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ABSTRACT
The 3G/LTE wireless interface is a significant contributor to battery
drain on mobile devices. A large portion of the energy is consumed
by unnecessarily keeping the mobile device’s radio in its “Active”
mode even when there is no traffic. This paper describes the design
of methods to reduce this portion of energy consumption by learning
the traffic patterns and predicting when a burst of traffic will start
or end. We develop a technique to determine when to change the
radio’s state from Active to Idle, and another to change the radio’s
state from Idle to Active. In evaluating the methods on real usage
data from 9 users over 28 total days on four different carriers, we
find that the energy savings range between 51% and 66% across
the carriers for 3G, and is 67% on the Verizon LTE network. When
allowing for delays of a few seconds (acceptable for background
applications), the energy savings increase to between 62% and 75%
for 3G, and 71% for LTE. The increased delays reduce the number
of state switches to be the same as in current networks with existing
inactivity timers.
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1. INTRODUCTION
Over a fifth of the 5.5 billion active mobile phones today have

“broadband” data service, and this fraction is rapidly growing. Smart-
phones and tablets with wide-area cellular connectivity have become
a significant, and in many cases, dominant, mode of network access.
Improvements in the quality of such network connectivity suggest
that mobile Internet access will soon overtake desktop access, es-
pecially with the continued proliferation of 3G networks and the
emergence of LTE and 4G.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

Wide-area cellular wireless protocols need to balance a number
of conflicting goals: high throughput, low latency, low signaling
overhead (signaling is caused by mobility and changes in the mo-
bile device’s state), and low battery drain. The 3GPP and 3GPP2
standards (used in 3G and LTE) provide some mechanisms for the
cellular network operator and the mobile device to optimize these
metrics [22, 3], but to date, deployed methods to minimize energy
consumption have left a lot to be desired.

The 3G/LTE radio consumes significant amounts of energy; on
the iPhone 4, for example, the stated talk time is “up to 7 hours
on 3G” (i.e., when the 3G radio is on and in “typical” use) and
“up to 14 hours on 2G”.1 On the Samsung Nexus S, the equivalent
numbers are “up to 6 hours 40 minutes on 3G” and “up to 14 hours
on 2G”.2 That the 3G/LTE interface is a battery hog is well-known
to most users anecdotally and from experience, and much advice on
the web and on blogs is available on how to extend the battery life
of your mobile device.3 Unfortunately, essentially all such advice
says to “disable your 3G data radio” and “change your fetch data
settings to reduce network usage”. Such advice largely defeats the
purpose of having an “always on” broadband-speed wireless device,
but appears to be the best one can do in current deployments.

We show the measured values of 3G energy consumption for
multiple Android applications in Figure 1.4 This bar graph shows
the percentage of energy consumed by different 3G radio states. For
most of these applications (which are all background applications
that can generate traffic without user input, except for Facebook),
less than 30% of the energy consumed was during the actual trans-
mission or reception of data. Previous research arrived at a similar
conclusion [4]: about 60% of the energy consumed by the 3G inter-
face is spent when the radio is not transmitting or receiving data.

In principle, one might imagine that simply turning the radio off
or switching it to a low-power idle state is all it takes to reduce
energy consumption. This approach does not work for three reasons.
First, switching between the active and the different idle states takes
a few seconds because it involves communication with the base
station, so it should be done only if there is good reason to believe
that making the transition is useful for a reasonable duration of time
in the future. Second, switching states consumes energy, which
means that if done without care, overall energy consumption will
increase compared to not doing anything at all. Third, the switching
incurs signaling overhead on the wireless network, which means

1http://www.apple.com/iphone/specs.html
2http://www.gsmarena.com/samsung_google_
nexus_s-3620.php
3http://www.intomobile.com/2008/07/23/
extend-your-iphone-3gs-battery-life/
4An HTC G1 phone connected to a power monitor [13], with only
one application running, at one indoor location.
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Figure 1: Energy consumed by the 3G interface. “Data” cor-
responds to a data transmission; “DCH Timer” and “FACH
Timer” are each the energy consumed with the radio in the idle
states specified by the two timers, and “State Switch” is the
energy consumed in switching states. These timers and state
switches are described in §2.

that it should be done only if the benefits are substantial relative to
the cost on the network.

This paper tackles these challenges and develops a solution to
reduce 3G/LTE energy consumption without appreciably degrading
application performance or introducing a significant amount of sig-
naling overhead on the network. Unlike currently deployed methods
that simply switch between radio states after fixed time intervals—
an approach known to be rather crude and sub-optimal [21, 4, 11,
19])– our approach is to observe network traffic activity on the mo-
bile device and switch between the different radio states by adapting
to the workload.

The key idea is that by observing network traffic activity, a control
module on the mobile device can adapt the 3G/LTE radio state
transitions to the workload. We apply statistical machine learning
techniques to predict network activity and make transitions that are
suggested by the statistical models. This approach is well-suited to
the emerging fast dormancy mechanism [1, 2] that allows a radio to
rapidly move between the Active and Idle states and vice versa. Our
goal is to reduce the energy consumed by networked background
applications on mobile devices.

This paper makes the following contributions:
1. A traffic-aware design to control the state transitions of a 3G/LTE

radio taking energy consumption, latency, and signaling overhead
into consideration. The design incorporates two algorithms:

(a) MakeIdle, which uses aggregate traffic activity to predict the
end of an active session by building a conditional probability
distribution of network activity.

(b) MakeActive, which delays the start of a new session by a
few seconds to allow multiple sessions to all become active
at the same time and therefore reduce signaling overhead.
This method is appropriate for non-interactive background
applications that can tolerate some delay.

2. An experimental evaluation of these methods on real usage data
from nine users over 28 total days on four different carriers. We
find that the energy savings compared to the status quo range
between 51% and 66% across the carriers for 3G, and is 67%
on the Verizon LTE network. When allowing for delays of a
few seconds (acceptable for background applications), the energy
savings increase to between 62% and 75% for 3G, and 71% for

(a) 3G RRC.

(b) LTE RRC.

Figure 2: Radio Resource Control (RRC) State Machine.

LTE. The increased delays reduce the number of state switches to
be the same as in current networks with existing inactivity timers.

2. BACKGROUND
This section describes the 3G/LTE state machine and its energy

consumption.

2.1 3G/LTE State Machine
The Radio Resource Control (RRC) protocol, which is part of the

3GPP standard, incorporates the state machine for energy manage-
ment shown in Figure 2.

The base station maintains two inactivity timers, t1 and t2, for
each mobile device. For a device maintaining a dedicated channel
in the Active (Cell_DCH) state with the base station, if the base
station sees no data activity to or from the device for t1 seconds,
it will switch the device from the dedicated channel to a shared
low-speed channel, transitioning the device to the “High-power idle”
(Cell_FACH) state. This state consumes less power than “Active”,
but still consumes a non-negligible amount of power. If there is
no further data activity between the device and base station for
another t2 seconds, the base station will turn the device to either the
Cell_PCH or IDLE state. We refer to the Cell_PCH and IDLE states
together as the “Idle” state, because the device consumes essentially
no power in either state. For LTE networks (Figure 2(b)), there are
only two states: RRC_CONNECTED and RRC_IDLE (there are
substates in RRC_CONNECTED [8], which we do not discuss here
because they are not relevant), and one inactivity timer, shown as t1.

The inactivity timers (t1 and t2) are useful because a state transi-
tion from “Idle” to “Active” (Cell_DCH) incurs significant delays.
For example, in our measurements in the Boston area, these values
are ≈ 1.4 seconds on AT&T’s 3G network, ≈ 3.6 seconds on T-
Mobile’s 3G network, ≈ 2.0 seconds on Sprint’s 3G network, ≈ 1.0
second on Sprint’s LTE network, ≈ 1.2 seconds on Verizon’s 3G
network, and ≈ 0.6 seconds on Verizon’s LTE network (these num-
bers may vary across different regions). Each state transition also
consumes energy on the device and incurs signaling overhead for



the base station to allocate a dedicated channel to the device. The
inactivity timers also prevent the base station from frequently releas-
ing and re-allocating channels to devices which causes per-packet
delay for the device to be high.

The description given above captures the salient features of the
3GPP standard. Another popular 3G standard is 3GPP2 [3]. Al-
though 3GPP2 networks use different techniques, from the per-
spective of energy consumption, they are essentially identical to
3GPP [21]; like 3GPP, 3GPP2 networks also have different power
levels for different states on the device side, and use similar inactiv-
ity timers for state transitions. For concreteness, in this paper, we
focus on 3GPP networks.

2.2 Energy Consumption
We measured the power consumption and inactivity timer values

using the Monsoon Power Monitor [13]. Figure 3 shows graphs
of our measurements during a radio state switches cycle on an
HTC Vivid smartphone in AT&T’s 3G network and on a Galaxy
Nexus smartphone in Verizon’s LTE network. (We show results for
other carriers in Section 6.) During the High-power idle (FACH for
AT&T) and part of Active (DCH for AT&T, RRC_CONNECTED
for Verizon) states, there is no data transmission. The RRC state
machine keeps the radio on here in case a new transmission or re-
ception occurs in the near future. Consistent with previous work [4],
we use the term tail to refer to this duration when the radio is on but
there is no data transmission.

We measured the inactivity timer values in AT&T’s 3G network
in the Boston area to be t1 ≈ 6.2 seconds and t2 ≈ 10.4 seconds. The
energy consumed at the end of a data transfer when the radio is in
one of the two Idle states before turning off is termed the tail energy;
this energy can be 60% or more of the total energy consumption of
3G [4].

3GPP Release 7 [1] proposed a feature called fast dormancy,
which allows the device to actively release the channel by itself
before the inactivity timer times out on the base station. One of the
issues that then arises is that the base station loses control over the
connection when mobile devices are able to disconnect by them-
selves. In 3GPP Release 8 [2], fast dormancy was changed: the
mobile device first sends a fast dormancy request, and the base
station will decide to release the channel or not. In Europe, Nokia
Siemens Networks has applied Network Controlled Fast Dormancy
based on 3GPP Release 8. Because it is not entirely clear what
policy any given network carrier will use to decide whether to re-
lease the channel upon receiving a request at a base station, in our
simplified model, we assume that if the base station is running 3GPP
Release 8, whenever the phone sends a fast dormancy request to
the base station, the base station will accept and release the channel.
Our goal is to evaluate the network signaling overhead of such a
strategy as a way to help inform network-carrier policy.

3. DESIGN
The key insight in our approach to reduce 3G energy consumption

is that by observing and adapting to network activity, a control
module can predict when to put the radio into its Idle state, and
when to move from Idle to Active state. These state transitions take
a non-trivial amount of time—between 1 and 3 seconds—and also
add signaling overhead because each transition is accompanied by a
few messages between the device and the base station. Hence, the
intuition in our approach is to predict the occurrence of bursts of
network activity, so that the control module can put the radio into
the idle mode when it believes a burst has ended, which means there
will not be any more traffic in the future for a relatively long period
of time. Conversely, the idea is to put the radio in active mode when
“enough” bursts of traffic accumulate.

(a) HTC Vivid in AT&T 3G Network.

(b) Galaxy Nexus in Verizon LTE Network.

Figure 3: The measured power consumption of the different
RRC states. Exact values can be found in Table 2. In these fig-
ures the power level for IDLE/RRC_IDLE is non-zero because
of the CPU and LED screen power consumption.

To achieve the prediction, our approach needs to observe network
activity and be able to pause data transmissions. To make our
approach work with existing applications, we should not require any
change to the application code. To achieve these goals, we modified
the socket layer and added a control module inside the Android OS
source code.

Our system has two software modules: one that modifies the
library used by applications to communicate with the socket layer,
and another that implements the control module, as shown in Fig-
ure 4. The first module informs the control module of all socket
calls; in response, the control module configures the state of the
radio. The fast dormancy interface is shown as a dashed module
because our system uses it if it is available.

The control module implements two different methods. The first
method, called MakeIdle, runs when the radio is in the Active state
(Cell_DCH or RRC_CONNECTED) and determines when the radio
should be put into the Idle (IDLE or Cell_PCH or RRC_IDLE) state.
The second method, called MakeActive, runs when the radio is in
the Idle state. In this state, it cannot send any packets without first
moving to the Active state; MakeActive determines how long the
radio should be idle before moving to active state.



Figure 4: System design.

Figure 5: Simplified power model for 3G energy consumption
(for an LTE model, t2 equals to zero).

4. MAKEIDLE ALGORITHM
Instead of using a fixed inactivity timer, the MakeIdle method

dynamically decides when to put the radio into Idle mode after
each packet transmission or reception. We first show in §4.1 how
to compute the optimal decision given complete knowledge of a
packet trace: the result is that the radio should be turned to Idle
if there is a gap of more than a certain threshold amount of time
in the trace, which depends on measurable parameters. Then, in
§4.2, we develop an online method to predict idle durations that will
exceed this threshold by modeling the idle time using a conditional
probability distribution.

4.1 Optimal Decision From Offline Trace Analysis
Suppose we are given a packet trace containing the timestamps

of packets sent and received on a mobile device. Our goal is to
determine offline when to turn the radio to the Idle state to minimize
the energy consumed.

Figure 5 shows a simplified power model we use to calculate
tail energy. If the inter-arrival time between two adjacent packets
is t seconds, then E(t), the energy consumed by the current RRC
protocol with inactivity timer values t1 and t2 (see Figure 2), is

E(t) =

 t ·Pt1 0 < t ≤ t1
t1 ·Pt1 +(t− t1) ·Pt2 t1 < t ≤ t1 + t2
t1 ·Pt1 + t2 ·Pt2 +Eswitch t > t1 + t2

Here, Pt1 and Pt2 are the power values for the active state and high-
power idle state, respectively; the power consumed in the low-power
idle state is negligible. Eswitch is the energy consumed by switching
the radio to Idle mode after the first packet transmission and then
switching it back to Active for the second packet transmission. It

Figure 6: If the energy consumed by the picture on the right
is less than the one on the left, then turning the radio to Idle
soon after the first transmission will consume less energy than
leaving it on. The energy is easily calculated by integrating the
power profiles over time.

is a fixed value for a given type of mobile device and is easy to
measure.

On the other hand, if the radio switches to Idle mode immediately
after the first packet transmission finishes, the energy consumed is
just Eswitch.

To minimize the energy consumed between packets, the radio
should switch to Idle mode after a packet transmission if, and only
if, Eswitch < E(t). Notice that because E(t) is a monotonically non-
decreasing function of t, there exists a value for t, which we call
tthreshold , for which Eswitch < E(t) if and only if t > tthreshold . This
expression quantifies the intuitive idea that after each packet, the
radio should switch to Idle mode only if we know that next packet
will not arrive soon; concretely, not arrive in the following tthreshold
seconds. For example, on an HTC Vivid phone in the AT&T 3G
network deployed in the Boston area, tthreshold works out to be 1.2
seconds.

4.2 Online Prediction
To minimize energy consumption in practice, we need to predict

whether the next packet will arrive (to be received or to be sent)
within tthreshold seconds. Of course, we would like to make this
prediction as quickly as possible, because we would then be able to
switch the radio to Idle mode promptly. We make this prediction
by assuming that the packet inter-arrival distribution observed in
the recent past will hold in the near future. After each packet, the
method waits for a short period of time and sees whether any more
packets arrive. If a packet arrives, the method resets and waits, but if
not, it means a transfer may be finished and the radio should switch
to Idle mode.

The strategy works as follows:
1. Without loss of generality, suppose the current time is t = 0.

Compute the conditional probability that no packet will arrive
within twait + tthreshold seconds, given that no packet has arrived
in twait seconds.

P(twait) = P(no packet in twait + tthreshold |no packet in twait)

This conditional distribution is easy to compute given observa-
tions of the packet arrival times of the last several packets.
From the traces we collected, we observed that P(twait) increases
as twait increases, when twait is in the range of [0, tthreshold ] (if
twait is greater than tthreshold , it means the radio has been idle for
too long time after the packet transmission and there is not much
room for energy saving). This property implies that the longer
the radio waits and sees no packet, the higher the likelihood that
no packet will arrive soon.

2. Now we need to find twait in order to make the likelihood “high
enough”. During twait , the radio consumes energy, so to decide
how much is “high enough”, we should take energy consump-



tion into account. Our answer is: P(twait) is “high enough” if
the expected energy consumption of waiting for twait and then
switching states is less than the expected consumption of waiting
for the inactivity timer to time out in the next twait seconds.
The method determines twait by minimizing the expected energy
consumption across all possible values of twait , and taking the
value that minimizes the consumption. We explain how below.

The expected energy consumption of waiting for twait and then
switching states is:

E[Ewait_switch] = [Eswitch +E(twait)]

Here, E(twait) is the energy consumed by waiting for twait seconds
and Eswitch is the energy consumed by state switches.

The expected energy consumption of waiting for inactivity timer
to time out is:

E[Eno_switch] =
∫ t1+t2

t=0
P(inter_arrival_time = t)

dE(t)
dt

dt

(1)

The following expression now is a function of twait :

f (twait) = E[Eno_switch]−E[Ewait_switch]. (2)

The best twait is the one that maximize f (twait), which means that
the corresponding value for twait gives us highest expected gains
over the current RRC protocol.

In implementing this algorithm, we take the latest n packets (we
discuss how to choose n in Section 6.3) that the control module
has seen, to construct the inter-arrival distribution. As new packets
are seen, the “window” of the n packet slides forward, and the
distribution is adjusted accordingly.

5. MAKEACTIVE ALGORITHM

Figure 7: “Shift” traffic to reduce number of state switches.

MakeIdle reduces the 3G wireless energy consumption by switch-
ing the radio to Idle mode frequently. Figure 7 (top) shows that
MakeIdle may bring more state switches from Idle to Active and
from Active to Idle. These switches cause signaling overhead at
the base station. One idea to reduce the signaling overhead is to
“shift” the traffic bursts in order to combine several traffic bursts
together [19, 4], as shown in Figure 7(middle and bottom chart). The
longer earlier bursts are delayed, the more bursts we can accumulate
and the fewer state switches occur.

In this section, we only consider those background applications
for which one can delay the traffic for a few seconds without appre-
ciably degrading the user’s experience, not interactive applications
where delaying by a few seconds is unacceptable. Our approach
differs from previous work [19, 4], where the authors aim to reduce
energy consumption by batching bursts of traffic together so that
they can share the tail energy. By contrast, because the MakeIdle
algorithm already reduces energy by turn radio to the idle mode,
MakeActive focuses on reducing the number of state switches to a
level comparable to the status quo. As a result, the amount of delay
introduced by this method should be much smaller than in previous
work.

We first consider a relatively straightforward scheme in which
the start of a session (i.e., a burst of packets) can be delayed by at
most a certain maximum delay bound, Tf ix_delay. We then apply
a machine learning algorithm, which induces the same number of
state switches as the fixed delay bound method, but in addition
reduces the delay for each traffic burst. Our contribution lies in the
application of this algorithm to learn idle durations for the radio,
balancing signaling overhead and increased traffic latency.

5.1 Fixed Delay Bound
A simple strawman is to set a fixed delay bound, Tf ix_delay. When

the radio is in Idle state and a socket tries to start a new session at
current time t, and no other such requests are pending, the control
module decides to delay turning the radio to Active mode until
t +Tf ix_delay, so that other new sessions that might come between
time t and t +Tf ix_delay will all get buffered and will start together
at time t +Tf ix_delay. There is a trade-off between the delay bound
and the number of sessions that can be buffered. Note that once a
session begins, its packets do not get further delayed, which means
that TCP dynamics should not be affected by this method.

In the current RRC protocol, the inactivity timers t1 and t2 guar-
antee that after each traffic burst, any new burst comes within t1 + t2
will not introduce extra state switches between Idle and Active. So
in our implementation, we make Tf ix_delay = k× (t1 + t2) where k
is the average number of bursts during each of the radio’s active
period.

5.2 Learning Algorithm
The problem with a fixed delay bound is that it does not adapt

to the traffic pattern. Every time the delay is triggered, the first
transmission may incur a delay of as long as Tf ix_delay. We show in
the evaluation that a large portion of the traffic bursts get delayed by
Tf ix_delay. However, waiting as long as Tf ix_delay may be overkill; as
data accumulates (especially from different sessions), there comes a
point when the radio should switch to Active and data sent before
this delay elapses, which will reduce the expected session delay
while still saving energy.

We apply the bank of experts machine learning algorithm [14, 16].
Each “expert” proposes a fixed value for the session delay. In each
iteration (each time the radio is in Idle mode and a transmission
occurs), we computed a weighted average value from the experts
and update the weights according to a loss function. The process to
update each expert’s weight is a standard machine learning process,
detailed in the appendix.

The loss function is a crucial component of the scheme and de-
pends on the details of the problem to which the learning is applied.
Because our goal is to reduce number of state switches by batching,
in addition to the delay, the loss function should express the trade-off
between the total time delayed for all the buffered sessions and the
number of session buffered. The following equation captures this
tradeoff:



L(i) = γDelay(Ti)+
1
b
,γ > 0

Here, γ is a constant scaling parameter between the two parts of
the loss function (we chose 0.008 in our implementation because
it gave the best energy-saving results among the values we tried).
Delay(Ti) is the aggregate time delayed over b sessions, if we choose
expert i. b is the number of sessions currently buffered, which
is equivalent to the number of state switches avoided. The 1/b
term ensures that as the number of buffered sessions increases, the
value of this part of the loss function reduces, while the other term
γDelay(Ti) may increase.

Let t j be the arrival time of the jth session. Then,

Delay(Ti) =
b

∑
j=1

Ti− t j.

6. EVALUATION
We evaluate MakeActive and MakeIdle using trace-driven sim-

ulation. We first describe the simulation setup. Then, we evaluate
the two methods using traces collected from popular applications
run by a few real users. Finally, we compare these methods across
different cellular networks.

6.1 Simulation Setup
Energy model. One challenge in our simulations is to accurately
estimate the energy consumed given a packet trace containing packet
arrival times and packet lengths. Previous work [8] showed that for
3G/LTE, the value of the energy consumed per bit changes as the
size of traffic bursts changes. Because our methods may change the
size of the traffic bursts, (e.g., MakeIdle may decide to switch the
radio to Idle mode within a burst), we build our energy model using
the energy consumed per second, which is the power for sending or
receiving data.

Network Sending Power (mW) Receiving Power (mW)
AT&T 3G 2043 1177
Verizon LTE 2928 1737

Table 1: Average power in mW measured on Galaxy Nexus in
Verizon Network. The energy consumed by CPU and screen is
subtracted.

Table 1 shows the average power consumed when the phone is
sending or receiving bulk data using UDP. Based on this value, we
estimate the energy consumed within a traffic burst using the packet
inter-arrival time and the packet direction (incoming/outgoing): for
each packet reception, the energy consumed is the inter-arrival time
multiplied by the average receive power, and similarly for each
packet transmission.

To justify this method, we measure the smartphone’s energy
consumption when it is sending and receiving TCP bulk transfers of
different lengths. Each experiment contains five runs. In each run,
the phone sends and receives TCP bulk transfers of three lengths
(10 kBytes, 100 kBytes and 1000 kBytes) one after another, with
a long-enough idle period between each transfer. We find that, on
average, the error in the estimated energy consumption is within
10% or less of the true measured value.

One caveat in our energy model is that because fast dormancy
is not yet supported on US 3G/LTE networks, we were unable
to accurately measure the delay to turn the radio from Active to
Idle and the energy consumed. We believe, however, that one can
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Figure 8: Simulation energy error for Verizon 3G and LTE net-
works.

approximate this value by measuring the delay and energy consumed
in turning the data connection off on the phone. In practice, we
expect the delay and energy of fast dormancy switching to be lower,
so we model the turn-off energy and delay for fast dormancy to
be 50% of the values measured while turning the radio off. We
also evaluated our methods for reasonable fractions (10%, 20%,
40%) other than 50%, and found that the results did not change
appreciably; hence, we believe that our conclusions are likely to
hold if one were to implement the methods on a device that supports
fast dormancy.

Trace data sets. We collected tcpdump traces on an HTC G1
phone running Android 2.2 for the seven different categories of
applications listed below. For each category, we choose a popular
application in the Android Market. Each collected trace was 2 hours
long. Most of these applications have the “always on” property in
that they usually send or receive data over the network whenever
they run, without necessarily requiring user input.

News: A news reader that has a background process running to
fetch breaking news.

Instant Message (IM): An IM application that sends heartbeat
packets to the server periodically, typically every 5 to 20 seconds.

Micro-blog: A micro-blog application, which automatically
fetches new tweets without user input.

Game with ad bar: A game that can run offline, but with an
advertisement bar that changes the content roughly once per minute.

Email: This application is run mostly in the background, synchro-
nizing with an email server every five minutes.

Social Network: A user using the social network application to
read the news feeds, clicks to see pictures, and posts comments.
When running in background, this application updates only every
30 minutes. We did not collect much background traffic from it. We
use the foreground traffic trace for comparison trace.

Finance: An application for monitoring the stock market, which
updates roughly once per second when running in the foreground.

We also collected real user data from six different users using
Nexus S phones in T-Mobile’s 3G network and from four different
users using Galaxy Nexus phones in Verizon’s 3G/LTE network.
All the phones run tcpdump in the background. Across all users,
we collected 28 days of data. For each user, the amount of data
collected varies from two to five days.



6.2 Comparison of Energy Savings
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Figure 9: Energy savings for different applications.“4.5-
second” sets the inactivity timer to 4.5 seconds. “95% IAT”
uses the 95th percentile of packet inter-arrival time observed
over the entire trace as the inactivity timer. “MakeIdle” shows
the energy saved by our MakeIdle algorithm. “MakeIdle
+MakeActive Learn” and “MakeIdle +MakeActive Fix” show
the energy savings when running MakeIdle together with two
different MakeActive algorithms: learning algorithm and fixed
delay bound algorithm. Oracle shows the maximum achievable
energy savings without delaying any traffic.

We compare MakeIdle against MakeIdle together with Make-
Active (shown as MakeIdle+MakeActive), and against two other
schemes. The first other scheme is proposed in [6], where a trace
analysis found that 95% of the packet inter-arrival time values are
smaller than 4.5 seconds. The proposal sets the inactivity timer to a
fixed value, t1+t2 = 4.5 seconds. We call this approach “4.5-second
tail”.

The second other scheme is that instead of using the value of 4.5
seconds, we draw the CDF of our traces and get the 95th percentile
of packet inter-arrival time observed in each user’s trace. We call
this approach “95% IAT”, which for the data shown in Figure 9 cor-
responding to one user happened to be 1.67 seconds (the value does
vary across users and also across applications). In our evaluation,
we are granting this scheme significant leeway because we test the
scheme over the same data on which it has been trained. Despite
this advantage, we find that this scheme has significant limitations.

The “Oracle” is an algorithm in which the packet inter-arrival
time is known before packet comes, and the algorithm compares
the inter-arrival time with the tthreshold defined in Section 4.1. The
Oracle scheme gives us an upper bound of how much energy can be
saved without introducing extra delay. Our MakeIdle + MakeActive
algorithm sometimes outperforms the Oracle because it can delay
packets and further reduce the number of state switches.

Figure 9 shows that MakeIdle consistently achieves energy sav-
ings close to the Oracle scheme, and outperforms the “4.5-second”
and “95%” IAT schemes. When both MakeIdle and MakeActive are
combined, the savings are greater.

The “95% IAT” scheme gives little or negative savings for “News”
and “IM”, while the other schemes provide significant positive
savings. This is because the 95% percentile of the inter-arrival time
is highly variable and cannot guarantee savings in all situations. It
is not a robust method.

Figures 10(a) and 11(a) show the estimated energy savings for
each user in the Verizon 3G and Verizon LTE networks, respectively.

In these results, the different schemes are as explained above, except
that the 95% IAT scheme uses per-user (but not per-application)
inter-arrival time CDFs. The gains of MakeIdle and MakeActive
over the other schemes are substantial in most cases. In the LTE
case, the 95% IAT scheme sometimes saves the most energy (for
user 2 and user 3), but sometimes performs worse than MakeIdle (for
user 1); it depends on the user, again showing a lack of robustness.
Perhaps more importantly, the number of state switches is enormous
compared to the other schemes, making it extremely unlikely to be
useful in practice.

6.3 MakeIdle Evaluation
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(b) Verizon LTE.

Figure 12: False (“FP” short for false positive) and missed
switches (“FN” short for false negative).

To understand why MakeIdle outperforms the other methods, we
calculate the fraction of false switches and missed switches for each
method. We use “Oracle” as ground truth and define these ratios as
follows:

FalseSwitch(FalsePositive) = NFS/(NFS +NT N). Here, NFS is
the number of cases where the algorithm switches the radio to Idle
but Oracle decides to keep the radio in Active mode. NT N is the
number of cases where both Oracle and the algorithm decide to keep
the radio Active.

MissedSwitch(FalseNegative) = NMS/(NMS+NT P). Here, NMS
is the number of cases where the algorithm decides to keep the radio
in the Active mode but Oracle switches the radio to Idle. NT P is the
number of cases where both Oracle and the algorithm switch the
radio to Idle. A high missed switch value means the algorithm tends
to keep the radio in Active mode, which may not be energy-efficient.

Figure 12 shows these two ratios for different data sets. Note that
these values for MakeIdle are much smaller than for the other two
algorithms.

Figure 13 shows the false positive and false negative rates (in
percentage) as a function of the number of recent packets used to
construct the distribution defined in Section 4.2. We find that the
false negative rate is relatively constant, while the false positive rate
decreases as the window size increases. For all the other results
shown in §6, we use n = 100.

Another factor that affects battery consumption is the waiting
time between a packet arrival and the time at which the algorithm
actually switches the radio to Idle. For the “4.5-second tail” scheme,
the waiting time is always 4.5 seconds. Similarly, the waiting time
for “95% IAT” is 0.85 seconds for 3G and 0.01 seconds for LTE. In
contrast, MakeIdle chooses the waiting time dynamically, achieving
better gains. Figure 14 shows an example of waiting time changes
in a user’s trace in Verizon 3G network.

6.4 MakeActive Evaluation
Although shortening twait with the MakeIdle algorithm saves

considerable amounts of energy, it may bring about more state
switches between the Low-power idle and Active states. But when
there are multiple applications running at the same time, or when one
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(b) Number of state switches normalized by
status quo.
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Figure 10: Energy savings and signaling overhead (number of state switches) across users in the Verizon 3G network.
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status quo.
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Figure 11: Energy savings and signaling overhead (number of state switches) across users in the Verizon LTE network.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  50  100  150  200  250  300  350  400

F
a

ls
e

 P
o

s
it
iv

e
 o

r 
F

a
ls

e
 N

e
g

a
ti
v
e

 (
%

)

Window size n

MakeIdle FP

MakeIdle FN

Figure 13: False (“FP”) and missed switches (“FN”) changes as
the number of packets used to construct distribution defined in
Section 4.2.

application starts multiple connections, we can reduce the number
of state switches by delaying the connections and batching them
together using MakeActive.

Figures 10(b) and 11(b) show the number of state switches using
different algorithms, normalized by the number measured in the
status quo. Each user has several applications running on the phone.
For MakeIdle only, in the 3G/LTE network, the number of state
switches is at most four to five times higher than the status quo. For
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Figure 14: Waiting time changes in MakeIdle.

MakeIdle with MakeActive, either using the learning algorithm or
the fixed-delay bound, the number of state switches is about the
same as the status quo, meaning that by delaying traffic bursts, our
algorithm can reduce the energy consumption without introducing
any extra signaling overhead. Notice that for the “95% IAT” algo-
rithm in the LTE network, the number of state switches is as high as
35× the status quo because the corresponding timer value is only
0.01 seconds. As a result, this method will always switch the radio
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Figure 15: Mean and median delays for traffic bursts using
learning algorithm and fixed delay bound scheme.

to Idle even if there is only a small gap between packets. In a few
cases, that does save energy, but at great expense.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

number of learning iterations

de
la

y 
(s

ec
on

ds
)

 

 
delay value learned
number of buffered bursts

0 5 10 15 20 25 30
0

2

4

6

8

10

12

nu
m

be
r 

of
 b

uf
fe

re
d 

bu
rs

ts

Figure 16: Delay value changes as the learning proceeds.

In Section 5, we described both the fixed-delay bound and a learn-
ing algorithm. Figure 15 shows that using the learning algorithm
reduces the average delay for each traffic burst by 50% compared
to the fixed-delay bound, while both methods induce a comparable
number of state switches (Figure 10(b) and Figure 11(b)). The learn-
ing algorithm is able to reduce the delay because the loss function
(defined in Section 5.2) balances the tradeoff between the number
of buffered bursts and the total delay. Figure 16 shows that due to
the loss function, the algorithm will reduce the delay bound as the
number of buffered bursts increase.

6.5 Different Carriers
To gain a better understanding on how different carriers’ RRC

state machine configurations affect the observed improvement, in
this part of the evaluation we run our trace-driven simulation on
different RRC profiles measured from the four major US carriers. In
Table 2 we list the measured RRC parameters. There are two cases
where the inactivity timer t2 = 0 (effectively), because we cannot
clearly distinguish t1 and t2 from the energy difference.

Figure 17 shows the percentage of energy saved compared to the
status quo. Figure 18 shows the corresponding signaling overhead.
We find that the “MakeIdle+MakeActive” method outperforms the
“4.5-second tail” method in all the carrier settings. Figure 18 shows
the number of state switches (proportional to signaling overhead) of
different schemes divided by the number of state switches without
using any scheme.

The maximum signaling overhead for MakeIdle is less than 3.1×
the baseline where no fast dormancy is triggered. For “MakeI-
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Figure 17: Energy saved for different carrier parameters us-
ing different methods. For “MakeIdle”, the maximum gain is
67% in Verizon LTE netwrok. For “MakeIdle+MakeActive”,
the maximum gain is 75% achieved in Verizon 3G.

dle+MakeActive”, the signaling overhead reduces to only 1.33× or
less, a 62% reduction from the previous 3.1×, and is close to the
signaling overhead of “4.5-second tail”. The session delays brought
by MakeActive are listed in Table 3.

In both Figure 17 and 18, the result shown as MakeIdle has
no traffic batching, which corresponds to the case when all the
traffic is treated as delay-sensitive, for example, web browsing. The
MakeActive method is disabled in this case to make sure that the
user’s experience is not adversely affected. One possible method
to decide when to disable MakeActive is for the control module
maintain a list of delay-sensitive or interactive applications; when
any of these applications is running in the foreground, the system
disables MakeActive.

Even without MakeActive, the reduction in energy consumption
is still significant in all the 4 carrier settings. The maximum gain
is for Verizon LTE, where MakeIdle save 67% energy over status
quo. With MakeIdle, the maximum gain is Verizon 3G, where the
energy saving reaches 75%, and the corresponding median delay is
4.48 seconds.

6.6 Energy overhead of running algorithms
To measure the Energy overhead of running our methods, we

Network Psnd Prcv Pt1 Pt2 t1 t2
T-Mobile 3G 1202 737 445 343 3.2 16.3
AT&T HSPA+ 1539 1212 916 659 6.2 10.4
Verizon 3G 2043 1177 1130 1130 9.8 0
Verizon LTE 2928 1737 1325 - 10.2 -

Table 2: Power and inactivity timer values for different net-
works. Power values are in mW, times are in seconds.

Network Mean Delay Median Delay
T-Mobile 3G 5.11 5.11
AT&T HSPA+ 4.80 4.65
Verizon 3G 4.67 4.48
Verizon LTE 4.62 4.38

Table 3: The mean and median session delays brought by
MakeIdle for different carriers (in seconds).
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Figure 18: Number of state switches (signaling overhead) for
different methods divided by number of state switches using
the current inactivity timers.

implemented the algorithms on our test phones. We then generated
traffic from the phone based on the user traces we collected. We ran
the traffic generator with and without our methods enabled, ensuring
that it generates the same traffic in all the experiments. We used the
power monitor to measure the total energy consumed in both cases.
The energy overhead for running our algorithm is 1.7% for AT&T
HTC Vivid and 1.9% for Verizon Galaxy Nexus.

7. RELATED WORK
We divide related work into measurement studies of 3G energy

consumption and approaches to reduce that energy, 3G usage profil-
ing, and WiFi power saving methods.

3G energy mitigation strategies:
Past work aimed at eliminating the tail energy falls into three

categories: inactivity timer reconfiguration, tail cutting, and tail
sharing.

Inactivity timer reconfiguration. Lee et al. [11] developed ana-
lytic models for energy consumption in WCDMA and CDMA2000
and showed that the inactivity timer should be dynamically config-
ured. Falaki et al. [6] proposed an empirical method by plotting
the CDF of packet inter-arrival times for traces collected on smart-
phones communicating over 3G radio over long period of time
(several days). They found that 95% of the packet inter-arrival time
values are smaller than 4.5 seconds, and proposed setting the inactiv-
ity timer to a fixed value, t1 + t2 = 4.5 seconds. Our approach finds
a dynamic inactivity timer value using traffic pattern information
within a short period of time.

Tail cutting. Qian et al. [19] gave an algorithm, TOP, to help the
device decide when to trigger fast dormancy based on the informa-
tion provided by applications running on the device. Their algorithm
requires the application to predict when the next packet will come
and report it to the OS. This approach requires modifications to
the applications, and it is not clear how each application should
make these predictions. Our work requires no modification to the
application code and does not require the application to predict its
traffic.

Traffic batching. Balasubramanian et al. [4] propose an
application-layer protocol, TailEnder, to coalesce separate data trans-
fers by delaying some of them. For delay-tolerant applications such
as email, TailEnder allows applications to set a deadline for the
incoming transfer requests; they suggest and evaluate a relatively
long delay of 10 minutes for such applications. For applications

that can benefit from prefetching, TailEnder prefetches 10 web doc-
uments for each user query. Their design need to re-implement the
application and let each application propose their own delay tolerant
timers, whereas our design is able to “pause” the traffic transmission
at OS layer.

Liu et al. [12] proposed TailTheft, a traffic queuing and scheduling
mechanism to batch traffic among different applications and share
the tail energy among them. One idea of this work is to setup a
timeout value for delay-tolerant transfers, and transfer data when
timeouts or other delay-sensitive transfer have triggered the radio to
Active mode. Similar to TailEnder, they require the application to
specify how much delay is acceptable.

Another traffic batching approach is prefetching. Qian et al. [18]
proposed a prefetching algorithm for YouTube, which erases the tail
between transfers of video pieces.

3G resource usage profiling:
Qian et al. [17] designed an algorithm to infer RRC state machine

states using packet traces. The per-application analysis shows that
some of the popular mobile applications have traffic patterns that
are not energy-efficient, due to low bit-rate transmission, inefficient
prefetching, and aggressive refresh.

WiFi power-saving algorithms:
Much prior work has focused on WiFi power-saving algorithms [9,

10, 20]. The problem in WiFi networks is qualitatively different
from 3G; in WiFi, the time and energy consumed to transition
between states is negligible; what is important is to dynamically
determine the best sleep duration when the WiFi radio is off. In
this state, no packets can be delivered, but the access point will
be able to buffer them; the problem is finding the longest sleep
time that ensures that no packets are delayed (say, by a specified
maximum delay). In the 3G context, changing the state of the radio
consumes time, energy, and network signaling overhead, but there
is no risk of receiving packets with excessive delay because the base
station is able to notify a mobile device that packets are waiting
for it even if the device is in Idle state. Thus, we cannot simply
apply WiFi power-saving algorithms to 3G networks. Also, machine
learning algorithms has been applied to the 802.11 power saving
mode configuration problem [15], but the problem setup is different
for the 3G energy environment because of different tradeoffs we
aim to balance.

Power-saving for processors:
Though not directly related to the problem we address, previous

work on processor power-saving has used a similar model to us in
which the different power states and transitions between different
states are abstracted as a state machine [5]. Here, the power-saving
mechanisms are categorized into static methods and adaptive meth-
ods, with the adaptive methods using a nonlinear regression over
previous idle/active periods and knowledge of how successful previ-
ous power-saving decisions are.

8. CONCLUSION AND FUTURE WORK
3G/LTE energy consumption is widely recognized to be a sig-

nificant problem [4]. We developed a system to reduce the energy
consumption using knowledge of the network workload. In eval-
uating the methods on real usage data from 9 users over 28 total
days on four different carriers, we find that the energy savings range
between 51% and 66% across the carriers for 3G, and is 67% on
the Verizon LTE network. When allowing for delays of a few sec-
onds (acceptable for background applications), the energy savings
increase to between 62% and 75% for 3G, and 71% for LTE. The
increased delays reduce the number of state switches to be the same
as in current networks with existing inactivity timers.



The key idea in this paper is to adapt the state of the radio to
network traffic. To put the 66% saving (without any delays) or 75%
saving (with delay) in perspective, we note that according to the
Nexus S specifications, the reduction in lifetime from using the 3G
radio instead of 2G is 7.3 hours; while it is not clear what application
mix produces these numbers, one might speculate that saving 66%
of the energy might correspond to an increase in lifetime by about
66% of 7.3 hours, or about 4.8 hours.

There are two areas for future work. First, studying the effects of
triggering fast dormancy on the base station side would be useful,
considering issues such as handling multiple phones triggering the
feature, and whether the base station can actively help the phone to
make decisions on fast dormancy by buffering incoming traffic for
the phone. Second, extending the system to include server or base
station functions to coordinate with the mobile device to further
reduce energy consumption.
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APPENDIX
Here we show how bank of experts works. We bound the maximum
delay to n seconds. Each expert “proposes” a delay value Ti:

Ti = i, i ∈ 1 . . .n.

The output of the algorithm is the weighted average over all the
experts:

Tt =
n

∑
i=1

pt(i)Ti

For each iteration of the updates, the algorithm calculates the
probability of each possible hidden state (in our case, the identity
of the expert) based on some observation yt . Here, we can define
the probability of predicting observation yt as P(yt |Ti) = e−L(i,t).
The observation is the number of sessions we batched at time t,
and L(i, t) is the loss function. Then we can apply the following
equation to get the weight pt(i):

pt(i) =
1
Zt

n

∑
j=1

pt−1( j)e−L( j,t−1) P(i| j,α).

Here, Zt is a normalization factor that makes sure ∑i pt i = 1.
The P(i| j,α) shows the probability of switching between experts.
There are different versions to solve this part. The one we chose [7]
supports switching between the experts and is suitable for cases
where the observation may change rapidly, which matches the bursty
character of network traffic. P(i| j,α) is defined as:

P(i| j,α) =

{
(1−α) i = j

α

n−1 i 6= j

0≤ α ≤ 1 is a parameter that determines how quickly the algo-
rithm changes the best experts. α close to 1 means the network
condition changes rapidly and the best expert always changes. One



problem with this algorithm is that it is hard to choose a good α .
In reality, α should not be a fixed value since the network traffic
pattern may change rapidly or remain stationary. We use a more
adaptive algorithm, Learn-α [14, 16], to dynamically choose α .

The basic idea is to first assign m α-experts and use the algorithm
above to learn the proper value of α in each iteration, and then use
the up-to-date α to learn Tt [14, 16]. The final equation for this
“two-layer learning” is:

Tt =
m

∑
j=1

n

∑
i=1

p′t( j)pt, j(i)Ti (3)

Here, p′t( j) is the weight for the jth α-expert, which is given by:

p′t( j) =
1
Zt

p′t−1( j)e−L(α j ,t−1) (4)

This equation shows that p′t( j) is updated from the previous value
p′t−1( j); the initial values are: p′1( j) = 1/m. −L(α j, t−1) is the α

loss function, defined as:

L(α j, t) =− log
n

∑
i=1

pt, j(i)e−L(i,t) (5)

Here, L(i, t) is the loss function, discussed in §5.2. t is the present
time; the loss function value for the current iteration is calculated
from information learned at time t−1.


