
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mário Nelson Araujo Santos

Energy Analysis
in the CodeCompass system

December 2017

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mário Nelson Araujo Santos

Energy Analysis
in the CodeCompass system

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Prof. João Saraiva
Dr. Zoltan Porkolab

December 2017

A C K N O W L E D G E M E N T S

First of all, I would like to express my deep gratitude to Professor João Saraiva for believing
in my abilities, joining me early in the Green Software Lab (GSL) team and together with Dr.
Zoltan Porkolab giving me the opportunity to make my thesis in the Erasmus+ Placement
program, in Budapest and in a big company like Ericsson. In addition, I would particularly
like to thank Dr. Zoltan for having received me in Budapest, getting me a scholarship
and a good and cheap accommodation compared to the rest of students, and for having
helped me in everything I needed to feel good and safe. In the same subject, I would
also like to thank Professor Paulo Azevedo and the International Relations Services (SRI)
of the University of Minho for having financed my Erasmus with an Erasmus+ Placement
scholarship, without this huge help this partnership would be impossible.

I would particularly like to thank Dániel Kupp, one of Ericsson’s members and one of the
CodeCompass developers. He was the person who had the most enthusiasm and curiosity
to help without any prior knowledge of energy efficiency or RAPL framework. Without
his logical thinking and active participation, this project would not have gone so well. I
would like to thank Dr. Zoltan, again, for helping me when I had doubts about Clang, for
giving me the opportunity to submit an article to a conference (Software Quality Analysis,
Monitoring, Improvement, and Applications (SQAMIA)) and for going there to introduce it.

Lastly, I would like to thank Rui Pereira and Marco Couto, members of GSL, for making
me aware of the work already done on Green Computing and the best ways to go during
the development of this project.

i

A B S T R A C T

Green computing has an increasing importance in software engineering. Unfortunately,
there are lack of tools on this field to help developers to understand and fix issues related
to unwanted energy consumption.
The thesis project will provide Software (sw) eng. with information about energy consump-
tion of functions and methods. The CodeCompass system helps software developers to
understand their source code, and it was developed by the Hungarian team members of
Ericsson.
Thus, I will locate hot spots in the software’s source code responsible for abnormal energy
consumption, and I will do a plug-in to extend the CodeCompass tool so that it can au-
tomatically locate such energy faults, helping software developers to optimize the energy
consumption of their software.

ii

R E S U M O

Computação verde tem uma importância crescente em engenharia de software. Infeliz-
mente, há falta de ferramentas neste campo para ajudar os eng. de software a entender e
corrigir problemas relacionados ao consumo de energia indesejados.
O projecto desta tese fornecerá aos desenvolvedores de software informações sobre o con-
sumo de energia de funções e métodos. A ferramenta CodeCompass ajuda os engenheiros
de software a entender o código-fonte e foi desenvolvida pelos membros da equipa hún-
gara da Ericsson.
Por fim, localizarei zonas "quentes" no código fonte do software responsáveis pelo consumo
anormal de energia e irei construir um plug-in para estender a ferramenta CodeCompass
para que ela possa localizar automaticamente essas falhas de energia, ajudando os engen-
heiros de software na otimização do consumo de energia de seus programas.

iii

C O N T E N T S

1 introduction 1

1.1 Context and Motivation 1

1.2 Objectives 2

1.3 Research Group Context 3

2 background 5

2.1 Ericsson 5

2.1.1 Research and Development 5

2.2 Green Computing 6

2.2.1 Origins 6

2.2.2 Hardware 7

2.2.3 Software 7

2.2.4 Techniques for software development 8

2.3 State of the Art 9

2.3.1 Energy Aware Software Tools 9

2.3.2 Techniques for Green Software Analysis 13

3 energy in the codecompass system 21

3.1 Why does Ericsson needs Green Computing? 21

3.2 CodeCompass 22

3.2.1 Architecture 23

3.2.2 Web User Interface 25

3.2.3 Functionality 25

3.2.4 Perfomance 27

3.2.5 User Acceptance in Real Production 27

3.3 Green CodeCompass Plug-in 28

3.3.1 Decisions 28

3.3.2 Implementation 32

3.3.3 Plug-in Outcomes 39

4 case studies / experiments 42

4.1 Experiment setup 42

4.1.1 Hardware Prerequisites 42

4.1.2 Software Prerequisites and Configuration 43

4.2 Results 45

4.2.1 TinyXml 45

4.2.2 Xerces-c-3.1.4 47

iv

Contents v

4.3 Discussion 48

4.3.1 Validating the Measurements 48

5 conclusion 50

5.1 Conclusions 50

5.2 Prospect for future work 51

L I S T O F F I G U R E S

Figure 1 Energy Star GHG (greenhouse gas) Reductions Since 2000 6

Figure 2 The behavior of the monitoring framework 10

Figure 3 Power domains for which power monitoring/control is available. 11

Figure 4 Sunflow: energy behaviors under different data precision choices 14

Figure 5 List results for population of 25k 15

Figure 6 Sometimes Faster doesn’t mean Greener 16

Figure 7 The 13 Benchmarks available in Computer Language Benchmark Game
(CLBG) 17

Figure 8 Normalized global results for Energy and Time 17

Figure 9 Language ranking considering all combinations of energy, time and
memory (in Pereira et al. (2017b)) 18

Figure 10 Generic formulation of a SFL Matrix 19

Figure 11 The Jaccard similarity coefficient 19

Figure 12 Static Model Formalization 19

Figure 13 SPELL embedded Gzoltar graphic visualization tool 20

Figure 14 CodeCompass architecture 23

Figure 15 User Interface 25

Figure 16 CodeBites example 26

Figure 17 CodeCompass usage distribution per task 28

Figure 18 System architecture 29

Figure 19 Visualization of Profiling Data in Kcachegrind (Weidendorfer and
Zenith) 31

Figure 20 Example of an Abstract Syntax Tree (AST) with the nodes to be read. 33

Figure 21 How CRAPL works. 36

Figure 22 How energy measurement values are saved 37

Figure 23 All functions measurement with overhead (pp0) 41

Figure 24 All functions measurement without overhead (pp0) 41

Figure 25 x86 Intel Architectures that have RAPL interface(Weaver, 2015). 43

Figure 26 Tinyxml results without overhead 46

Figure 27 Tinyxml results with overhead 46

vi

L I S T O F TA B L E S

Table 1 Perfomance of CodeCompass v4 27

Table 2 Energy Consumption of functions executed in some tests 47

Table 3 Detailed energy consumption from DTest 48

Table 4 Validation of results in TinyXml (values represented in mJ) 49

vii

A C R O N Y M S

A

AST Abstract Syntax Tree.

C

CLBG Computer Language Benchmark Game.

CSR Corporate social responsibility.

D

DGC Distributed Green Compiler.

DSL Domain-specific languages.

E

EPA Environmental Protection Agency.

F

FCT Fundação para a Ciência e Technologia.

G

GPU Graphics Processing Unit.

GREENSSCM Green Software for Space Control Mission.

GSL Green Software Lab.

I

ICSE International Conference on Software Engineering.

ICT Information and Communication Technology.

IDE Integrating Developing Environments.

L

viii

Acronyms ix

LLVM Low Level Virtual Machine.

M

MSR Machine Specific Records.

R

RAPL Running Average Power Limit.

S

SFL Spetrum-based Fault Localization.

SPELL Spectrum-based Energy Leak Localization.

SQAMIA Software Quality Analysis, Monitoring, Improvement, and Applications.

SW Software.

1

I N T R O D U C T I O N

1.1 context and motivation

In the field of software engineering, recent studies have defined powerful techniques to in-
crease software developers’ productivity by supplying, for example, integrating developing
environments Integrating Developing Environments (IDE), testing and debugging frameworks
and tools, advanced type and modular systems, etc. Furthermore, to improve the execu-
tion time of our software, compiler construction techniques were developed, namely by
using partial and/or runtime compilation, parallel execution, advanced garbage collectors,
etc. All of these engineering tools and techniques are designed to help software develop-
ers quickly specify correct programs with the ideal execution time. Unfortunately, none of
these techniques or tools have been adapted to support green software development. In
fact, there is no software engineering discipline that provides techniques and tools to help
software developers understand, analyze, and optimize the power consumption of their
software! As a consequence, if a developer realizes that his software is responsible for a
large battery leak, he does not receive support from the language/compiler he is using.

In this thesis, I aim to study, develop, and apply methods to statically analyze abnormal
energy consumption in software source code. Thus, the focus of the thesis is to reason
about energy consumption at the software level more specifically in functions or methods
of the given program written in the widely used C++ programming language. This is an
innovative approach to analyze power consumption, since most of the research done on
reducing the energy consumed by computers was done at the hardware level, not the soft-
ware.

In this context, Pereira et al. (2017a) characterize an abnormal or excessive power con-
sumption by a software system as an energy leak (inefficient energy consumption).

I would also like to evaluate the validity of these techniques in real-world, industrial-size
software applications. The Ericsson research team in Budapest is involved in the develop-

1

1.2. Objectives 2

ment of the CodeCompass framework. This framework is an extensible static analysis tool
for analyzing and visualizing the program’s source code written in different languages.

I will develop an energy-aware plug-in to locate abnormal energy consumption in the pro-
gram’s source code moreover, the located abnormal spots will be visualized and presented
them to the software developers in the CodeCompass framework. Because CodeCompass is
being used at Ericsson to analyze several of its software systems, I will validate my tool in
the example systems where developers tested their plugins. Ericsson has just made Code-
Compass open-source, and thus, the results of this thesis will be freely available for the
green sw community and in the end, I plan to publish an article in top conferences and
journals in the area of green software and sustainable computing, that have been created in
recent years1.

1.2 objectives

While in the previous century software developers and computer manufacturers’ primary
goal was to produce very fast software systems and computers, in this century this has
changed: the widespread use of non wired but powerful computer devices is making bat-
tery consumption/lifetime the bottleneck for both manufacturers and software developers.

The hardware manufacturers are already aware of this concern and a lot of work in terms
of optimizing energy consumption by optimizing the hardware has being done. Unfortu-
nately, the programming language and software engineering communities have not fully
understood this bottleneck, and as a result there is little support for software developers to
discuss the power consumption of their software. Although the hardware is the one that
consumes energy, the software can greatly influence this consumption, such like a driver
who operates a car influences its fuel consumption.

Furthermore, I will extend the CodeCompass tool to identify such programming factors
in the source code of software systems. This tool uses static analysis techniques to analyze
programs written in C/C++, Java and Phyton. It computes multiple software metrics and
presents an user-friendly visualization of such metrics and source code. In this thesis, I will
implement an energy conscious plug-in for CodeCompass so that those identified factors
are presented to the software developers in the source code they are developing in C or
C++, the main two programming languages that Ericsson Budapest usually works on their
projects and test on this tool. In the end, I plan to use industrial-size software systems from

1 See for example the GREENS workshop - http://greens.cs.vu.nl/ - that is now part of the top conf. on sw
engineering International Conference on Software Engineering (ICSE)

1.3. Research Group Context 3

Ericsson Budapest as case examples to test the plug-in. This thesis aims at answering the
following three research questions:

• RQ1: Can we instrument a all C or C++ software system to add the Running Average
Power Limit (RAPL) interface without compromise the execution of the programme?

• RQ2: Can we measure the energy of all the functions/methods of a project to easily
check which ones are wasting more energy?

• RQ3: Can such techniques be implemented as a plugin of the CodeCompass tool?
How efficient and effective are such techniques when handling industrial-size sw
applications?

The results of this thesis will allow programmers to become energy aware during pro-
gramming and with the appropriate tools they finally have ways to support green decision
making.

1.3 research group context

The University of Minho and the Faculty of Informatics of Eötvös Loránd University, Bu-
dapest have a history of scientific cooperation in the framework of the Erasmus project
since 2007. The cooperation consists in students exchange, guest lectures and cooperation
on teaching at summer schools. University of Minho has strong experiences on energy
aware computing. In 2015, the coordinator of this thesis presented his ongoing research
work on the analysis of software energy consumption in an invited talk at Ericsson in
Budapest. The feedback of this talk was very positive and they discussed possible collabo-
rations by implementing static analysis techniques in Ericsson software. So, in this context
of Minho/Etvos Erasmus agreement, I was granted an Erasmus Placement Scholarship to
do part of my MSc work at Ericsson, co-supervised by Prof. Zoltan Porkolab.

The static analysis research group at Eötvös Loránd University has been working on var-
ious static analysis tools for industrial applications for the last five years. Among other
achievements, they implemented CodeChecker, an open source static analysis framework
for the Low Level Virtual Machine (LLVM)2/Clang3 compiler infrastructure to detect program-
ming anti-patterns, code smells and other issues applying both the analysis of the AST and
using symbolic execution. Another achievement is CodeCompass – a code comprehension
tool for C, C++, Java and Python languages. With CodeCompass, the developers are able to
locate, browse and visualize large code bases where a certain feature is implemented. The

2 LLVM is a collection of modular and reusable compiler and toolchain technologies.
3 Clang is a compiler front end for various programming languages. It uses LLVM as its back end.

1.3. Research Group Context 4

plugin-able structure of the CodeCompass tool makes it possible to extend the framework
with new modules, in our case the visualization of energy aware information among the
source code. The role of the Hungarian partner is to define the best methods to present the
information about energy leaks and other issues in the system and extend CodeCompass
with the necessary parsers and plug-ins.

Four years ago, the researchers of Minho started the Green Software Lab (GSL) to study
and develop techniques and tools for green software. In the scholar year 2013/14, João
Saraiva included the study of techniques for green software in the MSc and PhD courses
that he teachs at the MSc in Informatics Engineering and the MAPi doctoral program. This
hot topic already attracted several young researchers, like Rui Pereira and Marco Couto.

The GSL is also actively applying the research in industrial settings. Last year the team
started applying energy consumption estimation techniques to aerospace software in the
context of the project Green Software for Space Control Mission (GreenSSCM). Moreover, the
team is also active applying for research project funding. Prof. João Saraiva is the principal
investigator of a project on green software funded by Fundação para a Ciência e Technologia
(FCT). He is also the coordinator of a FCT/Slovakia bilateral project4 on green computing
(2016-2017).

4 https://kpi.fei.tuke.sk/en/user/szabo-csaba/towards-a-software-engineering-discipline-green-software

2

B A C K G R O U N D

In this chapter I will present a study about the background of the project. Firstly, I will
describe in detail the main topic of this thesis, namely Green Computing. In general, I will
talk about the history, why it was created such concept and the importance it has in the
Information and Communication Technology (ICT) sector.
Then I will introduce technologies\innovations to reduce energy consumption, both hard-
ware and software level. Finally, I start in the next section by introducing Ericsson where
the main part of the MSc thesis was conducted.

2.1 ericsson

Founded in 1876 by Lars Magnus Ericsson, Ericsson is one of the world’s largest telecom-
munication network and equipment companies. Headquartered in Sweden, the company
offers various services such as software and infrastructures in information and communi-
cation technology, traditional telecommunications and Internet Protocol (IP), mobile and
fixed broadband, cable television, video systems, and operations and business support ser-
vices. Worldwide, it operates in about 180 countries and it employs around 98.000 people,
according to Ericsson (2016).

2.1.1 Research and Development

The research and development team is part of Group Function Technology, which includes
several universities and research institutions, such as: Lund University (Sweden), Eötvös
Loránd University (Hungary) and Beijing Institute of Technology (China). Group Func-
tion Technology focuses primarily on wireless access networks, broadband technologies,
packet technologies, multimedia technologies, radio access technologies, software, security
and global services. This dissertation will be done under the context of the CodeCompass
comprehension tool, one of the projects developed between Ericsson and Eötvös Loránd
University, which aims to help programmers understand large-scale software systems from

5

2.2. Green Computing 6

mainly static analysis of code.

2.2 green computing

While in the early days of computing, when developing hardware\software the primary
goal was to get systems to run as fast as possible, in recent years we have seen a significant
increase in research of the development and production of hardware and software compo-
nents with low levels of energy consumption. Sustainability is currently one of the world’s
most important issues, making energy consumption one of the most critical headaches in
ICT.

2.2.1 Origins

Although the sustainability of our planet starts several decades ago, the first steps of Green
Computing came in 1992 with the appearance of the Energy Star (ENERGY (2011)), a vol-
untary certification program created by the United States Environmental Protection Agency
(EPA). The Energy Star was designed to identify and promote energy-efficient products so
anyone could save money spent on light bills and reduce greenhouse gas emissions (Figure
1). Monitors, temperature control equipment and television sets were the first products to
receive certification.

Figure 1: Energy Star GHG (greenhouse gas) Reductions Since 2000

According to Scheild (2011), the first important, yet very simple result of Green Comput-
ing was the creation of the suspend mode function on computer monitors. Over the years,
the concept has been developed from other solutions, such as thin client1, cost accounting,
virtualization practices and eWaste (recycling of electronic products).

1 A thin client is a lightweight computer that is purpose-built for remote access to a server.

2.2. Green Computing 7

2.2.2 Hardware

According to Calero and Piattini (2015), one of the important steps for sustainability passes
through the day-to-day of the individual person. Learning how to recycle used materials
and reducing carbon dioxide emissions in our routine (using energy-efficient computers or
using public transports more often, for example).
At hardware level there are some curious ideas\technologies (Statham et al. (2012)):

• The RITI printer - printer that uses coffee grounds as a substitute for ink;

• Green hard drives - they use less energy when running and conserve energy when
not being used;

• Solar Computing - Intel has developed a low-power processor capable of running on
solar-cell PCs based on solar cell technology, i.e, a seal-sized electronic component
that converts sunlight into electricity.

2.2.3 Software

Bener et al. (2014) said that most of the spending on Green ICT comes from the effects of
hardware on the environment. People have little consideration for the impact of software
products. Although software systems do not directly consume power, they affect the use of
hardware components.

Efficiency in energy consumption, efficient allocation of space, efficiency in memory ca-
pacity, usability, availability and storage of data and information, and efficiency in the use
of planning time (parallelism) are some aspects that may be important when developing
energetically efficient Software. In fact there are several technologies that can significantly
reduce energy consumption of sw systems, namely:

• Virtualization - directly reduces the use of hardware required for multiple systems.
On a server or desktop, virtualization allows multiple operating systems or applica-
tions to run on a single computer - Turban et al. (2008);

• Terminal servers - users connect to a central server and all real computing is done on
the server. They can be combined with thin clients that only use 1/8 the amount of
power of a normal workstation - Bener et al. (2014);

• Power management - allows the operating system to control the power management
features connected to the hardware. The system can automatically shut down compo-
nents such as hard drives or the monitor if they are inactive after a certain period of
time - Star;

2.2. Green Computing 8

• Cloud computing - according to Mines:

1. Automation software, maximizing consolidation and utilization to drive efficien-
cies;

2. Pay-per-use and self-service, encouraging more efficient behavior and life-cycle
management;

3. Multi-tenancy2, delivering efficiencies of scale to benefit many organizations or
business units.

2.2.4 Techniques for software development

During the software development cycle energy consumption can be reduced, starting with
the analysis up to design and implementation. In the design we can take into account some
energy-efficient structures for the project. In the implementation there are some parameters
that we can take into account, according to Fakhar et al. (2012):

1. Use of green IDE & compiler - use of compilers capable of reshaping the source code
by applying various Green optimizations during code transformation. Green Hill
compiler for C and C++, encc energy aware compiler for C++, are some examples.

2. Recursion vs. Iteration - Recursion uses stacks. At the beginning of each function,
the arguments have to be pushed in the stack and at the end of the function they have
to be popped, which leads to more execution time, thus also leading to more power
consumption. Therefore, we should avoid recursion and use iterations. Recursion
elimination is a key optimization automatically performed by compiler.

3. Less running time - Normally, any reduction in run time may be useful to reduce
energy consumption. Therefore, always try to use algorithms with linear complexity.

4. Use of energy aware data structure - data structures have a significant effect on the
conservation of energy and in the execution of a program. For example a study
made by Couto et al. (2017), in a marge sort an array of arrays consumes less energy
compared to a link list.

5. Algorithmic efficiency - programmers must write efficient algorithms by writing a
code-specific design and data structures based on the application, programming lan-
guage and hardware architecture.

6. Sacrificing performance above a limit for energy efficiency - sometimes it is better
to be greener than faster.

2 Multi-tenancy is an architecture in which a single instance of a software application serves multiple customers.

2.3. State of the Art 9

7. Code written for energy allocation purposes - you can route traffic to locations with
lower energy costs or less hot climates.

8. Define IT Resource and Quality Metrics - in the analysis phase it may be important
to define some metrics to measure (Mahmoud and Ahmad, 2013):

• Total life-cycle costs of the process - take into account parameters such as pro-
grammer experience, complexity of the operation, integration and reuse rates,
and required stability;

• Power consumption and efficiency - measure the amount of power supply, mate-
rials consumed, CO2 emissions and other energy-related factors released by the
air.

• Infrastructure costs, human efforts, material outputs and compliance with envi-
ronmental laws.

2.3 state of the art

In this section I will present studies conducted by some researchers. Some techniques
and measures concluded by them that can significantly reduce energy consumption when
developing a certain application, as well as tools designed to help developers to save energy
or to reach certain conclusions in their studies on energy efficiency.

2.3.1 Energy Aware Software Tools

Software can also play an active role in saving energy by providing feedback on how soft-
ware components consume resources, thereby enabling programmers to create greener pro-
cesses. Here are some examples:

Distributed Green Compiler (DGC)

DGC reshape the source code during intermediate code conversion by applying various
green techniques to produce an energy efficient executable program. A green compiler
requires more time to compile the source code compared to normal compilers. It applies
ecological strategies in the compilation.

According to Fakhar et al. (2012), it also provides green suggestions to programmers,
highlighting areas of source code that can not be transformed by the compiler for energy
optimization during intermediate code conversion. DGC gives program energy consump-
tion statistics after compilation, telling the programmer how much energy can be saved in
a produced executable. Loop optimization, use of energy optimized data structure, dead

2.3. State of the Art 10

code elimination, software pipelining, recursion elimination, cloud aware task mapping,
un-optimized code blocks identification and energy cost statistics are some of the sugges-
tions\transformations that the compiler offers.

GreenDroid

GreenDroid is a framework that profiles the energy consumption on the Android ecosystem
(Couto et al., 2014). The tool can be used to determine the methods of an Android applica-
tion that are likely to be associated with abnormal energy consumption. Greendroid uses
the Android sw test framework to execute the program and monitor the energy consumed
by the executed methods. Once the source code and application tests are ready, the tool
performs a set of sequential steps to present the desired results.

Figure 2: The behavior of the monitoring framework

As shown in Figure 2, the steps are:

1. Execute the tests - the tests run twice, once to get the list of methods invoked and
another to measure power consumption. The result will be stored in files containing
a list of the invoked methods, as well as the number of times it was invoked, the test
execution time and the energy consumed, in mW (Milliwatts).

2. Merge the results - after all tests have been executed, the tool will generate a set of
files corresponding to the number of tests. Then the they will be gathered into a single
file to be read and analyzed to extract the information.

3. Classify the methods - in this step, the tool will read the file values and sort them
according to green-aware metric values.

2.3. State of the Art 11

4. Generate the results - in the end it will generate graphical representations of the
components of the source code, giving it different colors according to the classification
specified in the previous step.

RAPL

In this section I overview how one can measure the energy consumption of a processor
using the Intel’s RAPL interface.

Figure 3: Power domains for which power monitoring/control is available.

According to Dimitrov et al. (2015), RAPL was designed by Intel as a set of low-level
interfaces with the ability to monitor, control, and get notifications of energy consumption
of different hardware levels. It is supported in today’s Intel architectures, like i5 and i7
CPUs. The architectures, that support RAPL, monitor energy consumption information
and store it in Machine Specific Records (MSR)3. These MSR can be accessed by the Operating
System.

As shown in Figure 3, RAPL allows energy consumption to be reported in a practical
way, by monitoring:

• Package (PKG): entire socket (pp0+pp1);

• Power Plane 0 (PP0): all of the CPU cores in the package;

3 A model-specific register (MSR) is any of various control registers in the x86 instruction set used for debugging,
program execution tracing, computer performance monitoring, and toggling certain CPU features.

2.3. State of the Art 12

• Power Plane 1 (PP1): uncore. Often provides info for the integrated Graphics Process-
ing Unit (GPU);

• DRAM: DRAM in the system.

Rapl Interfaces
RAPL interfaces consist of non-architectural MSR. According to Intel (64) the following

set of capabilities are supported by each RAPL domain:

• Power limit - MSR interfaces to specify power limit and time window;

• Energy Status - Power metering interface providing energy consumption information;

• (Optional) Perf Status - Interface providing information on the performance effect
due to power limits;

• (Optional) Power Info - It is an interface that provides information on the set of
parameters for a given domain, maximum power, minimum power, etc;

• (Optional) Policy - 4-bit priority information that is a hardware tip for dividing the
budget between sub-domains in a parent domain.

Each of the above features needs specific units to describe them. Time is expressed in sec-
onds, power is expressed in Watts and energy is expressed in joules. The scaling factors are
provided to each unit to make the information presented significantly in a finite number of
bits. Units for power, energy, and time are exposed in the read-only MSR_RAPL _POWER
_UNIT MSR.

There are several implementations/libraries in differente programming languages to ac-
cess RAPL measurements. Next I briefly show the Java binding of RAPL, called jRAPL.

jRAPL
According to jRA, jRAPL is a framework for profiling Java programs running on CPUs with
RAPL support.

double beginning = EnergyCheck.statCheck();

doWork();

double end = EnergyCheck.statCheck();

As one can see with the example above, it can be viewed as a software wrapper to access
the MSR.

2.3. State of the Art 13

Trepn Power Profiler

A RAPL equivalent for mobile devices, developed by Qualcomm Technologies. (Qual-
comm Technologies) TrepnTM Profiler is an on-target power and performance profiling
application for mobile devices. With this tool, programmers can understand the impact
of their programming choices on both performance and energy. Some features provided by
Trepn:

• Six fast-loading profiling presets;

• Overlays appear on screen on top of applications that are being profiled;

• Profile a single app, or your device;

• Displays battery power on supported devices;

• View CPU and GPU utilization and frequency;

• Display network usage (Wi-Fi and cellular);

• Advanced mode to manually select data points and save data for later analysis.

SEEP

Developed by Hönig et al. (2011), SEEP is designed to aid program development by analyz-
ing source code and obtaining accurate platform-dependent power profiles, per function,
using pre-existing knowledge about the energy consumption of the underlying instructions.
The source code must be compiled into an intermediate representation and provided as in-
put to the SEEP program in order to obtain a high degree of code coverage and therefore
high precision. Subsequent results need to be combined with code models in the source
code and the process repeated in case of updates to the code base.

2.3.2 Techniques for Green Software Analysis

This section presents studies about energy efficiency in programming. It will be shown
some green rankings and some techniques to understand where power failures (or energy
leaks) are located, in which component a program may be spending a lot of energy. Most of
these studies were conducted by members of the GSL group where this thesis is integrated.

2.3. State of the Art 14

Data-Oriented Characterization of Application-Level Energy Optimization

To show how jRapl works, Liu et al. (2015) used Sunflow4. The program represents render-
ing data in type double, so they changed and tested the program using other primitive data
types such as short, int, float and long.

Figure 4: Sunflow: energy behaviors under different data precision choices

As shown in Figure 4, the short type is the one that uses less energy compared to the
rest.
Although Sunflow is a complex application, with more than 20,000 lines of code we can
notice that a simple modification in the usage of data types in a method can have a big
impact on the energy consumption of the application.

Ranking of Java Data Structures

Researchers have studied the energy consumption of the Java Collections Framework Pereira
et al. (2016). In this study, the authors considered all of the collections within the framework
and grouped each collection by their implemented interface, as shown in the following list:

• JCF Data structures:
Sets ConcurrentSkipListSet, CopyOnWriteArraySet, HashSet, LinkedHashSet, TreeSet
Lists ArrayList, AttributeList, CopyOnWriteArrayList, LinkedList, RoleList, RoleUn-
resolvedList, Stack, Vector
Maps ConcurrentHashMap, ConcurrentSkipListMap, HashMap, Hashtable, Identity-
HashMap, LinkedHashMap, Properties, SimpleBindings, TreeMap, UIDefaults, WeakHashMap

4 Sunflow renders a set of images using ray tracing, a CPU-intensive benchmark.

2.3. State of the Art 15

Using varying population sizes of 25,000, 250,000, and 1,000,00 elements, they mea-
sured the energy consumption, by using jRAPL jRA, of each method within their
specific API list. Below is the complete list of the analyzed methods.

• Methods:
Sets add, addAll, clear, contains, containsAll, iterateAll, iterator, remove, removeAll,
retainAll, toArray
Lists add, addAll, add (at an index), addAll (at an index), clear, contains, contain-
sAll, get, indexOf, iterator, lastIndexOf, listIterator, listIterator (at an index), remove,
removeAll, remove (at an index), retainAll, set, sublist, and toArray
Maps clear, containsKey, containsValue, entrySet, get, iterateAll, keySet, put, putAll,
remove, and values

By applying this design, the authors were able to achieve an energy efficiency ranking
of the collections based off of each method’s energy consumption. Additionally, these
rankings are grouped by different combinations of the implemented interfaces, Sets, Lists,
and Maps, and the different population sizes. All of this allows a developer to have a better
understanding of which data structure would be best suited for a given scenario. Below, in
Figure 5, is an example of one of the data tables for the List collections using a population
of 25,000.

Figure 5: List results for population of 25k

From the data presented in Figure 5, for Lists with a size of 25,000, we can see that Role-
UnresolvedList and AttributeList are the collections which have the tendency to consume
the least amount of energy, while LinkedList is the least efficient implementation. Addi-
tionally, the energy measurements are colored with a varying spectrum of colors from red
to green, depicting a method to be inefficient or efficient respectively.

2.3. State of the Art 16

Figure 6: Sometimes Faster doesn’t mean Greener

This study also supports the statement that a faster implementation does not always
mean a more energy efficient one. As shown in Figure 6, the containsKey method in Prop-
erties is slower than in SimpleBindings, yet it consumes less energy.

Finally, using a very simple methodology to choose a more efficient collection, the au-
thors were able to optimize Java projects by an average of 6.2%.

In another similar study to this one, Lima et al. (2016) have studied the energy consump-
tion of different data structures in Haskell.

Towards a Green Ranking for Programming Languages

In order to better understand how the choosing of a particular programming languages can
influence the energy consumption of a software solution, researchers have conducted stud-
ies that use implementations of the same problems in different languages aim to compare
them. An example of such study is the one conducted by Couto et al. (2017): the authors
used a set of computational problems, written in several languages, to check which of the
considered programming language are more energy efficient.

The case study considered for the study was obtained from the repository available in
the CLBG project. This repository contains solutions for 13 different problems, each one
implemented in almost 27 programming languages. Figure 7 presents a brief description
of the 13 CLBG problems.

This study compared 10 of the 27 languages: C, Java, Octran, Fortran, C#, Go, Racket, Moon,
Jruby, an Perl, and only the first 10 problems were considered in this study, since there was

2.3. State of the Art 17

Figure 7: The 13 Benchmarks available in CLBG

no solution of the last 3 in all the languages they wanted to test. The results of this study
are presented in Figure 8.

Figure 8: Normalized global results for Energy and Time

As it can be verified, it was concluded that the C language is the fastest and the most
energy efficient in relation to all the others, being in second Java that energetically costs
1.69x more compared to C. They also concluded that not always fast means energetically
efficient.

2.3. State of the Art 18

This study was extended afterwards Pereira et al. (2017b), in order to include the re-
maining 17 languages and to offer a more thorough comparison between the languages.
While the first study focused mainly on comparing the energy consumption with the exe-
cution time in and between languages, the second study also presented a discussion about
the memory consumption and its relation with the solutions’ energy consumption, and a
comparison considering not only languages but also programming paradigms.

Moreover, the authors verified that if they tried to rank the languages according to energy
consumption, execution time and memory usage of the solutions, the rankings would be
different. Given that, they aimed at creating a general language ranking, considering the 3

referred factors, and proposed such ranking as one of the main contributions of their study.
The resulting ranking is presented in Figure 9.

Figure 9: Language ranking considering all combinations of energy, time and memory (in Pereira
et al. (2017b))

Spectrum-based Energy Leak Localization (SPELL)

SPELL is a language independent technique to detect energy inefficient fragments in the
source code of a software system. It is based off of Spetrum-based Fault Localization (SFL),
a statistical analysis technique typically used to locate bugs or program faults based off of
several test executions.

More specifically, SFL uses a set of flags which reflect whether or not a concrete compo-
nent is used in a particular execution of the software and set up an n x m (Figure 10) matrix
(m different components and n different executed tests cases).

2.3. State of the Art 19

Each position of the matrix (aij) can either have the value of 0, if the component was not
executed or the value 1 if it was. Finally, an error vector is constructed to state if an error
occurred (1), or not (0) during a specific test execution.

Figure 10: Generic formulation of a SFL Matrix

Figure 11: The Jaccard similarity coefficient

Using the Jaccard similarity coefficient (as shown in Figure 11), SFL calculates how prob-
able a certain component contains a fault. The variables of the coefficient function are as
follows:

M11 represents the total number of attributes where A and B both have a value of 1.
M01 represents the total number of attributes where the attribute of A is 0 and the

attribute of B is 1.
M10 represents the total number of attributes where the attribute of A is 1 and the

attribute of B is 0.
M00 represents the total number of attributes where A and B both have a value of 0.
As one can not relate energy consumption to simple binary values of high (1) or low (0)

consumption, the authors of SPELL adapted the SFL technique to allow it to be used for
energy leak localization.

First they adapted the hit spectrum to a static energy model. Similar to the prior tech-
nique, it also uses an n x m matrix. But unlike SFL, the elements of the matrix are triples,
as shown in the Figure 12:

Figure 12: Static Model Formalization

2.3. State of the Art 20

E - for energy consumption (Joules);
N - for the number of executions (cardinality);
T - for runtime (milliseconds).

Finally, using an adapted similarity function, the technique uses a statistical method to
relate energy consumption to different different source code components of a system, thus
directing the developer’s attention on the most critical "red" points in his code (as shown
in Figure 13).

Figure 13: SPELL embedded Gzoltar graphic visualization tool

The main difference between SPELL and other static approaches is that instead of using
a binary decision, the error vector is calculated by this technique giving it two different
perspectives, Component Category Similarity and Global Similarity, to calculate the oracle
and similarity. The first one is an analysis in a specific category (for example, considering
only the energy consumption) and the second one is a global analysis considering the three.

Energy Consumption in Data Warehouses

In the database systems field, where the computational resources required during the pro-
cessing of large volumes of data are enormous, caused the need to look for new imple-
mentations arose and from a study carried out by Guimarães et al. (2016) a new technique
was created so that it was possible to categorize and evaluate the energy consumption in
data warehouse settlement systems and thus to have the necessary information so that it is
possible to build new settlement systems with lower energy costs. Very closely, the imple-
mentation consists in evaluating the energy consumption of all the components used in the
settlement process from a conventional tool.

3

E N E R G Y I N T H E C O D E C O M PA S S S Y S T E M

This chapter presents the design and the implementation of the Green CodeCompass plug-
in. First, I will explain why companies like Ericsson need to be aware about energy effi-
ciency. I will show the environment where this dissertation is developed. I will describe in
detail about the tool where I will implement the green plug-in I propose and at the same
time I will analyze the importance of it for large-scale projects in Ericsson’s development
teams. Then I will explain about the decisions that I had to make to be possible the mea-
surement of the energy consumption of the industrial projects. I will also explain in detail
the architecture of the system and the implementation of all the essential components of
the whole tool. Finally, I will show an example of what the tool generates after running on
a project.

3.1 why does ericsson needs green computing?

According to Calero and Piattini (2015), a company can receive huge public criticism and
subsequently lose market legitimacy if it does not have sustainable in its top priorities. 47%
of institutions began modernizing their sustainability-based business models, conducting
sustainable development as a new source of innovation, a new mechanism to gain compet-
itive advantage and a new opportunity to cut costs. Most people claim that they will pay
more for a environmentally friendly product.

The ISO 26000 standard for Corporate social responsibility (CSR) was published, in early
2010. It provides executive guidelines and measures to demonstrate social responsibilities.
The goal of this standard is to encourage the adoption of environmentally friendly infor-
mation technologies and to promote greater environmental responsibility through business
practices. Companies should take a precautionary approach to protect the environment.

For example, according to Alves et al. (2012), the environmental impact of datacenters
(clusters, grids or clouds) is enormous, and studies have found that carbon dioxide (CO2)
emissions from multiple data centers are bigger then many countries. Therefore, it is pos-
sible to affirm that the power consumption of these large-scale and distributed equipment
is enormous. With a huge energy consumption, another problem is also associated with

21

3.2. CodeCompass 22

the companies that use these structures: the price to be paid for the high amount of energy
consumed, also counting on the cooling and communication systems associated with this
system. "Close to 50% of the energy costs of an organization can be attributed to the IT
departments” - Harmon and Auseklis (2009).

In addition to organizations, programmers themselves are also beginning to be concerned
about the energy efficiency of their programs. This conclusion was based on a study carried
out by Pinto et al. (2014) and using StackOverflow as the main source, where they analyzed
300 questions and 550 answers from more than 800 users, related to the energy consumption
of sw.

3.2 codecompass

The maintenance of large-scale software has always been problematic. Over the years, the
design structure becomes fickle as developers change, the code becomes difficult to under-
stand and the documentation tends to become unstable. To reduce these problems that are
constant in projects coming from its work teams, Ericsson developed CodeCompass Cod
(2016), a software comprehension tool for C/C++, Java and Python based on LLVM\Clang.
The open-source tool was built to make it easier to understand that type of software.

From several studies on Ericsson projects these were the main requirements to build a
good understanding tool:

• Growing complexity - Projects of this kind are constantly growing and becoming
more complex, i.e the cost of fixing an error or adding new functionality also grows.
Regardless of its complexity, project analysis must be scalable.

• Knowledge erosion - In a multinational enterprise environment, such as Ericsson,
switching the developers of a large-scale software development teams is frequent,
and the new programmers need to quickly adapt to the project.

• Multiple views of the software based on various information sources - In order to
have a complete analysis of the program, different types of analysis must be carried
out, from the compilation of the program to the analysis of metrics. Each one has its
importance but it is necessary to combine all the possible analyzes in a single work
environment.

• Communication barriers - Development teams that are located in different offices
tend to have communication problems. If there is some kind of error, the teams will
eventually argue on which side that error appeared. This is normally due to the
fact that they do not know the intended behavior of the components of each other.
An understanding tool should improve sharing of knowledge about components and
teamwork.

3.2. CodeCompass 23

• Multiple programming languages - Usually large-scale software systems are imple-
mented in more than one language. It is necessary that the tool supports several
languages in the same interface so that it is possible to navigate between the modules
and making the usability of the tool more user-friendly.

• Hard to deploy new tools - It is often difficult to convince developers to use new
tools, especially when they are hard to install or do not have a user-friendly interface.
For this, it is necessary that the tool is intuitive and easy to install and use.

• Requirement of open extensibility - When planning a long-term software product
Domain-specific languages (DSL) are used to describe the knowledge base of the domain
in a simple and compact way. The tool should analyze and map DSLs to generated
code.

3.2.1 Architecture

CodeCompass is built (Figure 14) according to the server-client architecture model to be
possible to supply instant reading, searching and navigation of source code in both textual
and graphical formats. The server provides a Thrift1 interface for clients through an HTTP2

transport. Since the interface is specified from the Thrift interface, it is easy to add other
applications or plugins to the tool (an Eclipse plugin is already implemented).

Figure 14: CodeCompass architecture

1 Thrift is an interface definition language and binary communication protocol that is used to define and create
services for numerous languages.

2 HTTP is an application protocol for collaborative, distributed, hypermedia information systems.

3.2. CodeCompass 24

During the parsing process, a worspace3 is physically saved as a relational database and
additional files are created. This process consists of running different parsers plugins, each
with different goals. The most important parsers are:

• Search Parser - It iterates recursively over all files in the corresponding project and
uses Lucene4 to collect all the words from the source code. These words are stored in
a search index, with their exact location.

• C/C++ Parser - Using an LLVM/Clang parser, it iterates over a database compiled in
JSON5 that contains build actions and it stores the position and information type of
AST nodes in the database. This database will be used by a C/C++ language service to
respond to Thrift calls according to the source code.

• Java Parser - Using an Eclipse JDT parser, it iterates over a database compiled in JSON
that contains build actions and stores the position and type of information from AST
nodes in the database. This database will be used by a Java language service to
respond to Thrift requests according to the source code.

Since CodeCompass has an extensible architecture it is possible to easily write new
parsers in C/C++. Parser Plugins can be added to the system as shared objects. Thrift
orders are served from the service plugins, on the Webserver. One or more Thrift services
are implemented by a service plugin and it serves as client requests based on the infor-
mation saved in the workspace. A Thrift service has a collection of methods and settings
accessed from remote calls. All services have an implementation with the exception of
language service that is implemented for C/C++, Java and Python. The Language Service
are similar because they provide the functionality of navigating over the code base for the
implemented language. The most important services are:

• Language Service - this service provides symbol, file, and globally query methods for
the current workspace.

• Search Service - this service offers 4 different query types: search for symbol defini-
tions6, search for words in text format, search for file names and suggest search for
sentences based on phrase fragments.

3 A parsed snapshot of the source code is called a workspace.
4 Lucene is a free and open-source information retrieval software library, originally written in 100% pure Java.
5 JavaScript Object Notation is an open-standard format that uses human-readable text to transmit data objects

consisting of attribute–value pairs.
6 A symbol is a primitive datatype whose instances have a unique human-readable form.

3.2. CodeCompass 25

3.2.2 Web User Interface

The web interface (Figure 15) is organized with a static top area, and with extendable area
on the left and right side. Source code and other views can be seen in the center of the
page, while other navigations are shown on the left. The workspace where the project is,
the file currently open, the search area, and some generic menus to help the user, are in the
upper area.

Figure 15: User Interface

3.2.3 Functionality

In this section it will be presented the features that can be used through the graphical
interface.

1. Version control visualizations - visualization of version control information is an
important support to understand software evolution. CodeCompass can also display
Git commits.

2. Code Metrics - the tool allows you to check some metrics about the quality of the
code and summarize them by directories or individual file hierarchies, of the current
project.

3. File and directory level diagrams - it is possible to generate diagrams for directories
and files, thus gaining a greater perspective of the system and its dependencies.

3.2. CodeCompass 26

4. Information about language symbols - through the source code, the user can click
on any symbol and receive information or display diagrams on it.

5. Symbol level diagrams - through the CodeBits (Figure 16) interactive diagram the
user can browse through large call chains and type hierarchies.

Figure 16: CodeBites example

6. Search - there are 4 types of research available:

• full text search searches for a group of words that are followed in a block of text;

• definition search, has the same syntax as the previous search but instead of text,
it searches for symbol definitions;

• log search looks for location in the code where the intended log messages are
sent;

• filename search, as the name implies, looks for the name of a particular file.

7. Browsing history - the user can view the browsing history over the files that he has
accessed to complete the task he is performing.

8. CodeChecker - it allows the user to check bugs identified by Clang Tidy7 and Clang
Static Analyzer through the CodeChecker server. With these helpers CodeCompass
shows the position of the bugs and execution paths that lead to a failure.

7 Clang Tidy purpose is to provide an extensible framework for diagnosing and fixing typical programming
errors

3.2. CodeCompass 27

9. Namespace and type catalogue - when using Doxygen8, the tool saves the definitions
of functions, types and variables, and provides a catalog of statements organized by
the hierarchy.

3.2.4 Perfomance

The tool scales well in relation to the size of the analyzed code in parsing time, response
times of the web server and size of the stored data.

Table 1: Perfomance of CodeCompass v4

TinyXML
2.6.2

Xerces
3.1.3

CodeCompass
v4

Internal
Ericsson
product

Source code
size [MiB]

1.16 67.28 182 3 344

Search database
size [MiB]

0.88 37.93 139 7 168

PostgreSQL db
size [MiB]

15 190 2 144 7 729

Original build
time [s]

2.73 361.77 2 024 —

Parse time [s] 21.98 517.23 6 409 —
Text/definition
search [s]

0.4 0.3 0.43 2

C++ Get usage
of a type [s]

1.4 2 2.3 3.1

The results of Table 1 are derived from the performance results of 4 different C/C++
applications. As one can see, parsing time is proportional to compile time.

3.2.5 User Acceptance in Real Production

Six months after the tool was released, Ericsson used it in seven projects. They observed
that in projects with more than 2 million lines of code about 40% of programmers used
CodeCompass at least twice a month and about 15% use it daily.

As shown in Figure 17 from ICS (2016), CodeCompass is mostly used to inspect relation-
ships between classes, as well as to find and follow references to functions and variables.

8 Doxygen is a documentation generator, a tool for writing software reference documentation.

3.3. Green CodeCompass Plug-in 28

Figure 17: CodeCompass usage distribution per task

3.3 green codecompass plug-in

With the easy ability to extend CodeCompass I will build a plug-in to be possible to col-
lect and visualize the energy consumed by functions and methods at runtime, of a given
industrial-size project written in the two main languages (C and C ++) supported by Code-
Compass. In order to be possible to develop this plug-in, the project planning was divided
into the following three tasks:

• Task 1.1 - Instrument of an Application
I will develop a tool to instrument the source code of a program, in the two main
languages (C and C++) supported by CodeCompass, in order to insert librarie depen-
dencies of RAPL and to wrap RAPL calls around the functions or methods that the
user wants to profile at runtime.

• Task 1.2 - Transform RAPL in CRAPL
I will modify the RAPL tool in order to measure the energy consumed in the wrapped
functions or methods of the instrumented program. When executing this program it
will collect all energy measurements and save them in a text file.

• Task 1.3 - Visualization data tool
I will write a script to read the output file from the previous task and transform it in
the proper format file to be evoked by a data profile visualization tool. Then it will
be easy for developers to analyze the results.

3.3.1 Decisions

In order to develop a Green CodeCompass plug-in I needed to define the technology to
use and the architecture of the program, what would be the best languages or frameworks

3.3. Green CodeCompass Plug-in 29

that I could use to reproduce the expected effect. As most CodeCompass and its plug-
ins are implemented in LLVM/Clang I was advised by the members of Ericsson to learn
the LLVM/Clang frameworks and to follow this approach. Being that Clang offers several
paradigms of library and after analyzing them I ended up choosing it to implement a
LibTooling9 tool. Figure 18 shows the architecture of the Green plug-in for Code Compass.

Figure 18: System architecture

First the user will send the files or the project, that he wants to analyze, to the LibTooling
tool. It will instrument the original source code in order to measure the energy consumption
of each function (inserting their information into an index text file) when the sw executes.
After inserting the dependencies of the CRAPL the user needs to execute the project. After
that a file with the results will be created. Then the user should send it to a script in python
to put it in the necessary format to be read by the Kcachegrind framework.

Measurement in Different Cores

From the original RAPL code I made the necessary modifications to be possible to extract
the energy values from multi-threaded programs and study a bit this topic to see if it would
be possible to do a detailed study on Kernel Threads10.

After a brief study, I was able to draw some conclusions about energy consumption in
user level threads. A program with a routine on data matrix 1024x1024 was executed
with 1,2,4,8 and 16 threads and I found that up to 8 threads the energy consumption and
the execution time decreased but it was verified that the pp1 parameter (GPU) increased,
this being due to the fact that it is being executed with multi-threads. In a program with

9 LibTooling is a library to support writing standalone tools based on Clang.
10 A kernel thread is a kernel task running only in kernel mode. It usually has not been created by fork() or

clone() system calls.

3.3. Green CodeCompass Plug-in 30

smaller matrices it was found that the energy consumption increased in comparison to the
sequential program.

Despite these conclusions it was found that all cores returned the same energy value and
so I and the members of Ericsson, came to the conclusion that there would be no time to
implement and do a detailed study on multi-threading energy consumption.

Clang Tooling

The LLVM project, started at the University of Illinois, is a collection of modular and
reusable compiler and tool-chain Lattner (2006). LLVM has grown into an umbrella project
and now includes various open source activities from compilers to static analysis. The
flagship compiler for the LLVM project is Clang, the “native” compiler of LLVM. Clang
supports C, C++, Objective-C and Swift languages in the advanced level Groff and Lattner
(2015). The modular, object-oriented design of Clang make it ideal for research projects
require compiler-level understanding of the source code Lattner (2008). Having a well-
defined interface for building the AST, exploring it in various ways and even on-the-fly
modify it, I can apply the tool-chain for instrumenting the source.

In the center of my activity is the AST. The AST contains all important information (even
the formatting informations via the stored positions of every element). The structure of the
AST is representing the logical structure of the original program. For example the node
which belongs to a for loop has four children: a declaration statement to introduce the
loop variable, a logical expression as loop condition, an iteration expression and the body.
Note that the parentheses and the semicolons in the loop header are excluded.

In the AST there are different type of nodes such as ForStmt, FunctionDecl, BinaryOperator,
etc. These types are organised to an inheritance hierarchy which has three roots: Decl, Stmt
and Type. Since the fundamental part of build process is compilation of translation units,
the type of the root node is TranslationUnitDecl.

One way of using the Clang AST is to visit its nodes Horváth and Pataki (2015); Clang
(2016). The visitor design pattern can be used to reach every node of the tree and perform
some action when the process comes to a given type of node. Clang compiler provides a
very efficient way of tree traversal by RecursiveASTVisitor template class. My visitor class
has to inherit from this template class of which the template parameter is my class itself.
The reason of this is that with this solution my class also becomes an AST visitor by the
inheritance, but it does not have to pay for virtual function calls every time when running
the given visitor function for the next AST node.

3.3. Green CodeCompass Plug-in 31

KCachegrind

To visualize in detail and in a user-friendly way the energy consumption values of the
functions and methods tested at runtime, reported by RAPL, I had to choose a good visu-
alization tool for profile data, in this case the KCachegrind11 tool.

Although I did not explore the full potential of this tool, here are some features by Wei-
dendorfer and Zenith, that weighed heavily on my choice:

• Disassembler annotation and source code views, that allows to see details of cost
related to assembler instructions and source lines (left tab of figure 19);

• A tree-map view, which allows nested-call relations to be visualized, together with
inclusive cost metric for fast visual detection of problematic functions (bottom right
corner tab of figure 19);

• A call-graph view, which shows a section of the call graph around the selected func-
tion (top right corner tab of figure 19).

Figure 19: Visualization of Profiling Data in Kcachegrind (Weidendorfer and Zenith)

The output file needs to be converted in a Callgrind format file to be read by the tool, so
it was necessary to create a Python script (detailed later in section 3.3.2) for that purpose.

11 http://kcachegrind.sourceforge.net/html/Home.html

3.3. Green CodeCompass Plug-in 32

events: package pp0 pp1 dram time

#define function ID Mapping

fn=(0) usage:50

fn=(1) BaseHarnessHandlers:68

fn=(237) tassert:49

...

fl= xerces-c-3.1.4/tests/src/DOM/RangeTest/RangeTest.cpp

fn=(237)

49 15 11 0 1 1

As one can see above, firstly the file needs to specify what kind of values the program
will read (events), next it is necessary to map the functions by numbers (fn) and then it
will have all the energy measurements (in Joules) of the functions that were used in that
execution. So, in this case, the function tassert that starts in line 49 of the RangeTest.cpp
file wastes 15J in package, 11J in CPU core (pp0), 0J in CPU uncore (pp1), 1J in DRAM and
it took 1 second to be executed.

3.3.2 Implementation

This section describes in detail all the implementation that was developed so that it was
possible to reproduce the expected effect by the Green CodeCompass plug-in.

Firstly I will explain in detail how the instrumentation tool is implemented and what
modifications it makes in the source code of a given project, next I will explain the changes
that I had to make in the RAPL framework, and finally I will explain why it was also neces-
sary to make a Python script so that the output of the plug-in is in the proper KCachegrind
format.

The Instrumentation

Based on LLVM/Clang, the LibTooling tool starts by reading the input files and will run
them up my FrontendAction. It will create an AST with the parsed text of each file. For
each of these generated trees it will recursively go through each node to be possible to
make the necessary modifications, to include the CRAPL interface in the source code of the
program that the user wants to analyze. An example:

int example(){

int a = random();

if(a<2)

example();

return a;

3.3. Green CodeCompass Plug-in 33

}

Figure 20: Example of an AST with the nodes to be read.

Using the previously source code as example to demonstrate, the instrumentation tool
will undergo the necessary modifications by traversing the nodes described in the Figure
20 and detailed below:

• VisitFunctionDecl: It visits all the nodes that are functions. If the analyzed function
does not refer to a header file and has the minimum number of statements (Instruc-
tions) that the user requested (with the optional flag -l) then the tool will insert the
information (path, filename, declaration line and name) of that function into an index
(array) of functions that will suffer the respective modifications until the end of the
recursive reading of their child nodes. In addition it also modifies the source code
with a CRAPL object initialization and inserts a rapl_before() call at the beginning
of the functions, as one can see below with the example code:

int example(){

CRapl rapl = create_rapl(0);

3.3. Green CodeCompass Plug-in 34

rapl_before(rapl);

int a = random();

if(a<2)

example();

return a;

}

• VisitIfStmt: to maintain code consistency it is necessary to insert braces in each If or
Else statement that they are not already limited by them. This because it is always
required to insert a rapl_after() call before every single return statement of the
given function. Following the code hitherto modified, the function will look like this:

int example(){

CRapl rapl = create_rapl(0);

rapl_before(rapl);

int a = random();

if(a<2){

example();

}

return a;

}

• VisitReturnStmt: if the instrumentation tool catches a return statement anywhere in
the code of the currently being analyzed function, it will insert a rapl_after() call to
end the analysis of the energy consumption in that call. After this step the function
will have the following shape:

int example(){

CRapl rapl = create_rapl(0);

rapl_before(rapl);

int a = random();

if(a<2){

example();

}

rapl_after(0, rapl);

return a;

}

• VisitCallExpr: the first time the totality of the Plug-in (Instrumentation + CRAPL)
was tested (detailed in section 3.3.3), it was noticed that some functions consumed
more energy than the main function itself, which is impossible since the main is the
first to be executed and the one that finishes the program. With this output results

3.3. Green CodeCompass Plug-in 35

it was realized that I was not handling recursive functions so well. After a brief talk
with the Ericsson’s members the best solution I found for this problem was to limit
blocks of code before and after the recursive call (i.e rapl_after() and rapl_before()

instrumentations for each of these calls). This was one of the biggest challenges until
I came up with a good generic solution, regardless of what kind of recursive call it is.
After this step, the result is:

int example(){

CRapl rapl = create_rapl(0);

rapl_before(rapl);

int a = random();

if(a<2){

rapl_after(0, rapl);

example();

rapl_before(rapl);

}

rapl_after(0, rapl);

return a;

}

In the end of traversing each tree (of each file), the Green CodeCompass plug-in also
inserts the dependencies of the CRAPL libraries and save the changes in the correspond-
ing file (or create a new one, if the -o = "example.cpp" flag is enabled). So, after all the
modifications the File.c (of Figure 20) will look like this:

#include <crapl/rapl_interface.h>\n"

#include <crapl/measures.h>

int example(){

CRapl rapl = create_rapl(0);

rapl_before(rapl);

int a = random();

if(a<2){

rapl_after(0, rapl);

example();

rapl_before(rapl);

}

rapl_after(0, rapl);

return a;

}

3.3. Green CodeCompass Plug-in 36

When all the instrumentation of the files is finished, it will create the index.txt file with
the information of all the modified functions to be analyzed subsequently by CRAPL:

[Index:Path:Filename:Declaration_Line:Function_name]

0:xerces-c/tests/src/XSTSHarness/XSTSHarness.cpp:102:1:printFile

1:xerces-c/tests/src/XSTSHarness/XSTSHarness.cpp:138:1:error

2:xerces-c/tests/src/XSTSHarness/XSTSHarness.cpp:145:1:fatalError

3:xerces-c/tests/src/XSTSHarness/XSTSHarness.cpp:154:1:resolveEntity

4:xerces-c/tests/src/XSTSHarness/XSTSHarness.cpp:240:1:main

CRAPL

From the RAPL tool I made some modifications to be possible to read the energy consump-
tion of several methods or functions without any conflict in their readings. For this purpose,
I converted the original version of RAPL in C for a C++ object-oriented version, and then
I created an interface so that RAPL could transform both .c and .cpp files. Thus, each in-
stantiated RAPL object will read only the energy consumed by each call of that function or
method.

Figure 21: How CRAPL works.

For each called function or method in the execution of a program, the CRAPL interface
will create a CRAPL object to read the energy consumption before the execution of the
function body. After doing their job, i.e in the moment before returning or closing the
function, it will read the values of energy consumption again and subtract them with the
obtained values in the beginning to reach the final energy measurement of that call (Figure
21).

In addition to the required instrumentation to retrieve the values referring to the energy
measurements at runtime, it is also necessary to save this data to be written in a file at the
end of the executed program.

3.3. Green CodeCompass Plug-in 37

With the additional measures file (integrated in the CRAPL framework) and including
the initMeasure and writeMeasure functions in the instrumentation of the main function
it is possible to save the values of the energy measurements in a file.

Figure 22: How energy measurement values are saved

As shown in Figure 22, in the beginning of the execution, initMeasure is called to initial-
ize a matrix by allocating memory for N rows corresponding to the number of functions
(number of lines of index.txt file) that were rewritten with the CRAPL methods during the
previously executed instrumentation process and 5 columns referring to the values: pack-
age, pp0, pp1, dram and time (more information in section 2.3.1). At the end of the execu-
tion, the writeMeasure function will write the file with the energy consumptions referring
to the functions/methods called during it.

Python Script

After running the requested project with some type of test it will be created a text file with,
the name of that test and the values of the energy consumption of each function or method
executed, with the following format:

events: package pp0 pp1 dram time

fn=(157)

calls=32

0 0 0 0 0

fn=(158)

calls=1

62 46 2 3 3 //consumed energy by events parameters

fn=(159)

calls=3

3.3. Green CodeCompass Plug-in 38

0 0 0 0 0

fn=(162)

calls=1

8390 6789 192 992 579

In this format, fn stands for the index number of the function in the index.txt file, the val-
ues of the package, pp0, pp1 and dram in Millijoules (10−3 J) mJ and the execution time in
Millisecond (10−3 S) mS.

In order to read the file and visualize it in Kcachegrind it was necessary to create a script
in python to edit this text file and save it in the correct format, the Callgrind format file.
After executing this script, a new text file with the following format will be created:

events: package pp0 pp1 dram time

#define function ID Mapping

...

fn=(157) DOMTest:174

fn=(158) createDocument:184

fn=(159) createDocumentType:199

fn=(160) createEntity:211

fn=(161) createNotation:224

fn=(162) docBuilder:236

...

fl= ClangRapl/xerces-c-3.1.4/tests/src/DOM/DOMTest/DTest.cpp

fn=(157)

174 0 0 0 0 0

fl= ClangRapl/xerces-c-3.1.4/tests/src/DOM/DOMTest/DTest.cpp

fn=(158)

184 62 46 2 3 3

fl= ClangRapl/xerces-c-3.1.4/tests/src/DOM/DOMTest/DTest.cpp

fn=(159)

199 0 0 0 0 0

fl= ClangRapl/xerces-c-3.1.4/tests/src/DOM/DOMTest/DTest.cpp

fn=(162)

236 8390 6789 192 992 579

Since the text structure are similar, the only two differences between the old format and the
new one are: the functions must be indexed and it is necessary to append the number of
the declaration line of those functions, in its respective code file.

3.3. Green CodeCompass Plug-in 39

In addition to previously modifications, I have also added flag options to be possible
to normalize the energy consumption values with large overhead (it will be explained in
section 3.3.3). To achieve those results, it is necessary that the user also monitor only the
main function and save the respective values:

28 12 0 7 6 //without overhead (a)

147289 114794 3090 17461 11975 //with overhead (b)

As one can see above, the energy consumption values of the first line (a) are from the
monitoring of only the main function and in the second line (b) the values are from the
main function but with the monitoring of all the other functions performed in the respective
execution. With these values the script will divide each of the parameters (package, pp0,
pp1 and dram) and know the ratio of each one to be possible to normalize the remaining
functions with a rule of three (1):

∀n ∈ [0, 4],
an

bn
= rn (1)

a0

b0
= r0 <=>

28
147289

= 0.00019 (2)

In this case 0.00019 (equation 2) will be the value of the package ratio to be multiplied by
all functions (3):

∀ f n ∈ [0, 4926], ∀n ∈ [0, 4], f unc[f n][n] ∗ r[n] = normal[f n][n] (3)

f unc[162][0] ∗ r[0] <=> 8390 ∗ 0.00019 = 1.5941mJ (4)

For example, in function 162 (equation 4) the normalized value of the energy consump-
tion of the package is 1.5941 mJ.

3.3.3 Plug-in Outcomes

In this section it is shown how the CRAPL final measurements results, of an example project,
are visualized after the transformation of them by the python script into the correct format
to be read and analyzed by the KCachegrind framework. But first, I will explain how I
corrected an error when testing the implementation of the plug-in in recursive functions.

Measurement in recursive functions

After the implementation of the plug-in was complete, I tested the recursive functions in
the same way as the others, but I noticed that the energy expenditures of those functions

3.3. Green CodeCompass Plug-in 40

were higher than the main function, which can not happen because the main is the first
function to execute and is the last one to return. The energy spent on main is 100% percent
of the energy spent in running a program.

After checking this error I had to go back to the previous step and modify the imple-
mentation (of the instrumentation tool) to be possible to wrap the recursive calls of these
functions in a way to end with this recursive mistake. For example:

const char* TiXmlDocument::Parse(...){

CRapl rapl = create_rapl(127);

rapl_before(rapl);

...

while (p && *p){

TiXmlNode* node = Identify(p, encoding);

if (node){

rapl_after(127,rapl);

p = node->Parse(p, &data, encoding);

rapl_before(rapl);

}

}

rapl_after(127,rapl);

return p;

}

Although it has already a fairly large overhead due to the constant calls to the CRAPL,
with this implementation we get an even bigger overhead. In addition, recursive functions
usually spend more energy than iterative functions, because they have to push and pop the
variables back into the stack when a new recursive call is made (section 2.2.4).

Energy per function

Reading the energy consumptions of all the functions called in the execution of a program
is synonymous of a large overhead on the part of the CRAPL, i.e how many more times a
function is called, the greater the percentage of total energy consumed will derive from the
CRAPL calls.

As one can see from Figure 23, the KCachegrind framework tabs are:

• Self: energy consumption of pp0 in mJ (Millijoules);

• Function: function name with the number of the declaration line;

• Location: filename of that function.

3.3. Green CodeCompass Plug-in 41

Figure 23: All functions measurement with overhead (pp0)

As shown in Figure 23, the values extracted from CRAPL seem nonsensical, neverthemore
if I just measure the energy consumption from the main function, without the overhead, the
values extracted of CRAPL for that execution are:

package pp0 pp1 dram time

32 13 0 8 7

As one can see there is a big difference between measure all functions or only the main.
In this case the overhead is 8225 (the ratio of 106.396/13), which is absurd. Because of
this defect, it was decided to address more a perspective about energy consumption not by
units of Joule but by percentage (%) in relation to the energy values of the main.

CRAPL Measurements without Overhead

To remove this large CRAPL overhead I tried to normalize the energy consumption (Figure
24) of all the functions using the equations mentioned above in section 3.3.2.

Figure 24: All functions measurement without overhead (pp0)

4

C A S E S T U D I E S / E X P E R I M E N T S

This chapter presents the hardware and software requirements to run the the Green Code-
Compass plug-in. I will demonstrate step-by-step the entire flow, from its installation to
the profiling of projects given as input by the user. I will also present some case studies
that were taken into account during the usability analysis of the platform, as well as the
discussion of these obtained results.

4.1 experiment setup

In this section one can find the Intel architectures that have integrated the energy monitors
chips to read the energy consumption values at different hardware levels and store it in
Model-Specific Registers to be accessed by the RAPL interfaces. Then, it will be presented
how to install and run the Green CodeCompass plug-in.

First of all, one can examine the Green CodeCompass Plug-in source code and download
it in the following link: https://github.com/Galay125/energy-analysis

4.1.1 Hardware Prerequisites

As previously stated (in the section 2.3.1), RAPL is only supported by recent Intel architec-
tures such as i5 and i7 CPUs. One can verify it in the Figure 25. Not all processors have
the ability to make available all the fields accessed by RAPL interfaces about the energy
consumption of some pieces of hardware.

The execution tests were all run on a laptop (Asus X555LJ) with the following character-
istics:

• 3.16.0-38-generic GNU/Linux (LinuxMint 17.2)

• Intel R© CoreTM i7-5500U Processor 2.40GHz Dual Core

• Memory 8 GB (4 GB DDR3 Onboard + 4GB DDR3)

42

https://github.com/Galay125/energy-analysis

4.1. Experiment setup 43

Figure 25: x86 Intel Architectures that have RAPL interface(Weaver, 2015).

Since the initial architecture is Broadwell (model 61) I was able to test all the possible
parameters provided by RAPL, namely: package, pp0, pp1 and dram.

4.1.2 Software Prerequisites and Configuration

To run Green CodeCompass plug-in you need LLVM + Clang, the installation can be found
here:
http://clang.llvm.org/get_started.html

Configuration and building

The configuration of the plug-in is done simply using CMake. Make sure that the LLVM
binaries are in your PATH: llvm-config is invoked during the configuration. Use GCC 4.8 or
later to compile.

mkdir build

cd build

cmake ..

make or sudo make install

Usage

Running the entire platform involves 3 steps:

• Instrumentation

http://clang.llvm.org/get_started.html

4.1. Experiment setup 44

To instrument a project in its own directory ("./") the following script is provided:

instru -l=5 -d="./" .cpp --

CRapl_Gen directory is created with file index.txt !

One can also use the follow flags:

.cpp - extension.

[optional] -l = number of minimum statements;

[optional] -o = output file;

[optional] -d = directory;

[optional] -fns = if the user just want to measure one function,

type the name of it.

• CRAPL

The following Linux commands install the CRAPL libraries in the system:

cd Rapl\crapl

sudo make install

Edit makefile to get the libraries dependencies, for example:

RAPL:= /home/username/Documents/Rapl

INCS := -I$(RAPL)

RAPLSRCS := ${RAPL}/crapl/measures.o ${RAPL}/crapl/rapl_interface.o

${RAPL}/crapl/rapl.o

SRCS := ${RAPLSRCS}

LDADD = ... ${RAPLSRCS}

DEFAULT_INCLUDES = ... -I$(RAPL)

• Execute your project:

make install

sudo modprobe msr // load MSR driver

sudo <exec_file>

cd CRapl_Gen and check your output (<exec_file>.txt)

Python Script

At this point, one need to convert the results extracted by CRAPL, when the instrumented
C++ program is executed, to the Callgrind Profile Format1 file to visualize it in the KCachegrind
framework:

python toCallgrind.py -i ../tinyxml/CRapl_Gen/index.txt -f

../tinyxml/CRapl_Gen/xmltest.txt -d tinyxml -o kache.txt

1 http://kcachegrind.sourceforge.net/html/CallgrindFormat.html

4.2. Results 45

One can also use the follow flags:

-i = index of the functions;

-f = output file of the results;

[optional] -d = directory;

[optional] -o = output with callgrind format;

[optional] -m = if the user want to normalize the results you can give a file

with the values of energy consumption just in the main

KCachegrind visualization

First, one need to install the KCachegrind framework to visualize the output from the
python script in the correct format file. The installation can be found in the following link:
http://kcachegrind.sourceforge.net/html/Download.html

Then run the tool with the specific file as input:

Kcachegrind name_of_file.txt

4.2 results

This section presents an analyze on the obtained results when testing the Green CodeCom-
pass plug-in on some projects requested by the Ericsson coordinator.

Currently our tool has been tested and analyzed intensively on two projects, TinyXml2

(small size) and some Xerces-c-3.1.43 (medium size) samples/tests, both XML parsers writ-
ten in C++.

4.2.1 TinyXml

TinyXml is a small-sized project and just have one directory, so it is not necessary to use
the optional directory flag (-d) to traverse nested directories when running the instrumen-
tation tool on all (*) of the .cpp (c++) program files, so one just need to execute the follow
command:

instru *.cpp --

After this step it is necessary to modify the project makefile, adding the dependencies of
the CRAPL libraries:

2 http://www.grinninglizard.com/tinyxml/
3 https://xerces.apache.org/xerces-c/

http://kcachegrind.sourceforge.net/html/Download.html

4.2. Results 46

RAPL:= /home/user/Documentos/Rapl

INCS := -I$(RAPL)

RAPLSRCS := ${RAPL}/crapl/measures.o ${RAPL}/crapl/rapl_interface.o

${RAPL}/crapl/rapl.o

SRCS := tinyxml.cpp tinyxmlparser.cpp xmltest.cpp tinyxmlerror.cpp

tinystr.cpp ${RAPLSRCS}

Then you need to compile the whole project:

make install

And execute the only test that TinyXml offers, with administrator privileges using sudo

to load MSR driver and to get the energy consumption values at runtime:

sudo modprobe msr

sudo ./xmltest

During the previously execution it was created a text file referring to the energy values
of each called function but it is still necessary to convert (with the Python Script) it in the
correct format file to be visualized in the KCachegrind framework:

python toCallgrind.py -i ../tinyxml/CRapl_Gen/index.txt -f

../tinyxml/CRapl_Gen/xmltest.txt -d tinyxml -o kcache.txt

In the end, it is just required to execute the following command to allow the user to
visualize (for example Figure 27) the results of this green profiling in KCachegrind:

Kcachegrind kcache.txt

Figure 26: Tinyxml results without overhead Figure 27: Tinyxml results with overhead

Due to a high number of calls from all functions (total of 181.889), I received a large over-
head from CRAPL. In order to remove this overhead (as mentioned above in section 3.3.2)
first I would have to test only the main function to collect the correct values of the energy

4.2. Results 47

consumed by the program and then I have to run the python script to do the necessary
normalizations (rule of three) of those energy results.

In this phase I will mainly present the results with the overhead, and since the KCachegrind
reads only integers, the units will be presented in Milijoules (10−3 J) mJ.

As shown in Figures (26 and 27) when I call the CRAPL in all functions of TinyXml we
get a large overhead (the number of calls to RAPL interfaces is too high) but if the main goal
of the plug-in is to realize which are the functions that spend more energy, this process is
necessary. Regardless, overhead does not prevent us from doing an analysis on the TinyXml
project (by percentage of energy consumed per function).

I can verify that the Parser function (at line 1043 of tinyxmlparser.cpp) and its child nodes
(nested functions calls) represent about 97% of the energy (Package) consumed during the
execution of the xmltest. The Parser function uses recursion, which means that at the
beginning of each function the stack have to push and pop the arguments (as mentioned
in section 2.2.4). This process causes the function to have a longer execution time and
consequently a higher energy consumption, according to studies made by Fakhar et al.
(2012).

4.2.2 Xerces-c-3.1.4

Xerces has a complex structure and it is bigger than the previous project. To be possible to
go through and reach all nested directories (specifically src, tests and samples) that contains
.c or .cpp files to be instrumented, it was necessary to use the optional flag for directories
(-d="./") in the command to run the instrumentation tool.

After the executed steps explained in the previous sections (4.1.2 and 4.2.1) and the
project already compiled, the user is able to run 16 samples4 and some tests.

Functions
Tests Main Initialize:162 BuildR:93 getUni:229 Terminate:328 match:995

CreateDOM 296,2 292 194,1 5,6 3,6 1,5
DOMCount 364,1 352,8 225,7 6,7 2,8 1,9
DOMPrint 318,3 303,9 198,5 6,6 3,3 1,2

DTest 973 329,5 210,1 6,6 3,8 399,2
RangeTest 286 275,8 179,7 5,5 3,2 0,75

Traversal 335,9 331,1 215,6 6,8 3,5 0,8
Total (%) 100% 75% 48% 1,5% 0,8 % 16%

Table 2: Energy Consumption of functions executed in some tests

4 https://xerces.apache.org/xerces-c/samples-3.html

4.3. Discussion 48

So, with about 4926 instrumented functions it was performed 6 tests of the Xerces project
and these were the energy (Package) results (Table 2) obtained for some executed functions
without removing the overhead (in Joules).

From these results (Table 2) I can not draw great conclusions except that most of the
functions with high energy consumption are child nodes of the Initializer:162, because it is
a function with only one call and with the highest percentage of energy spent. Also I can
verify that the best and most interesting case to be analyzed in detail is the DTest because
of the irregularity values of the function match:995.

Table 3 shows some results (Package) about the most expensive functions in DTest.

Functions PKG (J) % Calls Energy/Calls (J) Time (S)
Main:840 973 100% 1 973 90

testRegex:5393 569,3 58% 1 569,3 55

matches:517 542,9 56% 84 6,5 52

match:995 399,2 41% 52448 0,008 39

Initialize:162 329,5 34% 1 329,5 30

Table 3: Detailed energy consumption from DTest

As one can see in Table 3, the function match:995 has a very high energy consumption
compared to the other tests due to be used many times (52.448 calls). So, from this table
it can be said that the match:995 function spends less energy in relation to the rest (only
0.008J per call). Knowing that this function is used mostly by the function matches:517 I
can conclude that 70-75% of the energy consumed by matches:517 derives from match:995.

4.3 discussion

In this section it will be discussed the validity of the Green CodeCompass plug-in results
obtained in the performance of TinyXml project. How with some techniques and, the
implementation of new flags and options in the tool it is possible to study their own validity.

4.3.1 Validating the Measurements

As previously mentioned, the overhead of the CRAPL readings is one of the main problems
for the validation of the energy values in units by the plug-in, not being able to ignore this
problem I decided to make measurements of the energy consumption only of the main
function and the functions that the tool claims to consume more energy (one by one). In
order to be possible this procedure it was necessary to modify the instrumentation tool and
add a optional flag -fns to be possible for the user to instrument only the function that he
wants to study.

4.3. Discussion 49

After applying this method, I re-run xmltest 5 times, for each function represented in the
Table 4.

Functions Calls Tests Avg Main Avg Tests Global Avg Global Error
Parse:1043 1007 732 769 95% 144 855 98% 3%

ReadValue:1179 865 416,4 482,6 86% 126 089 86% 0%
Parse:1392 1499 92,8 859 11% 35 406 24% 13%

ReadText:574 1988 147,2 1404,2 10% 28 660 19% 9%
Parse:1337 482 30,8 296,6 12% 25 824 17% 5%

Table 4: Validation of results in TinyXml (values represented in mJ)

As can be seen, in Table 4 the columns can be defined as:

• Tests Avg: the average values of each measured function in the executed xmltest;

• Main Avg: the average values of the main function when measured only with the
respective function (of that line);

• Tests: the percentage of the average value in relation to the total (value of the main),
for example 732mJ is 95% of 769mJ.

• Global Avg: the measured values from Figure 27, in the case of study presented in
section 4.2.1;

• Global: the percentage of the previously values in relation to the total (main) of the
Figure 27;

• Error: the absolute value of the difference between the Global percentage and Tests
percentage.

Following the values of Table 4, the overhead of doing the measurement process of all the
functions is enormous in relation of measuring one by one, however, the overhead continues
to exist but I can now obtain better conclusions regarding the percentage that each function
exerts on the total energy consumption in the execution of xmltest.

From the Error column I can conclude that although the overhead exists the percentages
do not vary much (between 0-13% in this case).

According to this study I can say that the rule of three (Equation 1, 2, 3, 4) applied in the
energy values of project TinyXml to normalize them (to remove overhead of CRAPL calls)
are valid in the tested case (xmltest). So I can conclude that the energy measurements from
Figure 26 ("self" tab) are the correct energy consumption values (in mJ) for those functions.

In addition, readings of the RAPL interface are hardware-based. It is impossible to isolate
the energy consumption due to running the operating system, or running applications.

5

C O N C L U S I O N

5.1 conclusions

Our tool can be a good complement for C/C++ programmers who are interested in under-
standing the energy consumption of their programs. This is a theme that may not emerge
much when small programs are used by a single machine but can have a positive environ-
mental impact, or even reduce economically energy costs, when we talk about large scale
projects used in servers or millions of personal computers around the world.

At the end of Green CodeCompass plug-in development and validation, I was able to
answer the three research questions, presented in section 1.2:

• RQ1: Can we instrument a all C or C++ software system to add the RAPL interface
without compromise the execution of the programme?

The implemented instrumentation (section 3.3.2) has no conflict over the work per-
formed of the functions or methods belonging to a project or file, instrumented. On
the other hand, the perfomance of the functions will not be the same, when you add
RAPL calls you are increasing both the execution time and its energy consumption.
Either way, the only goal of adding RAPL calls to a system is just to study its energy
consumption.

• RQ2: Can we measure the energy of all the functions/methods of a project to easily
check which ones are wasting more energy?

With the CRAPL (object-oriented version) framework (section 3.3.2), it is possible to
measure the energy consumption of various functions during the execution of a sys-
tem, without any collision between RAPL calls. From the obtained results of those
measurements and after being converted to the appropriate file format (section 3.3.2),
you can visualize the functions that spent more energy during the execution of the
respective program, in the KCachegrind tool (section 3.3.3). When verifying a certain

50

5.2. Prospect for future work 51

inconsistency of the energy values referring to recursive functions (section 3.3.3), it
was necessary to modify the instrumentation algorithm to repair this error.

• RQ3: Can such techniques be implemented as a plugin of the CodeCompass tool?
How efficient and effective are such techniques when handling industrial-size sw
applications?

By adding the optional flag (-d) to navigate nested directories during instrumentation,
it was possible to study more complex projects (section 4.2.2). The larger a system, the
bigger the overhead of the CRAPL calls during its execution. So, the obtained results
are not conclusive at the units (Joules or Millijoules) level (unless you only measure
the power consumption of the main function) but following a prespective (validated
in section 4.3.1) on the rate of use of the functions (in percentage) during the execution,
it was possible to draw some conclusions regarding the higher energy consumption
by recursive functions (section 4.2.1). Although the Green CodeCompass plug-in is
fully operational there was no time, during my stay in Budapest, to integrate it into
the CodeCompass environment but according to its creators (members of Ericsson
Budapest) it would be an easy task since CodeCompass has an extensible architecture
(section 3.2.1).

Finally, I can say that the Erasmus program was a really important academic experience
for me. It was possible not only to implement this project but was also very important
to my own personal and professional growth. In the end, as a result of the partnership
between Ericsson, the University of Minho and the Faculty of Informatics of Eötvös Loránd
University, it was possible to submit an article at the SQAMIA 2017 conference. It was
held between 11 and 13 September in Belgrade, Serbia and the article was presented by Dr.
Zoltán Porkoláb, with a positive feedback from the participants.

5.2 prospect for future work

This project can serve as a good basis for the construction and development of various
perspectives of energy code analysis. Some ideas that may be applied in the future:

• Collect the Control Flow - it would be interesting to shape CRAPL so that it would
pick up the paths of the executed functions and so, we could study the results in more
detail through the visualization of more illustrative graphs in Kcachegrind.

• Collect energy from standard functions - collecting energy measurements from stan-
dard libraries functions would also give us a good perspective on which functions
or methods or structures we should choose depending on how much data our imple-
mentations will receive.

5.2. Prospect for future work 52

• Collect only the first call of a recursive function - although I have already imple-
mented this version, there was no time to make a study and draw conclusions about
this approach. By theory, it would be a good prospect in reducing the overhead of
CRAPL calls in recursive functions.

• Intensive study on the overhead of CRAPL calls - even knowing that the results
in percentage are good approximations of reality, it would be more meaningful to
show the results in the appropriate units and without the overhead that is gained
progressively in each call of the CRAPL while testing programs of industrial size.
Therefore, it would be a good study to realize how much energy is consumed by each
CRAPL call and in the end to withdraw this value to the total energy consumption of
each function/method executed.

• More options in the Python Script - instead of just creating an output in the callgrind
format to be read in KCachegrind, we could have more ways to visualize the obtained
results by implementing more output options in the python script, such as creating
.csv files to be read in excel.

• Threads to measure while running - one of the perspectives and ideas of Professor
João Saraiva to reduce or eliminate the overhead at the level of the CRAPL calls, would
be to implement the CRAPL to make the measurements in parallel with the execution
of the program to be tested. Briefly, the idea is to create a thread that measures energy
consumption every second.

• Intensive study in Parallel Programming - although some Ericsson members have
already write an article on energy consumption in Multicore processors, it would be a
good continuation to do a study about industrial-sized projects and to see if a parallel
approach would be more advantageous in relation to a sequential approach, at the
level of methods and functions.

• Extend the plug-in for IDEs - it might be more practical to trying to extend this
plug-in so that it is easily used while programmers are developing in their integrated
development environment. They could then test their functions and methods while
developing their projects.

B I B L I O G R A P H Y

Jrapl - a framework for profiling energy consumption of java programs. https://github.

com/kliu20/jRAPL.

Codecompass, June 2016. URL https://github.com/Ericsson/CodeCompass.

Codecompass: An open software comprehension framework. 2016.

Sérgio Daniel Tristão Alves et al. Green computing. 2012.

Ayse Basar Bener, Maurizio Morisio, and Andriy Miranskyy. Green software. Ieee Software,
31(3):36–39, 2014.

Coral Calero and Mario Piattini. Green in Software Engineering. Springer, 2015.

Clang. Doxygen documentation of recursive ast visitors. 2016. URL http://clang.llvm.

org/doxygen/classclang_1_1RecursiveASTVisitor.html.

Marco Couto, Tiago Carção, Jácome Cunha, JoãoPaulo Fernandes, and João Saraiva. De-
tecting anomalous energy consumption in android applications. In FernandoMagno
Quintão Pereira, editor, Programming Languages, volume 8771 of Lecture Notes in Computer
Science, pages 77–91. Springer International Publishing, 2014. ISBN 978-3-319-11862-8.

Marco Couto, Rui Pereira, Francisco Ribeiro, Rui Rua, and João Saraiva. Towards a green
ranking for programming languages. In Proceedings of the 21st Brazilian Symposium on
Programming Languages, SBLP 2017, pages 7:1–7:8, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-5389-2. doi: 10.1145/3125374.3125382. URL http://doi.acm.org/10.1145/

3125374.3125382.

Martin Dimitrov, Carl Strickland, Seung-Woo Kim, Karthik Kumar, and Kshitij
Doshi. Intel R© power governor. https://software.intel.com/en-us/articles/

intel-power-governor, 2015. Accessed: 2015-10-12.

STAR ENERGY. Energy star R©. History: ENERGY STAR, 2011.

Ericsson. Ericsson history, nov 2016. URL https://www.ericsson.com/en/about-us/

history.

Faiza Fakhar, Barkha Javed, Raihan ur Rasool, Owais Malik, and Khurram Zulfiqar. Soft-
ware level green computing for large scale systems. Journal of Cloud Computing: Advances,

53

https://github.com/kliu20/jRAPL
https://github.com/kliu20/jRAPL
https://github.com/Ericsson/CodeCompass
http://clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html
http://clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html
http://doi.acm.org/10.1145/3125374.3125382
http://doi.acm.org/10.1145/3125374.3125382
https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
https://www.ericsson.com/en/about-us/history
https://www.ericsson.com/en/about-us/history

Bibliography 54

Systems and Applications, 1(1):4, 2012. ISSN 2192-113X. doi: 10.1186/2192-113X-1-4. URL
http://dx.doi.org/10.1186/2192-113X-1-4.

J. Groff and C. Lattner. Swift’s high-level ir: A case study of complementing llvm ir with
language-specific optimization. Lecture at The ninth meeting of LLVM Developers and
Users, 2015.

Miguel Guimarães, João Saraiva, and Orlando Belo. Categorização do consumo de energia
em sistemas de povoamento de data warehouses. In Atas da Conferência da Associação
Portuguesa de Sistemas de Informação, volume 15, pages 460–474, 2016.

Robert R Harmon and Nora Auseklis. Sustainable it services: Assessing the impact of green
computing practices. In PICMET’09-2009 Portland International Conference on Management
of Engineering & Technology, pages 1707–1717. IEEE, 2009.

Timo Hönig, Christopher Eibel, Rüdiger Kapitza, and Wolfgang Schröder-Preikschat. Seep:
exploiting symbolic execution for energy-aware programming. In Proceedings of the 4th
Workshop on Power-Aware Computing and Systems, page 4. ACM, 2011.

G. Horváth and N. Pataki. Clang matchers for verified usage of the C++ Standard Template
Library. Annales Mathematicae et Informaticae, 44:99–109, 2015. URL http://ami.ektf.hu/

uploads/papers/finalpdf/AMI_44_from99to109.pdf.

Intel Intel. and ia-32 architectures software developer’s manual, 2011. Intel order Number,
64, 64.

C. Lattner. Llvm and clang: Next generation compiler technology. Lecture at BSD Confer-
ence 2008, 2008.

Chris Lattner. Introduction to the llvm compiler infrastructure. In Itanium Conference and
Expo, 2006.

LuÃs Gabriel Lima, Gilberto Melfe, Francisco Soares-Neto, Paulo Lieuthier, JoÃ£o Paulo
Fernandes, and Fernando Castor. Haskell in Green Land: Analyzing the Energy Behavior
of a Purely Functional Language. In Proceedings of the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER’2016), pages 517–528. IEEE, 2016.
ISBN 978-1-5090-1855-0.

Kenan Liu, Gustavo Pinto, and Yu David Liu. Data-oriented characterization of application-
level energy optimization. In Fundamental Approaches to Software Engineering, pages 316–
331. Springer, 2015.

Sara S Mahmoud and Imtiaz Ahmad. A green model for sustainable software engineering.
International Journal of Software Engineering and Its Applications, 7(4):55–74, 2013.

http://dx.doi.org/10.1186/2192-113X-1-4
http://ami.ektf.hu/uploads/papers/finalpdf/AMI_44_from99to109.pdf
http://ami.ektf.hu/uploads/papers/finalpdf/AMI_44_from99to109.pdf

Bibliography 55

C Mines. Reasons why cloud computing is also a green solution”. GreenBiz, Web: http://www.
greenbiz. com/blog/2011/07/27/4-reasons-why-cloud-computing-also-greensolution.

Rui Pereira, Marco Couto, João Saraiva, Jácome Cunha, and João Paulo Fernandes. The
influence of the java collection framework on overall energy consumption. In Proceedings
of the 5th International Workshop on Green and Sustainable Software, GREENS ’16, pages 15–
21, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4161-5. doi: 10.1145/2896967.
2896968. URL http://doi.acm.org/10.1145/2896967.2896968.

Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João P. Fernandes, and João Saraiva.
Mind the leak: Helping programmers improve the energy efficiency of source code (short
paper). In Proceedings of the 39th International Conference on Software Engineering (ICSE
2017), Buenos Aires, Argentina, 2017a. ACM and IEEE CS.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes,
and João Saraiva. Energy efficiency across programming languages: How do energy, time,
and memory relate? In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2017, pages 256–267, New York, NY, USA, 2017b.
ACM. ISBN 978-1-4503-5525-4. doi: 10.1145/3136014.3136031. URL http://doi.acm.

org/10.1145/3136014.3136031.

Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions about software en-
ergy consumption. In Proceedings of the 11th Working Conference on Mining Software Reposi-
tories, pages 22–31. ACM, 2014.

Inc. Qualcomm Technologies. Trepn power profiler.

J Scheild. A history of green computing, its use, the necessity and the future. Available: tp:
yy. igit, etenkirtit tetki tätigt atticles 42s, 2011.

Energy Star. Put your computers to sleep. URL https://www.energystar.gov/products/

low_carbon_it_campaign/put_your_computers_sleep.

Amber Statham, James Elkins, and Sidney Blaney. Green computing hardware, 2012. URL
https://prezi.com/bahdong--r7o/green-computing-hardware/.

Efrain Turban, Dave King, J Lee, and Dennis Viehland. Chapter 19: Building e-commerce
applications and infrastructure. Electronic Commerce A Managerial Perspective, page 27,
2008.

Vince Weaver. Linux support for power measurement interfaces, 2015. URL http://web.

eece.maine.edu/~vweaver/projects/rapl/rapl_support.html.

Josef Weidendorfer and F Zenith. The kcachegrind handbook.

http://doi.acm.org/10.1145/2896967.2896968
http://doi.acm.org/10.1145/3136014.3136031
http://doi.acm.org/10.1145/3136014.3136031
https://www.energystar.gov/products/low_carbon_it_campaign/put_your_computers_sleep
https://www.energystar.gov/products/low_carbon_it_campaign/put_your_computers_sleep
https://prezi.com/bahdong--r7o/green-computing-hardware/
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html

NB: place here information about funding, FCT project, etc in which the work is framed. Leave empty otherwise.

	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Research Group Context

	2 Background
	2.1 Ericsson
	2.1.1 Research and Development

	2.2 Green Computing
	2.2.1 Origins
	2.2.2 Hardware
	2.2.3 Software
	2.2.4 Techniques for software development

	2.3 State of the Art
	2.3.1 Energy Aware Software Tools
	2.3.2 Techniques for Green Software Analysis

	3 Energy in the CodeCompass System
	3.1 Why does Ericsson needs Green Computing?
	3.2 CodeCompass
	3.2.1 Architecture
	3.2.2 Web User Interface
	3.2.3 Functionality
	3.2.4 Perfomance
	3.2.5 User Acceptance in Real Production

	3.3 Green CodeCompass Plug-in
	3.3.1 Decisions
	3.3.2 Implementation
	3.3.3 Plug-in Outcomes

	4 Case Studies / Experiments
	4.1 Experiment setup
	4.1.1 Hardware Prerequisites
	4.1.2 Software Prerequisites and Configuration

	4.2 Results
	4.2.1 TinyXml
	4.2.2 Xerces-c-3.1.4

	4.3 Discussion
	4.3.1 Validating the Measurements

	5 Conclusion
	5.1 Conclusions
	5.2 Prospect for future work

