
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Miao, Yufan and König, Reinhard and Knecht, Katja and Konieva, Kateryna and Buš, Peter and
Chang, Mei-Chih (2018) Computational urban design prototyping: Interactive planning synthesis
methods—a case study in Cape Town. International Journal of Architectural Computing, 16
 (3). pp. 212-226.

DOI

https://doi.org/10.1177/1478077118798395

Link to record in KAR

https://kar.kent.ac.uk/74061/

Document Version

Publisher pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/200248091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

https://doi.org/10.1177/1478077118798395

International Journal of

Architectural Computing

2018, Vol. 16(3) 212 –226

© The Author(s) 2018

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/1478077118798395

journals.sagepub.com/home/jac

Computational urban design
prototyping: Interactive planning
synthesis methods—a case study
in Cape Town

Yufan Miao1, Reinhard Koenig2, Katja Knecht1,

Kateryna Konieva1, Peter Buš3 and Mei-Chih Chang3

Abstract
This article is motivated by the fact that in Cape Town, South Africa, approximately 7.5 million people live in informal

settlements and focuses on potential upgrading strategies for such sites. To this end, we developed a computational

method for rapid urban design prototyping. The corresponding planning tool generates urban layouts including

street network, blocks, parcels and buildings based on an urban designer’s specific requirements. It can be used

to scale and replicate a developed urban planning concept to fit different sites. To facilitate the layout generation

process computationally, we developed a new data structure to represent street networks, land parcellation, and the

relationship between the two. We also introduced a nested parcellation strategy to reduce the number of irregular

shapes generated due to algorithmic limitations. Network analysis methods are applied to control the distribution of

buildings in the communities so that preferred neighborhood relationships can be considered in the design process.

Finally, we demonstrate how to compare designs based on various urban analysis measures and discuss the limitations

that arise when we apply our method in practice, especially when dealing with more complex urban design scenarios.

Keywords

Procedural modeling, spatial synthesis, generative design, urban planning

Introduction

Modern urban design processes are characterized by increasing complexities and dynamics. However, tradi-

tional urban design methods still rely heavily on static and sectoral approaches. At the same time, from

modeling to manufacturing, computers are playing an increasingly important role in design processes. Many

aspects of the design process previously carried out by hand are now automated. In the context of urban

1Future Cities Laboratory, Singapore
2Department of Energy, Austrian Institute of Technology, Vienna, Austria
3Departement Architektur, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland

Corresponding author:

Yufan Miao, Future Cities Laboratory, 1 Create Way, 138602 Singapore.

Email: miao@arch.ethz.ch

798395 JAC0010.1177/1478077118798395International Journal of Architectural ComputingMiao et al.
research-article2018

Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/jac
mailto:miao@arch.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1478077118798395&domain=pdf&date_stamp=2018-09-13

Miao et al. 213

design, automation enables the fast generation and exploration of different design options using computa-

tional tools so that designers can acquire a comprehensive overview and understanding of different design

choices. We call this method computational urban design prototyping (CUDP). It aims to support the design-

er’s tasks through the automated generation and evaluation of multiple urban design solutions.

CUDP is rooted in the concept of virtual prototyping (VP), which has been widely studied and imple-

mented in the field of engineering design.1–3 Song et al.4 describe VP as “the process of simulating the

user, the product, and their combined (physical) interaction in software through the different stages of

product design, and the quantitative performance analysis of the product,” which stresses the importance

of the interaction between human and product in the design process facilitated by VP.5 CUDP adapts the

concept of VP to the context of urban design, placing emphasis on (1) computationally supported interac-

tion between urban designers and urban design layouts, and (2) the corresponding spatial analysis. Like

VP, CUDP has the potential to reduce time, save costs, and improve quality.6 More specifically, it reduces

the time that urban designers spend exploring different variants of urban layouts; it saves manpower

costs and improves the quality of the design solutions by making it possible to test and evaluate different

variants rapidly. It also makes the design process explicit and traceable and designs scalable and repro-

ducible. Collaboration and communication platforms can additionally help to connect, engage, and better

facilitate the discussion of alternative designs and their respective trade-offs, and to involve different

stakeholders.

The research presented here evolved within the context of a collaboration with the Urban-Think Tank

(UTT) at ETH Zurich as part of the Empower Shack project.7 The project is located in the city of Cape Town

in South Africa, where approximately 7.5 million people live in informal settlements and about 2.5 million

housing units are needed. The Empower Shack project focuses on developing upgrading strategies for these

informal settlements. Our research aims to enhance the design process with the help of new digital planning

tools and an evaluation framework that can be used to replicate developed urban planning concepts for dif-

ferent sites. The CUDP method we developed makes it possible to adapt an urban planning concept to meet

different site-specific requirements or changing specifications as defined by urban designers and stakehold-

ers. Consequently, the tool was designed to be design- and user-centered with two main characteristics: first,

the parameters guiding the generative process were tailored to fit the requirements defined by the designers

based on their understanding of the design task. The designers can create design variants by adjusting param-

eter values. Second, the application allows designers to interact with the generated designs not only para-

metrically via numeric parameter inputs but also geometrically by changing geometric constraints. User

interaction makes it possible to improve generated designs that do not fully meet the requirements and cus-

tomized parameters help urban designers to naturally and precisely specify their needs. The interaction

capability was realized using the software platform Rhino3D together with its add-on Grasshopper, which is

a visual programming environment for parametric design. The parameters for the CUDP tool were deter-

mined through discussions with the UTT urban design team and local stakeholders. The aims of this study

are as follows:

•• To develop a new data structure to represent spatial configurations (street networks, blocks, and

parcels).•• To translate the requirements of urban planners and stakeholder to parameters for the CUDP.•• To generate spatial configurations that fulfill all restrictions, which are primarily:
|| Efficient use of the available space on the site by densely packing housing units;
|| Fair allocation of private and public spaces;
|| Preserve local communities by distributing households based on their neighborhood preferences.•• To generate spatial configurations that are comparable with manually created designs in terms of the

level of detail, geometric precision, and spatial qualities.

214 International Journal of Architectural Computing 16(3)

In the following description of the CUDP, we describe the methods and data structures for the generation

of urban fabric and demonstrate its use through a case study. The article comprises three sections: “Methods,”

“Case study,” and “Results and conclusion.” In the “Methods” section, we present the data structure for the

representation and the algorithm for the generation of spatial configurations consisting of street networks,

blocks, parcels, and buildings. In the “Case study” section, we present the tool in use and the spatial configu-

rations resulting from the requirements specified by UTT for the Empower Shack project. We show the

analysis method employed to evaluate pedestrian accessibility on the site and present a way to preserve com-

munities by allocating units based on neighborhood preferences using spatial clustering of households.

Methods

For generating urban layouts including streets, blocks, parcels, and buildings, it is necessary to establish a

function that maps specified parameters to expected layouts. In the following, we present the abstract data

structure we developed to realize such a mapping.

Representation of street networks as instruction trees

To represent a street network, we employ a so-called instruction tree,8 which has been implemented and

tested in the CPlan framework.9 An instruction tree and its corresponding street network is shown in Figure

1. Each node in the instruction tree contains information on how to add a street segment. The following three

parameters are stored with each node: the length of the connecting segment, the angle, and the degree of

connectivity. Edges between the instruction tree nodes define the relationships between the nodes, and there-

fore to which parent node a segment is connected in the network.

Urban blocks are regarded as “rings” of enclosing street segments. Buildings are independent of the gen-

erated street network and blocks can be regarded as a separate layer, in which building volumes are projected

onto the parcels. However, in the abstract representation of spatial configurations we encounter two addi-

tional problems: first, the instruction tree needs to be extended to include parcel structures; and second, the

connection between the street network, the embedded blocks, and the parcels has to be defined.

Figure 1. The instruction tree nodes contain the following three parameters per node: length l, angle α, and degree
of connectivity k. On the left side, two instruction trees are presented with the arrows defining the relationship
between nodes and the generative order (e.g. from node 1 to node 3 and node 4). On the right side, geometries are
generated based on the parameters, with α defining the angle between itself and its child, l is the length of each street
segment between nodes, and k is the maximum number of children. When the root nodes are combined together to
form a graph, adjustments are made automatically. In this case, root nodes are node 1 and node 2, and node 4 and 5
are merged in the result because of crossing.

Miao et al. 215

Representation of parcels as slicing trees

To represent parcels, we employ a slicing tree data structure. This subdivision method has the advantage of

being efficient in construction and for querying.10 In computer science, such kinds of data structure are popu-

larly used in data clustering techniques such as k-d trees.11 The data structure and its mapping are shown in

Figure 2. The geometric representation of the parcels resulting from the subdivision of a block can be seen on

the left, and the abstract tree representation of the parcels and the instructions for slicing on the right. The

slicing rules are encoded in the nodes of the slicing tree. The generative slicing process (depicted step by step

in Figure 3) is recursive and the algorithm stops after reaching a certain threshold. As meaningful threshold

parameter, we used the minimum area of a plot,10 or the minimum width of the parcel on a street side. In the

case study presented below, the stakeholders considered the width of the parcel to be more important.

To generate satisfying urban layouts, the data structure had to be adapted to urban design requirements.

Normally, slicing is performed along the longest edges of the blocks or parcels to avoid the generation of

very long and thin parcels. However, depending on the urban context, slicing may need to be performed only

along certain street segments to ensure that the generated parcels face a street and buildings on the parcels

can be accessed accordingly. For example, in Figure 2, parcel L5 is longer than the others, but it is not further

subdivided because it has only one street-facing edge, which is not long enough to be further divided.

In reality, blocks are not always as regularly shaped as depicted in Figures 2 and 3. To deal with irregular

shapes, Koenig and Knecht10 frame the irregular block in a rectangular bounding box and then slice the rec-

tangle, as shown on the left in Figure 4. The bounding box is defined by the minimum and maximum coor-

dinate values of the polygon. This strategy ensures the slicing process is consistent. One disadvantage is that

this can result in parcels with irregular shapes that are not ideal for urban design. To improve on this, we

perform slicing on a minimum bounding box defined by the smallest width, as shown on the right in Figure

4. Moreover, to ensure the block is sliced perpendicular to the street segment, the shapes are rotated before

being sliced (Figure 5). After being sliced, the shapes are rotated back to their original positions.

Introduction of a revised slicing tree data structure to represent the relationship between

urban layers

Given the hierarchical nature of the urban layers, the generation of parcels is highly dependent on the layout

of the street network. It is important to ensure that the street networks are generated in a way that enables the

generation of subsequent layers. To generate extended urban layouts, the new data structure has to be able to

Figure 2. The slicing tree structure. Left: the geometric representation of the sliced parcels. Right: the tree
representation of the sliced parcels where “V” indicates vertical slicing and “H” horizontal slicing. The indices of the
parcels on the left correspond to the ones on the right.

216 International Journal of Architectural Computing 16(3)

capture interconnections between different layers, for example, between street network, blocks, parcels, and

buildings. To define the relationship between street network and parcels computationally, we propose merg-

ing the previously presented tree structures in the form of a revised slicing tree.

The revised slicing tree is illustrated in Figure 6 using two blocks as examples, in which we have applied

different slicing rules. In the block on the left, slicing (A) starts from the long edge 1. After this, edge 2 on

the left side is sliced at B and edge 4 on the right at C. The process continues recursively until the stopping

criteria is reached. In general, this process is the same as that described above in Figure 2 except that in order

to retain information on the interconnection between street segments and parcel structure, the revised slicing

tree stores the slicing line in relationship to the edge it slices. At the same time, the slicing lines are ranked

based on their levels in the tree structure and the rank of each slicing line in the tree is also stored as an

Figure 3. The slicing process works top-down from the root of the slicing tree to the leaves. The four steps
correspond to the four levels of the tree.

Figure 4. Slicing of a triangular shape (blue triangle) based on a bounding box (red rectangle). On the left, the slicing
operation is performed on a bounding box defined by the minimum and maximum x and y coordinates of the polygon
whereas on the right, slicing is performed on the minimum bounding box defined by the shape’s smallest edge.

Miao et al. 217

additional attribute to the corresponding edge. The closer the levels of nodes are to the root, the higher their

rank. Moreover, the higher the rank a node has, the earlier the slicing operation is performed. If a slicing line

crosses more than one edge, the slicing line is assigned to one edge randomly. If a rank number is missing,

then an edge with a lower rank is promoted to be sliced first.

Application of the data structure to enable evolutionary multi-objective optimization

The system presented in this article constitutes a so-called simple reflex agent,12 which can only take

actions based on specified rules and given parameters. Simple reflex agents are considered the most rudi-

mentary form of artificial intelligence systems, as they do not possess a memory, are not aware of goals,

Figure 5. Slicing on a rotated shape to adapt the slicing process to the nature of the shape.

Figure 6. Revised slicing tree representation (bottom) for two parcels (top). The numbers indicate the indices
of the street segments, the letters the indices of the slicing lines. L1, L2, …, Ln are leaves of the tree as well as the
parcels.

218 International Journal of Architectural Computing 16(3)

and are not able to evaluate their actions and learn from them. To improve the design system and equip it

with the above-mentioned capabilities in future, we propose employing evolutionary multi-objective opti-

mization (EMO).13 Although the actual implementation of the EMO is beyond the scope of this article and

constitutes future work, we designed the presented data structure to be usable as a genotype representation

for this EMO process.

Koenig et al.8 have shown that EMO can be applied to the generation of street networks. Figure 7 illus-

trates a recombination process in EMO based on existing instruction trees for representing street networks.8

However, as discussed in the previous section, a different data structure is required to be able to include more

elements, namely, parcels and buildings, in the generation of urban layouts and to address the relationship of

the elements in their genotype representation.

The crossover process for the revised slicing tree is illustrated in Figure 8. A feature of this kind of data

structure is that it preserves the slicing sequence of blocks while enabling the crossover process of swapping

branches of trees, which is exactly what is needed in the recombination process of EMO. As the generated

parcels in Figure 8 show, the revised slicing tree helps the descendants preserve the spatial configurations of

their parents. The revised slicing tree structure reduces the number of genotype representations of different

urban layers into one. If we represent the slicing direction (horizontal or vertical) as (di), the position of the

slicing line on the street segment as (ai), and the rank of each slicing line as (ri), then the parameters that

determine the chromosomes i are [αi, li, ki, di1, pi1, ri1, …, din, pin, rin], where n is the number of slicing lines

on each street segment.

Figure 7. Illustration of the crossover operation as an important operation of an EMO. A branch of the black tree
and a branch of the white tree are exchanged to form two new trees.

Figure 8. The crossover process using the revised slicing tree structure. The generated geometry of the block on
the far right inherits parts of the spatial configurations of its parents.

Miao et al. 219

Implementation of Grasshopper components to facilitate parametric urban design

In order to demonstrate our new data structure in a case study, we used the software platform Rhino3D and

Grasshopper. We use this software as the basis for our system because it is widely used in design practice and

has a very flexible modular extension system. Using custom components, we can overcome the limitations

of Grasshopper while taking advantage of it as a design environment. The custom components, we devel-

oped are provided as part of the DeCodingSpaces Toolbox (http://decodingspaces-toolbox.org/). In Figure 9,

we illustrate the use of the new components for the process of generating an urban layout, starting with the

generation of street networks (Street Network Synthesis component on the left in Figure 9). In the sequence

of Grasshopper’s data flow model from left to right, we then extract the blocks (Street Blocks component)

from the street network and slice the blocks into parcels (Parcels component) before finally placing buildings

in the parcels (Buildings component). This generic procedure is adapted for the case study of the Empower

Shack project in the following section.

Case study

Our case study was conducted within the context of the Empower Shack project led by the Urban-Think

Tank (UTT) group at ETH Zurich in 2016. The objective of the project is to densify and upgrade an area

previously covered by informal single-story buildings. The aim of the collaboration was to provide an inter-

active planning tool which would make it possible to generate a layout of streets and parcels that makes

efficient use of the available space on the site by densely packing housing units, but, at the same time,

ensures their accessibility to facilities and fairly allocates private and public spaces. Furthermore, the aim

was to support the preservation of local communities by assisting in the allocation of parcels to households

based on their neighborhood preferences. The study area Enkanini in Cape Town City, South Africa, is

shown in Figure 10. The aim of the collaboration was to provide an interactive planning tool for urban

designers that makes it possible to rapidly prototype variations of street and parcel layouts based on given

design requirements in a fast and interactive way.

Stakeholder design requirements

The requirements from UTT and the stakeholders can be summarized as follows: the tool should allow to

make efficient use of the available space on the site by densely packing housing units, but, at the same time,

ensuring their accessibility to facilities, as well as a fair allocation of private and public spaces. Furthermore,

it should support the preservation of local communities by providing assistance in parcel allocation by

observing neighborhood preferences. In addition, the tool should allow the manual adjustment of street lay-

outs and the ensuing automatic regeneration and redistribution of parcels. To support discussion and

Figure 9. The Grasshopper components for generating street networks, street blocks, parcels, and buildings.

http://decodingspaces-toolbox.org/

220 International Journal of Architectural Computing 16(3)

negotiation among stakeholders, the Grasshopper interface should connect to a web interface for design

exploration. To ensure a fair allocation of private space while making maximum use of land, the designers

needed to be able to specify the exact dimensions of the parcels in terms of their width or depth and to fit as

many regularly shaped parcels as possible in the study area.

Generation of street networks with regularly shaped parcels and buildings using nesting

Using the methods described below, we were able to address these requirements and generate basic urban

layouts as depicted in Figure 11. For the generation of such layouts, the designer need only specify the

border of the planning area, the initial street segments, and the dimensions of the individual parcel (width

and depth). The generation of the street layout starts from initial street segments, which are used as root

nodes for the instruction tree.

To address the requirements, we had to adapt the original method. The top-down, recursive way in which

parcels were generated could not guarantee the generation of equal-sized blocks of a defined width and

length required for the plots. Since the slicing algorithm terminates on reaching a certain threshold, parcels

with a greater width could be generated rather than the desired size. To overcome this shortcoming, we

nested block and parcel generation. In the resulting Grasshopper definition, we first partition the street

blocks into smaller blocks of pre-defined width using the parcel component and only then do we divide them

into parcels (Figure 12).

This nesting approach resulted in more homogeneous parcel sizes. In order to fully comply with the

required precision as well as the requirement to place as many units on the site as possible, we further cus-

tomized the definition. Blocks with a depth larger than 2.5 times of the desired parcel depth were offset to

contain a courtyard. The resulting space around the block edges was subdivided into parcels of the desired

widths. Buildings at the specified dimensions were placed within the generated parcel outlines using the

building generation component (Figure 13).

Exploring design variants

Using the Speckle plug-in for Grasshopper,14,15 generated urban layouts can be made accessible online

to share and communicate the design as well as to allow stakeholders to explore design alternatives

(Figure 14). In accordance with the initial specifications, the interface permits the dimensions of the

parcels to be varied within a defined parameter range using sliders to adjust the parcels’ width and

Figure 10. The study area selected from the Empower Shack project with a generated urban fabric of streets,
blocks, and parcels.

Miao et al. 221

depth. The impact of changes on the distribution of the parcels and the changes of the overall layout of

the site can be evaluated in the comparative view of the online viewer. Furthermore, basic design per-

formance indicators can be displayed, for example, the number of units placed on the site in a specific

design variant.

Preference-based clustering

The generated urban layouts were enriched with a preference-based clustering algorithm (Figure 15). Since

most of the citizens of the new planned area already live there in informal housing, social networks between

the people exist. Based on people’s preferences expressed at the beginning of the planning process, house-

holds were assigned to certain parcels, respectively, buildings by taking into account preferences for unit

sizes and proximity to other households. The aim here is to ensure that former residents can retain their social

ties and communities can persist in the newly planned neighborhood. To cluster people who want to live near

to each other, we applied social network analysis based on cognitive distances using the NodeXL algo-

rithm.16 The difficulty here is how to transfer the preference-based household clusters obtained from the

questionnaires to a spatial distribution of housing to form corresponding spatial communities. We needed to

ensure that the buildings constituting a spatial cluster were close to each other. The measurement of

Figure 11. Example of two urban layouts for the sliced parcels, generated freely (left) and using initial pre-defined
street segments (red lines) to guide street network generation (right).

Figure 12. An illustration of the nested parcel generation method. Blocks are first partitioned into smaller ones
(large red box) using the slicing tree and then partitioned into parcels (small red box).

222 International Journal of Architectural Computing 16(3)

cognitive distance in urban space depends on the angular distance,17,18 which represents a better empirical

model of perceived distances than metric distance. The ranked-shortest angular paths for all buildings make

it possible to map household clusters into building clusters (Figure 15). This method also allowed alternative

building placements with different priorities of unit sizes as shown in Figure 16.

Figure 13. Placement of basic building masses on generated parcels.

Figure 14. Exploring design alternatives in the beta.speckle online viewer.

Miao et al. 223

Figure 15. Building clusters reflecting the residents’ neighborhood preference clustering. The color of the building
shows the cluster group.

Figure 16. Alternative building clusters with different priorities of the residents for unit sizes. The color of the
building indicates the cluster group.

Evaluation of pedestrian accessibility

The generated urban layouts can also be analyzed with respect to any characteristic affected mainly by its spa-

tial configuration, of which pedestrian accessibility is one example. In contrast to a simplified buffer method

(based on Euclidian distances), the distance along a street network is used as a basis for calculating the acces-

sibility of each housing unit using a gravity-based method.19 The value of the gravity index is proportional to

the amount of accessible facilities and inversely proportional to the travel cost to reach them. In this case study,

we assessed the pedestrian accessibility of educational facilities, with all of them weighted equally (i.e. attrac-

tiveness index of each facility equals 1), using metric distances to the destinations used as travel costs.

Using Open Street Map data, the configuration of the existing street network and facilities was extracted.

Figure 17 shows an analysis of three generated design proposals. Moreover, quantitative indicators such as

average walking distance to the facility and percentage of households with proper access to the facility were

calculated.

Results and conclusion

With respect to the aims outlined in the introduction, the results presented in the case study show that we

were able to translate the requirements of urban planners (UTT) into parameters for the generation of spatial

224 International Journal of Architectural Computing 16(3)

configurations and to represent these using our newly developed data structure. The results of the generative

methods for the case study area made it possible to automatically generate urban layouts based on parame-

ters such as width and length of the individual parcels, as specified by the designers. These layouts also

satisfy the requirement to create densely packed housing units and to fairly allocate private and public space.

Moreover, an urban designer can interactively revise the urban layout by moving street segments to achieve

more satisfactory results.

Through our collaboration with UTT, we also discovered that our data representation for the parcels has

some inherent limitations and did not fully address the needs of urban designers in practice. In the Empower

Shack project, the planners defined basic row-house building types, which required exact plot widths,

whereas the CUDP uses only threshold values for the minimum width resulting in approximate and varying

plot widths. Although we were able to implement a remedy as an intermediate solution, this problem could

not be solved completely.

The preference-based clustering methods of the CUDP also allowed the urban designers to better con-

sider residents’ needs for unit plot sizes and to preserve local communities by maintaining preferred neigh-

borhood relationships in housing clusters on site. The clustering method was verified with 90%–94%

success to meet the citizens’ neighborhood preferences. In addition, the ability to visualize the generated

results and make them accessible online facilitated early-stage decision-making discussions among urban

designers, local community representatives, governmental bodies, and citizens themselves during the com-

munity workshops on site.

In our case study, the urban planners from UTT benefited from the interactive CUDP: it saved them time

by obviating the need for manual design work in fitting parcels to the site and in turn improved planning

efficiency. Our urban planning colleagues were satisfied with the design quality of the generated spatial

configurations and found them essential for such complex urban redevelopment processes as that of the

Empower Shack project. Despite the aforementioned drawbacks with respect to the precision of the gener-

ated parcel sizes, the results were regarded as being comparable with manually created designs in terms of

the level of detail, geometric precision, and the spatial qualities of the case study area. Although the CUDP

components we introduce in this article significantly simplify the generation of basic urban layouts from

scratch, it is not yet universally applicable to all possible urban planning projects. Further customization is

needed to address specific design requirements (e.g. pre-defined plot sizes) as well as the design constraints

Figure 17. Street network analysis for three design proposals. The accessibility varies from cold color (dark blue)
to warm color (dark red), with warmer colors representing higher accessibility of the households to the existing
educational facilities. The average walking distance to the facilities for all three variations is between 812 and 818 m.
Result (a) has the highest ratio (92%) for the households to have proper walkable access to the nearby facilities.

Miao et al. 225

(e.g. public spaces distribution) of a particular design brief in order to ensure the generation of useful layouts

that can serve as a basis for discussion and further development.

In future work, we plan to use the data structure we developed as chromosomes for EMO algorithms and

to demonstrate the potential of optimization processes for urban design. For this, we also need further evalu-

ation strategies that can be used as objective functions. It will be a challenge to explore applications of EMO

in urban planning and the design of larger urban areas in close cooperation with designers. Another future

perspective is that the computer may learn from the actions of urban designers as they revise generated urban

layouts in order to improve the next generation of synthesized urban layouts. In addition, we see huge poten-

tial in using machine-learning methods to integrate not directly measurable quantitative criteria in the opti-

mization process to increase the acceptance of greater automatization in urban design processes.

Acknowledgements

Additional accompanying material including videos and Grasshopper scripts are provided on this website: http://decod-

ingspaces-toolbox.org/computational-urban-design-prototyping/

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this

article: The project was partially funded by SwissRe and partially conducted at the Future Cities Laboratory at the

Singapore-ETH Center, which was established collaboratively between ETH Zurich and Singapore’s National Research

Foundation (FI 370074016) under its Campus for Research Excellence and Technological Enterprise program.

References

 1. Reinhardt SK, Hill MD, Larus JR, et al. The Wisconsin Wind Tunnel: virtual prototyping of parallel computers.

New York: ACM, 1993.

 2. Malik SM, Lin J and Goldenberg AA. Virtual prototyping for conceptual design of a tracked mobile robot. In:

Proceedings of the Canadian conference on electrical and computer engineering, Ottawa, ON, Canada, 7–10 May

2006, pp. 2349–2352. New York: IEEE.

 3. Bringmann O, Ecker W, Gerstlauer A, et al. The next generation of virtual prototyping: ultra-fast yet accurate simu-

lation of HW/SW systems. In: Proceedings of the design, automation & test in Europe conference & exhibition,

Grenoble, 9–13 March 2015, pp. 1698–1707. New York: IEEE.

 4. Song P, Krovi V, Kumar V, et al. Design and virtual prototyping of human-worn manipulation devices. In:

Proceedings of the design engineering technical conference, ftp://swanson.seas.upenn.edu/pub/kumar/papers/1999/

DETC99_CIE_9029.pdf (accessed 12 July 2018).

 5. Wang GG. Definition and review of virtual prototyping. J Comput Inf Sci Eng 2002; 2: 232–236.

 6. Rix J, Haas S, Teixeira J. Virtual prototyping: Virtual environments and the product design process. London, UK:

Chapman & Hall, 1994.

 7. Urban-Think Tank. Urban-Think Tank, http://u-tt.com/ (2016).

 8. Koenig R, Treyer L, and Schmitt G. Graphical smalltalk with my optimization system for urban planning tasks. In:

Stouffs R, Sariyildiz S (eds) Computation & Performance: Proceedings of the 31st eCAADe Conference. Delft,

Netherlands: Delft University of Technology, 2013.

 9. Koenig R. CPlan: An open source library for computational analysis and synthesis. In: Martens B, Wurzer G,

Grasl T, et al. (eds) Real Time Extending the Reach of Computation: Proceedings of the 33rd eCAADe Conference.

Vienna, Austria: Vienna University of Technology, 2015.

http://decodingspaces-toolbox.org/computational-urban-design-prototyping/
http://decodingspaces-toolbox.org/computational-urban-design-prototyping/
ftp://swanson.seas.upenn.edu/pub/kumar/papers/1999/DETC99_CIE_9029.pdf
ftp://swanson.seas.upenn.edu/pub/kumar/papers/1999/DETC99_CIE_9029.pdf
http://u-tt.com/

226 International Journal of Architectural Computing 16(3)

 10. Koenig R and Knecht K. Comparing two evolutionary algorithm based methods for layout generation: dense pack-

ing versus subdivision. AI EDAM 2014; 28: 285–299.

 11. Moore AW. An intoductory tutorial on kd-trees. Cambridge: Citeseer, 1991.

 12. Russell SJ and Norvig P. Artificial intelligence: a modern approach. Malaysia: Pearson Education Limited, 2016.

 13. Koenig R. Urban design synthesis for building layouts based on evolutionary many-criteria optimization. Int J

Archit Comput 2015; 13: 257–269.

 14. Stefanescu D. Future.Speckle: display and explore parametric models in your browser, https://github.com/didimit-

rie/future.speckle (2016, accessed 29 March 2018).

 15. Stefanescu D. Speckle: open digital infrastructure for designing, making and operating the built environment,

https://speckle.works/ (2018, accessed 29 March 2018).

 16. Hansen D, Shneiderman B, Smith MA. Analyzing social media networks with NodeXL: Insights from a connected

world. Burlington, USA: Morgan Kaufmann, 2010.

 17. Turner A. Angular analysis. In: Peponis J, Wineman JD, Bafna S (eds) Proceedings of the 3rd international

symposium on space syntax. Georgia, Atlanta, USA: Georgia Institute of Technology, 2001, pp. 30–31.

 18. Turner A. From axial to road-centre lines: a new representation for space syntax and a new model of route choice

for transport network analysis. Environ Plann B 2007; 34: 539–555.

 19. Sevtsuk A. Location and agglomeration: the distribution of retail and food businesses in dense urban environments.

J Plan Educ Res 2014; 34: 374–393.

https://github.com/didimitrie/future.speckle
https://github.com/didimitrie/future.speckle
https://speckle.works/

