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a b s t r a c t 

This research proposes a framework for signal processing and information fusion of spatial- 

temporal multi-sensor data pertaining to understanding patterns of humans physiological 

changes in an urban environment. The framework includes signal frequency unification, 

signal pairing, signal filtering, signal quantification, and data labeling. Furthermore, this 

paper contributes to human-environment interaction research, where a field study to un- 

derstand the influence of environmental features such as varying sound level, illuminance, 

field-of-view, or environmental conditions on humans’ perception was proposed. In the 

study, participants of various demographic backgrounds walked through an urban environ- 

ment in Zürich, Switzerland while wearing physiological and environmental sensors. Apart 

from signal processing, four machine learning techniques, classification, fuzzy rule-based 

inference, feature selection, and clustering, were applied to discover relevant patterns and 

relationship between the participants’ physiological responses and environmental condi- 

tions. The predictive models with high accuracies indicate that the change in the field- 

of-view corresponds to increased participant arousal. Among all features, the participants’ 

physiological responses were primarily affected by the change in environmental conditions 

and field-of-view. 

© 2018 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Understanding influence of the environmental conditions on human perception is complex. Various environmental fea- 

tures, e.g., sound level, temperature, and illuminance affect our senses. Therefore, we adopted enhanced measurement and 

analysis techniques to define and measure what influences citizens in dynamic urban environments. The environmental 

features measured in this research include sound level, dust, temperature, humidity, illuminance and the field-of-view since 

they influence a person’s sense that, in this research, was represented by the physiological state of a person, which was mea- 

sured through electro-dermal activity (EDA). With the advent of technology, researchers explore the utility of sensor-based 
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physiological data in real-world scenarios. Thus, researchers now have the means to explore how environmental features can 

affect individuals’ physiological response-based perceptual quality and overall experience [23] . How to capture and define 

such a perceptual quality is an ongoing research topic in Cognitive Science and Behavioral Science [21,36] . 

This research presents a controlled study, conducted in Zürich, Switzerland, to acquire data on humans physiological 

responses and environmental conditions. In the study, 30 participants were asked to walk through an urban environment, 

while equipped with wearable sensor devices [15] . The study was designed to address the following research questions: 

(a) Can we predict the physiological responses of participants based on particular environmental conditions? 

(b) Can we infer the relationship between the physiological responses and the environmental conditions? 

(c) What are the most significant environmental features affecting the participants’ physiological responses? 

(d) What are the patterns in the environmental conditions, for which the participants exhibit aroused and normal physio- 

logical responses? 

The features of the data were recorded through devices and sensors at varying frequencies, which had both temporal 

and spatial properties. The features had a temporal property due to continuous recording, and the features had spatial 

characteristics because of the recording’s association with the change in locations–global positioning system (GPS). Hence, 

in this research, we proposed a framework that performs signal preprocessing, signal filtering, signal quantifications, data 

fusion, and data labeling to answer the defined research questions. 

Machine learning based techniques have been successfully applied for knowledge mining and pattern recognition in 

various real-world situations [32,39] since they are useful in identifying the underlying patterns within data [1,25] . Thus, 

we formulated the processed data such that four state-of-the-art machine learning techniques, classification, fuzzy rule- 

based inference, feature selection, and clustering, were applied for discovering patterns in the participants’ physiological 

responses related to the urban environmental conditions. 

The first step in this research was to assess the predictability of participants’ perception (physiological responses) of the 

urban environment. Thus, a ten-fold cross-validation was performed on a reduced error-pruning tree (REP-Tree) classification 

model [29] . Following the classification approach, a fuzzy rule-based learning inferential model was built using fuzzy un- 

ordered rule induction algorithm (FURIA) [17] to investigate the relationship between the urban environmental features and 

the physiological response measures. Subsequently, the importance of various urban environmental features was analyzed 

by applying backward linear feature elimination filter (BFE) [22] . Furthermore, self-organizing map (SOM) [18] was applied 

to visualize the impact of urban environment features on participants’ physiological responses. In the final step, a method 

for referencing GPS location (geo-location) to compute mean physiological response across all participants was developed. 

Since various methods were involved in data processing, additional graphics and multimedia can be found on the project 

website [12] . 

In summary, the following are three essential contributions of this research: 

(a) a field study design for understanding human perception of the urban environment; 

(b) a framework design comprising signal processing, signal quantification, and data fusion methods that invokes a novel of 

approach in physiological data quantification; 

(c) a comprehensive analysis using four machine learning methods to discover the patterns which are crucial to our under- 

standing of human perception in urban settings. 

We organized this paper into seven Sections. Section 2 places this research in the context of literature and describes the 

experimental procedure. Section 3 describes signal preprocessing, multi-sensor information fusion, and machine learning 

techniques in detail. Section 4 is devoted to explaining the obtained results followed by a comprehensive discussion in 

Section 5 . The challenges and opportunity of the research are presented in Section 6 , and Section 7 concludes the findings 

of this research. 

2. Human perception of the urban environment 

2.1. Literature review 

The process of measuring physiological data as an indicator of human perception is complex, particularly in real-world 

application since perception can be influenced by various factors [2] . However, physiological pattern recognition can derive 

significant evidence about human perception [27] . Similar to our research, Picard et al. [27] focused on physiological sen- 

sor data, specifically skin conductance, and they related high and low arousals as positive and negative biological reactions. 

Also, Picard et al. [27] focused on the collection and filtering of the physiological data to construct good quality data void of 

failure and corrupt signals. They formulated physiological data so that a k-nearest-neighbor classifier can predict human’s 

physiological arousal-based perception. Krause et al. [19,20] , on the other hand, used wearable device data, including physi- 

ology based sensor data (galvanic skin response), to identify user’s state in terms of physiological and activity context using 

SOM based clustering. Specifically, they performed unsupervised learning to classify sensor data to determine the context 

from which the signals were generated. 

In Wang et al. [38] , pattern recognition and classification of physiological sensor signals were performed by first de- 

composing signals into its constituent features and by applying support vector machine to classify negative and positive 
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Fig. 1. (a) Study neighborhood marked with the participants’ walking path (Wiedikon, Zürich, Switzerland); (b) a participant with sensor backpack [14] . 

emotion labels. Here, the label associated with the signals were predefined during the experiment by exposing the partici- 

pant to negative and positive environments during the recording of signals. Rani et al. [31] performed an empirical study of 

four machine learning techniques: k-nearest neighbor, regression tree, Bayesian network and support vector machine for the 

recognition of the emotional state from physiological response data. They performed signal processing to evaluate features 

from the physiological data and labeled them with the emotional state reported by the participants. 

Since we investigate “cause and effect” between the environmental conditions and the human’s perception, unlike Wang 

et al. [38] and Rani et al. [31] , we performed signal processing on the physiological data to evaluate skin conductance 

response (SCR) arousals [40] . Subsequently, we assigned labels to signal fragments based on the degree of arousal within a 

specified time. While doing this, we considered physiological data as the output in the classification model and the signals 

from the environment as the inputs. Whereas, Wang et al. [38] and Rani et al. [31] considered features of the processed 

data as the inputs and the reported environment as the output. Our approach, to first determine arousal level was adopted 

because of the complexities of the urban environment and because we cannot accurately consider an urban environment to 

be positive or negative towards the perceptual quality of a participant. Thus, we labeled environmental conditions as the 

positive and negative by considering physiological data as the target in the classifier’s training. 

Ragot et al. [30] found that the physiological response signals from the Empatica E4 wearable device were closely com- 

parable to laboratory-based measurement devices. They also found that the data from such wearable devices could be used 

to train a support-vector-machine classifier to recognize the participants’ emotional state. Similarly, Poh et al. [28] confirmed 

that EDA data from wearable devices is comparable to laboratory devices and the data are a valid physiological measure. 

Hence, was our approach in this study to employ Empatica E4 to perform physiological measure. 

2.2. Study design and measurements 

We designed a study to understand the general pattern(s) of human perception related to events which occur in a dy- 

namic urban environment. An event indicates the change in the environmental condition, and also, a sample of the measured 

environmental data. As a case study, we selected a neighborhood in Zürich, Switzerland ( Fig. 1 (a)), and invited participants 

to take a leisure walk on a predetermined path ( Fig. 1 (b)). The participants were equipped with a “sensor backpack [14] ”

and an Empatica E4 wearable device [11] . The 1.3 km walking path was carefully selected, which covered a diverse urban 

scenario [15] , e.g., spacious and narrow streets, green and urban areas, and loud and quieter locations. 

Our sensor kit [14] measured the changes in sound level (decibel, dB), the amount of dust (mg/m 3 ), temperature ( °C), 

relative humidity (%), and illuminance (lx). We also calculated field-of-view based on the GPS information and spatial con- 

figuration of the neighborhood. The field-of-view is formerly described as the Isovist descriptor, which refers to the open 

space a person can view from a single vantage point [4] . Since participants were walking in a forward direction, we con- 

sidered 180 ° field-of-view with a distance of 100 m. Subsequently, the Isovist descriptor for each participants’ walk was 

measured by drawing a polygon around the participants’ 180 ° field-of-view at their specific GPS locations. From this, the 

following measures of the Isovist polygons were calculated: Area–polygon’s surface area; Perimeter–polygon’s perimeter 
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Table 1 

Measured features in the study. 

Data Type Features (sensors) Frequency (Hz) 

Urban environment (indicate the changes 

in the urban environmental condition 

during a participants’ walk) 

Spatial (in the context of this study) GPS position (Latitude and Longitude) 1.0 

Sound level (dB) 0.4 

Dust in air (mg/m 3 ) 0.4 

Environmental temperature ( °C) 1.0 

Relative humidity (%) 1.0 

Illuminance (lx) 1.0 

Participants field-of-view (computed 

based on GPS position): Area, 

Perimeter, Compactness, Occlusivity 

- - 

Human perception (participants’ 

physiological response) 

Spatial-temporal Electro-dermal activity (EDA) 4.0 

length; Compactness–the ratio of area to the perimeter (relative to an ideal circle); and Occlusivity–the length of occluding 

edges. 

The EDA measures the individuals’ physiological state [6] , which was recorded using Empatica E4 wearable device, sim- 

ilar to studies by [11–13] . We placed the wearable device on participants’ non-dominant hand and let it adjust for 10 min 

according to Empatica guidelines [11] . The data were recorded on the Empatica website and corrected for motion artifact 

[11] . The EDA measure (physiological response) was a time-series signal and has temporal dependencies. The sensor back- 

pack, on the other hand, was designed to capture the contextual-based events that occur in an urban environment. In the 

context of this study, an event is non-temporal since an event is dependent on the instance of its observation. Therefore, 

the continuous signals recorded for environmental features and the continuous signals recorded for participants’ physiolog- 

ical responses were quantified in two different manners ( Section 3.2 ). Moreover, since the recorded signals were associated 

with the geographical location, they also had spatial properties. The primary infrastructure of the urban environment and 

season (April 2016) were uniform. However, inherent diversity occurred from different experiment days, time-of-day, and 

participants demographic background. The data for both environment measures and corresponding participants’ physiologi- 

cal response measures are summarized in Table 1 . 

3. Methodologies 

A comprehensive signal processing and data-preprocessing framework were proposed in order to apply select machine 

learning methods. Fig. 2 illustrates the framework and describes how it was used for information fusion and knowledge 

mining approaches. Here, e i and r i indicate i th quantified event (a sample in the quantified environmental data) and response 

(a sample in the quantified physiological response data) respectively. The variable m j for j ∈ { 1 , 2 , . . . , N} indicates the total 

number of samples belonging to the j th participant p j . The information, therefore, was fused in three stages: 

(a) Each participants’ event-based data ( e ) are collected from five sensors, which were re-sampled to a unique frequency 

and samples were aligned as per with on their time ( Fig. 2 , mark “A”). 

(b) The environment and response data from each participant were independently cleaned, filtered, and quantified. Each 

participants’ quantified event and response data were fused (paired) by assigning a quantified response r i to event e i 
( Fig. 2 , mark “B”). 

(c) The paired participants’ data were then stacked ( Fig. 2 , mark “C”). 

The three-stage information fusion approach produced the compiled dataset, which was fed to select machine learning 

techniques. For each machine learning technique, the compiled dataset ( Fig. 2 , mark “C”) was arranged and configured as 

per the techniques’ requirements and objectives. 

3.1. Signal processing 

3.1.1. Frequency unification 

The environmental features sound and dust were collected at 0.4 Hz frequency; while GPS position, temperature, hu- 

midity, and illuminance were collected at 1 Hz frequency ( Table 1 ). Therefore, an up-sampling mechanism with a linear 

interpolation was applied to sound and dust data [5] to unify the frequencies of the gathered data. All features were then 

aligned to the same timestamp, which was crucial to ensure that all sensor values belong to an exact event during the 

study. 

3.1.2. Signal filtering and smoothing 

The physiological response data (EDA signals) were kept at their original 4Hz frequency to maintain the information 

required for arousal detection from the physiological data. With close inspection, we found that some participants EDA 
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Fig. 2. Information fusion and knowledge mining framework. 

signals were unusable and were discarded. The remaining (accepted) EDA signals were first smoothed and then filtered to 

remove artifacts as recommended in EDA literature [6,8] . 

3.1.2.1. Physiological data selection. The EDA signals from 30 participants were analyzed by comparing the various “profiles.”

The EDA signals from four types of uncorrupt EDA profiles shown in Fig. 3 (a)–(d) were considered for the data analysis. The 

EDA signals belonging to the two erroneous EDA profile types illustrated in Fig. 3 (e) and (f) were discarded. In total 10 EDA 

signals were discarded. The erroneous EDA signal types were classified as: 
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Fig. 3. Signals in (a)–(d) are the most commonly found EDA signal profiles and considered for the analysis. Most commonly found error in signals are 

shown in (e) and (f). 

(a) Type-1 error, when EDA signal values only fluctuate between two values, i.e., the EDA signal behaved like a step function, 

and the signal may also contain a significant amount of sensor loss (no sensor response record). 

(b) Type-2 error, when the majority of the sample values were zero (significant sensor response loss), despite the otherwise 

normal fluctuations (correct sensor response) in EDA signal. 

3.1.2.2. Stationary wavelet transformation based smoothing. After selecting EDA signals, they were smoothed by undergoing 

a Stationary Wavelet Transformation (SWT) and reverse SWT. Authors in [8] suggested an adaptive method for SWT-based 

smoothing for EDA signals recorded for long periods (30 h). In our study, EDA signals were recorded for 25–29 min. There- 

fore, we applied a one-level SWT and reverse-SWT for smoothing. Each EDA signal was transformed using “Haar” as a 

mother wavelet in the SWT [24] . A one-level SWT transformation was performed on each signal; and on the obtained 

wavelet coefficients, a threshold of value ±0.001 was applied to eliminate larger fluctuation in the signal. That is, the val- 

ues of wavelet coefficients above +0 . 0 01 and below −0 . 0 01 were cut off ( Fig. 4 (a)). Finally, a reverse SWT was applied to 

the transformed signal to produce a smoothed signal ( Fig. 4 (b)). 

3.1.2.3. Truncation of the unwanted signal fragments. SWT based treatment to the EDA signals eliminated the large fluctu- 

ations from the signal. However, some sharp drops in signal (corrupt fragment) caused by artifact were not filtered out 

completely. Thus, the corrupt fragments and participants’ waiting time fragments of EDA signal were truncated from both 

original (raw) and smooth EDA signals. Fig. 4 (b) is an example of such truncation. This process produced two EDA signals: 

original (original signal with filtering only) and smooth (original signal with both smoothing and filtering). 

3.2. Signal quantification and labeling 

Signal quantification involved three steps: time-window marking, arousal detection, and data labeling. In fact, these are 

the critical steps in the fusion of the environmental data and the physiological response data. As shown in Fig. 2 , at first, 

physiological data were quantified, and then, the timestamp information was passed to the environmental data for its quan- 

tification. 
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Fig. 4. Stationary Wavelet Transform based smoothing. (a) Wavelet transform of an original EDA signal using Haar wavelet, and smoothing by applying a 

threshold over wavelet coefficient. (b) Original and smoothed EDA signal with filtering of corrupt and unnecessary fragments. 

Fig. 5. (a) Timestamp is indicating Start and End of a participants’ walk during the study. It illustrates the approach to quantify a participant’s physiological 

response and environmental experience data (b) Timestamp and time-window marking for an EDA signals (physiological response) at every t seconds for 

the detection of arousal r 
p j 
i for i = 1 to m j . 

3.2.1. Time window marking 

Each EDA signal’s timestamp information was compared with the timestamps recorded at various stages during a par- 

ticipants’ walk. Based on the signal filtering shown in Fig. 4 (b) and available timestamp information, the signal fragment 

belonged to the walking duration—indicated by Start and End in Fig. 5 (a)—were marked with a regular interval of time- 

window size t seconds. Such a time-window marking was crucial to our data analysis to observe participants physiological 

states in relation to their experience of the events occurring at a regular interval of t seconds ( Fig. 5 (a)). 

Therefore, for each time-window, event e 
p j 
i 

for i = 1 to m j experienced by participant p j is a vector of the environmental 

features and was computed by averaging the values of signal fragment (environmental measurement) at the i th correspond- 

ing time-window. On the other hand, the participants physiological response r 
p j 
i 

for i = 1 to m j upon experiencing the event 

e 
p j 
i 

was computed by an arousal detection method described in Section 3.2.2 . Additionally, the participants’ field-of-view 

(Isovist descriptors: area, perimeter, occlusivity, and compactness) were computed at the start of each time-window. Thus, 

participant quantified data p j had an identically independent vector of environmental conditions (event e 
p j 
i 
) and a corre- 

sponding physiological state (response r 
p j 
i 
) for each time-window. 
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3.2.2. Arousal detection (EDA) 

The level of arousal r 
p j 
i 

in an EDA signal depends on identifying a specific signature (pattern) called skin conductance 

response (SCR) or arousal [3,6,9,33,35] . The state of arousal in an EDA signal is typically defined as a peak having a specific 

signature [6] . We processed the EDA signals using a skin conductance processing tool Ledalab [3] . Ledalab offers a continu- 

ous decomposition analysis (CDA) method for analyzing an EDA signal. In CDA, an EDA signal is decomposed into tonic skin 

conductance level (SCL) and phasic drivers SCR. 

We performed CDA on each EDA signal data—of each participant—by using the recommended settings in Ledalab [3] . 

That is, the signal’s optimization procedure was performed two times, which automatically determined the optimization 

parameters for evaluating the number of significant SCR (nSCR) above a defined threshold of 0.01 μSiemens within a time- 

window. We used nSCR, because we could not, in a theory-driven manner, define what stimulus (event) caused a change in 

participants “physiological arousal state.” Thus, we relied on a data-driven approach by analyzing phasic SCR, a non-specific 

fast changing EDA measure; i.e., the number of peaks in phasic skin conductance response measures nSCR to any kind of 

event for the given time-window. Therefore, the nSCR gave us the measures of r 
p j 
i 

shown in Fig. 5 (b). 

3.2.3. Data labeling 

When aggregating all participants data ( Fig. 2 , mark “C”), we observe that nSCR value for a time-window vary from 0 to 

12. An nSCR value 0 indicate that, in a time-window, a participant had a normal physiological condition. On the other hand, 

an nSCR value greater than 0 for a time-window indicates that a participant experienced a state of arousal at least once in 

that time-window. Thus, for the labeling of each time-window—of each participant data—a binary-class label indicating a 

binary state of phasic nSCR r 
p j 
i 

can be used, where 

(a) class 0 is “normal” physiological response (“N”), i.e., an nSCR value equal to 0; and 

(b) class 1 is “aroused” physiological response (“A”), i.e., an nSCR value greater than to 0. 

A multi-class classification was also used, in which case, aroused physiological response, “A” has two categories: class 

“LA” indicating low arousal response, i.e., 0 < nSCR < 6 and class “HA” indicating high arousal response, i.e., nSCR ≥6. A total 

of 6057 samples and 9 input features were available in the compiled dataset for a time-window size t (quantification rate) 

of 5-s. In the compiled data, 3491 samples belonged to the category “N” and 2566 samples belonged to the category “A,” i.e., 

approximately 60% and 40% of the samples respectively belong to “N” and “A.” Furthermore, in the multiclass classification, 

2079 samples were labeled “LA” and 487 samples were labeled “HA.”

3.3. Machine learning methods 

3.3.1. Non-inferential modeling 

We build a predictive model consisting of the environmental features as the inputs, and binary (and multiclass) quantified 

arousal level as the output using REP-Tree, which is a decision tree learner [29] . In a decision tree, a tree-like predictive 

model is built, where the leaves represent the target (e.g., the class labels: “N” or “A”) and the branches represent an 

observation for a feature (e.g., sound level) at a node. REP-Tree is a method applied to reduce the size of a decision tree, 

where it keeps pruning subtrees by replacing it with a leaf (a class label) as long as the error does not increase (i.e., the 

accuracy of the model does not decrease). 

We chose REP-Tree to build a predictive model because the algorithm constructs a decision tree, where each node decides 

for a feature, and its specific value produces a particular class label. While making a predictive model, REP-Tree chooses the 

most significant features based on their contribution to the model’s accuracy, which is advantageous for this problem since 

it is uncertain which environmental features influence physiological responses. For the validation of the model’s predictive 

performance, we chose ten-fold cross-validation (10-fold CV). Section 4 describes the test accuracies of 10-fold CV based 

REP-Tree training. 

3.3.2. Inferential modeling 

Contrary to non-inferential modeling, inferential modeling explains the relationships between the input features and the 

output feature. A fuzzy rule-based inference system is capable of describing how independent environmental features are 

related to the dependent physiological response (phasic nSCR) feature. For this, we applied FURIA, which is a fuzzy rule- 

based classifier [17] . 

Unlike conventional rule-based classifiers, FURIA gives a fuzzy rule [17] . FURIA produces fuzzy rules with operators ≤ , 

= , and ≥ ; the operators define clear conditions for a feature’s association with a class label (e.g., “N” or “A”). FURIA also 

provides a range (e.g., x → y ) indicating fuzziness in feature’s condition, which may be considered as a soft boundary while 

associating a feature with a class label [17] . This ability was particularly useful in this study since we wanted to observe the 

specific values range of the environmental features that corresponded to a participants’ state of arousal. For instance, we 

needed to determine for which particular sound level range, a participant experienced a state of arousal. Since FURIA fulfills 

this requirement, it was selected as the technique for inferential analysis. Interpretation of the obtained rules is described 

in Section 4 . 
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Table 2 

Average test results of 10-fold CV training of RET-Tree classifiers for both binary and multi-class classifications. 

Classification Class TP FP TN FN Recall Precision Sensitivity Specificity Accuracy 

Binary class model N 3105 405 2162 396 0.89 0.88 0.89 0.84 87% 

A 2162 396 3105 405 0.84 0.85 0.84 0.89 

Multiclass model N 3132 442 2125 369 0.89 0.88 0.89 0.83 80% 

LA 1502 595 3392 579 0.72 0.72 0.72 0.85 

HA 161 236 5346 325 0.33 0.41 0.33 0.96 

Note: For binary class, normal physiological response, “N” indicates nSCR = 0 and aroused physiological response, “A” indicates 

nSCR > 0. For multiclass, “N” indicates nSCR = 0; “LA” indicates a low arousal response, i.e., 0 < nSCR ≤ 6, “HA” indicates a 

high arousal response, i.e., nSCR > 6. The variables TP, FP, TN, and FN indicate true positive, false positive, true negative, and 

false negative, respectively [26] . 

3.3.3. Feature selection 

Feature selection is a process to determine the ability of each input feature to predict the output. Moreover, feature 

selection involves making a model using a subset of features and testing its predictive accuracy. We applied backward 

feature elimination (BFE) method in this research for its ability to examine all possible combinations of feature subsets [22] . 

BFE starts with all features in a set (in this case, it begins with 9 features) to build and test the model. Subsequently, BFE 

iteratively eliminates features one-by-one while propagating high accuracy feature subsets to the next iteration. Finally, BEF 

gives a list of subsets with their corresponding accuracies, from which a subset can be selected depending on the accuracy 

or the number of features required. In addition to REP-Tree, MLP [16] and SVM [7] were used for a more comprehensive 

analysis in BFE. Therefore, the feature selection result was an assessment of three different predictors. During the feature 

selection, at each iteration, BFE used 60% randomly selected samples for training and the rest 40% samples to test the model. 

3.3.4. Pattern discovery 

In general, the primary aim of self-organizing map (SOM) is to map m -dimensional data onto a 2-dimensional (2D) plane. 

The 2D plane of SOM consists of a network of neurons (nodes). The network’s nodes acquire the underlying property of the 

input data samples (e.g., events in the environmental data). Moreover, a SOM projects similar data samples to a cluster 

center (a node in a SOM) as per the similarity (Euclidean distance) of the data sample to the node [18,37] . 

SOM is an appropriate choice for this problem since it is tedious to define the number of clusters, especially when 

problems have complex relations between the features. SOM produced clusters automatically (see Section 4.4 ). Additionally, 

to analyze pattern related to the geo-locations, geo-locations referenced mean physiological response r mean i = (r 
p 1 
x i ,y i 

+ r 
p 2 
x i ,y i 

+ 

. . . + r 
p N 
x i ,y i 

) /N across all participants was computed by matching GPS location information ( x i : latitude, y i : longitude) and 

aggregating the samples. Geo-location referenced mean physiological responses r mean i were computed to visually understand 

patterns in participants’ physiological responses related to the actual map of the neighborhood, described in Section 4.4 . 

4. Results 

4.1. Sensitivity analysis (non-inferential modeling) 

First, a classifier (REP-Tree described in Section 3.3.1 ) was trained and tested on the five “time-resolved” datasets cor- 

responding to five quantification rates 25, 20, 15, 10, and 5 s, whose outputs were labeled as the binary class: normal 

physiological response, “N” and aroused physiological response, “A.” The parameter settings used to train the REP-Tree mod- 

els is in Table A.1 . The performances of the trained REP-Tree models are shown on a receiver operating characteristic (ROC) 

curve plot [26] in Fig. 6 . 

The model’s performance improved as the quantification rates decreased ( Fig. 6 ). The model’s high predictability for 

smaller quantification rates is an indicator of the participants’ strong sensitivity towards the changes in the urban envi- 

ronment. The model’s performance for smoothed EDA data (red square) was better than the model’s performance for raw 

EDA signal (circles). Thus, the smooth EDA data more accurately draw the association between a change in environmental 

features and participants’ physiological states of arousal. 

The results of the 10-fold CV training of the RET-Tree classifier for both binary and multiclass classification for the dataset 

where smooth EDA data were quantified at 5-s time-window as shown in Table 2 . The classifier’s predictive accuracy was 

found to be 87% for the binary-class classification and 80% for the multiclass classification. 

4.2. Sensitivity range analysis (inferential modeling) 

The non-inferential model indicates that the participants’ physiological responses are sensitive to the environmental 

changes. Therefore, we build an inferential model to understand how environmental features influence participants’ physi- 

ological responses. A fuzzy rule-based inferential model was built using FURIA whose parameter settings are mentioned in 

Table A.1 . We adopted a binary-class classification of nSCR, where nSCRs were categorized into two classes: normal phys- 

iological response, “N” and aroused physiological response, “A.” The FURIA algorithm offered an average test accuracy of 
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Fig. 6. ROC graph of classification models on two categories of datasets represented in two different shapes: square and circles. Square represents dataset 

prepared with the output feature being the quantified smoothed EDA data; circles represent dataset prepared with the output feature being the quantified 

original EDA data. 

70.23% after a 10-fold CV training. Such accuracy is notably high for the complex problem of understanding the humans’ 

perception of their urban environmental conditions. 

We analyzed the set of fuzzy rules generated by FURIA by segregating the rules between the participants’ “N” and “A.”

Fig. 7 is a visual interpretation of the obtained fuzzy rules for both classes “N” and “A.” We interpreted and represented the 

FURIA rules in Fig. 7 to find the values (range of values) of the environmental features that 

(a) were linked to class “A,” which indicates participants’ aroused physiological state; 

(b) did not significantly influence the participants’ aroused physiological state. 

To validate the knowledge obtained from the visual interpretation of fuzzy rules, distributions of the environmental fea- 

tures were examined through histograms in Fig. 7 (b), (d), (f), (h), (j), and (l). The visual interpretation and summarization 

of the rules for sound level in Fig. 7 (a) and its corresponding distribution in Fig. 7 (b) indicate that the participants nor- 

mal physiological responses match a particular sound level distribution. For example, the sound level distribution around 

60 dB–66 dB ( Fig. 7 (b)) correspond normal physiological state ( Fig. 7 (a)). Furthermore, the participants had a tendency to 

exhibit aroused physiological state when experienced sound level above 66 dB. This result indicates that loud sound levels 

correspond to increased participant arousal. 

The result was similar for temperature, where temperature degrees greater than 21–22 °C were associated with aroused 

physiological state ( Fig. 7 (e)). However, it can be observed that the samples in the dataset for temperatures above 22 °C 

were fewer than for the temperature degrees below 22 °C ( Fig. 7 (f)), which we could take as confidence that heat alone did 

not cause the physiological arousal of participants. In ( Fig. 7 (i)), the participants exhibited physiological arousal for darker 

locations (illuminance level below 580lx). 

4.3. Simultaneous impact of environmental features 

Inference modeling provided the values for environmental features that were responsible for normal and aroused phys- 

iological states. However, it is also essential to discover which of the environmental feature(s) have the strongest influence 

on the participants’ physiological responses. Hence, we constructed a backward linear filter elimination (BFE) based feature 

selection framework and analyzed the obtained results to build a significance hierarchy of feature subsets ( Fig. 8 ). A feature 

subset’s significance was estimated on its ability to predict “N” and “A” classes with high accuracy. 

Fig. 8 is a significance hierarchy triangle of the feature subsets, where a subset’s predictability reduces when the number 

of features in the subset decreases. Three predictors provided three feature selection result sets. Fig. 8 is the compilation 

of the three result sets from all three predictors. The MLP, REP-Tree, and SVM agreed on the feature subset temperature, 
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Fig. 7. Visual interpretation of the fuzzy rules. The color “red” indicates the range for which the fuzzy rules finds nSCR > 0, i.e., an indicator of aroused 

physiological state. The color “blue” indicates the range for which the fuzzy rules finds nSCR = 0, i.e., an indicator of normal physiological state. The color 

“white” indicates a range of fuzziness. The color “gray” indicates the range for which rules do not provide any conclusive information. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

humidity, illuminance, and Isovist area, where the REP-Tree had the highest accuracy, followed by SVM and MLP. Therefore, 

temperature, humidity, illuminance, and Isovist area, were noted as the most significant feature set but is a matter of trade- 

off between accuracy and number of features as indicated in hierarchy triangle ( Fig. 8 ). 

4.4. Patterns of perceptual variations 

The predictive modeling confirmed the sensitivity of participants’ physiological responses towards dynamic environmen- 

tal conditions. The fuzzy rule-based analysis described the relationship between the environmental features and the phys- 

iological response. Feature selection indicated the most significant environmental features. However, pattern discovery ex- 

plains: 

(a) which participants were experiencing a similar environmental conditions and what were their response; 

(b) whether the participants’ physiological responses for certain environmental conditions were similar; 

(c) the patterns of the environmental features that influence the participants physiological arousal. 

The compiled data (see Fig. 2 ) were analyzed using SOM. Fig. 9 is a result of automatic clustering from a trained SOM, 

where the 9-dimensional input data were mapped onto the 20 ×20 dimension 2D plane consisting of hexagonal nodes. Each 

node in the map acquired the property of a set of samples. Fig. 9 (a) shows the maps of the environmental features on feature 
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Fig. 8. Hierarchy of feature importance. The symbol I ∗ appeared only in the REP-Tree based feature selection. The feature set {T, R, A, I} appear in all three 

predictor’s results. 

Fig. 9. Trained SOM results; node value in the maps are indicated by color: the lowest value is shown in dark blue, and the highest value is shown in bright 

yellow. (a) U-matrix: SOM clustering map. (b) F-matrix: maps for environmental features, which were linearly scaled with a variance of 1.0 so that they 

have equal importance in clustering. (c) L-matrix: participant ID and participants physiological response state label (“N” and “A”) map. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

matrices (F-matrices). On a feature matrix (F-matrix) of an environmental feature (e.g., sound level), the features’ value 

assigned to F- matrix nodes are corresponding to the nodes on the SOM’s unified distance matrix (U-matrix) in Fig. 9 (b) 

and Label matrix (L-matrix) in Fig. 9 (c). Hence, the position and value of the nodes in all the maps (matrices) in Fig. 9 are 

comparable to each other. More specifically, the U-matrix is the result of the F-matrices of the environmental features, and 

the L-matrix is the corresponding dominant label associated with the nodes. Therefore, to make sense of the pattern, we 

need to compare all matrices with one another. 

The U-matrix in Fig. 9 (b) shows the clusters of similar data points. The nodes with small differences (in terms of Eu- 

clidean distance) are shown in dark blue, and the nodes with high differences and are shown in bright yellow. In addition, 

the patches of nodes with similar colors, separated by lighter colors, indicate the clusters of data samples. Moreover, the 

data samples corresponding to a cluster in the U-matrix share a commonality, and dissimilar data samples are further apart. 

It is therefore implied that the participants’ ID label belonging to a cluster experienced similar environmental conditions. 

Fig. 9 (c) is an L-matrix with each node was labeled with participant ID and the state of physiological response. White 

nodes indicate a normal physiological response and blue nodes indicate the aroused physiological response. By comparing 

these matrices, one can discover relevant patterns in the organization of the dataset. This could carefully be interpreted as 
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Fig. 10. Geo-location referenced mean physiological responses across all participants. An animation of this graphic indicating real-time simulation is avail- 

able at [12] . 

a “cause” ( Fig. 9 (a)) and “effect” (consult with Fig. 9 (b) and (c)) of the dynamic and simultaneous environmental features 

with the participants’ physiological responses. 

On the U-matrix ( Fig. 9 (b)) a bright yellow patch separates itself from all the other nodes clusters. This distinctly available 

yellow spot is the result of a high concentration of a set similar input samples, which in this case, is due to the concentration 

high illuminance values as evident from F-matrix for illuminance ( Fig. 9 (a)). Fig. 9 (c) shows that at the exact same spot, 

participants’ had aroused physiological state (most of the nodes are colored blue) and nodes were labeled with participants 

ID’s (8, 13, 23, and 29) indicating that all the participants exposed to extremely high illuminance also experienced an equal 

aroused physiologically state. 

Additionally, three other clusters of dark blue exist on the U-Matrix in Fig. 9 (b): one at the bottom-left, one at the top- 

left and one at the top-right above the yellow patch. Investigating the F-matrices in Fig. 9 (a), we can find that the clusters 

at the bottom-left and the top-left in Fig. 9 (b) are the results of high values of sound and temperature and extremely low 

values of illuminance. These clusters, when compared to L-matrix in Fig. 9 (c), indicate that the majority of participants 

responded with an aroused physiological state. Similarly, the cluster on the top-right is due to a combination of low values 

of dust and temperature. The corresponding L-matrix in Fig. 9 (c) has the majority of nodes indicating a normal physiological 

state. Further, the F-matrix for Isovist area in Fig. 9 (a) shows that the high value of Isovist area resulted in an aroused 

physiological state, also evident from the L-matrix in Fig. 9 (c). L-matrix also indicates that participant IDs 16, 23, 24, 29, 32, 

and 35 experienced such a high Isovist area and responded with a similar physiological state. 

In pattern analysis, the mean physiological response across all participants was mapped onto the geographic location 

along the path. The geo-location referenced mean physiological response was computed and normalized between 0 and 1. 

The geo-location referenced physiological responses highlighted specific locations on the neighborhood’s map where par- 

ticipants experienced aroused physiological state ( Fig. 10 ). The locations, where on average all participants exhibited high 

physiological arousal response are indicated in red while low physiological arousal is indicated by yellow. Varying size of 

dots on the map in Fig. 10 is proportional to the degree of participants’ physiological arousal. 

5. Discussion 

Through this research, we extracted patterns from the data gathered during a controlled study, where we asked par- 

ticipants to walk through an urban environment ( Section 2.2 ). Our data analysis methods had the following dimensions: 

signal processing, multi-sensor information fusion, and knowledge mining using machine learning techniques. The sensor 

frequency unification and quantification led to the preparation of identically independent data samples of events and corre- 

sponding physiological response. During the data processing phase, we categorized physiological response data (EDA signals) 

into clean and erroneous signals ( Section 3.1 ). EDA signal recording is susceptible to artifacts and the suggested definition 
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identifies an erroneous EDA signal. Finally, the quantification method segmented the continuous temporal data into regular 

time intervals of t -seconds (time-window size) and the quantification rate of 5-s was most efficient ( Section 4.1 ). 

We applied both supervised and unsupervised machine learning techniques. This included testing REP-Trees’ predictive 

accuracy in determining the models’ sensitivity towards five different quantification rates: 5, 10, 15, 20, and 25 s. The pre- 

dictive model at t = 5 s had the highest accuracy ( Fig. 6 ). The high accuracy of the REP-Tree model indicates its predictive 

ability of the participants’ normal and aroused physiological responses state for a given set of environmental condition con- 

sisting of sound level, dust, temperature, humidity, illuminance, and Isovist descriptors. 

The inference modeling, in addition, produced exact values of the environmental features and their influence on par- 

ticipants physiological response state ( Section 4.2 ). Also, the environment features with the largest range of values in the 

dataset (highest distribution) were directly linked to normal physiological responses ( Fig. 7 ). In other words, the participants 

showed a “habitual effect,” and they tend to respond differently to a change in the environmental condition from the pre- 

vious one ( Section 4.2 ). Such a generalization of fuzzy rules across all participants is limited because of the availability of 

fewer data samples and the variations in cities’ architectures. However, it is necessary to mention that all participants en- 

gaged in the study on different days and different time-of-day and we observed a high accuracy in the model’s predictability 

despite being applied to such a complex and diverse dataset. For example, a fuzzy rule ( Fig. 7 ) indicates that a participants’ 

arousal levels correspond to extremely low illuminance, or high temperature, or a large Isovist area. Specifically, change in 

physiological arousal was observed for a small to a large Isovist area, i.e., an entry to a crossroad and passing from a narrow 

to a wider street ( Fig. 10 ). 

It was difficult to identify the features with the highest influence on the physiological response from the inference mod- 

eling. Therefore, a backward feature elimination method with three predictors ( Section 3.3.3 ) helped determine the most 

significant environmental feature(s) and is presented in a significance hierarchy triangle ( Fig. 8 ). The feature selection pro- 

cess, however, had its trade-off; when reducing the number of features from the feature set, it also decreases the accuracy 

of the predictors. After a thorough inspection of Fig. 8 , the predictors suggest the temperature, humidity, illuminance and 

the Isovist area as the most significant features set compared to a set of any other features combination ( Section 4.3 ). 

SOM was employed for automatic clustering to discover patterns in the dataset ( Section 4.4 ). The participants with sim- 

ilar environmental conditions were expected to have a similar perception (physiological arousal state) and expected to fall 

into the same cluster or node on the map. For example, a cluster formed due to extremely high illuminance and another for 

low illuminance conditions ( Fig. 9 ). This indicates that a particular environmental condition influences most of the partici- 

pants equally and the majority of participants responded to a similar physiological response state when experiencing similar 

conditions. Furthermore, because the participants walked at different speeds, the number of quantified events correspond- 

ing to each participant slightly varied. Therefore, the geo-location referenced normalized mean of the events was the best 

method to show the geolocation of the participants’ average physiological responses on the map ( Fig. 10 ). This map can be 

used to visually inspect the impact of urban features, such as street-width, street-type, traffic, type of area (residential and 

industrial) and their potential impact on the participants’ physiological response. 

6. Challenges and opportunities 

The methods developed for this investigation help reveal patterns from complex human-environment interactions. The 

analysis predominantly focused on improved quantification methods for physiological arousal level detection and a means to 

correlate arousal level with environmental stimuli. This approach allows us to observe an increase in physiological arousal in 

response to specific environmental conditions ( Section 5 ). The primary challenge of this study was the process of selecting 

the appropriate tuning parameters to quantify and evaluate the arousal label. For example, the accuracy of the methods 

( Fig. 6 ) varied depending upon the quantification rate. Similarly, the accuracy of the method depends on the procedure and 

threshold adopted for the nSCRs level detection [6] . Moreover, we captured 9 features of a real-world dynamics situation. 

Hence, an increased number of features may further improve the predictive model’s accuracy. 

Future studies can utilize the presented experimental design and quantification methodology. For instance, it can be 

extended to capture citizen’s public transport commuting experience (physiological response while walking, waiting, and 

riding), and for traffic safety, the method can be potentially applied to understand the physiological arousal pattern of ve- 

hicle riders while they ride through cities [10,34] . Moreover, the developed predictive model can be used to extrapolate the 

potential citizen’s arousal levels to a larger geographic area when combined with the isovist values and measured environ- 

mental data beyond the selected path. 

In this research, we recognized factors influencing humans perception. Whereas to meet the refereed challenges, our 

findings suggest that further employing virtual reality set-up could help reducing noise that may be induced by unknown 

factors. Additionally, our findings suggest that a subjective thresholding skin conductance can also be employed to mitigate 

the challenges. 

Moreover, in the field of urban studies, it is crucial to understand how the built environment influences human behavior 

and perception. This question has been central to the practice and research ever since and poses a fundamental method- 

ological problem since it is especially difficult to a) objectively measure perception and b) deal with the multitude dynamic 

environmental factors preventing to identify the effect of pure urban form on human perception. As an answer to this 

problem, this research provides a major contribution by presenting and empirically testing a novel research framework for 

predicting and inferring the effects of planning decisions on human perception. In essence, the framework provides insides 
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into How, and Why do architecture and urban design influence human perception which is particularly helpful for evalu- 

ating planning proposals and guiding the design decisions. For this purpose, we adopt the state of the art mobile sensing 

technologies as well as machine learning methods which are specifically chosen and adapted for needs of architecture and 

urban design research. 

7. Conclusions 

This research presented a specific methodology to evaluate a complex dataset from an experiment with physiological 

responses of 30 participants linked to environmental conditions. The measurements in the dataset came from seven sen- 

sors with differing frequencies and four additional geometric features. The proposed data quantification and multi-sensor 

information fusion methods linked participants’ physiological state of arousal to environmental conditions. Four categories 

of machine learning techniques (non-inferential modeling, inferential modeling, feature selection, and clustering) revealed 

patterns in the dataset: The high accuracy of the non-inferential predictive model was evidence of the participants’ physio- 

logical state sensitive to the changes in environmental conditions. The fuzzy rule-based inferential modeling results indicate 

that the occurrence of “normal” and “aroused” physiological conditions corresponds to specific values (and range of values) 

for each environment feature. It suggested that the changes in the participant physiological arousal state primarily occurred 

due to the fluctuations in the environmental conditions. Feature selection showed that some environmental features, such as 

temperature, humidity, illuminance, and the-filed-of-view were more dominant in their influence on participants’ physiolog- 

ical response than sound level and dust. Pattern analysis from self-organizing map indicated that, primarily, the participants 

who experience similar environmental conditions responded in similar physiological arousal state. Finally, the geo-location 

referencing of average physiological response across all participants produced a means to visually inspect how participants 

respond during the actual walk in relation to permanent urban features. The proposed data analysis framework revealed 

patterns from the complex spatial-temporal environmental and physiological data that impact our understanding of urban 

settings. 
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Appendix A 

Table A.1 

Parameter settings of the machine learning techniques. 

Algorithm/Tool Parameter Definition/Purpose Value 

Ledalab Analysis type Type of method for decomposing a signal Continuous decomposition 

Optimization time Number of times a signal is optimized 2 

Window range 1 3.7 s 

Smooth method Gaussian 

Smoothing wind 0.2 s 

REP-Tree #Leaf instances Minimum children per node. 2 

Depth Maximum limit of tree depth/level. No limit 

Pruning Pruning of tree nodes. True 

FURIA Function Membership function for fuzzification Trapezoidal 

MLP Learning rate Convergence speed. 0.3 

Momentum rate Influence of previous iteration. 0.2 

Hidden Layer Maximum hidden layer nodes. 10 

Iterations Maximum time for parameter optimization 10 0 0 

LibSVM SVM kernel Type of function at a hidden node Radial basis function 

Epsilon Termination criteria for algorithm 0.001 

SOM Map dimension Dimension of the 2D plane 20 ×20 

Normalization Method of data normalized for SOM training Linear scaling 

Training mode Number of samples in an epoch of training. Batch 

Iteration Number of training epochs 25 

Fine-tuning Number of fine-tuning epochs 20 
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