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ABSTRACT
Developers increasingly use streaming languages to write
applications that process large volumes of data with high
throughput. Unfortunately, when picking which streaming
language to use, they face a difficult choice. On the one
hand, dynamically scheduled languages allow developers to
write a wider range of applications, but cannot take advan-
tage of many crucial optimizations. On the other hand, stat-
ically scheduled languages are extremely performant, but
have difficulty expressing many important streaming appli-
cations.

This paper presents the design of a hybrid scheduler for
stream processing languages. The compiler partitions the
streaming application into coarse-grained subgraphs sepa-
rated by dynamic rate boundaries. It then applies static
optimizations to those subgraphs. We have implemented
this scheduler as an extension to the StreamIt compiler. To
evaluate its performance, we compare it to three scheduling
techniques used by dynamic systems (OS thread, demand,
and no-op) on a combination of micro-benchmarks and real-
world inspired synthetic benchmarks. Our scheduler not
only allows the previously static version of StreamIt to run
dynamic rate applications, but it outperforms the three dy-
namic alternatives. This demonstrates that our scheduler
strikes the right balance between expressivity and perfor-
mance for stream processing languages.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimiza-
tion

Keywords
Stream Processing; StreamIt

1. INTRODUCTION
The greater availability of data from audio/video streams,

sensors, and financial exchanges has led to an increased de-
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mand for applications that process large volumes of data
with high throughput. More and more, developers are us-
ing stream processing languages to write these programs.
Indeed, streaming applications have become ubiquitous in
government, finance, and entertainment.

A streaming application is, in essence, a data-flow graph
of streams and operators. A stream is an infinite sequence of
data items, and an operator transforms the data. The data
transfer rate of an operator is the number of data items that
it consumes and produces each time it fires. In statically
scheduled stream processing languages, every operator must
have a fixed data transfer rate at compile time. In contrast,
dynamically scheduled languages place no restriction on the
data transfer rate, which is determined at runtime.

Without the restriction of a fixed data transfer rate, dy-
namic streaming systems, such as STREAM [2], Aurora [1],
and SEDA [17], can be used to write a broader range of ap-
plications. Unfortunately, many optimizations cannot be ap-
plied dynamically without incurring large runtime costs [11].
As a result, while dynamic languages are more expressive,
they are fundamentally less performant. Using fixed data
transfer rates, compilers for static languages such as Lime [3],
StreamIt [15], Esterel [4], and Brook [5] can create a fully
static schedule for the streaming application that minimizes
data copies, memory allocations, and scheduling overhead.
They can take advantage of data locality to reduce com-
munication costs between operators [7], and they can auto-
matically replicate operators to process data in parallel with
minimal synchronization [6]. This paper addresses the prob-
lem of how to balance the tradeoffs between expressivity and
performance with a hybrid approach.

In an ideal world, all applications could be expressed stat-
ically, and thus benefit from static optimization. In the real
world, that is not the case, as there are many important
applications that need dynamism. We identify four major
classes of such applications:

• Compression/Decompression. MPEG, JPEG, H264, gzip,
and similar programs have data-dependent transfer rates.

• Event monitoring. Applications for automated financial
trading, surveillance, and anomaly detection for natural
disasters critically rely on the ability to filter (e.g. drop
data based on a predicate) and aggregate (e.g. average
over time-based or attribute-delta based window).

• Networking. Software routers and network monitors such
as Snort [13] require data-dependent routing.

• Parsing/Extraction. Examples include tokenization (e.g.
input string, output words), twitter analysis (e.g. input
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tweet, output hashtags), and regular expression pattern
matching (e.g. input string, output all matches).

While these applications fundamentally need dynamism, only
a few streams in the data-flow graph are fully dynamic.
For instance, an MPEG decoder uses dynamism to route
i-frames and p-frames along different paths, but the opera-
tors on those paths that process the frames all have static
rates. Financial computations require identifying events in
data-dependent windows, but static rate operators process
those events. A network monitor recognizes network proto-
cols dynamically, but then identifies security violations by
applying a static rate pattern matcher.

Based on this observation, we developed our hybrid schedul-
ing scheme. The compiler partitions the streaming appli-
cation into coarse-grained subgraphs separated by dynamic
rate boundaries. It then applies static optimizations to those
subgraphs, which reduce the communication overhead, ex-
ploit automatic parallelization, and apply inter-operator im-
provements such as scalarization and cache optimization.

We have implemented this hybrid scheduling scheme for
the StreamIt language. To evaluate its performance, we
compared it to three scheduling techniques used by dynamic
systems (OS thread, demand, and no-op) on a combina-
tion of micro-benchmarks and real-world inspired synthetic
benchmarks. In all three cases, our hybrid scheduler outper-
formed the alternative, demonstrating up to 10x, 1.2x, and
5.1x speedups, respectively. In summary, this paper makes
the following contributions:

• An exploration of the tradeoffs between static and dy-
namic scheduling.

• The design of a hybrid static-dynamic scheduler for stream-
ing languages that balances expressivity and performance.

• An implementation of our hybrid scheduler for the StreamIt
language that outperforms three fully dynamic schedulers.

Overall, our approach yields significant speedup over fully
dynamic scheduling, while allowing stream developers to
write a larger set of applications than with only static schedu-
ling.

2. STREAMIT BACKGROUND
Before presenting the design of our hybrid scheduler, we

briefly describe the StreamIt language. The left-hand side
of Figure 1 shows a snippet of StreamIt code used for video
processing. The right-hand side shows a graphical repre-
sentation of the same code, which we will use throughout
this paper. The program receives a video stream as input,
and decodes it by applying a sequence of operations: Huff-
man decoding, inverse quantization, and an inverse discrete
cosine transformation.

The central abstraction provided by StreamIt is an op-
erator (called a filter in the StreamIt literature). Program-
mers can combine operators into fixed topologies using three
composite operators: pipeline, split-join and feedback-loop.
Composite operators can be nested in other composites. The
example code shows four operators composed in a pipeline.
The operators are VideoInput, Huffman, IQuant, and IDCT.

Each operator has a work function that processes stream-
ing data. To simplify the code presentation, we have elided
the bodies of the work functions. When writing a work func-
tion, a programmer must specify the pop and push rates for
that function. The pop rate declares how many data items
from the input stream are consumed each time an operator

1 float->float pipeline Decoder {
2 add float->float filter VideoInput() {
3 work pop 1 push 1 {
4 float input, result;
5 input = pop();
6 /* details elided */
7 push(result);
8 }
9 }

10 add float->float filter Huffman () {
11 work pop * push 1
12 { /* details elided */ }
13 }
14 add float->float filter IQuant () {
15 work pop 64 push 64
16 { /* details elided */ }
17 }
18 add float->float filter IDCT () {
19 work pop 8 push 8
20 { /* details elided */; }
21 }
22 }

Video
Input

Huffman

IQuant

IDCT

*

Figure 1: StreamIt code for video processing.

executes. The push rate declares how many data items are
produced.

When all pop and push rates are known at compilation
time, a StreamIt program can be statically scheduled. In
the example, all of the operators except Huffman have static
pop and push rates. If a pop or push rate can only be
determined at run time, then the character * is used instead
of a number literal to indicate that a rate is dynamic. An *

appears on both line 11 of the Huffman operator, and in the
graphical representation.

To access the data items that are popped and pushed,
StreamIt provides built-in pop() and push() functions, such
as appear in lines 5 and 7. These functions implicitly read
from an input stream or write to an output stream.

There are several execution paths for the StreamIt com-
piler, which use different scheduling strategies. The next
section reviews these different strategies.

3. RELATED WORK
Table 1 presents an overview of various approaches for

scheduling stream processing languages, which we contrast
with our hybrid scheduling technique. Our scheduler ap-
pears in the last row, shaded in grey.

The simplest approach is sequential scheduling. All
operators are placed into a single thread, with no support
for parallel execution. The StreamIt Library [15] uses this
approach, and implements dynamism by having downstream
operators directly call upstream operators when they need
more data.

In OS thread scheduling, each operator is placed in
its own thread, and the scheduling is left to the underlying
operating system. This approach is used by some database
implementations, and is similar to the approach used by
the SEDA [17] framework for providing event-driven Inter-
net services. To improve performance, SEDA increases the
number of times each operator on the thread executes. This
optimization, called batching [9], increases the throughput of
the application at the expense of latency. This form of dy-
namic scheduling is easy to use, since all scheduling is left to
the operating system. However, without application know-
ledge, the operating system cannot schedule the threads in



Scheduling Scheme Approach Benefits and Drawbacks

Sequential
Operators are placed in a single thread and exe-
cute sequentially.

No parallelism, but low latency.

OS Thread
Each operator gets its own thread. The operating
system handles the scheduling.

Easy to implement. Suffers from lock contention,
cache misses, and frequent thread switching.

Demand
Fused operators are scheduled to run when data
is available.

Uses fusion to reduce the number of threads
and batching to improve throughput. It is not
spatially-aware, does not optimize across opera-
tors, and has no data parallelization.

No-op
Implements dynamism by varying the size of the
data. Always sends a data item, but the data
item can be a nonce.

Does not implement data-parallelization. In-
creased costs associated with sending no-op data
values.

Hardware Pipelining
Stream graph is partitioned into contiguous, load-
balanced regions, and each region is assigned to
a different core.

Low latency, but load-balancing is very difficult,
leading to low utilizations.

Static Data-Parallelism
Data-parallelism applied to coarse-grained state-
less operators. Double buffering alleviates state-
ful operator bottlenecks.

No dynamic applications. Increases throughput
at the expense of latency.

Hybrid Static/Dynamic
Partition into coarse-grained components with
dynamic boundaries. Apply static optimizations
to the components.

Allows for dynamic data transfer rates, is
spatially-aware, implements fusion, batching,
cross-operator, and data-parallel optimizations.

Table 1: Overview of scheduling approaches. Our scheduler appears in the last row, shaded in grey.

an optimal order, so there are frequent cache misses, unnec-
essary thread switches, and increased lock contention.

In demand scheduling, the scheduler determines which
operators are eligible to execute by monitoring the size of
their input queues. When an operator is scheduled, it is as-
signed to a thread from a thread pool. One example of a
system using this technique is Aurora [1]. Aurora does not
map threads and operators to cores with consideration to
their data requirements, i.e., it is not spatially aware. How-
ever, it does provide two optimizations that improve on basic
demand scheduling. First, like SEDA, it implements batch-
ing. Second, it implements a form of operator fusion [9], by
placing multiple operators on the same thread to execute.
Fusion reduces communication overhead and the frequency
of thread switching. Like Aurora, our hybrid scheduler im-
plements both the fusion and batching optimizations. Un-
like Aurora, our scheduler data-parallelizes operators. With
data-parallelization replicas of the same operator on differ-
ent cores process different portions of the data concurrently.
Additionally, our scheduler can optimize across fused oper-
ators, such as by performing scalarization to further reduce
inter-operator communication costs.

One common approach that static languages use to imple-
ment dynamic scheduling is no-op scheduling. With this
approach, special messages are reserved to indicate that an
operator should perform a no-operation. An operator al-
ways produces a fixed number of outputs, but some of those
outputs are not used for computation. CQL [2] implements
a variation of this approach. In CQL, each operator always
produces a bag (i.e. a set with duplicates) of tuples. The
size of the bag, however, can vary. Therefore, an opera-
tor can send an empty bag to indicate that no computation
should be performed by downstream operators. As a re-
sult, it suffers from increased costs associated with sending
no-op values. In contrast to our scheduler, CQL does not
data-parallelize operators.

With hardware pipelining, neighboring operators are
fused until there are fewer or equal operators as cores. Each

fused operator is then assigned to a single core for the life
of the program. This allows upstream and downstream op-
erators to execute in parallel. The StreamIt infrastructure
includes a compilation path that mainly exploits this ap-
proach [7] for several different target platforms, including
clusters of workstations [14], the MIT Raw microproces-
sor [16], and Tilera’s line of microprocessors [18]. The hard-
ware pipelining path supports dynamic rates, but it cannot
fuse operators if they have dynamic data transfer rates. The
challenge for hardware pipelining is to ensure that each fused
set of operators performs approximately the same amount
of work, so that the application is properly load balanced.
For real-world applications, this is difficult [6]. Dynamic
data transfer rates make the problem even harder, because
there is no way to statically estimate how much work an
operator with a dynamic data transfer rate will perform.
Consequently, hardware pipelining was largely abandoned
as a compilation strategy by StreamIt, except when target-
ing FPGAs.

With static data-parallelism, the compiler tries to ag-
gressively fuse all operators, and then data-parallelize the
fused operators so that they occupy all cores. One compli-
cation for this strategy is that operators with stateful com-
putations cannot be parallelized, and therefore introduce
bottlenecks. There are compilation paths of the StreamIt
compiler [6] that target commodity SMP multicores and
Tilera multicore processors using the static data-parallelism
approach. The StreamIt compiler offsets the effects of state-
ful operator bottlenecks by introducing double buffering be-
tween operators. With double buffering, non-parallelized
operators can execute concurrently, because the buffer that
a producer writes to is different from the buffer from which
the consumer reads.

Our hybrid scheduler extends the static data-parallelism
path of the StreamIt compiler. The static data-parallelism
strategy is scalable and performant across varying multicore
architectures (both shared memory and distributed mem-
ory) for real world static streaming applications [6], but
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Figure 2: The data-flow graph is first partitioned
into static subgraphs. Solid edges are streams from
producers to consumers. The asterisk indicates a
dynamic communication channel, and the dashed
line indicates the static subgraphs. Each static sub-
graph is optimized by fusing and then parallelizing.

does not include the expressiveness of dynamic data trans-
fer rates. In this work we achieve scalable parallelism with
minimal communication for a wider set of streaming appli-
cations. Our strategy partitions the application into static
subgraphs separated by dynamic rates, and applies the static
data-parallelism optimizations to the subgraphs.

4. COMPILER TECHNIQUES
In practice, many streaming applications contain only a

small number of operators with dynamic data transfer rates,
while the rest of the application is static. This observation
motivates our design. The high-level intuition is that the
compiler can partition the operators into subgraphs sepa-
rated by dynamic rate boundaries. It can then treat each
subgraph as if it were a separate static application, using
a static data-parallelism scheduler. In other words, within
a subgraph, operators communicate through static buffers,
and the compiler can statically optimize each subgraph in-
dependently of the rest of the application.

The compiler for our hybrid scheduler therefore extends a
static data-parallelism compiler in two ways. First, it must
partition the application into subgraphs. Second, it must
assign subgraphs onto threads and cores. This section dis-
cusses the techniques used by the compiler to support our
hybrid scheduler. Section 5 presents the runtime techniques
for scheduling each of the partitions.

4.1 Partitioning
To partition the application, the compiler runs a breadth-

first search on the data-flow graph to find weakly connected
components obtained by deleting edges with dynamic com-
munication channels. A dynamic communication channel is
an edge between two operators where either the producer,
the consumer, or both have dynamic rate communication.

If there exists an edge with a dynamic communication
channel where the endpoints belong to the same weakly con-
nected component, the compiler reports an error stating that
the application in invalid. In future work, we are exploring
extensions to this algorithm which would allow the compiler
to also partition along static edges instead of reporting an
error.

The result of the partitioning algorithm is a set of sub-

graphs that can each be treated as a separate static appli-
cation. This allows us to leverage the static compiler and
optimizer almost as-is by running them on each subgraph
independently.

We have implemented partitioning as an extension to the
StreamIt compiler. As discussed in Section 3, our exten-
sion modifies the static data-parallel compilation path of the
compiler. Other compilation paths in the compiler support
dynamic data rates. However, in contrast to our extension,
they do not target SMP multicores, and do not allow either
fission or fusion optimizations.

Using StreamIt as a source language has two implications
for the partitioning algorithm. First, because the data-
flow graphs in StreamIt are hierarchical, the compiler must
first turn composite operators into their constituent oper-
ators to flatten the data-flow graph. Second, partitioning
must respect the topological constraints enforced by the
StreamIt language. In StreamIt, the operator-graph must
be a pipeline, split-join, or feedback-loop topology. Our cur-
rent implementation only partitions the graph into pipeline
topologies. Although the partitioning algorithm works for
other topologies, the StreamIt language would need to add
split and join operators that can process tuples out-of-order.
A static round-robin join operator, for example, would in-
terleave the outputs of dynamic rate operators on its input
branches, resulting in errors.

Although dynamic split-join topologies would be useful to
implement applications such as an MPEG decoder, which
routes i-frames and p-frames along different paths for sepa-
rate processing, we have found that many applications only
use dynamic rates within pipeline topologies at the ingress or
egress points of the data-flow graph. This is consistent with
the use of dynamic rates for filtering or parsing data before
or after some heavy-weight computation. Examples of such
applications include automated financial trading, anomaly
detection, and graphics pipelines.

4.2 Optimization
Once the graph is partitioned, the compiler can optimize

each subgraph independently. Ideally, our modified compiler
could treat the static optimizer as a black-box, and simply
re-use the existing static data-parallel compilation path to
first fuse operators to remove the communication overhead
between them, and then data-parallelize (or performs fission
on, in StreamIt terminology) the fused operators.

However, we had to slightly modify the standard fusion
and fission optimizations to support dynamic rates. Our
compiler does not data-parallelize operators with dynamic
communication channels. In general, they could be paral-
lelized, as long as there were some way to preserve the order
of their outputs. We plan to address this in future work.
This restriction impacts the fusion optimizations. Opera-
tors with dynamic input rates but static output rates are not
fused with downstream operators. Although such a trans-
formation would be safe, it would not be profitable because
the fusion would inhibit parallelization. Figure 2 illustrates
the changes to the operator data-flow graph during the par-
titioning and optimization stages of our compiler.

4.3 Placement and Thread Assignment
The static data-parallel compilation path of the StreamIt

compiler assigns operators to cores using a greedy bin-packing
algorithm that optimizes for spatial locality. That is, the
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Figure 3: Operators are first assigned to cores and
then to threads. Operators on the same thread ap-
pear in the same shaded oval.

mapping algorithm tries to place producers and consumers
on the same core, while at the same time balancing the work-
load across available cores. The work estimates come from
a static analysis of the operator code [7].

To support dynamic rate partitions, we extend the com-
piler to not only assign operators to cores, but additionally
assign operators to threads. In Figure 3, the partitioned
operators are first mapped to cores and then assigned to
threads. As will be explained in Section 5.1, each static sub-
graph is placed on its own thread. Data-parallelized static
rate operators on the same core as their producer are placed
in the same thread as their producer. Data-parallelized
static rate operators not on the same core as their producer
are assigned to different threads. In Figure 3, the VideoIn-

put and Huffman operators are each assigned to separate
threads, because they are in separate static subgraphs. The
data-parallelized IQuant+IDCT operator on core 1 is in its
own thread. The data-parallelized IQuant+IDCT operator
on core 2 is placed on the same thread as its producer.

5. RUNTIME TECHNIQUES
Section 4 discusses the compiler techniques used to sup-

port our hybrid scheduler. This section presents the runtime
techniques. At runtime, operators in different subgraphs
communicate through dynamically-sized queues, adding the
flexibility for dynamic rate communication. Within a sub-
graph, communication is unchanged from the completely
static version. Operators communicate through static buffers,
even across cores. Each subgraph runs in its own thread,
which allows operators to suspend execution midway through
a computation if there is no data available on its input
queues. Threads run according to the data-flow order of the
operators they contain, meaning that upstream subgraphs
run before downstream subgraphs. This ordering makes it
more likely that downstream subgraphs have data available
on their input queues when they execute. If data is not avail-
able for an operator, the thread blocks, and the next thread
runs. Finally, batching is used to reduce the overhead of
thread switching.

5.1 Suspending and Resuming Subgraphs
To support dynamic rate communication between opera-

tors, we need to consider two questions: (1) what happens
if a producer needs to write more data than will fit into an
output buffer, and (2) what happens if a consumer needs to
read more data than is available from an input buffer?

If a producer needs to write more data than will fit into an
output buffer, we need to grow the buffer. In other words,
the writer must not block. If a writer could block, then it
might never produce enough data for a downstream oper-
ator to consume, leading to deadlock. Therefore, we use
dynamically-sized queues for communication between the
subgraphs. If a producer needs to write more data than
will fit into the queue, the queue size is doubled. There is a
small performance hit each time a queue needs to be resized.
The total number of resizings is logarithmic in the maximum
queue size experienced by the application. For most applica-
tions, resizing only happens during program startup, as the
queues quickly grow to a suitable size. Our current imple-
mentation does not decrease queue sizes. In ongoing work,
we are investigating adaptive schemes which would adjust
the queue size as the workload changes.

Supporting dynamic consumers is more difficult. A state-
ful operator may run out of data to read partway through a
computation. For example, an operator that performs a run-
length encoding needs to count the number of consecutive
characters in an input sequence. If the data is unavailable
for the encoder to read, it needs to store its current charac-
ter count until it can resume execution. The challenge for
dynamic consumers is how to suspend execution, and save
any partial state, until more input data becomes available.

To support this behavior, we needed an implementation
that is tantamount to coroutines. We chose to use Posix
threads that are suspended and resumed with condition vari-
ables, although user-level threads would be a viable alterna-
tive. Threads are, after all, the standard abstraction for
saving the stack and registers. However, using threads had
three implications for our design. First, prior versions of
StreamIt use one thread per core. We needed to modify the
runtime to support running multiple threads per core, one at
a time. Second, we needed to add infrastructure for schedul-
ing multiple threads. Finally, switching between threads had
a significant negative impact on performance. We needed to
explore techniques to offset that impact.

We considered several alternatives to using threads that
we thought might incur less of a performance hit. However,
we were not able to find a better solution. Closures, such as
provided by Objective-C blocks or C++0x lambdas are not
sufficient, as they cannot preserve state through a partial
execution. We considered adding explicit code to the oper-
ators to save the stack and registers, but that code would
be brittle (since it is low-level, and breaks abstractions usu-
ally hidden by the compiler and runtime system), and not
portable across different architectures. A dynamic consumer
could invoke an upstream operator directly to produce more
data, but the scheduling logic would get complicated as each
upstream operator would have to call its predecessor in a
chain. On Stack Replacement [10], which stores stack frames
on the heap, would work, but there was no readily available
implementation to use.

5.2 Scheduling
The code generated by the static data-parallel path of

the StreamIt compiler uses only one thread per core. Each
operator in the thread executes sequentially in a loop. At
the end of each loop iteration, the thread reaches a barrier.
The barrier guarantees that all operators are in synch at the
beginning of each global iteration of the schedule.

To support dynamic rate communication, we extend the
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StreamIt compiler to multiplex multiple threads on the same
core. This complicates the scheduler, as it has to coordinate
between the various threads.

To prevent multiple threads on a core from being eligible
to run at the same time, each thread is guarded by a condi-
tion variable. A thread will not run until it is signalled. Our
original design had a master thread for each core that sig-
nalled each thread when they were scheduled to run. How-
ever, we found that the biggest performance overhead for
our dynamic applications comes from switching threads. To
reduce the number of thread switches, we altered our design
so that each thread is responsible for signaling the subse-
quent thread directly. The solid arrows in Figure 4 indicate
the transfer of control between threads. Switching from the
master thread approach to our direct call approach resulted
in an 27% increase in throughput for an application with 32
threads.

The first operator assigned to a thread is the leader of
that thread. In Figure 4, Huffman is the leader of the first
thread on core 2. Threads run according to the data-flow
order of the leaders. Running in data-flow order makes it
more likely that downstream subgraphs have data available
on their input queues when they execute.

At program startup, all dynamic queues are empty. As
execution proceeds, though, the queues fill up as data trav-
els downstream. This allows for pipelining, meaning that
downstream operators can execute at the same time as up-
stream operators. In Figure 4, Huffman executes on the data
that VideoInput processed in the previous iteration. Some-
times, an upstream operator might not produce data. This
might occur, for example, with a selection operator that fil-
ters data. When this occurs, there is a slight hiccup in the
pipelining that resolves when more data travels downstream.

To guard against concurrent accesses to a dynamic queue
by producers and consumers, the push and pop operations
are guarded by locks. A lock-free queue implementation
would be an attractive alternative to use here, as it could
allow for greater concurrent execution [12].

5.3 Batching
As mentioned in Section 5.2, the abandoned master thread

approach taught us that the biggest performance overhead
for our dynamic applications comes from switching threads.
This insight led us to implement the batching optimization.

With batching, each thread runs for batch size iterations
before transferring control to the next thread. When the
batch size is increased, more data items are stored on each
dynamic queue. Batching increases the throughput of the
application and reduces thread switching at the expense of
increased memory usage and latency. As we will show in
Section 6.1.3, running an application with the batch size set
to 100 can triple the performance.

6. EVALUATION
Overall, our design strikes a balance between static and

dynamic scheduling. It allows for dynamic communication
between static components, and for aggressive optimization
within the static components.

Because all of the scheduling strategies discussed in this
paper are sensitive to variations in both the application
structure and the input data set, we first evaluate our sys-
tem using a set of micro-benchmarks. All of the micro-
benchmarks are parameterizable in terms of computation,
parallelism, and communication, allowing us to better ex-
plore tradeoffs that different scheduling strategies make. The
micro-benchmarks are designed to highlight the effects of al-
tering one of these parameters.

Each section starts with the intuition or question that
motivates the experiment, followed by a discussion of the
setup and results. Section 6.1 evaluates the overhead we
can expect for our hybrid scheduler as compared to fully
static scheduling. Section 6.2 evaluates what performance
improvement we can expect compared to completely dy-
namic schedulers.

The benchmarks in Section 6.3 model the structure of
three applications, and use parameterized workloads for the
application logic. These applications make use of a predicate-
based filter; an operator for computing volume-weighted av-
erage price; and a Huffman encoder and decoder. These
experiments help to understand how our scheduler behaves
for real-world applications.

To make the material more accessible, we have grouped
the results together in Figures 5, 6, 7, and 8. Each exper-
iment has two figures associated with it. On the left is a
topology diagram that illustrates the application that was
run in the experiment. On the right is a chart that shows
the result. In all topology diagrams, a number to the left
of an operator is its static input data rate. A number to
the right indicates its static output data rate. An asterisk
indicates that the rate is dynamic.

In many of the experiments, we vary the amount of work
performed by an operator. One work unit, or one computa-
tion, is defined as one iteration of the following loop:

1 x = pop();
2 for (i = 0; i < WORK; i++) {
3 x += i * 3.0 - 1.0;
4 }
5 push(x);

Each subsection below discusses an experiment in detail.
All experiments were run on machines with four 64 bit Intel
Xeon (X7550) processors, each with 8 cores (for a total of
32), running at 2.00GHz, and an L3 cache size of 18MB. All
machines ran Debian 2.6.32-21 with kernel 2.6.32.19. Over-
all, the results are encouraging. Our hybrid scheduler out-
performs three alternative dynamic schedulers: OS thread,
demand, and no-op.
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Figure 5: Experiments with fused operators.



6.1 Comparison to Static Schemes
We expect that the runtime mechanisms used to support

dynamic communication will have higher overhead than the
fully static equivalents. This is the tradeoff that the hy-
brid compiler makes in order to get better expressivity. The
following set of experiments quantify the overhead of sup-
porting dynamic communication.

6.1.1 Worst-Case Overhead without Batching

How does the communication overhead from dynamism
compare to that of the static scheduling?

The worst-case scenario for our scheduler is if the opera-
tors do not perform any computation, so the communica-
tion overheads cannot be amortized. Figure 5 (a) shows the
worst-case overhead for dynamic scheduling as compared to
static scheduling. The application is a pipeline of n + 1
operators communicating through n dynamic queues. Each
operator forwards any data it receives without performing
any computation. The results are normalized to a static ap-
plication, also of n + 1 operators, where all operators are
fused. The experiment is run on a single core.

The y-axis is the normalized throughput and the x-axis
has increasing values of n. As expected, there is significant
overhead for adding dynamism. For the simple case of a
single dynamic queue, there is a 5x decrease in throughput.
The throughput decreases linearly as we add more queues.
When there are 31 queues, there is a 10x performance hit.

The biggest detriment to performance comes from switch-
ing threads. In the experiment in Section 6.1.3, we show
that the overhead from thread switching can be ameliorated
by increasing the batch size.

6.1.2 Operator Workload

How does operator workload affect the performance?

Operators for most applications perform more work than
in Section 6.1.1. Figure 5 (b) shows the effect of operator
workload on our scheduler. The application is a pipeline
of two operators communicating through a dynamic queue,
running on a single core. We define W as the total workload
for the application. Each operator performs W/2 computa-
tions, and we run the application with increasing workloads.

The results are shown normalized to a static application
with two fused operators. The y-axis shows the throughput
and the x-axis shows workload. As the operator workload
increases, communication overheads are amortized. The 5x
overhead with the identity filter improves to 1.48x overhead
when the two operators perform 1,000 computations com-
bined. Performance can be further improved with the batch-
ing optimization.

6.1.3 Batching

How does batching affect the performance?

In contrast to operator workload, the batch size is fully un-
der control of the system. That is fortunate, because it
means we can ameliorate the worst-case behavior from Sec-
tion 6.1.1. The experiment in Figure 5 (c) demonstrates
that batching improves the performance of a dynamic appli-
cation. It repeats the experiment from Section 6.1.1, with

increasing batch sizes. In the chart, each line is the dynamic
application run with a different amount of batching.

The graph shows that increasing the batch size can signif-
icantly improve the throughput. The 5x overhead with the
identity filter improves to 1.64x overhead when the batch
size is set to 100. As the batch size increases, so does the
throughput. However, as the next experiment shows, there
is a limit.

6.1.4 Batching vs. Cache Size

Does batching too much negatively affect the performance?

Batching causes more data to be stored on the dynamic
queues. The experiment in Figure 5 (d) tests if increasing
the batch size beyond the cache size hurts performance. The
application consists of two identity operators in a pipeline.

We ran the experiment with increasing batch sizes, shown
in the x-axis. Although there is a lot of variance in the data
points, we see that the performance does start to degrade as
the batch size outgrows the cache size at 18MB. The perfor-
mance degradation is not excessive, though, because stream-
ing workloads mostly access memory sequentially, and can
therefore benefit from hardware pre-fetching.

6.1.5 Dynamism with Parallelism

How does dynamism affect parallelism?

Adding dynamism to applications introduces bottlenecks into
the operator graph, since operators with dynamic commu-
nication rates are not parallelized. The experiment in Fig-
ure 6 (a) explores how this bottleneck affects performance.

We compare two version of an application: one static and
one dynamic. Both version consist of three operators in
a pipeline. In the dynamic version, the first and second
operators communicate through a dynamic queue. For each
data item, the first operator does 100 computations, and the
third operator does 900 computations. The second operator
simply forwards data.

We increased the degree of parallelism for both applica-
tions. In the static case, all operators are fused and par-
allelized. In the dynamic case, only the third operator is
parallelized.

The effects of the bottleneck introduced by the dynamic
rate are apparent, as the static case outperforms the dy-
namic case. However, neither case sees dramatic improve-
ments when parallelized, and indeed the static case sees a
drop in performance after 16 cores. There was not sufficient
parallelized work to offset the extra communication costs.
In the next experiment, we increase the operator workload.

6.1.6 Parallelism and Increased Workload

How does operator workload affect the fission optimization?

Figure 6 (b) repeats the experiment in Figure 6 (a), but
with an increased operator workload. For each data item,
the first operator does 1,000 computations, and the third
operator does 9,000 computations. The static version of
the application effectively parallelizes the work, getting a
17x speedup over the non-parallelized version. The dynamic
version also sees a performance improvement, despite the
bottleneck, achieving 6.8x increase in throughput.
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Figure 6: Experiments with parallelized operators.
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6.2 Comparison to Dynamic Schemes
Our hybrid scheduler makes a tradeoff between perfor-

mance and expressivity, trying to balance both demands.
The last section demonstrates that, as expected, adding sup-
port for dynamic rate communication hurts performance.
The real test of our scheduler, though, is to see if adding the
static optimizations yields better performance when com-
pared to other dynamic schedulers. In the following exper-
iments, we compare our hybrid scheduler to OS thread, de-
mand, and no-op schedulers. In all three cases, our hybrid
scheduler outperforms the alternative.

6.2.1 OS Thread Scheduling

How does out scheduler compare to OS thread scheduling?

The experiment in Figure 7 (a) compares our hybrid sched-
uler to an OS thread scheduler. The application consists of
n operators arranged in a pipeline. We ran the application
with both schedulers on one core with an increasing number
of operators. Recall that we ran all experiments on Debian
2.6.32-21 with kernel 2.6.32.19.

All communication between operators is through dynamic
queues, and in both the hybrid and OS thread version, each
operator executes in its own thread. In the hybrid version,
our scheduler controls the scheduling of the threads, so that
each thread executes in upstream to downstream order of the
operators. In the OS thread scheduler version, the operat-
ing system schedules the threads. The results show that the
hybrid version significantly outperforms the OS thread ap-
proach. In an application with 8 operators, it is 3.1x faster.
When there are 32 operators, it is 10.5x faster.

6.2.2 Demand Scheduling

How does our scheduler compare to demand scheduling?

As discussed in Section 3, the demand scheduler in Au-
rora uses fusion and batching to increase performance, but
does not support data-parallelization. It is not an inherent
limitation of demand schedulers that they could not sup-
port data parallelization. However, it is more difficult to
implement data-parallelization for demand schedulers than
it is for static schedulers, because it requires machinery to
ensure the correct ordering of data. Quantifying the over-
head for that machinery is out of scope for this paper. Our
comparison is faithful to the Aurora implementation.

The experiment in Figure 7 (b) compares our hybrid sched-
uler to a demand scheduler. The application consists of
three operators in a pipeline. The first does 1,000 com-
putations of work, the second is the identity filter, and the
third does 1,000 computations. Since both the hybrid and
demand schedulers perform fusion, it does not matter how
many operators are downstream from the second operator,
as they would be fused into a single operator during op-
timization. The same application was run in both exper-
iments, but for the demand scheduler, data-parallelization
was disabled. Since both the demand scheduler and the hy-
brid scheduler implement batching, we increased the batch
size for different runs of the experiment. We ran both ver-
sions of the program on 1, 4, and 8 cores. The hybrid version
on 4 and 8 cores outperforms the demand scheduler by 1.2x
on 4 cores, and 1.3x on 8 cores. Although these improve-
ments are modest, Section 6.1.6 showed that increasing the

workload in the parallelized operators would increase the
performance gains of the hybrid scheduler.

6.2.3 No-op Scheduling

How does our scheduler compare to no-op scheduling?

In no-op scheduling, special messages are reserved to indi-
cate that an operator should perform a no-operation. Using
this approach, a statically scheduled streaming language can
simulate the behavior of a dynamically scheduled language.
Because the no-op scheduler is static, it can be optimized
with the static optimizer to take advantage of fusion and
data-parallelization. However, because replicas receive no-
op messages instead of actual work, the workload among
replicas is often imbalanced.

To compare our hybrid scheduler with a no-op, we imple-
mented two applications, bargain trade finder and predicate-
based filtering, with both systems. The results for this ex-
periment are discussed in detail in Sections 6.3.2 and 6.3.3.
In both cases, the hybrid scheduler was about 5x faster than
the no-op scheduler.

6.3 Real-World Inspired Benchmarks
The applications in this section are designed to model the

structure and workload of three real world applications. The
first application, Huffman encoder and decoder, is compared
to the demand scheduler described in the previous section.
The next two applications, bargain trade finder and predi-
cate based filtering, are compared to a no-op scheduler. In
all three experiments, the hybrid approach exhibited im-
proved performance over the alternative approach.

6.3.1 Huffman Encoder and Decoder
Many audio and video processing applications make use

of a Huffman encoder for data compression. It serves as
a good example of an operator that, by its very nature,
cannot be expressed statically. Implementing a Huffman
encoder operator with the no-op scheme, for example, would
not make sense, since the operator would always output a
maximum length byte string, with some of the bytes filled
in as no-op padding, loosing the benefits of the encoding.

Our synthetic application has a Huffman encoder at the
application ingress, and a decoder at the egress. Three op-
erators are in-between the encoder and decoder, emulating
additional processing (i.e., busy looping rather than doing
the actual computation) that would be performed for data
transmission over a lossy channel.

For the experiment, we increased the number of available
cores, which allowed our hybrid scheduler to take advantage
of the data parallelization. The demand scheduler does not
perform data parallelization, which is consistent with the
Aurora implementation. Figure 8 (a) shows the results. The
hybrid scheme outperforms the demand scheduler by 20%
when run on 8 cores. However, when we ran the experiment
on 16 cores, we exceeded the benefits of parallelization.

6.3.2 Bargain Trade Finder
A volume weighted average price, or VWAP, is a compu-

tation often used in financial applications. It keeps a sum
of both the price of trades and the volume of trades that
occur during a given time window. By time we refer to ap-
plication time, as embodied by a time attribute of each data
item. And by window, we refer to a sequence of data items
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Figure 8: Experiments with real-world inspired synthetic benchmarks.

for which the time attribute differs at most by a prescribed
amount. At the end of that window, it sends the average.

A hedge fund might use a VWAP operator in an applica-
tion for finding bargains transactions [8]. A bargain occurs
when a stock price dips below its average price over a past
time window. To emulate the bargain finder application, we
placed three operators in a pipeline. The first operator is the
VWAP, for computing the rolling average. The remaining
two operators represent the static work needed to perform
a transaction once a bargain has been identified.

We implemented the bargain finder application using both
our hybrid scheduler, and a no-op scheduler. Both sched-
ulers parallelize the third operator. For both configurations,
we varied the frequency of the input data. In the graphs in
Figure 8 (b), a frequency of 10 means that on average every

10th input data item would produce the next window. That
is, a total of 10 trades appear in the time window.

Figure 8 (b) shows the results. The hybrid scheme on 8
cores shows a 5.1x performance improvement over the best
no-op version when the frequency is 10. When the frequency
is greater than 1,000, the hybrid scheme on 1 core exhibits
better throughput than the other configurations.

6.3.3 Predicate-Based Filtering
Many applications are only interested in processing signifi-

cant events, where the definition of significant is application-
dependent. For these applications, it is necessary to filter
data based on some predicate. For example, ocean-based
sensors constantly monitor tidal heights. If the tidal height
exceeds some threshold, it can then be correlated with other



measurements, such as wind speed and barometric pressure,
to predict the onset of a storm.

To emulate this application, we implemented an operator
that that scans incoming data for items that match a pred-
icate (e.g., data items above a threshold). The application
consists of three operators. The first is the filter, and the
remaining two operators process the significant events.

For the experiment, we varied the selectivity of the data.
In Figure 8 (c), an inverse selectivity of 10 means that on av-
erage, for every 10 inputs, the selection filters 9. Put another
way, 1 in 10 inputs would result in meaningful downstream
computation. The hybrid scheduler shows significant per-
formance improvements over the no-op version. When the
inverse selectivity is 10, the hybrid scheduler shows a 4.9x
higher performance compared to the best no-op version.

7. OUTLOOK AND CONCLUSION
This paper presents the design of a hybrid static/dynamic

scheduler for streaming languages. Stream processing has
become an essential programming paradigm for applications
that process large volumes of data with high throughput.

In ongoing work, we are investigating mapping these hy-
brid scheduling techniques to a distributed architecture. Our
current prototype uses shared memory segments for dynamic
queues, but other implementations are possible. For exam-
ple, prior work on distributed versions of StreamIt used re-
mote memory spaces to run on the TILERA [18] architec-
ture, or sockets in a Java-library implementation [15].

The first contribution of this paper is to explore the trade-
offs between dynamic and static scheduling. While statically
scheduled languages allow for more aggressive optimization,
dynamically scheduled languages are more expressive, and
can be used to write a wider range of applications, including
applications for compression/decompression, event monitor-
ing, networking, and parsing.

The second contribution of this paper is the design of a
hybrid static-dynamic scheduler for stream processing lan-
guages. The scheduler partitions the streaming application
into static subgraphs separated by dynamic rate boundaries,
and then applies static optimizations to those subgraphs.
Each static subgraph is assigned its own thread, and the
scheduler executes the threads such that upstream opera-
tors execute before downstream operators.

The third contribution of this paper is an implementa-
tion and evaluation of our hybrid scheduler in the context of
the StreamIt language. When compared against three alter-
native dynamic scheduling techniques, OS thread, demand,
and no-op, our scheduler exhibited better performance.

In summary, our approach shows significant speedup over
fully dynamic scheduling, while allowing developers to write
a larger set of applications. We believe that our scheduler
strikes the right balance between expressivity and perfor-
mance for stream processing languages.
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