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Summary 26 

Signal transduction proteins are often multidomain proteins that arose through the fusion of 27 

previously independent proteins. How such a change in the spatial arrangement of proteins 28 

impacts their evolution and the selective pressures acting on individual residues is largely 29 

unknown. We explored this problem in the context of bacterial two-component signaling 30 

pathways, which typically involve a sensor histidine kinase that specifically phosphorylates a 31 

single cognate response regulator. Although usually found as separate proteins, these proteins 32 

are sometimes fused into a so-called hybrid histidine kinase. Here, we demonstrate that the 33 

isolated kinase domains of hybrid kinases exhibit a dramatic reduction in phosphotransfer 34 

specificity in vitro relative to canonical histidine kinases. However, hybrid kinases 35 

phosphotransfer almost exclusively to their covalently attached response regulator domain, 36 

whose effective concentration exceeds that of all soluble response regulators. These findings 37 

indicate that the fused response regulator in a hybrid kinase normally prevents detrimental 38 

cross-talk between pathways. More generally, our results shed light on how the spatial 39 

properties of signaling pathways can significantly affect their evolution, with additional 40 

implications for the design of synthetic signaling systems. 41 

42 
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Introduction 43 

Cells can sense and respond to a remarkable diversity of signals and stimuli. This sensory 44 

capability typically involves a limited number of signal transduction protein families that have 45 

expanded through gene duplication. Although the relative ease of duplication and divergence 46 

has enabled cells to dramatically expand their signaling repertoires, the use of highly related 47 

signaling proteins has a significant cost, or risk. Cells must avoid detrimental cross-talk and 48 

ensure the fidelity of information flow through different signaling pathways. How the 49 

specificity of each signaling pathway is determined and how it evolves following gene 50 

duplication events are important problems that remain incompletely understood. 51 

In bacteria, the dominant form of signal transduction is known as two-component signaling 52 

and typically involves a sensor histidine kinase that can autophosphorylate and then transfer 53 

its phosphoryl group to a cognate response regulator, which effects changes in cellular 54 

physiology or behavior (Stock et al., 2000) (Fig. 1A). Two-component signaling genes have 55 

undergone extensive duplication and horizontal transfer, such that most species possess tens 56 

or hundreds of these pathways (Galperin, 2005). Previous work has shown that the interaction 57 

between a histidine kinase and its cognate response regulator is highly specific with limited 58 

cross-talk between pathways in vivo (Capra et al., 2012, Fisher et al., 1996, Grimshaw et al., 59 

1998, Laub & Goulian, 2007, Skerker et al., 2005). This specificity is determined 60 

predominantly at the level of molecular recognition rather than relying on cellular factors such 61 

as scaffolds. Consequently, a histidine kinase preferentially phosphorylates its cognate 62 

response regulator in vitro, relative to all other response regulators (Skerker et al., 2005). 63 

Canonical histidine kinases harbor two highly-conserved domains, a dimerization and 64 

histidine phosphotransfer (DHp) domain and a catalytic and ATP binding (CA) domain. The 65 

DHp domain promotes homodimerization and harbors the histidine that is autophosphorylated 66 

by the CA domain. Response regulators also typically have two domains, a receiver domain 67 

and an output domain. The receiver domain contains a conserved aspartate that receives a 68 

phosphoryl group from the autophosphorylated kinase while the output domains are variable, 69 

but are often DNA-binding domains. 70 
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Phosphotransfer relies primarily on an interaction between the DHp domain of the kinase and 71 

the receiver domain of the regulator (Casino et al., 2009). The residues that determine the 72 

specificity of this interaction were identified through analyses of amino acid coevolution in 73 

large sets of cognate kinase-regulator pairs (Capra et al., 2010, Skerker et al., 2008). These 74 

studies pinpointed a small set of strongly coevolving residues that determine the specificity of 75 

two-component signaling proteins and that enable the rational rewiring of both the kinase and 76 

the regulator (Bell et al., 2010, Capra et al., 2010, Skerker et al., 2008).  77 

The coevolution of specificity-determining residues in two-component signaling proteins is 78 

driven by negative selection against pathway cross-talk following gene duplication (Capra et 79 

al., 2012). The insulation of recently duplicated two-component proteins requires changes in 80 

the residues that govern molecular recognition, such that each cognate pair of signaling 81 

proteins continues interacting while avoiding cross-talk with the other pathway. In some 82 

cases, changes in the specificity residues of other two-component signaling proteins, that were 83 

not recently duplicated, are also necessary to achieve a system-wide insulation of all pathways 84 

in a given cell (Capra et al., 2012). 85 

A common variant of two-component signaling involves hybrid histidine kinases, in which a 86 

conventional histidine kinase is fused to a receiver domain similar to those found in soluble 87 

response regulators (Fig. 1B). Hybrid kinases autophosphorylate and are thought to transfer 88 

the phosphoryl group intramolecularly to their receiver domains. The phosphoryl group can 89 

then be transferred to a histidine phosphotransferase and finally to a soluble response 90 

regulator, completing a phosphorelay. Hybrid histidine kinases are found in over 50% of all 91 

bacterial genomes and nearly 25% of all bacterial histidine kinases are hybrids (Wuichet et 92 

al., 2010). These hybrid kinases likely arise through the fusion of canonical, co-operonic 93 

histidine kinases and response regulators, and may further expand through gene duplication 94 

(Whitworth & Cock, 2009, Zhang & Shi, 2005). 95 

Despite their prevalence, the phosphotransfer properties and specificity of hybrid kinases are 96 

poorly characterized relative to canonical histidine kinases. Here, we investigated the global 97 

phosphotransfer specificity of hybrid histidine kinases. We find that these hybrid kinases 98 

exhibit significantly reduced phosphotransfer specificity when liberated from their receiver 99 

domains. The covalently attached receiver domain thus normally serves as an intramolecular 100 
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phosphoacceptor and helps prevent unwanted cross-talk inside cells. Our data further indicate 101 

that, following the duplication of a hybrid kinase, there is reduced selective pressure to 102 

diversify the residues responsible for binding its attached response regulator domain, in stark 103 

contrast to canonical histidine kinases. In sum, we propose that the spatial arrangement of 104 

domains in hybrid histidine kinases strongly influences the evolution of these proteins with 105 

implications for understanding the evolution of multi-domain signaling proteins throughout 106 

biology and for designing synthetic circuits. 107 

108 
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Results 109 

Hybrid kinases show reduced amino acid coevolution between kinase and receiver domains 110 

Analyses of amino acid coevolution using mutual information as a metric have helped 111 

pinpoint the residues that govern protein-protein interaction specificity in two-component 112 

signal transduction systems (Capra et al., 2010, Skerker et al., 2008). These analyses 113 

identified a small set of residues that map to the molecular interface formed during 114 

phosphotransfer (Casino et al., 2009), and were used to guide the rational rewiring of 115 

substrate specificity for the model histidine kinase EnvZ, validating their role in dictating 116 

specificity (Skerker et al., 2008). To assess whether the same residues coevolve in hybrid 117 

histidine kinases, we examined amino acid coevolution in a large set of hybrid kinases. This 118 

analysis was performed on a multiple sequence alignment containing 2681 hybrid histidine 119 

kinases, drawn from a wide phylogenetic range of organisms. This sequence alignment 120 

contained the DHp and CA domains of each hybrid kinase as well as its receiver domain, but 121 

omitted sensory domains. To measure coevolution we used a mutual information-based 122 

algorithm that helps adjust for phylogenetic and sampling biases in sequence alignments 123 

(Martin et al., 2005). Adjusted MI values were calculated for all possible pairs of positions 124 

within the sequence alignment (Fig. 1C, S1A-D). A similar analysis for canonical kinase-125 

regulator pairs was used for comparison (Capra et al., 2010). The two alignments have similar 126 

entropy at each position, facilitating a comparison of mutual information scores (Fig S1E-F). 127 

We focused primarily on residue pairs in which one position corresponds to a site within the 128 

DHp or CA domains and the other to a site within the receiver domain. The overall shape of 129 

the distribution of adjusted MI values was similar for the canonical kinase-regulator pairs and 130 

the hybrid kinase-receiver domain pairs (Fig. S1C-D). However, the hybrid kinase 131 

distribution did not contain the same long tail seen in the canonical distribution. There are 12 132 

pairs of amino acids in the canonical kinase-regulator alignment that have adjusted MI values 133 

greater than 3.5, which indicates significant coevolution. In contrast, in the hybrid kinase-134 

receiver domain alignment, no residue pair had an MI value greater than 3.5, and only one 135 

pair had a value greater than 3.0 (Fig. 1C). The scores for residue pairs in the hybrid kinase 136 

alignment were not simply reduced relative to those from the canonical alignment. Of the 12 137 

top-scoring residue pairs from the canonical kinase-regulator alignment, only 5 were included 138 
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in the top 12 scoring pairs from the hybrid kinase alignment. The other 7 had substantially 139 

reduced scores, falling throughout the distribution, although each had a positive score (Fig. 140 

1D). This analysis suggests that hybrid kinases do not exhibit the same extensive amino acid 141 

coevolution between DHp and receiver domains as canonical kinase-regulator pairs. 142 

Hybrid kinases exhibit limited phosphotransfer specificity 143 

To determine whether the reduced coevolution in hybrid kinases translates into a difference in 144 

kinase specificity, we performed phosphotransfer profiling (Skerker et al., 2005). In this 145 

approach, a histidine kinase is autophosphorylated using [γ-32P]ATP and then systematically 146 

tested for phosphotransfer to a large panel of full-length response regulators or receiver 147 

domains, using SDS-PAGE and phosphorimaging. Robust phosphotransfer typically 148 

manifests both with a band corresponding to a phosphorylated response regulator and, 149 

sometimes, with depletion of the radiolabeled kinase band. 150 

We profiled 10 different hybrid kinases from the α-proteobacterium C. crescentus. In each 151 

case we purified an epitope-tagged construct harboring the DHp and CA domains, but not the 152 

receiver domain. We first profiled each kinase against the entire set of receiver domains from 153 

the 27 annotated C. crescentus hybrid kinases, using incubation times of 15 minutes (Fig. 2A-154 

B, S2). Strikingly, most of the kinases phosphorylated several of the hybrid kinase receiver 155 

domains. In fact, some kinases phosphorylated the majority of the receiver domains. These 156 

profiles stand in sharp contrast to our results with canonical histidine kinases in which the 157 

phosphotransfer profiles were typically extremely sparse, with kinases phosphorylating a 158 

single cognate response regulator (Skerker et al., 2008, Skerker et al., 2005). 159 

Interestingly, not all of the hybrid histidine kinases phosphorylated their own receiver 160 

domains. For example, the kinase CC0723 phosphorylated the receiver domains of CC3075 161 

and CC2670, but not its own, even though other hybrid kinases were able to phosphorylate the 162 

CC0723 receiver domain. There were also several cases in which a hybrid kinase 163 

phosphorylated its own receiver domain, but did so more weakly than other receiver domains. 164 

For example, CC3191 phosphorylated the CC0921 receiver domain to a greater extent than its 165 

own (Fig. 2A, S4B). Thus, unlike canonical kinases for which the cognate response regulator 166 
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is usually the kinetically preferred target, hybrid kinases display a variety of behaviors, and 167 

often harbor substantially less specificity. 168 

Next, we profiled each of the 10 hybrid kinases against the entire set of 44 canonical, soluble 169 

response regulators encoded in the C. crescentus genome (Fig. 2C, S3). Although these 170 

profiles were sparser than those performed against the hybrid kinase receiver domains, there 171 

were significant interactions observed with several of response regulators. For instance, the 172 

kinase domain of CC2501 showed significant phosphotransfer to the regulators CheYIV, 173 

DivK, and CC3015. There were also several response regulators that were phosphorylated by 174 

multiple hybrid kinases, including CC0630, CC2576, CC3015, and CC3286. Finally, we 175 

noted that two hybrid kinases, CC0723 and CC2324, showed stronger phosphotransfer to 176 

CC0630 than to any of the hybrid kinase receiver domains, including their own. These 177 

profiles reinforce the conclusion that hybrid kinases exhibit relaxed phosphotransfer 178 

specificity and are fundamentally different in this respect from canonical histidine kinases. 179 

Physical attachment of a receiver domain reduces signaling cross-talk 180 

Although our data demonstrated a reduced specificity of hybrid kinases, these profiles were 181 

performed using kinases that had been physically separated from their receiver domains. The 182 

kinetic preference and phosphotransfer behavior of these liberated kinase domains likely 183 

differ substantially from those of full-length hybrid kinases. For example, although the kinase 184 

domain for CC0138 (ShkA) phosphorylated 16 receiver domains and 3 full-length response 185 

regulators, previous studies have indicated that ShkA exclusively phosphorylates its own 186 

receiver domain in vivo (Biondi et al., 2006b). Similarly, although the kinase domain of 187 

CC1078 (CckA) showed apparent promiscuity in vitro and phosphorylated the response 188 

regulator PetR, there is no evidence of cross-talk to this regulator in vivo and CckA does not 189 

activate PetR-dependent genes in vivo (Biondi et al., 2006a). Thus, we propose that the high 190 

local concentration of a covalently attached receiver domain normally allows this domain to 191 

outcompete other response regulators for access to an autophosphorylated kinase domain. 192 

To further probe the effect of covalently attaching a receiver domain to a histidine kinase, we 193 

focused on the hybrid kinase CC3191. We first compared the phosphotransfer behavior of the 194 

CC3191 construct used in Fig. 2 that harbors the DHp and CA domains to a construct that 195 
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also contains the C-terminal receiver domain of CC3191. The kinase-only construct for 196 

CC3191 phosphorylated its own receiver domain in vitro, although it also phosphorylated the 197 

soluble response regulator CheYV at a similar rate (Fig. 2A, S4B). In contrast, the longer 198 

construct containing the C-terminal receiver domain no longer detectably phosphotransferred 199 

to CheYV (Fig. 3A, S4C). This result demonstrates that the receiver domain in a hybrid 200 

kinase normally prevents cross-talk between the kinase domain and other, soluble response 201 

regulators. 202 

The suppression of cross-talk provided by a receiver domain could arise through steric 203 

hindrance or because the kinase domain is engaged in intramolecular phosphotransfer. To 204 

determine whether productive phosphotransfer contributes, we first generated a full-length 205 

CC3191 construct in which the phosphoaccepting aspartate (D563) in the receiver domain 206 

was mutated to alanine. This construct exhibited significantly more phosphotransfer to soluble 207 

CheYV than the wild-type CC3191 construct, indicating that engagement of the kinase 208 

domain in intramolecular phosphotransfer contributes to the suppression of cross-talk (Fig. 209 

3B), although the receiver domain may also prevent cross-talk, in part, by occluding the 210 

binding of other regulators. 211 

To further understand the contribution of a receiver domain to the prevention of cross-talk, we 212 

created chimeric hybrid kinases, fusing the kinase domain of CC3191 to a receiver domain 213 

from CheYIV or CC1182 (soluble response regulators) or from CC0026 or CC2670 (hybrid 214 

kinases). In our profiling studies, the liberated kinase domain of CC3191 had not detectably 215 

phosphorylated CheYIV, and had only weakly phosphorylated CC1182 and the receiver 216 

domain of CC2670, but it had strongly phosphorylated the receiver domain of CC0026 (Fig. 217 

2C). To test whether these four chimeras could phosphotransfer intramolecularly from the 218 

CC3191 kinase domain to the heterologous receiver domain attached, we autophosphorylated 219 

each in buffer, acid, or base (Fig. 3A). Histidyl-phosphate bonds are sensitive to acid and 220 

aspartyl-phosphate bonds are sensitive to base (Fig. S4A). The phosphorylation of CC3191 221 

was decreased in the presence of either acid or base, indicating that it was phosphorylated on 222 

both the histidine and aspartate. In contrast, the phosphorylation of CC3191(D563A) was 223 

primarily acid sensitive. Together, these patterns of acid/base sensitivity indicate that CC3191 224 

normally autophosphorylates and transfers its phosphoryl group intramolecularly to its 225 
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receiver domain. We observed a similar pattern, consistent with intramolecular 226 

phosphotransfer, for the chimera CC3191-CC0026 and, to a lesser extent, CC3191-CC2670, 227 

but not CC3191-CheYIV or CC3191-1182. These findings are consistent with our results 228 

indicating that the CC3191 kinase domain alone can phosphorylate its own receiver domain 229 

and the receiver domains of CC0026 and CC2670, but not CC1182 or CheYIV (Fig. 2). These 230 

results also indicate that tethering non-cognate receiver domains to a histidine kinase is not 231 

always sufficient to promote phosphotransfer. 232 

Next, we tested whether the four chimeras would phosphorylate, or cross-talk to, soluble 233 

CheYV. All four chimeras showed reduced phosphotransfer to CheYV compared to the 234 

CC3191 kinase-only construct (Fig. 3B, S4C), with the strongest suppression of cross-talk 235 

occurring with CC3191-CC2670 and CC3191-CC0026, the two chimeras that also 236 

demonstrated the most significant intramolecular phosphotransfer. Only the CC3191-CC0026 237 

chimera, whose kinase and receiver domains displayed an interaction similar to that of 238 

CC3191-CC3191, both in isolation and when fused, completely prevented cross talk. Taken 239 

together, our results indicate that the receiver domain of a hybrid histidine kinase plays an 240 

important role in reducing, or eliminating, cross-talk with other response regulators by 241 

interacting with, and receiving phosphoryl groups from, the linked kinase domain. 242 

Hybrid kinases lacking their receiver domains likely cross-talk to other response regulators 243 

in vivo 244 

Previous work has shown that, with only a few exceptions, canonical histidine kinase-245 

response regulator pairs are insulated from each other in vivo (Laub & Goulian, 2007, Skerker 246 

et al., 2005) and, importantly, that cross-talk between non-cognate pairs can be severely 247 

detrimental to an organism's fitness (Capra et al., 2012). We have shown here that many of 248 

the hybrid kinases, when separated from their receiver domains, interact readily with 249 

noncognate response regulators in vitro. Thus, we hypothesized that expressing only the 250 

kinase domain of a hybrid histidine kinase might induce cross-talk in vivo and affect the 251 

growth or fitness of cells. 252 

We tested this hypothesis by inducing expression of CC3191 lacking its C-terminal receiver 253 

domain in C. crescentus and assessing cellular growth in swarm plates. Wild-type C. 254 



 11 

crescentus cells can swim through low-percentage agar, creating a large circular colony, or 255 

swarm; defects in motility, chemotaxis, cell growth, or cell division can affect swarm size, 256 

making this a convenient assay for assessing gross cellular phenotype (Skerker et al., 2005). 257 

We found that cells producing the kinase-only portion of CC3191 produced a small swarm 258 

relative to the wild type without affecting growth or morphology. This observation is 259 

consistent with the notion that a kinase-only version of CC3191 inappropriately 260 

phosphotransfers to CheYV in vivo, as it does in vitro (Fig. 2C). In contrast, cells synthesizing 261 

either a full-length construct that contains the receiver domain or the receiver domain alone 262 

did not exhibit significant swarm phenotypes (Fig. 3C-D). The phenotype seen with cells 263 

expressing the kinase portion of CC3191 was dependent on autophosphorylation, as cells 264 

overexpressing a construct in which the conserved histidine was mutated to an alanine no 265 

longer exhibited a severe swarm phenotype. 266 

We then tested the effects of overexpressing three other hybrid histidine kinases that we 267 

profiled above: CC0026, CC0138, and CC2670. Like CC3191, these kinases do not contain 268 

transmembrane domains. As with CC3191, overproducing the N-terminal and kinase domains 269 

of CC0138 and CC2670 led to a small swarm phenotype, whereas constructs containing both 270 

the kinase and receiver domains, or the receiver domain alone, did not (Fig. 3D, S4D). For the 271 

kinase-only constructs of CC0138 and CC2670, the phenotype was suppressed by substituting 272 

the phosphorylatable histidine with an alanine suggesting that autokinase activity is required 273 

for the small swarm phenotype. Unlike CC0138 and CC2670, cells synthesizing the kinase-274 

only version of CC0026 did not exhibit a significant swarm phenotype. Notably, however, the 275 

kinase domain of CC0026 had not significantly phosphorylated any non-hybrid receiver 276 

domains in vitro (Fig. 2C). Taken together, these data are consistent with the idea that some 277 

hybrid kinases are promiscuous, but that their attached receiver domains normally help to 278 

prevent cross-talk with other response regulators in vivo. 279 

Hybrid histidine kinases are under reduced selective pressure to diversify 280 

Collectively, our results indicate that hybrid histidine kinases are subject to different selective 281 

pressures than canonical histidine kinases. We previously found that canonical histidine 282 

kinases and response regulators are under strong selective pressure to diversify their 283 

specificity residues following gene duplication, but are otherwise relatively static (Capra et 284 
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al., 2012). This diversification of specificity residues post-duplication is critical to preventing 285 

cross-talk and ultimately ensures the system-wide optimization of phosphotransfer specificity 286 

(Capra & Laub, 2012, Capra et al., 2012). Consistently, inspection of the six key specificity 287 

residues (those from α-helix 1 in the DHp domain) in genome-wide sets of canonical histidine 288 

kinases indicates fewer than three identities at these six positions in most pairwise 289 

comparisons (Fig. S5). 290 

We extracted the corresponding six residues from each of 24 hybrid histidine kinases in C. 291 

crescentus (Fig. S5). Although there are 27 annotated hybrid kinases that contain CA and 292 

receiver domains, 3 did not have intact DHp domains. Strikingly, many of the 24 hybrid 293 

kinases share four, five, or even six identities at these positions with other hybrid kinases. 294 

This similarity does not arise simply because the hybrid kinases duplicated recently, as 295 

pairwise comparisons of the entire DHp and CA domains demonstrated extensive variability 296 

at other sites (Fig. S1E-F), resulting in significant separation in a neighbor-joining tree built 297 

from those domains (Fig. 4A). 298 

The lack of variability at the sites corresponding to the six key specificity residues in 299 

canonical kinases was also evident in sequence logos for the 24 hybrid and 21 canonical 300 

kinases from C. crescentus (Fig. 4B). The logo for canonical kinases indicated relatively low 301 

conservation at each specificity position except the first, which may be constrained due to 302 

involvement in autophosphorylation (Capra et al., 2010, Casino et al., 2010). In contrast, the 303 

logo for hybrid kinases indicated higher conservation at each site. 304 

The kinase domains of hybrid histidine kinases are likely under less selective pressure than 305 

canonical kinases to diversify following gene duplication. The effective concentration of the 306 

attached receiver domain is high enough to ensure that a hybrid kinase will transfer its 307 

phosphoryl group intramolecularly and not to another regulator or receiver domain. Hence, 308 

after duplication of a hybrid kinase, the residues that bind to the receiver domain do not need 309 

to change to insulate the new proteins from one another, as occurs in canonical kinases (Fig. 310 

5). Consistent with this hypothesis, many of the hybrid histidine kinases in C. crescentus, 311 

which were likely derived from a common ancestral gene through duplication and divergence, 312 

had similar specificity residues and exhibited similar phosphotransfer profiles when liberated 313 

from their receiver domains (Fig. 2B). One exception to this trend was CC1078 (CckA), 314 
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which had a distinct set of specificity residues relative to the other hybrid kinases and, 315 

consequently, had a significantly different phosphotransfer profile. Notably, CckA did not 316 

group with the other hybrid kinases in a tree of Caulobacter kinases (Fig. 4A) suggesting that 317 

CckA may be relatively ancient and not derived from a recent duplication. 318 

319 
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Discussion 320 

The expansion of existing signaling protein families has enabled cells to rapidly evolve the 321 

ability to sense and response to a wide range of stimuli. In bacteria, two-component signaling 322 

proteins have expanded dramatically, such that most species encode dozens, and sometimes 323 

hundreds, of these proteins. For canonical pathways involving a single histidine kinase and 324 

response regulator, these pathways are exquisitely specific and a cognate response regulator 325 

can outcompete all other non-cognate regulators to receive phosphoryl groups from a given 326 

histidine kinase. Consequently, phosphotransfer profiles of canonical kinases have 327 

demonstrated that each possesses a strong kinetic preference for its cognate substrate (Skerker 328 

et al., 2005). This preference is determined by a small number of specificity-determining 329 

residues in both the kinase and regulator. These residues must coevolve to maintain a tight, 330 

specific interaction between cognate partners, particularly after a gene duplication event as a 331 

means of insulating the new pathways from one another (Fig. 5) (Capra et al., 2012). 332 

In contrast to the canonical systems, we demonstrated here that kinase domains of hybrid 333 

kinases typically exhibit relaxed substrate specificity, often phosphorylating soluble response 334 

regulators or other receiver domains as well or better than they phosphorylate their own 335 

receiver domains. A similar observation was made previously in Myxococcus xanthus with a 336 

limited set of response regulators. In that case, the kinase domain of RodK was shown to 337 

preferentially phosphorylate the soluble regulator RokA relative to its own receiver domain, 338 

RodK-R3 even though the latter is the in vivo target of RodK (Wegener-Feldbrugge & 339 

Sogaard-Andersen, 2009). 340 

Although hybrid kinases are more promiscuous on their own, our data indicate that the 341 

covalently attached receiver domain helps to prevent cross-talk with other cytoplasmic 342 

response regulators. The local concentration of an attached receiver domain likely exceeds the 343 

concentration of all soluble response regulators quite significantly. Consequently, 344 

intramolecular phosphotransfer from the kinase domain to the attached receiver domain will 345 

be strongly favored, thereby ensuring minimal cross-talk to other pathways. 346 

The enforcement of intramolecular phosphotransfer specificity through spatial tethering of 347 

domains likely eliminates selective pressure to diversify the residues in a hybrid kinase that 348 
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mediate docking to the receiver domain. Hence, after a hybrid kinase duplicates, these 349 

residues either will not change or will change more rarely through processes such as genetic 350 

drift (Fig. 4B). The net result of the reduced rate of change is that for hybrid kinases in extant 351 

organisms, the interfacial residues show substantially reduced variability compared to the 352 

same set of residues in canonical histidine kinases. 353 

The enforcement of phosphotransfer within hybrid kinases has also likely reduced the need 354 

for their kinase and receiver domains to coevolve (Fig. 1). Mutations that reduce or weaken 355 

the interaction of these domains are probably more easily tolerated because the domains are 356 

spatially tethered. By contrast, with canonical two-component pathways, the cognate proteins 357 

are under strong pressure to coevolve, as a means of maintaining their interaction and 358 

preventing interaction with non-cognate proteins. However, merely increasing the effective 359 

concentration of a receiver domain was not always sufficient to induce phosphotransfer from 360 

a kinase domain (Fig. 3A) indicating some requirement for molecular recognition and a 361 

proper pairing of interfacial residues. It may be that the fusion of domains in a hybrid kinase 362 

serves primarily to prevent cross talk, rather than driving phosphotransfer. 363 

Why some two-component pathways involve hybrid histidine kinases instead of canonical 364 

kinases is not clear. Hybrid kinases are often involved in phosphorelays, and the additional 365 

number of components in a phosphorelay may create additional points for integrating signals 366 

(Burbulys et al., 1991). However, not all hybrid kinases necessarily participate in 367 

phosphorelays. Recent work with the hybrid kinase VirA from Agrobacterium tumefaciens 368 

suggests that the receiver domain binds the response regulator VirG, somehow stimulating its 369 

activity as a transcriptional activator (Wise et al., 2010). There are also hybrid kinases in 370 

some Gram-positive bacteria, such as Bacteroides thetaiotaomicron, that have DNA-binding 371 

domains C-terminal to their receiver domains, suggesting that these kinases may directly 372 

regulate transcription (Raghavan & Groisman, 2010). In short, although nearly a quarter of all 373 

kinases are of the hybrid variety, our understanding of their functions, properties, and 374 

advantages remains limited. 375 

The notion that spatial proximity can overcome relaxed specificity of signaling proteins is 376 

relevant in all cells. Multi-domain signaling proteins are quite common, particularly in 377 

eukaryotes. Additionally, some signal transduction proteins are spatially constrained through 378 
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the action of scaffolds. For example, in the S. cerevisiae pheromone pathway, the scaffold 379 

Ste5 enforces the proximity of three separate MAP kinases, helping to prevent them from 380 

inappropriately phosphorylating other substrates (Choi et al., 1994). This spatial 381 

colocalization may, in turn, have relaxed evolutionary constraints on these MAP kinases. 382 

Finally, our results suggest that information flow through two-component pathways could be 383 

rationally engineered by fusing together non-cognate kinases and regulators. Such an 384 

arrangement can also prevent unwanted cross-talk with other pathways. Indeed, we showed 385 

here that fusing heterologous receiver domains to a hybrid kinase was, in some cases, 386 

sufficient to allow phosphotransfer and prevent cross-talk with a soluble regulator. Synthetic 387 

scaffolds that bring non-cognate two-component signaling proteins in close proximity may 388 

also be used to promote phosphotransfer or prevent cross-talk. A similar approach of 389 

artificially colocalizing proteins has been applied in metabolic engineering studies, where 390 

enzymes have been tethered together to enhance the synthesis and yield of desired compounds 391 

(Dueber et al., 2009). 392 

In sum, our work has revealed new aspects of signaling protein evolution in bacteria that will 393 

likely inform similar evolutionary studies in other organisms and help guide efforts to 394 

construct synthetic signaling circuits. 395 

396 
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Experimental Procedures 397 

Sequence analyses 398 

Histidine kinase and response regulator receiver domains were identified, aligned, and filtered 399 

as described previously (Capra et al., 2010). Hybrid kinases were defined as those proteins 400 

that had a single match to each of the three Pfam models: HisKA, HATPase_C, and 401 

Response_reg. The final alignment included 2681 hybrid kinases. Shannon entropy values 402 

were calculated for each position in the alignment. Mutual information for every pair of 403 

columns in the sequence alignment was calculated as previously reported (9). Raw and 404 

adjusted MI values are provided in Tables S1 and S2 and multiple sequence alignments are 405 

provided as Supporting Information. Sequence logos were built using WebLogo 406 

(weblogo.berkeley.edu). Neighbor-joining trees were built using the PHYLIP package and 407 

multiple sequence alignments built from the DHp domain of each canonical and hybrid 408 

histidine kinase in the C. crescentus genome. 409 

Strain construction and growth conditions 410 

E. coli and C. crescentus strains were grown as described previously (Skerker et al., 2005). 411 

Primers used are listed in Table S3. Full-length hybrid kinases and the kinase domains of 412 

hybrid kinases were amplified from genomic CB15N DNA and ligated into the Gateway 413 

pENTR vector (Invitrogen). Chimeric hybrid kinases were cloned by separately amplifying 414 

the kinase domain from CC3191 and the specified receiver domain, amplifying the chimeric 415 

sequence using splicing with overlap extension PCR and ligating the resulting product into 416 

pENTR. pENTR clones were moved into pDEST-His6-MBP or pDEST-TRX-His6 vectors for 417 

purification, or the pDEST-Pxyl-M2 vector derived from pJS71 for overexpression studies. 418 

Overexpression vectors were introduced into wild-type CB15N via electroporation. 419 

Protein purification and phosphotransfer assays 420 

Expression, protein purification, and phosphotransfer profiling experiments were carried out 421 

as described previously (Capra et al., 2012, Skerker et al., 2008, Skerker et al., 2005, Biondi 422 

et al., 2006a). All reactions used 500 µM ATP, and 0.5 µCi/µL [γ−32P]ATP. For 423 

phosphotransfer experiments in Fig. 3A, CC3191-HK was autophosphorylated under the same 424 
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conditions as the phosphotransfer profiles and then incubated with the given receiver domain 425 

in a 1:1 ratio for the time indicated. For phosphotransfer experiments in Fig. 3C, 2.5 µM of 426 

the specified kinase was mixed with 2.5 µM CheYV before ATP was added the reaction 427 

allowed to proceed for the indicated time before being stopped with the addition of 4X 428 

loading buffer. To test acid or base stability of phosphoryl groups, 5 µM of kinase was 429 

autophosphorylated at room temperature for 15 minutes. The reaction was then stopped by the 430 

addition of 4X loading buffer, and then buffer, 1 M HCl or 0.5 M NaOH was added. After 20 431 

minutes, reactions were neutralized. All phosphotransfer experiments were analyzed by SDS-432 

PAGE and phosphorimaging. 433 
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Figure Legends 509 

Figure 1. Amino acid coevolution analysis of hybrid histidine kinases. (A) Diagram of 510 

canonical two-component signaling pathways and (B) phosphorelays, indicating the 511 

conserved domains in each protein. (C) Coevolving residues in cognate pairs of canonical 512 

histidine kinases and response regulators. Residue pairs with adjusted mutual information 513 

scores greater than 3.5 are listed, connected by lines (left), and shown in spacefilling on a 514 

structure of the T. maritima HK853-RR468 complex (right). The only pair in the hybrid 515 

kinase alignment with a score greater than 3.0 is highlighted. For clarity, only the DHp 516 

domain of HK853 is shown. Residue numbers correspond to positions within EnvZ and 517 

OmpR (see Fig. S1A-B). (D) Histogram of adjusted mutual information scores for all residue 518 

pairs in the hybrid histidine kinase alignment. Arrows indicate the residue pairs scoring higher 519 

than 3.5 in the analysis of canonical two-component proteins, with scores for these pairs in 520 

each alignment listed in the table. 521 

Figure 2. Hybrid histidine kinases show reduced phosphotransfer specificity in vitro. (A) 522 

Phosphotransfer profiles for kinase domains from three C. crescentus hybrid histidine kinases 523 

against all 27 receiver domains from hybrid kinases. (B) Quantification of phosphotransfer 524 

profiles for 10 hybrid kinases against the 27 hybrid kinase receiver domains; for raw profile 525 

data, see Fig. S2. (C) Quantification of phosphotransfer profiles for 10 hybrid kinases against 526 

the 44 soluble C. crescentus response regulators; for raw profile data, see Fig. S3. For panels 527 

B-C, the ratio of receiver domain or response regulator band intensity to the 528 

autophosphorylated kinase band intensity was calculated and converted to color based on the 529 

legend shown. All phosphotransfer reactions were incubated 15 minutes. 530 

Figure 3. Hybrid kinases lacking their receiver domains exhibit cross-talk. (A) Chimeric 531 

hybrid kinases were autophosphorylated in the presence of buffer, HCl, or NaOH to assess 532 

whether phosphoryl groups resided on the conserved histidine, aspartate, or both. (B) 533 

Chimeric hybrid kinases were autophosphorylated and then tested for phosphotransfer to 534 

soluble CheYV at the time points indicated. Error bars represent standard deviation from three 535 

independent replicates. Raw gel images are shown in Fig. S4C. The identity of domains in 536 

each chimeric kinase are listed. (C) Swarm plate assay for strains expressing each of the 537 

CC3191 constructs listed or vector alone. (D) Quantification of swarm sizes for strains 538 
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expressing various constructs for each of the four hybrid histidine kinases indicated. Swarm 539 

areas were measured and plotted relative to the empty vector control. Error bars represent 540 

standard deviations from three replicates. Swarm plate images are shown in Fig. S4D. 541 

Figure 4. Specificity residues are conserved among hybrid histidine kinases. (A) An 542 

unrooted neighbor-joining tree of the C. crescentus kinases was built from an alignment of the 543 

DHp domains of all 24 hybrid and 21 canonical histidine kinases from C. crescentus. Hybrid 544 

kinases are labeled in red. (B) Sequence logos for the residues that dictate phosphotransfer 545 

specificity in canonical kinase-regulator pairs. Logos were built from an alignment of the 21 546 

canonical histidine kinases and 44 soluble response regulators (top), and from an alignment of 547 

the 24 hybrid histidine kinases in C. crescentus (bottom).  548 

Figure 5. Model for changes in specificity residues following duplication of canonical 549 

and hybrid histidine kinases. Ovals represent niches within sequence space, or the set of 550 

response regulators recognized by a given histidine kinase as determined by its specificity 551 

residues. Post-duplication, canonical kinases separate in sequence space to insulate the two 552 

pathways and prevent cross-talk. In contrast, hybrid kinases do not separate, as the tethered 553 

receiver domain effectively insulates the duplicated kinases against cross-talk. 554 

 555 
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