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Abstract

The self-controlled case series (SCCS) method is commonly used to investigate associations 

between vaccine exposures and adverse events (side effects). It is an alternative to cohort 

and case control study designs. It requires information only on cases, individuals who have 

experienced the adverse event at least once, and automatically controls all fixed confounders 

that could modify the true association between exposure and adverse event. However, time- 

varying confounders (age, season) are not automatically controlled.

The SCCS method has parametric and semi-parametric versions in terms of controlling the 

age effect. The parametric method uses piecewise constant functions with a priori chosen age 

groups and the semi-parametric method leaves the age effect unspecified. Mis-specification 

of age groups in the parametric version may lead to biased estimates of the exposure effect, 

and the semi-parametric approach runs into computational problems when the sample size is 

moderately large. Moreover, both versions of SCCS represent the time-varying exposures using 

step functions with pre-determined cut-points. A less prescriptive approach may be beneficial 

when the shape of the relative risk function associated with exposure is not known a priori, 

especially when exposure effects can be long-lasting.

This thesis focuses on extending the SCCS method to avoid the aforementioned limitations 

by modelling the age and exposure effects using flexible smooth functions. Specifically, we 

used penalised regression splines based on cubic M-splines, which are piecewise polynomials of 

degree 3. We developed three new extensions: a method that represents only the age effect 

with splines, a method that uses splines to model only the exposure effect and a non-parametric 

SCCS method that represents both effects by splines. Simulation studies showed that these new 

methods outperformed the parametric and semi-parametric methods. The new methods are 

illustrated using large data sets.

Review of SCCS vaccine studies and directions on how to use the method are also given.
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Chapter 1

Introduction

Although vaccines or other drugs are tested extensively for relatively common adverse 

events (side effects) in clinical trials before they are licensed for use, not enough people 

are usually included in such trials to detect adverse reactions that occur only rarely. 

That is, the randomised double-blind controlled clinical trials used to assess the efficacy 

of vaccines and drugs before they are licensed are usually insufficiently powered, or too 

brief, to assess rare but serious side effects or modest increases in the risk of common 

disease outcomes that have a major population impact in absolute terms (Grosso et al., 

2011). Therefore vaccines and drugs used by the wider population need to be constantly 

investigated for safety.

In addition to assessing the risk of rare events, post-licensure studies also enable 

the evaluation of safety within groups such as the elderly, those with chronic medical 

conditions, and pregnant women, who might be deliberately excluded from vaccine or 

other drug trials. In the context of vaccine safety, by providing accumulating evidence, 

they can help to maintain the public confidence needed to keep vaccination uptake high 

enough to prevent disease outbreaks.

1



C h a p t e r  1. In t r o d u c t io n 2

Cohort and case-control study designs are commonly used methods to investigate 

the safety of drugs already on the market. The cohort method compares the risk of 

a potential adverse effect (outcome event) between individuals who are exposed to the 

drug of interest and those who are unexposed. This method, although effective, may 

have a potential problem of confounding variables (Farrington et al., 1996), because the 

exposed group and unexposed group of individuals could have different characteristics 

(socio-economic status, underlying health status, gender etc). Confounding variables are 

variables that are related to both exposure to the drug of interest and the outcome event. 

These variables, which might be difficult to measure and control, can alter the apparent 

relationship between the exposure and an outcome event.

The case-control method compares individuals who experienced the outcome event 

(cases) with individuals who did not experience the event (controls). Controls are usually 

chosen to be matched to cases on variables like gender, age etc. Case-control studies 

are less costly and faster to implement than cohort studies. However, as with cohort 

studies, they suffer from the problem of potential confounding variables that might bias 

the estimates, and may be associated with difficulties in selecting appropriate controls.

Alternative methods to cohort and case-control methods are study designs that use 

information only on individuals who have experienced the outcome event at least once 

(cases). These methods are attractive for three reasons listed in Farrington (2004). First, 

they can usually be implemented using data extracted from readily available databases 

such as hospital admission data or other case reporting mechanisms. Second, they can 

produce results quickly, for example, in response to public concerns or media attention 

about vaccine or other drug safety. Third, they are usually cheaper to carry out than 

methods requiring explicit denominators or separate controls.



C h a p t e r  1. In t r o d u c t io n 3

One of these methods is the self-controlled case series (SCCS) method, or case se

ries method in short, that often combines the power and simplicity of the cohort design 

and the economy of the case-control method, while eliminating confounding by all time 

independent variables (variables that do not change their value with time) (Farrington, 

1995; Farrington and Whitaker, 2006). It was originally developed, by Farrington (1995), 

specifically for use in vaccine safety studies, but has since been applied in non-vaccine 

pharmacoepidemiology and in other areas of epidemiology (Whitaker et al., 2006; Welde

selassie et al., 2011; Grosso et al., 2011).

In the SCCS method, a post-vaccination or duration of drug use risk period (exposure 

period) is defined a priori, and other times within the period during which each individ

ual is observed (the observation period) constitute the control periods. Then the SCCS 

method compares the rate of incidence of an event in an exposure period with the rate of 

incidence in the control periods, when an individual is not exposed. The comparison is 

within individuals. The incidence rate in the control period is the baseline incidence rate; 

this is not estimated in the SCCS method. The estimated measure of the relationship be

tween exposure and outcome event is a relative incidence. Because the comparison is made 

within an individual’s observation period, the method is self-matched; hence, all measured 

and unmeasured age-independent confounding variables, such as socio-economic status, 

birth weight, location, severity of underlying disease, gender, etc., which act multiplica- 

tively on the baseline incidence rate, are automatically controlled. However, time-varying 

confounders such as age and season are not automatically controlled for, but as with 

cohort methods they can be allowed for explicitly in the model (Farrington, 2004).

Careful control of age effects is particularly important in the study of paediatric vac

cines and neurological events, such as febrile convulsions. The incidence of such events is
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highly age-dependent in the first two years of life, which is precisely the age at which many 

routine vaccinations take place. Partly for this reason, potential associations between vac

cination and neurological events have been studied intensively over several decades. These 

studies have used a broad range of methods, including SCCS (Farrington et a l , 1995; Bar- 

low et a l , 2001; Huang et a l , 2010; Miller et al, 1981). Similarly the effect of exposure, 

the main focus of interest, should be modelled appropriately and carefully.

In its original form, the case series model took the multiplicative effect of age on the 

baseline incidence rate into account by dividing age into selected groups, with the age effect 

being represented by a piecewise constant step function. That is, the age effect is taken to 

be constant over the chosen age groups. We refer to this as the parametric version of the 

case series method. Its limitation is that it can be sensitive to mis-specification of the a 

priori selected age groups, which may lead to biased estimates of the association between 

exposure and outcome event. Another version of the SCCS method, in terms of modelling 

the age effect, is the semi-parametric SCCS (Farrington and Whitaker, 2006). In this 

method, the function that represents the age effect is not specified a priori, hence avoiding 

the limitation of the standard (parametric) SCCS method. However, as the number of 

cases in the study increases, the number of parameters to be estimated increases, which 

leads to computational problems (Farrington and Whitaker, 2006). In both the parametric 

and the semi-parametric versions of the SCCS method, the effect of age is represented by 

a step function; in the parametric version these age groups are chosen a priori, whereas 

in the semi-parametric version they are determined by the data.

The effect of exposure, in both versions, is modelled as a step function based on groups 

chosen a priori. Similar to the age effect, the use of step functions to model the exposure 

effect might have limitations: a poor choice of cut-points may be associated with cut-point
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bias and misclassification (Altman, 1991; Greenland, 1995b).

In this thesis, to avoid these limitations, we replace the step functions in the parametric 

and semi-parametric SCCS methods by smooth functions that are based on M-splines. 

M-splines are piecewise polynomial functions connected at points known as knots and 

their linear combination is known as a spline function. The likelihood function of the 

SCCS method, which may be derived from a cohort method by conditioning on the total 

number of events experienced by each individual, contains an integral in its denominator. 

The use of M-splines to represent the age and exposure effects not only removes the 

limitations of step functions, but also avoids the numerical integration of the integral in 

the likelihood function, because the integral of an M-spline can be expressed in terms of 

another spline known as an I-spline. The other advantage of using M-splines is that they 

are positive functions and therefore can be used to approximate a non-negative function by 

constraining their coefficients to be non-negative. In SCCS, the functions that represent 

age and exposure effects should be non-negative functions as they are relative effects.

1.1 Aims and Objectives

The main objective of the thesis is to develop new extensions to the self-controlled 

case series method in order to circumvent the limitations associated with the use of step 

functions in the standard and semi-parametric versions of the method. But first, to set the 

scene, a review of how the SCCS method has been used in vaccine studies is undertaken, 

and clear directions on how it should be used are given. Therefore the aims and objectives 

are:

• to investigate the limitations of the standard and semi-parametric SCCS methods 

using a simulation study;
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• To review how the self-controlled case series method has been applied in vaccine 

studies, clarify misconceptions about the method and present some recommenda

tions on how it should be used, with the emphasis on promoting good practice;

• to represent the age effect with smooth functions as a linear combination of M-spline 

functions while representing exposure effect by a step function;

• to model the exposure-related relative incidence function using a linear combination 

of M-splines and use a piecewise constant function for the age effect; and

• to represent both the age and exposure effects using linear combinations of M-splines 

at the same time.

1.2 Thesis Outline

The thesis begins with a description of the self-controlled case series method and a 

derivation of the likelihood functions of the standard and semi-parametric versions of the 

method in C hap ter 2. In addition, C hap ter 2 presents a simulation study conducted 

to investigate the limitations of the standard and semi-parametric SCCS methods.

C hap ter 3 presents a critical review of vaccine studies that made use of the SCCS 

method between 1995 and beginning of 2014. This review includes discussion on: how 

the studies described their data and accuracy of the data, how observation periods and 

risk periods were chosen, how potential confounders were handled, potential sources of 

biases, comparison of SCCS results with other statistical methods, some methodologi

cal issues, power and sample size issues and how sensitivity analyses were done. Also, 

recommendations on how the SCCS method should be used and reported are given.

C hap ter 4 introduces some of the smooth functions which could be used in modelling
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age and exposure effects to avoid the limitations investigated in C h ap te r 2 . The func

tions discussed in this chapter are polynomial functions, fractional polynomials, truncated 

power functions, B-splines, M-splines and I-splines.

C hapters 5, 6 and 7 describe the extensions made to the standard SCCS method 

by replacing the step functions which represent age and exposure effects by smooth func

tions. In C hap ter 5 the standard SCCS method is extended by representing the age- 

related relative incidence function as a linear combination of cubic M-splines (piecewise 

cubic polynomial functions) and the cumulative age-specific relative incidence by a linear 

combination of I-splines. The use of polynomial and fractional polynomials in the context 

of the SCCS method are also described in this chapter. To use M-splines to represent a 

function, it is first necessary to determine the number and position of the knots used to 

make them. Smoothing splines are spline functions where the knots are placed at data 

points: so prior knots do not need to be selected. This however greatly increases the 

computational burden, because the number of parameters to be estimated is about equal 

to the number of observations. Instead we use penalised regression splines, for which the 

number of knots is less than the number of observations and the knots need to be deter

mined a priori. Selecting too small a number of knots under-fits the function and too large 

a number of knots over-fits it. So we use a large number of knots and introduce a penalty 

term to the log-likelihood function to control the roughness of the function. C h ap te r 5 

presents the derivation of a penalised log-likelihood function for the spline-based SCCS 

method. An approximate cross validation method used to choose a smoothing parameter 

that controls the tradeoff between roughness and fit is also derived in this chapter. Fi

nally, C hap ter 5 presents a simulation study conducted to evaluate the performance of 

the new method and its application to investigate a potential association between pedi
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atric vaccines and febrile convulsion. In this chapter the exposure effect is represented by 

a step function.

Chapter 6 presents a different extension of the standard SCCS method that models 

the exposure-related relative incidence function as a linear combination of cubic M-splines 

while the age effect is represented by a step function. Similar to Chapter 5, a penalised 

log-likelihood function is used. A simulation study to investigate the performance of this 

method relative to the standard method, and applications to data on pediatric vaccines 

and febrile convulsions, and thiazolidinedione (a class of medicines used to treat type 2 

diabetes) use and fractures are also presented.

In Chapters 5 and 6 step functions are still used to model one of either the exposure or 

the age effect. In Chapter 7, the works of Chapters 5 and 6 are combined in developing 

a non-parametric SCCS method, where both age and exposure effects are approximated 

by linear combinations of cubic M-splines. In this chapter we define the first, second and 

third integrals of an I-spline based on the definition for the integral of an M-spline given 

by Ramsay (1988). We also define the integral for the product of two spline functions 

expressed as linear combinations of cubic M-splines. Chapter 7 also presents a simulation 

study that evaluates the performance of the non-parametric SCCS method.

Finally, conclusions and possible future research are presented in Chapter 8.



Chapter 2

The Self-Controlled Case Series 

M ethod

The self-controlled case series method, which uses only information from cases, that is, 

individuals with an adverse event, was developed specifically for use in vaccine safety stud

ies, but has since been applied in non-vaccine pharmacoepidemiology and in other areas 

of epidemiology (Whitaker et al., 2006). It automatically controls all age-independent 

multiplicative confounders, while allowing for an age-dependent baseline incidence. The 

method has two versions based on the way it handles the effect of age-dependent con

founding variables: (1) the standard method, which models the effect of age using a 

parametric step function and (2) the semi-parametric method: that controls for age non- 

parametrically. In this chapter we describe how the two versions of the method work and 

derive their likelihood functions. And limitations of the SCCS models, which led to the 

extensions developed in this thesis, are investigated using a simulation study.

In Section 2.1, how the SCCS method works is described, followed by the derivation 

of the likelihood function for the standard version of the method and a general likelihood



C h a p t e r  2. T h e  S e l f - C o n t r o l l e d  C a s e  S e r ie s  M e t h o d 10

function in Section 2.1.1. Section 2.2 deals with the semi-parametric version of the method 

and how to fit the model. Finally, the limitations of the standard and semi-parametric 

SCCS models are given in Section 2.3 followed by a discussion in Section 2.4.

2.1 The Standard Case Series M ethod

The self-controlled case series method, in its standard framework, was developed to 

estimate the relative incidence of an acute event in a pre-defined post-vaccination risk 

period (Farrington, 1995). The relative incidence is a ratio of the incidence rate in a 

predefined post-exposure risk period relative to other times (control periods) within a 

defined period during which individuals are observed (the observation period). It is a 

conditional, retrospective, risk-interval cohort method and is applied as follows.

An overall study time-window, usually defined by age and calendar time boundaries 

(and also, sometimes, in terms of vaccination date), is chosen, ideally such that the chance 

that individuals experience both risk and control periods is maximised. The observation 

period, in particular, must be defined so that, had an event occurred at any point within it, 

the case would have been ascertained. Then, all or a random sample of individuals with at 

least one event (independent recurrences are permitted) within this study time-window 

are identified: these are the cases. The study time-window also determines individual 

observation periods for each case, namely the time spent by each individual within the 

study time-window (the observation periods generally differ between individuals).
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Control period Risk
I period D iagnosis

V accine f ~

Control period

Figure 2.1: Self-controlled case series setup; where ai and bi are ages at the start and end of 

observation period for individual i respectively

Next, the vaccination or exposure to other drugs histories of the cases are collected. As 

in other epidemiological designs, ascertainment of cases must be independent of vaccina

tion or exposure histories, dependence of exposure history on case ascertainment may lead 

to biased relative incidence estimates. A clear description of how the data  were obtained 

is therefore im portant in order for the reader to be able to assess any possible dependence. 

The vaccination dates of each case are used to define one or more risk periods, during 

which individuals are hypothesized to be at increased (or reduced) risk of the event of 

interest after (or, for reasons to be discussed later, before) vaccination. Risk periods are 

defined in terms of time since vaccination (with, preferably, a stated convention to  de

scribe the day of vaccination, for example day zero) or duration of exposure to drugs other 

than vaccines, which are not point exposures. A rigorous report of these choices provides 

confidence tha t care was taken in the analysis, and enables the reader, in theory at least, 

to reconstruct the study exactly. In the context of point exposures like vaccine, the choice 

of risk periods should be made a priori and its rationale explained. Typically, the choice 

will be motivated by reference to previous studies or hypotheses, by biologically plausible 

mechanisms or by expert opinion. All other time within an individual’s observation pe-
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riod, that does not fall within a risk period, is included in that individual’s control period, 

which forms the study baseline (see Figure 2.1). Figure 2.1 shows an observation period 

(a*, bi\ for individual i divided into control and exposure groups. Diagnosis is the age at 

which the event of interest occurs (it can be anywhere within the observation period and 

an individual can experience more than one event provided that they are independent) 

and di and bi are ages at the start and end of the observation period respectively.

Justification for using only cases stems from the analytical strategy, which conditions 

on the number of events each individual experiences within the observation period: this 

number is regarded as a fixed quantity. A consequence is that non-cases contribute no 

information, and therefore need not be sampled. Estimation of parameters in the SCCS 

method is achieved by fitting a conditional Poisson regression model (it is essential that 

it should be a conditional model, in order to justify sampling only cases). The parameter 

of interest is the relative incidence, that is, the incidence in a risk period relative to the 

control or baseline periods. A further consequence of the conditioning is that the analysis 

is within-individuals, and, as a result, in the SCCS method all fixed confounding factors, 

known and unknown, are controlled for implicitly. Temporal confounding factors, such 

as age can be accounted for by subdividing each individual’s observation period into age 

categories, which are modelled explicitly.

2.1.1 Derivation of SCCS Likelihood

In this section we derive the likelihood function used to estimate the parameter of 

interest (relative incidence) in the standard SCCS method, where the effect of age is 

taken into account by dividing the observation period into age groups. We also derive a 

general likelihood function for the SCCS model where the age effect can be represented
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by a variety of functions.

Standard SCCS Likelihood Function

The assumptions made in deriving the likelihood function are: Assumption (1) that 

individuals experience events in a non-homogenous Poisson process; Assumption (2) that 

age-dependent exposures experienced by individuals are exogenous, so exposures are in

dependent of prior events, and Assumption (3) that censoring of individuals at the end 

of the observation period occurs completely at random, i.e the occurrence of the event of 

interest must not censor or affect the observation period Farrington (1995); Farrington 

and Whitaker (2006); Whitaker et al (2006); Weldeselassie et al (2011). Discussion about 

deviations from these assumptions is given in Chapter 3.

Let (a*, bj\ be the observation period for individual i = 1, 2 often determined by 

a combination of calendar time and age constraints. And let individual i be exposed at 

age Cj and the risk period be (c*, d j so that k  is an indicator of exposure, k = 1 in the risk 

period and k = 0 in the control periods as shown in Figure 2.2. More than one exposure 

periods are possible. In order to control for age, if for example the number of age groups 

is 2, the observation period in Figure 2.2 is further divided into two segments as j  =  1 

and j  = 0.

K=0 I K=1
a i ^ Cj

K=1 K=0
di bj
” j=1 --------

Figure 2.2: Self-controlled case series model with two age and two exposure groups

In Figure 2.2, for this particular individual i, the observation period is divided into 4 

intervals. Let the length of interval (z, j, k) be denoted by and the number of events
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experienced in the interval be denoted by nijk. The disease incidence rate Aijk is assumed 

to be constant within an interval. Denote the baseline incidence rate of individual i in the 

age group j  — 0 and exposure group k =  0 by ip exp (7;) and let exp (or) and exp(/A) denote 

relative incidences associated with age group j  = 1 and risk period k = 1 respectively, 

relative to age group j  = 0 and exposure group k = 0 (with a0 = f30 = 0) , where p 

and exp(7 )̂ are age-independent fixed and random individual effects that may depend on 

covariates that do not vary over the period 6J.

In the SCCS method, exposure, age and other variables are assumed to have a multi

plicative effect on the baseline rate of incidence. And since events are assumed to arise in 

a non-homogenous Poisson process, constant within an interval, the Poisson rate in the 

first interval within the observation period of individual z, shown in Figure 2.2, is:

e*ooAioo =  eioo^exp(7i)exp(a0)exp(/30)

=  eioo^exp(7i),

as ao = (3q = 0. Similarly the rates in the second, third and fourth intervals are respec

tively

emKoi = eioi^exp(7i)exp(/3i),

e*i iA<n =  ein^exp(7i)exp(ai)exp(/?i), 

e<ioAiio =  eiio^exp(7i)exp(ai).

In a case series analysis an individual is included in a sample if at least one event 

occurred in his/her observation period. Hence we condition on the number of events an 

individual experienced, in deriving the likelihood contribution of the individual. This leads 

to a multinomial distribution. Then the likelihood contribution of individual i according
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to the multinomial distribution, 4-nomial in this example, is:

(2-1}

where y n .y ^  Viz and y^  are the numbers of events (the values of ) in the intervals

1,2,3 and 4 respectively of individual i within the observation period, n* =  =

Ylj nijk is the total number of events experienced by individual i. Pn,Pi2 ,Pi3 and 

pi4 are probabilities of an event to a occur in a corresponding interval. Since the events 

occur as a Poisson process and are independent, the probabilities can be found from 

the following property. If 1ft, Yi2, . . . ,  1ft are independent Poisson random variables with 

parameters //i, • • •, ps then

r 4/ i y V j|~ B i n o m ( y 'y « , = £ ^ V  (2.2)
1=1 \ i=l l*>i=i

Yif\rii ~  Binom  (n*, = 5̂ — j . (2.3)
\  2-fi=i M  J

Therefore, the expression for the parameters (probabilities) in the multinomial likelihood 

function is P r1—. For example1̂1=1 Vl

em<P exp(7i)
—      ---------------------------------------------------------------------------------------------------

(p exp(7i) +  em  exp(ft) +  ein exp(ar +  f t)  +  e^o exp(«i))
_  ^00________________

eioo +  em  exP(ft) +  eiii exp(ai T f t)  -f e^o exp(o:i)

and in general

=  eijk exp (aj) exp (ft)
^  J2rs &irk exp(o!r) exp(ft) *

The individual effect exp(7*) and the baseline incidence p  cancel out, which implies 

that the SCCS method implicitly controls for all measured and unmeasured fixed con

founding variables. Therefore, the likelihood contribution of individual i ignoring the 

constant in the multinomial likelihood since it does not depend on the parameters of
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interest, is

Li(at,P) = J J
jk

eijk exp (a, +  pk) Tlijk

y~vrg &irs exp(ar -f- fts) _

As individuals are independent the likelihood for all individuals is

N

£(«, /?)= n n
i=1 jk

eijk exp(aJ- +  pk) 
.53rs 6Xp(Q!r -f- Ps) _

n i j k

and the log-likelihood function is

N

»(«./*) =  £ £  ̂ ijk^9  
i=l jk

The General Likelihood Function

eijk exp{oLj +  Pk)
.J2rs eirsexp(ar -\- ps)

(2.4)

As in the piecewise constant case, the general likelihood function of a case series 

method may be derived from a cohort likelihood by conditioning on the number of events 

each individual experiences and on the exposure history over the time period an individual 

is observed. Suppose that individual i in a dataset is observed in a period (a*, 6<] where i = 

1 , . . . ,  N  and experiences events tn , t i 2 , . .  - ,  tini. Within this observation period individuals 

experience exposures from different risks which can change the probability to experience 

an event. Denote the number of events that an individual experiences in the interval 

(ia ^ t \ by Ni(t). As in Farrington and Whitaker (2006), let x ^ t )  represent the vector of 

exposures that individual i experiences at age t  within the observation period. If there 

is one exposure, letting P to denote the effect of exposure Xi(t)P or using a different 

parametrisation exp(xi(t)P) represents exposure related relative incidence function (see 

below in this section). Again let x\ be the exposure history of individual i up to age t, that 

is, the function x\ = {^(s) : s < t}. Let Xi=x\l be the exposure history of individual i up 

to the end of their observation period. Letting the intensity process (hazard function) by 

which events arise be denoted by A*( |̂a;|), we have a probability density function given by
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Xi(t\xl)S(t\xl). Here S(t\x l)  is a survival function which can be obtained from the hazard 

function as S(t\x f) = exp f * .  X ^ u lx fjd u ^ .

Since events within the observation period of an individual are assumed to be inde

pendent, the unconditional likelihood that individual i experiences n* events that arise 

with intensity process (t|rz;|) at times j  = 1, 2, ...,7̂  is

L i =  f l  exP { -  [  K (t\x l)d tX  . (2.5)
j -1  1 J a i  )

Assumption (2) (in page 13) implies that the event rate at age t, given the exposure 

history to age t, is equal to the event rate at age t, given the exposure history over the 

entire observation period, i.e. Xi(t\xf) =  A*(t|a?*). Thus, conditioning on the total number

of events an individual i experiences in their observation period and on the exposure

history Xi does not affect Ai(t\xi). This is the key assumption of the SCCS method, 

departures from which are discussed in detail in Farrington et al (2009). Departures 

from assumption (3) are discussed in Farrington et al (2011).

Now to find the conditional likelihood that an individual i experiences the events tij, 

j  = 1, 2, conditional on the total number of events experienced by the end of the

observation period, we need to have the expression for the probability that the count of 

events is n*. In SCCS method events are assumed to occur in a non-homogeneous Poisson 

process with intensity Aj(t|x j ,  therefore the total count A^(^) is a Poisson random variable 

with mean Xi(t\xi)dt). This leads to the probability

{ f a *  Ai(t|xi)dt) * f  rbi
P(Ni(bi) = rii) = ---- -----— exp | -  J  Xi(t\xi)dt j  (2 .6)

Therefore, from Equations (2.5) and (2.6) the conditional likelihood contribution of
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individual i given n* events occurred at times Uj, j  = 1, 2,..., n* is obtained as

Aiij'ij |%i)
Li 5  £  Xi)dt

U j=l ^i(tij\Xi) p  7)

{la ' K(t\Xi)dt} '

From this case series likelihood it can be seen that if individual i has no events, n* =  0, 

then L? = 1, implying that only individuals with at least one event in their observation 

period contribute to the likelihood. Hence, the case series method needs information only

on cases.

The most convenient way of parameterizing the incidence Xi(t\xi) is according to the 

proportional incidence model

Xi(t\xi) = A0(t)exp{7i + Xi(t)Tp )

= (p ĵ{t) exp {7* +  Xi(t)T(3} , (2.8)

where X0(t) =  is the baseline incidence at age t (to be discussed next), 7* is as

defined above, and (3 is a vector of the log-relative incidences that measure the association 

between exposures and event of interest. Then, combining Equations (2.7) and (2.8), the 

conditional likelihood contribution of individual i is

'ip(tij)ex p {x i(tij)Tf3}^=n
j=l Sat W )  eXP { Xi W P }  dt

Since individuals are independent the conditional likelihood of all individuals is given as

i - T T T T  e x p (2 9 )

The terms tp and exp (7*) cancel out and hence all fixed covariates that act multiplicatively 

on the baseline incidence are automatically controlled for. This is because the total 

number of events experienced by individual i, is a sufficient statistic to estimate the
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individual effects, exp(7j), which leads to the removal of exp (7;) from the conditional 

likelihood.

In the standard SCCS method '</>(£), which is the age-specific relative incidence func

tion, is represented using a step function, so replacing t) and the exposure effect in 2.9

by step functions yields the log-likelihood function 2.4. In the semi-parametric version 

of SCCS (Section 2.2) ip(t) is left unspecified: the cumulative baseline relative incidence 

function is a step function with steps at the distinct event times.

2.1.2 F itting the Standard M odel

The log-likelihood function of the standard self-controlled case series method can either 

be maximised directly or fitted using as an associated Poisson regression model with 

log link function. To fit the associated conditional Poisson model, the data should be 

formatted such that there is one line for each interval within the observation period (see 

Figure 2.2). The number of events in an interval is used as a response variable in 

the model and log of interval lengths are included as an offset. Factors for age group, 

exposure group and individual are also listed for each of the intervals. The model fitted 

is

'fl'ijk rKJ Poisson(Ayfce»jfc)

log(A ijk) =  <Pi + 0£j+Pk, (2.10)

where (pi is an individual effect included to guarantee that the fitted marginal totals equal 

the observed values. As the (fi are nuisance parameters, it is convenient to fit the model 

as a conditional fixed effects Poisson regression model.
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2.2 Semi-Parametric SCCS

In the standard self-controlled case series method, the age-specific relative incidence 

is defined to be a step function and fitted by a priori choosing age groups over which the 

incidence is believed to be roughly constant. An extension of the standard model is a semi- 

parametric model in which the age-specific relative incidence is left unspecified except that 

it is non-negative and bounded (Farrington and Whitaker, 2006). The cumulative age- 

specific relative incidence function $(t) = f* 'ip(s)ds is estimated non-parametrically from 

non-decreasing step functions. The likelihood function of the semi-parametric method can 

be derived in a similar way to the standard SCCS method. Let the set of distinct event 

ages tij of all cases be denoted by S. Assume that there are M  distinct event ages sorted 

in an increasing order si,...,sm- Let the step function that represents the cumulative 

age-specific relative incidence function be constant outside S  and have jumps of height 

A\k(t), for t e  S, where A\k(sr) — exp(ar), r = 1,..., M, and without loss of generality 

let or =  0. Define a weight for each individual i and each sr 6  S  as wir = /(ai,6z](sr), 

where I(ai,bi\ is an indicator which takes a value 1 if sr is within the observation period of 

individual i and 0 otherwise. The weights assigned ensure that only event days within the 

observation period of an individual contribute to his/her likelihood and that the jumps 

in the cumulative function are at the event ages. Let be the value of ar corresponding 

to (the j th event of individual i). The cumulative age-specific relative incidence curve 

of the semi-parametric model is presented in Figure 2.3.
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Figure 2.3: Representation of age effect in the semi-parametric self-controlled case series method

Figure 2.3 shows tha t the cumulative age-specific relative incidence is constant between 

two event ages and jumps at each of the event ages.

2.2.1 S em i-P aram etric  SCCS Likelihood

The likelihood function for the semi-parametric model can be derived in a similar 

way to the standard SCCS by conditioning on the to tal number of events an individual 

experiences in their observation period. It can also be derived from the general likelihood 

function of SCCS (2.9) by replacing the effect of exposure and the cumulative age-specific 

relative incidence ('F(t) =  J^'ip(s)ds) with step functions. That is, in the num erator we 

have tij) =  exp(o:^) and in the denominator if>{t) exp {x*(t)T/3} dt is replaced by 

E iH i wirexp(ar +  x t (sr)T/3), which leads to the likelihood contribution of individual i

=  t~t exp(al3 +  Xi(tij)T (3) 

j = 1 S r = i  wir exp(ar +  Xi(sr)Tf3) ’

where x fo i j ), as defined before, represents the exposures. Once again, the individual 

effects p  and exp(7 )̂ cancel out and lead to autom atic control of age-independent con

founding covariates. The independence of individuals gives the SCCS semi-parametric
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likelihood function (La) for all individuals

exp(aij +  x i(tij)T/3)
(2 .11)

The function A/(t) represents a relative effect, and so is not identifiable without some 

further constraint. In the semi-parametric SCCS method (Farrington and W hitaker, 

2006), the constraint 'F(a) =  1 is used, so th a t ip is the baseline incidence at a.

2.2.2 F ittin g  th e  S em i-P aram etric  M odel

Fitting the semi-parametric model is similar to fitting a standard model with unit 

age groups, where the unit is the smallest separation between successive event times, i.e 

m in {s r + 1 — sr , r = 1 , . . . ,  M  — 1}. To fit the model, the data need to be expanded such 

th a t each individual has a row of information for each of the distinct ages a t event in the 

data set th a t falls within their observation period. Information on the number of events 

experienced by individual i, n ir (which is 0 or 1 since each interval has length of only 

one time unit), exposure status, x*(ty), and weight, wir, at age sr are included. As an 

example, consider a study of 6 cases with five distinct event ages 20, 75, 143, 160 and 200 

(two cases experienced their events at the same age). Let individual 1 have an observation 

period (10, 180], exposure period (135, 150] and their event occurred at age 75.

10 135 150 180
Age

Figure 2.4: An individual with one exposure period, four of the event ages falling within the

observation period

One of the event ages, 200, is outside the observation period of individual 1, hence



C h a p t e r  2 . T h e  S e l f -C o n t r o l l e d  C a s e  S er ie s  M e t h o d 23

its weight is zero. Therefore, the expanded data for individual 1 will have four rows with 

non-zero weight as presented in Table 2.1.

Table 2.1: Reformatted data for one case, used to fit the semi-parametric model

Id Events(nir) Risk group(a^) Age group Weight(w^)

1 0  0 0 1

1 1 0 1 1

1 0 1 2 1

1 0  0 3 1

1 0 0 4 0

Once the data are reformatted the conditional Poisson model is fitted to estimate the 

parameters of interest. The model has weights i%., response variable nir with mean \ r 

and a log link function

log(Xir) = 7z +  otr +  Xi(sr)P

where 7* is an individual effect included to constrain the total number of events experi

enced by each individual to their observed values.

2.3 Limitations of SCCS

This section explores the limitations of the standard and semi-parametric versions of 

the self-controlled case series method. In the standard SCCS method the age groups 

should be specified a priori as described in Section 2.1.1. We, therefore, investigate the 

sensitivity of the parameter estimates related to exposure, in the standard SCCS method, 

to mis-specification of age groups. In the semi-parametric method the number of parame

ters that need to be estimated increases with the sample size because the fitting procedure 

using standard software requires the data to be expanded to size of order TV2, where N  

is the number of cases. The age effect is represented by a vector of parameters whose
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dimension is of order N. When N  is moderately large, this may lead to computational 

problems. There may also be a loss of efficiency in estimation. We investigate these using 

simulation studies.

2.3.1 Limitation of the Standard SCCS

A major limitation of the standard SCCS method is that estimates of the exposure 

effect may be biased if the a priori chosen age groups are misspecified (Farrington and 

Whitaker, 2006). To investigate this limitation we conducted a simulation study. In 

the simulation study we selected the beginning and end of the observation period for all 

individuals to be 0 and 730 days respectively. The ages at exposure, c* had an exponential 

distribution, and were generated from an exponential distribution with a rate of 0.01. We 

took the risk period to be 50 days post exposure. Three values of the true exposure-related 

relative incidence were investigated: 1, 2, and 5.

15 age groups were used in simulating the data, with cut points at every 50 days 

between 0 and 730 with the last age group having a length of 30 days and the true age- 

specific relative incidence values were 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 15, 16, 18, 19 and 

20. Three different scenarios of sample size (number of cases), 50, 100 and 200, were 

considered. For each scenario 10,000 data sets were generated, (for more on how data are 

generated in the SCCS method see Section 5.3 of Chapter 5).

The 10,000 simulated data sets were then analysed using the SCCS method without 

any age effect, the standard SCCS with misspecified age groups (two age groups sepa

rated at age of 350 days) and the standard SCCS method with the 15 correctly specified 

age groups used in generating the data sets. Results of these analyses are presented in 

Table 2.2. We computed bias and standard error of the bias for each scenario. The biases
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were calculated as:

Bias =  median of the 10,000 estimated exposure-related log relative incidences

— the true log relative incidence. (2.12)

Table 2.2: Simulation study results of investigating the effect of age groups’ mis-specification in 

the standard SCCS method. Bias of the exposure-related log relative incidence and their standard 

errors (SE) are presented

Number of Cases No age effect included Misspecified Correctly specified

Bias(SE) Bias(SE) Bias(SE)

True Relative incidence =  1

50 0.516(0.020) 0.168(0.020) -0.024 (0.020)

100 0.657 (0.004) 0.201(0.004) -0.012 (0.004)

200 0.599 (0.003) 0.177 (0.002) -0.005 (0.003)

True Relative incidence =  2

50 0.527 (0.004) 0.196 (0.005) -0.008 (0.005)

100 0.589 (0.003) 0.178 (0.003) -0.004 (0.003)

200 0.590 (0.002) 0.183 (0.002) 0.002 (0.002)

True Relative incidence =  5

50 0.554 (0.003) 0.196 (0.003) 0.035 (0.004)

100 0.585(0.002) 0.176 (0.002) 0.022 (0.003)

200 0.593 (0.002) 0.189 (0.002) 0.007 (0.002)

We used the median in calculating the bias because it is possible for all event ages 

to occur in the risk period only, or in the control period only, resulting in an undefined 

expected value of the estimated relative incidence. The standard errors of the biases 

were also calculated by trimming the unbounded estimates. The standard errors were
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calculated as

s e = S D 0 - J )
V n *

where (3 is the estimated exposure-related log-relative incidence, [3 is the true log-relative 

incidence, N* is the number of data sets with bounded estimates and SD is standard 

deviation of biases of each estimate.

The results in Table 2.2 show that when age is misspecified or ignored from the stan

dard SCCS analysis the estimated exposure-related relative incidence is biased. All the 

bias estimates obtained from the standard SCCS method without any age effect and the 

mis-specified SCCS method with 2 age groups are significantly different from zero. How

ever, for the model with correctly specified age groups there is not enough evidence to 

reject the null hypothesis that there is no bias in estimating the exposure-related relative 

incidence value. Except when the true exposure-related relative incidence was 5 there 

was a borderline significant bias. For the correctly specified model, the absolute bias 

reduces with an increase in the number of cases used in the analysis and increases with 

an increase in the true relative incidence. The biases for the correctly specified SCCS 

are always smaller than the other two models. These results indicate that a new way of 

modelling the age effect that does not require age groups to be defined a priori is needed.

2.3.2 Semi-Parametric M odel w ith Large D ata Sets

Given that the parametric SCCS method can be sensitive to mis-specification of age 

groups, which may lead to biased estimates of the association between exposure and event 

outcome, the semi-parametric SCCS method, in which the age-specific relative incidence 

function is left unspecified, was proposed by Farrington and Whitaker (2006). However, 

the semi-parametric SCCS method faces computational problems with large data sets,
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at least when fitted using standard software for log-linear models. We carried out a 

simulation study to investigate the computational demand of the semi-parametric method 

as the number of cases (and hence the number of parameters) in the model increases. We 

generated data using the same scenarios as in the previous section and fitted the semi- 

parametric model to each of the generated data  sets. The number of cases simulated 

ranged from 10 to 478. Beyond this number of cases, the computer programs we used 

failed completely.
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Figure 2.5: Time elapsed to estimate parameters in the semi-parametric SCCS model against 

the sample size used.

Figure 2.5 shows th a t the time elapsed to estimate parameters using the semi-parametric 

SCCS model increases as the number of cases in a study increases. It could not produce 

param eter estimates for data  sets with greater than  478 cases. This is because for each in

terval (a,i, bi], i = 1, 2 , . . . ,  N  and each distinct event time, an indicator variable is defined
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to record whether that time lies within the interval, so that the data set is expanded to 

0 ( N 2). This typically causes capacity problems when N  is above 478 or so. In addition, 

the number of age parameters to be estimated is of order N.

2.4 Discussion

The self-controlled case series method, developed to estimate the relative incidence of 

an acute event following exposure to vaccines, has been described in this chapter. The 

method uses information only from individuals with an adverse health event and implic

itly controls all measured and unmeasured fixed confounding variables but time-varying 

covariates should be included in the model. The two versions of the method; the standard 

and the semi-parametric SCCS were introduced and their limitations investigated.

The simulation studies showed that the standard SCCS method may lead to biased 

exposure related relative incidence estimates and the semi-parametric method fails to fit 

for large data sets.

The SCCS method has witnessed considerable methodological development aimed at 

weakening the assumptions it requires. Thus, methods have been developed to han

dle event-dependent exposures and deaths (Kuhnert et al., 2011), dependent recurrences 

(Farrington and Hocine, 2010), event dependent observation periods (Farrington et al, 

2011). The method has also been extended to the prospective monitoring of vaccine safety 

(Musonda et al, 2008b; Hocine et al, 2009). Escolano et al (2013) extended the SCCS 

method for analyzing spontaneous reports of adverse events after vaccination aiming at 

rapid evaluation of a risk. When the timing of exposure onset is not known precisely, Mo

hammed et al (2012) proposed to extend the SCCS method to take measurement errors 

into account. For this method, measurement error corrected SCCS, Mohammed et al
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(2013) developed a method that determines power and sample size. Simpson et al (2013) 

extended the standard SCCS to include multiple time-varying confounding exposures 

(drugs) and their interactions, from a large-scale longitudinal observational database. 

Choice of optimal risk windows in SCCS vaccine safety studies has been proposed by Xu 

et al. (2013).

To address the limitation of the standard SCCS method the semi-parametric SCCS 

method was proposed. However no extension has been developed to avoid the limitation of 

the semi-parametric SCCS that it may suffer from computational problems as the number 

of cases in a study increases as shown in the simulation study. Moreover, the exposure 

effect in both the standard and the semi-parametric SCCS methods is represented by a 

step function. Step functions are known to provide a rather crude approximation of the 

true relationship. Therefore, the parametric way of modelling the exposure effect may 

be sensitive to mis-specification of exposure groups. Hence new ways of modelling age 

and exposure effects that are not sensitive to mis-specification and have no computational 

problems are required. In Chapter 4 we introduce smooth functions which are some of the 

possible ways of avoiding the limitations associated with the standard and semi-parametric 

SCCS methods.



Chapter 3

R eview  of SCCS Vaccine Studies

The SCCS method has been applied both in vaccine, non-vaccine pharmacoepidemiol

ogy and other areas of epidemiological studies. In this chapter we review how the SCCS 

method has been used in vaccine studies since its publication in 1995 and highlight good 

practice. We attempt to give some clear direction on how the method should be used and 

reported. Some misconceptions about the method and how it relates to other case-only 

study designs are clarified and some guidelines on reporting SCCS studies are given. How

ever, our aims fall short of developing fully-fledged guidelines on reporting SCCS studies, 

which require detailed consideration of other applications in pharmacoepidemiology. Nev

ertheless, we hope that this review will contribute towards the eventual elaboration of such 

guidelines. This review has been published in Weldeselassie et al. (2011).

The chapter has three sections. In Section 3.1 our review criteria and methods are 

described. In Section 3.2 we present the results of our review, including specific discussion 

on: data description and accuracy, choice of observation and risk periods, potential biases, 

comparison of SCCS with other methods such as cohort and case-control, methodologi

cal issues, sensitivity analyses, software and good practice. Where appropriate, we also

30
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include general comments about the method and make recommendations. Section 3.3 is 

a brief discussion of our findings and areas for further research on the SCCS method.

3.1 M ethods

We identified SCCS studies which included a vaccine as an exposure, first published 

(in print or electronically) between 1995, when the SCCS method was first introduced, 

and the beginning of 2014. We identified papers by searching for those citing references 

Farrington (2004); Farrington et al. (1996); Farrington (1995); Farrington and Whitaker 

(2006); Whitaker et al. (2006, 2009); Andrews (2002); Musonda et al (2006) in the fol

lowing databases : Scopus, JSTOR, Science Direct, British Library and all those within 

the ISI Web of Knowledge.

Methodological papers were excluded, unless they included a specific application using 

SCCS not reported elsewhere, and sufficient detail of this application was provided.

Each paper was reviewed against a standard form which was piloted on 13 papers (see 

Appendix A). The form included details on: vaccines and adverse events studied, data 

collection and description, study population, sample size, observation period, age groups, 

the allowance for any other temporal confounders, risk periods and their rationale, sen

sitivity analyses undertaken, statistical features, reporting of results, whether key SCCS 

assumptions were met, any good, bad or unusual practice, and comparison with other 

study methods used in addition to SCCS.

3.2 Results

We identified 84 studies which met our selection criteria, four of them (Ali et al, 

2005; Burwen et al, 2006; Farrington et al, 1995; Gold et al, 2010) were papers with a
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methodological flavour, aimed at validating a surveillance system, but including a specific 

SCCS application. There were three notable exclusions. The first planned to use the 

SCCS method to study a possible association between vaccination and acute cerebellar 

ataxia (van der Maas et al., 2009). However, th a t analysis was not undertaken owing to 

sparseness of the data, and for this reason was excluded. Two further papers (France et al. , 

2004; Klein et a l , 2010) were excluded because, while referencing the SCCS literature, it 

was not clear th a t they intended to use it, and instead used a before and after vaccination 

design. As it turns out, this is in fact a special case of the SCCS design; we shall return 

to this issue later in the chapter. The papers were excluded because the authors could 

not be expected to report the study as if it were a SCCS study.

Figure 3.1: Distribution of vaccine studies using self-controlled case-series by year of publication. 

Figure 3.1 presents the distribution by year of publication of these 84 studies (refer
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ences Andrews et al. (2001) and Sardinas et al. (2001) appeared in 2002, even though 

the journals are dated 2001; reference Gwini et al. (2011) was published electronically in 

2010). Thirty-eight of the 84 papers appeared in 2000-2010 and 42 papers appeared in 

2011-2013; Figure 3.1 suggests a moderate increase over the period 2000-2010 and a big 

increase in the period 2011-2013. There were also two studies until February in 2014.

Vaccines and Adverse Events Studied

Table 3.1 presents the vaccines and the adverse events studied between 1995 and 

2010. For ease of presentation, adverse events have been grouped, as for example purpura 

(which includes idiopathic thrombocytopenic purpura (ITP), allergic purpura, and other 

purpura). Similarly, vaccine types (e.g. intranasal and parenteral influenza vaccines) 

have been listed under the same heading. Measles/mumps/rubella (MMR) and other 

measles-containing vaccines were the most frequently studied (17 studies), followed by 

influenza vaccines (13 studies) and vaccines containing pertussis antigens (eight studies). 

The sample sizes (cases or numbers of events) included in SCCS analyses ranged from the 

very small (only seven events in one analysis in Farrington et al. (1995)) to the very large 

(8,180 cases in Gwini et al. (2011), 22,400 in Smeeth et al. (2004)).

Typically, several vaccines and/or adverse events were studied at the same time. One 

study (Payne et al., 2007) investigated concurrency of vaccination (administration of at 

least two vaccines on the same or adjacent days) as a risk factor. When several vaccines 

potentially related to the same outcome are administered at similar ages, their effects 

should be studied within the same model, as was done in Andrews et al. (2007). This also 

applies to non-vaccine exposures, as with influenza vaccination and influenza-like illness 

in GuillainBarre’ syndrome (GBS) (Stowe et al, 2008).
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Table 3.1: Vaccines and adverse events studied

Vaccine Adverse effect Reference

Any concurrent Hospitalization Payne et al. (2007)

DT, Td Convulsion Andrews et al. (2007)

Myocardial infraction, stroke Smeeth et al. (2004)

DTP, DTaP Convulsion Andrews et al (2007); Gold et al. (2010); 

Farrington et al. (1995);

Huang et al. (2010)

Encephalitis Ward et al (2007)

Immune haemolytic anaemia Naleway et al (2009)

Wheeze onset Mullooly et al (2002)

DTP/Hib/IPV Apnoea, convulsion, crying, 

diarrhoea, feeding problem,fever

Andrews et al (2010)

HBV Demyelination onset Hocine et al (2007)

Immune haemolytic anaemia Naleway et al (2009)

Wheeze onset Mullooly et al (2002)

Hib Wheeze onset Mullooly et al (2002)

Influenza Asthma exacerbation Kramarz et al (2000, 2001); 

Tata et al (2003)

Bells palsy Mutsch et al (2004); Stowe et al. (2006);

Cellulitis or abscess, UTI Burwen et al (2006)

COPD exacerbation Tata et al (2003)

Gastritis /  duodenitis Hambidge et al (2006)

GuillainBarre’ syndrome Hughes et al (2006); Stowe et al (2008); 

Juurlink et al (2006);
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Table 3.1: Continued

Influenza Myasthenia gravis

Myocardial infraction, stroke

MCCV Convulsions, purpura 

Encephalitis

Nephritic syndrome relapse 

Measles Acute respiratory tract infection, 

arthropod-borne, viral fever, 

gastroenteritis, pneumonia, tonsillitis 

Autism 

MMR Aseptic meningitis

Autism

Bacterial or viral infection 

Convulsion

Encephalitis 

Gait disturbance 

Purpura (including ITP)

Wheeze onset

Zinman et al. (2009)

Gwini et al (2011);

Smeeth et al. (2004)

Andrews et al. (2007)

Ward et al. (2007)

Taylor et al. (2007)

Ali et al. (2005)

Farrington et al. (2001); Taylor et al. (1999); 

Dourado et al. (2000); Miller et al. (2007); 

Farrington et al. (1995);

Andrews et al. (2002); Taylor et al. (1999); 

Farrington et al. (2001);

Miller et al. (2003); Stowe et al. (2009); 

Andrews et al. (2007); Miller et al. (2007); 

Farrington et al. (1995); Gold et al. (2010); 

Ward et al. (2007)

Miller et al. (2005)

Andrews et al. (2007);

Farrington et al. (1995);

France et al. (2008); Gold et al. (2010); 

Miller et al. (2001); Stowe et al. (2001); 

Mullooly et al. (2002)
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Table 3.1: Continued

OPV Intussusception Andrews et al (2001); Cameron et al (2006);

Sardinas et al (2001)

Wheeze onset Mullooly et al (2002)

Pneumococcal Bells palsy Stowe et al (2006)

Cellulitis or abscess, UTI Burwen et al (2006)

GuillainBarre’ syndrome Stowe et al (2008)

Myocardial infarction, stroke Smeeth et al (2004)

Rotavirus Intussusception Murphy et al (2001)

COPD, Chronic obstructive pulmonary disease; DT, diphtheria/tetanus vaccine;

DTaP, diphtheria/tetanus/acellular pertussis vaccine; DTP, diphtheria/tetanus/ 

pertussis vaccine; HBV hepatitis B virus vaccine; Hib, Haemophilus influenzae type 

b vaccine; IPV, inactivated poliovirus vaccine; ITP, idiopathic thrombocytopenic 

purpura; MCCV, meningococcal group C conjugate vaccine; MMR, measles/mumps/ 

rubella vaccine; OPV, oral poliovirus vaccine; Td, tetanus/diphtheria booster vaccine;

UTI, urinary tract infection.

In 22 studies, vaccines were given in multiple doses; in 12 of these, dose-specific effects 

were investigated. The SCCS method can only cope with a single outcome variable at 

a time. The most frequently studied events were convulsion (including febrile convul

sion and aseptic meningitis) and purpura (six studies each). There were four studies of 

intussusception, and three each of autism and GBS.
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D ata Description and D ata Accuracy

All the 84 studies were felt to provide sufficient detail of how the data were collected, 

so that it would be possible to see any dependence between ascertainment of cases and 

vaccination history. Out of the 40 studies in period 1995-2010, 16 obtained data on vac

cinations and outcomes from a single database [of these, seven studies used the United 

Kingdom’s General Practice Research Database (GPRD) and six the United States’ Vac

cine Safety Datalink], 14 linked two or more databases, and in 10 data were obtained from 

other sources.

Case-note reviews were undertaken in 18 studies, and in two of these the review was 

commendably reported as blinded to vaccine history. In one study (Andrews et a l , 2007), 

case notes were used to identify vaccinations. This may bias results towards a positive 

association, in as much as vaccinations prior to the event are more likely to be ascer

tained by case-note review than vaccinations after the event. However, in this study the 

association was not significant, and so the ascertainment procedure in this instance leant 

further weight, to the conclusions reached. Most studies had full information on the day of 

vaccination and the day of event (studies Farrington et al (2001) and Taylor et al (1999) 

used month as the time unit for analysis, but with long risk periods). In Burwen et al

(2006) and Dourado et al (2000), dates of vaccination were imputed rather than observed
\

exactly. The sensitivity to imputation errors depends on the lengths of the risk periods 

used, and it would be advisable to study this by sensitivity analyses, although none were 

reported. In Andrews et al (2010), vaccination dates were known exactly, but the types 

of vaccines used at different times were derived indirectly.
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Observation Periods and Risk Periods

A well-conducted SCCS study requires great rigour in the definition of observation 

periods and risk periods for each case. In all 84 studies, observation periods were defined 

with sufficient detail to reconstruct the study. The idiosyncrasies of specific databases 

need to be allowed for appropriately in defining observation periods. Thus, some studies 

excluded day of vaccination (or allocated it a special parameter) owing to the fact that, in 

some information systems, past events are retrospectively recorded on day of vaccination; 

left uncorrected, this would induce spurious associations on the day of vaccination. This 

effect is illustrated graphically in marked fashion in Tata et al. (2003). In one study in 

the GPRD (Andrews et al., 2010), events on the day of vaccination were validated by 

case-note review.

The choice of risk periods should be made a priori and its rationale explained. The risk 

periods were explicitly defined in all 84 studies. Typically, the choice of the risk periods is 

based on reference to previous studies or hypotheses, as in France et al. (2008) for example; 

on biologically plausible mechanisms (Farrington et al, 1995); or by expert opinion (Miller 

et al., 2005). Different risk periods may sometimes reflect different scientific questions. For 

example, in Farrington et al. (1995), the 6- to 11-day risk period post-MMR was chosen 

to capture febrile convulsions associated with the measles component of the vaccine, while 

the 15- to 35-day risk period was chosen to capture convulsions associated with the mumps 

component. Inevitably, in some circumstances the risk period is not known, and so the 

choice is arbitrary; if so this should be stated (Farrington et al, 2001). Three studies: 

Farrington et al. (2001); Hocine et al. (2007); Kramarz et al. (2001) used indefinite post 

vaccination risk periods. In several studies (e.g. Juurlink et al. (2006)) a sensitivity
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analysis was undertaken by varying the risk period. A further approach is to use several 

adjacent risk periods in the same analysis. For example, to investigate seizures and 

acellular pertussis vaccines, study Huang et al (2010) used the risk periods 0 days (i.e. 

the day of vaccination) and 1-3 days after vaccination. When results are similar across 

risk periods, or when data are lacking, contiguous risk periods can be combined. When 

a relatively long risk period is used, it is advisable to undertake secondary analyses to 

identify clustering or otherwise of cases within that risk period. Examples include Miller 

et al. (2001), where a clustering of ITP cases was found 15-28 days post vaccination 

within the 42-day risk period studied, and Farrington et al (2001), where no clustering of 

autism cases was found in adjacent 2-year intervals within the unlimited post-MMR risk 

period studied.

Confounders

SCCS studies adjust automatically for time-invariant multiplicative confounders. How

ever, effect modification by fixed covariates can be investigated through interactions with 

the vaccine effect : for example in Gwini et al (2011) such effects were investigated, for 

sex and age at start of observation. The SCCS method, in common with other epidemio

logical methods, is prone to bias from uncontrolled age- or time-varying confounders. In 

vaccine studies, particularly those undertaken in children, age (or in some cases season, 

or both) is likely to be the major confounder, and should, as a rule, be adjusted for in the 

analysis, unless observation periods are extremely short. Seven studies from 1995-2010 

did not report using any kind of temporal adjustment; in four of these, the observation 

period was less than a year. Of the remaining 33 studies, 19 adjusted for age only, three 

for season only, one for calendar time only, six for age and season, one for age and calendar
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time, and two for age, season and calendar time (e.g. Huang et al (2010)).

Only one study (Hocine et al., 2007) used the semi-parametric model (Farrington 

and Whitaker, 2006), in which it is not necessary to specify age classes. If a standard 

method of age adjustment is used, it is good practice to check that the age model used is 

adequate, by varying the number of age classes used. Two studies reported such sensitivity 

analyses (Hocine et al., 2007; Smeeth et al., 2004). One study (Hughes et al., 2006) 

controlled the time-varying confounding variable age as a continuous covariate and one 

study Mullooly et al (2011) used linear and quadratic functions, although no details of 

how these were achieved were given; such a method of control is not straightforward owing 

to the conditioning (see Chapters 5 and 7 on how age can be controlled as a continuous 

variable). Carlin et al (2013), used fractional polynomials to control for age in addition 

to the standard method.

Control for age-varying or time-varying confounders other than age or season require 

the confounder to be measured over time. For example, in an analysis of influenza vac

cine and GBS (Stowe et al, 2008), the authors controlled for the possible confounding 

effect of influenza-like illness. However, it is often impractical to measure time-varying 

confounders. For example, the healthy vaccine effect is a form of confounding by an un

measured time-varying factor. This affects SCCS studies as well as other study designs. 

The potential impact of such bias therefore requires careful discussion.

Discussion of Potential Biases

The three key assumptions of the SCCS method listed in Section 2.1.1 of Chapter 2 

should be checked, as far as possible, and discussed. We consider these three assumptions 

in turn.
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Assumption (1) : that the events are either recurrent and independent within in

dividuals, or non-recurrent and uncommon, is not usually problematic. For recurrent 

events, sensitivity to the independence assumption can readily be tested by restricting 

the analysis to first events, provided these are uncommon in the population considered; 

see Farrington and Whitaker (2006); Whitaker et al. (2006) for an example with MMR 

and ITP. More complex approaches to correcting for non-independence of recurrent events 

are discussed in Farrington and Hocine (2010). Simulation studies in Farrington et al 

(2011) show that the bias is negligible when the risk that an unvaccinated individual will 

experience an event over the observation period is under 10%. Most adverse events of 

interest in post-licensure studies are much less common than this.

Assumption (2) : that the event should not affect the subsequent probability of vac

cination, is perhaps the most important for vaccine studies. This assumption fails if the 

event is a contra-indication for vaccination (as with intussusception and rotavirus vacci

nation since the publication of Murphy et al (2001)), or if vaccination after the event is 

more or less likely (as with GBS and influenza vaccination). A third possibility is that 

vaccination is deferred after (or more rarely, precipitated by) an event, so that the impact 

of the event on vaccination is short-lived. Nevertheless, an important feature of such 

biases is that their direction is predictable: if the event reduces the probability of subse

quent vaccination, then the relative incidence associated with vaccination will be biased 

upwards. This is because vaccinations are then less likely to arise after the event. There 

are three main ways of coping with such bias: including pre-vaccination risk periods 

to allow for short-term deferral of vaccination (or indeed to investigate the presence of 

longer term effects); exclusion of all pre-vaccination time (so that the observation period 

begins with vaccination), which works provided the vaccine can only be given at most
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once during the projected observation period; and the use of more complex analytic tech

niques (Farrington et al., 2009). Of the studies reviewed, 16 used pre-vaccination risk 

periods (see, e.g. Andrews et al (2001) and Sardinas et al. (2001)), and three (Juurlink 

et a l , 2006; Smeeth et al, 2004; Zinman et al, 2009) started observation at vaccination for 

some analyses. An extended version of the SCCS method (Farrington et al, 2009), that 

allows censored, perturbed or curtailed post-event exposures was applied to investigate 

the association between Guillain Barre’ Syndrome and influenza vaccines by three studies 

Dodd et al (2013); Galeotti et al (2013) and Romio et al (2014). Traversa et al (2011) 

used the extended method to investigate if sudden unexpected deaths were associated to 

vaccinations during the first two years of life.

Assumption (3) : that the observation periods are not event-dependent, may be vio

lated, for example, if events increase short-term mortality, or the event of interest is death. 

This was not an issue in any of the 84 studies reviewed. SCCS methods for dealing with 

such situations are discussed in Farrington et al (2011, 2009); Kuhnert et al (2011).

Comparisons W ith Other Statistical M ethods

In addition to implementing the SCCS method, more than 12 studies used or reported 

results obtained on the same data using other study designs. These included cohort, case- 

control, and ecological methods. The different methods should produce the same results, 

provided that all confounding has been controlled and that the assumptions required are 

met.

Using several methods of analysis is recommended, as it can reinforce conclusions 

or shed light on possible sources of bias, when these differ for different study designs. 

Table 3.2 presents the results obtained using SCCS and other methods, for a selection of
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analyses.

Table 3.2: Selected relative incidence (RI) estimates from self-controlled case series method 

and RI or odds ratio (OR) from other study designs applied to the same case data, and 95% 

confidence interval (Cl)
Vaccine (adverse effect) SCCS Other study

(reference) RI (95% Cl) type RI or OR (95% Cl)

MMR (aseptic meningitis) 30.4(11.5-80.8) Before/after 14.3(7.9-25.7

(Dourado et al., 2000) ecological analysis

MMR (ITP) 5.38(2.72-10.62) Cohort 3.94(2.01-7.69)

(France et al, 2008)

Influenza (gastritis/duodenitis) 4.54(1.90-10.86) Case crossover* 4.33(1.23-15.21)

(Hambidge et al, 2006)

HBV (first demyelination) 1.68(0.77-3.68) Case-control 1.8(0.7-4.6)

(Hocine et al, 2007)

DTaP (seizure) 0.91(0.75-1.10) Cohort 0.87(0.72-1.05)

(Huang et al, 2010)

Influenza (asthma exacerbation) 0.98(0.76-1.27) Cohort 1.39(1.08-1.77)

(Kramarz et al, 2000)

Influenza (asthma exacerbation) 0.65(0.52-0.80) Cohort 1.4(1.2-1.5)

(Kramarz et al, 2001)

HBV (wheezing onset) 0.41(0.24-0.70) Case-control 0.59(0.22-1.59)

(Mullooly et al, 2002)

Oral rotavirus (intussusception) 29.4(16.1-53.6) Case-control 21.7(9.6-48.9)

(Murphy et al, 2001)

Intranasal flu vaccine (Bells palsy) 35.6(14.1-89.8) Case-control 84.0(20.1-351.9)

(Mutsch et al, 2004)

Concurrent vaccines (hospitalization) Identical Cox regression 0.90(0.75-1.09)

(Payne et al, 2007)

MCCV (nephritic syndrome relapse) 0.95(0.61-1.47) Before/after 1.05(0.95-1.15)

(Taylor et al, 2007) ecological analysis

For abbreviations refer Table 3.1 note.

* This description is incorrect : it is actually another SCCS (see text).

The results obtained using SCCS were broadly similar to those obtained by other
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methods, with the exception of studies of influenza vaccine and asthma exacerbation 

(Kramarz et al., 2000, 2001) where the SCCS method found a protective or null effect, 

but a cohort analysis found a positive association. The most likely explanation for this 

discrepancy is residual indication bias in the cohort study, children with more severe 

asthma being more likely to receive influenza vaccine. In the cohort study, underlying 

asthma severity was quantified using available proxy variables; self-control in the SCCS 

study was arguably more effective in correcting for indication bias. More generally, the 

results of a SCCS study should be unaffected by unmeasured or incompletely controlled 

confounders, and in this sense ought to be more reliable, provided that the assumptions 

of the method are satisfied.

In a study of hepatitis B vaccine (HBV) and wheezing onset (Mullooly et a l , 2002), 

the point estimates from SCCS and a case-control study were of the same order, but 

the greater precision of the SCCS method in this case produced a statistically significant 

effect. The better precision of the SCCS method was also noted in another study of HBV 

(Hocine et al, 2007), where it was pointed out that some cases cannot be used in matched 

case-control studies owing to lack of matching controls ; the SCCS method does not suffer 

from this problem. In one study (Hambidge et al, 2006) the alternative method was 

incorrectly described as a case-crossover design, when in fact it was another SCCS with 

a before and after vaccination observation period. The distinction between SCCS and 

case-crossover methods (Delaney and Suissa, 2009) stems from the fact that, as described 

above, SCCS studies are based on cohort designs, whereas case-crossover studies are based 

on case-control designs. The use of case-crossover methods for vaccine safety studies is 

discussed briefly in Farrington (2004).

The SCCS method is never exactly as powerful (and therefore, does not yield as precise
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estimates) as a cohort study with the same cases, unless, as often occurs in practice, 

there is unexplained between individual variation in the cohort study which inflates the 

uncertainty. However, when risk periods are short relative to observation periods, the 

power of the SCCS method approaches that of a cohort study. However, SCCS studies 

with long or indefinite risk periods (Farrington et al., 2001) may have substantially lower 

power than a cohort study with the same cases (see the discussion of Farrington and 

Whitaker (2006)). A SCCS study is usually more powerful than a case-control study 

with the same cases and with a single control per case (Farrington et al., 1996). (As the 

number of controls increases, the power of the case-control study increases.)

M ethodological Issues

An unusual feature of the SCCS method is that post-event time is included in the 

analysis. This is a consequence of the fact that the method works by conditioning, for each 

individual, on that person’s vaccination history over the entire observation period, and on 

the number of events arising within that period. It follows that observation time should 

not be censored at the event. One study (Hughes et al., 2006) did censor observation 

at the event, in this instance GBS, ostensibly because patients who have had GBS may 

be advised not to have further immunizations. If GBS patients are less likely to receive 

immunizations after experiencing the adverse event then, as noted above, a standard SCCS 

analysis would have resulted in an overestimate of the relative incidence. Censoring at 

event, however, produces bias of unpredictable direction, and is not recommended.

Several studies of potentially recurrent events, such as convulsions (Huang et al., 2010), 

ITP (Miller et al., 2001) or GBS (Stowe et al., 2008), considered repeat events to be part 

of the same episode if separated by less than some minimum time period r. This presents
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the methodological problem that, after an event, no other event can then occur for a time 

interval r: an instance of immortal time, which, if included in the analysis, may result 

in bias (Suissa, 2007). Generally r  is short and repeat events are relatively uncommon, 

so any such bias is likely to be small. A simple approach is to perform a sensitivity 

analysis restricted to first events, which also sidesteps the requirement for repeat episodes 

to be independent. One interesting study (France et al., 2008) excluded person-time for a 

period r  after each episode; however, the performance of such a strategy requires further 

investigation.

Several SCCS studies defined observation periods relative to the day of vaccination, 

either starting with vaccination and ending a fixed number of days after vaccination 

(Juurlink et a l , 2006; Zinman et a l , 2009), or starting and ending some fixed number 

of days before and after vaccination (Ali et al., 2005; Burwen et al, 2006); we refer to 

such studies as before and after designs. For some studies this was done for convenience 

of data collection. While not invalid, this approach results in short observation periods, 

which is not optimal, as information from events occurring at other times is not used. In 

addition, the short control periods may only include time when the risk of temporal bias 

is high. For example, bias from delayed vaccination following an event may artificially 

depress the incidence in the period immediately preceding vaccination. This effect is very 

apparent on the plots of intervals between vaccination and events in Burwen et al (2006), 

which shows a marked trough of hospitalizations in the week preceding vaccination (this 

week was, rightly, excluded from the analysis).

As explained in Section 2.1.1 of Chapter 2, the SCCS method is derived from a cohort 

model by conditioning on the number of events observed, as well as on vaccination history. 

Thus, a conditional (Poisson) model is used to estimate the parameters. Fewer than half
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of the 40 studies in 1995-2010 indicated that a conditional Poisson regression model was 

used, either explicitly (e.g. (France et al, 2008; Gwini et al, 2011; Hambidge et al, 

2006)) or with words to that effect (as in Gold et al (2010); Zinman et al (2009)). In a 

few studies it was unclear whether a conditional or unconditional model was fitted (e.g. 

(Payne et al, 2007)). The only circumstance in which an unconditional Poisson model 

(i.e. one in which the number of events per individual is not regarded as fixed) may be 

used in a SCCS analysis is when all individuals have identical observation periods and 

vaccination histories. In this special case, the conditional and unconditional methods give 

the same results. In two further instances, the method of analysis appeared somewhat 

idiosyncratic (Burwen et al, 2006; Hughes et al, 2006).

Useful P lots

Several studies (e.g. Dourado et al (2000); Stowe et al (2009); Tata et al (2003)) 

included plots showing the intervals between events and vaccination; these are useful for 

visualizing the association between exposure and event (although they are also prone to 

censoring effects), and for identifying pre-vaccination troughs. Such plots are trickier 

to draw for multi-dose vaccines, but are useful nonetheless (Murphy et al, 2001). Other 

studies (e.g. France et al (2008); Naleway et al (2009)) illustrated the case ascertainment 

procedure using a flow diagram, which presents clearly the inclusions and exclusions 

applied to assemble the cases, and hence can help the reader assess any biases that may 

have arisen in the process. Further useful plots include those illustrating the risk periods 

used (Gwini et al, 2011; Smeeth et al, 2004), those showing estimated age or season 

effects (Hocine et al, 2007) and, for complex analyses with many endpoints, graphical 

representation of the relative incidences (Andrews et al, 2010).
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Power and Sample Size Issues

In studies involving very uncommon events, power and sample size considerations are 

particularly important (Musonda et al, 2006). One study (Gwini et al., 2011) reported 

checking the sample size required to achieve 90% power to detect at least a doubling of 

risk. The relevant sample size is the number of events, and if this is too small the estimates 

and confidence intervals may not be accurate. To aid interpretation, it is important to 

report the numbers of events in risk and control periods. The larger the imbalance in the 

expected numbers of events in the risk and control periods, the worse the small sample 

bias. This is most likely to affect studies with very short risk periods. Simulation studies 

reported in Musonda et al. (2008a) suggest that the small sample bias is likely to be small 

provided at least 2.5 events are expected in the risk period. Note also that a small sample 

size may adversely affect the ability to control effectively for the effect of age and other 

time-varying confounders.

Sensitivity Analyses

Sensitivity analyses have been mentioned throughout this chapter. They provide a 

simple way of evaluating the robustness of the results; we focus here on where they may 

be used (other useful sensitivity analyses than those described here can doubtless be 

performed).

When the SCCS model is used with parametric adjustment for age we recommend 

checking the sensitivity of exposure risk estimates to choice of age group, by increasing 

the number of age groups (Hocine et al, 2007; Smeeth et al, 2004).

Sensitivity analyses of risk periods should be motivated explicitly (as in Juurlink et al. 

(2006)). Researchers may also wish to consider whether it would be sensible to explore
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sensitivity of results by adding washout periods to the chosen risk period, removing the 

day of vaccination or including pre-vaccination risk periods.

If recurrent adverse events occur in episodes, and there is a lack of clarity over whether 

repeat events are part of the same episode, sensitivity to the choice of definition of episodes 

can be checked. Note that analyses of first events only can be carried out to avoid any 

issue of lack of independence between adverse events.

If exact dates or timings of exposures or events are unknown and have to be imputed, 

sensitivity to how these timings are imputed should be explored.

When sensitivity analyses are performed, they should be reported, with full details 

when they relate to risk periods, washout periods and pre-vaccination periods. It is im

portant to distinguish between them and the pre-planned primary analyses. If sensitivity 

analyses suggest possible departures from the assumptions of the method, this should be 

stated explicitly. If it is thought that departure from assumptions might affect the results, 

then, where possible, alternative methods of analysis should be used in conjunction with 

SCCS.

Software for SCCS Analyses

Twelve of the studies that appeared in 1995-2010 reported which statistical package 

was used to undertake the SCCS analysis. Six used Stata (StataCorp, USA), five used 

SAS (SAS Institute Inc.,US A) and one used GLIM (NAG, UK). Further information about 

fitting SCCS models using these packages and other standard softwares may be found in 

Whitaker et al (2006) and on the associated website (http://statistics.open.ac.uk/sccs).

The SCCS model is most conveniently fitted using software designed for Poisson re

gression models with fixed effects (in this case, the levels of the fixed effects represent

http://statistics.open.ac.uk/sccs
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distinct individuals). This method of fitting the models exploits a convenient technical 

fact known as the ’Poisson trick’, whereby a multinomial likelihood (which applies for the 

SCCS method, see Farrington (1995); Farrington and Whitaker (2006)) can be maximised 

using a Poisson model. However, this trick has its limits : for example, fitting age as a 

continuous variable cannot be done in this way, because it does not allow for the fact that 

age varies within each risk or control interval, see Chapters 5 and 7 on how to control for 

age as a continuous variable.

3.3 Discussion

Review of vaccine studies that made use of the SCCS method from 1995 to the be

ginning of 2014 was done in this chapter. The review was based on papers quoting key 

papers on the case-series method. We are aware of several independent reinventions of 

the SCCS method in different contexts : the bidirectional case-crossover method applied 

to fixed observation times (Navidi, 1998) and the time-stratified case-crossover approach 

(Lumley and Levy, 2000), developed for the analysis of environmental time-series data 

(see Vines and Farrington (2001); Whitaker et al. (2007), for a discussion of the connec

tions with the SCCS method), and the method of Becker et al. (2004) applied to venous 

thromboembolism after long-haul flights. None of these versions of SCCS have so far 

been used in connection with vaccine safety. Thus, to the best of our knowledge, we have 

included all applications of SCCS methodology to vaccine studies that appeared by the 

beginning of 2014.

We identified and reviewed 84 papers which applied the SCCS method to vaccine stud

ies. In general the method was applied appropriately. All 84 studies provided sufficient 

detail of how their data were collected, which enabled the reader to make sure that events
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are identified independently of vaccinations. Moreover, observation and risk periods were 

generally carefully specified. Most studies adjusted for age and/or season as appropriate.

The following key issues emerge when using the SCCS method. Ascertainment of cases 

and collection of data on exposure history should be independent, as bias may result if 

case ascertainment was influenced by knowledge of exposure status. The observation and 

risk periods should be clearly defined, and the choice of risk period should be justified. 

Where necessary, age and season effects should be allowed for, and when using the stan

dard model, sensitivity to the choice of age and seasonal groups should be checked. Other 

relevant time-varying covariates (such as concurrent vaccinations and other exposures) 

which may be associated with both the exposure and outcome should be identified and, 

if possible, taken into account in the analysis. The validity of the assumptions required 

by the SCCS method should be carefully considered and appropriate supplementary sen

sitivity analyses undertaken where these come into question.

A few papers suggest there remains a degree of confusion about what a SCCS study 

entails, in particular how it differs from a before and after vaccination analysis or from the 

case-crossover paradigm. This is wholly unsurprising, owing to the somewhat abstruse and 

technical, yet fundamental, distinction between conditional and unconditional analyses. 

In recent methodological paper Glanz et al. (2006) a before and after design is described, 

described as a risk interval method, which is in fact a special case of a SCCS design. 

The term case centred has also been used to describe such designs (Klein et al., 2010). 

We excluded two papers France et al. (2004); Klein et al (2010) with before and after 

analyses from our review because they did not describe the design as SCCS; several before 

and after analyses that did were included in the review. In fact, all these studies are 

special cases of the SCCS design. Nevertheless, the picture that emerges is dominated by
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the numerous impressive and often imaginative applications of the method.

This review has raised some further methodological issues worthy of further study. One 

such is how best to handle the immortal time after an event, during which recurrences are 

classified as part of the same episode, and whether ignoring this effect has any substantive 

bearing on the results. Another is to study and quantify the bias that results from 

censoring observation periods at events. Sensitivity analyses may be indicated in both 

circumstances. Further, while the SCCS method is only applicable with a single outcome 

variable at a time, it may be desirable to study several outcomes jointly. A bivariate SCCS 

method has been suggested for the analysis of antibiotic resistance (Hocine et al, 2009); 

perhaps similar ideas can be used for a multivariate SCCS applied to vaccine safety, in 

which several possibly dependent outcomes could be studied at the same time.

SCCS is a relatively new statistical methodology, and the issues that require partic

ular emphasis and care in reporting have, therefore, only become apparent over time. 

The development of suitable guidelines for reporting such studies, in vaccine safety and 

pharmacoepidemiology more widely, may perhaps now be indicated.

All but two studies applied the standard SCCS method where the age and exposure 

effects are represented by piecewise constant step functions. However, the standard SCCS 

method has a limitation that misspecification of age groups might result biased estimates 

as presented in section 2.3 of Chapter 2 and only few of the reviewed studies did sensitivity 

analysis. Therefore, it worth modelling the age and exposure related relative incidence 

functions by smooth functions that avoid the limitations of the standard SCCS methods. 

In the next chapter we present some of the possible smooth function which could be used 

in the SCCS context.



Chapter 4

Basic Concepts of Sm ooth Functions

The standard self-controlled case series method, as described in Chapter 2, uses step 

functions to model the effects of age and exposure. Alternative ways of modelling, that 

avoid the use of step functions in general and their limitations in the SCCS method in 

particular, are presented in this chapter. In Section 4.1 we introduce polynomial functions 

followed by fractional polynomials in Section 4.2. Then we describe spline functions based 

on truncated power functions, B-splines, M-splines and I-splines in Section 4.3 followed 

by a discussion in Section 4.4

4.1 Polynomial Functions

The simplest way of replacing a step function with a smooth function is to use a 

polynomial of degree higher than zero. Polynomial function f( t)  can be constructed 

as a linear combination of functions, f( t)  = ]T)aihi(t), where hi(t) are known as basis 

functions.

For example the basis functions of a straight line model, /(£), are h0{t) = 1 and 

hi(t) =  t, where t is the variable of interest. Then f( t)  is expressed as a weighted sum of

53
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the basis functions, i.e

= S  = Qo +  Qfi t.
1=0

For this linear function the design matrix is:

T  =

where ti, t2, . . . ,  tn are the observations on t and n is the number of observations. These 

basis functions are graphically shown on the top row in panel a of Figure 4.1. On the top 

panels of the figure, the basis functions are denoted by solid lines and the corresponding 

curves fitted using these basis functions are presented on the bottom panels as dashed 

lines. The 100 data points denoted by circles were simulated from a normal distribution 

with a mean of sin(t) +  2 and a standard deviation of 0.5 and the solid line in the bottom 

panel shows the true curve. The domain of t ranges from 0 to 8.

To increase the flexibility of a polynomial function, that is to achieve a more flexible 

approximation of f(t), we can increase the order of the polynomial function by adding 

more basis functions. For example, for a quadratic model, the basis functions are h0{t) = 

1, hi(t) — t, and h2(t) = t2 and in general for a degree p polynomial model the basis 

functions are

h0(t) = 1, hx{t) = t, h2(t) = t2, h3(t) = t 3, . . . ,  hp(t) = tp

with a design matrix of
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T

1 t t 2x bn  bn

Then
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where the coefficients a 0, « i, a 2 . . . ,  determine the shape of the function /(£).
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Figure 4.1: Basis functions and fitted regression curves to 100 data points simulated from a 

normal distribution with mean sin{t) +  2 and standard deviation 0.5. Panels (a) represent a 

degree 1 polynomial, panels (b) a quadratic and panels (c) a cubic polynomial. The top row 

shows basis functions and the bottom row shows the fitted and true polynomial functions. In all 

the panels, data points are represented by circles, the true function is denoted by a solid line, 

the dashed lines denote the fitted polynomial curves

Basis functions for quadratic and cubic regression curves are presented in Figure 4.1
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on the top row of panels b and c respectively and their corresponding fitted curves are 

shown on the bottom row.

According to Ramsay and Silverman (1997), a good basis function should be chosen 

such that estimation of the coefficients cq and computation of the basis functions is fast, 

they are flexible enough to exhibit the required curvature where needed and of course, 

nearly linear when appropriate. They should be differentiable as required i.e one or more 

of the derivatives of the approximation made based on the basis functions should behave 

reasonably. And the other property taken into consideration to make a choice among 

the basis functions is that they allow one to do constrained modelling when required, for 

example by satisfying monotonicity, positivity conditions etc.

4.2 Fractional Polynomials

Polynomial regression, although a popular technique, has limitations in the fact that 

individual observations can exert an influence in unexpected ways on remote parts of the 

curve (Green and Silverman, 1994). Low order models such as quadratics lack flexibility, 

and higher order fitted curves have a propensity to produce artefacts, such as waviness 

and end-effects (Royston and Altman, 1997).

To address these limitations a family of fractional polynomials was introduced by 

Royston and Altman (1994) as generalizations of the conventional polynomial class of 

functions by considering not only positive integer powers, but also negative and fractional 

powers. A fractional polynomial of degree m  is defined as

m
f(t) =

1=0



C h a p t e r  4 . B a sic  C o n c e p t s  o f  S m o o t h  F u n c t io n s 57

where m  is a positive integer, and Hi(t) is given by

I tpi, if Pi 7̂  Pi-i
m  = \

[ Ht- i  (;t) x log(£), if pi =  pi-1 

with Pi <  P2 < • • • ^  Pm a sequence of powers and p0 = 0. H0 = 1, if pi = 0 then 

Hi(t) = tPl is taken, by definition, to be Hi(t) = logt. Allowing non integer powers in 

fractional polynomials increases their flexibility even in lower order models and they fit 

better at extreme values of the observed range of covariates unlike conventional polynomi

als. Royston and Altman (1994) argued that, in practice, fractional polynomials of degree

higher than 2 are rarely needed and suggested choosing the values of powers from a set

of numbers between -2 and 3, i.e {—2, —1, —0.5,0,0.5,1,2,..., max(3, m)}. For fractional 

polynomial models with m > 1, e.g m = 2 if p2 = p\ the models do not degenerate to 

models with fewer powers (Royston and Altman, 1997). That is ao +  a\Hi(t) +  a2H2(t) 

are not of the same degree as ao +  OL\Hi(t) if p2 = p\. The model has three parameters 

(degree 2)

a 0 +  a i tpl +  a2tpi logt.

To choose the best powers p\ and p2, when m = 2, fractional polynomial models with 

each possible pair of p\ and p2 are fitted and deviance values are computed. A model that 

gives the smallest deviance is chosen as the best model.

The basis functions for a function, f ( t ), approximated by a fractional polynomial 

model with m = 2 are:
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h0(t) = 1, hi(t) = tpi,h2(t) = tP2 if 0 ^  pi < p2 ±  0

ho(t) — 1, hi(t) = tPl,h2(t) = tPl logt H 0 7Lp1 = p 2 ^ 0

h0(t) = 1, hi(t) = logt,h2(t) = tP2 i f Pl = 0

h0(t) = 1, hi (t) = tpi, h2(t) =  log t Hp2 = 0

h0(t) =  1, hi(t) = logt, h2(t) = (logt)2 i f P l = p 2 = Q 

Fractional polynomials provide a much wider range of shapes for curves than allowed

by standard polynomials, including curves with asymptotes. However, they are still global

functions.

4.3 Spline Functions

Among the limitations of polynomial functions and fractional polynomials is their 

global nature. Tweaking the coefficients to achieve a functional form in one region can 

cause the function to have a bad fit in remote regions (Hastie et al., 2001). These problems 

can be addressed by using non parametric smoothing methods. One alternative to avoid 

the limitations of polynomial functions is by using splines, that is representing the function 

as a combination of local polynomials. Splines are functions constructed by combining 

pieces of polynomials. In this section we describe a piecewise polynomial representation 

of a function using truncated power basis functions, B-splines and M-splines.

4.3.1 Truncated Power Basis

A piecewise polynomial function f (t)  can be constructed by dividing the domain of t, 

say [a, 6], into intervals and fitting separate polynomial curves in each interval. The points 

that divide the intervals are known as knots. The function f (t)  is obtained by imposing 

continuity and differentiability on the piecewise polynomials up to a certain order at the
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knots, where two adjacent segments join. For example, if the domain of t is divided by- 

two inner knots k\ and k2, and three linear functions are fitted representing f (t)  on the 

three different intervals, then the function f ( t)  is constructed based on six basis functions 

and hence six parameters, two for each degree 1 function. The basis functions are

h0(t) = I(t < &i).l, hi(t) = I(t < ki).t,

h2(t) =  I  (hi < t <  k2). 1, h3(t) = I(ki  < t < k2).t, •

h4(t) = I(k2 < t). 1, h5(t) = I(k2 < t).t

Therefore, f(t) = that ŝ5

Q!o +  t, i f t < k i

f (t) =  ̂ a2 +  a3t , if k\ < t < k2

ot/± +  a5t, if k2 < t

Let us now consider the data simulated in Section 4.1 and estimate the true function, 

f ( t) = sin(t) +  2, using a piecewise linear function. Let the domain of t be divided into 

three intervals at knots k\ =  2 and k2 = 6. The fitted curve denoted by dashed lines is 

shown in Figure 4.2, the solid line represents the true curve. The fitted curve has three 

pieces of degree 1 polynomials. In the figure, it can be seen that the estimated function is 

discontinuous at the knots. However, since the true function is continuous throughout the 

domain we want the estimated function to be continuous as well. Therefore, a constraint 

is imposed on the parameters such that the function is continuous at the knots. Each 

of the fitted pieces of polynomials is constrained to be equal to a polynomial in the 

next interval at the knot which connects them. In the example, the constraint means 

f ( k i )  — f i ^ i )  and f ( k 2 ) =  f ( k 2 ). This implies that a0 +  a^ki = a 2 +  a 3ki and 

ol2 +  a3k2 = a?4 +  a3k2. These constraints reduce the number of parameters that define 

the piecewise linear function from 6 to 4 =  (3 intervals) x (2 parameters for each interval)
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- (2 knots) x (1 constraint per knot).

CD 0 3  9/ o
CO

CO

CM

O

Figure 4.2: Piecewise linear function fitted to a data simulated from a normal distribution with 

mean sin(t) + 2 and standard deviation 0.5. The fitted curve is discontinuous and is represented 

by the three dashed lines and the solid line is the true function. The data are divided into three 

intervals at knots 2 and 6

A piecewise polynomial function constrained to be continuous at the knots can be 

constructed by using truncated power functions as basis, which directly take the constraint 

into account. A truncated power function of degree p for a knot ki is defined as:

( t- fc i)+  =  ( t - U pW < )

The +  indicates the function takes a value 0 for t to the left of ki and (t —ki)p otherwise, 

th a t is

(t -  ki)p, if t  > ki

0, if t < k[
(t -  kt)p
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The truncated power functions are used together with polynomial basis functions to 

form a truncated power basis. For example to fit a piecewise linear model with two knots 

at ki and k2, the truncated power basis comprises h0(t) =  1, h\{t) =  t, the polynomial 

part, and truncated power functions of degree 1, h3(t) = (t — k i)+ and hA{t) = (t — k2)+. 

Then, the piecewise linear function is estimated as:

f ( t )  =  Oo +  Oi\ t +  a 2 (t — ki)+  +  Oi2,{t — k2)+.

This function, expressed as a linear combination of truncated power basis functions, is 

known as a spline function. From the basis functions it can be seen th a t if the param eters 

associated with the truncated power functions, a 2 and a 3, are both estim ated to be zero 

then the function f ( t )  reduces to a single polynomial function of degree one. Panel (a) 

of Figure 4.3 shows a piecewise linear function fitted to the simulated data  presented in 

Figure 4.2 and the corresponding truncated power basis functions are shown in panel (b).

(a) Piecewise linear function (b) Degree 1 truncated power basis

CO

o

0 2 6 84

00

co

o

1 2 3 84 5 6 7

t t

Figure 4.3: Panel (a) piecewise linear spline function fitted to simulated data, Panel (b) Linear 

truncated power basis used to estimate the piecewise linear function

It can now clearly be seen from Figure 4.3 th a t the use of truncated power basis leads to
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a function which is continuous everywhere, linear everywhere except at the knots and has 

different slopes for each interval. The fitted linear spline curve in panel (a) of Figure 4.3 

denoted by the dashed lines has sharp corners at the knots. This shows th a t the function 

does not have a continuous first derivative at the knots. If a smoother function is required, 

higher order truncated power basis functions can be employed, which are straightforward 

to construct. For example, a piecewise cubic polynomial function (cubic spline) with two 

knots has a truncated power basis th a t includes the degree three polynomial basis and 

two degree three truncated power functions, namely

h0(t) = 1, hi(t) = t, h2(t) = t2, h3(t) = t3

and

K i t )  = ( t -  £ i)3+ , h5(t) =  (t -  k2) l

(a) Quadratic spline (b) Cubic spline

t t

Figure 4.4: Panel (a) piecewise quadratic spline function fitted to simulated data, Panel (b) 

cubic spline function. In both the panels the dashed lines represent fitted curves and the solid 

lines represent true curve used to simulate the data points denoted by circles

A cubic spline has continuous first and second derivatives at the knots. Quadratic and
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cubic splines fitted to the simulated data are shown on panels (a) and (b) of Figure 4.4 

respectively.

In general, piecewise polynomials of order q or degree p = q — 1 connected at knots 

ki ,k2,... ,ks have truncated power basis 1 , t ,  ..., tp, (t — ki)+, ..., (t — ks)̂ _ and their linear 

combination gives a spline function which has continuous derivatives up to order q — 1 as 

follows:
s

f ( t ) =  Qfo +  ait +  ... +  QLptP +  'y  ̂OLpi{t — kl) + .
1 = 1

This function has two parts, a global polynomial of degree p and truncated power 

functions of degree p related to the knots. The design matrix is

T  =

1 ti . . .  . . .  ( t ! - k s)p+

1 tn . . .  tp (tn - k . . .  (tn - k s)

4.3.2 B-splines

Truncated power basis functions have an advantage of simplicity to construct which 

makes them attractive for statistical work, they however have a rather serious disadvan

tage of generating considerable rounding error (Ramsay, 1988). The numerical precision 

problem occurs because these functions have a rapid growth without bound as t increases, 

especially when the domain of t is wide. Moreover, as they are far from orthogonal they 

can suffer from numerical instability when there is a large number of knots (Ruppert 

et al, 2003). When computed at some value of t , many or even all of the truncated power 

basis functions can be non zero leading to a design matrix containing only a few zeros, 

which prevents the use of sparse matrix techniques to reduce computational time. These 

limitations of the truncated power basis functions can be avoided by using reasonably
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well-conditioned and more stable equivalent basis functions known as B-splines.

B-splines are piecewise polynomial functions derived from truncated power functions 

and have more stable numerical properties. A B-spline of order q, q > 1, is a combi

nation of polynomial functions of degree q — 1 connected at knots. They are defined as 

appropriately scaled divided differences of truncated power functions (de Boor, 1978).

Divided differences are mathematical tools having various applications in numerical 

analysis including polynomial interpolation and derivation of B-spline basis functions. 

Let t0, be distinct real numbers and let /(to), . . . ,  f ( t n) be the associated

function values. Then to find a polynomial function, p(x) =  a 0 +  <̂ it H +  ocntn, that

interpolates the data, divided differences can be used. The nth order divided difference of 

a function /  is the leading coefficient of the polynomial function p(x) and is denoted by 

M i , . . . , tn]f- If is evaluated as:

fj. j. + i f    [̂ lj 2̂, • • • , tn]f [̂ 0 5 ^lj • • • j tn—1 \ f
[t0, &1, • • • , fnj/ — -----------------   7------------------

t'n CO

where

[tolf = f i t  o)

and so

H — Co

etc. Now, to derive B-spline basis functions using divided differences, let the truncated 

power function of order q centered at t be denoted by T^{k)

Tf{k) = ( t -  k )\~\

In the derivation of the B-splines, the truncated power function (t — k)q+ l of the two 

variables t and k is taken by fixing t and considering (t — k)q+ l as a function of k only 

(de Boor, 1978).
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Let the function to be approximated by a spline be defined in the interval [a, b] and 

ki =  k2 = • • • =  kq < kq+1 < • • • < kq+s < kq+s+i = kq+s+2 =  • • • =  k2q+s , be a non

decreasing sequence of knots in [a, b], where kq — a and kq+s+1 = b. s is the number of 

interior knots, kq+1 < • • • < kq+s, which are within the domain [a, b] and to create the 

B-spline basis functions, the first and last q — 1 knots are arbitrarily added. Usually the 

extra knots at the beginning of the sequence are all taken to be equal to a and the ones 

at the end equal to b. But it is also possible to give them arbitrary values. Then, the 

Ith B-spline of order q at t for the given knot sequence denoted by Bi(t\q) is defined as 

an appropriately scaled qth order divided difference at ki, ^ +1, . . . ,  ki+q of the truncated 

power function T/(&) (de Boor, 1978), by the rule

B ^ q )  = (-1  Y(kl+q -  kt)[kh . . . ,  kl+q]T?{k)

for I = 1,2,..., m  and m = q + s is the number of B-spline basis functions, which is equal 

to the number of interior knots plus the order q. [ki, . . .  ,ki+q]T^(k) is the qth divided 

difference at &/,..., ki+q of Here ki+q > ki, if ki+q = ki then Bt(t\q) is defined to

be zero.

Each Bi(t\q) is positive over the interval ki < t  < ki+q and zero elsewhere, i.e it is non 

zero over q intervals in the domain of t, [a, b], and each interval has q positive B-splines.

The qth divided difference of the truncated power function, in the definition of B- 

splines, is multiplied by (ki+q — ki)(—l)q so that at a given value of t the sum of the q 

positive B-splines is equal to one, i.e X); Bi(t\q) = 1. Each Bi(t\q) consists of q polynomial 

pieces of degree q — 1 that are joined at q — 1 inner knots and whose derivatives up to 

order q — 2 are continuous at the joining points. The other property of B-splines is that 

the integral of each of Bi(t\q) between ki and ki+q is J^l+q Bi(t\q)dt = kl+<f~kl.
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As an example let us consider evaluating B-splines of order 2 (q = 2) for the data 

simulated in Section 4.1 where the values of t range from 0 to 8. Let the inner knots be 

2, 4 and 6, then the set of knots including the minimum and maximum values of t will 

be {0,2,4,6,8}. To create a B-spline we add an arbitrary extra q — 1 = 1 knots at the 

beginning and end of the set, which gives a total of 7 knots {0,0,2,4,6,8,8}. Then, for 

example, the 3rd B-spline B3(t\2) (I = 3) is

B3(t\2) = (—l)2(fc3+2 — k3)[k3, ki, k5]Tf(k) 

n. j„ A k4 ,h ]T ? (k ) -[h ,k4\T?(k)
= { h ~ h )  ( v ^ ) -----------

T?(h)  -  T f j h )  J f jk i )  -  Tt2(k3)
&5 — &4

(* -6 ) + - ( t - 4 ) + (t — 4)+ — (t — 2)+
6 - 4  4 - 2

For t < &3 =  2

B3m  =

For &;3 =  2 < £ < & 4  =  4

(0) -  (0) (0) -  (t -  2)
Bs(t |2)

2 2 
t - 2

For £;4 =  4< £ < £ ;5  =  6

(0) -  (i -  4) (t _ 4 ) - ( t - 2 )
2

6 — f
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And for t > k5 = 6

f ls ( t |2) =  ( t - 6 ) - ( t - 4 ) _ ( * - 4 ) - ( « - 2 )

Since the number of inner knots is 3, and the order is 2 the total number of basis functions 

is 5 and the remaining B-spline functions, Bi(t\2), B 2(t\2), B 4( t |2), and B 4(t |2) can be 

obtained in a similar way.
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Figure 4.5: B-spline basis functions of order 2: Left panel one basis function which is a combi

nation of two linear functions and the right panel all the five B-spline basis functions

Graphically, B 3{t12), is a triangular hat function with a value of zero outside the 

interval between 2 and 6 and is presented in the left panel of Figure 4.5. The right panel 

shows all the five basis functions, the vertical dotted lines are the values of t where the 

knots are located. The data used to plot these basis functions are those simulated in 

Section 4.1. The first and last basis functions are discontinuous at the minimum and 

maximum values of t because there are repeated knots at those locations. Order two
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spline function fitted from B-spline basis functions of order two is shown in Panel a of 

Figure 4.7.

B-spline basis functions of order 4 are known as cubic B-splines because they are 

linear combinations of degree 3 polynomials, and can be obtained as explained for order 

2 B-splines. Figure 4.6 shows cubic B-spline basis functions. The inner knots are at 2, 4, 

and 6 with minimum and maximum values of t at 0 and 8 respectively. The left panel of 

Figure 4.6 shows the fourth B-spline, it covers four intervals and each interval is a piece 

of a degree three polynomial. And the right panel shows all the seven basis functions. A 

spline function fitted from these basis functions is presented in panel b of Figure 4.7
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Figure 4.6: B-splines of order four: Left panel one basis function which is a combination of 

four cubic polynomial pieces and the right panel all the seven B-spline basis functions
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a. Order 2 spline function b. Cubic spline function

Figure 4.7: Spline functions fitted using B-spline basis functions. In panel a B-splines of order 

two are used and in panel b cubic B-splines

From the computational perspective B-splines can be obtained using recurrence re

lations given by the Cox-de Boor algorithm (de Boor, 1978), instead of being obtained 

directly from the truncated power functions. They are computed from B-splines of lower 

order. It is simple to compute B-spline of any order since the B-spline of order one is 

constant between two knots. Computing B-splines from the truncated power functions 

directly may lead to the same problem as using a truncated power basis (de Boor, 1978). 

The recursion algorithm was developed on the basis of the Leibniz formula for the qth 

order divided difference of a product, which states that, if a function f { t)  = g{t)h{t) then

the qth order divided difference of f ( t )  a t ki+q is given by

l+q
{kh . . . , k i +q\ f  = r]g)([kr , . . . , k i +q]h)

r ~ l

The Leibniz formula is applied to the truncated power function T q(k) = (t — k)q+ l by first
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expressing it as a product two functions as

(t — k)q+ 1 =  (t — k)(t — k) +

which leads to the following expression for a B-spline of order q:

(kl+q-l-kl)-^1̂ ^  kl+q-kl + lBl+l(t\Q 1)? kl < t < kl+qkl+q t

0, elsewhere,

with

Bt(t\ 1) =
1, ki < t  < kt+i

0, elsewhere.

Once the B-spline basis functions are computed, their linear combination gives the 

desired spline function. The design matrix, denoting Bi(t\q) as Bi(t) and m  representing 

the total number of B-spline basis functions (number of interior knots +  order of the 

spline), is:

■^i(^i) . . .  Bm(ti)

T  = : : : :

Bi(tn) B2(tn) . . .  Bm(tn)

Then the spline function is defined as

m

i=i

The design matrix from B-splines contains few non zero elements unlike the one obtained 

from the truncated power basis, because a given order q B-spline basis is non zero only 

in q intervals in the domain of t. This leads to efficient computation.

Figure 4.7 shows spline functions fitted, using B-spline basis functions of order two 

(Panel a) and order four (Panel b), to a data set of 100 data points simulated from a 

gaussian distribution with mean sin(t) +  2 and standard deviation of 0.5. The values of t
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range from 0 to 8. The fitted curves are denoted by dashed lines, the solid lines represent 

the true curve and the circles represent the data points.

berg (1947). They use a different method of normalization from the B-splines discussed 

in the previous section. They are normalized such that J ^ M ^ q )  = 1. The M-splines, 

like B-splines, have the properties that:

1. Mt(t\q) = 0 outside h < t  < ki+q,

2. they are positive functions in the interval kt < t  < ki+q,

3. each M-spline of order q is a linear combination of q polynomial pieces of degree

cated power functions or using the recursion algorithm of de Boor (1978). Given a knot 

sequence kx =  k2 = • • • =  kq < kq+1 < • • • < kq+s < kq+s+1 = kq+s+2 =  • • • =  k2q+s, an 

M-spline of order q is defined as

4.3.3 M -splines

M-splines, which are variants of B-splines, were first introduced by Curry and Schoen-

q -  1

4. Mi(t\q) has q — 2 continuous derivatives at the knots,

5. M-splines are related to B-splines as, Mi(t\q) = ( ^ q̂ )Bi(t\q).

Similar to B-splines, M-splines can be computed directly as a divided difference of trun-

g[(t-ki)Mi(t \g-l)+(ki+q- t )M i+ i(t \g-l)]  
(g-1 )(ki+q-ki) ki < t  < ki+q

0 elsewhere
V

with

elsewhere.
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The spline function can now be obtained as a linear combination of M-splines,

m
m  =  E

1=1

Since M-splines are positive functions, their linear combination, X X i can be

used to approximate a non-negative function by constraining their coefficients to be non

negative, on > 0. Mi(t\q) is zero outside [ki, ki+q] and positive inside this interval, therefore 

any change in the coefficient oq has an effect only in the interval hence local sensitiv

ity to coefficient changes. The integral of f{t) can be constrained to be equal to one, 

f a  aiMi(t\q) = 1, by setting the sum of the coefficients to be one, X X  i ai ~  1j since 

jki+q — i  jn addition, as only Mi and Mm are non zero at /(a ) and f(b) respec

tively, f(a) = 0 or f(b) = 0 can be obtained by setting a i =  0 or am =  0 respectively 

(Ramsay, 1988). Since each Mi(t\q) is a piecewise polynomial, linearity, differentiability 

and integrability properties of polynomials carryover to the spline function.

Cubic M-splines of order four with three interior knots are shown in the left panel of 

Figure 4.8. The shape of the M-splines are similar to the B-splines in Figure 4.6 but are 

different in their values at a given t. For B-splines the maximum value is one because 

they are normalized such that the sum of all B-splines at a given value of t is one however, 

M-splines can have a value greater than one.

4.3.4 I-splines

Ramsay (1988) defined integrated splines (I-splines) to be used as basis functions in 

regression analysis when monotonicity is required. I-splines are piecewise polynomials 

of degree q obtained by integrating M-splines of degree q — 1 and are thus defined for 

kh < t <  kh+1 as Ii(t\q) = f* Mt{u\q)du.

Thus for the same sequence of interior knots used in M-splines, I-splines are defined



C h a p t e r  4. B a s i c  C o n c e p t s  o f  S m o o t h  F u n c t i o n s 73

as

h(% ) = ST̂ h (b. _  jL ) Mm{t\q+1)
A ^ m = l \ hjrn+<1+1 ^ r n )  q + l  ’

I > h

h — q + 1 < I < h 

I < h — q +  1.

One of the properties of M-splines is th a t J^ l+q M t(t\q) =  1, therefore, I-splines are mono

tone splines constrained between 0 and 1. A linear combination of I-splines is a monotone 

spline function if the coefficients cp are constrained to be non-negative. I-splines of order 

five can be seen graphically in the right panel of Figure 4.8.
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Figure 4.8: Left panel: M-spline basis functions of order f .  Right panel: I-splines of order 5 

obtained from the M-splines in the left panel.

The maximum value of an I-spline Ii(t\q) is one when the value of t is greater or equal 

to ki+q.
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4.4 Discussion

In this chapter, we described methods of approximating a curve with smooth functions 

that could be employed to model age and exposure effects in the self-controlled case series 

method. The parametric models presented (polynomial and fractional polynomials) are 

flexible ways of modelling, however they fail to follow deviations from the overall trend 

of the data. If one chooses a parametric model that is not of appropriate form, at least 

approximately, then there is a danger of reaching incorrect conclusions (Wand and Jones, 

1995). The restrictive nature of polynomials can be avoided by using non-parametric 

smoothing methods.

Piecewise polynomial models or splines are one class of smoothing methods which can 

be used to allow the data to decide the shape of the estimated function. The spline func

tion is estimated by imposing continuity and differentiability conditions up to a certain 

order at the knots, where the pieces of polynomials are joined. The choice of knots is 

crucial in using splines. We demonstrated, in the previous sections, the use of different 

type of splines based on a priori chosen fixed knots. These types of splines are known 

as regression splines. Too large a number of knots can over-fit the data resulting in a 

rough function and too low a number of knots leads to under-fitting. There are several 

ways of defining the number and location of knots. Methods to automatically choose 

knots have been proposed in the literature including Friedman (1991); Smith and Kohn 

(1996); Dimatteo et al (2001), however these automatic knot selection procedures are 

quite complicated and computationally intensive (Ruppert et al, 2003). So another ap

proach is to choose a large number of knots and constrain their influence by introducing 

a penalty as proposed by O’Sullivan (1986). The penalty term proposed by O’Sullivan
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(1986) is based on the second derivative of the fitted spline function, A / { /  (£)}2- A is 

known as a smoothing parameter that controls the tradeoff between smoothness and fit. 

Following O’Sullivan (1986) different types of penalties have been proposed in the litera

ture including Eilers and Marx (1996), who apply a difference penalty directly to adjacent 

coefficients, and Ruppert et al. (2003) who make use of a ridge penalty as in ridge regres

sion. The locations of the knots are usually chosen to be equidistant or selected based 

on quantiles. Smoothing splines, which are different from regressions splines, avoid the 

problem of choosing knots by using all distinct data points as knots, and to prevent over 

fitting a penalty similar to O’Sullivan (1986) is used. The use of smoothing splines is 

computationally demanding because the number of parameters to be estimated is equal 

to about the number of distinct number of observations.

When using regression splines, in addition to the choice of knots, the choice of basis 

functions, the order of the basis functions, continuity constraints on the function to be 

estimated, the penalty method and the method of choosing the smoothing parameter are 

important. The most commonly used basis functions as described in this chapter are 

polynomials, truncated power basis functions, B-splines, M-splines. Other types of basis 

functions include radial basis functions, and the convex spline basis (C-splines).

An alternative to splines which can be used to model time-varying covariates in SCCS 

is kernel smoothing (Wand and Jones, 1995). One of the advantages of kernel smoothers as 

compared to splines is their simple theoretical analysis (Ruppert et al., 2003). Similar to 

splines, kernel smoothers are local, so are able to follow deviations from the overall trend 

in the data unlike polynomials. Splines and kernel smoothers are obtained by fitting 

local polynomials but the way they are estimated is different. The kernel smoothers 

are estimated by fitting local polynomials at each data point based on neighbouring



C h a p t e r  4 . B a sic  C o n c e p t s  o f  S m o o t h  F u n c t io n s 76

data points having different weights. Closer values are given higher weights, therefore 

have higher influence on the local polynomial fit at a point. But spline functions are 

estimated by fitting pieces of polynomials in different intervals and constraining them to 

be continuous at the knots where the intervals are joined.

In this thesis we will use cubic M-splines and I-splines as basis functions in modelling 

age and exposure effects for the self-controlled case series models. As noted by Ramsay 

and Silverman (1997), we want the basis functions to allow constrained modelling, namely 

a positivity condition. In the self-controlled case series models the functions related to 

age-specific relative incidence and exposure relative incidence should be positive func

tions. Therefore, using M-splines as a basis enables one to fit a non-negative function by 

constraining their coefficients to be non-negative, since M-splines are non-negative func

tions. In addition, the use of M-splines avoids numerical integration of the denominator 

in the log-likelihood function of the SCCS method because integrals of M-splines can be 

expressed as other forms of basis functions known as I-splines.



Chapter 5

Sm ooth Age Effect

For a self-controlled case series analysis, time dependent variables (e.g age), unlike fixed 

covariates, are not automatically controlled for, and therefore need to be included in the 

model. Confounding by temporal factors is likely to occur when both the event incidence 

and the opportunity for exposure vary with age or season. Examples include adverse 

events and childhood vaccinations; seasonal exposures such as respiratory infections or 

influenza vaccination; and studies in elderly populations of age-related conditions. There

fore a careful control of age is important.

As discussed in Section 2.3 of Chapter 2, the methods for handling an age effect in the 

standard and semi-parametric versions of SCCS method have limitations. The standard 

method can be sensitive to mis-specification of age groups which may lead to biased 

estimates of the association between exposure and event outcome. The semi-parametric 

method may run into computational problems when the number of cases is moderately 

large and there may also be a loss of efficiency in estimation. In this chapter, we propose 

the use of smooth functions to represent the age-specific relative incidence function to 

avoid these limitations. We consider polynomial, fractional polynomial functions and a

77
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linear combination of M-spline functions.

The use of M-spline functions, in addition to addressing the above mentioned limi

tations of the standard and the semi-parametric SCCS methods, avoids the integral in 

the case series likelihood function by replacing it with I-splines, which are integrated M- 

splines. The age-specific cumulative relative incidence function is then approximated by a 

monotone spline function, a linear combination of I-splines (Ramsay, 1988). A penalised 

log-likelihood approach is used in estimating the parameters related to the spline function. 

The methodology developed here is inspired by Joly et al. (1998), which we adapted for 

use with the SCCS method. Our methods have been programmed in R (R Development 

Core Team, 2012).

The outline of this Chapter is as follows. Section 5.1 describes how to fit an SCCS 

model with the log of the age-specific relative incidence function represented by a poly

nomial function and reviews a recent paper by Lee and Carlin (2014) that used fractional 

polynomials to estimate parameters in the standard SCCS method. This is followed by 

a description of an M and I-splines based SCCS model in Section 5.2. In Section 5.3, a 

simulation study that evaluates the performance of the spline-based SCCS and its com

parison with the standard and semi-parametric versions of SCCS is presented. In Section 

5.4, we apply the new spline-based SCCS to a large data set on febrile convulsions and 

paediatric vaccines, and some final remarks are made in Section 5.5. The contribution of 

this chapter has been published in Ghebremichael-Weldeselassie et al (2014a).
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5.1 M odelling of Age Effect Using Parametric Func

tions

In this section, we consider modelling of the age effect with smooth parametric func

tions, specifically polynomial and fractional polynomial functions. We also discuss the 

limitations of using such functions.

5.1.1 Polynom ial Functions

As a first step, we replace the log of the age-specific relative incidence function, 'i/j(t), 

in the SCCS likelihood function (2.9) by a smooth polynomial function. That is, will 

be the exponential of a polynomial function, while the relative incidence associated with 

exposure, Xi(t), remains as a parametric step function. The SCCS log-likelihood function, 

when the log of the age-specific relative incidence is represented by a polynomial function 

of order 2, is derived as follows. Suppose each individual i has just one exposure period 

(c*, di] as shown in Figure 5.1

Uua
2*Ca
uis
(2

biC| di riiAge

Figure 5.1: Relative risk for individual i in different periods within the observation period when 

the log of age-specific relative incidence function is represented by a linear function

In Figure 5.1 c* and di represent the start and end of the exposure risk period for 

individual while and bi represent the beginning and end of the observation period. In
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the first interval, a* to q, and third interval, di to the relative incidence rate is simply 

exp(a0 + Oilt), which is related only to age because there is no effect of exposure in those 

periods. Whereas, the incidence rate in the exposure period q  to is exp(«o +  x 

exp(yd), where exp(/5) is the relative incidence associated with exposure and =

a0 +  ait. The likelihood function for individual i will then be

L = TTT7________________ exp(o0 + Oiitjj) exp {:qfa-)/3}________________
-1- -1. -L JL f C j  /  , j j .  i rd i____ /  _ , / \   /  n\ i± ii=i j=i f *  exp(o:o + ct\t)dt + exp(a0 + ait) exp((3)dt + exp(a0 + ait)dt

________________________ ( a i ) e xp (a i t i j ) e xp{x i ( t i j ) l3}
expfoiq) — exp(o:iad 4- ej-

3

N  nnn^  exp(aiq) — exp(aiaj) -f exp(/3) (exp(aidi) — exp(aiq)) + exp(oi^) -  exp^idj)%—1 j — 1

where Xi(t) = 1 if individual i is exposed at t and 0 otherwise. Note that ce0 the intercept 

of the linear function that represents log of the age effect cancels out. The log-likelihood 

function is then

N r i i  N  rii
i =  a \ t j j + Xi(tij)p

i—1 i=1 i—1 j=1
N  7li ,

-  J^ X /lo g  ( — (exp(«iCi) -  exp{aiOi) -f exp(/?)(exp(o;idi) -  exp(o;iq))+
• 1 - 1  \ aii=i i=i

exp(aibi) -  exp(aidi))) (5.1)

The parameters of interest are obtained by maximising the log-likelihood function ( 5.1). 

The log-likelihood can be derived in the same way for polynomials of higher order. How

ever the integrals in the denominator can not be integrated analytically and have to be 

integrated numerically which makes estimation computationally costly.

5.1.2 Fractional Polynomials

A family of fractional polynomials, as mentioned in Chapter 4, were introduced by 

Royston and Altman (1994) to circumvent the limitations of the conventional poly

nomial functions. Fractional polynomials use integers and fractions as powers. Usu

ally fractional polynomials of order less than or equal to two (three parameters) are
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sufficient, where their powers are chosen from a set of numbers between —2 and 3, 

{—2, —1, —0.5,0, 0.5,1, 2,..., max(3, m)}.

In the context of the self-controlled case series method, Lee and Carlin (2014) used 

fractional polynomials to estimate parameters related to the age effect in the standard 

SCCS method. To apply the method of Lee and Carlin (2014), the data still need to 

be expanded as for the parametric SCCS and the effect of age is estim ated by only two 

parameters related to fractional polynomials. Let the observation period of individual i 

be divided into six age groups as presented in Figure 5.2.

b,a ci ii Age

Figure 5.2: Age groups used in estimating the age-specific relative incidence function using 

fractional polynomials

h i, h2, h3, h4, h5 and h6 in Figure 5.2 show the age groups. Using the standard  SCCS 

method 5 parameters are needed to estimate the age-specific relative incidence function. 

The method of Lee and Carlin (2014) needs only one or two param eters of fractional 

polynomials to estimate the jumps of the step function in Figure 5.2, by first specifying 

the age groups. It is also possible to use each day within the observation period as an 

age group, hence expand the data to size N  x T  where T  is the number of days in an 

observation period. However, instead of expanding the data to use fractional polynomials,
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it is possible to use the same procedure as for a polynomial function. The log-likelihood 

function, with log of age-specific relative incidence represented by a fractional polynomial 

function, can then be derived in the same way as for a polynomial function presented in 

Section 3.1.X, uuu wm cnou icv^unc/ numerical integration.

Unlike the standard and semi-parametric SCCS models the use of polynomial or frac

tional polynomials to represent the age effect does not require the data to be expanded. 

The size of the data is only of order N, where N  is the total number of cases and the 

number of parameters estimated is much lower than for the standard and semi-parametric 

SCCS methods. However, there is the integral involved in the denominator of the SCCS 

likelihood function which might make computation difficult when the polynomial is of 

high order. This might be simplified by choosing a polynomial or fractional polynomial 

that represents the age-specific relative incidence function, t ), directly and not the log 

of it. This is possible since the basis functions for the age variable, when using the poly

nomials or fractional polynomials, are always positive. To make the linear combination of 

the basis functions, combined linearly to form the age-specific relative incidence function, 

positive, their coefficients can be constrained to be non-negative.

5.2 M odelling of the Age Effect Using M -spline Func

tions

The parametric models described in the previous section, polynomial and fractional 

polynomial functions are flexible. However, they are a priori defined shapes through their 

specific analytical form (Hens et al., 2012). Moreover, if a function to be approximated 

is badly behaved anywhere in the interval of approximation, then the approximation is
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poor everywhere (de Boor, 1978). The use of piecewise polynomial functions (splines) 

offer flexibility without the same limitations.

One possibility is to use truncated power basis functions, discussed in Section 4.3.1, 

to approximate ^(t). A linear combination of these basis functions gives a spline function 

that represents the age effect in the SCCS method. The use of splines avoids predefining 

age groups and there are few computational problems involved in estimating the param

eters of interest as 'ip(t) can be represented with few parameters. However, the use of 

truncated power functions as a basis has the disadvantage of numerical instability when 

the number of knots is large (Ruppert et al, 2003). M-splines, which are derived from 

truncated power basis functions are more stable numerically. Since each of Mi, where Mi 

is the Ith M-spline basis function, is zero outside an interval [kh kl+q], any bad approxima

tion within the interval does not affect the other parts of the function to be approximated, 

unlike polynomial functions.

We use a linear combination of M-spline basis functions to approximate /ip(t) follow

ing Joly et al. (1998), who used these functions to approximate the hazard function in 

arbitrarily censored and truncated data, with an application to the age-specific incidence 

of dementia. In the SCCS setting, if a* and are as defined in Chapter 2, the start 

and end of the observation period for each individual i respectively, the spline function is 

defined between a and b where a = minla*; i = 1 , . . . ,  N}  and b = max-f^; i = 1 , . . . ,  N}  

respectively. So the interval [a, b] spans all the observation periods. The interior knots 

selected to define the M-spline basis functions should therefore be between a and b. All 

the required knots will then be defined by repeating the values of a and b the order of the 

M-splines, q, times or adding equidistant q — 1 knots below a and above b in addition to 

the interior knots chosen. Since it is a relative hazard, the age-specific relative incidence



C h a p t e r  5 . S m o o t h  A g e  E f f e c t 84

function has to be a positive function. In this respect, M-splines are very useful as they 

are positive functions and to keep their linear combination non-negative, their coefficients 

are constrained to be non-negative. Therefore, our approximation of the age-specific rel

ative incidence function is a linear combination of cubic M-splines, namely M-spline basis 

functions of order 4, and is given by:

m
= ^ 2 9 ( ai)Mi(t) (5-2)

i=i

where m  is the number of basis functions, the coefficients g(cti) are parameters estimated to 

determine the shape of the function. The non-negativity of the function 'ip(t) is achieved 

by constraining the coefficients to be non-negative. We use g{ct{) = af, hence = 

Ŷ JiLi oijMi(t). g(ai) = exp(c^) can also be used but it may have a convergence problem 

when g(ai) should be zero. Combining (2.9) and (5.2) we obtain the log-likelihood function 

for the SCCS model as:

j _  y ^  y 2'  j /  (Ylb= i ■Mi (tjj)) exp {Xj (tjj) r /3} \  .
~ h h  \Ja;(zr=i“? m t ) )e x P{Xi( t m d t J '

A motivating reason for using M-splines to approximate the age-specific relative incidence 

function is that the log-likelihood function contains integrals. These can be replaced by 

other spline basis functions known as I-splines without the need for numerical integration 

since I-splines are integrals of M-splines. For example, suppose that there is only one 

exposure period (q, di] for each individual i. Thus, Xi(t) is 1 if t is in the interval (q, dj\ 

and 0 otherwise. This yields the log-likelihood

I _  y ^  y 2̂ i ( _________________K S i  aiMi(tjj)) exp {xj(tjj)p}_________________ ^
/  j  /  j  ® I r a 9  *  *  / 1 w  i ,  . /  n \  r d i /v - v m  o. *  *■ /  . w  i .  . rbi
i=1 j=1 . /* (E £ i  <*?M,(t))dt + exp(/3) f£(Y7= i ofM,(t))dt + /*< (££ , ajM,(t))dt

_  y ' y '  j ( _________________(E £ i  exp {gjfa)/?}_________________
h h  V i j G Z i  ^ M t(t))dt -  / * ( o ? W ) ) *  + exp(/3) / * ( J X j  of
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N m
_  y ^  y~̂  j [ __________\z^i=i | /g ^

VE£i«f/,,,;i^W * + (exp(/9)-l)(Efe1^ /^ M !Wrft);

then as ij(£) =  f* M\(u)du, replacing the integral of M-splines with I-splines provides the 

log-likelihood

j y ^  y ^  i  (  (E E i a i ^ i (Uj ) )  exP {zj(tj j)P} \  , .

U  £  g U «  -  I ( * i )  +  ( e x p t f )  -  1 ) ( W )  -  I { c i ) ) J  ’ K m )

where I{y) = E E i «21|(2/)

5.2.1 Penalised Log-likelihood

As described in Chapter 4, approximating functions with splines requires determining 

the number and position of knots in advance. We use a large number of knots that over-fit 

the function and use a penalty that controls the balance between data fit and roughness. 

Following O’Sullivan (1986), we use a penalty function that measures roughness as the in

tegrated squared second derivative, (ip* (t))2 dt, and define our penalised log-likelihood 

as
f.b /  m  \  2

pl = l - X j  \ y2 g (a i )M i(u )J  du

with = £ E i g(ai)Mi(t) = g (a )M "(t ), where M"(t) = M ^ t ) , . . .  M? (t)]T

and g(a) = [ g ^ ) ,  g(a2) , . . .g(at)]. Therefore,

f b
pi =  l — X g(a.)TM t”(t ) M  (t)g(ot)dt

J a
pb

— 1 — ^ i .01) 7 /  M T” (t)M" (t)dtg(a)
J a

= I ~ X((g(a))TAg(a))  (5.6)

where A =  A IT" (t)Af" (t)dt is an m  x m  matrix with (h, I) element Ja& M'^(t)Mi (t)dt, 

I is the log-likelihood function given in Equation (5.5), and A > 0 is a smoothing param

eter that controls the balance between smoothness of the age-specific relative incidence
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function and the fit to the data. The larger the value of A, the smoother the age effect.

As discussed in Section 2.2, the function 'ip(t) is not identifiable without some further 

constraint as it represents a relative effect. In the present setting, it is convenient to use 

the constraint = 1, so that (p in Equation (2.8) is the average baseline incidence

over the interval (a, b]. In Farrington and Whitaker (2006), the constraint ip(a) = 1 

was used, so that tp is the baseline incidence at a. Therefore, to obtain the parameter 

estimates, the penalised log-likelihood function (5.6) is maximised for fixed A under the 

constraint ip{t)dt =  1. The cumulative relative incidence is represented as the integral 

of a linear combination of cubic M-spline functions of the form f*(22ZLi g(ai)Mi(u))du. 

Since the integral of an M-spline is an I-spline, the cumulative incidence is represented 

by a linear combination of I-splines of the form Xw=i From the definition of

I-splines all the Ii s evaluated at t = b are equal to 1. Hence the required constraint can 

be achieved by constraining the sum of the coefficients of the linear combination of cubic 

M-spline functions to be 1. That is, X S i 9(ai) =  Y^iLi af = 1*

5.2.2 Sm oothing Parameter Selection

The smoothing parameter A can be provided by the user or selected using automatic 

methods. We use a cross-validation method as in Joly et al (1998), in which an ap

proximate cross-validation score is maximised with /3 set to zero. Let a  be the vector of 

parameters cq. Denote the cross-validation score V(X),

N

V(X) = ' £ k ( & _ i) (5.7)
i

where =  &_j(A) is the maximum penalised log-likelihood estimator of a  (with (3 = 0) 

when individual i is removed, and is the log-likelihood contribution of individual i. 

Using a first order Taylor approximation around a ,  the penalised maximum likelihood



C h a p t e r  5. S m o o t h  A g e  E f f e c t 87

estimate when all observations are included, we get:

N  N-tv  -tv /  O J  \

i=1 i=l  ̂ '

Following O’Sullivan (1988a) d_* can approximated as: d_* « d — [H — 2AS]~1d_;, where 

H  =  gal1 t  (dt) is the log-likelihood part of the Hessian of the penalised log-likelihood

evaluated at d , d_f =  —df =  —( ^ ( d ) )  is a score vector when individual i is removed 

and 2AS is the penalised part of the Hessian, that is 2AS =  •

Therefore F(A) is approximated by V (A), where

> (A ) =  ^ ( / i( a ) - t - |^ ( a ) [ a - [ ^ - 2 A S ] - 1d_j - d ] )
i= 1 ' '

N

=  1(a) +  - Z l l *  ~  2AS]“1d_<]
i=1 
N

= ;(d) +  J ] d I j [H -2A S ]-ia_j
i=1 
N

=  l(a) +  ' £ t r ( d T_i ( H - 2 \ S } - 1d„i)
i=l
N

= l(a) +  J 2 t v ( ( H - 2 \ S ] - 1d . id T_i)
i=1

N

=  /(d) +  t r ( [^ -2 A S ]-1^ d _ id ! i)

-  '<“ )+*' (i"  -  “ s i " E  ( - £ < “))" ( - f s (4i

-  ([" -  2Asr ‘ £  ( £ ( &>)r (fs<4>))

Under regularity conditions E  =  - E  , hence

U(A) «  U(A) =  /(d) -  tr([tf -  2AS]-1ff). (5.8)

The matrix S depends on g(ai). If g{a{) =  ai then S =  A, where A is as defined in 

Section 5.2.1. But here we take g{ai) = of, therefore denoting point wise product of
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matrices by o

S =  4 (A o (a a T)) +  2(diag(Aa2)).

This can be shown as follows:

Let p{oc) = (g(cc))T Ag(oc) and 6 = g(oc). If g{a{) = af  then, since A is symmetric, 

we have

fdOT '„ 1 d2p(a) ( d 0 \  ( d 0 \  ,nT A d
“ 2 dotdaT ~  ( d a )  ( d a  J  +   ̂ ^ d ^ vec

doc j

= 4 (A o (aaT)) +  2(diag(Aa2)). (5.9)

The quantity tr([H — 2AS]-1^ )  can be interpreted as a model degrees of freedom. We 

checked the validity of the approximation in simulation studies (see Section 5.3). The 

penalised log-likelihood function (5.6) is maximised, with /3 =  0, for a grid of A values, 

and the value of A that maximises the approximate cross-validation score (5.8), is used in 

a final optimisation step with the full model to obtain the relative incidences related to 

exposure.

5.2.3 Fitting the Spline-Based SCCS M odel

The information needed to fit the spline-based SCCS model is the same as for the 

standard SCCS. Instead of selecting age groups, a suitable (large) number of knots is 

chosen. A large number of knots is chosen deliberately to over-fit, and we use a penalised 

log-likelihood to control the balance between the smoothness and roughness of the fitted 

curve. Usually between eight and 15 knots are sufficient (Rondeau and Gonzalez, 2005; 

Joly et al, 1998). The knots will include the values a and b, namely, the minimum age 

at the start of all observation periods and maximum age at the end of all observation 

periods. The number of knots will depend to some extent on the degree of age variation 

- the more variation, the more knots should be used. The knots can be equidistant or
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chosen based on quantiles of the event times. These choices usually have little impact on 

results.

In a first step, A is chosen using the approximate cross-validation method ignoring 

the exposure effect. Then, the parameters are estimated by maximising the penalised 

log-likelihood function (5.5) with the chosen value of A, and under the constraint that the 

coefficients of the age-specific relative incidence function sum to one. The inverse of the 

Hessian of the penalised log-likelihood is used as a variance estimator of the parameters 

(Rondeau and Gonzalez, 2005). These standard errors are Bayesian related standard 

errors proposed by O’Sullivan (1988a), considering the penalty term in the penalised 

log-likelihood function (5.6) as a prior. For more detail, see Section 6.1.1 of Chapter 6.

Multiple risk periods can readily be incorporated. In addition to incorporating an 

indicator for the new exposure status in the numerator of the log-likelihood function (5.5) 

we add (exp(p) — l)(X X i aUi{ei) ~~ E S i  afli(si)) i*1 its denominator, where exp(p) is 

the relative incidence of the new exposure and s* and e* are the ages at the start and end 

of the risk period associated with the new exposure for individual i , respectively. The 

log-likelihood function with two risk periods is given as

( ___________ ( S £ i  t fMiiUj))  exp exp f a f e M ___________ \
V W  -  7(«i) + (exp(/?) -  1 -  1(a)) + (exp(p) -  1 )(I(ei) -  I(si))J ’

(5.10)

where yfoij) is 1 if tij is within the risk period (s*, ej and 0 otherwise, /(e*) and I(si) are 

linear combinations of I-splines given by /(s^) =  Ŷ JiLi af^i(si) and 7(e*) =  YmLi 

respectively. Further exposures can be added in the same way; some care is required in 

handling overlapping risk periods.

The new spline-based SCCS method has been implemented in R 2.15.1 R Develop

ment Core Team (2012), and the optimisation of the constrained penalised log-likelihood
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maximisation is done using R function auglag from package alabama.

5.3 Simulation Study

We conducted a simulation study to investigate the performance of the new method 

and to compare it with the piecewise constant and semi-parametric versions of the SCCS 

method. We also made a comparison of the new method with SCCS with no age effect 

included in the model. The simulation study evaluated how well the new method estimates 

the age-specific relative incidence function and exposure-related relative incidence.

5.3.1 Design of the Simulation Study

The parameters which need to be specified in the simulation are: the observation 

period (age at start of observation and age at end of observation), the distribution of 

age at exposure, q, the length of the post exposure period, the exposure-related relative 

incidences, the age-specific relative incidence function, and sample size.

The observation periods for all cases were taken to be from age of 0 to 500 days, that 

is di = 0 and bi = 500 for all i. We assumed only one exposure period (q, d j of length 50 

days, so di = Ci +  50, where q  is age at first exposure of individual i.

The exposure variable Xi(t) takes the value 1 in (q, q  +  50] and 0 elsewhere. Three 

different scenarios for the distribution of ages at start of exposure (q) were considered: 

(a) exponentially decreasing (q sampled within [0,500] from an exponential density with 

rate 0.02), uniformly distributed (q sampled from U[0,500]) and exponentially increasing 

(500 — Ci sampled within [0,500] from an exponential density with rate 0.02).

The baseline incidence at age t was defined to be A0(£) oc 5 exp (St) +  2, and three 

scenarios were investigated: exponentially decreasing (with 8 =  —0.003), constant (8 = 0)
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and exponentially increasing (5 = 0.003). That is, at each day of age in (0,500] age-specific 

relative incidences were generated.

True exposure-related relative incidences of 1, 2, and 5 were investigated, with sample 

sizes 50, 100 and 200. In the simulations just one event was simulated per individual; 

this involved no loss of generality as multiple events within an individual are treated as 

independent in SCCS.

We then generated age at event for each individual conditional on the exposure status 

and number of events an individual experiences, one event per individual in this case, 

from multinomial distributions with daily categories. 10,000 samples were generated for 

all combinations of the scenarios.

The new spline-based, semi-parametric and standard SCCS methods were fitted to 

each of the generated samples. Nine age groups, with cut-points at 30, 92, 155, 218, 281, 

344, 407 and 470 days, were used to fit the piecewise constant SCCS model. We also 

fitted an SCCS without age effect to quantify the bias in the exposure effect when age is 

ignored. In fitting the spline-based SCCS we used M-splines of order 4 and the number 

of interior knots was chosen to be 10 hence the number of basis functions was m = 14. 

The values of a and b respectively are 0 and 500 days.

We evaluated the performance of the new method in terms of its fit to the true age- 

specific relative incidence function and in terms of reflecting the true exposure-related 

relative incidence. For each of the 10,000 samples the mean of the estimated integrated 

squared errors (MISE) and their standard deviations were calculated. The MISE val

ues computed were for the cumulative age-specific relative incidence function to make it 

comparable with the estimates obtained from the semi-parametric SCCS method. The
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integrated squared errors (ISE) for each sample are defined as:

/*500

/ W *) -
Jo

where \I>(t ) is true age-specific cumulative relative incidence and i){t) is estimated cu

mulative relative incidence. After fitting the models for each sample we estimated the 

cumulative relative incidence at each day of age from 0 - 500 and approximated the ISE 

values as:
500

£ ( * ( * )  -  m f -
t=o

We then find the MISE values by taking the mean of the ISE values. To investigate the 

performance of the new method in estimating the exposure-related relative incidence we 

computed the mean, median and standard deviation of the 10,000 log relative incidence 

estimates (/3), the coverage probability of the 95% confidence intervals, empirical standard 

errors and average model-based standard errors of p. We use the median as well as 

the mean because there is a non zero probability that all events will occur in the risk 

period only or in the control period only, so that in finite samples the expectation of (3, 

and hence the bias =  expectation of (3 - true relative incidence (ft), is undefined. (All 

quantities involving expectations should therefore be regarded as having been trimmed, 

by removing samples resulting in unbounded estimates.)

5.3.2 Results

In this section, we present results of simulations conducted to evaluate and compare 

the performance of the spline-based SCCS in terms of estimating both the age-specific 

relative incidence function and the relative incidence related to exposure.
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Performance in Estimating the Age Effect

Tables 5.1 and 5.2 show results from the simulation in evaluating the performance of 

the new method relative to the semi-parametric SCCS model in estimating the cumulative 

age-specific relative incidence function. MISE values and standard deviations of ISE values 

are presented.

Table 5.1: Mean integrated squared Error (MISE) and Standard Deviation (SD) for estimat

ing the cumulative age-specific relative incidence using spline-based and semi-parametric SCCS: 

simulations based on different scenarios of age at exposure (AE), age-specific relative incidence 

(ASRI) and exposure relative incidence (RI).
#  of cases Spline-based Semi-parametric Spline-based Semi-parametric

MISE(SD) MISE(SD) MISE(SD) MISE(SD)

ASRI increasing & AE decreasing, RI=5 ASRI & AE decreasing, RI=2

50 2.004(2.084) 2.208(2.103) 1.911(2.010) 2.102(2.027)

100 0.977(1.012) 1.055(1.012) 0.950(0.962) 1.029(0.965)

200 0.513(0.531) 0.548(0.531) 0.468(0.491) 0.502(0.490)

ASRI increasing & AE increasing, RI=5 ASRI increasing & AE uniform, RI=1

50 1.771(2.161) 2.016(2.174) 1.288(1.322) 1.442(1.312)

100 0.910(1.052) 1.006(1.054) 0.656(0.679) 0.724(0.679)

200 0.444(0.538) 0.484(0.541) 0.326(0.344) 0.354(0.343)

We can see from Table 5.1 that the performance of the new method in approximating 

the true age-specific relative incidence is similar to though slightly better than the semi- 

parametric method as the MISE values are slightly lower for the new method. The 

reduction in the MISE is of the order of 7%, representing a slight gain in efficiency. 

The results presented in Table 5.1 show how the MISE values vary with a change in 

the number of cases for different scenarios of age at exposure, relative incidence and 

age-specific relative incidence function. The MISE values in Table 5.1 decrease with an
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increase in the number of cases used in the simulations.

Table 5.2: Mean integrated squared Error (MISE) and Standard Deviation (SD) for estimating 

age-specific relative incidence using spline-based and semi-parametric SCCS: simulations based 

on two scenarios of age at exposure (AE), age-specific relative incidence (ASRI) and exposure 

relative incidence (RI) for 50 and 100 cases.
50 cases 100 cases

True RI Spline-based semi-parametric Spline-based semi-parametric

MISE(SD) MISE(SD) MISE(SD) MISE(SD)

Constant ASRI and increasing AE

1 1.469(1.738) 1.615(1.744) 0.706(0.847) 0.771(0.849)

2 1.576(1.719) 1.736(1.728) 0.764(0.908) 0.835(0.908)

5 1.697(2.008) 1.896(2.003) 0.888(1.136) 0.974(1.137)

Increasing ASRI and Uniform AE

1 1.312(1.517) 1.458(1.514) 0.668(0.723) 0.736(0.723)

2 1.252(1.458) 1.408(1.456) 0.654(0.703) 0.722(0.699)

5 1.340(1.474) 1.507(1.486) 0.683(0.767) 0.755(0.768)

Decreasing ASRI and Increasing AE

1 1.465(1.663) 1.618(1.619) 0.744(0.847) 0.807(0.828)

2 1.575(1.845) 1.724(1.800) 0.759(0.795) 0.822(0.787)

5 1.589(1.826) 1.772(1.831) 0.846(1.017) 0.924(1.001)

Results for scenarios where the age-specific relative incidence function is constant, 

exponentially increasing and decreasing with uniformly distributed and exponentially in

creasing age at exposure are presented in Table 5.2. Results relating to the comparison 

of spline-based and semi-parametric methods in this Table are similar to the ones pre

sented in Table 5.1. In general, the Mean Integrated Squared Error increases with an 

increase in the true exposure-related relative incidence value. For both the spline-based 

and semi-parametric methods, the efficiency in estimating the age-specific relative inci

dence function increases with an increase in sample size, because the MISE values decrease
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as the number of cases increase. The spline-based method has a slightly higher efficiency 

in estimating an exponentially increasing or decreasing age effect than  a constant function.

a. Spline-based SCCS b. Semi-param etric SCCS
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Figure 5.3: Estimated cumulative age-specific relative incidence curves of the first 1,000 sim

ulated data sets, Panel a represent results from spline-based method and Panel b results from 

semi-parametric SCCS. In the top panels the true curve is exponentially increasing, in the middle 

panels a constant and in the bottom panels an exponentially decreasing function

Figure 5.3 shows estimated age-specific cumulative relative incidence curves from the
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spline-based and semi-parametric methods fitted to the first 1,000 simulated data sets. 

The white bold lines represent the true curves. The top panels show results when the true 

age-related relative incidence function is exponentially increasing, the middle panels when 

it is a constant function and the bottom panels are when the true curve is an exponentially 

decreasing. Results in panel a of Figure 5.3 are from the spline-based method and results 

in panel b are from the semi-parametric SCCS method.

From Figure 5.3 both the spline-based and semi-parametric SCCS methods seem to 

approximate the true age-specific relative incidence functions well. The variabilities in 

estimating the constant function seem to be more than the exponentially increasing and 

decreasing age-specific relative incidence functions.

Ig

o 100 200 300 400 500
Age (days)

Figure 5.4: Cumulative age-specific relative incidence curves for a single simulated sample: 

True curve (bold line), a curve estimated using spline-based SCCS from a single simulated data 

set (dashed line) and the step function estimated using the semi-parametric model from the same 

single simulated data set.
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Figure 5.4 shows the cumulative age-specific relative incidence from the spline-based 

SCCS, the semi-parametric SCCS and the true cumulative incidence for a single sample 

of simulated data of 200 cases. From the plot it seems that the two estimation methods 

give similar results for this data set.

For this same sample of simulated data, we evaluated the approximate cross-validation 

score given in Equation (5.8) at a smoothing parameter (A) value of 100,000. We also 

calculated the exact cross-validation score by leaving out one case at a time and fitting 

the spline-based SCCS iteratively. The two values were close to each other, 1,182.798 and 

1,183.045 respectively.

Performance in Estimating the Exposure Effect

The mean and median of the log exposure-related relative incidence log(RI) — (3, 

empirical standard errors and average model-based standard errors of /3, for a scenario 

in which both the age-specific relative incidence function and age at exposure decrease 

exponentially, are shown in Table 5.3. The coverage probabilities of the 95% confidence 

intervals for are also presented. Table 5.3 shows that the bias in estimating the exposure- 

related relative incidence using the new method is small with these sample sizes. It is 

similar to or smaller than the bias for the semi-parametric method, and smaller than the 

bias of the parametric method. The empirical and average model-based standard errors for 

the spline method lie between those achieved by the parametric method (which are lower) 

and the semi-parametric method (higher). The spline-based confidence intervals tend to 

be slightly conservative, though not as badly so as those for the parametric method. As 

expected, the SCCS without age effect produces very biased results and has a generally 

poor performance, underlining the importance of age adjustment in SCCS models.
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Table 5.3: Simulation results from a scenario where age at exposure and age-specific relative 

incidence decrease exponentially. Mean, Median, Empirical standard errors (ESE), Average 

model based standard error (AMSE) and 95% coverage probability (P95) for the log relative 

incidence, log(RI) = (3, are presented.

Spline-based SCCS

log(RI) 50 cases 100 cases
Median Mean ESE AMSE P95 Median Mean ESE AMSE P95

1.609 1.657 1.690 0.486 0.429 94.107 1.624 1.637 0.287 0.269 94.614

0.693 0.697 0.707 0.394 0.371 94.482 0.697 0.701 0.274 0.262 95.358

0.000 -0.005 -0.009 0.442 0.408 94.343 -0.005 -0.004 0.448 0.412 94.098

semi-parametric SCCS

1.609 1.657 1.700 0.512 0.484 95.600 1.630 1.646 0.291 0.281 94.600

0.693 0.709 0.717 0.404 0.398 95.300 0.704 0.706 0.276 0.270 94.700

0.000 0.004 -0.005 0.453 0.440 95.080 -0.004 -0.004 0.460 0.447 95.410

Parametric SCCS
1.609 1.452 1.478 0.438 0.422 92.520 1.520 1.525 0.273 0.264 92.450

0.693 0.601 0.604 0.400 0.388 94.230 0.605 0.610 0.256 0.255 94.080

0.000 -0.132 -0.144 0.414 0.399 93.640 -0.105 -0.111 0.288 0.285 94.020

SCCS without age effect

1.609 2.140 2.165 0.305 0.309 56.020 2.125 2.121 0.217 0.215 33.540

0.693 1.181 1.185 0.288 0.288 59.480 1.122 1.124 0.202 0.203 42.970

0.000 0.539 0.534 0.320 0.314 56.280 0.539 0.545 0.314 0.313 54.930

Table 5.4 presents results for a scenario where ages at exposure are uniformly dis

tributed and age-specific relative incidence function increases exponentially. In this sce

nario there is less confounding effect of age on the exposure-related relative incidence as 

the chance to get exposed does not depend on age. As a consequence the SCCS method 

with age excluded in the model gave better results as compared to the previous scenario 

where age at exposure and age-specific relative incidence decrease exponentially. It has
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less bias and the coverage probability is closer to 95%. However ignoring age still has 

lower performance than the semi-parametric and spline-based SCCS methods. The spline 

method shows similar performance to the previous scenario, that is as good as or better 

than the semi-parametric and the standard methods.

Table 5.4: Simulation results from a scenario where age at exposure is uniformly distributed 

and age-specific relative incidence function increases with age exponentially. Mean, Median, 

Empirical standard errors (ESE), Average model based standard error (AMSE) and 95% coverage 

probability (P95) for the log relative incidence, log(RI) = (3, are presented.
Spline-based SCCS

log(RI) 50 cases 100 cases
Median Mean ESE AMSE P95 Median Mean ESE AMSE P95

1.609 1.626 1.611 0.336 0.325 94.660 1.625 1.622 0.235 0.231 94.852

0.693 0.664 0.648 0.423 0.402 95.300 0.689 0.674 0.282 0.281 96.400

0.000 -0.024 -0.087 0.528 0.515 96.690 -0.045 -0.078 0.376 0.365 96.400

semi-parametric SCCS
1.609 1.648 1.653 0.352 0.337 94.114 1.641 1.638 0.240 0.234 94.604

0.693 0.688 0.663 0.430 0.408 94.800 0.695 0.683 0.285 0.283 96.100

0.000 -0.019 -0.081 0.532 0.519 96.790 -0.042 -0.075 0.377 0.367 96.400

Parametric SCCS
1.609 1.597 1.589 0.340 0.326 94.600 1.598 1.595 0.235 0.232 95.021

0.693 0.659 0.638 0.419 0.403 96.100 0.667 0.659 0.283 0.282 96.200

0.000 -0.031 -0.087 0.536 0.517 96.891 -0.046 -0.077 0.375 0.365 96.300

SCCS without age effect
1.609 1.549 1.533 0.314 0.311 93.871 1.521 1.520 0.220 0.221 94.379

0.693 0.628 0.647 0.404 0.393 96.400 0.671 0.672 0.275 0.278 96.200

0.000 0.140 0.053 0.521 0.508 94.383 -0.046 -0.082 0.370 0.362 97.100

While the spline-based, the semi-parametric and the standard methods show similar 

performance, when the effect of age is kept constant and age at exposure increases expo
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nentially, the SCCS without age effect performed well. And this is because keeping the 

age-specific relative incidence function to be a constant function means that the effect of 

age is cancelled out in the SCCS log-likelihood function. That is the true model is an 

SCCS model with no age effect. Results for this scenario are presented in Table 5.5.

Table 5.5: Simulation results from a scenario where age at exposure increases exponentially and 

age-specific relative incidence function is constant. Mean, Median, Empirical standard errors 

(ESE), Average model based standard error (AMSE) and P5% coverage probability (P95) for the 

log relative incidence, log(RI) — (3, are presented.
Spline-based SCCS

log(RI) 50 cases 100 cases
Median Mean ESE AMSE P95 Median Mean ESE AMSE P95

1.609 1.621 1.633 0.471 0.483 97.080 1.640 1.645 0.368 0.360 94.700

0.693 0.667 0.643 0.666 0.630 95.996 0.650 0.643 0.440 0.436 96.200

0.000 -0.047 -0.062 0.729 0.779 97.092 -0.004 -0.063 0.571 0.538 97.189

semi-parametric SCCS

1.609 1.635 1.653 0.482 0.492 96.982 1.646 1.653 0.372 0.363 93.894

0.693 0.687 0.659 0.677 0.639 95.796 0.646 0.655 0.444 0.439 95.800

0.000 -0.015 -0.041 0.743 0.787 97.508 0.005 -0.045 0.571 0.541 96.586

Parametric SCCS
1.609 1.563 1.575 0.476 0.477 96.797 1.562 1.574 0.361 0.354 94.700

0.693 0.640 0.618 0.654 0.624 96.697 0.617 0.617 0.440 0.429 96.300

0.000 0.016 -0.035 0.719 0.771 97.399 -0.001 -0.051 0.560 0.531 96.790

SCCS without age effect

1.609 1.596 1.549 0.350 0.353 95.000 1.557 1.564 0.253 0.249 95.700

0.693 0.556 0.563 0.531 0.498 96.296 0.629 0.611 0.356 0.349 96.100

0.000 -0.004 -0.099 0.599 0.657 96.982 0.051 -0.080 0.506 0.467 97.392
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5.4 Analysis of Febrile Convulsion Data

We apply the new spline-based SCCS method to data on febrile convulsions and pae

diatric vaccines collected in England and Wales in the period of 1991-1994. SCCS with 

piecewise constant age-specific relative incidence function was also applied for comparison 

purposes.

The aim of the analysis is to investigate the association between febrile convulsions and 

diphtheria/tetanus/pertussis (DTP), Haemophilus influenza type B (Hib) and measles/ 

mumps/ rubella (MMR) vaccines. Febrile convulsions or seizures are a relatively common 

childhood condition, referring to a child having a seizure (fit) when they have a high 

temperature. It occurs when the electrical impulses, used to communicate brain cells 

(neurons), become disrupted. This can cause the brain and the body to behave abnormally 

(NHS, 2013).

DTP vaccine is given to prevent three diseases: diphtheria, tetanus, pertussis (whoop

ing cough), and the Hib vaccine is a vaccine developed to prevent invasive disease caused 

by Haemophilus influenzae type b bacteria. The disease is a bacterial infection that can 

cause a number of serious illnesses such as pneumonia or meningitis, especially in young 

children (NHS, 2013). The Hib vaccination is offered to children at two, three and four 

months of age, which we denote here as Hibl Hib2 and Hib3 respectively. It is usually 

given along with DTP and polio vaccines. Another type of Hib vaccine is also given if 

the first three doses are missed, denoted here as Hibonly. MMR is a combined vaccine 

that protects against measles, mumps and rubella (German measles). Measles, mumps 

and rubella are very common, highly infectious conditions that can have serious, poten

tially fatal, complications, including meningitis, swelling of the brain (encephalitis) and
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deafness (NHS, 2013). The first MMR vaccine is given usually within 12 to 13 months 

of age and a second dose of the vaccine is given between ages of three and five. Here we 

only study the effect of the first MMR dose in causing febrile convulsion.

The data  set includes 2,389 children aged 29-730 days in the period 1991 to 1994, who 

had 3,826 febrile convulsion events. Of the 2,389 cases, 2,021 cases had an MMR vaccine 

record. DTP vaccine was given in three doses, DTP1, DTP2 and DTP3. The number of 

cases vaccinated with DTP1, DTP2 and DTP3 were 1,624, 1,684 and 1,726 respectively. 

And the numbers of Hib vaccinated children were 1,706, 1,636, 1,552 and 880 for H ibl, 

Hib2, Hib3 and Hibonly respectively.
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Figure 5.5: The distribution of age at DTP and MMR Vaccines. DTP was taken in three doses

The average ages at which DTP1, DTP2, DTP3 and MMR vaccines were taken are
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74.3, 119.1, 167.7 and 437.0 days respectively. The mean of ages at H ibl, Hib2, Hib3 

and Hibonly are 136.1, 177.0, 221.9, and 520.9 days respectively. The distributions of 

ages at exposure to the DTP and MMR vaccines are presented in Figure 5.5. Figure 5.6 

presents the distributions of ages at Hib vaccines. The figures show th a t the chances of 

being exposed to the vaccines depend strongly on age hence age might have a confounding 

effect if it is related to the rate of baseline incidence too. Therefore appropriate modelling 

of age effect is desirable.
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Figure 5.6: The distribution of age at exposure to Hib vaccine. Hib was given in three doses 

and one dose Hibonly if the first three are missed

Febrile convulsions are relatively rare but potentially recurrent events, most cases 

experiencing a single convulsion over the two years. Furthermore, febrile convulsions are 

not contra-indications to vaccination, and carry a very low m ortality risk. Thus, there is
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no reason to doubt that conditions (1) to (3) of Section 2.1.1 in Chapter 2 are valid for 

these data.

The large number of cases precludes us from using the semi-parametric method because 

the method does not work for large number of cases as seen in the simulation study 

conducted in Section 2.3 of Chapter 2. We estimated relative incidences (RI) for febrile 

convulsion in risk periods following these vaccines compared to control periods, using both 

the spline-based and standard SCCS methods.

In a first analysis, we considered exposures to DTP and MMR vaccines. We estimated 

the relative incidences associated with exposure to the three doses of DTP (DTP1, DTP2, 

DTP3) using risk periods of 0-7 days for all the doses and MMR vaccine with a risk period 

of 6-11 days post vaccination. Exposure status was represented by four time-varying 

indicator variables, taking the value 1 in the relevant risk period and 0 in the control 

periods.

Overlapping risk periods were coded to the latest vaccine (Whitaker et al (2006)). For 

the standard method, age was divided into 23 equal intervals of 1 month, apart from the 

first age group which had 32 days and the last 40 days. The values of a and b respectively 

are the minimum age at start of observations (29 days) and maximum age at end of 

observation of the cases (730 days). In the spline-based SCCS analysis the age-specific 

relative incidence function was approximated by a linear combination of cubic M-splines 

with 14 knots (12 interior plus a and b). Therefore, the number of M-spline functions 

was m = 16. The internal knots were at roughly equal intervals. We maximised the 

penalised log-likelihood function (5.6), excluding the covariates that represent DTP and 

MMR vaccines, at different values of the smoothing parameter A. The value of A at which 

the approximated cross-validation score is maximum was found to be 1.07 x 109. We then
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maximised the penalised log-likelihood function (5.6), fixing A at 1.07 x 109 to obtain 

the relative incidences of febrile convulsion related to DTP1, DTP2, DTP3 and MMR 

vaccines. Results of these analysis are presented in Table 5.6

Table 5.6: Relative incidence (RI) and 95% Confidence intervals (Cl) for febrile convulsion due 

to exposure to three doses of DTP and MMR vaccines. Three parameter estimates for DTP and 

one for MMR for the risk period of 6 -11 days after vaccination ____________

Spline-based SCCS Standard SCCS
Vaccine Risk period RI 95% Cl RI 95% Cl

DTP1 0-7 1.068 [0.643 , 1.775] 1.26 [0.775 , 2.048]
DTP2 0-7 0.995 [0.584 , 1.696] 0.937 [0.542 , 1.619]
DTP3 0-7 1.413 [0.923 , 2.160] 1.293 [0.830 ,2.014 ]

MMR 6-11 3.214 [2.656 , 3.885] 3.386 [2.806 , 4.088]

Table 5.6 shows that results from both the spline-based and standard SCCS methods 

are similar. There was no significantly increased risk of febrile convulsion of the three 

doses of DTP whereas exposure to MMR vaccine had a significant effect with a relative 

incidence of 3.214[2.656 , 3.885] and 3.386[2.806 , 4.088] from spline-based and standard 

SCCS analysis respectively.

Table 5.7: Relative incidence (RI) and 95% Confidence intervals (Cl) for febrile convulsion due 

to exposure to DTP and MMR vaccines._____________________________________

Spline-based SCCS Parametric SCCS
Vaccine Risk period RI 95% Cl RI 95% Cl

DTP all doses 0-3 1.905 [1.349 , 2.668] 1.420 [0.963 , 2.092]
4-7 1.391 [0.933 , 2.075] 1.184 [0.774 , 1.812]
8-14 1.225 [0.899 , 1.670] 0.974 [0.693 , 1.366]

MMR 6-11 3.781 [3.120 , 4.492] 3.451 [2.854 , 4.175]
15-35 1.241 [1.050 , 1.453] 1.197 [1.013 , 1.414]
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The second analysis was performed by considering any DTP vaccine with three differ

ent risk periods (0-3, 4-7 and 8-14 days after vaccination), and two risk periods after MMR 

vaccination (6-11 and 15-35 days). Results are presented in Table 5.7 and Figure 5.7.

The fitted age-specific relative incidence curves obtained from the standard and the 

spline-based SCCS are presented in the left panel of Figure 5.7. The right panel of 

Figure 5.7 shows the cumulative age-specific relative incidence curves, where the dashed 

line is from the spline-based SCCS and the solid line from the param etric SCCS. The model 

degrees of freedom obtained for the optimum smoothing param eter value was 7.962.

0 100 200 300 400 500 600 700
Age (Days)

~i----- 1----- 1----- 1----- 1----- 1----- r~
100 200 300 400 500 600 700

Age (Days)

Figure 5.7: Left: Age-specific relative incidence; step function estimated by parametric SCCS, 

smooth curve estimated by spline-based SCCS. Right: Cumulative age-specific relative incidence; 

dashed line estimated by parametric SCCS and solid line estimated by spline-based SCCS.

Table 5.7 presents exposure-related relative incidence estimates from both  methods.
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It shows that the two methods gave similar results for MMR with significant associations 

between febrile convulsion and MMR vaccines in both risk periods, in line with other 

analyses (Farrington et al., 1995). RI estimates for DTP vaccines in the risk periods 4-7 

and 8-14 days were not significantly different from 1 for the two methods. However, there 

was a difference for the 0-3 days risk period. The RI estimate using the spline-based 

method was significantly greater than 1 whereas with the standard method it was non

significant. This is due to the very strong age effect in the first year of life, which is 

inadequately controlled using the standard model with age groups of length one month. 

Thus, the spline-based method suggests that there may be an association between DTP 

vaccination and convulsions within 3 days post-vaccination, which was not identified using 

the piecewise constant model.

The DTP and Hib vaccines are usually given at the same time. In the data set there 

were large numbers of cases vaccinated with the two vaccines at the same time. The 

number of cases who took DTP1 and Hibl, DTP2 and Hib2 and DTP3 and Hib3 were 

909, 875 and 838 respectively. Since overlapping risk periods were coded to the latest 

vaccine, we had two final analyses in the investigation of the association between the 

paediatric vaccines and febrile convulsion. We first assumed that DTP was given before 

Hib so that the risk period following DTP will be coded by the risk period of Hib if they 

were both given at the same time. And the second analysis was performed assuming that, 

for individuals vaccinated with DTP and Hib at the same time, Hib was taken before 

DTP. In these analyses we used one risk period of 0-3 days post DTP vaccination, one 

risk period of 0-7 days post Hib, one risk period of 0-7 days post Hibonly vaccine and 

two risk periods after exposure to MMR vaccine (6-11 and 15-35 days). Results of the 

analyses are shown in Table 5.8.
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Table 5.8: Relative incidence (RI) and P5% Confidence intervals (Cl) for febrile convulsion due 

to exposure to DTP Hib, Hibonly and MMR vaccines._________________________

Spline-based SCCS Parametric SCCS
Vaccine Risk period RI 95% Cl RI 95% Cl

Assuming DTP was taken before Hib
DTP any dose 0-3 1.551 [0.923,2.608] 1.154 [0.633 , 2.106]
Hib any dose 0-7 1.352 [1.026 , 1.783] 1,296 [0.926 , 1.815]

Hibonly 0-7 1.019 [0.549 , 1.893] 1.016 [0.544 1.896]

MMR 6-11 3.794 [3.151 4.537] 3.464 [2.864 , 4.189]
15-35 1.248 [1.061 1.469] 1.203 [1.018 , 1.420]

Assuming Hib was taken before DTP
DTP any dose 0-3 1.831 [1.297 , 2.586] 1.431 [0.974 , 2.103]
Hib any dose 0-7 1.131 [0.715 , 1.789] 0.984 [0.555 , 1.745]

Hibonly 0-7 1.045 [0.560 , 1.949] 1.050 [0.563 , 1.960]

MMR 6-11 3.789 [3.157 , 4.546] 3.462 [2.863 , 4.186]
15-35 1.246 [1.057 , 1.469] 1.202 [1.018 , 1.420]

The relative incidence of exposure to Hibonly vaccine was found to be non-significant 

in both analyses using both methods (Table 5.8). When DTP was assumed to be given 

before the Hib vaccine the RI estimate associated with exposure to DTP was found to be 

non significant whereas exposure to Hib vaccine has an increased risk of febrile convulsion 

for the spline-based SCCS analysis but not for the standard method. The result was 

reversed when we assumed Hib vaccine to be given before DTP. Relative incidence of 

febrile convulsion in the period 0-3 days post DTP vaccine was significantly different 

from 1 in the spline-based analysis.

To investigate the sensitivity of exposure-related relative incidence estimates with a 

change in the value of a smoothing parameter, we fitted the spline-based SCCS to the data 

with different values of the smoothing parameter. We considered any DTP dose vaccine
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with three risk periods and MMR vaccines with two risk periods. The relative incidence 

estimates of exposure to DTP and MMR vaccines with varying smoothing parameter are 

presented in Figure 5.8.

p
NT

MMR 6-11 
DTP 0-3

DTP 4-7 
MMR 15-35

DTP 8-14

to
c\i

o
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Smoothing parameter

Figure 5.8: Estimated relative incidence after exposure to MMR and DTP vaccines for specified 

risk periods (in days: see legend) for different values of the smoothing parameter A.

The relative incidence estimates were found to be insensitive to the choice of smoothing 

parameter. From Figure 5.8, it can be seen that the exposure to vaccine related relative 

incidence estimates remain similar for varying smoothing parameter values within this 

range.
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5.5 Discussion

Modelling of the age effect in the SCCS model with smooth functions was presented 

in this Chapter. Using a polynomial function to model the log of the baseline incidence is 

one way of avoiding the limitations associated with the standard SCCS method. However 

the use of polynomial functions to represent the log of the age-specific relative incidence 

function has two limitations: (1) bad fit in one part of a function affects the whole 

function and (2) for higher order polynomial functions the integral in the denominator 

of the SCCS log-likelihood function has to be integrated numerically, hence adding to 

the computational complexity. We suggest to solve problem (2) by directly modelling 

the age-specific relative incidence function by a polynomial function and constrain the 

coefficients of the polynomial to be non-negative. This can help to analytically integrate 

the denominator of the SCCS log-likelihood function.

Lee and Carlin (2014) proposed the use of fractional polynomials to estimate the pa

rameters in the piecewise constant function representing the age effect in the standard 

SCCS method. However, although the proposed method reduces the number of parame

ters that need to be estimated compared to the standard and semi-parametric methods, 

there is a need to pre-define age groups. Moreover, if each day within an observation 

period is used as an age group it may face the same computational problem as for the 

semi-parametric method since the data will have to be expanded. However, fractional 

polynomials can be used to estimate a smooth age effect. We suggest to represent the 

age-specific relative incidence with fractional polynomials by constraining their coeffi

cients to be non-negative to analytically integrate the denominator of the log-likelihood 

function. Using this approach the data are not required to be expanded.
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Modelling the age effect using a linear combination of cubic M-splines avoids the 

problem of sensitivity to mis-specification of age groups in the standard (piecewise con

stant) version of the SCCS method and the computational problem of the semi-parametric 

SCCS method. The performance of the new method is as good as or better than the semi- 

parametric and the standard versions of the SCCS method for small and moderate sample 

sizes. For large samples the semi-parametric SCCS is computationally demanding but the 

new method works well. For example, for our convulsions data with 3,826 events and 5 

risk periods, the spline model took less than two minutes to fit on a standard desktop 

computer. Part of the problem with fitting the semi-parametric model relates to the use 

of standard software for fitting Poisson models and maximising conditional likelihoods, 

which require the data to be expanded. There may be others ways of proceeding that 

avoid this step. However, when there are N  cases, O(N) parameters must be estimated, 

which is likely to be problematic for large data sets. The spline-based model provides a 

more economical representation of the age effect in such settings.

Like the standard SCCS methods, the spline-based method requires the three assump

tions which were set out in Section 2.1.1 of Chapter 2. As described in Section 5.4, these 

conditions are likely to be met in our application to febrile convulsions. More generally, 

if the event of interest is not recurrent, or if recurrences are not independent, then the 

SCCS model can validly be applied to the first event provided the risk of a first event is 

low (say less than 10% during a typical observation period (Farrington et al., 2011)). If 

exposures are not exogenous, then a modified SCCS method can be applied (Farrington 

et al, 2009). A further version of the method can be used if observation periods are 

not event-independent (Farrington et al., 2011). On the other hand, experience with the 

method suggests that results are typically robust to mild departures from the hypothe
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ses. More work is required, however, to characterise the circumstances in which such 

robustness cannot be taken for granted.

Our aim in the present chapter was to model the age effect non-parametrically, this 

effect seldom being of primary interest. The exposure effect, on the other hand, is modelled 

parametrically using step functions, selected on the basis of prior knowledge or hypotheses. 

In some applications, however, it might be important to estimate the exposure effect more 

flexibly, notably in exploratory analyses. To this end, we extend the spline-based model 

to allow flexible modelling of the exposure effect in Chapter 6.



Chapter 6

Flexible M odelling of Vaccine Effect

The effect of the time-varying confounding variable age, in the SSCS method, has been 

modelled in three different ways as discussed in Chapter 2 and Chapter 5: (1) para

metric SCCS where the age effect is included in the model as a step function, (2) semi- 

parametric SCCS where the age effect is left unspecified and (3) spline-based SCCS where 

the age-specific relative incidence is represented by a linear combination of cubic M-splines, 

whereas the effect of exposure to vaccines and other drugs is always represented by piece- 

wise constant functions. The focus of this present chapter, therefore, is the representation 

of the relative incidence function associated with exposure within SCCS vaccine studies 

using flexible functions. This work is an extension to the standard SCCS method, re

cently proposed by Ghebremichael-Weldeselassie et al (2014b). There has been much 

work on flexible ways of modelling the exposure effect for standard study designs (case 

control and cohort study designs). These involve representing the exposure history as a 

convolution of past exposures that combines information about duration, intensity and 

timing of exposure in one summary measure, as proposed by Breslow et al. (1983) and 

Thomas (1988). Letting z(u) to be dose or intensity of exposure at time u and w(u,t)

113
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a function that assigns weights to past exposures, the weighted cumulative exposure at 

time t is defined as

W CE(t) = f  z(u)w{u,t)du.
J o

Within this context, interest has focused on modelling the weight function w(u,t), 

whether by a priori chosen parametric models (Vacek, 1997; Langholz et al, 1999; Abra- 

hamowicz et al, 2006) or spline models of varying complexity (Hauptmann et al, 2000, 

2001; Berhane et al, 2008; Sylvestre and Abrahamowicz, 2009), with applications to en

vironmental and drug exposures.

Four alternative parametric forms of the weight function were selected a priori by 

Vacek (1997) in a case control study design and the fits of the resulting models were 

compared to select the best fit to the data. Langholz et al (1999), in the same study 

design, proposed to fit the weight function as parametric bilinear and exponential decay 

functions of time since exposure and applied it to a data on Colorado Plateau uranium 

miners to analyze latency effects of exposure to radon on lung cancer. Abrahamowicz 

et al (2006) on the other hand proposed to use a priori selected parametric forms of the 

weight function or latency function to study the risk of fall related injuries among elderly 

new users of three benzodiazepines (nitrazepam, temazepam, and flurazepam) in a cohort 

study design using the Cox proportional hazards model.

In the case of vaccines, a point exposure occurs at the age of vaccination c, so z(u) is 

a Dirac delta function. Setting w(u, t) = w(t — u) we obtain the WCE function

W CE(t) = w(t — c) for t > c, 0 otherwise.

While our focus is on vaccines, the approach developed here has broader applica

bility, as will be shown in one of our examples in Section 6.3. In the standard SCCS
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methodology, WCE{t) (exposure-related relative incidence function) is represented by a 

step function, with pre-determined cut-points. This may not be biologically plausible 

and may incur losses in efficiency (Greenland, 1995a; Weinberg, 1995; Zhao and Kolonel, 

1992). Furthermore, a poor choice of cut-points may be associated with cut-point bias and 

misclassification (Altman, 1991; Greenland, 1995b). We therefore propose a more flexible 

way of modelling the exposure effect in SCCS studies. We represent the exposure-related 

relative incidence function (which is a function of time since exposure or time since start 

of exposure in the context of drugs other than vaccines) as a linear combination of cubic 

M-spline basis functions described in Chapter 4.

The chapter is organized in four sections. In Section 6.1 we discuss representation of 

the exposure-related relative incidence function (w(t — c)) as a linear combination of cubic 

M-splines. Section 6.2 presents a simulation study conducted to evaluate the performance 

of the new method and compare it with the existing step function approach followed by 

application of the new approach, to febrile convulsions and MMR vaccine, and to fractures 

and thiazolidinedione use in Section 6.3. And finally in Section 6.4 we make some final 

remarks.

6.1 Spline-Based Exposure Risk Function

Regression splines provide smooth estimates with continuous first two derivatives and 

are flexible enough to represent a variety of clinically plausible shapes (Smith, 1979). 

Hauptmann et al (2000) used constrained regression splines to represent the weight func

tion in assessing the impact of exposure to smoking on lung cancer in a case control study. 

The weight function was represented as a linear combination of B-splines and the coeffi

cients of the B-spline basis functions were constrained to be positive in order to obtain
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non-negative weight function. Similarly Sylvestre and Abrahamowicz (2009) proposed the 

use of regression splines based on B-splines to model the weight function in cohort studies. 

The authors parameterized their model such that there will be no need for constrained 

optimisation. In Sylvestre and Abrahamowicz (2009) the weighted cumulative exposure 

is calculated at each time during follow up whereas in Hauptmann et al (2000) it is eval

uated only once at the end of follow up. Such extensions to model exposure effects were 

not introduced in the self-controlled case series method.

In the SCCS method we propose to approximate the exposure-related relative incidence 

function (the weight function) using regression splines based on M-splines. To begin 

with, we specify a nominal maximum risk period over which the exposure-related relative 

incidence function can be different from 1; outside this interval (which may be unbounded 

to the right), the function will take the value one. The argument of this function is time 

since start of exposure (in our case, vaccination). In the case of other drugs where the 

exposure is not a point exposure, there is no need to specify a nominal risk period, the 

duration of exposure is used as the risk period.

Recall that the likelihood function of SCCS derived in Chapter 2, for a single exposure, 

is given by:

l frfi ^ ')exp fo’few (61)
f=R i / > ( t ) e x p  {Xim d t ~

where and are the start and end of observation period for individual i, Uj is age of 

individual i when event j  occurs, ip(t) is age-specific relative incidence function and Xi(t) 

is exposure history of individual i (see Chapter 2 for more details). From the likelihood 

function (6.1), the exposure-related relative incidence function is required to be a positive 

function. Therefore, we use a linear combination of cubic M-spline basis functions, which 

are positive functions, to represent it. An M-spline of order q, as described in Chapter 4,
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is a positive function constructed by combining pieces of polynomial functions of degree 

q — 1 connected at knots. To keep positivity of the M-splines when combined linearly, we 

constrain their coefficients to be non-negative. Therefore, the function representing the 

exposure effect in equation 6.1, exp {^(t^  )/?}, will be replaced by a function of time since 

exposure represented as a linear combination of M-splines of order four:

I 5 X i  g{Pi)Mi(t -  c), c < t < d
L)(t  ~  C) =  <

1, otherwise,

where g(Pi) are parameters to be estimated to determine the shape of the function, c is

age at start of exposure, d is age at end of the nominal risk period and m  is the number of

M-spline functions. We shall choose g(/3i) = fif to ensure positivity of the function. The

value m  depends on the number of interior knots and the order of M-splines chosen: m =

number of interior knots +  order. Usually a number of interior knots between 8 and 12

is sufficient (Joly et a l , 1998). We choose equidistant knots between 0 and maximum of

d i ~ C i  (or the length of the nominal risk period for point exposures like vaccine), inclusive,

and add an extra q — 1 equidistant knots below the minimum and above the maximum

knots to construct the M-spline basis functions, di is age at the end of exposure for

individual i. When di = oo we set it equal to the value of bi.

Replacing the exposure effect in Equation (6.1) by a linear combination of cubic M- 

splines gives the log-likelihood function

i ~  c<))I{Ci<tii- di) \  (62)
«  U  \ £  W)(E£i m ( t  - '

where / (q  < tij < d̂ ) is an indicator variable that takes the value one if the event time 

is within the nominal risk period and zero otherwise.

The age-specific relative incidence is represented by a step function, as in the standard 

SCCS method. Thus, we subdivide the observation period of each case into intervals
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(lih,Uih]i h indexing the age group, with age-specific relative incidence exp(a^). Without 

loss of generality, we can choose these intervals to be sufficiently narrow (by splitting them) 

that they are properly contained in (c*, c£J or its complement in (ai: The log-likelihood

is then:
N ni

1 — Inp. (  exp(a /t(t,j))(££l 3<d*) \
h h  V ^ exP ^ ) C ^  K ' }

where h(i,j)  is the age interval containing Uj.

The integral in the denominator of the log-likelihood function (6.3) can be replaced 

by a linear combination of integrated splines (I-splines), since the integral of an M-spline 

function of order q can be expressed as an I-spline of order q +  1. Hence, denoting the 

length of interval h for the ith individual by =  uih — lih , our log-likelihood function 

will be:

. y ' V ' l  ( _________________ e x p K (i,, .) ) ( £ £ !  _________________

u h  °g VE e x p - Ci) - T Z i f l W i h  - Ci))^^<*)
(6.4)

To estimate the parameters of interest from the log-likelihood in (6.4), we introduce 

a roughness penalty term that controls the smoothness of the exposure-related relative 

incidence function. As in (O’Sullivan, 1988a) the penalty is based on the second derivative 

of the linear combination of cubic M-splines. Thus, the penalised log-likelihood function

is:
2

?2
p i  =  l ~  ( Y ] ! 3i m i ( u ) I d u

= I -  A K /J ffA # ) (6.5)

where I is the log-likelihood function given in Equation 6.4, A is an m  x m  matrix with 

(r, I) element f  M ”(u)Mi(u)du and A > 0 is a smoothing parameter that controls the 

balance between smoothness of the function and fit to the data. One can also use a dif

ference penalty as in (Eilers and Marx, 1996). The smoothing parameter A is chosen by
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maximising an approximate cross-validation score while keeping the age effect to be con

stant (i.e. setting the =  0). The approximate cross-validation score to be maximised 

is similar to the score in Equation 5.8 of Chapter 5 and is given as

V(X) = 10) -  tv([H -  2AS]-1# ) , (6.6)

since pf is used to keep positivity of the exposure relative incidence function

S =  4 (Ao(/3/3t )) +  2(diag(A/32)).

Once the smoothing parameter is chosen, we maximise the penalised log-likelihood func

tion (6.5) for fixed A to estimate the parameters related to age and exposure effects.

6.1.1 Approxim ate Confidence Bands

In the context of cross-validated smoothing spline models, Wahba (1983) proposed 

Bayesian technique to generate confidence bands in which an improper prior for the func

tion to be estimated was constructed using an integrated Wiener process. Silverman 

(1985) modified the idea of Wahba (1983) and came up with the same results using sim

pler and more intuitive priors. Silverman (1985) uses the roughness penalty term in 

a penalised log-likelihood function to be a prior log-likelihood. In simulation studies, 

Bayesian confidence intervals based on this approach proved to have good coverage prop

erties, provided coverage is measured across the function, rather than point wise (Wood, 

2006b). O’Sullivan (1988a) proposed the use of an approximate Bayesian technique for 

generating confidence bands for penalised likelihood estimators in the context of survival 

analysis, used in several applications including O’Sullivan (1988b) and Joly et al (2002). 

Following O’Sullivan (1988a) we use the Bayesian-like technique to generate confidence 

bands for the exposure-related relative incidence estimators.
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The penalised log-likelihood function (6.5) has two parts; the log-likelihood function 

(I) and the penalty component (A((/32)TA/32)). Then considering the penalty term to be 

a prior log-likelihood for /3 leads in principle to the penalised log-likelihood function (6.5) 

to be a posterior log-likelihood for (3. Expanding the posterior log-likelihood in a second 

order Taylor series about the posterior mode of (3 gives an approximate covariance of (/3) 

to be Vpi, where Vpi is the negative of the inverted hessian of the penalised log-likelihood 

function evaluated at the penalised maximum log-likelihood estimates.

Our approximation of the exposure-related relative incidence function used g({3i) = (3f 

to keep positivity of the function, we therefore need to know the covariance of /%. The 

required covariance matrix can be obtained using the delta method as

Vtr = 4diag(/3)[T^](diag(/3))T.

Hence an approximate 95% confidence interval for the exposure-related relative incidence 

at a point r  is

C j { t )  ±  M ( T)T VtrM (T)

where r  is time since first exposure and M (r)T =  (Mi (t), . . . ,  Mm(r)).

Alternatively, to ensure that the confidence bands lie above zero, they can be obtained 

on the log scale as

u (t)  exp{±1.96^/M ( T ) TVtrM (r ) /u j ( r ) } .

The confidence bands obtained in this way, however, are not really confidence bands for 

oo (t) rather they are confidence bands for a)(r) =  E(cu(r)), which can be taken as smoothed 

version of lo(t ) (Wasserman, 2006). Therefore, we have to be cautious in reporting the 

results as the confidence interval will not be centered around the true function u;(r) due 

to the smoothing bias.
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6.1.2 F itting the M odel

In order to fit the SCCS model with smooth exposure effect the data are required to be 

pre-processed based on age groups and the nominal risk period chosen, in a similar way to 

the parametric version of SCCS. The observation period of each event is subdivided into 

intervals and the data are reformatted such that each row contains information about 

a specific interval. The information contained in each interval after reformatting are: 

number of events (0 or 1), age at event (same for all intervals), upper limit, lower limit, 

length of the interval, age at start of exposure (same for all intervals of an event), age 

group and exposure status (a binary variable that indicates whether the specific interval 

lies within the control or the nominal risk period). For example suppose individual 1 

who has been observed from age 0 — 730 days experienced an event of interest at age 

161 days and was vaccinated at 605 days of age. Then choosing the age cut points to be 

426,487,548,609 and 670 days and a nominal risk period of 49 days the data for individual 

1 are expanded as in Table 6.1

Table 6.1: Data from a single event reformatted such that the observation period is divided based 

on age groups and a nominal risk period
Indiv Events Eventday Upper lower Length Age at Age Exposure

limit limit Exposure group status

(t) (u) (1) (e) (c)
1 1 161 0 426 426 605 1 0
1 0 161 426 487 61 605 2 0
1 0 161 487 548 61 605 3 0
1 0 161 548 605 57 605 4 0
1 0 161 605 607 2 605 4 1
1 0 161 607 609 2 605 4 0
1 0 161 609 670 61 605 5 0
1 0 161 670 730 60 605 6 0
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Once the data are reformatted the required ingredients of the log-likelihood function 

can be computed after selecting the number of knots that define the exposure-related 

relative incidence function. The function is defined between zero and the length of the 

nominal risk period or maximum of age at the end of exposure minus age at the start 

of exposure for non-point exposures. However, the time since exposure for events that 

occur before exposure is negative. Therefore, to compute the M-splines we replace the 

negative time since exposure values by zero and for events that occur beyond the nominal 

risk period we change their time since exposure value to the length of the nominal risk 

period. These changes will have no effect because the linear combination of the M- 

spline functions is forced to be one for the events occurring in the control periods by 

the indicator variable introduced in the log-likelihood function (6.4). And the I-splines 

in the denominator of the log-likelihood can be obtained in same way. After computing 

the M and I-splines at the required values, we choose the smoothing parameter using the 

approximate cross validation method by assuming no age effect. We then maximise the 

penalised log-likelihood function (6.5) fixing the smoothing parameter at the optimum 

value.

6.2 Simulation Study

To evaluate the performance of the new approach and compare it with the standard 

SCCS model, we conducted a simulation study. In this section we describe the design of 

the simulation study and results.
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6.2.1 Design of the Simulation Study

We fixed the number of cases in all the data sets to be generated at 1,000. The length 

of the observation period for all cases was chosen to be 730 days, where age at the start 

of observation a* =  0 days and age at the end of observation bi = 730 days for all cases. 

Ages at vaccination or start of exposure (c*) were uniformly distributed, see Section 7.4 

of Chapter 7 for performance of the new method when q  are not uniform ly distributed.

Four different scenarios of true exposure-related relative incidence function were con

sidered and generated from beta densities (Figure 6.1).
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Figure 6.1: True exposure-related relative incidence curves used in simulating the samples

These functions show how the true exposure relative incidence values change with time 

since vaccination or start of exposure. The risk periods considered in all scenarios were 

of length 49 days. Hence 49 relative incidence values were generated based on the shapes 

chosen and obviously the true exposure relative incidence values outside the risk period
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(in the control periods) were taken to be one. The effect of age was represented using a 

step function in which we used six age groups; (0 — 426], (426 — 487], (487 — 548], (548 — 

609], (609 — 670] and (670 — 730] with true relative incidence rates 1,2,5,8,10 and 15 

respectively. Performance of the method developed in this chapter when the true age- 

specific relative incidence function is different from a step function (a sine function) can 

be seen from Section 7.4 of Chapter 7.

6.2.2 D ata Generation

To generate number of events per individual and ages at event, first the observation 

period of each case is divided into intervals based on age and exposure groups. The 

intervals within the exposure risk period have length of one day because the true exposure 

relative incidence values change with age. Then incidence rates at each interval are 

computed as the age-specific incidence rate times the exposure-related relative incidence. 

Within the control periods, this is simply the relative incidence of the age group. From 

these, an average incidence rate for each individual is calculated to generate the marginal 

number of events per individual from a truncated Poisson distribution. Given the number 

of events for an individual generated from the truncated Poisson and incidence rates 

in each interval within the observation period, a multinomial distribution was used to 

identify in which interval the events occurred. Then a uniform distribution was used to 

generate event ages within the interval found to have an event. For each scenario 100 

samples of 1,000 cases were generated in this way.

6.2.3 Analysis

Each of the simulated data sets were analysed using both the standard SCCS and 

the new approach with risk periods totalling 49 days following exposure (as simulated)
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or with an extended nominal risk period of 98 days. In the standard SCCS, the risk 

period of 49 days following an exposure was divided in to seven groups of length seven 

days (with seven parameters). We also used an extended nominal risk period of 98 days, 

and fitted a standard SCCS model with 14 seven-day groups (and 14 parameters). In 

addition, we fitted the standard SCCS model with 49-day risk intervals (and hence one 

or two parameters, according to the nominal risk period). In all the spline-based analyses 

we used nine interior knots and the approximate cross-validation score was employed to 

choose the smoothing parameter. The standard SCCS method was fitted to evaluate the 

performance of the new method relative to it.

To compare the performance of the spline-based and standard SCCS methods we calcu

lated the distances between the estimated and true exposure relative incidence functions. 

We used the Integrated Squared Error (ISE) to measure the distance, that is

f  (uj(t — c) — £j(t — c))2dt,
J c

where u(t — c) is the true exposure-related relative incidence function, Cj{t — c) the es

timated relative incidence function, c age at the start of exposure and d age at the end 

of exposure or nominal risk period. We computed the mean (MISE) and the standard 

deviation (SD) of the integrated squared error values obtained from the 100 samples. In 

addition to the MISE we used plots to make comparisons.

6.2.4 Results

In this section we present results of the simulation study. Figures 6.2 and 6.3 show 

the estimated exposure-related relative incidence curves obtained by fitting the spline- 

based and standard SCCS methods to the 100 randomly selected samples. The mean and 

standard deviation of the integrated squared errors are presented in Table 6.2.
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Figure 6.2: Estimated relative incidence curves obtained by fitting the spline-based arid standard 

SCCS to 100 randomly selected samples with the true relative incidence functions in thick white. 

Top row: estimates from the spline-based method; bottom row: results from the standard SCCS. 

Nominal risk period of f.9 days was used.

The results presented in Figure 6.2 are obtained when the risk period is kept at 49 

days post exposure (which is equal to the risk period used to simulate the d a ta ). The top 

row presents results from the spline-based method and in the bottom  row are results from 

the standard method. Results obtained by analysing the 100 randomly selected samples 

using both methods with a nominal risk period of 98 days are presented in Figure 6.3. 

The curves estimated from the standard method are step functions. The results from 

the spline-based analysis show th a t the shapes of the true relative incidence curves (thick 

white lines) were captured well by most of the estimated curves and all are included within 

the range of estimated curves in all scenarios. The variability of the estim ated curves by 

the spline method is less as compared to the curves estimated by the standard  SCCS 

method. Especially in scenario 2, where the true function is a constant, the variability 

from the standard method is very high. This is because we are estim ating a constant
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using seven or 14 parameters, which indicates loss of efficiency from the standard SCCS 

when we use a large number of exposure groups.
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Figure 6.3: Estimated relative incidence curves obtained from fitting spline-based and standard 

SCCS to 100 randomly selected samples with nominal risk period of 49 days. The thick white 

curve represents the true relative incidence function. Top row: estimates from spline method; 

bottom row: results from standard SCCS.

Similar to the results from the spline method, the true relative incidence curves lie 

within the estimated curves obtained from fitting the standard SCCS method.

Table 6.2 presents MISE and and standard deviation of the integrated squared er

rors for all the four exposure-related relative incidence function scenarios presented in 

Figure 6.1.
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Table 6.2: Mean integrated squared error (MISE) and standard deviation (SD) obtained from 

spline-based and standard SCCS models. Each simulated data set was fitted twice by the two 

methods with nominal risk periods of 49 and 98 days____________________________
Spline-based SCCS Standard SCCS with Standard SCCS with

groups of length 7 days groups of length 49 days
Scenario MISE SD MISE SD MISE SD

Potential risk length of 49 days
1 7.982 5.685 14.993 8.202 37.934 3.494
2 9.575 10.190 31.368 16.434 5.498 7.559
3 5.453 5.625 12.338 6.207 22.388 2.924
4 6.478 8.376 14.650 7.300 43.490 4.593

Potential risk length of 98 days
1 14.875 7.096 20.072 7.926 38.121 3.414
2 34.112 13.747 38.750 18.549 8.012 10.127
3 6.439 5.283 20.000 18.791 22.654 2.659
4 8.151 6.823 19.037 8.201 44.232 3.059

Table 6.2 shows that the mean integrated squared errors (MISE) are all lower for 

the spline method than the standard method, except for scenario 2, in which the true 

exposure-related relative incidence was constant. For this scenario, the correctly specified 

step function model (with one or two parameters) outperforms the spline model, though 

interestingly, the over-specified step function model (with seven or 14 parameters) does 

not. Comparable but slightly degraded results were obtained for scenarios 1, 3 and 4 with 

the 98-day nominal risk period as with the correct 49-day risk period. For scenario 2, the 

spline method produced worse results with the 98 day risk period compared to 49 day 

nominal risk period.

Figures 6.4 and 6.5 present the systematic error or bias at a point r  (time since 

exposure) and standard deviation of estimated exposure relative incidence values at a
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point r . The bias was calculated as

average(cu(r)) — cu(r),

where cj(t ) is the true relative incidence at point r , cj(t ) estimated relative incidence at 

point t  and the average is the mean of the estimated relative incidences at point r  over 

the 100 runs of simulations. The standard deviation is taken over the 100 a)(r) values.
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Figure 6.4: Bias (top row) and standard deviation (bottom row) of estimates obtained by fitting 

the spline-based SCCS (solid lines) and the standard SCCS (dotted lines) with nominal risk 

period of 49 days to the simulated data sets. 7 exposure groups were used when fitting the 

standard SCCS.

Figure 6.4 shows the bias (top row) and variability (standard deviation, bottom row) 

of estimates from the standard (with 7 parameters) and the spline-based SCCS methods 

with a 49 day post exposure nominal risk period. The bias of the standard method 

has a saw-tooth appearance in scenarios 1, 3 and 4 related to discontinuities at the cut-
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points, whereas the spline method occasionally shows some bias at endpoints, notably for 

scenarios 2 and 3. The spline method produces lower standard deviations, except at the 

endpoints.
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Figure 6.5: Bias (top row) and standard deviation (bottom row) of estimates obtained by fitting 

spline-based SCCS (solid lines) and standard SCCS (dotted lines) to the simulated data sets. 

A nominal risk period of 98 days was used, divided into 14 exposure groups when fitting the 

standard SCCS.

Similar results were obtained when the nominal risk period was extended to 98 days 

post exposure, as presented in Figure 6.5. However, for scenario 2 there is higher absolute 

bias for splines than the standard method around 49 days since exposure where the true 

relative incidence value of 4 drops to 1. The variability is still higher for the standard 

method than the spline method.
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6.3 Application

In this section, we illustrate the use of the new method that represents vaccine effect 

using a smooth function (a linear combination of M-splines) and the standard SCCS 

method, for comparison purposes, to two data sets. The first application is on a data set 

of MMR vaccine effects introduced in Section 5.4 of Chapter 5. Although the method 

developed here focuses on representation of vaccine effects, it can be applied to non 

vaccine exposures and therefore we apply it to data on the effect of thiazolidinediones use 

in causing fracture.

6.3.1 Analysis of Febrile Convulsion D ata

The aim of this analysis is to investigate a potential association between febrile con

vulsions and measles/mumps/rubella (MMR) vaccine using the new spline-based and 

standard SCCS methods. The data set, as described in Chapter 5, comprises of 2,389 

children aged between 29 and 730 days in the period 1991-1994. They experienced 3,826 

febrile convulsion events in total, indicating that there were children with more than one 

event of febrile convulsion. In this example, we used 50 days post MMR vaccine as a 

nominal risk period for all cases to represent the exposure effect with splines. Since all 

individuals have the same nominal risk period of 50 days, we defined 12 equidistant inner 

knots between 0 and 50 days. Age was included in the model as a step function. There 

were 21 age groups of length 30 days while the first and last groups were of length 32 and 

40 days respectively.

A linear combination of cubic M-splines was used to represent the MMR-related rel

ative incidence function. The value of the smoothing parameter selected by the ap

proximate cross-validation score was 0.031. We present the relative incidence function
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estimated by maximising the penalised log-likelihood function (6.5) along with its ap

proximated confidence bands in Figure 6.6. The figure shows no risk of febrile convulsion 

in the first three days post MMR vaccination and a borderline non-significant relative 

incidence of 1.248 at the fourth day. However, there is a significantly increased risk be

tween five and 11 days after exposure to the vaccine. The relative incidence at the 5th 

day is 1.922 and increases smoothly to 3.647 at the eighth day and then the risk decreases 

to 1.244 at 12 days since exposure. There is also an increased risk of febrile convulsion 

due to MMR vaccine between 19 and 21 days post vaccination. At all other times after 

vaccination there is no significantly increased risk of febrile convulsion.
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Figure 6.6: Smooth estimate of the relative incidence function related to exposure to MMR 

vaccine (bold line) and 95% confidence bands (doted lines).

We also fitted the standard SCCS method, where age and exposure effects are rep-
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resented by piecewise constant functions, to the data set on febrile convulsion. We used 

the same 21 age groups described above to model the age effect and for the exposure 

effect we divided the 50 days post MMR vaccine nominal risk period in to 10 groups. The 

ten exposure groups had cut points at 6,11,18,22,26,30,36,40 and 45 days since vac

cine. The results from this analysis are presented in Table 6.3 and Figure 6.7. Figure 6.7 

presents the exposure to MMR vaccine specific relative incidence functions estimated from 

the standard SCCS model (step function) and the spline-based SCCS method (smooth 

function).

Table 6.3: Relative incidence (RI) estimates of exposure to MMR vaccine and lower and upper 

95% confidence intervals obtained from fitting parametric SCCS method with 10 exposure groups 

and 21 age groups________________________________________________
Exposure Group Relative Incidence 95% Confidence Interval

(Days) (RI) Upper Lower

0-6 1.226 0.922 1.629

6-11 3.489 2.881 4.225

11-18 0.827 0.600 1.139

18-22 1.493 1.087 2.050

22-26 1.089 0.752 1.577

26-30 1.167 0.816 1.671

30-36 1.159 0.862 1.559

36-40 1.368 0.980 1.909

40-45 0.977 0.687 1.390

45-50 1.103 0.790 1.539

Figure 6.7 shows that the results obtained from the two methods are similar since the 

exposure groups used in the standard method are correctly specified. However, different 

categorizations may give different results for the standard SCCS method, which is a 

disadvantage of the method if the correct exposure groups are not known.
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Figure 6.7: Relative incidence functions related to MMR vaccine estimated from fitting the stan

dard model with 10 exposure groups (step function) and spline-based SCCS (smooth function).

6.3.2 Analysis of Fracture Data

The methods developed in the present chapter can be applied more widely. We illus

trate this with data on fractures and thiazolidinediones, which were analysed by Douglas 

et al. (2009) using the standard case series method. Thiazolidinediones are a class of 

medicines used to treat type 2 diabetes.

Diabetes is a lifelong condition that causes a person’s blood sugar level to become too 

high. In the UK, approximately 2.9 million people are affected by diabetes. There are 

also thought to be around 850,000 people with undiagnosed diabetes (NHS, 2013). There
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are two main types of diabetes, referred to as type 1 and type 2. Type 2 diabetes occurs 

when the body does not produce enough insulin to function properly, or the body’s cells 

do not react to insulin. This is known as insulin resistance. Type 2 diabetes is far more 

common than type 1 diabetes. In the UK, about 90% of all adults with diabetes have 

type 2 diabetes (NHS, 2013). Type 2 diabetes usually affects people over the age of 40, 

although increasingly younger people are also being affected.

Diabetes cannot be cured, but treatment aims to keep blood glucose levels as normal 

as possible to control symptoms and minimise health problems developing later. In some 

cases of type 2 diabetes, it may be possible to control symptoms by altering your lifestyle, 

such as eating a healthy diet and exercise. However, as type 2 diabetes is a progressive 

condition, it may eventually be needed to take medication to keep blood glucose at normal 

levels. To start with the medication usually takes the form of tablets, but later on it may 

include injected therapies, such as insulin.

There are different types of medicines recommended to treat diabetes 2, including met

formin, sulphonylureas, thiazolidinediones. Thiazolidinediones also known as glitazones, 

make body cells more sensitive to insulin so that more glucose is taken from blood. The 

first type of thiazolidinediones, pioglitazone, is usually used in combination with met

formin or sulphonylureas, or both. They may cause weight gain and ankle swelling (NHS, 

2013). Another thiazolidinedione, rosiglitazone, was withdrawn from use in 2010 due to 

an increased risk of cardiovascular disorders, including heart attack and heart failure.

The aim of the study in Douglas et al. (2009) was to investigate whether there is 

an increased risk of fracture associated with the use of thiazolidinediones. The fractures 

considered were classified according to fracture site (ankle, arm, chest/rib, face, hand, 

hip, leg, pelvis, shoulder, skull, wrist, spine, multiple sites and unknown site).
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The data used in the analysis were primary care computerized clinical records from 

the United Kingdom-based General Practice Research Database (GPRD). 1,819 patients 

aged about 40 years or older prescribed at least one thiazolidinedione and with at least 

one fracture event were included in the analysis. The data included patients with multiple 

fractures: 283 (16%), 64 (4%), and 25 (1%) had two, three, and four or more fractures, 

respectively. Multiple fractures were included in the analysis if the fractures happened at 

different sites or at the same site but at least 6 months apart. Out of the 1,819 patients 

990 (54%) were women with mean age at first thiazolidinediones prescription of 65.4 years 

and mean age for men was 57.9 years.

In Douglas et al (2009), the authors defined the control period to be from start 

of observation period until first prescription of a thiazolidinedione and the risk period 

was from age at start of thiazolidinedione use until age at end of observation period. The 

length of exposure following each individual prescription was calculated using information 

recorded in the GPRD on pack size and dosing frequency. Thiazolidinedione treatment 

was assumed to be continuous where any apparent treatment break was less than 60 

days, to allow for partial noncompliance and situations where patients may have built up 

treatment stocks (Douglas et al, 2009). Age at end of observation was then taken to be 

age at the earliest of any treatment break longer than 60 days or the end of recorded follow 

up in the database. The mean duration of control periods prior to thiazolidinedione use 

was 9.5 years, and the mean duration of exposure to a thiazolidinedione was 2.3 years.

Different analyses, using the standard SCCS method, were done by Douglas et al. 

(2009) including analysis for all fracture sites together with any type of thiazolidinediones 

(pioglitazone or rosiglitazone) exposure, for females only, males only, analysis by fracture 

site, analysis by taking patients who were exposed only to one type of thiazolidinediones
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etc. Here we present only one of their analyses with all fractures together and exposure to 

any thiazolidinedione use and reanalyse the same using the new method of representing 

the exposure effect.

Unlike vaccines, thiazoledinediones are not point exposures, however we can use a sim

ilar approach as with vaccines by taking z(u) = z  for u > c, the age at first thiazeledine- 

dione, so W CE(t) = z f*  w(t — u)du and in the SCCS context it will be W CE(t) = 

zw(t — u). In the SCCS likelihood function the value z is cancelled out similar to the 

baseline incidence. This leads to the same likelihood function. We reanalyzed the data 

using the new version of SCCS where time since exposure is represented by a linear com

bination of M-splines. In our analysis, we used the same exposure risk periods as in 

Douglas et al (2009). The maximum duration of exposure to thiazolidinedione was 2,364 

days. Hence our exposure-related relative incidence function was represented by a linear 

combination of cubic M-splines defined between 0 and 2,364 days since first exposure. We 

chose 14 equidistant knots between 0 and 2,364 days inclusive, i.e we have 16 M-spline 

basis functions. The time-varying confounding covariate age was taken into account using 

a piecewise constant function with 42 age groups: the first age group is less than 14,610 

days (40 years) of age, followed by five age groups of length two years, 28 groups of one 

year length, seven groups of length two years and the last age group with age greater than 

33,603 days (92 years).
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Figure 6.8: Negative of the approximate cross validation score versus the smoothing parameter 

to choose the value of the smoothing parameter that maximises the approximate cross validation 

score.

To estimate the parameters of interest, we first selected the optimum smoothing pa

rameter, A, that maximises the approximate cross-validation score in Equation (6.6). This 

optimum A was 288 (Figure 6.8). Figure 6.8 plots the grid of smoothing parameter val

ues, A, versus the negative of the approximate cross validation score and shows that the 

optimum value for the smoothing parameter is 288. We then maximised the penalised 

log-likelihood function in Equation (6.5) for fixed A =  288 to get the required parameters. 

The estimated exposure-related relative incidence function and its approximate confidence 

bands are presented in Figure 6.9.
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Figure 6.9: Relative incidence function estimate related to thiazolidinedione use (bold line) and 

95% confidence intervals (dotted lines).

From Figure 6.9, it can be seen th a t the relative incidence of fracture due to  thiazo

lidinedione use increases as time since exposure increases. There is no significant increased 

risk of fracture in the first two months of exposure and the relative incidence is border

line significant from two months to about one year and half, but there is a significantly 

increased risk of fracture due to exposure to thiazolidinedione thereafter, and the maxi

mum relative incidence of 2.103 is reached after about 5 years of exposure. The relative 

incidence may start to decrease and the confidence bands widen after 5 years.
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Figure 6.10: Relative incidence functions related to thiazolidinedione use estimated by fitting 

the standard SSCS model with 13 exposure groups (step function) and the spline-based SCCS 

(smooth function).

In their standard SCCS analysis, Douglas et al (2009), defined five exposure groups 

of (0 — 1), (1 — 2), (2 — 3), (3 — 4) and (4 — 7) years since first exposure and obtained 

relative incidence estimates of 1.26,1.49,1.70,2.31, and 2.00 respectively. We repeated 

the analysis but with a different number and length of exposure groups. We divided the 

time since first exposure in to 12 groups of lengths six to nine months. Results from 

this analysis are presented in Figure 6.10 and Table 6.4. The results obtained from the 

standard SCCS method with 12 exposure groups are similar to those obtained by the 

spline method.
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Table 6.4: Relative incidence (RI) estimates of exposure to thiazolidinedione and lower and 

upper 95% confidence intervals obtained from fitting parametric SCCS method with 12 exposure 

groups and 4 2  age groups__________________________________________
Exposure Group Relative Incidence 95% Confidence Interval

(Years) (RI) Upper Lower

0.0 - 0.5 1.242 1.024 1.506

0.5 - 1.0 1.233 0.996 1.527

1.0- 1.5 1.262 0.997 1.596

1.5 - 2.0 1.691 1.335 2.143

2.0 - 2.5 1.748 1.346 2.269

2.5 - 3.0 1.587 1.174 2.146

3.0 - 3.5 2.099 1.546 2.850

3.5 - 4.25 2.223 1.646 3.003

4.25 - 5.0 2.284 1.591 3.280

5.0 - 5.5 2.059 1.183 3.583

5.5 - 6.0 1.690 0.770 3.709

6.0 - 7.0 0.894 0.122 6.535

6.4 Discussion

In this chapter, we proposed using penalised regression splines to model the effect of 

point exposures due to vaccination, and drug-related exposures more widely, in the self

controlled case series method. We model the exposure-related relative incidence function 

as a linear combination of cubic M-splines. This approach avoids the limitations of the 

standard and semi-parametric SCCS methods that use step functions with pre-specified 

cut-points to assess the exposure effect.

Our spline-based SCCS method can be considered as a special case of weighted cumu

lative exposure models used in environmental epidemiology, which have also made good 

use of spline models (Hauptmann et a l , 2000; Sylvestre and Abrahamowicz, 2009). These
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approaches have used information criteria to choose the number of knots in defining the 

B-spline basis functions. In our case, we intentionally selected a large number of knots and 

introduced a penalty term to the log-likelihood function to avoid over-fitting, the smooth

ing parameter being chosen by an approximate cross validation score (O’Sullivan, 1988a; 

Joly et al., 1998, 2002). An approximate Bayesian like method was used to produce con

fidence bands for the exposure-related relative incidence function. However, this method 

does not take the variability due to choosing the smoothing parameter into account. 

Bootstrapping is another option to generate the confidence bands but is computationally 

expensive.

Simulation studies showed that the new approach generally has a better performance 

than the use of step functions in the context of the SCCS method. The new method was 

applied to two data sets to investigate the association between febrile convulsions and 

MMR, and between fracture and thiazolidinedione use. The estimates obtained from the 

new method are consistent with the results from the standard SCCS method when the 

exposure groups are correctly specified. Increasing the number of a priori defined exposure 

groups in a standard SCCS model may help in capturing the true exposure-related relative 

incidence curve better, but at the cost of reduced efficiency. The new method is likely 

to be particularly useful in the absence of a clear, a priori hypothesis regarding the risk 

period. It can also be used to obtain an overall risk profile, or, if required, to specify risk 

periods upon which to base standard SCCS analyses in other data sets.

While our focus has been on developing methods for studying the safety of vaccines, 

they have wider applicability, as we have shown in our example on fractures and thiazo

lidinediones. In the example on fractures and thiazolidinediones, we showed an application 

of the new method when the exposure period was from age at first prescription of the drug
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until the end of the observation period when there is no control period after the end of 

exposure. In addition, the method can be applied when there are interrupted exposures, 

that is individuals will have different length of exposure periods and the observation period 

goes beyond the end of exposure. This is done by assuming that the periods before the 

start of exposure and immediately after the end of exposure up to the end of observation 

period are control periods. However, in many pharmacoepidemiological studies it may be 

necessary to study the effect of exposure in the wash-out period, a period immediately 

after the end of exposure to drug. In this respect the new SCCS approach needs further 

extension.



Chapter 7 

Non-Param etric Self-Controlled Case 

Series M ethod

In Chapter 5, to avoid the limitations of the standard and semi-parametric versions of the 

SCCS method in modelling the age effects we represented the age-specific relative inci

dence by a linear combination of M-spline functions. While the age effect was represented 

by a smooth function (based on splines), the effect of exposure was modelled using a step 

function. In Chapter 6, instead of using a step function we proposed using a linear combi

nation of M-splines to model the effect of exposure, as a function of time since exposure. 

However, the age effect was represented by a step function. Both these extensions to 

the standard SCCS method involve step functions. Therefore, in this chapter we propose 

modelling both age and exposure effects using splines to create a fully non-parametric 

extension to the SCCS method. After some initial remarks in Section 7.1, the likelihood 

function of the non-parametric SCCS method is derived in Section 7.2. In this section, we 

also describe and define derivatives and integrals of M and I splines, and the integral of a 

product of two spline functions. Section 7.3 presents the penalised log-likelihood function
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of the non-parametric SCCS method and discusses the selection of smoothing parameters. 

In Section 7.4, we evaluate the performance of the new method using simulations. We 

apply the non-parametric SCCS method to data on febrile convulsion and MMR vaccine 

in Section 7.5 and finally follow this with a discussion in Section 7.6.

7.1 M odelling Age and Exposure Effects Using Splines

The use of regression splines in the context of the self-controlled case series method 

has shown an improved performance compared to the use of step functions as presented in 

Chapters 5 and 6. Among the motivations for using regression splines based on M-splines 

in these chapters were that the spline functions give flexible and plausible shapes of age 

and exposure-related relative incidence functions and avoid numerical integration of the 

integral in the denominator of the SCCS likelihood function. This numerical integration 

is avoided because the integral of an M-spline is an I-spline, therefore the integral of a 

linear combination of M-splines can be expressed as a linear combination of I-splines. 

Based on similar arguments, both age and exposure effects can be represented as linear 

combinations of M-spline basis functions. In this chapter, since age and exposure are to 

be represented by linear combinations of M-splines at the same time, the denominator of 

the SCCS likelihood function involves the integral of a product of two spline functions. 

This cannot be represented by a linear combination of I-splines only, so the integration 

cannot be avoided in the same way. Therefore, based on the definition of the integral of 

an M-spline developed by Ramsay (1988), we define first, second and third integrals of an 

I-spline. In the following section we derive the likelihood function of the SCCS method 

when both age and exposure effects are approximated by linear combinations of M-spline 

basis functions.
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7.2 Likelihood Function

To derive the likelihood function of the non-parametric SCCS method, we begin with 

the general SCCS likelihood function derived in Chapter 2, Equation 2.9 and, for one 

exposure, given as

l  f m
7=77=1 Ja‘ V’W exp {Xi(t)D} dt 

which in Chapter 6, we generalized to

t = TT f t  ~  Cj) i \

where a* and are the start and end of the observation period for individual i, ^ (t)  is the 

age-related relative incidence function, oj(t — c) is the exposure-related relative incidence 

function which takes the value one if the event day is not between age at start of exposure 

(ci) and age at end of exposure (d*). In the standard SCCS method, ip(t) and ui(t — c) 

are represented by step functions; in the semi-parametric version of SCCS, ^(t)  is left 

unspecified and uj(t — c) is fitted as a step function; in Chapter 5, ip(t) was approximated 

by splines and u)(t — c) by a step function, and in Chapter 6, ^(t)  was represented as a 

step function and uj(t — c) as a linear combination of M-spline functions. In this chapter, 

we approximate both ip(t) and uj(t — c) as linear combinations of cubic M-spline basis 

functions.

As in Chapter 5,4>(t) is defined between a =  min{aj; i = 1, . . . ,  N }  and b =  max{6j; i = 

1, . . . ,  N }, where N  is the total number of cases in the study. Since ^(t)  is a relative effect 

it has to be a positive function and to get such a function based on M-splines we constrain 

the coefficients to be non-negative and get the expression for ijj{t) as in Equation 5.2

m i m i

=  = ^2a$M u(t). (7.2)
i—i  i = i
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The g(ai) are parameters used to determine the shape of t) and are constrained to be 

non-negative by taking g{a{) = af . Mu(t) is the Ith M-spline basis function related to 

age, mi is the number of parameters or the number of M-spline basis functions which is 

equal to the sum of the number of interior knots and the order of the basis functions.

Similarly, as in Chapter 6, an exposure-related relative incidence function with non

negative coefficients is defined between 0 and max{(di — a)\i  = 1 , . . . ,  N}, where c* and 

di are the start and end of age at exposure respectively for individual i. When the 

exposure is a point exposure, e.g a vaccine, a nominal risk period is defined which can 

be unbounded to the right. The nominal risk period is a period within the observation 

period where the exposure-related relative incidence can be different from 1 and outside it 

the exposure-related relative incidence function takes the value 1. Therefore, it is defined 

as: /
Y7=\ P?M2i{t -  c), c < t < d

LO (7.3)
1, otherwise,

where ra2 is the number of M-spline basis functions used to define the exposure-related 

relative incidence function, u(t — c) and M2z(t — c) is the Ith basis function related to 

exposure. In this Chapter the knots which are used to define the M-splines related to 

the age effect and the exposure effect are chosen to be equidistant including the arbitrary 

knots added below and above the minimum and maximum values of the variable.

Now replacing ip(t) and uj(t — c) in Equation (7.1) by the spline functions in Equa

tions (7.2) and (7.3) respectively gives the likelihood function for the non-parametric 

SCCS as

fiM  £  ( E l \  « f M u ( t ) )  (E Z i  -  a ) ) 1^ ^  d t

and the log-likelihood function is
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, f '  y V V  C T  ( £ S  f t m t g  -  c))Jfa<twai) A (74) 
« u 6; ( E z . ( E « a t ) '

To further simplify the denominator of the log-likelihood function (7.4) (so that it 

avoids numerical integration), we will use integration by parts. This will involve deriva

tives and integrals of linear combinations of M-spline functions and integrals of the in

tegrals. Therefore, before we proceed with simplifying the log-likelihood function, we 

describe derivatives of M-splines and define integrals of I-splines in the following subsec

tions.

7.2.1 Derivatives of M-splines

Prom Chapter 4, we have that M-splines of order q are defined as divided differences 

of truncated power functions, that is, for a given knot sequence k\ = k2 = • • • =  kq <

k q + 1 <  ’ ’ ' <  k q + 8 <C k q + s + i  =  k q . | - s + 2  =  • • • =  k 2q-\-s

M'(i|<?) = ■ 9 , Bt{t\q) = (-1)*#/, ■ • •, h +q]T?(k)
M + q  ~  H

where T q{k) is a truncated power function of order q given by T q{k) = (t — k)q+ l . There

fore, the first derivative of an M-spline function is

m m  , , a w n )

and the derivative of a truncated power function of order q is given by

=  { q -  l ) ( t _  * )£ *  =  ( ,  _  (*)

then using the definition of divided differences in Section 4.3.2, we have

d M , m  =  {_ l M q  _ 1J  [kw , k l+q} T ^ \ k )  -  [klt..., kl+q.,)T ^ -l\k )
dt \ ki-̂ .q ki
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_ JL _ (_ i) .- i(g _ i) ([*,,...,f t^ ,]^ * -1)^) -  [fcm ,. . . ,k^T^Hk))

((-!)»->(, -  !)[*,... -  (-1 r H q  -  l)[kl+1, . .  , , k l+q\ T t l\ k ) )

q 1)) -A f(+i( t |(g -  1))).
kl+q h

In general, the j th derivative of an M-spline function of order q, Mi(t\q), is

dj Mi(t\q) =  q / dj~1M i(t\(q-  1)) _  dP~lMi+1{t\{q -  1))\  
dP ki+q — ki \  dP~l dP~l )  ’

so the j th derivative of a function which is a linear combination of M-spline basis functions, 

f i t )  = I X i  oqMi(t\q) , can be given as

dj f(t )  _  y ^ Q, dj Mi(t\q)
dP dP

1=1

7.2.2 Integrals of I-splines

Ramsay (1988) defined the integral of an M-spline of order q as an I-spline which is a 

piecewise polynomial of order q +  1. The definition is given in Chapter 4 for a sequence 

of knots ki = k2 = • • • =  kq < kq+1 < • • • < kq+s < kq+s+1 =  kq+s+2 =  • • • =  k2q+s used to 

define an M-spline of order q and kh < t  < kh+i as

i(t\q) = f  Mi(u\q)du,
J  a

SO

0, l>  h

h - q  + l < l < h

1 / < h — q +  1,

where the lower limit of the integrals is the minimum knot, let it be denoted by a. Based

on this definition for the integral of an M-spline we define the integral of an I-spline. Let

the integral of Ii{t\q) be denoted by Ij{t\q). Using the same sequence of interior knots
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employed to define the M-splines, for kh < t <  kh+1 the integral of an I-spline, I}{t\q), has 

three different expressions depending on the value of I. For I > h the value of an I-spline 

is zero so its indefinite integral will be a constant, and hence

!X(%) = f  Ii(u\q)du =  0.
J  a

For h — q + l < l < h & n  I-spline, Ii(t\q), is given by

m= l

therefore its integral will be

*t h
n m  = [  E ( w . - M M,n(ai\ + 1 )du

J a ,  Q +  1m=l

=  f ( W ’ km) f  Mm(u\q + l)du.
J S  9 +  1 J‘

f* Mm(u\q +  l)du in the above expression is the integral of an M-spline of order q + 1 that 

gives another I-spline, Im(t\(q +  1)) =  J2n=m(kn+q+2 “  kn)—^ 2) for h -  q < m < h, so

1 } m  =  £  ( W i - u  J 2 (  w  -  f c , ) - - ^ 2+ 2 ) .
m= l  n = m  ^

For I < h — q +  1, that is for any value of t > ki+q the value of Ii(t\q) = 1. This is 

because Mi(t\q) — 0 for all values of t > ki+q. Now the integral of h{t\q) has two parts 

for t > ki+q, the integral of the function up to ki+q and from ki+q to t. That is,

[ h+q I,(u\q)du+ f  I.Md)du =  .(^+9+1 ~ k"») f h+q Mm(„|g + 1)du\  +(t _  kl+q).
Jkl+<1 \m=l Q-r 1 j  a J

Therefore, in summary the integral of an I-spline is given by

0, I > h

\  'h  (fcm+qr+l k™) , i    i \ M n (t\q+2) h — n  -L i  C  1 <  h
Z-^m—l q+ 1 2-^n=m\Kn+q+2 q+ 2 » tl q  ~r 1 S  ‘  S

+ p.. I (fcm+g+l-fcm) / .  t n Afn (fc|+fl|g+2) I L , 1
1 Kl+q +  Z ^ m = i  g + 1  Z ^ n = m i ^ r i + 9 + 2  “  ^2---------j t  <  / I  -  £  +  I .
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The second integral of an I-spline, the integral of I}(t\q) can be obtained in a similar way 

and is defined as, I?(t\q) = f* I}(u\q)du.

0,

L L l  (W ;+1 k m ) E lU n r* " ) l a  Mn(“ l? + 2)d“ >

l> h

h — q + 1 < I < h

V -  t h + q  + “2^

. + e !L i  E t™  (*"+& r M /« ,+’ m» w ? + 2)rf«- /  < h - 1 + i -

but f* Mn(u\q +  2)du and j + q Mn{u\q +  2)du are I-splines of order q +  2 therefore,

0,

i f m  =

E h (km+q+l—km) (fcn+q+2~fcn)
m= l  q+1 Z ^n=m  q+2

X^h (U , , b \ Mr(t|g+3)Ẑ r=nV/cr+g+3 0+3 j

Z>/ i

h — q + 1 <1< h

t L  —  + b ,  I **+<? I V '^'1 ( k m + q + l - k m )2 -t- 2 -r Z-im=l g+1

E h (kn+q+2-kn) TĈ h / »  \  Mr (ki+q\q+3) ; ^  L  _  , 1
n= m  J+2 Ẑ r=nVfcr+g+3 ~  ^3  , I < tl ~ q + 1.

Finally the third integral of an I-spline, If(t\q) = f* I?(u\q)du, is given as 

0, I > h

E h {km+q+\—km) sp h  ( kn+q+2—kn) ST̂ h (kr+q+3—kr)
m = l q+1 2—m = m  q+2 2 -/r= n  q+3

S 'h  ( 1 I \  Mv (t\q+A)
2—/V=r V. u+9+4 k v )  q+4 j

i f m  =

h — q + 1 < I < h

*3 t2ki+q +
tk? klI-\~Q l~\~Q

I Y ^h (km+q+l—km)  ST'h (kn+q+2—kn)
' 2—/m=l q+1 2—m =m  q+2

Eh (kr+q+3-kr) \~^h ( ,  U \ Mv (kt+q\q+4) l ^ U  „  I 1
r= n  q+3 2 -iv = r \ V+Q+4 Kv )  q+/± •> I <. (I q+1.

Now going back to the log-likelihood function, since the exposure-related relative in

cidence function, cj(t — c), takes the value 1 in the control periods, (<2j,C;] and 

within the observation period, the denominator of the log-likelihood function (7.4) can be
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rewritten as

pa rai pdi /  7771 \  /  \  y11
/  Y~2PiM2i(t-Ci) \dt  + y ^a fM u ty d t
Jai 1 = 1  J« \ i=i /  \z=i /  •'* z=i

Furthermore, the first and the last terms are integrals of only one function, the age- 

specific relative incidence ip(t), whereas the second term is the integral of a product of 

two spline functions. From Chapter 4, we have that the integral of an M-spline of order 

q is an I-spline of order q + 1, hence the integral of the linear combination of M-splines 

can be expressed as a linear combination of I-splines. Therefore, we replace the integrals 

in the first and third terms by linear combinations of I-spline basis functions which leads 

to a denominator with the expression

mi mi pdi ( ml \  ( m2 \  mi mi
^2a?I1i(ci)-'^2a?I1i(ai)+ / I ^c% M u{t)  I I -  <*) I d t + ^ a f l u f c ) - ^  ajlu(di).
l=i i=i Ci \l=l / \i=l J i=i i=i

The In (t) are I-splines related to the age effect and I21 (t) will be used to denote I-splines 

related to the exposure effect. The remaining part in the denominator of the log-likelihood 

function of the non-parametric SCCS is the nominal risk period (ci? di\ where the exposure- 

related relative incidence can take a value different from 1. This part contains an integral 

of the product of the two spline functions, and cj(t — c). In the following subsection 

we write an expression for this integral.

7.2.3 Integrating the Product of Two Spline Functions

To evaluate the integral of the product of the age-related relative incidence function 

and exposure-related relative incidence function, Jij)(t)uo{t — c)dt, we use integration by 

parts.

Integration by parts makes integrating a product of functions easier by relating them 

to the integral of their derivative and antiderivative and is defined as follows. Given two 

continuously differentiable functions f (t )  and g(t), the indefinite integral of f(t)g(t)  can
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be given as

J  f(t)g(t)dt = f(t) J  g ( t )d t-  J  ̂ f ( t ) J  g(t)d tjd t

where f '(t)  is the first derivative of f(t).

Applying integration by parts to the integral of the product of age and exposure effects 

in the non-parametric SCCS likelihood, we have

J  — c)dt = 4>(t) J  uj(t — c)dt — /  m  J  uj(t — c)dt^ dt (7.5)

where ^'(t) is the first derivative of t). Since ip(t) and uj(t — c) are linear combinations of 

M-spline basis functions, f  u(t — c)dt can be expressed as a linear combination of I-splines 

denoted by IE(t — c)

pt pt jn 2 m 2

IE{ t - c ) =  / uj(u -  c)du = 1 ^ 2 (3?M2i(u -  c)du =  ^  (3?I2t(t -  c).
Jc Jc 1=1 1=1

Letting the integral of the linear combination of I-splines, IE(t—c) be denoted by I ^ ( t—c), 

the integral of I^(t — c) by IE(t — c) and the integral of I%{t — c) by J |( t  — c),

Ig(t — c) = f  IE(t — c)dt, Ig(t — c) = f  Ig(t — c)dt and / | ( t  — c) = f  I^(t  — c)dt, 

so the expression in Equation (7.5) becomes

J  — c)dt = il){t)IE(t — c) — J  {^'{t)IE{t — c)) dt.

The last term of this equation is again an integral of a product of two non-constant 

functions. We therefore apply integration by parts repeatedly until none of the terms is 

an integral of two non-constant functions:

J  4>(t)u(t -  c)dt = ij)(t)IE(t -  c) -  J  t)IE{t -  c)) dt
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t)IE(t -  c 

1p(t)IE(t ~  C 

i>(t)iE(t -  c 

~  C

i > ( t ) i E ( t  -  c

-  C

m  J  I E (t — c)dt  — /  ip"(t) J  I E ( t ~  c )d t ^  dtJ 
J  ^ " ( t ) I E ( t - c ) d t

rp'(t)IE(t -  c) +  ^"(t) J  IE(t -  c)dt -  J  J  IE(t -  c)dt^j dt 

i/j'(t)IE(t -  c) +  ij"(t)IE(t - c )  -  J  {ip"'(t)IE(t -  c)dt) dt 

ij;'(t) IE{t -  c) +  ill”(t)I2E(t -  c) -  ipm{t) J  IE( t -  c)dt 

i)'(t)IlE{t -  c) +  i)"{t)I2E{t -  c) -  il)'"(t)I%(t -  c)

where il)'(t), 'ip,f(t) and are the first, second and third derivatives of ip(t) respectively. 

^"'(t) is a constant function that does not depend on t because ij){t) is a piecewise cubic 

function. Therefore, the integral of the product of ijj{t) and uj(t — c) in the nominal risk 

period (ci5 dj\ is

f  xl){t)u{t -  Ci)dt = {^{di)IE{di-Ci)-'il),(di)IE{di-Ci)+i),'{di)IE{d i-c i)-'ijjm(di)I%{di
J a

-  {^(ci)IE(0) -  ^'(ciUKo) + 0) -  ^'"(c^/J^O)).

Then the log-likelihood function of the non-parametric SCCS method, obtained by re

placing the appropriate expressions for the / a°l ip{t)dt, J^1 ip(t)uj(t — c)dt and f** il){t)dt in 

the denominator, is

(E Si «,2m„(%)) (E£N  m

l = Y . Y . l°z
*=i j=i B

(7.6)

where

B  =
m i mi mi mi
^2a}l,{ci)  - £ a f o f a )  +  y^af/((6 j) - ^ T t f M d i )
1=1 1=1 1=1 1=1
+  (ip(di)IE(.di -  a )  -  il>'(dt)IE(d,t -  a )  + ip"(ci)I2E{di -  d)  -  ip'"(di)I%(di -  c,)) 

-  {i>{ci)IE{0) -  ^ '(c i)4 (0) +  r ( c i ) I 2E(0) -  f ' ( d i ) l U 0))

and I E{ t - c )  =  Y7= i 7l(f- c) =  E S  A2/fi(<-c)> 7f(*-c) =  EIH\ A24(*-c)
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Ih(t — c), I%t(t — c) and I%t(t — c) are the first, second and third integrals of the Ith 

I-spline (l2i(t — c)) related to exposure, respectively.

7.3 Penalised Log-Likelihood

The numbers of knots, which determine the numbers of M-spline basis functions that 

make up the age-specific and exposure-related relative incidence functions are chosen a 

priori. Maximising the log-likelihood function (7.6) after choosing too large a number of 

knots over-fits the true curves, while selecting too small a number of knots leads to under

fitting overly smoothed curves. Therefore, to control the smoothness of the estimated 

functions we fix the numbers of knots at higher values than are believed to be enough 

to fit the functions and introduce roughness penalty terms to the log-likelihood function 

(7.6). Following Joly and Commenges (1999), we choose a roughness measure to be the 

sum of the square norms of the second derivatives of the age and exposure effect functions. 

This leads to the penalised log-likelihood function

/ (  mi \  2 r (  7712 \  2
( ^ 2 a f M 'u(u ) J d u - x 2 J  ( '^ 2 P iM 2i(u) j  du

=  / ( a , j3 ) - A 1((a 2)r A 1a 2) - A 2((/32)TA2/32) (7.7)

where a  is a vector of parameters aq, . . . ,  ami, that define the age-specific relative inci

dence function and a 2 =  a ? ,. . . ,  /32 =  ft2, . . .  ,/?^2 are parameters related to the

exposure effect, Ai is an m i x mi matrix with (r ,/) element /  Mir (w)M^(w)du, A 2 is 

an m 2 x m2 matrix with (r ,/) element J  M'2r(u)Mh(u)du, /(a , /3) is the log-likelihood 

function (7.6). Ai and A2 are non-negative smoothing parameters that control the trade 

off between the model fit and smoothness of the functions. So the penalised log-likelihood 

function (7.7) is maximised, for fixed Xi and A2 values, to estimate the parameters related
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to age and exposure effects.

We choose the smoothing parameters using the approximated cross validation method 

discussed in Chapters 5 and 6. Ai is first chosen by maximising the cross validation score 

presented in Chapter 5 by taking no exposure effect then A2 is chosen by maximising the 

cross validation score in Chapter 6 taking the age effect to be zero. The scores to be 

maximised to select Ai and A2 respectively are:

V,(A,) 1(a) 1 ■■([//,-2A ,S ,, 'Ii,). ~ ~ (7.8)

and

V2( \ 2) = 10)  -  t r ([H2 -  2X2S2]~1H2), (7.9)

where /(&) is the log-likelihood function in Equation (7.6) where exposure effect is taken 

to be zero and evaluated at the maximum penalised likelihood estimates (a). H \  =  

dadocT (**) the log-likelihood part of the Hessian of the penalised log-likelihood, taking 

zero exposure effect, evaluated at the penalised maximum likelihood estimates dt. Si =  

4 (A io (aa T)) +2(diag(A ia2)). Similarly, 10)  is the log-likelihood (7.6) taking age effect 

to be zero, H2 = qJq^t 0 )  is the Hessian when the age effect is considered to be zero and 

S2 =  4 (A2o(/3/3t )) +  2(diag(A2/32)).

In Chapter 5, we showed that the parameter of interest, the exposure-related relative 

incidence value, is not unduly sensitive to changes in the smoothing parameter that con

trols the roughness of age-specific relative incidence function. Therefore, in this chapter 

an alternative approach is to consider the smoothing parameter related to age effect, Ai, 

to be fixed at some reasonable value. Then after choosing the smoothing parameters the 

log-likelihood function (7.7) is maximised for fixed Ai and A2.
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7.4 S im u la tio n  S tu d y

To evaluate the performance of the new non-parametric SCCS method and to compare 

it with the extensions made to the standard SCCS method in Chapters 5 and 6, we 

conducted a simulation study.

7.4.1 Design of th e  S im ulation  S tudy

The number of cases used in this simulation was 1000, each with ages at the s ta rt and 

end of the observation period of 0 and 730 days respectively. For each case, the risk period 

between the s tart of exposure c* and end of exposure d% was taken as 49 days. The baseline 

incidence was generated from a sine function, defined as A0(t) oc 8(sm(0.01 x t)) +  9 a t age 

I. The true age-related relative incidence function is presented in Panel a of Figure 7.1. 

Ages at s tart of exposure c*, for i : 1 , . . . ,  1000, were sampled within (0,730] from an 

exponential density with rate 0.003. The histogram of c* is shown in Panel b of Figure 7.1.

a. Age Related Relative Incidence Function b. Distribution of Ages at Start of Exposure
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Figure 7.1: True age-related relative incidence function in Panel (a) and distribution of ages at

start of exposure in Panel (b), which were used to simulate data sets
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For the given age-related relative incidence function and distribution of age at expo

sure, we investigated four scenarios of exposure-related relative incidence function, co(t—c). 

These functions take a value one outside the risk period (q, dj, that is when time since 

start of exposure t — c < 0 or t — c > 49. These scenarios were also used in Chapter 6 

and are presented in Figure 6.1.

Without loss of generality we consider each case to have experienced only one event. 

Then the daily incidence rates within the observation period are evaluated as the product 

of the age-related relative incidence and the exposure-related relative incidence. An event 

day for each individual was generated from a multinomial distribution. The probability 

of an event at a given day within the observation period was computed as the incidence 

rate for that day divided by the sum of the rates for all the days within the observation 

period. For each scenario 100 data sets were simulated.

7.4.2 Analysis

The data sets generated were analyzed by the three new versions of SCCS presented 

in this thesis: (1) smooth age effect with parametric exposure effect (step function) (2) 

parametric age effect (step function) with spline-based exposure effect and (3) the non- 

parametric SCCS proposed in this chapter.

For the first method, seven exposure groups of length seven days between 0 and 49 were 

chosen to represent the exposure effect by a step function. For methods (1) and (3), to 

represent the age effect with a spline function 9 interior knots between the minimum of ages 

at the start of observation (zero) and the maximum of the ages at the end of observation 

periods (730) were chosen. For the age effect, since exposure-related parameters are not 

duly sensitive to changes in the smoothing parameter related to age effect, we chose
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a smoothing parameter for the first sample in a given scenario by the cross validation 

method and used the same value for the remaining samples.

For the second method, where age is represented with a piecewise constant function, 

six age groups with cut points at 0, 120, 240, 360, 480, 600 and 730 days were pre-specified. 

To represent the exposure effect with a spline function in methods (2) and (3), a nominal 

risk period of 49 days was chosen. 12 interior knots between zero and 49 were selected. 

The smoothing parameter of the exposure was chosen by the cross validation method for 

all the samples in the two methods. In addition, we fitted method (2), but with only 

three age groups with cut points at 0, 240, 480 and 730 days, to see how a change in age 

groups affects the results.

To compare the performance of the three methods we used the mean of integrated 

squared errors (MISE) (see Sections 5.3 and 6.2 for the definition of MISE) and their 

standard deviations (SD) in estimating the age and exposure-related relative incidence 

functions. To compute the MISE and SD related to the age effect, we used the cumulative 

age-specific relative incidence function, for the true and estimated functions, constrained 

to have a maximum value of one to make the three methods comparable.

7.4.3 Results

Results of the simulation study are presented in this section. Table 7.1 presents the 

MISE and SD results in estimating the age and exposure effects using the three methods 

developed in this thesis. The method proposed in Chapter 6 was fitted twice for each 

generated data set using 6 and 3 age groups.
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Table 7.1: Mean integrated squared error (MISE) and standard deviation (SD) obtained from 

the three spline-based SCCS methods: SCCS with smooth age effect, SCCS with smooth exposure 

effect (twice with 6 and 3 age groups) and SCCS with both age and exposure effects represented 

by splines. Each simulated data set was fitted by the three methods using a nominal risk period 

of 49 days. The true age-specific relative incidence function was generated from sine function
Smooth age Smooth exposure Smooth exposure 

6 age groups 3 age groups
Smooth age & exposure

Scenario 1
Effects MISE (SD) MISE (SD) MISE (SD) MISE (SD)

Exposure 13.182 (6.581) 7.318 (4.792) 7.393 (4.835) 7.220 (4.433)
Age 0.110 (0.103) 0.181 (0.086) 1.466 (0.102) 0.110 (0.106)

Scenario 2
Exposure 22.959 (10.249) 10.849 (12.996) 10.507 (12.678) 9.298 (7.188)

Age 0.117 (0.105) 0.202 (0.107) 1.483 (0.102) 0.123 (0.106)

Scenario 3
Exposure 9.856 (5.597) 5.438 (6.466) 5.552 (6.597) 4.393 (4.372)

Age 0.107 (0.089) 0.187 (0.093) 1.476 (0.111) 0.109 (0.090)

Scenario 4
Exposure 10.007 (4.882) 6.388 (8.451) 6.424 (8.207) 4.890 (6.328)

Age 0.126 (0.108) 0.204 (0.103) 1.490 (0.121) 0.129 ( 0.107)

The results in Table 7.1 suggest that the new method performs well. In estimating the 

age-specific relative incidence function the non-parametric method has equivalent perfor

mance as method (1) with smooth age effect and has better performance as compared to 

method (2).

In estimating the exposure-related relative incidence function, the non-parametric 

method showed the highest performance as compared to both methods (1) and (2). For 

method (2), when the age groups used in modelling the age effect are reduced to three, the 

performance of the method reduces, which indicates that mis-specification of age groups
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may lead to a reduced performance of this method. However, for scenario2 surprisingly 

the performance increased when the number of age groups is reduced. The non-parametric 

method developed in this chapter does not have a limitation related to mis-speeification 

of age and exposure groups.

The estimated age-related and exposure-related relative incidence functions along with 

their true curves are presented in Figures 7.2, 7.3, 7.4 and 7.5 for scenarios 1, 2, 3 and 4 

respectively (the model with three age groups is not presented). The curves related to the 

age effect are plotted by constraining the cumulative relative incidence at the maximum 

of the ages at the end of observation period to be one.

a. Smooth age b. Smooth exposure c. Smooth age and exposure
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Figure 7.2: Estimated relative incidence curves for scenario 1; the top panels show age-related 

relative incidence curves and the bottom panels exposure-related relative incidence curves. In 

panels a are results from SCCS with smooth age effect, panels b SCCS with smooth exposure 

effect and panels c SCCS with both age and exposure represented with splines. The white solid 

lines in all panels represent the true functions.
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The figures suggest tha t the non-parametric method seems to perform well in estim at

ing both the age and exposure-related relative incidence curves. In all the cases the true 

functions are within the range of the estimated curves and the estim ated curves seem to 

follow the trend of the true functions. However there are some estim ated exposure-related 

curves th a t over-fitted the true curve for scenario 2, (Figure 7.3), where the true func

tion is a constant. These could be due to numerical problems in choosing the smoothing 

parameter.

The performance of the three methods is reduced for scenario 2 where the true 

exposure-related relative incidence function is a constant function.

a. Smooth age b. Smooth exposure c. Smooth age and exposure
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Figure 7.3: Estimated relative incidence curves for scenario 2; the top panels show age-related 

relative incidence curves and the bottom panels exposure-related relative incidence curves. In 

panels a are results from SCCS with smooth age effect, panels b SCCS with smooth exposure 

effect and panels c SCCS with both age and exposure represented with splines. The white solid 

lines in all panels represent the true functions.
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a. Smooth age b. Smooth exposure c. Smooth age and exposure
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Figure 7.4: Estimated relative incidence curves for scenario 3; the top panels show age-related 

relative incidence curves and the bottom panels exposure-related relative incidence curves. In 

panels a are results from SCCS with smooth age effect, panels b SCCS with smooth exposure 

effect and panels c SCCS with both age and exposure represented with splines. The white solid 

lines in all panels represent the true functions.
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a. Smooth age b. Smooth exposure c. Smooth age and exposure
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Figure 7.5: Estimated relative incidence curves for scenario 4; the top panels show age-related 

relative incidence curves and the bottom panels exposure-related relative incidence curves. In 

panels a are results from SCCS with smooth age effect, panels b SCCS with smooth exposure 

effect and panels c SCCS with both age and exposure represented with splines. The white solid 

lines in all panels represent the true functions.

7.5 A p p lica tio n

We illustrate the non-parametric self-controlled case series method by applying it to 

data on MMR vaccines and febrile convulsions. The data were introduced and described 

in Chapter 5. The number of cases in the data set is 2, 389 children aged between 29 

and 730 days with 3, 826 events. As in Chapter 6, we chose the nominal risk period post 

MMR vaccine to be 50 days.

Linear combinations of cubic M-splines are used to represent the age and exposure 

effects. For the MMR vaccine related relative incidence function we used 12 equally
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spaced knots between 0 and 50. The smoothing parameter A2 for the exposure effect was 

chosen by the cross validation method and was found to be 0.031. For the age-related 

relative incidence, we used 12 interior knots and chose the smoothing param eter using 

the cross validation method by keeping the exposure effect zero. The value selected was 

1.07 x 109. Then for the given values of the smoothing parameters, we maximised the 

non-parametric SCCS penalised log-likelihood function (7.7). The estim ated age and 

exposure-related relative incidence curves are presented in Figure 7.6.

a. A g e -s p e c ific  relative incid ence b. Exposure related relative incidence
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Figure 7.6: Relative incidence curves estimated by fitting non-parametric SCCS. Panel (a) shows 

the estimated constrained age-related relative incidence function Panel (b) represents estimated 

exposure-related relative incidence curve (solid line) along with 95% confidence bands denoted 

by the dashed lines

Panel (a) of Figure 7.6 shows the estimated age-related relative incidence function, 

where the cumulative age effect is constrained to have a value one at the maximum end of 

observation period. This figure is similar to the curve in Figure 5.7 in which the age effect 

was estim ated based on splines but the exposure effect was estimated by a step function. 

Panel (b) of the figure shows the relative incidence curve post MMR vaccine. From the



C h a p t e r  7. N o n -P a r a m e t r ic  S e l f - C o n t r o l l e d  C a s e  S e r ie s  M e t h o d 166

figure, it can be seen that there is a significant increase in the risk of febrile convulsion 

from six to 12 days after exposure to MMR vaccine. Five and 13 days after vaccination 

have a borderline insignificant risk of febrile convulsion. There is no increased risk in other 

periods. These results are similar to the results obtained from the MMR exposure-related 

relative incidence function estimated in Section 6.3 of Chapter 6. However there is a 

slight difference in the results, in Figure 6.6 there is an increased risk of febrile convulsion 

between 19 and 21 days following an MMR vaccine but not in panel (b) of Figure 7.6. 

This difference could be because of modelling age effect using a step function in Chapter 6.

The confidence bands for the exposure-related relative incidence function were eval

uated using the approximate method presented in Section 6.1.1 of Chapter 6. However, 

the 95% coverage probabilities of these confidence bands in the current setting need to 

be studied. An alternative method to use is bootstrap method as suggested by Joly and 

Commenges (1999).

7.6 Discussion

The extension developed here combines the extensions developed in Chapters 5 and 6. 

In Chapter 5, only the age effect was approximated by a linear combination of M-spline 

basis functions and the exposure effect was represented by a piecewise constant function. 

In Chapter 6, splines were used only to estimate the exposure-related relative incidence 

function and age was taken into account based on step functions. In this chapter, the 

effects of both age and exposure in the SCCS model are represented by linear combinations 

of M-spline basis functions simultaneously. The new method avoids the mis-specification 

bias that may occur due to poor choice of age or exposure groups in the previous two 

chapters due to the use of step functions.
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The denominator of the log-likelihood function of the new method includes the integral 

of a product of two spline functions, namely the age-related and the exposure-related 

relative incidence functions. Rather than using numerical integration techniques, we 

evaluated this integral analytically using integration by parts. This required evaluation 

of the first, second and third integrals of an I-spline function, based on the definition of 

the integral of an M-spline given by Ramsay (1988).

A simulation study was conducted to evaluate the performance of the new method, 

non-parametric SCCS. It was found that the new method has good performance as com

pared to the extensions presented in Chapters 5 and 6. According to the results the new 

method has comparable or better performance to the previous two extensions. The new 

method also has an advantage over the others in the fact that the other methods can 

give biased estimates if the a priori specified age or exposure groups are poorly or mis- 

specified. In addition, the non-parametric method avoids the limitation of the extension 

in Chapter 6 that if the age groups used to represent the age-specific relative incidence 

are too many, the method may go into computational problems.



Chapter 8

General Conclusions and Further 

Research

The self-controlled case series method is one of the study designs that are used to in

vestigate safety of vaccines and other drugs after they are licensed for use. The main 

advantages of the SCCS method over cohort and case-control methods are that it is only 

based on information on individuals with a disease event (cases), so no separate con

trols are required, it implicitly controls all fixed confounding variables and under many 

circumstances it has good efficiency (Whitaker et al., 2006).

8.1 Summary and Conclusions

The SCCS method does not automatically control for time-varying confounders, so 

they have to be identified and included in the model. There are two ways of including 

the time-varying covariate age: the standard (parametric) SCCS that uses step functions 

by specifying age groups a priori and the semi-parametric SCCS which leaves the shape 

of the age effect unspecified. A review of SCCS studies on safety of vaccines since 1995

168
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when the method was first published up to the beginning of 2014, showed that in general 

the method was applied appropriately. Of the reviewed studies, 81 used the standard 

SCCS method, only one used the semi-parametric method, one reported that age was 

included as a continuous variable and one study used linear and quadratic functions to 

model the age effect. One study used fractional polynomials to estimate the steps of a 

piecewise constant age effect. Four of the reviewed studies used an extended version of 

the standard SCCS method that allows event dependent future exposures.

In Chapter 2, a simulation study was conducted to investigate the limitations of the 

parametric and the semi-parametric SCCS methods. The results showed that in the 

parametric SCCS the age groups which should be chosen a priori may lead to biased 

exposure-related relative incidence estimates if they are incorrectly specified. On the other 

hand, fitting the semi-parametric method may become impossible to compute (at least 

in R) when the number of cases is moderately large. For example, the semi-parametric 

method does not run for more than 500 cases using the R software package.

To circumvent these limitations, we proposed modelling the effect of age in the SCCS 

method using smooth functions, namely a linear combination of cubic M-splines (Ghebremichael- 

Weldeselassie et a l , 2014a). Spline methods are curve fitting methods which have a flavour 

of both parametric and non-parametric methods. They are piecewise polynomials (and 

hence parametric functions) connected at points known as knots. Regression splines and 

smoothing splines are types of splines which differ depending on the number of knots used 

to connect the pieces of polynomials. Smoothing splines take data points to be the knots, 

hence a large number of parameters may need to be estimated; regression splines use fewer 

knots. Penalised regression splines are a compromise between regression and smoothing 

splines. This is the approach we used in the thesis. Splines are more flexible than global
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parametric functions and give biologically plausible shapes. We used penalised regres

sion splines based on M-splines. In the SCCS model age effects should be non-negative 

since they are relative effects. M-splines are particularly useful in the SCCS model be

cause they are positive functions and their linear combination can be non-negative by 

constraining the coefficients to be non-negative. In addition, the integral in the SCCS 

likelihood function can be obtained analytically by the use of M-splines because their 

integrals are I-splines.

A simulation study showed that the new method developed in Chapter 5 has a higher 

or equivalent performance to the semi-parametric and standard SCCS methods with cor

rectly specified age groups when the sample size is moderate. The new method showed an 

improved performance as compared to the standard SCCS with mis-specified age groups. 

Moreover, unlike the semi-parametric method, the new spline-based method works well 

for large data sets.

Estimation of parameters in this method is based on a penalised log-likelihood function 

where the smoothing parameter attached to the penalty term is chosen by using a cross 

validation method. It was found that the parameters related to the exposure effect are 

not overly sensitive to changes in the smoothing parameter value.

In Chapter 6 we proposed using a linear combination of cubic M-splines to represent 

the exposure effect (time since start of exposure) to avoid the limitations of using a step 

function (Ghebremichael-Weldeselassie et al., 2014b). Similar to the first extension devel

oped, this method also showed an increased performance over the standard SCCS method 

based on the simulation studies conducted. This new method is particulary useful when 

the risk period is long. For example to investigate the association between oral antibiotic 

prescription and pregnancy (Petersen et al, 2010), where the event outcome is prescrip
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tion of oral antibiotic and exposure the nine months of pregnancy. Another example is to 

investigate the adverse effect of a point exposure to idiopathic thrombocytopenic purpura 

(ITP) vaccine which has a risk period of 42 days (Miller et al, 2001). The method is also 

useful when the the risk period is unbounded. The risk period is said to be unbounded 

when the risk period of the cases ends at the end of observation. For example, to in

vestigate the association between exposure to thiazolidinedione use which could last for 

several years and an outcome event of fracture (Douglas et al., 2009). The method can 

be applied when the cases have identical or varying risk lengths.

And finally an extension that combines the first two extensions was developed in 

Chapter 7 where age and exposure effects were modelled by spline functions. We used a 

linear combination of M-splines. In order to fit both effects with flexible functions at the 

same time, we developed first, second and third integrals of an I-spline. This method was 

evaluated by a simulation study that showed a good performance. The non-parametric 

SCCS method does not suffer from mis-specification bias unlike the first two extensions 

of the standard and the semi-parametric SCCS methods.

The method proposed in Chapter 5 is important when the adverse outcome varies 

widely with respect to age over the observation period, which may be particularly true in 

child and elderly populations. It may also be useful to allow for strong seasonal effects 

when the underlying time line is calendar time. This method could also prove useful when 

no prior knowledge of appropriate age effects is available. The methods in Chapters 6 

and 7 will be most useful when there is no prior hypothesis about the risk period, or 

the way in which risk changes over the risk period is of interest. They can be used to 

determine appropriate exposure groups to be used with the standard SCCS method then 

the exposure-related relative incidences obtained from both the standard and spline-based
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methods can be plotted and compared.

8.2 Future Research

The method developed in Chapter 5, where age was included as a spline function, was 

applied to investigate the association between paediatric vaccines and febrile convulsions. 

It was observed that the use of splines in place of a step function to represent the age 

effect resulted in a notable difference in the relative incidence of exposure to DTP vaccine. 

This result shows that mis-specification of the age effect might result in significant bias 

in the exposure-related relative incidence function. From the review in Chapter 2, several 

studies including Ali et al (2005); Burwen et al (2006); Juurlink et al (2006); Zinman 

et al (2009) excluded age effects from their analyses since their observation periods were 

short. In this respect a simulation study to investigate the effect of ignoring the age effect 

on exposure parameters when observation periods are short may be useful.

Further extension of the spline-based SCCS method developed in Chapter 6 to non

vaccine pharmacoepidemiology, notably to incorporate the effect of dose within a more 

general weighted cumulative exposure model framework, would be desirable. Moreover, 

further extension, in terms of incorporating more than one exposure at the same time 

to assess their association to a single outcome event, would be useful. However, if the 

exposures do not overlap it may be possible to use the developed approach; overlapping 

exposures would lead to a product of two spline functions (related to the two exposures) 

within the overlapping intervals. With no overlaps, the relative incidence at a given 

point in an interval is the product of the age-related relative incidence and a relative 

incidence related to one of the two exposures. So a second exposure can be included 

in the log-likelihood function (6.4) by multiplying the numerator of the function by a
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linear combination of cubic M-splines for the second exposure with an indicator variable 

similar to the first one. And in the denominator the exponent of in the function is 

multiplied by an indicator for the second exposure (1 — /(s* < lih < /*)), where s< and 

fi are the ages at start and end of the exposure respectively, and an expression similar 

to the first exposure multiplies the denominator. If the two exposures overlap, there will 

be a product of two spline functions (related to the two exposures) in the log-likelihood 

function, therefore a similar approach to the method developed in Chapter 7 can be used, 

while the age effect is represented by a step function.

Another extension to the method developed in Chapter 6 is to include a washout 

period effect, which would be straightforward to include as a step function. A washout 

period could also easily be included as a spline function if exposure periods are all of 

the same length. If exposure periods are of differing lengths this would be more difficult 

because each individual’s exposure period will end at a different level.

The performance (coverage probabilities) of the approximate confidence bands used 

in Section 7.5 of Chapter 7 could be evaluated further by simulations.

The spline-based methodologies developed in this thesis require the assumptions stated 

in Section 2.1.1 of Chapter 2 to be met. However, the SCCS method has been extended in 

order to weaken the assumptions required. Farrington et al (2009) extended a method to 

allow non-exogenous exposures and Kuhnert et al (2011) developed a method to handle 

event-dependent exposures and deaths. These other extensions allow event dependent 

observation periods (Farrington et al, 2011) and dependent recurrences (Farrington and 

Hocine, 2010). Simpson (2013) extended the standard SCCS to allow the occurrence of an 

event to increase the future event risk. To this end, spline-based methods that incorporate 

these extensions may be useful.
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The estimation methods in all the extensions developed in this thesis involve a two 

step procedure, selecting the smoothing parameter of one variable taking the other from 

the log-likelihood out then estimate all the required parameters for a fixed value of the 

smoothing parameter. It might therefore, be worthwhile to explore methods that estimate 

parameters in a single step.

Post-licensure studies of vaccines and other drugs are often conducted to investigate 

their safety against rare events and since the SCCS method uses only cases (individuals 

who experienced the event), such studies may only have small numbers of cases available. 

Fitting piecewise cubic polynomials (spline functions) to small data sets could be difficult, 

but kernel smoothers can be fitted even for a small number of observations. Therefore, 

the use of kernel smoothers in the SCCS context for small sample sizes, and of course for 

large sample sizes should they offer any improvements over splines, may be worthwhile to 

investigate.

The review of vaccine studies in Chapter 3 showed that only small number of studies 

applied the extensions of the standard SCCS method. This may be because the extensions 

are much more technically challenging than the basic SCCS model. Therefore providing 

accessible software tools to implement these extensions in a unified framework within the 

standard software packages and preparation of tutorials is important.

8.3 Final Remarks

The methodologies developed in this thesis greatly improve the performance of the self

controlled case series method in estimating both the age effect and time-varying exposure 

effects. They avoid the limitations of the parametric and semi-parametric SCCS methods. 

The sensitivity of the parametric SCCS to mis-specification of age groups is avoided by the
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extensions developed in Chapters 5 and 7. In estimating time-varying exposures, there is 

no need to pre-specify exposure groups in the methodologies developed in Chapters 6 and 

7 unlike the parametric and semi-parametric SCCS methods. All the methods developed 

can be applied to data sets with large number of cases.
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A ppendix A

R eview  of Vaccine Studies

This appendix presents the form which was used to review SCCS vaccine studies in Chap

ter 2.

Type of paper:

Focused on estimating relative incidences for one or more vaccine/adverse □ 

event combinations using the case series method (alone or alongside other 

methods)?

Methodological paper with an example data set? If so give reference for □ 

original data but continue filling in form:

Methodological paper with no relevant data on vaccines? (If so, stop now). □ 

General paper (eg review, or epidemiology paper) with only passing refer- □ 

ence to case series methods? (If so, stop now).
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Vaccines and adverse events studied (If there are several, list just

the main result or results, and indicate there are others):_______

Vaccine Adverse event Post vaccination risk period RI (Cl)

Data on events and vaccination:

Clear description provided of how data were obtained? 

Sufficient detail to verify that ascertainment of vacci

nations and events were independent?

Precise dates available, or imputed (if the latter, give

details)?

Repeat events excluded or included (if included, give

detail of how separate episodes are defined)?

Vaccines given in single or multiple doses (give de

tails)?

Was a case note review undertaken (give details: all 

or sample)?___________________________________
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Study type:

Hypothesis generating (no prior hypothesis)?

Confirmatory (first study, but based on a prior hy

pothesis)?

Repeat (previous studies already undertaken)?

Not clear which of the above?

Did study involve a comparison of case series with

another method (give details)?___________________________________

Population and observation period:

Age range of cases:

Calendar period of study:

Observation period rigorously defined (in such a way

that analysis could be repeated)?_________________________________

Age groups (and other temporal adjustments) used in analysis:

Specified rigorously (in such a way that analysis could

be repeated)?

Specified vaguely?

Used but not specified?

Give details of age groups: how many, how wide?

Sensitivity to age groupings investigated?

No age stratification used?

Any other temporal adjustment( season, year etc)?

Oive details________________________________________________________



A. Review o f Vaccine Studies 196

Rationale for risk periods used in analysis:

Was the choice of risk period(s) based on prior stud

ies?

Based on general knowledge, but not previous studies? 

Not justified in any way?

Exogeneity assumption:

Did the authors discuss whether the assumption is 

likely to hold, namely (a) observation periods do not

depend on event (b) events do not affect exposures 

Was a pre-exposure risk period used (if so, give de

tails)?

Other relevant discussion or methods used?

Sample size details:

Number of cases and events included in the analysis 

(for analyses of several events or vaccines, give full 

details).______________________________________

Other relevant details:

Any relevant exclusions or inclusions?



Other statistical features:

Tests for interaction with fixed covariates? 

Dose-specific effects investigated? 

p-values quoted for vaccine effects? 

Software used?

Anything else of interest?

Other comments:

Unusual features:

Good practice:

Bad practice:

Details of results with other methods (if used): 

Any other comments:


