
guarantees sold to other customers. We distinguish between
guarantees and limits. If the provider’s limit is larger than
the corresponding guarantee, tenants can exploit best-effort
bandwidth beyond their guarantees.

A provider may wish to place and perhaps migrate VMs
based on their associated bandwidth guarantees, to improve
network utilization. We describe a VM migration method in
§7.4. The provider could also migrate VMs to increase the
number of guarantees that the network can support [7].

4.2 Assumptions
In order to make predictions, Cicada needs to gather suffi-

cient data about a tenant’s behavior. Based on our evaluation,
Cicada may need at least an hour or two of data before it can
offer useful predictions.

Any shared resource that provides guarantees must include
an admission control mechanism, to avoid making infeasible
guarantees. We assume that Cicada will incorporate net-
work admission control using an existing mechanism, such
as [1], [12], or [15]. We also assume that the cloud provider
has a method to enforce guarantees, such as [22].

4.3 Measurement Collection
Cicada collects a time series of traffic matrices for each

tenant. One could do this passively, by collecting NetFlow
or sFlow data at switches within the network, or by using an
agent that runs in the hypervisor of each machine. Switch-
based measurements create several challenges, including cor-
rectly ascribing VMs to the correct tenant. Our design collects
VM-pair traffic measurements, using an agent that runs on
each compute server (see §8.1), and periodically reports these
to the controller.

We would like to base predictions on offered load, but
when the provider imposes rate limits, we risk underesti-
mating peak loads that exceed those limits, and thus under-
predicting future traffic. We observe that we can detect when
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a VM’s traffic is rate-limited (see §8.1), so these underesti-
mates can be detected, too, although not precisely quantified.
Currently, Cicada does not account for this potential error.

4.4 Prediction Model
Some applications, such as backup or database ingestion,

require bulk bandwidth—that is, they need guarantees that
the average bandwidth over a period of H hours will meet
their needs. Other applications, such as user-facing systems,
require guarantees for peak bandwidth over much shorter
intervals. Thus, Cicada’s predictions describe the maximum
bandwidth expected during any averaging interval δ during
a given time interval H. If δ = H, the prediction is for the
bandwidth requirement averaged over H hours, but for an
interactive application, δ might be just a few milliseconds.
Our current implementation produces a prediction once per
hour (H = 1).

Note, of course, that the predictive guarantees offered by
Cicada are limited by any caps set by the provider; thus, a
proposed guarantee might be lower than suggested by the
prediction algorithm.

A predictive guarantee entails some risk of either under-
provisioning or over-provisioning, and different tenants will
have different tolerances for these risks, typically expressed
as a percentile (e.g., the tenant wants sufficient bandwidth for
99.99% of the 10-second intervals). Cicada uses the results
of the prediction to determine whether it can issue reliable
predictive guarantees for a tenant; if not, it does not propose
such a guarantee.

4.5 Recovering from Faulty Predictions
Cicada’s prediction algorithm may make faulty predictions

because of inherent limitations or insufficient prior informa-
tion. Because Cicada continually collects measurements, it
can detect when its current guarantee is inappropriate for the
tenant’s current network load.

When Cicada detects a faulty prediction, it can take one of
many actions: stick to the existing guarantee, propose a new
guarantee, upgrade the tenant to a higher, more expensive
guarantee (and perhaps bear some fraction of the cost of the
upgrade), etc. How and whether to upgrade guarantees, as
well as what to do if Cicada over-predicts, is a pricing-policy
decision, and outside our scope. We note, however, that
typical System Level Agreements (SLAs) include penalty
clauses, in which the provider agrees to remit some or all of
the customer’s payment if the SLA is not met.

We also note that a Cicada-based provider must maintain
the trust of its customers: it cannot regularly under-predict
bandwidth demands, or else tenants will have insufficient
guarantees and their own revenues may suffer; it also cannot
regularly over-predict demands, or else customers will be
over-charged and take their business elsewhere. This moti-
vates our focus in §7 on evaluating the quality of Cicada’s
predictions, including its decision whether a tenant’s demands
are in fact predictable.

5. CICADA’S TRAFFIC PREDICTION METHOD

Much work has been done on predicting traffic matrices
from noisy measurements such as link-load data [27, 31].
In these scenarios, prediction approaches such as Kalman
filters and Hidden Markov Models—which try to estimate
true values from noisy samples—are appropriate. Cicada,
however, knows the exact traffic matrices observed in past
epochs (an epoch is H-hours long; typically one hour); its
problem is to predict a future traffic matrix.

To the best of our knowledge, there is little work in this
area, especially in the context of cloud computing. On ISP
networks, COPE [29] describes a strategy that predicts the
best routing over a space of traffic predictions, made up
of the convex hull of previous traffic matrices. It is not a
prediction scheme per se, but we draw inspiration from this
work, and base our prediction algorithm around computing a
“best” convex combination of previous traffic matrices as our
future estimate.

5.1 Algorithm
The algorithm uses Herbster and Warmuth’s “tracking the

best expert” idea [11], which has been successfully adapted
before in wireless power-saving and energy reduction con-
texts [5, 18]. To predict the traffic matrix for epoch n+1, we
use all previously observed traffic matrices, M1, . . . ,Mn (later,
we show that matrices from the distant past can be pruned
away without affecting accuracy). In our context, the rows
and columns of the matrix are each VMs, with the entry in
row i and column j specifying the number of bytes that VM i
sent to VM j in the corresponding epoch (for predicting av-
erage bandwidth) or the maximum observed over a δ -length
interval (for peak bandwidth).

Each of these previously observed matrices acts as an “ex-
pert,” recommending that Mi is the best predictor, M̂n+1, for
epoch n + 1. The algorithm computes M̂n+1 as a weighted
linear combination of these matrices:

M̂n+1 =
n

∑
i=1

wi(n) ·Mi

where wi(n) denotes the weight given to Mi when making a
prediction for epoch n+1, with ∑n

i=1 wi(n) = 1.
The algorithm learns the weights online. At each step, it

updates the weights according to the following rule:

wi(n+1) =
1

Zn+1
·wi(n) · e−L(i,n)

where L(i,n) denotes the loss of expert i in epoch n and Zn+1
normalizes the distribution so that the weights sum to unity.

We use the relative Euclidean `2-norm between Mi and Mn
as the loss function L. Treating both these matrices as vectors,
~Mi and ~Mn respectively, the relative `2-norm error is

L(i,n) = E`2 = ‖~Mi− ~Mn‖/‖ ~Mn‖.

That is, the norm of the individual errors over the Euclidean
norm of the observed data (the square-root of the sum of the
squares of the components of the vector).
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Figure 4: Average weights produced by Cicada’s predic-
tion algorithm. These values represent the average of the
final weight values over each application in the HPCS
dataset.

Note that this algorithm can predict both average band-
width as well as peak bandwidth. The only difference is the in-
put matrices: for average bandwidth, the matrices M1, . . . ,Mn
represent the total amount of data in each epoch, while for
peak bandwidth, they represent the maximum over a δ -length
interval. It is also easy to extend this model to produce hose-
model predictions rather than pipe-model predictions, simply
by using input matrices that represent the hose bandwidth
(in this case, each matrix is a 1×n matrix, and entry i corre-
sponds to the number of bytes sent out of VM i).

5.1.1 Intuition
Our intuition when approaching the problem of predicting

traffic is that the traffic matrix Mn should depend most heavily
on the most recent traffic matrices (Mn−1,Mn−2, etc.), as well
as on traffic matrices from similar time periods on previous
days (Mn−24,Mn−48, etc.).

If our intuition were correct, Cicada’s prediction algorithm
will naturally result in higher weights for these matrices. Af-
ter making the predictions for each application in our dataset,
we took the weights for each application, and calculated the
average weight values over our entire dataset. These average
weights are plotted in Figure 4 (the x axis is limited to the
two most recent days of data). The 12 most recent hours of
traffic are weighted heavily, and there is also a spike at 24
hours earlier. Weights are vanishingly small prior to 24 hours
earlier. In particular, we looked for a spike at the 7-day offset,
expecting that some user-facing applications have weekly
variations, but found none. This result indicates that, at least
in our dataset, one does not need weeks’ worth of data to
make reliable predictions; a much smaller amount of data
suffices.

5.2 Alternate Prediction Algorithms
We tested Cicada’s prediction algorithm against two other

algorithms. First, we tried a machine learning algorithm
based on linear regression. A prediction between VMs i and
j was made by finding “relevant” historical data between i and
j, finding the linear function f that best mapped a previous

epoch’s data to the next epoch’s, and using f to make a
prediction for the current time. The “relevant” historical
data was data between i and j from similar times-of-day
and days-of-week; similarity was determined via a Mann-
Whitney U-Test, as in [17]. This algorithm was also based on
our intuition that traffic from the same time-of-day would be
more relevant than traffic from other times. In practice, we
found that this algorithm performed comparably to the bank-
of-experts-based algorithm on average bandwidth predictions,
but was very unreliable for peak bandwidth predictions; for
that reason, we do not present detailed results in §7.

We also tested Cicada’s algorithm against a simple EWMA.
This technique performed worse than Cicada’s algorithm for
both peak and average bandwidth prediction, and so we do
not present detailed results in §7.

6. COMPARING CICADA TO VOC
Because we believe that the VOC model [1] represents the

state of the art in spatially-varying cloud-bandwidth reser-
vations, in our trace-based evaluation of Cicada, we use a
VOC-style system as the baseline. In [1], the authors use
VOCs to make bandwidth reservations for tenants, allowing
different levels of bandwidth between different groups of
VMs. Although their system was not developed for making
bandwidth predictions, we can interpret its bandwidth reser-
vations as predictions. We compare a VOC-style system to
Cicada, finding that Cicada can accurately predict the param-
eters for a VOC-style system, and that Cicada’s pipe model
results in less waste than VOC’s hierarchical hose model.

6.1 VOC-style Guarantees
The Oktopus system introduced the Virtual Oversubscribed

Cluster (VOC) model, to “capitalize on application structure
to reduce the bandwidth needed from the underlying physical
infrastructure” [1]. In VOC, the tenant’s guarantee request is
of the form 〈N,B,S,O〉, such that a virtual network of N VMs
is divided into groups of size S. The VMs within each group
are effectively connected to each other via links of bandwidth
B through a non-oversubscribed virtual switch. Between any
pair of groups, VOC provides bandwidth B/O; thus, O is the
effective oversubscription factor for inter-group traffic. VOC
is designed to reflect not only a typical application structure,
but also a typical physical datacenter topology, where Top-of-
Rack (ToR) switches have high capacity, but the aggregation
layer that connects the ToRs is oversubscribed.

Oktopus itself is designed to place the VMs on the network
such that their VOC requests are met. It assumes that the
tenants are responsible for choosing the parameters 〈B,S,O〉.
We designed a heuristic, detailed in the Appendix, to deter-
mine these parameters, and to allow variable cluster sizes.

To compare Cicada and VOC, we interpret the B and B/O
hoses as predictions: VOC predicts that a VM in a particular
group will use B bandwidth to send to VMs within its cluster,
and groups will use B/O bandwidth to send to other groups.
These predictions are not pipe-model predictions, as is our
preferred model for Cicada, but we are still able to compare
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Figure 5: Cases where VOC is inefficient.

the accuracy of the two systems on a tenant-by-tenant basis.

6.2 Inefficiencies of VOC
The Oktopus paper showed that the VOC model gives

providers more flexibility than a clique abstraction, which
provides a static, uniform bandwidth between all pairs of
VMs. However, we give an example to illustrate how even
the VOC model can limit provider flexibility for certain appli-
cations, due to over-allocating bandwidth both within groups
and across groups.

Consider a group of three VMs as in Figure 5(a). Suppose
that V M1 sends 20 units total to V M2 and V M3. Because
of this, B must be at least 20 for each VM in the group.
However, if V M2 and V M3 send fewer than 20 units total, this
value of B will over-allocate bandwidth. In practical terms,
if each VM is on a distinct server, the VOC model requires
allocating 20 units of each server’s NIC output bandwidth
to this tenant, even though V M2 and V M3 only need 2 NIC-
output units. A similar pattern can exist across groups, as in
Figure 5(b), where one group requires more total bandwidth
than the others.

VOC’s over-allocation of bandwidth in these scenarios
stems from an assumption that VMs within a group behave
similarly (sending the same amount of data to the rest of the
group), as well as a corresponding assumption across groups.

7. EVALUATION

We evaluated our data on the HPCS dataset. We tested
several hypotheses: first, that Cicada can determine when one
of its predictions is reliable or not; second, that Cicada can
accurately predict a tenant’s future bandwidth requirements;
and third, that predictions incorporating spatial and temporal
variation can yield guarantees that waste less bandwidth than
uniform guarantees or static. We define “wasted bandwidth”
as the bandwidth that is guaranteed to a tenant but not used.
Wasted bandwidth is a proxy for estimating how much money
a customer would save—methods that waste less bandwidth
will likely save the customers money—but allows us to avoid
defining a particular cost model. Overall, we found that the
reliability of Cicada’s predictions was correlated with the
size of a tenant and the frequency of under-predictions, that
Cicada’s guarantees were accurate for both average and peak
predictions, and that Cicada’s guarantees were more accurate
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Figure 6: Relative error vs. history

than guarantees based on VOC, decreasing the relative per-
tenant error by 90% in both the average-bandwidth case and
the peak-bandwidth case.

We observed very little evidence of VM flexing in our
dataset (where the number of a tenant’s VMs changes over
time). Flexing would typically manifest as over-prediction
errors (making predictions for VM pairs that used to exist, but
no longer do because of flexing). To eliminate this mistake,
we eliminated any predictions where the ground truth data
was zero, but found that it did not appreciably change the
results. For this reason, we do not present separate results in
this section, and simply report the results over all of the data.

7.1 Quantifying Prediction Accuracy
To quantify the accuracy of a prediction, we compare the

predicted values to the ground truth values, using the relative
`2-norm error described in §5.1. For Cicada, the prediction
and ground-truth vectors are of length N2−N, because Ci-
cada makes predictions between each pair of distinct VMs. In
a VOC-style system, there are fewer predictions: one predic-
tion for each of the N VMs to the other VMs in its group, and
one prediction for each group to the other groups. Regardless
of the number of total predictions, we get one error value per
tenant, per time interval.

In addition to the relative `2-norm error, we also present the
per-tenant relative error. This metric is simply the sum of the
prediction errors divided by the total amount of ground-truth
data. Unlike the relative `2-norm error, this metric discrim-
inates between over-prediction and under-prediction, since
the latter can be more disruptive to application performance.
Because it does not use vector norms, the per-tenant relative
error makes it easier for us to see if either system has substan-
tially under-predicted for a tenant. However, it is possible
that under- and over-prediction errors for different VM pairs
could cancel out in the relative error; this type of cancellation
does not happen in the relative `2-norm error.

7.2 Determining Whether Predictions Are Reliable
In our dataset, we found that Cicada could not reliably

make a correct prediction for tenants with few VMs. In all
of the results that follow, we eliminate tenants with fewer
than five VMs. This elimination is in line with the fact that
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Figure 7: Prediction errors for average bandwidth.4

Cicada is meant for tenants with network-heavy workloads.
It is possible that on other datasets, the precise number of
tenants below which Cicada cannot reliably make predictions
will differ. Additionally, for tenants that started out with a
series of under-predictions, Cicada’s prediction algorithm
rarely recovered. For this reason, we also consider tenants
with more than fifteen under-predictions to be unreliable, and
do not continue making predictions for them (we do, however,
include results from all predictions for that tenant up to that
point).

Interestingly, we found that Cicada could often make accu-
rate predictions even with very little historical data. Figure 6
shows the relative per-tenant error as a function of the amount
of historical data. Though there is a clear correlation between
relative error and the amount of historical data, it is not nec-
essary to have many hours of data in order to make accurate
predictions.

7.3 Prediction Errors for Individual Tenants
To compare the accuracy of Cicada and a VOC-style model,

we make predictions for one-hour intervals. We allow both
types of guarantees to change over time; that is, the VOC
configuration for a particular hour need not be the same as the
configuration in the next hour. This is an extension from the
original Oktopus paper [1], and improves VOC’s performance
in our comparison.

We evaluate VOC-style guarantees using both predicted
parameters and “oracle-generated” parameters (i.e., with per-

4For average bandwidths, straightforward math shows that Cicada’s
hose-model and pipe-model relative errors will always be identical.
The peak-bandwidth errors, shown in Figure 8, can diverge.

fect hindsight). For the oracle parameters, we determine the
VOC clusters for a prediction interval using the ground-truth
data from that interval. This method allows us to select the
absolute best values for B and O for that interval, as well as
the best configuration. Thus, any “error” in the VOC-oracle
results comes from the constraints of the model itself, rather
than from an error in the predictions.

7.3.1 Average Bandwidth Guarantees
Figure 7 shows the results for average bandwidth predic-

tion. Both Cicada models have lower error than either VOC
model; Cicada’s pipe model decreases the error by 90% com-
pared to the VOC oracle model (comparison against the pre-
dictive VOC model, as well as between VOC and Cicada’s
hose model, yields a similar improvement). The `2-norm
error decreases by 71%. The VOC model using predictions
also closely tracks the VOC-oracle model, indicating that Ci-
cada’s prediction algorithm can generate accurate predictions
for a system using VOC.

In terms of per-tenant relative error, Cicada occasionally
under-predicts, whereas neither VOC model does. Under-
prediction could be worse than over-prediction, as it means
that an application’s performance could be reduced. The
effect of under-provisioning can be lessened by scaling pre-
dictions by an additive or multiplicative factor, though this
risks over-prediction. In the results presented here, we have
scaled the predictions by 1.25×. In addition to lessening
the effects of under-provisioning, this scaling also allows
the bank-of-experts algorithm to make a prediction that is
greater than any of the previous matrices. We were unable to
determine a systematic way to remove the remaining under-
predictions, but speculate that altering the loss function to
penalize under-prediction more heavily than over-predictions
may help; we leave this to future work.

7.3.2 Peak Bandwidth Guarantees
Figure 8 compares peak predictions for δ = 5min. As

with the average-bandwidth predictions, Cicada’s prediction
errors are generally lower, decreasing the median error again
by 90% from the VOC oracle model (the median `2-norm
error decreases by 80%). As before, Cicada does under-
predict more frequently than either VOC model, but overall,
the results for peak-bandwidth guarantees show that Cicada
performs well even for non-average-case traffic.

7.3.3 Discussion
Though Cicada’s prediction algorithm performs well on

our dataset, we make no claim that it is the best prediction
algorithm. Rather, we have shown that accurate traffic pre-
diction is possible and worthwhile in the context of cloud
computing.

7.4 Placement for Reducing Intra-rack Bandwidth
In the previous sections, we reported wasted bandwidth

as a total; however, it is not clear that cloud providers treat
wasted intra-rack and inter-rack bandwidth equally. Inter-rack
bandwidth may cost more, and even if intra-rack bandwidth
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Figure 8: Prediction errors for peak bandwidth.

Algorithm 1 Cicada’s VM placement algorithm
1: P = set of VM pairs, in descending order of their band-

width predictions
2: for (src,dst) ∈ P do
3: if resources aren’t available to place (src,dst) then
4: revert reservation
5: return False
6: A = All available paths
7: if src or dst has already been placed then
8: restrict A to paths including the appropriate endpoint
9: Place (src,dst) on the path in A with the most available

bandwidth

is free, over-allocating network resources on one rack can
prevent other tenants from being placed on the same rack
(due to a presumed lack of network resources).

To determine whether wasted bandwidth is intra- or inter-
rack, we need a VM-placement algorithm. For VOC, we use
the placement algorithm detailed in [1], which tries to place
clusters on the smallest subtree that will contain them. For
Cicada, we developed a greedy placement algorithm, detailed
in Algorithm 1. This algorithm is similar in spirit to VOC’s
placement algorithm; Cicada’s algorithm tries to place the
most-used VM pairs on the highest-bandwidth paths, which
in a typical datacenter corresponds to placing them on the
same rack, and then the same subtree. However, since Cicada
uses fine-grained, pipe-model predictions, it has the potential
to allocate more flexibly; VMs that do not transfer data to
one another need not be placed on the same subtree, even if
they belong to the same tenant.

We compare Cicada’s placement algorithm against VOC’s,
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Figure 9: Inter-rack bandwidth available after placing
applications.

on a simulated physical infrastructure with 71 racks with
16 servers each, 10 VM slots per server, and (10G/Op)Gbps
inter-rack links, where Op is the physical oversubscription
factor. For each algorithm, we select a random tenant, and
use the ground truth data to determine this tenant’s bandwidth
needs for a random hour of its activity, and place its VMs. We
repeat this process until 99% of the VM slots are filled. Using
the ground-truth data allows us to compare the placement
algorithms explicitly, without conflating this comparison with
prediction errors. To get a sense of what would happen with
more network-intensive tenants, we also evaluated scenarios
where each VM-pair’s relative bandwidth use was multiplied
by a constant bandwidth factor (1×, 25×, or 250×).

Figure 9 shows how the available inter-rack bandwidth—
what remains unallocated after the VMs are placed—varies
with Op, the physical oversubscription factor. In all cases, Ci-
cada’s placement algorithm leaves more inter-rack bandwidth
available. When Op is greater than two, both algorithms
perform comparably, since this is a constrained environment
with little bandwidth available overall. However, with lower
over-subscription factors, Cicada’s algorithm leaves more
than twice as much bandwidth available, suggesting that it
uses network resources more efficiently in this setting.

Over-provisioning reduces the value of our improved place-
ment, but it does not necessarily remove the need for better
guarantees. Even on an over-provisioned network, a tenant
whose guarantee is too low for its needs may suffer if its VM
placement is unlucky. A “full bisection bandwidth” network
is only that under optimal routing; bad routing decisions or
bad placement can still waste bandwidth.

8. IMPLEMENTATION

We have designed an implementation of Cicada as part
of the OpenStack [21] framework. The implementation has
two components: rate-limiters, which run in the hypervisor
of every physical machine, and a controller that runs some-
where in the datacenter. We envision that Cicada extends the
OpenStack API to allow the tenant’s application to automati-
cally negotiate its network guarantees, rather than requiring
human interaction. A typical setting might be “Accept all
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of Cicada’s guarantees as long as my bill does not exceed
D dollars,” or “Accept all of Cicada’s guarantees, but add
a buffer of 10Mb/s to each VM-pair’s allocated bandwidth”
(if the customer anticipates some amount of unpredictable
traffic).

8.1 Server Agents
On each server, Cicada uses an agent process to collect

traffic measurements and to manage the enforcement of rate
limits. The agent is a Python script, which manages the
Linux tc module in the hypervisor. Cicada’s agent uses tc
both to count packets and bytes for each VM-pair with a
sender on the server, and, via the the HTB queuing discipline,
to limit the traffic sent on each pair in accordance with the
current guarantee-based allocation. This type of collection
is more fine-grained than sFlow, and tc also allows us to
detect, but not precisely quantify, traffic demands in excess of
the rate limit, by counting packet drops. The agent receives
messages from the controller that provide a list of rate limits,
for the 〈src,dst〉 pairs where src resides on that server. It also
aggregates counter values for those pairs, and periodically
reports them to the controller. To avoid overloading the
controller, the reporting period P is larger than the peak-
measurement period δ .

8.2 Centralized Controller
The centralized controller is divided into two components.

The prediction engine receives and stores the data about the
tenants from each server agent. Once a prediction is made
and approved by the tenant, the rate controller uses the Open-
Stack API to determine which VMs reside on which physical
server, and communicates the relevant rates to each rate lim-
iter. At this point, Cicada could also use its placement algo-
rithm (Algorithm 1) to determine whether any VMs should
be migrated, and migrate them via the OpenStack API. Since
Cicada makes long-term traffic predictions, this migration
would be done at long timescales, mitigating the overhead of
migrating VMs.

8.3 Scalability
While our current controller design is centralized, it does

not need to be. Since Cicada makes predictions about ap-
plications individually, the prediction engine can be spread
across multiple controllers, as long as all of the data for a
particular application is accessible by the controller assigned
to that application.

Cicada’s use of pipe-model rate limiting—that is, one rate-
limiter for each VM-pair, at the source hypervisor—could
potentially create scaling problems. Some prior work has also
used pipe-model rate limiting; for example, while Oktopus
implements hose-model guarantees, it enforces these using
“per-destination-VM rate limiters” [1]. However, we have
found no published study of software rate-limiter scaling.

We tested the scalability of the tc rate-limiters used in our
implementation on a pair of 12-core Xeon X5650 (2.67GHz)
servers running Linux 3.2.0-23, with 10Gbps NICs. We
used netperf to measure sender-side CPU utilization for
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Figure 10: Effect of rate limiters on CPU utilization.

60-second TCP transfers under various rate limits, while
varying the number of sender-side rate-limiters. (Only one
TCP stream was active at any time.)

Fig. 10 shows mean results for at least 11 trials. Each
curve corresponds to a rate limit; we marked cases where the
achieved bandwidth was under 90% of the target limit. On
this hardware, we could run many low-bandwidth limiters
without much effect on CPU performance. When we used
more than about 128 high-bandwidth limiters, both CPU
utilization and TCP throughput suffered, but it is unlikely
that a real system would allow both a 10Gbps flow and lots
of smaller flows on the same server. We conclude that pipe-
model rate limiting does indeed scale; [19] also supports this
claim.

9. CONCLUSION

This report described the rationale for predictive guaran-
tees in cloud networks, and the design of Cicada, a system
that provides this abstraction to tenants. Cicada is able to
provide fine-grained, temporally- and spatially-varying guar-
antees without requiring the clients to specify their demands
explicitly. We presented a prediction algorithm using the
“best expert” model, where the prediction for a future epoch
is a weighted linear combination of past observations, with
the weights updated and learned online in an automatic way.
Using traces from HP Cloud Services, we showed that Cicada
accurately predicts tenant bandwidth needs. We also showed
that the fine-grained structure of predictive guarantees can be
used by a cloud provider to improve network utilization in
certain datacenter topologies.
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APPENDIX: VOC PARAMETER-SELECTION

The authors of [1] note that VOC can easily be extended to
handle groups of multiple sizes (Section 3.2 of [1]), but give
no method for automatically determining what the groups
should be, nor for choosing the best values of B and O.

To address this issue, we developed a heuristic for deter-
mining the VOC groups as well as B and O. The heuristic
allows groups of multiple sizes, and relies on two assump-
tions. First, that connections through the aggregate layer are
physically oversubscribed by some factor Op > 1. Second,
that any guarantee should be sufficient to meet the tenant’s
offered network load. The alternative would be to carefully
under-provision certain virtual network paths, which would
increase a job’s completion time but might also reduce the
total cost for running some jobs. Such cost-reduction would
require in-depth knowledge about the tenant’s application
and utility functions, and is beyond the scope of this work.

Our heuristic works by starting with an initial configuration
of groups, with each VM is in its own group. The heuristic
merges the groups that have the highest bandwidth between
them for a new configuration, and iterates on this configura-
tion in the same manner, until the new configuration wastes
more bandwidth than the previous configuration.

Finding B and O for a particular configuration is easy, since
Cicada collects measurement data. Our heuristic selects the
B and O that minimize wasted bandwidth while never under-
allocating a path. B, then, is the maximum of any hose within
one group, and O is the maximum of any hose across groups,
given the previous historical data.

Algorithm 2 VOC parameter selection.
1: groupsp = list of groups, initialized to one group per VM
2: Gv = groupsp // last valid configuration
3: while True do
4: G′ = mergeLargestClusters(groupsp)
5: if G′ = groupsp then
6: break
7: B, O, w = getParamsAndWastedBandwidth(G)
8: if O < 1 // invalid configuration then
9: groupsp = G′

10: continue
11: Bv, Ov, wv = getParamsAndWastedBandwidth(Gv)
12: if w > wv then
13: break
14: else
15: groupsp = Gv = G′
16: B, O = findParameters(Gv)
Output: B, O, Gv
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